Finite Mathematics and Its Applications 12th Edition

Solution Manual for Finite Mathematics and Its Applications 12th by Goldstein Schneider Siegel and Hair ISBN 01344377649780134437767

Full link download:

Solution Manual:
https://testbankpack.com/p/solution-manual-for-finite-mathematics-and-its-applications-12th-by-goldstein-schneider-siegel-and-hair-isbn-0134437764-9780134437767/

Test Bank:
https://testbankpack.com/p/test-bank-for-finite-mathematics-and-its-applications-12th-by-goldstein-schneider-siegel-and-hair-isbn-0134437764-9780134437767/

CHAPTER 2

Exercises 2.1, page 47

${ }_{5} \underline{R}_{3}+(-4) R_{1}$
5.
$x-2 y+z=0$
$y-2 z=4$
6.
$\underline{R_{3}}+3 R_{2}$
$x+6 y-4 z=$
$y-2 z=4$
$9 y-z=5$
" -
$\begin{aligned} y+3 z & =1 \\ 16 z & =5\end{aligned}$
7. ${ }^{2} \quad{ }^{c} c_{0}$

$\begin{array}{llll}0 & 1 & -1 & 22\end{array}$

$$
-2 y=3 \quad-5 x+{ }^{2} y=3
$$

$$
3 x+2 y \quad=-3 \quad \frac{6}{5} x-y+12 z=--_{3}^{2}
$$

12. $£ 20 \begin{array}{lllll}1 & 0 & -3 & 0\end{array}$
13. $\mathrm{e} x+7 y=x+7 y=-5$
14. e
15. - \quad 16. 5^{-x}

$$
2 y-
$$

$$
z=6
$$

${ }^{\overline{8}}-5 x-$
$y+7 z$
$=0$
17. Multiply the second row of the matrix by ${ }^{1}$. 18. Change the second row of the matrix by adding to it -4 times the first row. 19. Change the first row of the matrix by adding to it 3 times the second row. 20. Multiply the first row of the matrix by -1 . 21. Interchange rows 2 and 3. 22. Interchange rows 1 and 2 .
23. $\begin{array}{ccc}1 & 2 & 0 \\ { }_{0} & 10 & 5^{\mathrm{d}}\end{array}$
24. $\begin{array}{ccc}1 & -4 & -\frac{3}{2} \\ -3 & 4 & 9\end{array}$
25. $c^{1} \begin{array}{ccc} & 2 & 3 \\ & -2 & 0^{d}\end{array}$
26. $\begin{array}{ccccccc}1 & 3 & -2 & & 1 & 3 & -5 \\ c_{0} & -8 & 133^{\mathrm{d}} & \text { 27. } c_{0} & 1 & 7^{\mathrm{d}}\end{array}$
28. ${ }^{c} \begin{array}{ccc}1 & 7 & 6 \\ -3 & 2 & 0^{d}\end{array}$
29. $R_{2}+2 R_{1}$
30. $\frac{1}{2} R_{2}$
31. $R_{1}+(-2) R_{2}$
32. $R_{3}+(-4) R_{1}$
33. $R_{1} 4 R_{2}$ or $R_{1} 4 R_{3}$
34. $\left(-^{1}\right) R_{2}$
$\begin{array}{lllllll}1 & 1 & -1 & 6 & 1 & 2\end{array}$
7 -3
35. $R_{1}+(-3) R_{3}$ or $R_{2}+(-2) R_{3}$
36. $R_{2} 4 R_{3}$
37. $£ 010$

218 §
38. $£ 0-7-11 \quad 5$ §
$\begin{array}{llllllll}0 & -6 & 5 & -13 & 0 & 14 & 37 & -9\end{array}$
39. $\mathrm{e}^{x+y}=7 ;{ }^{x+} ; \quad \mathrm{e}=4, y=3$
40. $\begin{aligned} 2 x+3 y & =23 \\ 6 x-4 y & =4\end{aligned} ; x=4, y=5$
41. $\begin{aligned} 3 x-4 y & =-27 \\ x+2 y & =11\end{aligned} ; x=-1, y=6$
$4 x-3 y=18$

$$
2 x+y+3 z=
$$

31
42. $\mathrm{e} 2 x-y=8 ; x=3, y=-2$
43. $x+y-2 z=3 ; x=3, y=10, z=5$
44. $\cdot 3 x-8 y+9 z=20 ; x=4, y=-1, z=0$
$4 x-2 y+5 z=17$
$4 x+\quad 5 z=16$

$$
\begin{array}{ll}
3 x+7 y+2 z= & 3 x+2 y+z= \\
5 & - \\
10
\end{array}
$$

45. - $7 x-6 y-3 z=4 ; x=1, y=0, z=1$
46. $\cdot 8 x-y+6 z=16 ; x=.5, y=3, z=2.5$
47. $x=-1, y=1$
$10 x+9 y-7 z=$
3
48. $x=-6, y={ }^{3}$
49. $x=-{ }^{8}, y=-{ }^{9}, z=-$
50. $x=6, y=1, z=0$
51. $x=-1, y=1$
52. $x=2, y=0$
53. ${ }^{2} \quad{ }^{7} \quad{ }^{7} \quad{ }^{7}$
54. $x=1, y=2, z=-1 \quad$ 54. $x=1, y=2, z=3$
55. $x=-2.5, y=15$
56. $x=18, y=-3$
57. $x=1, y=-6, z=2$
58. $x=1, y=2, z=3$
59. $x=-1, y=-2, z=5$
60. $x=1, y=-3, z=4$
61. 30
62.
63. d 64. c
64. 150 short sleeve, 200 long sleeve 66. 47 bottles of national brand, 35 bottles of store brand 67. 190 adults, 85 children
65. 15 at-bats, 3 hits, 200 batting average 69. $x=3.7, y=3.9, z=1.9$ 70. $x=13, y=19, z=68$ 71. 3 ounces of Brazilian, 6 ounces of Columbian, 7 ounces of Peruvian 72. 5 ounces of cashews, 6 ounces of almonds, 5 ounces of walnuts
66. $\$ 25,000$ in the bond fund, $\$ 50,000$ in the health sciences fund, $\$ 25,000$ in the real estate fund 74. 6 ounces of food I, 3 ounces of food II, 1 ounce of food III 75. 23^{1} pounds of first type, 85 pounds of seeond type, 201^{2} pounds of third type 76. $\$ 1250$ in the savings account, $\$ 1250$ in the certificate of deposit, and $\$ 2500$ in the prepaid college fund
67. $\begin{array}{ccc}1 & 0 & -5 \\ { }_{0} & 1 & 4{ }^{\mathrm{d}}\end{array}$
68. | $£ 0$ | 1 | 0 | $-3 \S$ |
| ---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 1 | -9 |
69. $x=-2.5, y=15$
$\overline{13}$
70. $\geq 0 \begin{array}{ccc:c}1 & 0 & 0 & \frac{175}{\frac{54}{16}} \\ & 1 & 0 & 9 ¥ \\ & & & \underline{26}\end{array}$
$\begin{array}{llll}0 & 0 & 1 & \end{array}$
71. $\begin{array}{llll}\geq 0 & 1 & 0 & -{ }_{11} ¥ \\ & & & \underline{13}\end{array}$
$\begin{array}{llll}1 & 0 & 0 & \frac{109}{\frac{11}{7}}\end{array}$
72. $x=18, y=-3$ 83. $x=1, y=-6, z=2$ 84. $x=1, y=2, z=3$

Exercises 2.2, page 56

$$
\begin{array}{rrrr}
9 & -1 & 0 & -7 \\
-1 & - & & \\
£-2 & 2 & 1 & 3 \S \\
5 & -1 & 0 & -3
\end{array}
$$

$$
\text { 4. } \begin{array}{rccccccccc}
15 & 0 & 0 & -28 & & 1 & -3 & & \\
7 & 0 & 9 & 0 \S & \text { 5. } & & 2 & & 0 & 1 \\
-1 & 1 & -1 & 4 & £ 0 & -9 \S & \text { 6. } & c_{1} & 0^{d} \\
& & & & & & & &
\end{array}
$$

$$
\left.\begin{array}{llllll}
4 & 3 & 0 & & 0 & 1
\end{array}\right)
$$

7. $£ 1 \quad 1 \quad 0 \S \quad$ 8. $£ \frac{1}{2}-\frac{1}{2} \quad 1 \S \quad 9 . \mathrm{e}^{x+y+4 z=} \quad 6 ; z=$ any value, $y=2-7 z, x=4+3 z$ $\begin{array}{lllllll}\frac{1}{6} & \frac{1}{2} & 1 & -2 & 5 & 0 & 2 x+y+z=10\end{array}$
8. $\begin{aligned} & 2 x-2 y+z=2 \\ & \text { e }-6 x+6 y-3 z=5\end{aligned}$; no solution 11. $\begin{aligned}-5 x+15 y-10 z & =5 \\ x-3 y+2 z & =0\end{aligned} ;$, no solution

$$
2 x-6 y-4 z=0
$$

12. $\mathrm{e}-3 x+9 y+6 z=0$; $y=$ any value, $z=$ any value, $x=3 y+$
$2 z$

$$
2 x-y+2 z=4
$$

$$
2 x-y+5 z=12
$$

13. $-x-4 y+2 z=3 ; z=$ any value, $y=z-2, x=5-2 z$
14. $\cdot 3 x+y+z=-2$; no solution $8 x+5 y+11 z=30$ $x+2 y-z=5$

$$
\begin{aligned}
& x+2 y+3 z-w= \\
& 4
\end{aligned}
$$

15. $\cdot 2 x+3 y+w=-3 ; z=$ any value, $w=$ any value, $y=11-6 z+3 w, x=9 z-5 w-18$
$4 x+7 y+6 z-w=5$

$$
x+y+z=-1
$$

16. $\cdot x+2 y-z=-6 ; z=$ any value, $y=2 z-5, x=4-3 z$ 17. $y=$ any value, $x=3+2 y$
17. No solution
$2 x+y+4 z=3$
18. No solution 20. $y=$ any value, $x=4+3 y$ 21. $x=1, y=2$ 22. $y=$ any value, $x=6 y+12$ 23. No solution
19. $x=3, y=2$
20. No solution
21. $z=$ any value, $x=11 z+8, y=4 z+1$
22. $z=$ any value, $x=-6-z, y=5$
23. $y=$ any value, $x=3 y+2, z=4$ 29. No solution 30. No solution 31. No solution 32. $x=3, y=-1, z=0$
24. $z=$ any value, $w=$ any value, $x=2 z+w, y=5-3 w$ 34. $w=$ any value, $x=\frac{\overline{2}}{}-{ }^{1} w_{2}+\frac{11}{}, y_{2}={ }^{1} w_{2}-{ }^{5}, z=6$
25. No solution 36. $w=$ any value, $x=1-4 w, y=2 w+3, z$
$=0$
26. Possible answers: $z=0, x=-13, y=9 ; z=1, x=-8, y=6 ; z=2, x=-3, y=3$
27. Possible answers: $z=0, x=-56, y=13 ; z=1, x=-64, y=14 ; z=2, x=-72, y=15$
28. Possible answers: $y=0, x=23, z=5 ; y=1, x=16, z=5 ; y=2, x=9, z=5$
29. Possible answers: $z=0, x=4, y=7 ; z=1, x=4, y=10 ; z=2, x=4, y=13$
30. Food 3: $z=$ any value between 0 and 100, food 2: $y=100-z$, food 1: $x=300-z$ 42. No solution
31. 4 grams of food A, 3 grams of food B, 2 grams of food C; 1.5 grams of food A, 3.9 grams of food B, 1.9 grams of food C
32. 50 ottomans, 30 sofas, 40 chairs; 5 ottomans, 55 sofas, 35 chairs; 95 ottomans, 5 sofas, 45 chairs
33. 9 computers, 4 printers, 2 scanners; 8 computers, 2 printers, 5 scanners
34. 6 floral squares, the other 90 any mix of solid green and solid blue
35. The same number of $\$ 7$ and $\$ 13$ plants, up to 7 of each type, the rest $\$ 10$ plants
36. No solution if $k \neq-12$; infinitely many if $k=-12$ 50. 3 51. None
37. No, there still could be a unique solution or infinitely many solutions depending on the other rows of the matrix.
38. One; $x=7, y=3$ 54. None 55. None 56. One; $x=5, y=6$
39. There has been a pivot about the bottom right element. 58. Does not differ

Exercises 2.3, page 68

1. $2 * 3$ 2. $2 * 1$, column matrix 3. $1 * 3$, row matrix 4. $2 * 2$ square, identity matrix 5. $2 * 2$, square matrix 6. $1 * 1$, square, column, and row matrix \quad 7. $-4 ; 0$ 8. $-1 ; 2$ 9. $i=1, j=3 \quad \mathbf{1 0} . i=2, j=2$
93
13
242.5
13
2. ${ }^{c} 7-1{ }^{d}$
3. ${ }^{3} 3^{d}$
4. ${ }^{c}-5.5 \quad 1 \quad 1.2^{d}$
5. $\stackrel{3}{3}_{3} 34$
6. £ 2 §
7. ${ }^{c}-.2 r^{-.5}$
-7

8. [11]
9. $\left.\stackrel{1}{f}_{2}\right]$
10. [10]
11. [0]
12. $\begin{array}{ccc}4 & 0 & -\frac{2}{3} \\ & -6 & { }_{\overline{2}}\end{array}$
13. ${ }^{6}{ }^{6} \quad .75{ }_{0} 1.8^{d}$
14. $\mathrm{c}_{6}^{-}{ }_{1} \mathrm{~d}$

1
26. $\left[\begin{array}{ll}0 & 18\end{array}\right]$ 27. Yes; 3 * 5
28. Yes; 3 * 4
29. No
30. Yes; 1 * 1
31. Yes; $3 * 1$
32. No 33. $c_{6}^{6}{ }_{6}^{17} 10^{d}$

\therefore	8	-10	2	25	17	2

35. $£-4$ § 36. $£ 00 \S$ 37. ${ }^{c} 78^{d}$ 38. ${ }^{c} 01^{d}$
36. ${ }^{c} .52 \quad .61{ }^{d}$
37. | $£-1$ | 3 | | |
| :---: | :---: | :---: | :---: |
| 3 | 5 | 11 | |
38. $\begin{array}{rrl}3 & -1 & 2 \S \\ 1 & 1 & 4\end{array}$
£ 8 $0 \quad 0$

1
42. £2 §
43. $\begin{array}{ll}s^{\frac{1}{3}} & \frac{2}{3} \\ & \frac{1}{3} \\ \frac{2}{3}\end{array}$
$\begin{array}{rll}.4 & .4 & .4 \\ \text { 44. } \begin{array}{rl}£ .4 & .4 \\ .4 \\ .2 & .2\end{array} & .2\end{array}$
45. $\left[\begin{array}{ll}30 & 41\end{array}\right]$
46. [18 18] 47. ${ }^{c} \begin{array}{cc}10 & 0_{d} \\ 0 & 15\end{array}$
48. $\begin{array}{cc}c^{2} & 0 \\ 0 & 2\end{array}$
49. $c_{c}^{0} \quad 0_{d}{ }_{d}$
50. $c_{c}^{0} \begin{aligned} & 0 \\ & 0\end{aligned}{ }_{d}$
$23 \quad 24$
$2.4 \quad 5.6$
$2 x+3 y=6 \quad-3 x+4 y=1$ $x+2 y+3 z=$
10
$x=1$
54
$y=1 \begin{aligned} & \text { 55. }\end{aligned} \begin{array}{r}\bullet 4 x+5 y+6 z= \\ \\ \\ \\ \\ \\ 12\end{array}$
56. $\cdot y=2$
$z=3$

65. (a) $\mathrm{c} 265^{\mathrm{d}}$
(b) Mike's clothes cost $\$ 340$; Don's clothes cost $\$ 265$.
(c) $£ 18.75$ §
(d) The costs of the three items of clothing after
62.50
a 25% increase 66 . (a) $[15,400 \quad 16,050]$ (b) The monthly sales for Store 1 were $\$ 15,400$ and for Store 2 were $\$ 16,050$. (c) [275 88 66]
(d) The retail prices after a 10% increase 67. (a) [2282.50 $2322.50 \quad 3550.50]$, total retail value for the white chocolate-covered, 3138.00
milk chocolate-covered, and dark chocolate-covered items (b) $£ 3337.50$ §, total revenue from peanuts, raisins, and espresso beans 94.50
(c) $£ 351.50 \S, 10 \%$ reduction in the number of pounds sold $\mathbf{6 8}$. (a) $[18,500 \quad 21,750 \quad 24,250]$, November wholesale costs for each of the
256.50
three stores (b) [18,000 26,500 27,500], December wholesale costs for each of the three stores (c) [31,500 37,250 $40,750]$. November revenue for each of the three stores (d) $31,000 \quad 44,500 \quad 46,500]$. December revenue for each of the three stores
(e) [200 2003000 , profits for each of the three appliances (f) $[13,000 \quad 15,500 \quad 16,500]$, November profits for each of the three
stores (g) $[13,000 \quad 18,000 \quad 19,000]$, December profits for each of the three stores \quad (h) $£ 40 \quad 30$ §, quantities of each of $\begin{array}{lll}20 & 25 & 65\end{array}$
appliances sold during November and December (i) [26,000 33,500 35,500], combined November and December profits for each of the three stores (j) [475 427.50 712.50], 5% discount off retail prices 69. (a) I: 2.75, II: 2, III: 1.3 (b) A: 74, B: 112, C: 128, D: 64, F: 22 70. Scheme III 71. 10,100 voting Democratic, 7900 voting Republican 72. (a) Democrats; 56.1% (b) Republicans;

232,000 260,500
50.6\%
73. Carpenters: $\$ 2000$, bricklayers: $\$ 2100$, plumbers: $\$ 1200$
74. 86,000 97,500 §
(b) 86,000
(c) 47,000
(a) $£$
$42,000 \quad 47,000$
75. (a) [162 150 143], number of units of each nutrient consumed at breakfast (b) [$\left.\begin{array}{ccc}186 & 200 & \text { 239 }\end{array}\right]$, number of units of each nutrient consumed at lunch (c) [288 300 344], number of units of each nutrient consumed at dinner (d) [5 8 \quad 8, total number of ounces of each food that Mikey eats during a day (e) [636 650 726], number of units of each nutrient consumed per day

108

DVD TV

Boston cream pie Carrot
cake $30 \quad 45$

Preparatio

20 Boston cream

960 Preparation
79. (a) $T=$ $30 \quad 50$

50 § Baking
(b) $S={ }^{c} 8{ }^{d}$ Carrot cake $\quad ; T S=£ 1000 \S$ Baking

380 Finishing
(c) Total baking time: 1000 minutes, or $16{ }^{2}$ hours; total finishing time: 380 minutes, $\mathrm{gr}^{1} 6^{1}$ hours

	Preparation	Lacquering	Drying			Manicure	Pedicure	
80. (a) $T=c$	20	5	15	Manicure		(b) $S=3$	15	9

$\begin{array}{ccccccccc} & \text { Huge One } & \text { Regular Joe } & \text { Cutting } & \text { Sewing } & \text { Finishing } & & \\ \text { (c) } A=3 & 27 & 56 & 4 ; A T=3 & 138 & 193 & 110 & 4 ; A S=322084 & \text { (d) } 193 \text { hours }\end{array}$ (e) $\$ 2208$

740
82. (a) $B C=[7000]$; The total revenue is $\$ 7000$.
(b) $A C=£ 2065 \S$; The total size is 740 GB , the total battery life is 2065 hours, 90.6
and the total weight is 90.6 ounces. (c) The total battery life for all MP3 players sold is 2065 hours. 84. $a=1, b=-2$
85. $\begin{array}{llll}3 & -2 & 1 \\ & & 6 & 7^{d}\end{array}$
$\begin{array}{lll}5 & 4 & -3\end{array}$
85. $c_{-5} \quad 6 \quad 7^{d}$ 86. $c_{0}^{c}-1 \quad 2^{d}$
87. 4 * 4
88. $3 * 3$
89. $3925757,718 \quad 89,3894 £$
14.9 §
14.2
$\begin{array}{cccrccrrrc} & & 250.0 & 6.4 & -2 & -2.7 & 5.6 & -16 & 3.3 \\ \text { 90. } 3155,959 & 95,997 & 66,5544 £ 42.0 \text { § } & \text { 91. } £ 20.5 & 22.5 & -2.4 \S & \text { 92. } & £-17.5 & 21.5 & -5.6 \S \\ & 107.8 & -14 & 17.6 & 16 & 4 & -4.4 & 12\end{array}$

Exercises 2.4, page 78
$\begin{array}{lll}\text { 1. } x=2, y=0 & \text { 2. } x=6, y=1 & \text { 3. } c_{-3}^{1}\end{array} 7^{-2}$
4. $\begin{array}{cc}-7 & 3 \\ 5 & -2^{d}\end{array}$
5. $\begin{array}{cc}1 & -1 \\ \mathrm{C}_{-}^{5} & 3 \mathrm{~d}\end{array}$
6. $\begin{array}{cccccc}c_{0} & -1 & & 1.6 & -.4 \\ & 2^{d} & \text { 7. } & c_{-.6} & 1.4^{d}\end{array}$
8. ${ }^{c} 10^{d}$
9. 314
10. [5] 11. $x=4, y=-$ 12. $x=2, y=-3$
13. $x=32, y=-6$
14. $x=1, y=2$
15. (a) $)^{8}$ c 3 dc d $\stackrel{m}{=}$ d
$\begin{array}{llllll} & - & .2 & .7 & y & s \\ & \frac{1}{3} & \frac{1}{4} & x & s\end{array}$

(c) 110,000 married; 40,000 single
(d) 130,000 married; 20,000 single
16. ${ }_{\overline{3}}^{\frac{3}{4}}{ }^{d c} y{ }^{d}=c_{w}{ }^{d}$
(a) c_{2}

x	9	-3	s

(b) $c_{y}{ }^{d}={ }^{c}-8 \quad 4{ }^{d} w_{c}{ }_{c}^{d}$
(c) 12,000
(d) 24,000
17. (a) $3 \quad .9{ }^{\mathrm{d} c} y{ }^{\mathrm{d}}=\mathrm{c}_{\mathrm{y}}{ }^{d}$

(c) $8500 ; 4500$
18. (a) $c^{.8} \quad .5{ }_{.5}{ }^{0} c_{y}^{x} d=c_{y}^{u}{ }_{y}$
(b) 24; 28
19. $x=9, y=-2, z=-2$
20. $x=5, y=-1, z=-1$
21. $x=21, y=25, z=26$
22. $x=6, y=7, z=8$
23. $x=1, y=5, z=-4, w=9$
24. $x=-4, y=1, z=19, w=5$
25. $x=4, y=-19, z=2, w=-4$
26. $x=-9, y=25, z=-4, w=5$
28. True

(b) After 1 year: 1,170,000 in group I and 405,000 in group II. After 2 years: 1,980,000 in group I and
$1,053,000$ in group II. (c) 700,000 in group I and 55,000 in group II. $30 . c^{0} c_{2}^{-1} d^{d}$

| 1 | 1 | x | 2 | 2 | 3 | 6 | $-\frac{10}{73}$ | $\frac{75}{292}$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

36.
$\begin{array}{rl}1 \underline{23} & \underline{82} \\ 10 & 20 \\ 41 & 41\end{array}$
37. $\begin{array}{lll}\begin{array}{l}3050 \\ 8887 \\ \end{array} & 860 & 1990 \\ \frac{125}{8887} & \frac{618}{8887} & \frac{8887}{8887}\end{array}$
38. \geq_{1901}^{220}
$\frac{170}{1901}$
$=\frac{257}{}, z=\underline{209}$
$\begin{array}{lll}2525 & ¥ & \text { 39. } x=- \\ 5703 & 5703 \\ \frac{655}{5703} & \frac{1112}{5703} & \end{array}$
40. $x=\frac{23}{}, y=\underline{257}, z=\underline{209}$

$$
2 \quad 2 \quad 2 \text { 41. } x=0, y=2, z=0, w=2 \quad \text { 42. } x=\frac{8}{\Gamma 81}, y \mp 81 \frac{413}{1}, z \bar{\mp} 8 \frac{749}{1}, w \bar{\mp} 81
$$

Exercises 2.5, page 82
-23
$\frac{1}{11} \quad \frac{1}{11}$
$\begin{array}{llll}{ }_{2}^{7} & \stackrel{3}{2} & 1 & 3\end{array}$

1. ${ }^{c}-7^{d}$
2. $s+\frac{11}{22} \quad \underline{5}$
3. ${ }^{c}-2-1{ }^{d}$
4. ${ }^{c} 01^{d}$
5. No inverse
6. No inverse
$\begin{array}{rrrl}\text { 7. } & 1 & -1 & 3 \S \\ £ & 0 & 0 & 1\end{array}$ $\begin{array}{llll}1 & & & \\ 4 & 0 & -{ }_{2} & 0\end{array}$
7. $\geq 0 \quad-\frac{1}{-} \quad \varphi ¥$
8. No inverse
9. ≥ 0

100
11. $E \begin{array}{rrrr}-5 & 6 & 0 & 0 \\ 1 & -1 & 0 & 0 \\ \end{array}$
12. $\mathrm{E}^{-\frac{1}{2}} 1 \begin{array}{lll}- & & 0 \\ -1 & -1 \\ U\end{array}$
$\begin{array}{rrrrrr} & 2 & & & 5 & 5 \\ { }^{3} & 3 & & \underline{2} & \underline{1} \\ \overline{2} & -\overline{2} & 1 & 1 & -5 & 5\end{array}$
$\begin{array}{llrr}0 & 0 & -\begin{array}{r}1 \\ \underline{46} \\ 0\end{array} & \underline{46} \\ 0 & 0 & 25 & 1 \\ & & 46 & -{ }_{23}\end{array}$

$$
\begin{array}{rrrr}
-1 & 0 & 2 & 0 \\
4 & & & \\
2 & 0 & -3 & 1
\end{array}
$$

13. $x=2, y=-3, z=2$
14. $x=-9, y=5, z=1$
15. $x=2, y=1, z=3$
16. $x=2, y=7, z=-3$
17. $x=4, y=-4, z=3, w=-1$
18. $x=6, y=3, z=0, w=3$
19. ${ }^{-3} 10{ }^{\mathrm{c}} 10{ }^{5}{ }^{\mathrm{d}}$ $\begin{array}{rr}-23 & -10 \\ 9 & 4\end{array}$
20. $x=42, y=21, z=37$
21. с
22. $x=58, y=27, z=15$
23. $x=82, y=17, z=1$
24. $x=14, y=46, z=$

Exercises 2.6, page 88

1. 20 cents 2. 15 cents 11.00
2. Energy sector 12.89
3. Energy sector 26.05
4. $\$ 6$ million
5. $\$ 4.5$ million
6. Manufacturing
7. Services
8. $A X=£ 11.50 \S$
9. $X=£ 14.06$ §
10. $X=£ 19.90$ § 31.35
11. Computers: $\$ 482$ million; semiconductors: $\$ 298.5$ million; business forms: $\$ 155.5$ million 15. Computers: $\$ 354$ million; semiconductors: $\$ 172$ million 16. Coal: $\$ 4.124$ billion; steel: $\$ 1.788$ billion; electricity: $\$ 3.354$ billion $17 . \$ 1.55$ billion worth of coal,
$\$ 0.86$ billion worth of steel, and $\$ 4.55$ billion worth of electricity 18. $\$ 358,000,000$ worth of computers, $\$ 118,000,000$ worth of semiconductors, and $\$ 253,000,000$ worth of business forms

energy: $\$ 2.63$ billion
$T E$

energy: $\$ 3.48$ billion 21. Plastics: $\$ 955,000$; industrial equipment: $\$ 590,000$ 22. Plastics: $\$ 1.93$ million; industrial equipment: $\$ 3.14$ million

	W	S	C			
W	.30	0	.10	1.47	.05	.16

steel: $\$ 564$; coal: $\$ 271$ 25. Manufacturing: $\$ 398$ million; transportation: $\$ 313$ million; agriculture: $\$ 452$ million

	A	E	M
A	.08	.15	.25

1.19 . 25.34
26. (a) $E £ .10 \quad .14 \quad .12$ §
(b) $\quad 18 \quad 1.22$
20 §
(c) Agriculture: $\$ 6.18$ billion; energy: $\$ 4.75$ billion; manufacturing: $\$ 3.91$
£
$\begin{array}{lllllll}M & .20 & .10 & .05 & .27 & .18 & 1.15\end{array}$
billion (d) Agriculture: $\$ 2.18$ billion; energy: $\$ 1.75$ billion; manufacturing: $\$ 1.91$ billion 27. Merchant: $\$ 85,000$; baker: $\$ 68,000$; farmer: $\$ 103,000$ 28. U.S.: $\$ 846$ million; Canada: $\$ 333$ million; England: $\$ 1440$ million 30. The second and third columns of $(I-A)^{-1}$ represent the increased production levels required by $\$ 1$ billion increases in the final demand for steel and electricity, respectively.
31. $\begin{gathered}11.91 \\ 15.83 \\ 9.57\end{gathered}$
11.61
32. $\geq{ }_{5.09}^{8.17} ¥$
7.26
13.32

Chapter 2: Answers to Fundamental Concept Check Exercises, page 93

1. Values of x, y, z, \ldots that satisfy each equation in the system 2. Rectangular array of numbers 3. (a) Interchange any two equations (or rows). (b) Multiply an equation (or row) by a nonzero number. (c) Change an equation (or row) by adding to it a multiple of another equation (or row). 4. System of equations: $x=c_{1} ; y=c_{2} ;$; Matrix: all entries on the main diagonal are 1 ; all entries off the main diagonal are zero $\mathbf{5}$. Use elementary row operations to make the entry have value 1 , and make the other entries in its column have value 0 . 6. (a) Create a matrix corresponding to the system of linear equations. (b) Attempt to put the matrix into diagonal form as described in the box following Example 1 of Section 2.2. (c) If the matrix cannot be put into diagonal form, follow the first step in the box following Example 3 of Section 2.2. (d) Write the system of linear equations corresponding to the matrix, and read off the solution(s). 7. Row matrix: a matrix consisting of a single row (that is, a 1 * n matrix); Column matrix: a matrix consisting of a single column (that is, an $m * 1$ matrix); Square matrix: a matrix having the same number of columns as rows (that is,
an $n * n$ matrix); Identity matrix: a square matrix having 1 s on the main diagonal and 0 s elsewhere 8 . The entry in the $i^{\text {th }}$ row and $j^{\text {th }}$ column 9. For two matrices of the same size, the sum (difference) is the matrix obtained by adding (subtracting) the corresponding entries of the two matrices. 10. For two matrices A and B, where the number of columns of A is the same as the number of rows of B, the matrix $A B$ is the matrix having the same number of rows as A and the same number of columns as B whose $i j^{\text {th }}$ entry is obtained by adding the products of the corresponding entries of the $i^{\text {th }}$ row of A with the $j^{\text {th }}$ column of B. 11 . The scalar product of the number c and the matrix A is the matrix obtained by multiplying each element of A by c. 12. The inverse of the square matrix A is the matrix
whose product with A is an identity matrix.

2. Write
the matrix form $(A X=B)$ of the system of linear equations. If the matrix A has an inverse, then the solution of the system of linear equations is given by the entries of the matrix $A^{-1} B$. 15. Adjoin an identity matrix to the right of the matrix A and then apply the Gauss-Jordan elimination method to the entire matrix until its left side is an identity matrix if possible. The new right side of the matrix will be the inverse of A. 16. A square matrix whose $i j^{\text {th }}$ entry is the amount of input from the $i^{\text {th }}$ industry required to produce one unit of the $j^{\text {th }}$ industry; A column matrix whose $i^{\text {th }}$ element is the amount of units demanded from the $i^{\text {th }}$ industry 17. If A is an input-output matrix and D is a consumer-demand matrix, then the $i^{\text {th }}$ entry of the matrix $(I-A)^{-1} D$ gives the amount of input required from the $i^{\text {th }}$ industry to meet the final demand.

Chapter 2: Review Exercises, page 93

$$
\begin{array}{llllll}
0 & 8 & { }_{3}^{16} & -12 & 0 & 7
\end{array}
$$

6	$-\frac{9}{2}$.6	-10
11.	d	12. $£ 6.6$	$2 \S$	
$\overline{2}$	0		4	11
		-1	3	

13. 5 14. 4 15. $x=-2, y=3$
14. (a) $x=13, y=23, z=19$
(b) $x=-4, y=13, z=14$
$\frac{1}{2}-1^{\text {d }}$
15. c

$$
\begin{array}{ccc}
5 & -1 & -1
\end{array}
$$

18. $£-3 \quad 1 \quad 0$ §
19. Corn: 500 acres; wheat: 0 acres; soybeans: 500 acres
20. (a) ${ }^{5455} 5275$ d; total month's costs for each $\begin{array}{llll}-1 & 0 & 1 & \text { store }\end{array}$ 6600
(c) $£ 15$ §; profit for each piece of equipment $\left.{ }^{1} \mathbf{d}^{3}\right)^{c}{ }_{1085}$; total month's profit for each
(b) c $6360^{d ; \text { total month's revenue for each store }}$
store 40
21. (a) $[10,100 \quad 8230$ 4670]; total amount invested in bonds, stocks, and the conservative fixed income fund, respectively (b) [522.40 1807.30]; total returns on the investments for one year and five years, respectively (c) $[10,000 \quad 16,000 \quad 20,000]$; the result of doubling the amounts invested (d) The total amount invested in stocks is $\$ 8230$. (e) The total return after one year is $\$ 522.40$.

$$
328
$$

22. (a) $A B=\geq_{323}^{336} ¥$; Sara earned $\$ 328$, Quinn earned $\$ 336$, Tamia earned $\$ 323$, and Zack earned $\$ 326$. (b) Most: Quinn; least: Tamia
(c) Quinn and Zack both earned $\$ 329$.
(d) 30 hours 23. 4 apples, 9 bananas, 5 oranges
23. (a) $A: 9400,8980 ; B: 7300,7510$
(b) $A: 10,857,12,082 ; B: 6571,5959$
24. Industry I: 20; industry II: 20
25. 4
26. (a) True
(b) False
(c) True
27. (a) True
(b) False
