Finite Mathematics and Calculus with Applications 10th Edition

Solution Manual for Finite Mathematics and Calculus with Applications 10th Edition by Lial Greenwell and Ritchey ISBN 0321979400 9780321979407

Full link download:

Solution Manual:

https://testbankpack.com/p/solution-manual-for-finite-mathematics-and-calculus-with-applications-10th-edition-by-lial-greenwell-and-ritchey-isbn-0321979400-9780321979407/

Test Bank:

https://testbankpack.com/p/test-bank-for-finite-mathematics-and-calculus-with-applications-10thedition-by-lial-greenwell-and-ritchey-isbn-0321979400-9780321979407/

Chapter 1

LINEAR FUNCTIONS

1.1 Slopes and Equations of Lines

Your Turn 1

Find the slope of the line through (1, 5) and (4, 6). Let $(x_1, y_1) = (1, 5)$ and $(x_2, y_2) = (4, 6)$.

$$m = \frac{6-5}{4-1} = \frac{1}{3}$$

Your Turn 2

Find the equation of the line with *x*-intercept -4 and *y*-intercept 6.

Your Turn 5

Find (in slope-intercept form) the equation of the line that passes through the point (4, 5) and is parallel to the line 3x - 6y = 7.

First find the slope of the line 3x - 6y = 7 by solving

this equation for *y*.

$$3x - 6 y = 7$$
$$6y = 3x - 7$$
$$y = \frac{3}{6}x - \frac{7}{6}$$

Copyright 204016 Prarson Education Inc.

We know that b = 6 and that the line crosses the axes

at (-4, 0) and (0, 6). Use these two intercepts to find the slope *m*.

$$m = \frac{6-0}{0-(-4)} = \frac{6}{4} = \frac{3}{2}$$

Thus the equation for the line in slope-intercept form is

$$y = \frac{3}{2}x + 6.$$

Your Turn 3

Find the slope of the line whose equation is 8x + 3y = 5.

Solve the equation for *y*.

$$8x + 3y = 5$$
$$3y = -8x + 5$$
$$y = -\frac{8}{3}x + \frac{5}{3}$$

The slope is -8/3.

Your Turn 4

Find the equation (in slope-intercept form) of the line through (2, 9) and (5, 3).

First find the slope.

$$m = \frac{3-9}{5-2} = \frac{-6}{3} = -2$$

Now use the point-slope form, with $(x_1, y_1) = (5, 3)$.

$$y - y_1 = m(x - x_1)$$

$$y - 3 = -2(x - 5)$$

$$y - 3 = -2x + 10$$

$$y = -2x + 13$$

$$1 7 = 2^{x} - 6$$

Since the line we are to find is parallel to this line, it will also have slope 1/2. Use the point-slope form with $(x_1, y_1) = (4, 5)$.

y

$$y - y_{1} = m(x - x_{1})$$

$$\frac{1}{y - 5} = \frac{1}{2}(x - 4)$$

$$y - 5 = \frac{1}{2}x - 2$$

$$y = \frac{1}{2}x + 3$$

Your Turn 6

Find (in slope-intercept form) the equation of the line

that passes through the point (3, 2) and is perpendicular to the line 2x + 3y = 4.

First find the slope of the line 2x + 3y = 4 by solving this equation for *y*.

$$2x + 3y = 4$$
$$3y = -2x + 4$$
$$y = -\frac{2}{3}x + \frac{4}{3}$$

Since the line we are to find is perpendicular to a line with slope -2/3, it will have slope 3/2. (Note that (-2/3)(3/2) = -1.)

Use the point-slope form with $(x_1, y_1) = (3, 2)$.

$$y - y_{1} = m(x - x_{1})$$

$$y - 2 = \frac{3}{2}(x - 3)$$

$$y - 2 = \frac{3}{2}x - \frac{9}{2}$$

$$y = \frac{3}{2}x - \frac{5}{2}$$

$$2 = \frac{3}{2}x - \frac{5}{2}$$

1.1 Warmup Exercises

W1.
$$\frac{15 - (-3)}{-2 - 4} = \frac{18}{-6} = -3$$

W2.
$$y - (-3) = -2(x + 5)$$

 $y + 3 = -2x - 10$
 $y = -2x - 13$

W3.
$$y - \frac{1}{2} = \frac{2x}{\zeta}x + \frac{1}{\frac{6}{2}}$$

 $2 \quad 5 \quad 3\phi$
 $y - \frac{1}{2} = \frac{2}{x} + \frac{2}{2}$
 $2 \quad 5 \quad 15$
 $y = \frac{2}{x} + \frac{4}{2} + \frac{15}{15}$
 $y = \frac{2}{5}x + \frac{30}{30}$ 30
W4. $2x - 3y = 7$

$$-3y = -2x + 7$$

$$y = \frac{2}{3}x - \frac{7}{3}$$

1.1 Exercises

1. Find the slope of the line through (4, 5) and (-1, 2).

$$m = \frac{5-2}{4-(-1)}$$
$$= \frac{3}{5}$$

2. Find the slope of the line through (5, -4) and (1, 3).

4. Find the slope of the line through (1, 5) and (-2, 5).

$$m = \frac{5-5}{-2-1} = \frac{0}{-3} = 0$$

5.
$$y = x$$

Using the slope-intercept form, y = mx + b, we see that the slope is 1.

6. y = 3x - 2

This equation is in slope-intercept form,

y = mx + b. Thus, the coefficient of the x-term, 3, is the slope.

7. 5x - 9y = 11

Rewrite the equation in slope-intercept form.

$$9y = 5x - 11$$
$$y = \frac{5}{9}x - \frac{11}{9}$$

The slope is $\frac{5}{9}$.

8. 4x + 7y = 1

Rewrite the equation in slope-intercept form. 7y = 1 - 4x

$$\frac{1}{7}(7y) = \frac{1}{7}(1) - \frac{1}{7}(4x)$$
$$y = \frac{1}{7} - \frac{4}{7}x$$
$$y = -\frac{4}{7}x + \frac{1}{7}$$

The slope is $-\frac{4}{7}$.

9. x = 5

This is a vertical line. The slope is undefined.

10. The *x*-axis is the horizontal line y = 0.

$$m = \frac{3 - (-4)}{1 - 5} \\ = \frac{3 + 4}{-3 + 4}$$

11.

12.

20
nt
al
lin
es
ha ve
a
slo
pe of
of
0.
у
=
8
Th
is
is
a
ho
riz on
on
tal
lin
e,
wh
ich
ha
s a
slo
pe
pe of 0.
0.
у
=
_
6
By
re
wr
iti
ng
thi
s
ea

Н

ori

zo

-intercept

eq

uat io

n

in

the

slo

pe

$$-4$$
$$= -\frac{7}{4}$$

3. Find the slope of the line through (8, 4) and (8, -7).

$$m = \frac{4 - (-7)}{8 - 8} = \frac{11}{0}$$

The slope is undefined; the line is vertical.

form, y = mx + b, we get y = 0x - 6, with

the slope, *m*, being 0.

13. Find the slope of a line parallel to 6x - 3y = 12. Rewrite the equation in slope-intercept form.

-3y = -6x + 12

$$y = 2x - 4$$

The slope is 2, so a parallel line will also have slope 2.

14. Find the slope of a line perpendicular to 8x = 2y - 5.

First, rewrite the given equation in slope-intercept form.

$$8x = 2y - 5$$

$$8x + 5 = 2y$$

$$4x + \frac{5}{2} = y \text{ or } y = 4x + \frac{5}{2}$$

Let m be the slope of any line perpendicular to the

given line. Then.

$$4 \cdot m = -1$$
$$m = -\frac{1}{4}.$$

15. The line goes through (1, 3), with slope m = -2. Use point-slope form.

$$y - 3 = -2(x - 1)$$
$$y = -2x + 2 + 3$$
$$y = -2x + 5$$

16. The line goes through (2, 4), with slope m = -1. Use point-slope form.

$$y - 4 = -1(x - 2)$$

 $y - 4 = -x + 2$
 $y = -x + 6$

17. The line goes through (-5, -7) with slope m = 0. Use point-slope form.

$$y - (-7) = 0[x - (-5)]$$

$$y + 7 = 0$$

$$y = -7$$

18. The line goes through (-8, 1), with undefined slope. Since the slope is undefined, the line is

vertical. The equation of the vertical line passing through (-8, 1) is x = -8.

19. The line goes through (4, 2) and (1, 3). Find the

20. The line goes through (8, -1) and (4, 3). Find the slope, then use point-slope form with either of the two given points.

$$m = \frac{3 - (-1)}{1}$$

$$= \frac{3 + 1}{-4}$$

$$= \frac{4}{-4} = -1$$

$$y - (-1) = -1(x - 1)$$

$$y + 1 = -x + 8$$

y = -x + 7

21. The line goes through $\left(\frac{2}{3}, \frac{1}{2}\right)$ and $\left(\frac{1}{4}, -2\right)$.

$$m = \frac{-2 - \frac{1}{2}}{\frac{1}{2} - \frac{2}{2}} = \frac{-\frac{4}{2} - \frac{1}{2}}{\frac{3}{12} - \frac{8}{12}}$$

$$m = \frac{2}{-\frac{5}{12}} = \frac{60}{10} = 6$$

$$y - (-2) = 6\frac{x}{c}x - \frac{1}{4}\frac{0}{6}$$

$$y + 2 = 6x - \frac{3}{2}$$

$$y = 6x - \frac{3}{2} - 2$$

$$y = 6x - \frac{3}{2} - \frac{4}{2}$$

$$y = 6x - \frac{7}{2}$$

22. The line goes through $(-2, {}^{3})$ and $({}^{2}, {}^{5})$. $m = \frac{5}{2} - \frac{3}{4}}{\frac{2}{2} - (-)} = \frac{\frac{10}{4} - \frac{3}{4}}{\frac{2}{4} + \frac{6}{3}}$ $= \frac{\frac{7}{4}}{\frac{8}{3}} = \frac{21}{32}$ slope, then use point-slope form with either of the

two given points.

$$m = \frac{3-2}{1-4} = -\frac{1}{3}$$
$$y - 3 = -\frac{1}{3}(x-1)$$
$$y = -\frac{1}{3}x + \frac{1}{3} + 3$$
$$y = -\frac{1}{3}x + \frac{10}{3}$$

 $y - \frac{3}{4} = \frac{21}{32}[x - (-2)]$ $y - \frac{3}{4} = \frac{21}{32}x + \frac{42}{32}$ $y = \frac{21}{32}x + \frac{42}{32} + \frac{3}{4}$ $y = \frac{21}{32}x + \frac{21}{16} + \frac{12}{16}$ $y = \frac{21}{32}x + \frac{33}{16}$

23. The line goes through (-8, 4) and (-8, 6).

$$m = \frac{4-6}{-8-(-8)} = \frac{-2}{0};$$

which is undefined.

This is a vertical line; the value of x is always -8. The equation of this line is x = -8.

24. The line goes through (-1, 3) and (0, 3).

$$m = \frac{3-3}{-1-0} = \frac{0}{-1} = 0$$

This is a horizontal line; the value of y is always 3. The equation of this line is y = 3.

25. The line has *x*-intercept -6 and *y*-intercept -3. Two points on the line are (-6, 0) and (0, -3).

Find the slope; then use slope-intercept form.

$$m = \frac{-3 - 0}{2} = \frac{-3}{2} = -\frac{1}{2}$$

$$0 - (-6) = 6$$

$$2$$

$$b = -3$$

$$y = -\frac{1}{2}x - 3$$

$$2y = -x - 6$$

$$x + 2y = -6$$

26. The line has *x*-intercept -2 and *y*-intercept 4. Two points on the line are (-2, 0) and (0, 4). Find the slope; then use slope-intercept form.

$$m = \frac{4-0}{2} = \frac{4}{2} = 2$$
$$0 - (-2)$$
$$y = mx + b$$
$$y = 2x + 4$$
$$2x - y = -4$$

- 27. The vertical line through (-6, 5) goes through the point (-6, 0), so the equation is x = -6.
- **28.** The line is horizontal, through (8, 7).

Use
$$m = -\frac{3}{2}$$
 and the point (-4, 6) in the point-

slope form.

$$y - 6 = -\frac{3}{2}[x - (-4)]$$
$$y = -\frac{3}{2}(x + 4) + 6$$
$$y = -\frac{3}{2}x - 6 + 6$$
$$y = -\frac{3}{2}x$$
$$2y = -3x$$
$$3x + 2y = 0$$

30. Write the equation of the line through (2, -5), parallel to y - 4 = 2x. Rewrite the equation in slope-intercept form.

$$y - 4 = 2x$$
$$y = 2x + 4$$

The slope of this line is 2.

Use m = 2 and the point (2, -5) in the pointslope form.

$$y - (-5) = 2(x - 2)$$

$$y + 5 = 2x - 4$$

$$y = 2x - 9$$

$$2x - y = 9$$

31. Write an equation of the line through (3, -4),

perpendicular to x + y = 4.

The line has an equation of the form
$$y = k$$

where k is the y-coordinate of the point. In this

Rewrite the equation of the given line as

$$y = -x + 4.$$

The slope of this line is -1. To find the slope of a perpendicular line, solve

$$-1m = -1.$$

case, $k = 7$, so the equation is $y = 7$.

29. Write an equation of the line through (-4, 6), parallel to 3x + 2y = 13.

Rewrite the equation of the given line in slope-intercept form.

$$3x + 2y = 13$$
$$2y = -3x + 13$$
$$y = -\frac{3}{2}x + \frac{13}{2}$$

The slope is $-\frac{3}{2}$.

$$m = 1$$

Use $m = 1$ and $(3, -4)$ in the point-slope form.
$$y - (-4) = 1(x - 3)$$
$$y = x - 3 - 4$$
$$y = x - 7$$
$$x - y = 7$$

32. Write the equation of the line through (-2, 6), perpendicular to 2x - 3y = 5.

Rewrite the equation in slope-intercept form.

$$2x - 3y = 5$$
$$-3y = -2x + 5$$
$$y = \frac{2}{3}x - \frac{5}{3}$$

41Section 1.1

The slope of this line is $\frac{2}{3}$. To find the slope of a $\frac{3}{3}$

perpendicular line, solve

$$\frac{2}{3}m = -1.$$

$$m = -\frac{3}{2}$$

Use $m = -\frac{3}{2}$ and (-2, 6) in the point-slope form.

$$y-6 = -\frac{3}{2} [x - (-2)] y-6 = -\frac{3}{2} (x + 2) 2 y-6 = -\frac{3}{2} x - 3 y = -\frac{3}{2} x + 3 2 2 y = -3x + 6$$

$$3x + 2y = 6$$

33. Write an equation of the line with *y*-intercept 4, perpendicular to x + 5y = 7.

Find the slope of the given line.

$$x + 5y = 7$$

$$5y = -x + 7$$

$$y = -\frac{1}{5}x + \frac{7}{5}$$

The slope is $-\frac{1}{5}$, so the slope of the perpendicular

line will be 5. If the y-intercept is 4, then using the

slope-intercept form we have

$$y = mx + b$$

 $y = 5x + 4$, or $5x - y = -4$

- **34.** Write the equation of the line with *x*-intercept $\frac{2}{2}$
 - $-_3$, perpendicular to 2x y = 4.

Find the slope of the given line.

$$y - 0 = -\frac{1}{2} \overset{\circ}{\overset{\circ}{_{t}}} x - \overset{\circ}{_{t}} - \overset{\circ}{_{t}} \overset{\circ}{_{t}} \\ 2 \overset{\circ}{\overset{\circ}{_{t}}} x - \overset{\circ}{_{t}} - \overset{\circ}{_{t}} \overset{\circ}{_{t}} \\ 3 \overset{\circ}{\overset{\circ}{_{t}}} \\ y = -\frac{1}{2} \overset{\circ}{_{t}} x + \frac{2 \overset{\circ}{_{t}}}{\overset{\circ}{_{t}}} \\ 2 \overset{\circ}{_{t}} 3 \overset{\circ}{_{t}} \\ y = -\frac{1}{2} x - \frac{1}{3} \\ 6 y = -3x - 2 \\ 3x + 6y = -2 \end{cases}$$

35. Do the points (4, 3), (2, 0), and (-18, -12) lie on the same line?
Find the slope between (4, 3) and (2, 0).

$$m = \frac{0-3}{2-4} = \frac{-3}{-2} = \frac{3}{2}$$

Find the slope between (4, 3) and (-18, -12).

$$m = \frac{-12 - 3}{-18 - 4} = \frac{-15}{-22} = \frac{15}{22}$$

Since these slopes are not the same, the points do not lie on the same line.

36. (a) Write the given line in slope-intercept form.

$$2x + 3y = 6$$

$$3y = -2x + 6$$

$$y = -\frac{2}{3}x + 2$$

This line has a slope of $-\frac{2}{3}$. The desired line

has a slope of $-\frac{2}{3}$ since it is parallel to the

given line. Use the definition of slope.

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$
$$-\frac{2}{3} = \frac{2 - (-1)}{k - 4}$$

$$2x - y = 4$$

Copypyhight 2020 Represented Education Induc.

2x - 4 = yThe slope of this line is 2. Since the lines are perpendicular, the slope of the needed line is $-\frac{1}{2}$. The line also has an *x*-intercept of $-\frac{2}{3}$. Thus, it passes through the point $\left(-\frac{2}{3}, 0\right)$. Using the point-slope form, we have

$$-\frac{2}{3} = \frac{3}{k-4}$$
$$-2(k-4) = (3)(3)$$
$$-2k+8 = 9$$
$$-2k = 1$$
$$k = \frac{1}{2}$$

(b) Write the given line in slope-intercept form.

5x - 2y = -12y = 5x + 1 $y = \frac{5}{2}x + \frac{1}{2}$

This line has a slope of $\frac{5}{2}$. The desired line has a slope of $-\frac{2}{5}$ since it is perpendicular to

the given line. Use the definition of slope.

$$m = \frac{y_2 - y_1}{x_2 - x_1}$$

$$= \frac{2 - (-1)}{k - 4}$$

$$-\frac{2}{5} = \frac{2 + 1}{k - 4}$$

$$= \frac{2}{5} = \frac{-3}{k - 4}$$

$$= \frac{-2}{5} = \frac{-3}{k - 4}$$

$$= \frac{-2(k - 4)}{(-2k + 8)} = (3)(5)$$

$$= -2k = 7$$

$$k = \frac{7}{2}$$

37. A parallelogram has 4 sides, with opposite sides parallel. The slope of the line through (1, 3) and (2, 1) is

$$m = \frac{3-1}{1-2}$$
$$= \frac{2}{-1}$$
$$= -2.$$

The slope of the line through $\left(-\frac{5}{2}, 2\right)$ and $\left(-\frac{7}{2}, 4\right)$

is

$$m = \frac{2-4}{-\frac{5}{2} - \left(-\frac{7}{2}\right)} = \frac{-2}{1} = -2.$$

Since these slopes are equal, these two sides are parallel.

The slope of the line through $\left(-\frac{7}{4}, 4\right)$ and (1, 3) is

$$m = \frac{4-3}{-7-1} = \frac{1}{-9} = -\frac{2}{9}$$

Slope of the line through $\left(-\frac{5}{2},2\right)$ and (2,1) is

$$m = \frac{2-1}{-\frac{5}{2}-2} = \frac{1}{-\frac{9}{2}} = -\frac{2}{2}.$$

$$m = \frac{5 - (-1)}{-2 - 4} = \frac{-6}{-6} = -1.$$

The product of the slopes is (1)(-1) = -1, so the diagonals are perpendicular.

39. The line goes through (0, 2) and (-2, 0)

$$m = \frac{2 - 0}{0 - (-2)} = \frac{2}{2} = 1$$

The correct choice is (a).

40. The line goes through (1, 3) and (2, 0).

$$m = \frac{3-0}{1-2} = \frac{3}{-1} = -3$$

The correct choice is (f).

41. The line appears to go through (0, 0) and (-1, 4).

$$m = \frac{4 - 0}{-1 - 0} = \frac{4}{-1} = -4$$

42. The line goes through (-2, 0) and (0, 1).

$$m = \frac{1-0}{0-(-2)} = \frac{1}{2}$$

43. (a) See the figure in the textbook.Segment *MN* is drawn perpendicular to segment *PQ*. Recall that *MQ* is the length of segment *MQ*.

$$m_1 = \frac{\Delta y}{\Delta x} = \frac{MQ}{PQ}$$

From the diagram, we know that PQ = 1. Thus, $m_1 = \frac{MQ}{1}$, so MQ-has length m_1 .

(b)
$$m_2 = \frac{\Delta y}{\Delta x} = \frac{-QN}{PQ} = \frac{-QN}{1}$$

 $QN = -m_2$
 $\frac{2}{2}$

Copyright 2020 Repears ded Education Anc.

Since these slopes are equal, these two sides are

parallel.

Since both pairs of opposite sides are parallel, the

quadrilateral is a parallelogram.

38. Two lines are perpendicular if the product of their slopes is -1.

The slope of the diagonal containing (4, 5) and (-2, -1) is

$$m = \frac{5 - (-1)}{4 - (-2)} = \frac{6}{6} = 1.$$

The slope of the diagonal containing (-2, 5) and (4, -1) is

(c) Triangles *MPQ*, *PNQ*, and *MNP* are right triangles by construction. In triangles *MPQ* and *MNP*,

angle M = angle M,

and in the right triangles PNQ and MNP,

angle N = angle N.

Since all right angles are equal, and since triangles with two equal angles are similar, triangle *MPQ* is similar to triangle *MNP* and triangle *PNQ* is similar to triangle *MNP*.

Therefore, triangles MNQ and PNQ are

similar to each other.

(d) Since corresponding sides in similar triangles are proportional,

$$MQ = k \cdot \qquad \text{and} \qquad PQ = k \cdot \\ PQ \qquad \qquad QN.$$
$$\frac{MQ}{PQ} = \frac{k \cdot PQ}{k \cdot } \\ \frac{MQ}{QN} = \frac{PQ}{QN}$$

From the diagram, we know that PQ = 1.

$$MQ = \frac{1}{QN}$$

From (a) and (b), $m_1 = MQ$ and $-m_2 = QN$.

Substituting, we get

$$m_1 = \frac{1}{-m_2}.$$

Multiplying both sides by m_2 , we have $m_1m_2 = -1$.

44. (a) Multiplying both sides of the equation $\frac{x}{a} + \frac{y}{b} = 1$ by *ab*, we have

$$ab^{\frac{x}{\underline{x}}\underline{\dot{0}}}_{\begin{array}{c}c}+ab^{\frac{x}{\underline{y}}}\underline{\ddot{0}}\\+ab^{\frac{x}{\underline{y}}}\underline{\ddot{0}}\\ & \overset{x}{\underline{b}} b \\ & \overset{x}{\underline{b}} b \\ & bx + ay = ab. \end{array}$$

Solve this equation for *y*.

$$bx + ay = ab$$
$$ay = ab - bx$$
$$y = \frac{ab - bx}{a}$$
$$y = -\frac{b}{a}x + b$$
If we let $m = -\frac{b}{a}$, then the equation

$$\frac{x}{a} + \frac{y}{b} = 1$$
$$0 + \frac{y}{y} = 1$$
$$\frac{b}{y} = 1$$

$$b$$

 $y = b$

The *y*-intercept is *b*.

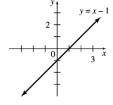
(c) If the equation of a line is written as $\frac{x}{a} + \frac{y}{b} = 1$, we immediately know the

intercepts of the line, which are *a* and *b*.

45.
$$y = x - 1$$

Three ordered pairs that satisfy this equation are

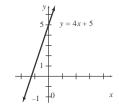
(0, -1), (1, 0), and (4, 3). Plot these points and draw a line through them.



46. y = 4x + 5

Three ordered pairs that satisfy this equation are (-2, -3), (-1, 1), and (0, 5). Plot these points and

draw a line through them.



47.
$$y = -4x + 9$$

becomes

Copyright 2020 Represented Education in Anc.

$$y = mx + b.$$

(b) Let
$$y = 0$$

= 0. $\frac{x}{a} + \frac{y}{b} = 1$ $\frac{x}{a} + 0 = 1$ $\frac{x}{a} = 1$ x = a

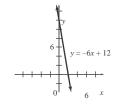
a line through them.

The *x*-intercept is *a*.

Let x = 0.

48. y = -6x + 12

There ordered pairs that satisfy this equation are (0, 12), (1, 6),and (2, 0). Plot these points and draw a line through them.



49.
$$2x - 3y = 12$$

Find the intercepts.

If y = 0, then

$$2x - 3(0) = 12$$
$$2x = 12$$
$$x = 6$$

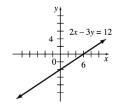
so the *x*-intercept is 6.

If x = 0, then

$$2(0) - 3y = 12 -3y = 12 y = -4$$

so the y-intercept is -4.

Plot the ordered pairs (6, 0) and (0, -4) and draw a line through these points. (A third point may be used as a check.)



50. 3x - y = -9

Find the intercepts.

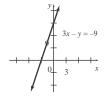
If y = 0, then 3x - 0 = -9

$$3x = -9$$
$$3x = -3$$

If x = 0, then

$$3(0) - y = -9$$

Plot the ordered pairs (-3, 0) and (0, 9) and draw a line through these points. (A third point may be used as a check.)



51.
$$3y - 7x = -21$$

Find the intercepts.

If
$$y = 0$$
, then
 $3(0) + 7x = -21$
 $-7x = -21$
 $x = 3$

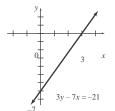
so the *x*-intercept is 3.

If x = 0, then

$$3y - 7(0) = -21$$
$$3y = -21$$
$$y = -7$$

So the *y*-intercepts is -7.

Plot the ordered pairs (3, 0) and (0, -7) and draw a line through these points. (A third point may be used as a check.)



52. 5y + 6x = 11

Find the intercepts. If y = 0, then

$$5(0) + 6x = 11$$
$$6x = 11$$
$$x = \frac{11}{6}$$

so the *x*-intercept is $\frac{11}{6}$.

Copyright 2020 Represented Education Induc.

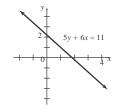
so the y-intercept

$$\begin{array}{l}
-y = -9 \\
y = 9 \\
\text{is 9.} \\
\end{array}$$
If $x = 0$, then
$$\begin{array}{l}
5y + 6(0) = 11 \\
5y = 11 \\
y = \frac{11}{5}
\end{array}$$

so the *y*-intercept is $\frac{11}{5}$.

Plot the ordered pairs $(\frac{11}{6}, 0)$ and $(0, \frac{11}{5})$ and $\frac{6}{5}$

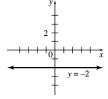
draw a line through these points. (A third point may be used as a check.)



53. y = -2

The equation y = -2, or, equivalently,

y = 0x - 2, always gives the same y-value, -2, for any value of x. The graph of this equation is the horizontal line with y-intercept -2.



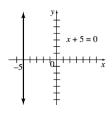
54. *x* = 4

For any value of *y*, the *x*-value is 4. Because all ordered pairs that satisfy this equation have the same first number, this equation does not represent a function. The graph is the vertical line with

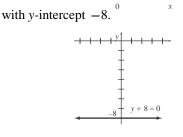
x-intercept 4.

55. x + 5 = 0

This equation may be rewritten as x = -5. For any value of y, the x-value is -5. Because all ordered pairs that satisfy this equation have the same first number, this equation does not represent a function. The graph is the vertical line with x-intercept -5.

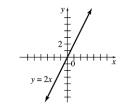


for any value of *x*. The graph is the horizontal line



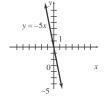
57. y = 2x

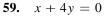
Three ordered pairs that satisfy this equation are (0, 0), (-2, -4), and (2, 4). Use these points to draw the graph.



58. y = -5x

Three ordered pairs that satisfy this equation are (0, 0), (-1, 5), and (1, -5). Use these points to draw the graph.





If y = 0, then x = 0, so the x-intercept is 0. If

x = 0, then y = 0, so the y-intercept is 0. Both

intercepts give the same ordered pair, (0, 0). To get a second point, choose some other value of x (or y). For example if x = 4, then

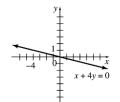
$$x + 4y = 0$$

$$4 + 4y = 0$$

$$4y = -4$$

$$y = -1,$$

giving the ordered pair (4, -1). Graph the line through (0, 0) and (4, -1).



Copyright 2020 Repeans Education dnc.

56. y + 8 = 0

This equation may be rewritten as y = -8, or,

equivalently, y = 0x + -8. The y-value is -8

- **60.** 3x 5y = 0
 - If y = 0, then x = 0, so the x-intercept is 0. If
 - x = 0, then y = 0, so the y-intercept is 0. Both

intercepts give the same ordered pair (0, 0).

To get a second point, choose some other value of x (or y). For example, if x = 5, then

$$3x - 5y = 0$$

$$3(5) - 5y = 0$$

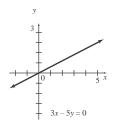
$$15 - 5y = 0$$

$$-5y = -1$$

$$y = 3$$

5

giving the ordered pair (5, 3). Graph the line through (0, 0) and (5, 3).



61. (a) The line goes through (2, 27,000) and (5, 63,000).

$$m = \frac{63,000 - 27,000}{5 - 2}$$

= 12,000y - 27,000 = 12,000(x - 2) y - 27,000 = 12,000x - 24,000 y = 12,000x + 3000

(b) Let y = 100,000; find x.

$$100,000 = 12,000x + 3000$$
$$97,000 = 12,000x$$
$$8.08 = x$$

$$8.08 = x$$

Sales would surpass \$100,000 after 8 years, 1 month.

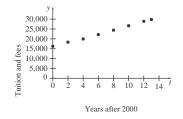
62. (a) The line goes through (100, 126) and (120, 144).

$$m = \frac{144 - 126}{120 - 100}$$

(c) y = 0.9x + 36y = 0.9(180) + 36 = 198

180 gourmet cupcakes would cost \$198.

63. (a)



Yes, the data appear to lie roughly along a straight line.

(**b**) The line goes through (0, 16, 072) and (13, 30, 094).

$$m = \frac{30,094 - 16,072}{13 - 0} \gg 1078.6$$

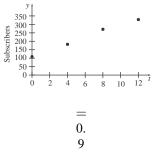
$$b = 16,072$$

 $y = 1078.6t + 16,072$

The slope 1078.6 indicates that tuition and fees have increased approximately \$1079 per year.

(c) The year 2025 is too far in the future to rely

on this equation to predict costs; too many other factors may influence these costs by then.



The average cost of producing gourmet cupcakes increases by \$0.90 per cupcake.

Copyright 2020 Represented Education Induc.

(b) Use the point slope form with the given points. y - 126 = 0.9(x - 100)

$$y = 0.9x - 90 + 126$$

 $y = 0.9x + 36$

Years after 2000

(**b**) The line goes through (0, 109.48) and (12, 326.48).

$$m = \frac{326.48 - 109.48}{12 - 0}$$

> 18.083
$$b = 109.48$$

$$y = 18.083t + 109.48$$

(c) The line goes through (4, 182, 14) and (12, 326.48).

$$m = \frac{326.48 - 182.14}{12 - 4} \gg 18.043$$

Use (4, 182.14) and the point-slope form.

$$y - 182.14 = 18.043(t - 4)$$

$$y = 18.043t - 72.172 + 182.14$$

$$y = 18.043t + 109.97$$

(d) The data is *approximately* linear because all

the data points do not fall on a straight line. So the lines between different pairs of points have different slopes that are close in value.

(e)
$$y = 18.083t + 109.48$$

 $y = 18.083(10) + 109.48$

y = 290.31 million subscribers

$$y = 18.043t + 109.97$$

$$y = 18.043(10) + 109.97$$

$$y = 290.40$$
 million subscribers

Both the estimated values are slightly less than the actual number of subscribers of 296.29 million.

65. (a) The line goes through (3, 100) and (22, 220, 6)

(32, 229.6).

$$m = \frac{229.6 - 100}{32 - 3} \gg 4.469$$

Use the point (3,100) and the point-slope form.

$$y - 100 = 4.469(t - 3)$$

$$y = 4.469t - 13.407 + 100$$

$$y = 4.469t + 86.593$$

(b) The year 2000 corresponds to

$$t = 2000 - 1980 = 20.$$

$$y = 4.469(20) + 86.593$$

$$y \Rightarrow 176.0$$

The predicted value is slightly more than the actual CPI of 172.2.

- (c) The annual CPI is increasing at a rate of approximately 4.5 units per year.
- **66.** (a) The line goes through (4, 0.17) and (7, 0.33).

$$m = \frac{0.33 - 0.17}{7 - 4}$$
$$= \frac{0.16}{3} \gg 0.053$$
$$y - 0.33 = \frac{0.16}{3}(t - 7)$$
$$y - 0.33 = 0.053t - 0.373$$

In about 10.2 years, half of these patients will have AIDS.

67. (a) Let
$$x = age$$
.

$$u = 0.85(220 - x) = 187 - 0.85x$$
$$l = 0.7(200 - x) = 154 - 0.7x$$

(b) u = 187 - 0.85(20) = 170l = 154 - 0.7(20) = 140

The target heart rate zone is 140 to 170 beats per minute.

(c) u = 187 - 0.85(40) = 153l = 154 - 0.7(40) = 126

The target heart rate zone is 126 to 153 beats per minute.

(d) 154 - 0.7x = 187 - 0.85(x + 36) 154 - 0.7x = 187 - 0.85x - 30.6 154 - 0.7x = 156.4 - 0.85x 0.15x = 2.4x = 16

The younger woman is 16; the older woman is 16 + 36 = 52. $l = 0.7(220 - 16) \gg 143$ beats per minute.

68. Let *x* represent the force and *y* represent the speed. The linear function contains the points (0.75, 2) and (0.93, 3).

$$m = \frac{3-2}{0.93-0.75} = \frac{1}{0.18}$$
$$= \frac{1}{\frac{18}{100}} = \frac{100}{18} = \frac{50}{9}$$

Use point-slope form to write the equation.

$$y - 2 = \frac{50}{9}(x - 0.75)$$
$$y - 2 = \frac{50}{9}x - \frac{50}{9}(0.75)$$
$$y = \frac{50}{9}x - \frac{75}{18} + 2$$
$$y = \frac{50}{9}x - \frac{13}{6}$$

Now determine *y*, the speed, when *x*, the force, is 1.16.

$$y = \frac{50}{9}(1.16) - \frac{13}{6}$$

Copyright 2020 Represented Education Induc.

$y \gg 0.053t - 0.043$	$=\frac{58}{9}-\frac{13}{6}=\frac{77}{18}\gg 4.3$
(b) Let $y = 0.5$; solve for <i>t</i> .	9 6 18 74.5

$$0.5 = 0.053t - 0.043$$
$$0.543 = 0.053t$$
$$10.2 = t$$

The pony switches from a trot to a gallop at approximately 4.3 meters per second.

69. Let x = 0 correspond to 1900. Then the "life expectancy from birth" line contains the points (0, 46) and (110, 78.7).

$$m = \frac{78.7 - 46}{110 - 0} = \frac{32.7}{110} \gg 0.297$$

Since (0, 46) is one of the points, the line is given by the equation.

$$y = 0.297x + 46$$

The "life expectancy from age 65" line contains the points (0, 76) and (110, 84.1).

$$m = \frac{84.1 - 76}{110 - 0} = \frac{8.1}{110} \gg 0.074$$

Since (0, 76) is one of the points, the line is given by the equation

$$y = 0.074x + 76.$$

Set the two expressions for *y* equal to determine where the lines intersect. At this point, life expectancy should increase no further.

$$0.297x + 46 = 0.074x + 76$$

$$0.223x = 30$$
$$x \gg 135$$

Determine the y-value when x = 129. Use the first equation.

$$y = 0.297(135) + 46$$

= 40.095 + 46
= 86.095

Thus, the maximum life expectancy for humans is about 86 years.

70. (a) Let t = 0 correspond to 1900. Then the

"mortality rate for children under 5 years of age" line contains the points (90, 90) and (112, 48).

$$m = \frac{48 - 90}{112 - 90} \gg -1.909$$

Use the point (90,90) and the point-slope form.

$$y - 90 = -1.909(t - 90)$$

71. (a) The line goes through (50, 249,187) and (112, 1, 031, 631).

$$m = \frac{1,031,631 - 249,187}{112 - 50}$$
 » 12, 620.06

Use the point (50, 249, 187) and the point-slope form.

$$y - 249,187 = 12,620.06(t - 50)$$

 $y = 12,620.06t - 631,003 + 249,187$
 $y = 12,620.06t - 381,816$

(b) The year 2015 corresponds to
$$t = 115$$
.
 $y = 12,620.06(115) - 381,816$
 $y \gg 1,069,$
491

The number of immigrants admitted to the United States in 2015 will be about 1,069,491.

(c) The equation y = 12,620.16t - 381,816

has -381,816 for the *y*-intercept, indicating that the number of immigrants admitted in the year 1900 was -381,816. Realistically, the number of immigrants cannot be a negative value, so the equation cannot be used for valid predicted values.

72. (a) The line (for the data for men) goes through (0, 24.7) and (30, 28.2).

$$m = \frac{28.2 - 24.7}{30 - 0} \gg 0.117$$

Use the point (0, 24.7) and the point-slope form.

$$y - 24.7 = 0.117(t - 0)$$

$$y = 0.117t + 24.7$$

у

=

- (b) The line (for the data for women) goes through (0, 22.0) and (30, 26.1).
 - 1. 90 9*t*

+ 171.81 + 90

$$y = -1.909t + 261.81$$

(b) Let y = 30 and solve for *t*.

$$y = -1.909t + 261.81$$
$$30 = -1.909t + 261.81$$

-231.81 = -1.909t121.43 = t

If the trend continues, the goal of the mortality rate for children under 5 years of age being 30 per 1000 live births would be reached in 2022.

$$m = \frac{26.1 - 22.0}{30 - 0} \gg 0.137$$

Use the point (0, 22.0) and the point-slope form.

$$y - 22.0 = 0.137(t - 0)$$

$$y = 0.137t + 22.0$$

(c) Since 0.137 > 0.117, women seem to have

the faster increase in median age at first marriage.

(d) Let y = 30. 30 = 0.117t + 24.7 5.3 = 0.117t $45.299 \gg t$

The median age at first marriage for men will reach 30 in the year 1980 + 45 = 2025 or 1980 + 46 = 2026, depending on how the computations were rounded.

(e) Let t = 45.299.

$$y = 0.137(45.299) + 22.0$$

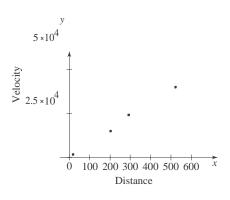
 $y \gg 28.2$

The median age at first marriage for women will reach be 28.2 when the median age for

men is 30. (The answer will be 28.3 if the

year 2026 is used as the answer for part (d).)

73. (a) Plot the points (15, 1600), (200, 15, 000), (290, 24, 000), and (520, 40, 000).



The points lie approximately on a line, so there appears to be a linear relationship between distance and time.

(b) The graph of any equation of the form y = mx goes through the origin, so the line goes through (520, 40,000) and (0, 0).

$$m = \frac{40,000 - 0}{520 - 0} \gg$$

$$76.9 \qquad 520 - 0$$

$$b = 0$$

$$y = 76.9x + 0$$

$$y = 76.9x$$

$$(0.000 - 1 - 5)$$

(c) Let y = 60,000; solve for *x*.

74. (a) If the temperature rises 0.3C° per decade, it rises 0.03C° per year.

$$m = 0.03$$

$$b = 15$$
, since a point is (0,15).

$$T = 0.03t + 15$$

(b) Let
$$T = 19$$
; find t .
 $19 = 0.03t + 15$
 $4 = 0.03t$
 $t = 133.3 \gg 133$
So, $1970 + 133 = 2103$.

The temperature will rise to 19°C in about the year 2103.

75. (a) Let t = 0 correspond to 2000. Then the line

representing the percent of respondents who got their news from the newspaper contains the points (6, 40) and (12, 29).

$$m = \frac{29 - 40}{12 - 6} \gg -1.83$$

Use the point (6, 40) and the point-slope form.

- $y_n 40 = -1.83(t 6)$ $y_n = -1.83t + 10.98 + 40$ $y_n = -1.83t + 50.98$
- (b) The line representing the percent of respondents who got their news online contains the points (6, 23) and (12, 39).

$$m = \frac{39 - 23}{12 - 6} \gg 2.67$$

$$60,000 = 76.9x$$

780.23 » x

the point-slope form.

Use the point (6, 23) and

Hydra is about 780 megaparsecs from earth.

(d)
$$A = \frac{9.5 - 10^{11}}{m}, m = 76.9$$

 $A = \frac{9.5 - 10^{11}}{76.9}$

= 12.4 billion years

 $y_o - 23 = 2.67(t - 6)$ $y_o = 2.67t - 16.02 + 23$ $y_o = 2.67t + 6.98$

(c) The number of respondents who got their news

from newspapers is decreasing by about 1.83% per year, while the number of respondents who got their news online is increasing by about 2.67% per year.

1.2 Linear Functions and Applications

Your Turn 1

For
$$g(x) = -4x + 5$$
, calculate $g(-5)$.
 $g(x) = -4x + 5$
 $g(-5) = -4(-5) + 5$
 $= 20 + 5$
 $= 25$

Your Turn 2

For the demand and supply functions given in Example 2, find the quantity of watermelon demanded and supplied at a price of \$3.30 per watermelon.

$$p = D(q) = 9 - 0.75q$$

3.30 = 9 - 0.75q
0.75q = 5.7

$$q = \frac{5.7}{0.75} = 7.6$$

Since the quantity is in thousands, 7600 watermelon are demanded at a price of \$3.30.

$$p = S(q) = 0.75q$$

3.30 = 0.75q
$$q = \frac{3.3}{0.75} = 4.4$$

Since the quantity is in thousands, 4400 watermelon are supplied at a price of \$3.30.

Your Turn 3

Set the two price expressions equal and solve for the equilibrium quantity q.

$$10 - 0.85q = 0.4q$$

$$10 = 1.25q$$

$$q = \frac{10}{1.25} = 8$$

The equilibrium quantity is 8000 watermelon. Use either price expression to find the equilibrium price p.

$$p = 0.4q$$

 $p = 0.4(8) = 3.2$

The equilibrium price is \$3.20 per watermelon.

Your Turn 4

The marginal cost is the slope of the cost function C(x),

Your Turn 5

The fixed cost is *b*, this function has the form C(x) = mx + 7145. To find *m*, use the fact that

producing 100 items costs \$7965. C(x) = mx + 7145 C(100) = 100m + 7145 7965 = 100m + 7145 820 = 100mm = 8.2

Thus the cost function is C(x) = 8.2x + 7145.

Your Turn 6

The cost function is C(x) = 35x + 250 and the

revenue function is R(x) = 58x. Thus the profit function is

$$P(x) = R(x) - C(x)$$

$$= 58x - (35x + 250) = 23x - 250$$

The profit is to be \$8030.

$$P(x) = 23x - 250$$
$$8030 = 23x - 250$$

$$23x = 8280$$

$$x = \frac{8280}{23} = 360$$

Sale of 360 units will produce \$8030 profit.

1.2 Warmup Exercises

W1.
$$3(x-2)^2 + 6(x+4) - 5x + 4$$

 $3(5-2)^2 + 6(5+4) - 5(5) + 4$
 $= 3(3)^2 + 6(9) - 5(5) + 4$
 $= 27 + 54 - 25 + 4$
 $= 60$

W2.

2.
$$p_{4}$$

 q_{4}
 p_{7}
 q_{2}
 q_{4}
 q_{4}

1.2 Exercises

so this function has the form C(x) = 15x + b. To find

b, use the fact that producing 80 batches costs \$1930.

$$C(x) = 15x + b$$

$$C(80) = 15(80) + b$$

$$1930 = 1200 + b$$

$$b = 730$$

Thus the cost function is C(x) = 15x + 730.

- 1. f(2) = 7 5(2) = 7 10 = -3
- **2.** f(4) = 7 5(4) = 7 20 = -13
- 3. f(-3) = 7 5(-3) = 7 + 15 = 22
- 4. f(-1) = 7 5(-1) = 7 + 5 = 12
- 5. g(1.5) = 2(1.5) 3 = 3 3 = 0

- g(2.5) = (2.5) 3 = 5 3 = 26. $g^{x} - \frac{1}{2} = 2^{x} - \frac{1}{2} = -3 = -1 - 3 = -4$ 7. $g^{x} - \frac{3\ddot{0}}{2} = 2^{x} - \frac{3\ddot{0}}{2} - 3 = -\frac{3}{2} - 3 = -\frac{9}{2}$ ç 4 ö E 4 ö 2 9. f(t) = 7 - 5(t) = 7 - 5t
- 10. $g(k^2) = 2(k^2) 3 = 2k^2 3k^2$
- **11.** This statement is true.

When we solve y = f(x) = 0, we are finding the value of x when y = 0, which is the x-intercept.

2

When we evaluate f(0), we are finding the value of y when x = 0, which is the y-intercept.

12. This statement is false.

The graph of f(x) = -5 is a horizontal line.

- 13. This statement is true. Only a vertical line has an undefined slope, but a vertical line is not the graph of a function. Therefore, the slope of a linear function cannot be undefined.
- 14. This statement is true.

For any value of *a*,

$$f(0) = a \cdot 0 = 0$$

so the point (0, 0), which is the origin, lies on the line.

15. The fixed cost is constant for a particular product and does not change as more items are made. The marginal cost is the rate of change of cost at a specific level of production and is equal to the

slope of the cost function at that specific value; it approximates the cost of producing one additional

item.

 $C(x) = (\text{marginal cost}) \cdot (\text{number of downloaded})$ songs) + fixed cost

$$C(x) = 0.99x + 10.$$

21. \$2 is the fixed cost and \$0.75 is the cost per halfhour.

Let x = the number of half-hours; C(x) = the cost of parking a car for x half-hours. Thus,

$$C(x) = 2 + 0.75x = 0.75x + 2$$

22. \$44 is the fixed cost and \$0.28 is the cost per mile.

Let x = the number of miles; R(x) = the cost of renting for x miles.

Thus,

R(x) =fixed cost + (cost per mile) (number of miles) R(x) = 44 + 0.28x.

23. Fixed cost, \$100; 50 items cost \$1600 to produce. Let $C(x) = \cos t$ of producing x items.

C(x) = mx + b, where b is the fixed cost.

$$C(x) = mx + 100$$

Now.

C(x) = 1600 when x = 50, so 1600 = m(50) + 1001500 = 50m30 = m.

Thus, C(x) = 30x + 100.

24. Fixed cost: \$35; 8 items cost \$395.

Let $C(x) = \cos x$ items

19. \$10 is the fixed cost and \$2.25 is the cost per hour. Let x = number of hours;

Copyright 2020 Repeans EdEdation Induc.

R(x) = cost of renting a snowboard for x hours.Thus,

R(x) =fixed cost + (cost per hour) · (number of hours)

R(x) = 10 + (2.25)(x)= 2.25x + 10

- **20.** \$10 is the fixed cost and \$0.99 is the cost per downloaded song—the marginal cost.
 - Let x = the number of downloaded songs and C(x) = cost of downloading x songs. Then,

$$C(x) = mx + b$$
, where *b* is the fixed cost
 $C(x) = mx + 35$
Now, $C(x) = 395$ when $x = 8$, so
 $395 = m(8) + 35$
 $360 = 8m$
 $45 = m$.
Thus, $C(x) = 45x + 35$.

25. Marginal cost: \$75; 50 items cost \$4300. C(x) = 75x + b

Now,
$$C(x) = 4300$$
 when $x = 50$.
 $4300 = 75(50) + b$
 $4300 = 3750 + b$
 $550 = b$
Thus, $C(x) = 75x + 550$.

26. Marginal cost, \$120; 700 items cost \$96,500 to produce.

$$C(x) = 120x + b$$

Now,
$$C(x) = 96,500$$
 when $x = 700$.
 $96,500 = 120(700) + b$
 $96,500 = 84,000 + b$
 $12,500 = b$
Thus, $C(x) = 120x + 12,500$.

- **27.** D(q) = 16 1.25q
 - (a) D(0) = 16 1.25(0) = 16 0 = 16When 0 watches are demanded, the price is \$16.
 - (b) D(4) = 16 1.25(4) = 16 5 = 11When 400 watches are demanded, the price is \$11.
 - (c) D(8) = 16 1.25(8) = 16 10 = 6When 800 watches are demanded, the price is \$6.
 - (d) Let D(q) = 8. Find q.

$$8 = 16 - 1.25q$$
$$\frac{5}{4}q = 8$$

$$q = 6.4$$

When the price is \$8, the number of watches demanded is 640.

(e) Let D(q) = 10. Find *q*.

$$10 = 16 - 1.25q$$

$$\frac{5}{q} = 6$$

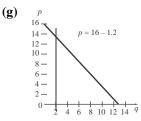
$$4$$

$$q = 4.8$$

When the price is \$10, the number of watches demanded is 480.

(f) Let
$$D(q) = 12$$
. Find *q*.

$$12 = 16 - 1.25q$$



(h)
$$S(q) = 0.75q$$

Let $S(q) = 0$. Find q.

$$0 = 0.75q$$
$$0 = q$$

When the price is \$0, the number of watches supplied is 0.

(i) Let S(q) = 10. Find q.

$$10 = 0.75q$$
$$\frac{40}{3} = q$$
$$q = 13.3$$

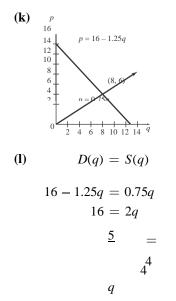
When the price is \$10, The number of watches supplied is about 1333.

(j) Let S(q) = 20. Find q.

$$20 = 0.75q$$
$$\frac{80}{3} = q$$

$$q = 26.6$$

When the price is \$20, the number of watches demanded is about 2667.



Copyright 2020 Reflexans Education Induc.

50Section 1.2

d the equilibrium price is \$6.

$$D(q) = 5 = -0.25q$$

$$q$$

$$S$$

$$($$

$$8$$

$$)$$

$$= 0$$

$$.$$

$$7$$

$$5$$

$$($$

$$8$$

$$)$$

$$= 6$$

$$T$$

$$h$$

$$e$$

$$e$$

$$q$$

$$q$$

$$u$$

$$i$$

$$1$$

$$i$$

$$b$$

$$r$$

$$i$$

$$u$$

$$m$$

$$q$$

$$u$$

$$a$$

$$n$$

$$t$$

$$i$$

$$y$$

$$i$$

$$s$$

$$8$$

$$0$$

$$0$$

$$w$$

$$a$$

$$t$$

$$c$$

$$h$$

$$e$$

$$s$$

$$,$$

$$a$$

$$n$$

28.

q = 3.2

When the price is \$12, the number of watches demanded is 320.

(a) D(0) = 5 - 0.25(0) = 5 - 0 = 5

When 0 quarts are demanded, the price is \$5.

- (b) D(4) = 5 0.25(4) = 5 1 = 4When 400 quarts are demanded, the price is \$4.
- (c) D(8.4) = 5 0.25(8.4) = 5 2.1 = 2.9When 840 quarts are demanded, the price is \$2.90.
- (d) Let D(q) = 4.5. Find q.

$$4.5 = 5 - 0.25q$$

 $0.25q = 0.5$
 $q = 2$

When the price is \$4.50, 200 quarts are demanded.

(e) Let D(q) = 3.25. Find q.

$$3.25 = 5 - 0.25q$$

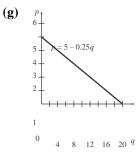
$$\begin{array}{l} 0.25q \,= 1.75\\ q \,= 7 \end{array}$$

When the price is \$3.25, 700 quarts are demanded.

(f) Let D(q) = 2.4. Find q. 2.4 = 5 - 0.25q 0.25q = 2.6q = 10.4

When the price is \$2.40, 1040 quarts are

demanded.



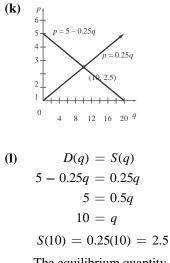
(h) S(q) = 0.25q

Let S(q) = 0. Find q.

$$0 = 0.25q$$
$$q = 0$$

When the price is \$0, 0 quarts are supplied.

(i) Let
$$S(q) = 2$$
. Find q .
 $2 = 0.25q$



The equilibrium quantity is 1000 quarts and the equilibrium price is \$2.50.

29.
$$p = S(q) = \frac{2}{5}q; p = D(q) = 100 - \frac{2}{5}q$$

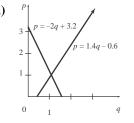
(a) $p = 100 - \frac{2}{5}q$
 $100 - \frac{2}{5}q$
 $p = \frac{2}{5}q$
 $100 - \frac{2}{5}q$
 $p = \frac{2}{5}q$
 $100 - \frac{2}{5}q$

(b)
$$S(q) = D(q)$$

 $\frac{2}{5}q = 100 - \frac{2}{5}q$
 $\frac{4}{5}q = 100$
 $q = 125$

$$S(125) = \frac{2}{5}(125) = 50$$

The equilibrium quantity is 125, the equilibrium price is \$50.



$$q = 8$$

When the price is \$2, 800 quarts are supplied.

(j) Let S(q) = 4.5. Find q.

$$4.5 = 0.25q$$
$$q = 18$$

When the price is \$4.50, 1800 quarts are supplied.

(b) S(q) = p = 1.4q - 0.6D(q) = p = -2q + 3.2

Set supply equal to demand and solve for q.

$$1.4q - 0.6 = -2q + 3.2$$

$$1.4q + 2q = 0.6 + 3.2$$

$$3.4q = 3.8$$

$$q = \frac{3.8}{3.4} \gg 1.12$$

$$S(1.12) = 1.4(1.12) - 0.6 = 0.968$$

The equilibrium quantity is about 1120 pounds; the equilibrium price is about \$0.96

31. Use the supply function to find the equilibrium quantity that corresponds to the given equilibrium price of \$4.50.

$$S(q) = p = 0.3q + 2.7$$

 $4.50 = 0.3q + 2.7$
 $1.8 = 0.3q$
 $6 = q$

The line that represents the demand function goes through the given point (2, 6.10) and the equilibrium point (6, 4.50).

$$m = \frac{4.50 - 6.10}{6 - 2} = -0.4$$

Use point-slope form and the point (2, 6.10).

$$D(q) - 6.10 = -0.4(q - 2)$$

$$D(q) = -0.4q + 0.8 + 6.10$$
$$D(q) = -0.4q + 6.9$$

32. Use the supply function to find the equilibrium quantity that corresponds to the given equilibrium price of \$5.85.

$$p = S(a)$$

$$5.25 \equiv 0.25q + 3.6$$

$$9 = q$$

The line that represents the demand function goes through the given point (4, 7.60) and the equilibrium point (9, 5.85).

$$m = \frac{5.85 - 7.60}{9 - 4} = -0.35$$

Use point-slope form and the point (4, 7.60).

$$D(q) - 7.60 = -0.35(q - 4)$$
$$D(q) = -0.35q + 1.4 + 7.60$$

(b)
$$P(x) = R(x) - C(x)$$

 $P(x) = 15x - (5x + 20)$
 $P(100) = 15(100) - (5 \cdot 100 + 20)$

$$= 1500 - 520$$

= 980

The profit from 100 units is \$980.

(c)
$$P(x) = 500$$

 $15x - (5x + 20) = 500$
 $10x - 20 = 500$
 $10x = 520$
 $x = 52$

For a profit of \$500, 52 units must be produced.

34.
$$C(x) = 12x + 39$$
; $R(x) = 25x$

(a)
$$C(x) = R(x)$$

 $12x + 39 = 25x$
 $39 = 13x$
 $3 = x$

The break-even quantity is 3 units.

(b)
$$P(x) = R(x)$$

 $P(x) = 25x - (12x + 39)$
 $P(x) = 13x - 39$
 $P(250) = 13(250) - 39$
 $= 3250 - 39$
 $= 3211$

The profit from 250 units is \$3211.

(c)
$$P(x) = \$130; \text{find } x.$$

 $130 = 13x - 39$
 $169 = 13x$
 $13 = x$
E = 5. 5. 5. 120, 120 - 120

For a profit of \$130, 13 units must be produced.

35. (a)
$$C(x) = mx + b$$
; $m = 3.50$; $C(60) = 300$

$$C(x) = 3.50x + b$$

Find b. 300 = 3.50(60) + b 300 = 210 + b90 = b

Copyright 2020 Repeans ded Education, dnc.

$$D(q) = -0.35q + 9$$
33. $C(x) = 5x + 20; R(x) = 15x$

(a)
$$C(x) = R(x)$$

 $5x + 20 = 15x$
 $20 = 10x$
 $2 = x$

The break-even quantity is 2 units.

(b)
$$C(x) = 3.50x + 90$$

 $R(x) = 9x$
 $C(x) = R(x)$

$$C(x) = R(x)$$

$$3.50x + 90 = 9x$$

$$90 = 5.5x$$

$$16.36 = x$$
Joanne must produce and sell 17 shirts.

To make a profit of \$500, Joanne must produce and sell 108 shirts.

36. (a)
$$C(x) = mx + b$$

$$C(1000) = 2675; b = 525$$

Find *m*.

$$2675 = m(1000) + 525$$
$$2150 = 1000m$$
$$2.15 = m$$

$$C(x) = 2.15x + 525$$

(b) R(x) = 4.95x

$$C(x) = R(x)$$

2.15x + 525 = 4.95x
525 = 2.80x
187.5 = x

In order to break even, he must produce and sell 188 books.

(c)
$$P(x) = R(x) - C(x); P(x) = 1000$$

 $1000 = 4.95x - (2.15x + 525)$
 $1000 = 4.95x - 2.15x - 525$
 $1000 = 2.80x - 525$

$$1525 = 2.80x$$

$$544.6 = x$$

In order to make a profit of \$1000, he must produce and sell 545 books.

37. (a) Using the points (100, 11.02) and

(400, 40.12),

$$m = \frac{40.12 - 11.02}{400 - 100}$$

$$= \frac{29.1}{300} = 0.097.$$

$$y - 11.02 = 0.097(x - 100)$$

$$y - 11.02 = 0.097x - 9.7$$

(c)
$$C(1000) = 0.097(1000) + 1.32$$

= 97 + 1.32
= 98.32

The total cost of producing 1000 cups is \$98.32.

(d)
$$C(1001) = 0.097(1001) + 1.32$$

= 97.097 + 1.32
= 98.417

The total cost of producing 10001 cups is \$98.42.

- (e) Marginal cost = 98.417 98.32= \$0.097 or 9.7¢
- (f) The marginal cost for *any* cup is the slope, \$0.097 or 9.7¢. This means the cost of producing one additional cup of coffee would be 9.7¢.
- **38.** C(10,000) = 547,500; C(50,000) = 737,500

(a)
$$C(x) = mx + b$$

$$m = \frac{737,500 - 547,500}{50,000 - 10,000}$$
$$= \frac{190,000}{40,000}$$
$$= 4.75$$
$$y - 547,500 = 4.75(x - 10,000)$$
$$y - 547,500 = 4.75x - 47,500$$
$$y = 4.75x + 500,000$$
$$C(x) = 4.75x + 500,000$$

- **(b)** The fixed cost is \$500,000.
- (c) C(100,000) = 4.75(100,000) + 500,000= 475,000 + 500,000 = 975,000

The total cost to produce 100,000 items is \$975,000.

(d) Since the slope of the cost function is 4.75, the marginal cost is \$4.75. This means that the cost of producing one additional item at this production level is \$4.75.

39. C(x) = 85x + 900

y = 0.097x + 1.32C(x) = 0.097x + 1.32

Copyright 2020 Represented Education Induc.

(b) The fixed cost is given by the constant in C(x). It is \$1.32.

R(x) = 105xSet C(x) = R(x) to find the break-even quantity. 85x + 900 = 105x900 = 20x45 = x

The break-even quantity is 45 units. You should decide not to produce since no more than 38 units can be sold.

$$P(x) = R(x) - C(x) = 105x - (85x + 900)$$

= 20x - 900The profit function is P(x) = 20x - 900.

40.
$$C(x) = 105x + 6000$$

R(x) = 250xSet C(x) = R(x) to find the break-even quantity. 105x + 6000 = 250x6000 = 145x $41.38 \gg x$

The break-even quantity is about 41 units, so you should decide to produce.

$$P(x) = R(x) - C(x)$$

= 250x - (105x + 6000)
= 145x - 6000

The profit function is P(x) = 145x - 6000.

41.
$$C(x) = 70x + 500$$

 $R(x) = 60x$
 $70x + 500 = 60x$
 $10x = -500$

x = -50

This represents a break-even quantity of -50 units. It is impossible to make a profit when the break-even quantity is negative. Cost will always be greater than revenue.

$$P(x) = R(x) - C(x) = 60x - (70x + 500) = -10x - 500$$

The profit function is P(x) = -10x - 500.

42.
$$C(x) = 1000x + 5000$$

 $R(x) = 900x$

900x = 1000x + 5000-5000 = 100x-50 = x The revenue function is R(x) = px, where *p* is the price per unit.

The profit P(x) = R(x) - C(x) is 0 at the given break-even quantity of 80.

$$P(x) = px - (mx + 400)$$

$$P(x) = px - mx - 400$$

$$P(x) = Mx - 400 \quad (\text{Let } M = p - m.)$$

$$P(80) = M \cdot 80 - 400$$

$$0 = 80M - 400$$

$$400 = 80M$$

$$5 = M$$

So, the linear profit function is P(x) = 5x - 400, and the marginal profit is 5.

44. Since the fixed cost is \$650, the cost function is C(x) = mx + 650, where *m* is the cost per unit.

The revenue function is R(x) = px, where *p* is the price per unit.

The profit P(x) = R(x) - C(x) is 0 at the given break-even quantity of 25.

$$P(x) = px - (mx + 650)$$
$$P(x) = px - mx - 650$$

$$P(x) = Mx - 650 (Let M = p - m.)$$

$$P(25) = M \cdot 25 - 650 0 = 25M - 650 650 = 25M 26 = M$$

So, the linear profit function is P(x) = 26x - 650, and the marginal profit is 26.

45. (a)
$$f(x) = 34x + 230$$

 $1000 = 34x + 230$
 $770 = 34x$
 $x = 22.647$

Approximately 23 acorns per square meter would produce 1000 deer tick larvae per 400 square meters. It is impossible to make a profit when the breakeven quantity is negative. Cost will always be greater than revenue.

$$P(x) = R(x) - C(x)$$

= 900x - (1000x + 5000)
= -100x - 5000

The profit function is P(x) = -100x - 5000

(always a loss).

- **43.** Since the fixed cost is \$400, the cost function is
 - C(x) = mx + 100, where *m* is the cost per unit.

- (b) The slope is 34, which indicates that the number of deer tick larvae per 400 square meters in the spring will increase by 34 for each additional acorn per square meter in the fall.
- 46. (a) Let t correspond to the number of years since 1990. Then for the cause of death due to tobacco, we have at t = 0, m = 2.8 since

the quantity was rising at the rate of 28

million years per decade and b = 35 since

35 million years of healthy life were lost.

The linear function is $f_1(t) = 2.8t + 35$.

(b) For the cause of death due to diarrhea, we

have at t = 0, m = -2.2 since the

quantity was falling at the rate of 22 million years per decade and b = 100 since 100 million years of healthy life were lost. The

linear function is $f_d(t) = -2.2t + 100$.

(c)
$$f_t(t) = f_d(t)$$

 $2.8t + 35 = -2.2t + 100$
 $5.0t = 65$
 $t = 13$

The amount of healthy life lost to tobacco was expected to equal that lost to diarrhea in 2003.

47. Use the formula derived in Example 8 in this section of the textbook.

$$F = \frac{9}{C} + 32 \text{ or } C = \frac{5}{(F - 32)}$$

5 9
(a) $F = 58$; find C.

$$C = \frac{5}{9}(58 - 32)$$
$$C = \frac{5}{9}(26) = 14.4$$

The temperature is 14.4°C.

(**b**) F = -20; find *C*.

$$C = \frac{5}{9}(F - 32)$$
$$C = \frac{5}{9}(-20 - 32)$$
$$C = \frac{5}{9}(-52) = -28.9$$

The temperature is $-28.9\Box C$.

(c)

C = 50; find F.

$$F = \frac{9}{5}C + 32$$

$$F = \frac{9}{(37)} + 32$$

5
$$F = \frac{333}{5} + 32 = 98.6$$

The Fahrenheit equivalent of 37°C is 98.6°F.
(b)
$$C = 36.5$$
; find F.
 $F = \frac{9}{5}(36.5) + 32$

$$F = 65.7 + 32 = 97.7$$

$$C = 37.5; \text{ find } F.$$

$$F = \frac{9}{5}(37.5) + 32$$

$$= 67.5 + 32 = 99.5$$

The range is between 97.7°F and 99.5°F.

49. If the temperatures are numerically equal, then F = C.

9

$$F = \frac{1}{5}C + 32$$

$$C = \frac{9}{5}C + 32$$

$$5$$

$$-\frac{4}{5}C = 32$$

$$C = -40$$

The Celsius and Fahrenheit temperatures are numerically equal at $-40\Box$.

50. (a) m = 1140 b = 486,000 C(x) = mx + b C(x) = 1140x + 486,000(b) $C(500) = 1140 \cdot 500 + 486,000$ = 1,056,000

The total cost for 500 students will be \$1,056,000.

$$F = \frac{9}{50}(50) + 32$$

F = 90 + 32 = 122

Copyright 2020 Repeans Education Induc.

(c) Let C(x) = 1,000,000.

The temperature is 122°F.

48. Use the formula derived in Example 8 in this section of the textbook.

$$F = \frac{9}{2}C + 32$$
 or $C = \frac{5}{5}(F - 32)$
5 9

(a)
$$C = 37$$
; find *F*.

1,000,000 = 1140x + 486,000 514,000 = 1140x450.88 = x

The maximum number of students that each center can support for \$1 million in costs is 450 students.

1.3 The Least Squares Line

Your Turn 1

x	у	xy	x^2	y^2
1	3	3	1	9
2	4	8	4	16
3	6	18	9	36
4	5	20	16	25
5	7	35	25	49
6	8	48	36	64
$\Sigma x = 21$	$\Sigma y = 33$	$\Sigma xy = 132$	$\Sigma x^2 = 91$	$\Sigma y^2 = 199$

The number of data points is n = 6. Putting the column totals into the formula for the slope *m*, we get

$$n(\mathbf{a} xy) - (\mathbf{a} x)(\mathbf{a} y)$$

$$m = n(\mathbf{a} x^2) - (\mathbf{a} x)^2$$

 $m = \frac{6(132) - (21)(33)}{6(91) - (21)^2}$

 $m \gg 0.9429$

$$b = \frac{\sum y - m(\sum x)}{n} = \frac{33 - (0.9429)(21)}{6} \gg 2.2$$

The least square line is Y = 0.9429x + 2.2.

Your Turn 2

Put the column totals computed in Your Turn 1 into the formula for the correlation r.

$$r = \frac{n(\mathbf{a} xy) - (\mathbf{a} x)(\mathbf{a} y)}{\sqrt{\sqrt{\sqrt{n(\mathbf{a} x^2)} - (\mathbf{a} x)^2}}}$$

ſ	h	١
ſ	IJ	y

x	у	xy	x^2	y^2
1	0	0	1	0
2	0.5	1	4	0.25
3	1	3	9	1
4	2	8	16	4
5	2.5	12.5	25	6.25
6	3	18	36	9
7	3	21	49	9
8	4	32	64	16
9	4.5	40.5	81	20.25
10	5	50	100	25
55	25.5	186	385	90.75
=	$\mathbf{\hat{a}} x^2$) –	$(\mathbf{\ddot{a}} x)^2$.	(<u>55)(25.</u>	$\frac{y)}{(\mathbf{a} y)^{2}} - (\mathbf{a} y)^{2}$ $\frac{5}{(\mathbf{b} - (25.5)^{2})}$
» 0.9	93			

(c) The least squares line is of the form

Y = mx + b. First solve for m.

$$m = \frac{n(\mathbf{a} xy) - (\mathbf{a} x)(\mathbf{a} y)}{2}$$
$$n(\mathbf{a} x) - (\mathbf{a} x)$$
$$= \frac{10(186) - (55)(25.5)}{2}$$

$$10(385) - (55)^2$$

= 0.5545454545 \times 0.555

Now find b.

$$b = \frac{\underline{a} \ y - m(\underline{a} \ x)}{n}$$
$$= \frac{25.5 - 0.5545454545(55)}{10}$$

$$= -0.5$$

Thus, $Y = 0.555x - 0.5x$

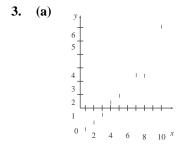
Copyright 2020 Repeans ded Education, dnc.

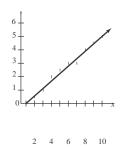
$$n(\mathbf{\hat{a}} y^{2}) - (\mathbf{\hat{a}} y)^{2}$$

= $\frac{6(132) - (21)(33)}{\sqrt{6(91) - (21)^{2}} \sqrt{6(199) - (33)^{2}}}$
.
> 0.9429

у

1.3 Exercises





(d) Let
$$x = 11$$
. Find Y.

Y = 0.55(11) - 0.5 = 5.6

4.	x	У	xy	x^2	y^2
	6.8	0.8	5.44	46.24	0.64
	7.0	1.2	8.4	49.0	1.44
	7.1	0.9	6.39	50.41	0.81
	7.2	0.9	6.48	51.84	0.81
	7.4	1.5	11.1	54.76	2.25
	35.5	5.3	37.81	252.25	5.95
	r = -		5(37.81) -	- (35.5)(5	5.3)
	·	5(252.25)) – (35.5	$\sqrt{\frac{1}{5(5)^2}}$	$(.95) - (5.3)^2$

» 0.6985

$$r^2 = (0.6985)^2 \gg 0.5$$

The answer is choice (c).

5.	x	у	xy	x^2	y^2
5.	1	1	1	1	1
	1	2	2	1	4
	2	1	2	4	1
	2	2	4	4	4
	9	9	81	81	81
	15	15	90	91	91

(a)
$$n = 5$$

$$\underline{n(\mathbf{a} x y)} - (\mathbf{a} x)(\mathbf{a} y)$$

$$m = n(\mathbf{\hat{a}} x^2) - (\mathbf{\hat{a}} x)^2$$

= $\frac{5(90) - (15)(15)}{5(91) - (15)^2}$
= 0.9782608 \gg 0.9783
$$b = \frac{\mathbf{\hat{a}} y - \mathbf{m}(\mathbf{\hat{a}})}{n}$$

= $\frac{15 - (0.9782608)(15)}{5} \gg 0.0652$

Thus,
$$Y = 0.9783x + 0.0652$$
.

(b)	x	у	xy	x^2	y^2			
	1	1	1	1	1			
	1	2	2	1	4			
	2	1	2 2	4	1			
	2	2	4	4	4			
	$n^{6}_{=4}$	6	9	10	10			
	<i>m</i> =	<u>n(å xy</u> n(å	$\frac{x^2}{x^2} - \frac{x^2}{x^2}$	(å <i>x</i>	<u>v)</u>			
	=	4(9) – 4(10) (6	(6)(6)	= 0				
	$b \stackrel{\mathbf{a}}{=} \frac{y}{2}$	- m	$\frac{(\mathbf{a}\mathbf{x})}{n}$	$\frac{1}{2} = \frac{6}{-1}$	- (0)(6) 4	- = 1.5		
	Thus,	Y = 0.	x + 1.5	, or $Y =$	= 1.5 .			
	$r = \frac{n(\mathbf{a}xy) - (\mathbf{a}x)(\mathbf{a}y)}{\sqrt{(\mathbf{a}x^2) - (\mathbf{a}x)^2} \cdot \sqrt{n(\mathbf{a}y^2) - (\mathbf{a}y)^2}}$							
	=	$=\frac{1}{\sqrt{4(10)}}$	4(9))) - (6)	$\frac{-(6)(6)}{2}\sqrt{4(6)}$	5) 10) — (6	$\overline{\overline{5)}^2}$		
(c)	=	= 0						
	y 10 8 4 4 2 			Ť				

The point (9,9) is an outlier that has a strong effect on the least squares line and the correlation coefficient.

<u>.5)</u> » 0.0652	6. <i>x</i>	у	xy	x^2	y^2
» 0.0032	1	1	1	1	1
552.	2	2	4	4	4
552.	3	3	9	9	9
	4	4	16	16	16
Copypighigt 2020 Reflexans de	dEdatiotiohd	nc . 20	-180	81	400
	19	-10	-150	111	430

$$r = \frac{n(\underline{a}xy) - (\underline{a}x)(\underline{a}y)}{\sqrt{n(\underline{a}x^2) - (\underline{a}x)^2}} \sqrt{n(\underline{a}y^2) - (\underline{a}y)^2}$$

$$= \frac{5(90) - (15)(15)}{\sqrt{5(91) - (15)^2}} \gg 0.9783$$

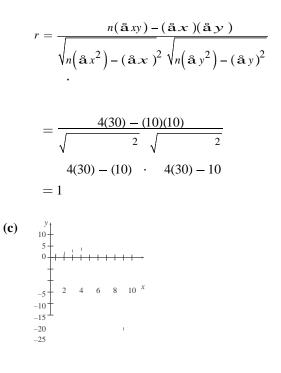
$$\cdot$$

(a)
$$n = 5$$

 $m = \frac{n(\underline{a} xy) - (\underline{a} x)(\underline{a} y)}{n(\underline{a} x^2) - (\underline{a} x)(\underline{a} y)}$
 $= \frac{n(\underline{a} x^2) - (\underline{a} x)(\underline{a} x)}{n^2}$
 $= \frac{5(-150) - (19)(-10)}{5(111) - (19)^2}$
 $= -2.886597 \gg -2.887$
 $b = \frac{\underline{a} y - m(\underline{a} x)}{n}$
 $= \frac{-10 - (-2.886597)(19)}{5}$
 $= 8.969069 \gg 8.969$

Thus, Y = -2.887x + 8.969.

(b)



The point (9, -20) is an outlier that has a strong effect on the least squares line and the correlation coefficient.

7.					
	x	У	xy	x^2	y^2
	1	1	1	1	1
	2	1	2	4	1
	3	1	3	9	1
	4	1.1	4.4	16	1.21
	10	4.1	10.4	30	4.21
	(a) $n =$	= 4		l	
	r	=	$n(\mathbf{a} x)$	$y) - (\mathbf{a} x)$	$(\mathbf{a} y)$
		$m \Big(\mathbf{\ddot{a}} x^2 \Big)$	$2 - (\mathbf{a} x)$	$\overline{)^2 \cdot \sqrt{n}}$	$\left \mathbf{a} y^2 \right - \left(\mathbf{a} y \right)^2$
	:	$=\frac{1}{\sqrt{4(30)}}$	$\frac{4(10.4)}{(10)}$	$\frac{(4) - (10)(10)}{\sqrt{2}} \sqrt{4(4.1)}$	$\frac{4.1)}{21) - (4.1)^2}$

n = 4

$$m = \frac{n(\mathbf{a} x y) - (\mathbf{a} x)(\mathbf{a} x)}{n(\mathbf{a} x^2) - (\mathbf{a} x)^2}$$
$$= \frac{4(30) - (10)(10)}{4(30) - (10)^2} = 1$$
$$b = \frac{\mathbf{a} y - \mathbf{m}(\mathbf{a} x)}{n}$$
$$= \frac{10 - (1)(10)}{4} = 0$$

Thus, Y = 1x + 0, or Y = x.

$$= 0.7745966 \gg 0.7746$$
(b)

$$y_{1}$$

$$y_{1}$$

$$y_{2}$$

$$y_{1}$$

$$y_{1}$$

$$y_{2}$$

$$y_{2}$$

$$y_{3}$$

$$y_{4}$$

$$y_{5}$$

$$x$$

(c) Yes; because the data points are either on or

very close to the horizontal line y = 1, it

seems that the data should have a strong linear relationship. The correlation coefficient does not describe well a linear relationship if the data points fit a horizontal line.

8.	x	у	xy	x^2	y^2
	0	4	0	0	16
	1	1	1	1	1
	2	0	0	4	0
	3	1	3	9	1
	4	4	16	16	16
	10	10	20	30	34

(a)
$$n = 5$$

$$\frac{n(axy) - (ax)(ay)}{n}$$

$$m = n(ax^{2}) - (ax)(ax)$$

$$= \frac{5(20) - (10)(10)}{5(30) - (10)^{2}} = 0$$

$$b = \frac{ay - m(ax)}{n}$$

$$= \frac{10 - (0)(10)}{5} = 2$$

Thus, Y = 0x + 2, or Y = 2.

$$r = \frac{n(\mathbf{a}xy) - (\mathbf{a}x)(\mathbf{a}y)}{\sqrt{n(\mathbf{a}x^2) - (\mathbf{a}x)^2} \sqrt{n(\mathbf{a}y^2) - (\mathbf{a}y)^2}}$$

$$= \frac{5(20) - (10)(10)}{\sqrt{5(30) - (10)^2}} \sqrt{5(34) - (10)^2} = 0$$

$$\binom{x}{x} \frac{a}{y} - m(ax) \frac{b}{y} \quad (x^{2})m \quad xy$$

$$a_{c} \qquad n \quad b + a = a$$

$$(ax)[(ay) - m(ax)] + nm(ax^{2}) =$$

$$n(axy)(ax)(ay) - m(ax)^{2} + nm(ax^{2}) =$$

$$n(axy)(ax)(ay) - m(ax)^{2} + nm(ax^{2}) =$$

$$n(axy)$$

$$nm(ax^{2}) - m(ax)^{2} = n(axy) - (ax)(ay)$$

$$m[n(ax^{2}) - (ax)^{2}] = n(axy) - (ax)(ay)$$

$$m = \frac{n(axy) - (ax)(ay)}{n(ax^{2}) - (ax)^{2}}$$
(a)
$$m = \frac{n(axy) - (ax)(ay)}{n(ax^{2}) - (ax)^{2}}$$

$$=\frac{10(338.271) - (75)(43.792)}{10(645) - (75)^2}$$

$$= 0.1191636 \gg 0.1192$$

10.

$$b = \frac{\mathbf{a} \ y - m(\mathbf{a} \ x)}{n}$$

=
$$\frac{43.792 - (0.1192)(75)}{10}$$

=
$$3.4852 \gg 3.485$$

Thus, Y = 0.1192x + 3.485.

(b) The year 2020 corresponds to x = 20.

Y = 0.1192(20) + 3.485 = 5.869The total value of consumer durable goods in

2020 will be about \$5.869 trillion.

(c) Let Y = 6 and find x.

6 = 0.1192x + 3.4852.515 = 0.1192x $21.10 \gg x$

The total value of consumer durable goods

Copyright 20020 Represented Education in Anc.

(c) No; a correlation coefficient of 0 means that there isn't a linear relationship between the *x* and *y* values. A parabola (a quadratic relationship) seems to fit the given data points.

9. $nb + (\mathbf{a} x)m = \mathbf{a} y$

$$(\mathbf{\ddot{a}} x)b + (\mathbf{\ddot{a}} x^2)m = \mathbf{\ddot{a}} xy$$

$$nb + (\mathbf{a}x)m = \mathbf{a}y$$
$$nb = (\mathbf{a}y) - (\mathbf{a}x)m$$

$$b = \frac{\mathbf{a} \ y - m(\mathbf{a} \ x)}{n}$$

will reach at least \$6 trillion in the year 2000 + 22 = 2022

(**d**)

$$r = \frac{n(\underline{\mathbf{a}} x y) - (\underline{\mathbf{a}} x)(\underline{\mathbf{a}} y)}{\sqrt{n(\underline{\mathbf{a}} x^2) - (\underline{\mathbf{a}} x)^2} \sqrt{n(\underline{\mathbf{a}} y^2) - (\underline{\mathbf{a}} y)^2}}$$

$$=\frac{10(338.271) - (75)(43.792)}{\sqrt{10(645) - (75)^2} \sqrt{10(193.0496) - (43.792)^2}}$$

» 0.9583

Since *r* is very close to 1, the data has a strong linear relationship, and the least squares line fits the data very well.

11. (a)
$$m = \frac{n(\mathbf{a} xy) - (\mathbf{a} x)(\mathbf{a} y)}{n(\mathbf{a} x^2) - (\mathbf{a} x)^2}$$
$$= \frac{10(512.775) - (75)(70.457)}{10(645) - (75)^2}$$
$$= -0.189727 \gg 0.1897$$
$$b = \frac{\mathbf{a} y - m(\mathbf{a} x)}{n}$$
$$= \frac{70.457 - (-0.1897)(75)}{10}$$
$$= 8.46845 \gg 8.469$$

Thus, Y = 00.1897x + 8.469.

(b) The year 2020 corresponds to x = 20.

$$Y = -0.1897(20) + 8.469 = 4.675$$

If the trend continues linearly, there will be about 4675 banks in 2020.

(c) Let Y = 4 (since Y is the number of banks in

thousands) and find *x*.

$$4 = -0.1897x + 8.469$$

-4.469 = -0.1897x
23.558 = x
24 >> x

The number of U.S. banks will drop below 4000 in the year 2000 + 24 = 2024.

(d)
$$r = \frac{n(\underline{a} x y) - (\underline{a} x)(\underline{a} y)}{r}$$

$$\sqrt{n(\mathbf{a}x^2) - (\mathbf{a}x)^2} \sqrt{n(\mathbf{a}y^2) - (\mathbf{a}y)^2}$$

$$=\frac{10(512.775) - (75)(70.457)}{\sqrt{10(645) - (75)^2}}\sqrt{10(499.481335) - (70.457)^2}$$

» -0.9847

Since r is very close to -1, the data has a strong linear relationship, and the least squares line fits the data very well.

(a)
$$m = \frac{n(\mathbf{a} xy) - (\mathbf{a} x)(\mathbf{a} y)}{n(\mathbf{a} x^2) - (\mathbf{a} x)^2}$$
$$= \frac{5(2111.9) - (31)(301.4)}{5(283) - (31)^2}$$
$$\Rightarrow 2.6786$$
$$b = \frac{\mathbf{a} y - m(\mathbf{a} x)}{n}$$
$$= \frac{301.4 - (2.6786)(31)}{5}$$
$$\Rightarrow 43.67268$$

Thus, Y = 2.68x + 43.7.

- (b) The percent of households with Internet use is growing at a rate of about 2.68% per year.
- (c) The year 2015 corresponds to x = 15.

$$Y = 2.68(15) + 43.7 = 83.9$$

If the trend continues linearly, the percent of

households will be about 83.9% in 2015.

(d) Let
$$Y = 90$$
 and find x.

$$90 = 2.68x + 43.7$$
$$46.3 = 2.68x$$

$$17.28 = x$$

The percent of households with Internet use will exceed 90% in the year 2000 + 18 = 2018

•

$$\sqrt{}$$

(e)
$$r = \frac{n(\mathbf{a} x y) - (\mathbf{a} x)(\mathbf{a} y)}{\sqrt{n(\mathbf{a} x^2) - (\mathbf{a} x)^2} \quad n(\mathbf{a} y^2) - (\mathbf{a} y)^2}$$

$$=\frac{5(2111.9)-(31)(301.4)}{\sqrt{5(283)-(31)^2}}\sqrt{3} > 0.9879$$

Copyright 2020 Repeans ded Educion in Induc.

 $5(18,835.96) - (301.4)^2$

12.	x	У	xy	x^2	y^2
	0	41.5	0	0	1722.25
	3	54.7	164.1	9	2992.09
	7	61.7	431.9	49	3806.89
	9	68.7	618.3	81	4719.69
	12	74.8	897.6	144	5595.04
	31	301.4	2111.9	283	18,835.96

This means that the least squares line fits the data points extremely well.

13.	x	У	xy	x^2	y^2
	5	89.7	448.5	25	8046.09
	6	84.1	504.6	36	7072.81
	7	81.9	573.3	49	6707.61
	8	77.9	623.2	64	6068.41
	9	73.5	661.5	81	5402.25
	10	68.2	682.0	100	4651.24
	11	63.8	701.8	121	4070.44
	12	59.6	715.2	144	3552.16
	68	598.7	4910.1	620	45,571.01

(a)
$$m = \frac{n(\underline{a} x y) - (\underline{a} x)(\underline{a} y)}{n(\underline{a} x^2) - (\underline{a} x)^2}$$
$$= \frac{8(4910.1) - (68)(598.7)}{8(620) - (68)^2}$$
$$\Rightarrow -4.2583$$
$$b = \frac{\underline{a} y - m(\underline{a} x)}{n}$$
$$= \frac{598.7 - (-4.2583)(68)}{8}$$
$$\Rightarrow 111.033$$

Thus, Y = -4.26x + 111.0.

- (b) The percent of households with landlines is decreasing at a rate of about 4.26% per year.
- (c) The year 2015 corresponds to x = 15.

$$Y = -4.26(15) + 111.0 = 47.1$$

If the trend continues linearly, the percent of households will be about 47.1% in 2012.

(d) Let
$$Y = 40$$
 and find x.

$$40 = -4.26x + 111.0$$

-71 = -4.26x
16.67 = x
17 > x

(e)

$$r = \frac{n(\underline{a} x y) - (\underline{a} x)(\underline{a} y)}{n(\underline{a} x^{2}) - (\underline{a} x)^{2} \cdot \sqrt{n(\underline{a} y^{2}) - (\underline{a} y)^{2}}}$$

$$= \frac{8(4910.1) - (68)(598.7)}{8(620) - (68)^{2} \cdot \sqrt{8(45,571.01) - (598.7)^{2}}}$$

$$\approx -0.9973$$

This means that the least squares line fits the data points extremely well.

14.

14.						
x	У	xy	x^2	y^2		
4	2219.5	8878	16	4,926,180.25		
5	2319.8	11,599	25	5,381,472.04		
6	2415.0	14,490	36	5,832,225		
7	2551.9	17,863.3	49	6,512,193.61		
8	2592.1	20,736.8	64	6,718,982.41		
9	2553.5	22,981.5	81	6,520,362.25		
10	2648.1	26,481	100	7,012,433.61		
11	2757.0	30,327	121	7,601,049		
12	2924.3	35,091.6	144	8,551,530.49		
13	3099.2	40,289.6	169	9,605,040.64		
85	26,080.4	228,737.8	805	68,661,469.3		
$n(\mathbf{\ddot{a}}xy) - (\mathbf{\ddot{a}}x)(\mathbf{\ddot{a}}y)$						
(a) $m = \frac{1}{n(\mathbf{a}x^2) - (\mathbf{a}x)^2}$						

$$= \frac{10(228,737.8) - (85)(26,080.4)}{10(805) - (85)^2}$$

$$\approx 85.508$$

$$b = \frac{\mathbf{a} \ y - m(\mathbf{a} \ x)}{n}$$

$$= \frac{26,080.4 - (85.508)(85)}{10}$$

$$\approx 1881.22$$

Thus,
$$Y = 85.508x + 1881.22$$
.

Copyright 2020 Repeans did Education in Inc.

The percent of households with landlines will dip below 40% in the year 2000 + 17 = 2017.

- (b) The consumer credit is growing at a rate of about \$85.508 billion per year.
- (c) The year 2015 corresponds to x = 15.

Y = 85.508(15) + 1881.22 = 3163.84

If the trend continues linearly, the consumer credit will be about \$3164 in 2015.

(d) Let Y = 4000 and find x. 4000 = 85.508x + 1881.22 2118.78 = 85.508x24.78 = x

The total debt will first exceed \$4000 billion in the year 2000 + 25 = 2025.

(e)

$$r = \frac{n(\mathbf{\ddot{a}} xy) - (\mathbf{\ddot{a}} x)(\mathbf{\ddot{a}} y)}{\sqrt{n(\mathbf{\ddot{a}} x^2) - (\mathbf{\ddot{a}} x)^2} \sqrt{n(\mathbf{\ddot{a}} y^2) - (\mathbf{\ddot{a}} y)^2}}$$

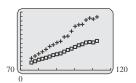
$$=\frac{10(228,737.8) - (85)(26,080.4)}{\sqrt{10(805) - (85)^2}} \sqrt{10(68,661,469.3) - (26,080.4)^2}$$

» 0.9688

65,000

This means that the least squares line fits the data points extremely well.

15. (a)



The data points lie in a linear pattern.

(b)
$$Y = 703.91x - 45,220.$$

r = 0.9964; there is a strong positive

correlation among the data.

- (c) The mean earnings of high school graduates are growing by about \$704 per year.
- (d) Y = 1404.76x 94,521.

r = 0.9943; there is a strong positive correlation among the data.

- (e) The mean earning of workers with a bachelor's degree are growing by about \$1405 per year.
- (f) 75,000 = 703.91x 45,220120,220 = 703.91xx = 170.79

The data points lie in a linear pattern.

- (b) r = 6.210; there is a positive correlation among the data. Yes, the cost of a ticket tends to increase as the distance flown increases.
- (c) Y = -0.417x + 167.55; the marginal cost

per mile is about 4.17 cents per mile.

- (d) The outlier in the scatterplot is Philadelphia.

Yes, the data appear to be linear.

(b)	x	У	xy	<i>x</i> ²	y^2
	5.8	8.6	49.88	33.64	73.96
	1.5	1.9	2.85	2.25	3.61
	2.3	3.1	7.13	5.29	9.61
	1.0	1.0	1.0	1.0	1.0
	3.3	5.0	16.5	10.89	25.0
	13.9	19.6	77.36	53.07	113.18

$$m = \frac{n(\mathbf{a} xy) - (\mathbf{a} x)(\mathbf{a} y)}{n(\mathbf{a} x^2) - (\mathbf{a} x)^2}$$
$$= \frac{5(77.36) - (13.9)(19.6)}{5(53.07) - 13.9^2}$$

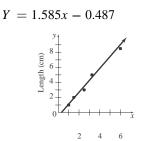
$$b = \frac{\mathbf{a} \ y - m(\mathbf{a} \ x)}{n}$$
$$= \frac{19.6 - 1.585250901(13.9)}{5} \gg -0.487$$

Copyright 2020 Represented Education Anc.

The mean earnings for high school graduates will exceed \$75,000 in the year 1900 + 171 = 2071.

75,000 = 1404.76x - 94,5211169,521 = 1404.76xx = 120.68

The mean earning for workers with a bachelor's degree will exceed \$75,00 in the year 1900 + 121 = 2021.

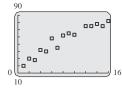


(c) No, it gives negative values for small widths.

(d)
$$r = \frac{5(77.36) - (13.9)(19.6)}{\sqrt{5(53.07) - 13.9^2}} \sqrt{5(113.18) - 19.6^2}$$

 ~ 0.999

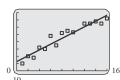
18. (a)



Yes, the points lie in a linear pattern.

(b) Using a calculator's STAT feature, the correlation coefficient is found to be $r \gg 0.959$. This indicates that the percentage of successful hunts does trend to increase with the size of the hunting party.

Y = 3.98x + 22.7(c) 90



19. **(a**)

(a)					
x	У	xy	<i>x</i> ²	y^2	
88.6	20.0	1772	7849.96	400.0	
71.6	16.0	1145.6	5126.56	256.0	
93.3	19.8	1847.34	8704.89	392.04	
84.3	18.4	1551.12	7106.49	338.56	
80.6	17.1	1378.26	6496.36	292.41	
75.2	15.5	1165.6	5655.04	240.25	
69.7	14.7	1024.59	4858.09	216.09	
82.0	17.1	1402.2	6724	292.41	
69.4	15.4	1068.76	4816.36	237.16	
83.3	16.2	1349.46	3938.89	262.44	
79.6	15.0	1194	6336.16	225	
82.6	17.2	1420.72	6822.76	295.84	
80.6	16.0	1289.6	6496.36	256.0	
83.5	17.0	1419.5	6972.25	289.0	
76.3	14.4	1098.72	5821.69	207.36	
1200.6=	<u>n(ăxy)</u> 249.8	<u>– (ă x)(ă</u> 20,127.47	7) 96,725.86	4200.56	

$$b = \frac{\mathbf{a} \, y - m(\mathbf{a} \, x)}{n}$$

$$= \frac{249.8 - 0.211925(1200.6)}{15} \gg -0.309$$

Y = 0.212x - 0.309

(b) Let x = 73; find *Y*.

 $Y = 0.212(73) - 0.309 \gg 15.2$

If the temperature were 73° F, you would expect to hear 15.2 chirps per second.

(c) Let Y = 18; find x.

$$18 = 0.212x - 0.309$$
$$18.309 = 0.212x$$
$$86.4 \gg x$$

When the crickets are chirping 18 times per second, the temperature is 86.4°F.

(**d**)

$$r = \frac{15(20,127) - (1200.6)(249.8)}{\sqrt{5(96,725.86) - (1200.6)^2} \cdot \sqrt{15(4200.56) - (249.8)^2}}$$
$$= 0.835$$

20.	x	У	xy	x^2	y^2
	0	17.2	0	0	295.84
	4	17.3	69.2	16	299.29
	8	16.4	131.2	64	268.96
	12	15.9	190.8	144	252.81
	16	15.6	249.6	256	243.36
	20	15.3	306	400	234.09
	60	97.7	946.8	880	1594.35

(a)
$$m = \frac{n(\aa xy) - (\aa x)(\aa y)}{n(\aa x^2) - (\aa x)^2}$$
$$= \frac{6(946.8) - (60)(97.7)}{6(880) - (60)^2}$$
$$\Rightarrow -0.1079$$
$$b = \frac{\aa y - m(\aa x)}{n}$$
$$= \frac{97.7 - (-0.1079)(60)}{6}$$
$$\Rightarrow 17.36$$
$$n(\aa x^2) - (\aa x)^2$$

Copyright 2020 Repeans did Education in Inc.

Thus, Y = -0.1079x + 1736.

 $= \frac{15(20,127.47) - (1200.6)(249.8)}{15(96,725.86) - 1200.6^2}$ $= 0.211925009 \gg 0.212$

 (b) The year 2020 corresponds to x = 2020 - 1990 = 30.
 Y = -0.1079(30) + 17.36 = 14.123 ≫ 14.1

If the trend continues linearly, the pupil-teacher

ratio will be about 14.1 in 2020.

(c)
$$r = \frac{n(\underline{a}xy) - (\underline{a}x)(\underline{a}y)}{\sqrt{n(\underline{a}x^2) - (\underline{a}x)^2} \sqrt{n(\underline{a}y^2) - (\underline{a}y)^2}}$$

$$= \frac{6(946.8) - (60)(97.7)}{\sqrt{6(880) - (60)^2} \sqrt{6(1594.35) - (97.7)^2}}$$

$$\Rightarrow -0.9691$$

The value indicates a strong negative linear correlation.

21.	x	У	xy	x^2	y^2		
	0	8.414	0.000	0	70.7954		
	5	10.989	54.945	25	120.7581		
	10	13.359	133.590	100	178.4629		
	15	15.569	233.535	225	242.3938		
	20	17.604	352.080	400	309.9008		
	25	19.971	499.275	625	398.8408		
	30	22.315	669.45	900	497.9592		
	105	108.221	1942.875	2275	1819.111		
(a) $25 - 25 - 25 - 25 - 25 - 25 - 25 - 25 $							
		Ye	ears (since 1980)				

Yes, the data appear to lie along a straight line.

(b)

$$r = \frac{n(\mathbf{a} \, xy) - (\mathbf{a} \, x)(\mathbf{a} \, y)}{\sqrt{n(\mathbf{a} \, x^2) - (\mathbf{a} \, x)^2} \sqrt{n(\mathbf{a} \, y^2) - (\mathbf{a} \, y)^2}}$$

(c)

$$m = \frac{n(\mathbf{a} xy) - (\mathbf{a} x)(\mathbf{a} y)}{n(\mathbf{a} x^2) - (\mathbf{a} x)^2}$$

$$=\frac{7(1942.85) - (105)(108.221)}{7(2275) - (105)^2} \gg 0.45651 \gg 0.4565$$

$$h = \frac{\mathbf{a} \, y - m(\mathbf{a} \, x)}{\mathbf{a} \, x}$$

$$=\frac{\frac{n}{108.221-(0.45651)(105)}}{7} \gg 8.612$$

Thus, Y = 0.4565x + 8.612.

(d) The year 2018 corresponds to x = 2018 - 1980 = 38. Y = 0.45651(38) + 8.612 = 25.959

The predicted poverty level in the year 2018 is \$25,959.

22.	x	у	xy	x^2	y^2	
	59	66	3894	3481	4356	
	62	71	4402	3844	5041	
	66	72	4752	4356	5184	
	68	73	4964	4624	5329	
	71	75	5325	5041	5625	
	67	63	4221	4489	3969	
	70	63	4410	4900	3969	
	71	67	4757	5041	4489	
	73	66	4818	5329	4356	
	75	66	4950	5625	4356	
	682	682	46,493	46,730	46,674	
(a) $m = \frac{n(\mathbf{a} xy) - (\mathbf{a} x)(\mathbf{a} y)}{n(\mathbf{a} x^2) - (\mathbf{a} x)^2}$						

Copyright 2020 Repeans did Education in Inc.

$$= \frac{7(1942.875) - (105)(108.221)}{\sqrt{7(2275) - (105)^2} \sqrt{7(1819.111) - (108.221)^2}}$$

= 0.9996

The value indicates a strong linear correlation.

$$= \frac{10(46,493) - (682)(682)}{10(46,730) - (682)^2} \gg -0.08915$$

$$b = \frac{\mathbf{a} y - m(\mathbf{a} x)}{n}$$

= $\frac{682 - (-0.08915)(682)}{10} \gg 74.28$
Thus, $Y = -0.08915x + 74.28$.

$$r = \frac{n(\underline{a} x y) - (\underline{a} x)(\underline{a} y)}{\sqrt{n(\underline{a} x^2) - (\underline{a} x)^2}} \sqrt{n(\underline{a} y^2) - (\underline{a} y)^2}$$

$$= \frac{10(46,493) - (682)(682)}{\sqrt{10(46,730) - (682)^2}} \sqrt{10(46,674) - (682)^2}$$

$$\cdot - 0.1035$$

The taller the student, the shorter the ideal partner's height is.

(**b**) Data for female students:

x	У	xy	x^2	y^2
59	66	3894	3481	4356
62	71	4402	3844	5041
66	72	4752	4356	5184
68	73	4964	4624	5329
71	75	5325	5041	5625
326	357	23,337	21,346	25,535

$$m = \frac{n(\mathbf{a} xy) - (\mathbf{a} x)(\mathbf{a} y)}{n(\mathbf{a} x^2) - (\mathbf{a} x)^2}$$

$$= \frac{5(23,337) - (326)(357)}{5(21,346) - (326)^2} \gg 0.6674$$
$$b = \frac{\mathbf{a} \ y - m(\mathbf{a} \ x)}{n}$$
$$= \frac{357 - (0.6674)(326)}{5} \gg 27.89$$

Thus,
$$Y = 0.6674x + 27.89$$
.

$$r = \frac{n(\underline{\mathbf{a}}xy) - (\underline{\mathbf{a}}x)(\underline{\mathbf{a}}y)}{\sqrt{n(\underline{\mathbf{a}}x^2) - (\underline{\mathbf{a}}x)^2}} \sqrt{n(\underline{\mathbf{a}}y^2) - (\underline{\mathbf{a}}y)^2}$$

$$=\frac{5(23,337) - (326)(357)}{\sqrt{5(21,346) - (326)^2}}$$

Copyright 2020 Represented Education of M 580

$$m = \frac{n(\mathbf{a}xy) - (\mathbf{a}x)(\mathbf{a}y)}{n(\mathbf{a}x^2) - (\mathbf{a}x)^2}$$

$$= \frac{5(23,156) - (356)(325)}{5(25,384) - (356)^2} \gg 0.4348$$

$$5(25,384) - (356)^2$$

$$a y - m(a x)$$

$$b = \frac{n}{=\frac{325 - (0.4348)(356)}{5} \approx 34.04}$$

Thus,
$$Y = 0.4348x + 34.04$$
.

$$r = \frac{n(\mathbf{a} xy) - (\mathbf{a} x)(\mathbf{a} y)}{\sqrt[4]{(\mathbf{a} x^2) - (\mathbf{a} x)^2 \cdot \sqrt{n(\mathbf{a} y^2) - (\mathbf{a} y)^2}}}$$

$$= \frac{5(23,156) - (356)(325)}{\sqrt{5(25,384) - (356)^2} \sqrt{5(21,139) - (325)^2}}$$
.
(c) $\gg 0.7049$

$$s_{0}$$

$$\int_{55}^{80}$$

$$s_{1}$$

$$s_{1}$$

$$s_{2}$$

$$s_{3}$$

There is no linear relationship among all 10 data pairs. However, there is a linear relationship among the first five data pairs (female students) and a separate linear relationship among the second five data pairs (male students).

60

23. (a)	x	У	xy	x^2	y^2
	540	20	10,800	291,600	400
	510	16	8160	260,100	256
	490	10	4900	240,100	100
	560	8	4480	313,600	64
	470	12	5640	220,900	144
$-(326)^2$ ·	600	11	6600	360,000	121
	540	10	5400	291,600	100
ErlE clatio tio	h ,d 58 0	8	4640	336,400	64
	680	15	10,200	462,400	225
	560	8	4480	313.600	64

$$5(25,535) - (357)^2$$

Data for male students:

x	У	xy	<i>x</i> ²	y^2
67	63	4221	4489	3969
70	63	4419	4900	3969
71	67	4757	5041	4489
73	66	4818	5329	4356
75	66	4950	5625	4356
356	325	23,156	25,384	21,139

Y = -0.0067(620) + 14.75 $= 10.596 \gg 11$

(**d**)

$$r = \frac{19(115,400) - (10,490)(210)}{\sqrt{19(5,872,500) - (10,490)^2}} \sqrt{19(2522) - 210^2}$$

.
$$\sim -0.13$$

(e) There is no linear relationship between a student's math SAT and mathematics placement test scores.

24. (a) $_{3}^{y_{\perp}}$

(b)	L	Т	LT	L^2	T^2		420	9000
-	1.0	1.11	1.11	1	1.2321		450	9500
	1.5	1.36	2.04	2.25	1.8496		2970	72,500
	2.0	1.57	3.14	4	2.4649			
	2.5	1.76	4.4	6.25	3.0976			
	3.0	1.92	5.76	9 Cop	9 rixki86 4@) 20 Fe Pesans dial	Eclautioni,	omdnc.
	3.5	2.08	7.28	12.25	4.3264			
	4.0	2 22	0 00	16	1 0811			

$$m = \frac{n(\mathbf{a} x y) - (\mathbf{a} x)(\mathbf{a} y)}{n(\mathbf{a} x^2) - (\mathbf{a} x)^2}$$

$$m = \frac{7(32.61) - (17.5)(12.02)}{7(50.75) - 17.5^2}$$

$$m = 0.3657142857$$

$$\gg 0.366$$

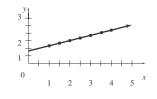
$$b = \frac{\mathbf{a} T - m(\mathbf{a} L)}{n}$$

$$b = \frac{12.02 - 0.3657142857(17.5)}{7}$$

$$\gg 0.803$$

$$Y = 0.366x + 0.803$$

The line seems to fit the data.



(c)

r

$$= \frac{7(32.61) - (17.5)(12.02)}{\sqrt{2}}$$

$$= \frac{7(50.75) - 17.5}{\sqrt{2}} \cdot \sqrt{7(21.5854) - 12.02}$$

$$= 0.995,$$

which is a good fit and confirms the conclusion

in part (b).

	x	у	xy	x^2	y^2
	150	5000	750,000	22,500	25,000,000
25.	(a) ₅	5500	962,500	30,625	30,250,000
	215	6000	1,290,000	46,225	36,000,000
	250	6500	1,625,000	62,500	42,250,000
	280	7000	1,960,000	78,400	49,000,000
	310	7500	2,325,000	96,100	56,250,000
	350	8000	2,800,000	122,500	64,000,000
	370	8500	3,145,000	136,900	72,250,000
	420	9000	3,780,000	176,400	81,000,000
	450	9500	4,275,000	202,500	90,250,000
	2970	72,500	22,912,500	974,650	546,250,000

$$m = \frac{n(\underline{a} xy) - (\underline{a} x)(\underline{a} y)}{n(\underline{a} x^2) - (\underline{a} x)^2}$$

$$m = \frac{10(22.912.500) - (2970)(72.500)}{10(974,650) - 2970^2}$$

$$m = 14.90924806$$

$$\gg 14.9$$

$$b = \frac{\underline{a} y - m(\underline{a} x)}{n}$$

$$b = \frac{72.500 - 14.9(2970)}{10}$$

$$b \gg 2820$$

$$Y = 14.9x + 2820$$
(b) Let $x = 150$; find Y.

$$Y = 14.9(150) + 2820$$

$$Y \gg 5060$$
, compared to actual 5000
Let $x = 280$; Find
Y.

$$Y = 14.9(280) + 2820$$

$$\Rightarrow 6990$$
, compared to actual 7000
Let $x = 420$; find Y.

$$Y = 14.9(420) + 2820$$

$$\Rightarrow 9080$$
, compared to actual 9000
(c) Let $x = 230$; find Y.

$$Y = 14.9(230) + 2820$$

$$\Rightarrow 6250$$

Adam would need to buy a 6500 BTU air conditioner.

26. (a)

$$r = \frac{10(399.16) - (500)(20.668)}{\sqrt{10(33,250) - 500^2}} \sqrt{10(91.927042) - (20.668)^2}$$

$$= -0.995$$

Yes, there does appear to be a linear correlation.

(c) Let
$$x = 50$$

 $Y = -0.0769(50) + 5.91 \gg 2.07$

The predicted number of points expected when a team is at the 50 yard line is 2.07 points.

27. (a) Use a calculator's statistical features to obtain the least squares line.

$$Y = -0.1271x + 113.61$$

(b)
$$Y = -0.3458x + 146.65$$

(c) Set the two expressions for *Y* equal and solve for *x*.

$$-0.1271x + 113.61 = -0.3458x + 146.65$$
$$0.2187x = 33.04$$

 $x \gg 151$

The women's record will catch up with the men's record in 1900 + 151, or in the year 2051.

(d)
$$r_{men} \gg -0.9762$$

 $r_{women} \gg -0.9300$

Both sets of data points closely fit a line with negative slope.

- (e)
- **28.** (a) Use a calculator's statistical features to obtain the least squares line.

$$Y = -0.01116x + 10.92$$

- **(b)** Y = -0.01544x + 12.31
- (c) Set the two expressions for *Y* equal and solve for *x*.

-0.01116x + 10.92 = -0.01544x + 12.310.00428x = 1.39

 $x \gg 324.77$

Copyright 2020 Repeans Education Induc.

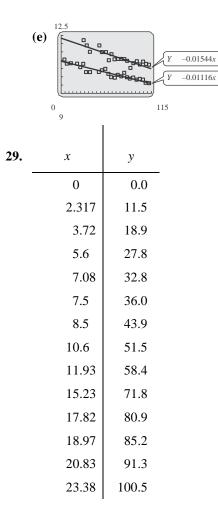
m =The women's record will <u>n(å xy)</u> catch up with the men's <u>– (å</u> record in 1900 + 325, or <u>x)(åy)</u> in the year 2225. п ((d) $r_{men} \gg -0.9506$ å $\frac{x}{2}$) -(å х) m =10(399.1 <u>6) –</u> (500)(20. <u>668)</u> 1 0 (3 3 , 2 5 0) 5 0 m = -0.076877 $5758 \ \gg$ -0.0769 $b = \frac{\mathbf{a} \ y - m(\mathbf{a} \ x)}{n}$ $b = \frac{20.668 - (-0.0768775758)(500)}{10}$

$$3 5.91$$

 $Y = -0.0769x + 5.91$

 $r_{women} \gg -0.8896$

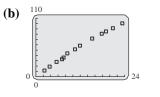
Both sets of data points closely fit a line with negative slope.



12.31

10.92

(a) Skaggs' average speed was100.5/23.38 >> 4.299 miles per hour.



The data appear to lie approximately on a straight line.

(c) Using a graphing calculator, Y = 4.317x + 3.419. This value is faster than the average speed found in part (a). The value 4.317 miles per hour is most likely the better value because it takes into account all 14 data pairs.

Chapter 1 Review Exercises

- 1. False; a line can have only one slant, so its slope is unique.
- 2. False; the equation y = 3x + 4 has slope 3.
- **3.** True; the point (3, -1) is on the line because

-1 = -2(3) + 5 is a true statement.

- **4.** False; the points (2, 3) and (2, 5) do not have the same *y*-coordinate.
- **5.** True; the points (4, 6) and (5, 6) do have the same *y*-coordinate.
- 6. False; the *x*-intercept of the line y = 8x + 9 is $-\frac{9}{8}$.
- True; f(x) = πx + 4 is a linear function because it is in the form y = mx + b, where m and b are real numbers.
- 8. False; $f(x) = 2x^2 + 3$ is not linear function

because it isn't in the form y = mx + b, and it is a second-degree equation.

9. False; the line y = 3x + 17 has slope 3, and the line y = -3x + 8 has slope -3. Since

 $3 \cdot -3 \neq -1$, the lines cannot be perpendicular.

- 10. False; the line 4x + 3y = 8 has slope $-\frac{4}{3}$, and the line 4x + y = 5 has slope -4. Since the slopes are not equal, the lines cannot be parallel.
- **11.** False; a correlation coefficient of zero indicates that there is no linear relationship among the data.
- 12. True; a correlation coefficient always will be a
 - (d) Using a graphing calculator,

 $r \gg 0.9971$

Yes, the least squares line is a very good fit to the data.

(e) A good value for Skaggs' average speed would be the slope of the least squares line, or

value between -1 and 1.

- **13.** Marginal cost is the rate of change of the cost function; the fixed cost is the initial expenses before production begins.
- 14. To compute the coefficient of correlation, you need the following quantities:
 å x, å y, å xy, å x², å y², and n.

15. Through (-3, 7) and (2, 12)
$$m = \frac{12 - 7}{2 - (-3)} = \frac{5}{5} = 1$$

m = 4.317 miles per hour.

16. Through (4, -1) and (3, -3).

$$m = \frac{-3 - (-1)}{3 - 4}$$
$$= \frac{-3 + 1}{-1}$$
$$= \frac{-2}{-1} = 2$$

17. Through the origin and (11, -2)

$$m = \frac{-2 - 0}{11 - 0} = -\frac{2}{11}$$

18. Through the origin and (0, 7)

$$m = \frac{7 - 0}{0 - 0} = \frac{7}{0}$$

The slope of the line is undefined.

19.
$$4x + 3y = 6$$

 $3y = -4x + 6$
 $y = -\frac{4}{3}x + 2$

Therefore, the slope is $m = -\frac{4}{3}$.

20.
$$4x - y = 7$$

 $-y = -4x + 7$
 $y = 4x - 7$
 $m = 4$
21. $y + 4 = 9$

$$y = 5$$

 $y = 0x + 5$
 $m = 0$
22. $3y - 1 = 14$

3y = 14 + 13y = 15

$$v = 5$$

This is a horizontal line. The slope of a horizontal line is 0.

23. y = 5x + 4

m = 5

24. x = 5y

$$y - (-1) = \frac{2}{3}(x - 5)$$

$$y + 1 = \frac{2}{3}(x - 5)$$

$$3(y + 1) = 2(x - 5)$$

$$3y + 3 = 2x - 10$$

$$3y = 2x - 13$$

$$y = \frac{2}{3}x - \frac{13}{3}$$

26. Through (8, 0), with slope $-\frac{1}{4}$

Use point-slope form.

$$y - 0 = -\frac{1}{4}(x - 8)$$
$$y = -\frac{1}{4}x + 2$$

27. Through (-6, 3) and (2, -5)

$$m = \frac{-5-3}{2-(-6)} = \frac{-8}{8} = -1$$

Use point-slope form.

$$y - 3 = -1[x - (-6)]$$

 $y - 3 = -x - 6$
 $y = -x - 3$

28. Through (2, -3) and (-3, 4)

$$m = \frac{4 - (-3)}{-3 - 2} = -\frac{7}{5}$$

Use point-slope form.

$$y - (-3) = -\frac{7}{5}(x - 2)$$
$$y + 3 = -\frac{7}{5}x + \frac{14}{5}$$

$$y = -\frac{7}{5}x + \frac{14}{5} - 3$$
$$y = -\frac{7}{5}x + \frac{14}{5} - \frac{15}{5}$$
$$y = -\frac{7}{5}x - \frac{1}{5}$$

29. Through (2, -10), perpendicular to a line with

Chapter 1 LINEAR FUNCTIONS67

25.

$$\frac{1}{5}x = y$$
undefined slope $m = \frac{1}{5}$ A line with undefined slope is a vertical line. A 5 line perpendicular to a vertical line is a horizontal 5 line with equation of the form $y = k$. The desiredThrough $(5, -1)$; slope $\frac{2}{3}$ line passed through $(2, -10)$, so $k = -10$. Thus, 3 an equation of the desired line is $y = -10$.

30. Through (-2, 5), with slope 0

Horizontal lines have 0 slope and an equation of

the form
$$y = k$$
.

The line passes through (-2, 5) so k = 5. An

equation of the line is y = 5.

31. Through (3, -4) parallel to 4x - 2y = 9Solve 4x - 2y = 9 for y.

$$-2y = -4x + 9$$
$$y = 2x - \frac{9}{2}$$
$$m = 2$$

The desired line has the same slope. Use the pointslope form.

$$y - (-4) = 2(x - 3)$$

 $y + 4 = 2x - 6$
 $y = 2x - 10$

Rearrange.

$$2x - y = 10$$

32. Through (0, 5), perpendicular to 8x + 5y = 3Find the slope of the given line first.

$$8x + 5y = 3$$

$$5y = -8x + 3$$

$$y = \frac{-8}{5}x + \frac{3}{5}$$

$$m = -\frac{8}{5}$$

The perpendicular line has $m = \frac{5}{8}$. Use point-slope form.

$$y - 5 = \frac{5}{8}(x - 0)$$

 $y = \frac{5}{8}x + 5$

Rearrange.

$$8y = 5x + 40$$
$$5x - 8y = -40$$

33. Through (-1, 4); undefined slope

35. Through (3, -5), parallel to y = 4

Find the slope of the given line.

y = 0x + 4, so m = 0, and the required line

will also have slope 0.

Use the point-slope from.

$$y - (-5) = 0(x - 3)$$

 $y + 5 = 0$
 $y = -5$

36. Through (-3, 5), perpendicular to y = -2 The

given line, y = -2, is a horizontal line. A line

perpendicular to a horizontal line is a vertical line with equation of the form x = h.

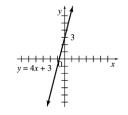
The desired line passes through (-3, 5), so h = -3. Thus, an equation of the desired line is x = -3.

37.
$$y = 4x + 3$$

Let
$$x = 0$$
: $y = 4(0) + 3$
 $y = 3$

Let
$$y = 0$$
: $0 = 4x + 3$
 $-3 = 4x$
 $-\frac{3}{4} = x$

Draw the line through (0, 3) and $\left(-\frac{3}{4}, 0\right)$.



38. y = 6 - 2x

Find the intercepts. Let x = 0. y = 6 - 2(0) = 6The *y*-intercept is 6. Undefined slope means the line is vertical.

The equation of the vertical line through (-1, 4) is x = -1.

34. Through (7, -6), parallel to a line with undefined

slope.

A line with undefined slope has the form x = a (a vertical line). The vertical line that goes through (7, -6) is the line x = 7.

Let y = 0. 0 = 6 - 2x 2x = 6x = 3

The *x*-intercept is 3.

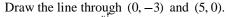
Draw the line through (0, 6) and (3, 0).

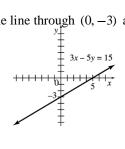
39.
$$3x - 5y = 15$$

$$-5y = -3x + 15$$
$$y = \frac{3}{5}x - 3$$

When
$$x = 0, y = -3$$
.

When
$$y = 0, x = 5$$
.





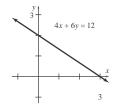
40. 4x + 6y = 12

Find the intercepts.

When x = 0, y = 2, so the y-intercept is 2.

When y = 0, x = 3, so the x-intercept is 3.

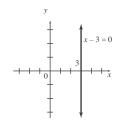
Draw the line through (0, 2) and (3, 0).



41.
$$x - 3 = 0$$

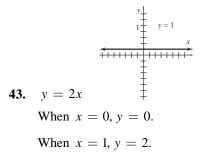
 $x = 3$

This is the vertical line through (3, 0).



42. *y* = 1

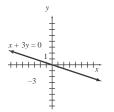
This is the horizontal line passing through (0, 1).



Draw the line through
$$(0, 0)$$
 and $(1, 2)$.

44.
$$x + 3y = 0$$

When $x = 0, y = 0$.
When $x = 3, y = -1$.
Draw the line through (0, 0) and (3, -1).



45. (a) Let t = 0 represent the year 2000. The line goes through (0, 100) and (13, 440).

$$m = \frac{440 - 100}{13 - 0}$$
$$= \frac{340}{13} \gg 26.2$$
$$y - 100 = 26.2(t - 0)$$
$$y = 26.2t + 100$$

(b) The imports from China are increasing by about \$26.2 billion per year.

(c) Let
$$t = 15$$
.

$$y = 26.2t + 100$$

 $y = 26.2(15) + 100$
 $y = 493$

Copyright 2020 Reflexans Education Induc.

The amount of imports from China in 2015 will be about \$493 billion. (d) Let y = 600; solve for t.

$$600 = 26.2t + 100$$

 $500 = 26.2t$
 $t \gg 19.084$

The imports from China would be at least \$600 billion in the year 2000 + 20 = 2020.

46. (a) Let t = 0 represent the year 2000. The line goes through (0, 16) and (13, 122).

$$m = \frac{122 - 16}{13 - 0}$$
$$= \frac{106}{13} \gg 8.15$$
$$y - 16 = 8.15(t - 0)$$

$$y = 8.15t + 16$$

exports to China are increasing by \$8.15 billion per year

(**b**) The expo about \$8.15 billion per year.

(c) Let
$$t = 15$$
.
 $y = 8.15t + 16$
 $y = 8.15(15) + 16$

y = 138.25

The amount of exports to China in 2015 will be about \$138 billion.

(d) Let
$$y = 200$$
; solve for t .
 $200 = 8.15t + 16$
 $184 = 8.15t$
 $t \gg 22.577$

The exports to China would be at least \$200 billion in the year 2000 + 23 = 2023.

47. (a) Let t = 0 represent the year 2000. The line

goes through (7, 55,627) and (12, 51,017).

$$m = \frac{51,017 - 55,627}{12 - 7}$$
$$= \frac{-4610}{5} \gg -922$$
$$y - 55,627 = -922(t - 7)$$

(d) Let y = 40,000; solve for x.

$$40,000 = -922t + 62,081$$
$$-22,081 = -922t$$
$$t \gg 23.949$$

The median income would drop below \$40,000 in the year 2000 + 24 = 2024.

48.
$$p = S(q) - 4q + 10; p = D(q) = 40 - 4q$$

(a) $20 = 4q + 10$ $20 = 40 - 4q$
 $10 = 4q$ $-20 = -4q$
 $\frac{5}{2} = q$ (supply) $5 = q$ (demand)

When the price is \$20 per pound, the supply is 2.5 pounds per day, and the demand is 5 pounds per day.

(b)
$$24 = 4q + 10$$
 $24 = 40 - 4q$

$$14 = 4q -16 = -4q$$
$$\frac{7}{2} = q (supply) 4 = q (demand)$$

When the price is \$24 per pound, the supply is 3.5 pounds per day, and the demand is 4 pounds per day.

(c) 32 = 4q + 10 32 = 40 - 4q22 = 4q-8 = -4q $\frac{11}{2} = q$ (supply) 2 = q (demand)

When the price is \$32 per pound, the supply is 5.5 pounds per day, and the demand is 2 pounds per day.

(d)
$$a_{20}^{p}$$

 b_{20}^{r}
 b_{20}^{r}

(b) The median income for all U.S. households is decreasing by about \$922 per year.

(c) Let
$$t = 15$$
.

Copyright 2020 Reflexans Education Induc.

y = -922t + 62,081 y = -922(15) + 62,081y = 48,251

The median income for all U.S. households in 2015 will be about \$48,251.

- (e) The graph shows that the lines representing the supply and demand functions intersect at the point (3.75, 25). The *y*-coordinate of this point gives the equilibrium price. Thus, the equilibrium price is \$25 per pound.
- (f) The *x*-coordinate of the intersection point gives the equilibrium quantity. Thus, the equilibrium quantity is 3.75, representing 3.75 pounds of crabmeat per day.
- **49.** (a) The line that represents the supply function goes through the points (60, 40) and (100, 60).

$$m = \frac{60 - 40}{100 - 60} \gg 0.5$$

Use (60, 40) and the point-slope form.

$$p - 40 = 0.5(q - 60)$$

 $p = 0.5q - 30 + 40$

$$p = S(q) = 0.5q + 10$$

(b) The line that represents the demand function goes through the points (50, 47.50) and (80, 32.50).

$$m = \frac{32.50 - 47.50}{80 - 50} \gg -0.5$$

Use ^(50, 47.50) and the point-slope form.
 $p - 47.50 = -0.5(q - 50)$

$$p = 0.5q + 25 + 47.50$$

$$p = D(q) = -0.5q + 72.50$$

(c) Set supply equal to demand and solve for q.

$$0.5q + 10 = -0.5q + 72.50$$
$$1q = 62.50$$
$$q = 62.5$$

$$S(62.5) = 0.5(62.5) + 10 =$$

41.25

The equilibrium quantity is about 62.5 dietary supplement pills, and the equilibrium price is about \$41.25.

50. Eight units cost \$300; fixed cost is \$60. The fixed cost is the cost if zero units are made. (8, 300) and (0, 60) are points on the line.

$$m = \frac{60 - 300}{0 - 8} = 30$$

Use slope-intercept form.

$$y = 30x + 60$$
$$C(x) = 30x + 60$$

51. Fixed cost is \$2000; 36 units cost \$8480. Two points on the line are (0, 2000) and

$$m = \frac{8480 - 2000}{1000} = \frac{6480}{1000} = 180.$$

Use point-slope form.

$$y = 180x + 2000$$

$$C(x) = 180x + 2000$$

53. Thirty units cost \$1500; 120 units cost \$5640. Two points on the line are (30, 1500), (120, 5640), so

$$m = \frac{5640 - 1500}{120 - 30} = \frac{4140}{90} = 46.$$

$$120 - 30 \qquad 90$$
Use point-slope form.

$$y - 1500 = 46(x - 30)$$

$$y = 46x - 1380 + 1500$$

$$y = 46x + 120$$

$$C(x) = 46x + 120$$
54.
$$C(x) = 200x + 1000$$

$$R(x) = 400x$$
(a)
$$C(x) = R(x)$$

$$200x + 1000 = 400x$$

 $1000 = 200x$
 $5 = x$

The break-even quantity is 5 cartons.

(b)
$$R(5) = 400(5) = 2000$$

The revenue from 5 cartons of CD's is \$2000.

55. (a)
$$C(x) = 3x + 160; R(x) = 7x$$

 $C(x) = R(x)$
 $3x + 160 = 7x$
 $160 = 4x$

(a)

40x = x

The break-even quantity is 40 pounds.

- **(b)** $R(40) = 7 \cdot 40 = 280 The revenue for 40 pounds is \$280.
- **56.** (a) E(x) = 42x + 352 (where x is in thousands) (**b**) R(x) = 130x (where x is in thousands)

(c)
$$R(x) > E(x)$$

 $130x > 42x + 352$

- ve units cost \$445; 50 units cost \$1585.
- Points on the line are (12, 445) and (50,

1585).

w

5

2.

Т

el

$$m = \frac{1585 - 445}{50 - 12} = 30$$

Use point-slope form.

$$y - 445 = 30(x - 12)$$

$$y - 445 = 30x - 360$$

$$y = 30x + 85$$

$$C(x) = 30x + 85$$

$$88x > 352$$

 $x > 4$
For a profit to be made, more than 4000 chips
must be sold.

x	У	x	У
2	26,150	8	28,350
3	27,550	9	28,966
4	28,050	10	29,793
5	28,400	11	30,659
6	28,450	12	30,910
7	28,200		

(a) Use the points (2, 26, 150) and (12, 30, 910) to find the slope.

$$m = \frac{30,910 - 26,150}{12 - 2} = 476$$
$$y - 26,150 = 476(t - 2)$$
$$y - 26,150 = 476t - 952$$

$$y = 476t + 25,198$$

(**b**) Use the points (4, 28,050) and (12, 30,910) to find the slope.

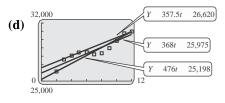
$$m = \frac{30,910 - 28,050}{12 - 4} = 357.5$$

$$y - 28,050 = 357.5(t - 4)$$

$$y - 28,050 = 357.5t - 1430$$

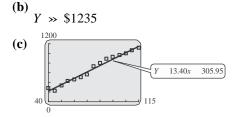
$$y = 357.5t + 26,620$$

(c) Using a graphing calculator, the least squares line is Y = 386t + 25,975.



(e)
$$r = 0.9356$$

58. (a) Y = 13.40x - 305.95Y = 13.40(115) - 305.95



The data points lie in a linear pattern. (d) r = 0.9898; There is a strong positive

correlation among the data.

59.

y - 64.5 = -0.833(t - 0) y = -0.833t + 64.5For *p*(*t*): Use the points (0, 47.8) and (12, 42.6) to find the slope.

$$m = \frac{42.6 - 47.8}{12 - 0} = -0.433$$
$$y - 47.8 = -0.433(t - 0)$$
$$y = -0.433t + 47.8$$

For c(t): Use the points (0, 54.2) and (12, 56.6) o find the slope.

$$m = \frac{56.6 - 54.2}{12 - 0} = 0.2$$

$$y - 54.2 = 0.2(t - 0)$$
$$y = 0.2t + 54.2$$

(**b**) Beef is decreasing by about 0.833 lb/yr; pork is decreasing by about 0.433 lb/yr; chicken is increasing by about 0.2 lb/yr.

(c)
$$-0.833t + 64.5 = 0.2t + 54.2$$

 $-1.033t = -10.3$
 $t \gg 9.97$

The consumption of chicken surpassed the consumption of beef in the year 2000 + 10 = 2010.

(d)
$$y = -0.833t + 64.5$$

 $y = -0.833(15) + 64.5 \gg 52.005$

$$y = -0.433t + 47.8$$

$$y = -0.433(15) + 47.8 \gg 41.305$$

$$y = 0.2t + 54.2$$

$$y = 0.2(15) + 54.2 = 57.2$$

The consumption of beef will be about 52.0 lb, the consumption of pork will be about 41.3 lb, and the consumption of chicken will be about 57.2 lb in 2015.

60.	x	у
	2680	75.6
	2382	62.7
	3531	81.2
	2321	64.7
	3146	76.5
	3172	80.4
ısdErdE	chiefioh	n 7 ,3c,6

Copyright 2020 Repeans ded Echilder of dire

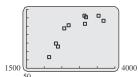
0	64.5	47.8	54.2
12	54.5	42.6	56.6

(a) For b(t): Use the points (0, 64.5) and (12, 54.4) to find the slope.

$$m = \frac{54.5 - 64.5}{12 - 0} = -0.833$$

- (a) Using a graphing calculator, $r \gg 0.8664$. Yes, the data seem to fit a straight line.
- (b)

85



(c) Using a graphing calculator,

Y = 0.01423x + 32.19. The data somewhat fit a straight, but a curve would fit the data better.

(d) Let x = 3399. Find *Y*.

 $Y = 0.01423(3399) + 32.19 \gg 80.56$

The predicted life expectancy in Canada, with a daily calorie supply of 3399, is about

80.6 years. This agrees with the actual value

of 80.8 years.

6

(e) The higher daily calorie supply most likely contains more healthy nutrients, which might result in a longer life expectancy.

1.	(a)				
	x	у	xy	x^2	y^2
	130	170	22,100	16,900	28,900
	138	160	22,080	19,044	25,600
	142	173	24,566	20,164	29,929
	159	181	28,779	25,281	32,761
	165	201	33,165	27,225	40,401
	200	192	38,400	40,000	36,864
	210	240	50,400	44,100	57,600
	250	290	72,500	62,500	84,100
	1394	1607	291,990	255,214	336,155
	$m = \frac{n(\aa xy) - (\aa x)(\aa y)}{n(\aa x^2) - (\aa x)^2}$				

$$m = \frac{8(291,990) - (1394)(1607)}{8(225,214) - 1394^2}$$
$$m = 0.9724399854 \gg 0.9724$$
$$b = \frac{\text{å } y - m(\text{å } x)}{n}$$
$$b = \frac{1607 - 0.9724(1394)}{8} \gg 31.43$$

The cholesterol level for a person whose blood sugar level is 190 would be about 216.

62.	=t	$\begin{array}{c} 0.933814 \gg 0.9 \\ y \\ (Males) \end{array}$	у	
	5	31.0	23.5	
	23	34.4	28.6	

(a) For m(t): Use the points (5, 31.0) and (23, 34.4) to find the slope.

$$m = \frac{34.4 - 31.0}{23 - 5} = 0.189$$
$$y - 31.0 = 0.189(t - 5)$$
$$y = 0.189t - 0.945 + 31.0$$
$$y = 0.189t + 30.055$$

- (b) The percent of never-married males is increasing by about 0.189 percent per year.
- (c) For f(t): Use the points (5, 23.5) and

(23, 28.6) to find the slope.

$$m = \frac{28.6 - 23.5}{23 - 5} = 0.283$$

y - 23.5 = 0.283(t - 5)
y = 0.283t - 1.415 + 23.5
y = 0.283t + 22.085

- (d) The percent of never-married females is increasing by about 0.283 percent per year.
- (e) y = 0.189t + 30.055

$$y = 0.189(25) + 30.055 \gg 34.78$$
$$y = 0.283t + 22.085$$

$$y = 0.283(25) + 22.085 \gg 29.16$$

The percent of never-married males will be about 34.78%, and the percent of never-married females will be about 29.16% in 2015.

63. (a) Use the points (0, 6400) and (12, 9520) to find the slope.

$$m = \frac{9520 - 6400}{12 - 0} = 260$$

$$Y = 0.9724x + 31.43$$

$$b = 6400$$
The linear equation for the number of families below the poverty level since 2000 is
$$Y = 0.9724(190) + 31.43$$

$$Y = 216.19 \gg 216$$

$$y = 260t + 6400$$

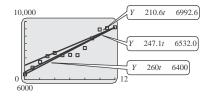
(**b**) Use the points (4, 7835) and (12, 9520) to find the slope.

$$m = \frac{9520 - 7835}{12 - 4} = 210.6$$

y - 7835 = 210.6(t - 4)
y - 7835 = 210.6t - 842.4
y = 210.6t + 6992.6

The linear equation for the number of families below the poverty level since 2000 is y = 210.6t + 6992.6.

(c) Using a graphing calculator, the least squares line is Y = 247.1t + 6532.0.

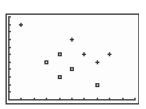


- (d) The least squares line best describes the data. Since the data seems to fit a straight line, a linear model describes the data well.
- (e) Using a graphing calculator, $r \gg 0.9515$.
- 64. (a) Using a graphing calculator, r = 0.6889. The data seem to fit a line but the fit is not very good.

(c) Using a graphing calculator,

$$Y = 4.156x + 111.5$$

- (d) The slope is 4.156 thousand (or 4156). On average, the governor's salary increases \$4156 for each additional million in population.
- **65.** Use a graphing calculator to find these correlations.
 - (a) Correlation between years since 2000 and length: r = 0.4529
 - (b) Correlation between length and rating: r = 0.3955
 - (c) Correlation between years since 2000 and rating: r = -0.4768



This calculator graph plots year (on the horizontal axis) versus rating (on the vertical axis). Squares represent movies with lengths no more than 110 minutes, and plus signs represent movies with lengths 115 minutes or more.

Extended Application: Using Extrapolation to

Predict Life Expectancy

1.

x	у	xy	<i>x</i> ²	y^2		
1970	74.7	147,159.0	3,880,900	5580.09		
1975	76.6	151,285.0	3,900,625	5867.56		
1980	77.4	153,252.0	3,920,400	5990.76		
1985	78.2	155,227.0	3,940,225	6115.24		
1990	78.8	156,812.0	3,960,100	6209.44		
1995	78.9	157,405.5	3,980,025	6225.21		
2000	79.3	158,600.0	4,000,000	6288.49		
2005	80.1	160,600.5	4,020,025	6416.01		
2010	2010 81.0 162,810.0 4,040,100 6561.					
17,910	17,910 705.0 1,403,151 35,642,400 55,253.8					
$m = \frac{1}{2}$	$m = \frac{n(\mathbf{a} x y) - (\mathbf{a} x)(\mathbf{a} y)}{n(\mathbf{a} x^2) - (\mathbf{a} x)^2}$					
$m = \frac{9(1,403,151) - (17,910)(705.0)}{9(35,642,400) - 17,910^2} \gg 0.1340$						
$b = \frac{\mathbf{a} \ y - m(\mathbf{a} \ x)}{n}$						

$$b = \frac{\frac{n}{705.0 - 0.1340(17,910)}}{9} \gg -188.3267$$

$$Y = 0.134x - 188.33$$

2. Let x = 1900. Find *Y*.

 $Y = 0.134(1900) - 188.33 \gg 66.27$ From the equation, the guess for the life expectancy of females born in 1900 is 66.27 years. **3.** The poor prediction isn't surprising, since we were extrapolating far beyond the range of the original data.

5.	x	у	Predicted value	Residual	
	1970	74.7	75.65	-0.95	
	1975	76.6	76.32	0.28	
	1980	77.4	76.99	0.41	
	1985	78.2	77.66	0.54	
	1990	78.8	78.33	0.47	
	1995	78.9	79.0	- 0.1	
	2000	79.3	79.67	- 0.37	
	2005	80.1	80.34	-0.24	
	2010	81.0	81.01	- 0.01	
$\begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\$					
•					

- **6.** You'll get 0 slope and 0 intercept, because you've already subtracted out the linear component of the data.
- 7. A cubic would fit the data;
 - $Y = 0.0002202x^3 1.3165x^2 + 2623.68x 1,742,891.3$