Finite MIothemetics Ior the MI:ngqerisl Tilfe gnd Socitl Sciences 11th edition

Solution Manual for Finite Mathematics for the Managerial Life and Social Sciences 11th Edition by Tan ISBN 12854646569781285464657

Full link download:
https://testbankpack.com/p/solution-manual-for-finite-mathematics-for-the-managerial-life-and-social-sciences-11th-edition-by-tan-isbn-1285464656-

9781285464657/

1
 STRAIGHT LINES AND LINEAR FUNCTIONS

1.1 The Cartesian Coordinate System

Concept Questions page 6

1. a. $a \square 0$ and $b \square 0$
b. $a \square 0$ and $b \square 0$
c. $a \square 0$ and $b \square 0$
2. a.

3. The coordinates of A are $\square 3 \square 3 \square$ and it is located in Quadrant I.
4. The coordinates of B are $\square \square 5 \square 2 \square$ and it is located in Quadrant II.
5. The coordinates of C are $\square 2 \square \square 2 \square$ and it is located in Quadrant IV.
6. The coordinates of D are $\square \square 2 \square 5 \square$ and it is located in Quadrant II.
7. The coordinates of E are $\square \square 4 \square \square 6 \square$ and it is located in Quadrant III.
8. The coordinates of F are $\square 8 \square \square 2 \square$ and it is located in Quadrant IV.
9. A
10. $\square \square 5 \square 4 \square$
11. E, F, and G
12. E
13. F
14. D

For Exercises 13-20, refer to the following figure.

21. Using the distance formula, we find that $\square \square 4 \square 1 \square^{2} \square \square 7 \square 3 \square^{2} \square 3^{2} \square 4^{2} \square \square 25 \square 5$.
22. Using the distance formula, we find that $\square 4 \square 1 \square^{2} \square \square 4 \square 0 \square^{2} \square 3^{2} \square 4^{2} \square 25 \square 5$.
23. Using the distance formula, we find that $\square \overline{[4 \square \square \square 1 \square]^{2} \square \square 9 \square 3} \square^{2} \square 5^{2} \square 6^{2} \square 25 \square 36 \square 61$.

25. The coordinates of the points have the form $\square x \square \square 6 \square$. Because the points are 10 units away from the origin, we have
$\square x \square 0 \square^{2} \square \square \square 6 \square 0 \square^{2} \square 10^{2}, x^{2} \square 64$, or $x \square \square 8$. Therefore, the required points are $\square \square 8 \square \square 6 \square$ and $\square 8 \square \square 6 \square$.
26. The coordinates of the points have the form $\square 3 \square y \square$. Because the points are 5 units away from the origin, we have $\square 3 \square 0 \square^{2} \square \square y \square 0 \square^{2} \square 5^{2}$, $y^{2} \square 16$, or $y \square \square 4$. Therefore, the required points are $\square 3 \square 4 \square$ and $\square 3 \square \square 4 \square$.
27. The points are shown in the diagram. To show that the four sides are equal, we compute

$$
\begin{aligned}
& d \square A \square B \square \square \quad \square \square 3 \square 3 \square^{2} \square \square 7 \square 4 \square^{2} \square \square^{\square 6} \square^{2} \square \overline{3}^{2} \square \\
& \text { 45, } \\
& d \square B \square C \square \square \quad[\square 6 \square \square \square 3 \square]^{2} \square \square 1 \square 7 \square^{2} \square \quad \square \square 3 \square^{2} \square
\end{aligned}
$$

Next, to show that $\square A B C$ is a right triangle, we show that it satisfies the Pythagorean
 $[d \square A \square B \square]^{2} \square[d \square B \square C \square]^{2} \square 90 \square[d \square A \square C \square]^{2}$. Similarly, $d \square \overline{B \square D \square \square} 90 \square 3^{\square} 10$, so $\square B A D$ is a right triangle
as well. It follows that ${ }_{-} B$ and ${ }_{-} D$ are right angles, and we conclude that $A D C B$ is a square.
28. The triangle is shown in the figure. To prove that $\square A B C$ is a right triangle, we show that $[d \square A \square C \square]^{2} \square[d \square A \square B \square]^{2} \square[d \square B \square$
$C \square]^{2}$ and the result will then follow from the Pythagorean Theorem. Now

$[d \square A \square C \square]^{2} \square \square \square 5 \square 5 \square^{2} \square[2 \square \square \square 2 \square]^{2} \square 100 \square 16 \square$ 116.

Next, we find
$[d \square A \square B \square]^{2} \square[d \square B \square C \square]^{2} \square[\square 2 \square \square \square 5 \square]^{2} \square \square 5 \square 2 \square^{2} \square[5 \square \square \square 2 \square]^{2} \square \square \square 2 \square 5 \square^{2} \square 9 \square 9 \square$ $49 \square 49 \square 116$, and the result follows.
29. The equation of the circle with radius 5 and center $\square 2 \square \square 3 \square$ is given by $\square x \square 2 \square^{2} \square^{\square} y \square^{2} \square 5^{2}$, or $\square \square \square$

$$
\square x \square 2 \square^{2} \square \square y \square 3 \square^{2} \square 25 .
$$

30. The equation of the circle with radius 3 and center $\square \square \square 4 \square$ is given by $\left[\begin{array}{c}x \square \square \\ \square\end{array}\right]^{2} \square y \quad \square \square 9$, or $4 \square^{\square}$

$$
\square x \square 2 \square^{2} \square \square y \square 4 \square^{2} \square 9 .
$$

31. The equation of the circle with radius 5 and center $\square 0 \square 0 \square$ is given by $\square x \square 0 \square^{2} \square \square y \square 0 \square^{2} \square 5^{2}$, or $x^{2} \square y^{2} \square$ 25.
32. The distance between the center of the circle and the point $\square 2 \square 3 \square$ on the circumference of the circle is given by $d \square \bar{\square} \square 0 \square^{2} \square \square 2 \square 0 \square^{2} \square 13$. Therefore $r \square 13$ and the equation of the circle centered at the origin that passes through $\square 2 \square 3 \square$ is $x^{2} \square y^{2} \square 13$.
33. The distance between the points $\square 5 \square 2 \square$ and $\square 2 \square \square 3 \square$ is given by $\overline{d \square \quad \square 5 \square 2 \square^{2} \square[2 \square \square \square 3 \square]^{2} \square \square} 3^{2} \square 5^{2}$ 34.

Therefore $r \square \overline{34}$ and the equation of the circle passing through $\square 5 \square 2 \square$ and $\square 2 \square \square 3 \square$ is

```
\squarex\square2\square}\mp@subsup{\square}{}{2}\square\quady\square\quad2\quad\square34\mathrm{ , or }\squarex\square2\mp@subsup{\square}{}{2}\square\squarey\square3\mp@subsup{\square}{}{2}\square34
```

$\square \square 3$
34. The equation of the circle with center $\square \square a \square a \square$ and radius $2 a$ is given by $[x \square \square \square a \square]^{2} \square \square y \square a \square^{2} \square \square 2 a \square \square^{2}$, or $\square x \square a \square^{2} \square \square y \square a \square^{2} \square 4 a^{2}$.
35. a. The coordinates of the suspect's car at its final destination are

$$
x \square 4 \text { and } y \square 4 .
$$

b. The distance traveled by the suspect was $5 \square 4 \square 1$, or 10 miles.
c. The distance between the original and final positions of the suspect's car was $d \square^{\square} \square 4 \square 0 \square^{2} \square \square 4 \square 0 \square^{2} \square 32 \square^{-}$
4 2,
 or approximately $5 \square 66$ miles.
36. Referring to the diagram on page 8 of the text, we see that the distance from A to B is given by $d \square A \square B \square \square \quad 400^{2} \square 300^{2} \square \frac{250,0}{}$ by $\square 500$. The distance from B to C is given $d \square B \square C \square \square \square \square \square 800 \square 400 \square^{2} \square \square 800 \square 300 \square^{2} \square \quad \square \square 1200 \square^{2} \square \square 5 \overline{00 \square^{2} \square}$ 1,690,000 \square 1300. The distance
from C to D is given by $d \square C \square D \square \square \quad[\square 800 \square \square \square 800 \square]^{2} \square \square 800 \square 0 \square \square^{2} \square \quad 0 \square 800^{2} \square 800$. The distance from D
to A is given by $d \square D \square A \square \square \square \square \square \square 800 \square \square 0]^{2} \square \square 0 \square 0 \square \square \quad 640$,000 $\square 800$. Therefore, the total distance covered
on the tour is $d \square A \square B \square \square d \square B \square C \square \square d \square C \square D \square \square d \square D \square A \square \square 500 \square 1300 \square 800 \square 800 \square 3400$, or 3400 miles.
37. Suppose that the furniture store is located at the origin O so that your house is located at $A \square 20 \square \square 14 \square$. Because $d \square O \square A \square \square \quad 20^{2} \square \square \square 14 \square^{2} \square \quad 596 \square 24 \square 4$, your house is
located within a 25 -mile radius of the store and you will not
 incur a delivery charge.
38.

Referring to the diagram, we see that the distance the salesman would cover if he took Route 1 is given by

$$
d \square A \square B \square \square d \square B \square D \square \square \square 400^{2} \square 300^{2} \square \quad \square 1300 \square 400 \square^{2} \square \square 1500 \square 300 \square^{2}
$$

$$
\square \square \overline{250,000} \square \square \overline{2,250,000} \square 500 \square 1500 \square 2000
$$

or 2000 miles. On the other hand, the distance he would cover if he took Route 2 is given by

$$
\begin{gathered}
d \square A \square C \square \square d \square C \square D \square \square 800^{2} \square 1500^{2} \square \quad \square 1300 \square 800 \square^{2} \square \quad 2,890,0 \overline{00 \square \quad 2} 250,000 \\
\square 1700 \square 500 \square 2200
\end{gathered}
$$

or 2200 miles. Comparing these results, we see that he should take Route 1.
39. The cost of shipping by freight train is $\square 0 \square 66 \square \square 2000 \square \square 100 \square \square 132,000$, or $\$ 132,000$.

The cost of shipping by truck is $\square 0 \square 62 \square \square 2200 \square \square 100 \square \square 136,400$, or $\$ 136,400$.
Comparing these results, we see that the automobiles should be shipped by freight train. The net savings are $136,400 \square 132,000 \square 4400$, or $\$ 4400$.
40. The length of cable required on land is $d \square S \square Q \square \square 10,000 \square x$ and the length of cable required under water is $d \square Q \square M \square \quad x^{2} \square 0 \square \square 0 \square 3000 \square^{2} \square x^{2} \square 3000^{2}$. The cost of laying cable is thus
$3 \square 10,000 \square x \square \square 5 \quad x^{2} \square 3000^{2}$.
If $x \square 2500$, then the total cost is given by $3 \square 10,000 \square 2500 \square \square 5 \operatorname{lin00}^{2} \square 3000^{2} \square 42,025 \square 62$, or $\$ 42,025 \square 62$.
If $x \square 3000$, then the total cost is given by $3 \square 10,000 \square 3000 \square \square 5 \overline{3000^{2} \square 3000^{2}} \square 42,213 \square 20$, or $\$ 42,213 \square 20$.
41. To determine the VHF requirements, we calculate $d \square \overline{25^{2} \square 35^{2}} \square \square \overline{625 \square 1225} \square \square \overline{1850} \square 43 \square 01$.

Models B, C, and D satisfy this requirement.
To determine the UHF requirements, we calculate $d \square \overline{20^{2} \square 32^{2}} \square \square \overline{400 \square 1024} \square \square \overline{1424} \square 37 \square 74$. Models C and D satisfy this requirement.
Therefore, Model C allows him to receive both channels at the least cost.
42. a. Let the positions of ships A and B after t hours be $A \square 0 \square y \square$ and $B \square x \square 0 \square$, respectively. Then $x \square 30 t$ and y $\square 20 t$.
Therefore, the distance in miles between the two ships is $D \square \square \square 30 t \square^{2} \square \square 20 t \square^{2} \square 900 t^{2} \square 400 t^{2} \square$ $1013 t$.
b. The required distance is obtained by letting $t \square 2$, giving $D \square 10 \overline{13} \square 2 \square$, or approximately $72 \square 11$ miles.
43. a. Let the positions of ships A and B be $\square 0 \square y \square$ and $\square x \square 0 \square$, respectively. Then $y \square 25 t \square \frac{1}{2}$ and $x \square 20 t$. The distance D in miles between the two ships is $D \square \overline{\square x \square 0 \square^{2} \square \square 0 \square y \square^{2} \square x^{2} \square} \quad \overline{400 t^{2} \square 625 \quad t \square \frac{1}{2}^{2}}$ (1). $y^{2} \square$
b. The distance between the ships 2 hours after ship A has left port is obtained by letting $t \square \frac{3}{2}$ in Equation (1), yielding $D \square \quad 400 \quad 3^{2} \square 625^{\square} \square^{1^{2}} \quad \square$ 3400, or approximately $58 \square 31$ miles.

$$
\begin{array}{lll}
\overline{2} & \overline{2} & \overline{2}
\end{array}
$$

44. a. The distance in feet is given by $\square 4000 \square^{2} \square x^{2} \square \overline{16,000,000 \square x^{2}}$.
b. Substituting the value $x \square 20,000$ into the above expression gives $\overline{16,000,000 \square \square 20,000} \square^{2} \square 20,396$, or 20,396 ft.
45. a. Suppose that $P \square \square x_{1} \square y_{1} \square$ and $Q \square \square x_{2} \square y_{2} \square$ are endpoints of the line segment and that the point $M \square \quad \frac{x_{1} \square x_{2}}{2} \frac{y_{1} \square y_{2}}{2}$ is the midpoint of the line segment $P Q$. The distance

which is one-half the distance from P to Q. Similarly, we obtain the same expression for the distance from M to P.
b. The midpoint is given by $\frac{4 \square 3}{2} \frac{\square 5 \square 2}{2}$, or $\frac{1}{2} \square \frac{3}{\frac{-}{2}_{2}^{\square}}$.
46. a.

$\begin{aligned} & \mathrm{y}(\mathrm{y} \\ & \text { d) } 40 \end{aligned}$	B $(10,40)$
30	M
20	
10	$\mathrm{A}(20,10)$
0	$\begin{array}{llll}10 & 20 & 30 & 40\end{array}$

b. The coordinates of the position of the prize are $x \square \begin{gathered}20 \square 10 \\ 2\end{gathered}$ and

$$
y \square \frac{10 \square 40}{2} \text {, or } x \square 15 \text { yards and } y \square 25 \text { yards. }
$$

c. The distance from the prize to the house is

$$
d \square M \square 15 \square 25 \square \square \square 0 \square 0 \square \square \square \begin{gathered}
\square \\
\square 15 \square 0 \square \square \square 25 \quad 0 \square \\
2
\end{gathered}
$$

47. False. The distance between $P_{1} \square a \square b \square$ and $P_{3} \square k c \square k d \square$ is
$d \square \quad \square k c \square a \square^{2} \square \square k d \square b \square^{2}$
$\square \square k \square D \square \square k \square \quad \square c \square a \square^{2} \square \square d \square b \square^{2} \square \quad k^{2} \square c \square a \square^{2} \square k^{2} \square d \overline{\square \square^{2} \square \quad[k \square c \square a \square]^{2}} \square[k \square d \square$ $b \square]^{2}$.
48. True. $k x^{2} \square k y^{2} \square a^{2}$ gives $x^{2} \square y^{2} \square \frac{a^{2}}{k} \square a^{2}$ if $k \square 1$. So the radius of the circle with equation $k x^{2} \square k y^{2} \square a^{2}$ is a circle of radius smaller than a centered at the origin if $k \square 1$. Therefore, it lies inside the circle of radius a with equation $x^{2} \square y^{2} \square a^{2}$.
49. Referring to the figure in the text, we see that the distance between the two points is given by the length of the hypotenuse of the right triangle. That is, $d \square \quad \square x_{2} \square x_{1} \square^{2} \square \square y_{2} \square y_{1} \square^{2}$.
50. a. Let $P \square x \square y \square$ be any point in the plane. Draw a line through P parallel to the y-axis and a line through P parallel to the x-axis (see the figure). The x-coordinate of P is the number corresponding to the point on the x-axis at which the line through P crosses the x-axis. Similarly, y is the number that corresponds to the point on the y-axis at which the line
 parallel to the x-axis crosses the y-axis. To show the converse, reverse the process.
b. You can use the Pythagorean Theorem in the Cartesian coordinate system. This greatly simplifies the computations.

1.2 Straight Lines

Concept Questions page 19

1. The slope is $m \square \frac{y_{2} \square y_{1}}{x_{2} \square x}$, where $P \square x_{1} \square y_{1} \square$ and $P \square x_{2} \square y_{2} \square$ are any two distinct points on the nonvertical The slope of a vertical line is undefined.
2. a. $y \square y_{1} \square m \square x \square x_{1} \square$
b. $y \square m x \square b$
c. $a x \square b y \square c \square 0$, where a and b are not both zero.
3. a. $m_{1} \square m_{2}$
b. $m_{2} \square \square \frac{1}{m_{1}}$
4. a. Solving the equation for y gives $B y \square \square A x \square C$, so $y \square \square \frac{A}{B} x \square \frac{C}{B}$. The slope of L is the coefficient of x, $\square \frac{A}{B}$.
b. If $B \square 0$, then the equation reduces to $A x \square C \square 0$. Solving this equation for x, we obtain $x \square \square \frac{C}{A}$. This is an equation of a vertical line, and we conclude that the slope of L is undefined.

Exercises page 19

1. Referring to the figure shown in the text, we see that $m \square \frac{2 \square 0}{0 \square_{\square} \square_{\square}} \stackrel{1}{=}$.
2. Referring to the figure shown in the text, we see that $m \square \frac{4 \square 0}{0 \square 2} \square \square 2$.
3. This is a vertical line, and hence its slope is undefined.
4. This is a horizontal line, and hence its slope is 0 .
5. $m \sqcup \frac{y_{2} \square y_{1}}{x_{2} \square x_{1}} \quad \frac{8 \square 3}{5 \sqcup 4} \square 5$.
6. $m \square \begin{array}{ccc}y_{2} \square y_{1} & 8 \square 5 & 3 \\ x_{2} \square x_{1} \square & 3 \square 4\end{array} \quad \square 1 \quad \square 3 . ~ \$$

6

8. m
9. $m \sqcup \frac{y_{2} \square y_{1}}{x_{2} \square x_{1}} \sqcup \frac{d \square b}{c \square a}$, provided $a \sqcup c$.

$y_{2} \square y_{1} \quad \square b \square \square b \square \quad 1 \square \square b \square b \square 1 \quad 1 \square 2 b$

11. Because the equation is already in slope-intercept form, we read off the slope $m \square 4$.
a. If x increases by 1 unit, then y increases by 4 units.
b. If x decreases by 2 units, then y decreases by $4 \square \square 2 \square \square \square 8$ units.
12. Rewrite the given equation in slope-intercept form: $2 x \square 3 y \square 4,3 y \square 4 \square 2 x$, and so $y \square \frac{4}{3} \square \frac{2}{3} x$.
a. Because $m \square \square \frac{2}{3}$, we conclude that the slope is negative.
b. Because the slope is negative, y decreases as x increases.
c. If x decreases by 2 units, then y increases by $\quad{ }^{2} \square \square 2 \square \square^{4}$ units.
$\square_{\overline{3}} \quad \overline{3}$
13. (e)
14. (c)
15. (a)
16. (d)
17. (f)
18. (b)
19. The slope of the line through A and B is $\square 10 \square$

$$
\square 3 \square 1
$$

$\square 8$
2. The slope of the line through C and D is

$$
1 \square 5 \quad \square 4
$$

2. Because the slopes of these two lines are equal, the lines are parallel.
3. The slope of the line through A and B is $\frac{\square \square 3}{2 \square 2}$. Because this slope is undefined, we see that the line is vertical. The slope of the line through C and D is $\begin{gathered}5 \square 4 \\ \square \square\end{gathered}$. Because this slope is undefined, we see that this line is also vertical. Therefore, the lines are parallel. $\square \square 2 \square$
4. The slope of the line through the point $\square 1 \square a \square$ and $\square 4 \square \square 2 \square$ is $\frac{2 \square a}{4 \quad 1}$ and the slope of the line through $\square 2 \square 8 \square$ and $\square \square 7 \square a \square 4 \square$ is $\frac{a \square 4 \square 8}{\square 7 \square 2}$. Because these two lines are parallel, m_{1} is equal to m_{2}. Therefore,
$m_{2} \square$

5. The slope of the line through the point $\square a \square 1 \square$ and $\square 5 \square 8 \square$ is $\frac{8 \square 1}{\square}$ and the slope of the line through $\square 4 \square 9 \square$ $m_{1} \square 5$
$\square a \square 2 \square 1 \square$ is $m_{2} \square \frac{1 \square 9}{2 \quad 4}$. Because these two lines are parallel, m_{1} is equal to m_{2}. Therefore, $\frac{7}{\square} \square 8$, a

$$
5 \square a \quad a \square 2
$$

$7 \square a \square 2 \square \square \square 8 \square 5 \square a \square, 7 a \square 14 \square \square 40 \square 8 a$, and $a \square 26$.
23. We use the point-slope form of an equation of a line with the point $\square 3 \square \square 4 \square$ and slope $m \square 2$. Thus

$$
y \square y_{1} \square m \square x \square x_{1} \square \text { becomes } y \square \square \square 4 \square \square 2 \square x \square 3 \square \text {. Simplifying, we have } y \square 4 \square 2 x \square 6 \text {, or } y \square 2 x \square 10 \text {. }
$$

24. We use the point-slope form of an equation of a line with the point $\square 2 \square 4 \square$ and slope $m \square \square 1$. Thus $y \square y_{1} \square m \square x \square x_{1} \square$, giving $y \square 4 \square \square 1 \square x \square 2 \square \square y \square 4 \square \square x \square 2$, and finally $y \square \square x \square 6$.
25. Because the slope $m \square 0$, we know that the line is a horizontal line of the form $y \square b$. Because the line passes through $\square \square 3 \square 2 \square$, we see that $b \square 2$, and an equation of the line is $y \square 2$.
26. We use the point-slope form of an equation of a line with the point $\square 1 \square 2 \square$ and slope $m \square \square_{2}{ }^{1}$. Thus

27. We first compute the slope of the line joining the points $\square 2 \square 4 \square$ and $\square 3 \square 7 \square$ to be $\frac{7 \square 4}{\square 2} \square 3$. Using the 3
point-slope form of an equation of a line with the point $\square 2 \square 4 \square$ and slope $m \square 3$, we find $y \square 4 \square 3 \square x \square 2 \square$, or $y \square 3 x \square 2$.
28. We first compute the slope of the line joining the points $\square 2 \square 1 \square$ and $\square 2 \square 5 \square$ to be $\frac{5 \square 1}{2} \square$. Because this slope is undefined, we see that the line must be a vertical line of the form $x \square a$. Because it passes through $\square 2 \square 5 \square$, we see that $x \square 2$ is the equation of the line.
29. We first compute the slope of the line joining the points $\square 1 \square 2 \square$ and $\square 3 \square 1 \square 2 \square$ to be $m \quad \begin{array}{r}\square 2 \square 2 \\ \square 4 \\ \hline\end{array}$. Using the point-slope form of an equation of a line with the point $\square 1 \square 2 \square$ and slope $m \square 1$, we find $y \square 2 \square x \square 1$, or $y \square x \square 1$.
30. We first compute the slope of the line joining the points $\square \quad 1 \square \quad 2 \square$ and $\square 3 \square \quad 4 \square$ to be $-\quad \square 4 \square$
$\square \square 2 \square$$\frac{\sqcup 2}{4} \square \square \frac{1}{2}$.
$3 \square \square \square 1 \square$
Using the point-slope form of an equation of a line with the point $\square \square 1 \square \square 2 \square$ and slope $m \stackrel{1}{\square} \square_{2}$, we find $y \square \square \square 2 \square \square \stackrel{1}{\unlhd}_{2}[x \square \square \square 1 \square], y \square 2 \bigsqcup_{2} \square x \square 1 \square$, and finally $y \square \square \frac{1}{2} x \square{ }_{2}$.
31. The slope of the line through A and B is $\frac{2 \square 5}{4 \square} \square \square \frac{3}{6} \square \square \frac{1}{2}$. The slope of the line through C and D is $\square \square 2 \square$
$6 \square \quad \underline{8}$
$\square \square 2 \square$
32. Because the slopes of these two lines are the negative reciprocals of each other, the lines are
$\overline{3 \square \square \square 1}{ }^{\square} 4$
perpendicular.
33. The slope of the line through A and B is $\frac{\square 2 \square 0}{1 \square 2} \square \frac{\square 2}{\square 1} \square$ 2. The slope of the line through C and D is $4 \square 2 \quad 2 \quad \underline{1}$. Because the slopes of these two lines are not the negative reciprocals of each other, the $\overline{\square 8 \square 4} \square \overline{\square 12} \square \overline{6}$ lines are not perpendicular.
34. We use the slope-intercept form of an equation of a line: $y \square m x \square b$. Because $m \square 3$ and $b \square 4$, the equation is $y \square 3 x \square 4$.
35. We use the slope-intercept form of an equation of a line: $y \square m x \square b$. Because $m \square \square 2$ and $b \square \square 1$, the equation is $y \square \square 2 x \square 1$.
36. We use the slope-intercept form of an equation of a line: $y \square m x \square b$. Because $m \square 0$ and $b \square 5$, the equation is $y \square 5$.
37. We use the slope-intercept form of an equation of a line: $y \square m x \square b$. Because $m \square \square \frac{1}{2}$, and $b \square \frac{3}{4}$, the equation is 13
```
y \square\square\mp@subsup{\overline{2}}{}{x}\square\mp@subsup{}{4}{}.
```

37. We first write the given equation in the slope-intercept form: $x \square 2 y \square 0$, so $\square 2 y \square \square x$, or $y \square \frac{1}{2} x$. From this equation, we see that $m \square \frac{1}{2}$ and $b \square 0$.
38. We write the equation in slope-intercept form: $y \square 2 \square 0$, so $y \square 2$. From this equation, we see that $m \square 0$ and $b \square 2$.
39. We write the equation in slope-intercept form: $2 x \square 3 y \square 9 \square 0, \square 3 y \square \square 2 x \square 9$, and $y \square \frac{2}{3} x \square 3$. From this equation, we see that $m \square \frac{2}{3}$ and $b \square \square 3$.
40. We write the equation in slope-intercept form: $3 x \square 4 y \square 8 \square 0$, $\square 4 y \square \square 3 x \square 8$, and $y \square \frac{3}{4} x \square 2$. From this equation, we see that $m \square \frac{3}{4}$ and $b \square 2$.
41. We write the equation in slope-intercept form: $2 x \square 4 y \square 14,4 y \square \square 2 x \square 14$, and $y \square \square \frac{2}{4} x \square \frac{14}{4} \square \square \frac{1}{2} x \square \frac{7}{2}$. From this equation, we see that $m \square \square \frac{1}{2}$ and $b \square \frac{7}{2}$.
42. We write the equation in the slope-intercept form: $5 x \square 8 y \square 24 \square 0,8 y \square \square 5 x \square 24$, and $y \square \square \frac{5}{8} x \square 3$. From this equation, we conclude that $m \square \square \frac{5}{8}$ and $b \square 3$.
43. An equation of a horizontal line is of the form $y \square b$. In this case $b \square \square 3$, so $y \square \square 3$ is an equation of the line.
44. An equation of a vertical line is of the form $x \square a$. In this case $a \square 0$, so $x \square 0$ is an equation of the line.
45. We first write the equation $2 x \square 4 y \square 8 \square 0$ in slope-intercept form: $2 x \square 4 y \square 8 \square 0,4 y \square 2 x \square 8, y \square \frac{1}{2} x \square 2$. Now the required line is parallel to this line, and hence has the same slope. Using the point-slope form of an equation of a line with $m \square \frac{1}{2}$ and the point $\square \square 2 \square 2 \square$, we have $y \square 2 \frac{1}{2}^{1}[x \square \square \square 2 \square]$ or $\underset{\underset{2}{2}}{ } \square^{1} x \square 3$.
46. The slope of the line passing through $\square \square 2 \square \square 3 \square$ and $\square 2 \square 5 \square$ is $\frac{5 \square \square 3}{\square \quad 2} \square-\frac{8}{\square}$ 2. Thus, the required equation $m \quad 2$

4
is $y \square 3 \square 2[x \square \square \square 1 \square], y \square 2 x \square 2 \square 3$, or $y \square 2 x \square$
5.
47. We first write the equation $3 x \square 4 y \square 22 \square 0$ in slope-intercept form: $3 x \square 4 y \square 22 \square 0$, so $4 y \square \square 3 x \square 22$ and $y \square \square \frac{3}{4} x \square \frac{11}{2}$ Now the required line is perpendicular to this line, and hence has slope $\frac{4}{3}$ (the negative
reciprocal of $\square \frac{3}{4}$). Using the point-slope form of an equation of a line with $m \square \frac{4}{3}$ and the point $\square 2 \square 4 \square$, we have $y \square 4 \square \frac{4}{3} \square x \square 2 \square$, or $y \square_{3}^{4} x \square^{4}$.

48. The slope of the line passing through $\square \square 2 \square \square 1 \square$ and $\square 4 \square 3 \square$ is given by m- \square 2 \square 4
the slope of the required line is $m \square \square \frac{3}{2}$ and its equation is $y \square \square \square 2 \square \square 3_{2} \square x \square 1 \square, y \overrightarrow{3}_{2} \square_{2} x^{3} \square 2 \square 2$, or $y \square \square \frac{3}{2} x \square \frac{1}{2}$.
49. The midpoint of the line segment joining $P_{1} \square \square 2 \square \square 4 \square$ and $P_{2} \square 3 \square$ $6 \square$ is M

2

Using the point-slope form of the equation of a line with $m \square \square 2$, we have $y \square 1 \square \square 2 \quad x \square \frac{1}{2} \quad$ or $y \square \square 2 x \square 2$.
50. The midpoint of the line segment joining $P_{1} \square \square 1 \square \square 3 \square$ and $P_{2} \square 3 \square 3 \square \frac{\square 1 \square 3}{2} \frac{\square 3 \square 3}{2}$ or $M_{1} \square 1 \square 0 \square$.
is M_{1} is M_{1}
$\stackrel{\square}{\square 2 \square 2}^{\square}{ }^{\square}{ }^{\square}$

The midpoint of the line segment joining $P_{3} \square \square 2 \square 3 \square$ and $P_{4} \square 2 \square \square 3 \square \quad$ or $M_{2} \square 0 \square 0 \square$. is M_{2}

$$
0 \square 0
$$

The slope of the required line is $m \square \overline{1 \square 0} \square 0$, so an equation of the line is $y \square 0 \square 0 \square x \square 0 \square$ or $y \square 0$.
51. A line parallel to the x-axis has slope 0 and is of the form $y \square b$. Because the line is 6 units below the axis, it passes through $\square 0 \square \square 6 \square$ and its equation is $y \square \square 6$.
52. Because the required line is parallel to the line joining $\square 2 \square 4 \square$ and $\square 4 \square 7 \square$, it has slope $\frac{7 \square 4}{\square 2} \square \frac{3}{2}$. We also know $m \square 4$
that the required line passes through the origin $\square 0 \square 0 \square$. Using the point-slope form of an equation of a line, we find $y \square 0 \square \frac{3}{2} \square x \square 0 \square$, or $y \square_{2}^{3} x$.
53. We use the point-slope form of an equation of a line to obtain $y \square b \square 0 \square x \square a \square$, or $y \square b$.
54. Because the line is parallel to the x-axis, its slope is 0 and its equation has the form $y \square b$. We know that the line passes through $\square \square 3 \square 4 \square$, so the required equation is $y \square 4$.
55. Because the required line is parallel to the line joining $\square \square 3 \square 2 \square$ and $\square 6 \square 8 \square$, it has slope $\frac{8 \square 2}{\square \quad 3 \square} \quad \underline{6} \square \frac{2}{=}$. We 6
also know that the required line passes through $\square \square 5 \square \square 4 \square$. Using the point-slope form of an equation of a line, we find $y \square \square \square 4 \square \frac{7}{3}^{2}[x \square \square \square 5 \square], y_{3} \square^{2} x_{3} \square^{10} \square 4$, and finally $y_{3} \square^{2} x_{3} \square^{2}$.
56. Because the slope of the line is undefined, it has the form $x \square a$. Furthermore, since the line passes through $\square a \square$ $b \square$, the required equation is $x \square a$.
57. Because the point $\square \square 3 \square 5 \square$ lies on the line $k x \square 3 y \square 9 \square 0$, it satisfies the equation. Substituting $x \square \square 3$ and y $\square 5$ into the equation gives $\square 3 k \square 15 \square 9 \square 0$, or $k \square 8$.
58. Because the point $\square 2 \square \square 3 \square$ lies on the line $\square 2 x \square k y \square 10 \square 0$, it satisfies the equation. Substituting $x \square 2$ $y \square \square 3$ into the equation gives $\square 2 \square 2 \square \square \square \square 3 \square k \square 10 \square 0, \square 4 \square 3 k \square 10 \square 0, \square 3 k \square \square 6$, and finally k $\square 2$.
59. $3 x \square 2 y \square 6 \square 0$. Setting $y \square 0$, we have $3 x \square 6 \square 0$ or $x \square \square 2$, so the x-intercept is $\square 2$. Setting $x \square 0$, we have $\square 2 y \square 6 \square 0$ or $y \square 3$, so the y-intercept is $3 \square$

60. $2 x \square 5 y \square 10 \square 0$. Setting $y \square 0$, we have $2 x \square 10 \square 0$ or $x \square \square 5$, so the x-intercept is $\square 5$. Setting $x \square 0$, we have $\square 5 y \square 10 \square 0$ or $y \square 2$, so the y-intercept is $2 \square$

61. $x \square 2 y \square 4 \square 0$. Setting $y \square 0$, we have $x \square 4 \square 0$ or
$x \square 4$, so the x-intercept is 4 . Setting $x \square 0$, we have $2 y \square 4 \square 0$ or $y \square 2$, so the y-intercept is $2 \square$

62. $2 x \square 3 y \square 15 \square 0$. Setting $y \square 0$, we have $2 x \square 15 \square 0$, so the x-intercept is $\frac{15}{2}$. Setting $x \square 0$, we have $3 y \square 15 \square 0$, so the y-intercept is 5 .

64. $\square 2 x \square 8 y \square 24 \square 0$. Setting $y \square 0$, we have $\square 2 x \square 24 \square 0$ or $x \square 12$, so the x-intercept is 12 . Setting $x \square 0$, we have $\square 8 y \square 24 \square 0$ or $y \square 3$, so the y-intercept is 3 .

_6
 0
point-slope form of an equation of a line with the point $\square a \square 0 \square$, we have $y \square 0 \square \stackrel{b}{\square} a \quad \square \square a \square$ or $y \stackrel{b}{\square} \square a \quad x \square b$, which may be written in the form $\frac{b}{a} x \square y \square b$. Multiplying this last equation by $\frac{1}{b}$, we have $\frac{x}{a} \sqcup \frac{y}{b} \square 1$.
66. Using the equation $\frac{x}{a} \sqcup \frac{y}{b} \square 1$ with $a \square 3$ and $b \square 4$, we have $\frac{x}{3} \square \frac{y}{4} \square 1$. Then $4 x \square 3 y \square 12$, so $3 y \square 1-2 \square 4 x$ 4 and thus $y \square \square{ }_{3} x \square 4$.
67. Using the equation $\frac{x}{a} \sqcup \frac{y}{b} \square 1$ with $a \square \square 2$ and $b \square \square 4$, we have $\square \frac{x}{2} \square \frac{y}{4} \square 1$. Then $\square 4 x \square 2 y \square 8$,
$2 y \square \square 8 \square 4 x$, and finally $y \square \square 2 x \square 4$.
 $133^{3} \quad 3^{-3} \quad-^{3} \quad-^{3}-$
${ }_{2} y \square \square_{4} x \square{ }_{8}$, and finally $y \square 2_{4} x \square_{8} \quad \square{ }_{2} x \square_{4}$.
69. Using the equation $\frac{x}{\square} \square \frac{y}{\square} \square 1$ with $a \square 4$ and $b \square \square \frac{1}{2}$, we have $\frac{x}{4} \square \frac{y}{4} \square 1, \square \frac{1}{4} \square 2 y \square \square 1,2 y \square \frac{1}{-x} \square 1$,
$a \quad b$ and so $y \square \frac{1}{-} x \square \frac{1}{2}$.
$8 \quad 2$
70. The slope of the line passing through A and B is $m \frac{\square 2 \square 7}{\square \square \square \square \square \square \frac{9}{3} \square \square 3 \text {, and the slope of the line passing }}$

71. The slope of the line passing through A and B is $m \square \frac{7 \square 1}{1 \quad \square \quad 2} \quad \underline{6} \quad \square 2$, and the slope of the line passing through B and C is $m \square \begin{aligned} & \frac{13 \square 7}{4 \square 1} \quad \stackrel{\underline{6}}{=} \\ & 3\end{aligned} \square 2$. Because the slopes are equal, the points lie on the same line.
 is m
equation of L is $y \square \square \square 9 \square 04 \square \square 2 \square 8 \square x \square 1 \square 2 \square$ or $y \square 2 \square 8 x \square 12 \square 4$.
Substituting $x \square 4 \square 8$ into this equation gives $y \square 2 \square 8 \square 4 \square 8 \square \square 12 \square 4 \square 1 \square 04$. This shows that the point P_{3} $\square 4 \square 8 \square 1 \square 04 \square$ lies on L. Next, substituting $x \square 7 \square 2$ into the equation gives $y \square 2 \square 8 \square 7 \square 2 \square \square 12 \square 4 \square$ $7 \square 76$, which shows that the point $P_{4} \square 7 \square 2 \square 7 \square 76 \square$ also lies on L. We conclude that John's claim is valid.
73. The slope of the line L passing through $P_{1} \square 1 \square 8 \square \square 6 \square 44 \square$ and $P_{2} \square 2 \square 4 \square \square 5 \square 72 \frac{72 \square \square \square 6 \square 44 \square}{2 \square 4 \quad 1 \square 8} \quad \square 1 \square 2$, so
is $m \square$ is m
equation of L is $y \square \square \square 6 \square 44 \square \square 1 \square 2 \square x \square 1 \square 8 \square$ or $y \square 1 \square 2 x \square 8 \square 6$.
Substituting $x \square 5 \square 0$ into this equation gives $y \square 1 \square 2 \square 5 \square \square 8 \square 6 \square \square 2 \square 6$. This shows that the point $P_{3} \square 5 \square 0 \square$ $\square 2 \square 72 \square$
does not lie on L, and we conclude that Alison's claim is not valid.
74. a.

75. a.

b. The slope is $1 \square 9467$ and the y-intercept is $70 \square 082$.
c. The output is increasing at the rate of $1 \square 9467 \%$ per year. The output at the beginning of 1990 was $70 \square 082 \%$.
d. We solve the equation $1 \square 9467 t \square 70 \square 082 \square 100$, obtaining $t \square 15 \square 37$. We conclude that the plants were generating at
76. a. $y \square 0 \square 0765 x$
b. $\$ 0 \square 0765$
c. $0 \square 0765 \square 65,000 \square \square 4972 \square 50$, or $\$ 4972 \square 50 \square$
77. a. $y \square 0 \square 55 x$
b. Solving the equation $1100 \square 0 \square 55 x$ for x, we have $x \frac{1100}{0 \square 55} \square 2000 \square$
78. a. Substituting $L \square 80$ into the given equation, we have $W \square 3 \square 51 \square 80 \square \square 192 \square 280 \square 8 \square 192 \square 88 \square 8$, or $88 \square 8$ British tons.
b. W (tons)

79. Using the points $\square 0 \square 0 \square 68 \square$ and $\square 10 \square 0 \square 80 \square$, we see that the slope of the required line is

$m \sqcup \quad 10 \square 0 \quad \sqcup \quad 10 \square 0 \square 012$. Next, using the point-slope form of the equation of a line, we have
$y \square 0 \square 68 \square 0 \square 012 \square t \square 0 \square$ or $y \square 0 \square 012 t \square 0 \square 68$. Therefore, when $t \square 14$, we have $y \square 0 \square 012 \square 14 \square \square 0 \square 68$ $\square 0 \square 848$, or $84 \square 8 \%$. That is, in 2004 women's wages were $84 \square 8 \%$ of men's wages.
80. a, b.

c. The slope of L is $m \square \frac{0 \square 6 \square 1 \square 30}{5 \quad 0} \square \square 0 \square 148$, so an equation of L is $y \square 1 \square 3 \square \square 0 \square 148 \square x \square 0 \square$ or $y \square \square 0 \square 148 x \square$ $1 \square 3$.
d. The number of pay phones in 2012 is estimated to be $\square 0 \square 148 \square 8 \square \square 1 \square 3$, or approximately 116,000 .
81. a, b.
y (\% change)

c. The slope of L is $m \square \quad$| $\square \quad 0$ |
| :---: | $y \square 1 \square 3 \square 2 \square 3 \square x \square 0 \square$ or $y \square 2 \square 3 x \square 1 \square 3$.

82. a, b. y (in.) the
$\begin{aligned} & \text { 16n } \\ & 160 \\ & 150 \\ & 140 \\ & 130 \\ & 120 \\ & 110 \\ & 100\end{aligned}-$
c. Using the points $\square 60 \square 108 \square$ and $\square 72 \square 152 \square$, we see that

$$
\text { slope of the required line is } m \quad \begin{gathered}
152 \square 108 \quad 44 \quad 11 \\
\square \frac{72}{72 \square 60} \square \frac{}{12} \square \frac{3}{3}
\end{gathered} .
$$

Therefore, an equation is $y \square 108 \square \frac{11}{3} \square x \square 60 \square$,
$y \square \frac{11}{3} x \square^{\underline{11}} \quad 3 \square 60 \square \square 108 \square$
$y \square \underline{11}$

$$
{ }_{3} x \square 112 . \quad \frac{11}{3} x \square 220 \square 108 \text {, or }
$$

x (lb) d. Using the equation from part c , we find

$$
y \square \frac{11}{3} \square 65 \square \square 112 \square 126_{3} \text {, or } 126_{3} \text { pounds. }
$$

83. a, b.

c. Using the points $\square 0 \square 200 \square$ and $\square 100 \square 250 \square$, we see that slope of the required line is $m \square \frac{250 \square 200}{100} \square \frac{1}{2}$. Therefore, an equation is $y \square 200 \square{ }_{2} x$ or $y \square{ }_{2} x \square 200$.
d. The approximate cost for producing 54 units of the commodity is $\frac{1}{2} \square 54 \square \square 200$, or $\$ 227$.
84. a. The slope of the line L passing through $A \square 0 \square 545 \square$ and $B \square 3 \square$ 726

$$
\begin{aligned}
& 726 \square 545 \quad 181 \\
& \underset{545 .}{y} \square 45 \square \frac{181}{4} \square x \square 0 \square \text { or } y \square_{4}^{181} x \square \\
& 4
\end{aligned}
$$

c. The number of corporate fraud cases pending at the beginning of
b. y
$y \quad \ldots-\infty$
85. a, b. y (\$m)

c. The slope of L is $m \square \frac{}{5 \quad 1} \square$ 4 point-slope form of an equation of a line, we have $y \square 5 \square 8 \square 0 \square 8 \square x \square 1 \square \square 0 \square 8 x \square 0 \square 8$, or $y \square 0 \square 8 x \square$ 5.
86. a. The slope of the line passing through $P_{1} \square 0 \square 27 \square$ and $P_{2} \square 1 \square 29 \square$ is $\frac{29 \square 27}{1 \sqcup 0} \square 2$, which is equal to the slope
$m_{1} \square$

$$
31 \square 29
$$

of the line through $P_{2} \square 1 \square 29 \square$ and $P_{3} \square 2 \square 31 \square$, which is $m_{2} \square$
2. Thus, the three points lie on the line L.
b. The percentage is of moviegoers who use social media to chat about movies in 2014 is estimated to be $31 \square 2 \square 2 \square$, or 35%.
c. $y \square 27 \square 2 \square x \square 0 \square$, so $y \square 2 x \square 27$. The estimate for $2014(t \square 4$) is $2 \square 4 \square \square 27 \square 35$, as found in part (b).
87. Yes. A straight line with slope zero $(m \square 0)$ is a horizontal line, whereas a straight line whose slope does not exist is a vertical line (m cannot be computed).
88. a. We obtain a family of parallel lines with slope m.
b. We obtain a family of straight lines passing through the point $\square 0 \square b \square$.
89. True. The slope of the line is given by $\square \frac{2}{4} \sqcup \sqcup \frac{1}{2}$.
90. True. If $\square 1 \square k \square$ lies on the line, then $x \square 1, y \square k$ must satisfy the equation. Thus $3 \square 4 k \square 12$, or $k \square^{9}$. Conversely, if $k \square \frac{9}{}$, then the point $\square 1 \square k \square \square-1 \square^{9}$ satisfies the equation. Thus, $3 \square 1 \square \square 4 \quad 9 \quad \square 12$, and
so the 4

4
4 point lies on the line.
91. True. The slope of the line $A x \square B y \square C \square 0$ is $\square \frac{A}{B}$. (Write it in slope-intercept form.) Similarly, the slope of the line $a x \square b y \square c \square 0$ is $\square \frac{a}{b}$. They are parallel if and only if $\square \frac{A}{B} \square \square \frac{a}{b}$, that is, if $A b \square a B$, or $A b \square a B \square 0$.
92. False. Let the slope of L_{1} be $m_{1} \square 0$. Then the slope of L_{2} is $m_{2} \square \square \frac{1}{m_{1}} \square 0$.
93. True. The slope of the line $a x \square b y \square c_{1} \square 0$ is $m_{1} \square \square \frac{a}{b}$. The slope of the line $b x \square a y \square c_{2} \square 0$ is $m_{2} \square \frac{b}{a}$. Because $m_{1} m_{2} \square \square 1$, the straight lines are indeed perpendicular.
94. True. Set $y \square 0$ and we have $A x \square C \square 0$ or $x \square \square C \square A$, and this is where the line intersects the x-axis.
95. Writing each equation in the slope-intercept form, we have $y \square \square \frac{a_{1}}{b_{1}} x \square{ }_{b_{1}}^{c_{1}}\left(b_{1} \square 0\right)$ and $y \square \square \frac{a_{2}}{\underline{b_{2}}} x \square \frac{c_{2}}{b_{2}}$ $\left(b_{2} \square 0\right)$. Because two lines are parallel if and only if their slopes are equal, we see that the lines are parallel if and only if $\square \frac{a_{1}}{b_{1}} \square \square \frac{a_{2}}{b_{2}}$, or $a_{1} b_{2} \square b_{1} a_{2} \square 0$.
96. The slope of L_{1} is $m_{1} \square \frac{b \square 0}{1 \square 0} \square b$. The slope of L_{2} is $m_{2} \square \frac{c \square 0}{1 \square 0} \square c$. Applying the Pythagorean theorem to $\square O A C$ and $\square O C B$ gives $\square O A \square^{2} \square 1^{2} \square b^{2}$ and $\square O B \square^{2} \square 1^{2} \square c^{2}$. Adding these equations and applying the Pythagorean theorem to $\square O B A$ gives $\square A B \square^{2} \square \square O A \square^{2} \square \square O B \square^{2} \square 1^{2} \square b^{2} \square 1^{2} \square c^{2} \square 2 \square b^{2} \square c^{2}$. Also, $\square A B \square^{2} \square \square b \square c \square^{2}$, so $\square b \square c \square^{2} \square 2 \square b^{2} \square c^{2}, b^{2} \square 2 b c \square c^{2} \square 2 \square b^{2} \square c^{2}$, and $\square 2 b c \square 2,1 \square \square b c$. Finally, $m_{1} m_{2} \square b \square c \square b c \square \square 1$, as was to be shown.

Graphing Utility

1.

2.

3.

4.

5. a.

6. a. 10

7. a. 10

8. a.

b.

b.

b.

b.

9.

11.

Excel

10.

12.

x

1.3 Linear Functions and Mathematical Models

Concept Questions page 36

1. a. A function is a rule that associates with each element in a set A exactly one element in a set B.
b. A linear function is a function of the form $f \square x \square \square m x \square b$, where m and b are constants. For example, $f \square x \square \square 2 x \square 3$ is a linear function.
c. The domain and range of a linear function are both
$\square \square \square \square \square \square$.
d. The graph of a linear function is a straight line.
2. $c \square x \square \square c x \square F, R \square x \square \square s x, P \square x \square \square \square s \square c \square x \square F$
3. Negative, positive
4. a. The initial investment was $V \square 0 \square \square 50,000 \square 4000 \square 0 \square \square 50,000$, or $\$ 50,000$.
b. The rate of growth is the slope of the line with the given equation, that is, $\$ 4000$ per year.

Exercises page 36

1. Yes. Solving for y in terms of x, we find $3 y \square \square 2 x \square 6$, or $y \square \square \frac{2}{3} x \square 2$.
2. Yes. Solving for y in terms of x, we find $4 y \square 2 x \square 7$, or $y \square \frac{1}{2} x \square \frac{7}{4}$.
3. Yes. Solving for y in terms of x, we find $2 y \square x \square 4$, or $y \square \frac{1}{2} x \square 2$.
4. Yes. Solving for y in terms of x, we have $3 y \square 2 x \square 8$, or $y \square \frac{2}{3} x \square \frac{8}{3} \square$
5. Yes. Solving for y in terms of x, we have $4 y \square 2 x \square 9$, or $y \square \frac{1}{2} x \square \frac{9}{4}$.
6. Yes. Solving for y in terms of x, we find $6 y \square 3 x \square 7$, or $y \square \frac{1}{2} x \square \frac{7}{6} \square$
7. y is not a linear function of x because of the quadratic term $2 x^{2}$.
8. y is not a linear function of x because of the nonlinear term $3 \bar{x}$.
9. y is not a linear function of x because of the nonlinear term $\square 3 y^{2}$.
10. y is not a linear function of x because of the nonlinear term \bar{y}.
11. a. $C \square x \square \square 8 x \square 40,000$, where x is the number of units produced.
b. $R \square x \square \square 12 x$, where x is the number of units sold.
c. $P \square x \square \square R \square x \square \square C \square x \square \square 12 x \square \square 8 x \square 40,000 \square \square 4 x \square 40,000$.
d. $P \square 8000 \square \square 4 \square 8000 \square \square 40,000 \square \square 8000$, or a loss of $\$ 8,000$. $P \square 12,000 \square \square 4 \square 12,000 \square \square 40,000 \square$ 8000 , or a profit of $\$ 8000$.
12. a. $C \square x \square \square 14 x \square 100,000$.
b. $R \square x \square \square 20 x$.
c. $P \square x \square \square R \square x \square \square C \square x \square \square 20 x \square \square 14 x \square 100,000 \square \square 6 x \square 100,000$.
d. $P \square 12,000 \square \square 6 \square 12,000 \square \square 100,000 \square \square 28,000$, or a loss of $\$ 28,000$.
$P \square 20,000 \square \square \square 20,000 \square \square 100,000 \square 20,000$, or a profit of $\$ 20,000$.
13. $f \square 0 \square \square 2$ gives $m \square 0 \square \square b \square$ 2, or $b \square$ 2. Thus, $f \square x \square \square m x \square 2$. Next, $f \square 3 \square \square \square 1$ gives $m \square 3 \square \square 2 \square$ $\square 1$, or $m \square \square 1$.
14. The fact that the straight line represented by $f \square x \square \square m x \square b$ has slope $\square 1$ tells us that $m \square \square 1$ and so $f \square x \square \square \square x \square b$. Next, the condition $f \square 2 \square \square 4$ gives $f \square 2 \square \square \square 1 \square 2 \square \square b \square 4$, or $b \square 6$.
15. Let V be the book value of the office building after 2008. Since $V \square 1,000,000$ when $t \square 0$, the line passes through $\square 0 \square 1000000 \square$. Similarly, when $t \square 50, V \square 0$, so the line passes through $\square 50 \square 0 \square$. Then the slope of the line is given by $m \square \frac{0 \square 1,000,000}{50 \square 0} \square \square 20,000 \square$ Using the point-slope form of the equation of a line with the point
$\square 0 \square 1000000 \square$, we have $V \square 1,000,000 \square \square 20,000 \square t \square 0 \square$, or $V \square \square 20,000 t \square$ 1,000,000. In 2013, $t \square 5$ and $V \square \square 20,000 \square 5 \square \square 1,000,000 \square 900,000$, or $\$ 900,000$. In 2018, $t \square 10$ and $V \square \square 20,000 \square 10 \square \square 1,000,000 \square 800,000$, or $\$ 800,000$.
16. Let V be the book value of the automobile after 5 years. Since $V \square 24,000$ when $t \square 0$, and $V \square 0$ when $t \square 5$, the slope of the line L is $m \square \frac{0 \square 24,000}{5 \quad 0} \square \square 4800$. Using the point-slope form of an equation of a line with the point $\square 0 \square 5 \square$, we have $V \square 0 \square \square 4800 \square t \square 5 \square$, or $V \square \square 4800 t \square 24,000$. If $t \square 3$, $V \square \square 4800 \square 3 \square \square 24$, $000 \square$ 9600. Therefore, the book value of the automobile at the end of three years will be $\$ 9600$.
17. The consumption function is given by $C \square x \square \square 0 \square 75 x \square 6$. Thus, $C \square 0 \square \square 6$, or 6 billion dollars; $C \square 50 \square \square 0 \square 75 \square 50 \square \square 6 \square 43 \square 5$, or $43 \square 5$ billion dollars; and $C \square 100 \square \square 0 \square 75 \square 100 \square \square 6 \square 81$, or 81 billion dollars.
18. a. $T \square x \square \square 0 \square 06 x$.
b. $T \square 200 \square \square 0 \square 06 \square 200 \square \square 12$, or $\$ 12$, and $T \square 5 \square 60 \square \square 0 \square 06 \square 5 \square 60 \square \square 0 \square 336$, or approximately $\$ 0 \square 34$.
19. a. $y \square I \square x \square \square 1 \square 033 x$, where x is the monthly benefit before adjustment and y is the adjusted monthly benefit.
b. His adjusted monthly benefit is $I \square 1220 \square \square 1 \square 033 \square 1220 \square \square 1260 \square 26$, or $\$ 1260 \square 26$.
20. $C \square x \square \square 8 x \square 48,000$.
b. $R \square x \square \square 14 x$.
c. $P \square x \square \square R \square x \square \square C \square x \square \square 14 x \square \square 8 x \square 48,000 \square \square 6 x \square 48,000$.
d. $P \square 4000 \square \square 6 \square 4000 \square \square 48,000 \square \square 24,000$, a loss of $\$ 24,000$.
$P \square 6000 \square \square 6 \square 6000 \square \square 48,000 \square \square 12,000$, a loss of \$12,000.
$P \square 10,000 \square \square 6 \square 10,000 \square \square 48,000 \square 12,000$, a profit of $\$ 12,000$.
21. Let the number of tapes produced and sold be x. Then $C \square x \square \square 12,100 \square 0 \square 60 x, R \square x \square \square 1 \square 15 x$, and $P \square x \square \square R \square x \square \square C \square x \square \square 1 \square 15 x \square \square 12,100 \square 0 \square 60 x \square \square 0 \square 55 x \square 12,100$.
22. a. Let V denote the book value of the machine after t years. Since $V \square 250,000$ when $t \square 0$ and $V \square 10,000$ when $t \square 10$, the line passes through the points $\square 0 \square 250000 \square$ and
$\square 10 \square 10000 \square$. The slope of the line through these points is

$$
\text { given by } m \square \longrightarrow \quad 10 \quad 0 \quad \square \square \longrightarrow \square 24,000 \text {. }
$$

Using the point-slope form of an equation of a line with the
b.

50,000
(10, 10000)
$\begin{array}{lllllll}0 & 2 & 4 & 6 & 8 & 10 & 12\end{array}$
point $\square 10 \square 10000 \square$, we have $V \square 10,000 \square \square 24,000 \square t \square 10 \square$, or $V \square \square 24,000 t \square 250,000$.
c. In 2014, $t \square 4$ and $V \square \square 24,000 \square 4 \square \square 250,000 \square 154,000$, or $\$ 154,000$.
d. The rate of depreciation is given by $\square m$, or $\$ 24,000 \square \mathrm{yr}$.
23. Let the value of the workcenter system after t years be V. When $t \square 0, V \square 60,000$ and when $t \square 4, V \square 12,000$.
a. Since $m \square \frac{4}{4} \square \square \frac{\square}{4}, 000$, the rate of depreciation $\square \square m \square$ is $\$ 12,000 \square \mathrm{yr}$.
b. Using the point-slope form of the equation of a line with the point $\square 4 \square 12000 \square$, we have $V \square 12,000 \square \square 12,000 \square t \square$ $4 \square$, or $V \square \square 12,000 t \square 60,000$.
d. When $t \square 3$, $V \square \square 12,000 \square 3 \square \square 60,000 \square 24,000$, or $\$ 24,000$.
c.

24. The slope of the line passing through the points $\square 0 \square C \square$ and $\square N \square S \square$ ism $\square 0 \square \frac{N}{\square} \square \quad N \quad$. Using the
N

$$
C \square S
$$

$C \square S$
point-slope form of an equation of a line with the point $\square 0 \square C \square$, we have $V \square C \square \frac{N}{N} t$, or $V \square C \square \quad N \quad t$.

$$
\underline{C \square S}
$$

25. The formula given in Exercise 24 is $V \square C \square \quad{ }_{N} \quad t$. When $C \square 1,000,000, N \square 50$, and
\square
$S \square 0$, we have $V \square 1,000,000 \square \quad 50 \quad t$, or $V \square 1,000,000 \square 20,000 t$. In 2013, $t \square 5$ and $V \square 1,000,000 \square 20,000 \square 5 \square \square 900,000$, or $\$ 900,000$. In 2018, $t \square 10$ and $V \square 1,000,000 \square 20,000 \square 10 \square$ 800,000 , or $\$ 800,000$.
26. The formula given in Exercise 24 is $V \square C \square \frac{C \square S}{N} t$. When $C \square 24,000, N \square 5$, and $S \square 0$, we have $V \square 24,000 \square \frac{24,000 \square 0}{5}$
$V \square 24,000 \square \quad t \square 24,000 \square 4800 t$. When $t \square 3, V \square 24,000 \square 4800 \square 3 \square \square 9600$, or $\$ 9600$.
27. a. $D \square S \square \square_{1 \square 7}$. If we think of D as having the form $D \square S \square \square m S \square b$, then $m \square{ }_{1 \square 7}, b \square 0$, and D is a linear
function of S.
b. $D \square 0 \square 4 \square \frac{500 \square 0 \square 4 \square}{1 \square 7} \square 117 \square 647$, or approximately $117 \square 65 \mathrm{mg}$.
 D is a linear function of t.
b. If $a \square 500$ and $t \square 4, D \square 4 \square \frac{4 \sqcup 1}{24} \square 500 \square \square 104 \square 167$, or approximately $104 \square 2 \mathrm{mg}$.
28. a. The graph of f passes through the points $P_{1} \square 0 \square 17 \square 5 \square$ and $P_{2} \square 10 \square 10 \square 3 \square$. Its $\frac{10 \square 17 \square 5}{10 \square 0} \square \square 0 \square 72$. slope is

An equation of the line is $y \square 17 \square 5 \square \square 0 \square 72 \square t \square 0 \square$ or $y \square \square 0 \square 72 t \square 17 \square 5$, so the linear function is $f \square t \square \square \square 0 \square 72 t \square 17 \square 5$.
b. The percentage of high school students who drink and drive at the beginning of 2014 is projected to be $f \square 13 \square \square \square 0 \square 72 \square 13 \square \square 17 \square 5 \square 8 \square 14$, or $8 \square 14 \%$.
30. a. The slope of the graph of f is a line with slope $\square 13 \square 2$ passing through the point $\square 0 \square 400 \square$, so an equation of the line is $y \square 400 \square \square 13 \square 2 \square t \square 0 \square$ or $y \square \square 13 \square 2 t \square 400$, and the required function is $f \square t \square \square \square 13 \square 2 t$ $\square 400$.
b. The emissions cap is projected to be $f \square 2 \square \square \square 13 \square 2 \square 2 \square \square 400 \square 373 \square 6$, or $373 \square 6$ million metric tons of carbon dioxide equivalent.
31. a. The line passing through $P_{1} \square 0 \square 61 \square$ and $P_{2} \square 4 \square 51 \square$ has slope $\frac{61 \square 51}{0 \quad 4} \square \square 2 \square 5$, so its equation is
$m \square$
$y \square 61 \square \square 2 \square 5 \square t \square 0 \square$ or $y \square \square 2 \square 5 t \square 61$. Thus, $f \square t \square \square \square 2 \square 5 t \square 61$.
b. The percentage of middle-income adults in 2021 is projected to be $f \square t \square \square \square 2 \square 5 \square 5 \square \square 61$, or $48 \square 5 \%$.
32. a. The graph of f is a line through the points $P_{1} \square 0 \square 0 \square 7 \square$ and $P_{2} \square 20 \square 1 \square 2 \square$, so it $\frac{1 \square 2 \square 0 \square 7}{20 \square 0} \square 0 \square 025$. Its has slope
equation is $y \square 0 \square 7 \square 0 \square 025 \square t \square 0 \square$ or $y \square 0 \square 025 t \square 0 \square 7$. The required function is thus $f \square t \square \square 0 \square 025 t$ $\square 0 \square 7$.
b. The projected annual rate of growth is the slope of the graph of f, that is, $0 \square 025$ billion per year, or 25 million per year.
c. The projected number of boardings per year in 2022 is $f \square 10 \square \square 0 \square 025 \square 10 \square \square 0 \square 7 \square 0 \square 95$, or 950 million boardings per year.
33. a. Since the relationship is linear, we can write $F \square m C \square b$, where m and b are constants. Using the condition $C \square 0$ when $F \square 32$, we have $32 \square b$, and so $F \square m C \square 32$. Next, using the condition $C \square 100$ when $F \square 212$, we have $212 \square 100 m \square 32$, or $m \square \frac{9}{5}$. Therefore, $F \square \frac{9}{5} C \square 32$.
b. From part a, we have $F \square{ }^{-9} C \square 32$. When $C \square 20, F \square{ }^{-9} \square 20 \square \square 32 \square 68$, and so the temperature equivalent to 5 $20^{\square} \mathrm{C}$ is $68^{\square} \mathrm{F}$.
c. Solving for C in terms of F, we find $\underset{5}{\underline{9}-} C \square F \square 32$, or $C \square \underset{9}{\frac{5}{-} F \square \frac{160}{9}}$. When $F \square 70, C \square \underset{9}{5} \square 70 \square \square \underset{9}{160} \underset{9}{190}$ or approximately $21 \square 1 \square$ C.
34. a. Since the relationship between T and N is linear, we can write $N \square m T \square b$, where m and b are constants. Using
the points $\square 70 \square 120 \square$ and $\square 80 \square 160 \square$, we find that the slope of the line joining these $\begin{gathered}160 \square 120 \\ \text { points is } \\ 80 \square 70\end{gathered} \quad \frac{40}{10} \square 4$.
b. If $T \square 70$, then $N \square 120$, and this gives $120 \square 70 \square 4 \square \square b$, or $b \square \square 160$. Therefore, $N \square 4 T \square 160$. If $T \square 102$, we find $N \square 4 \square 102 \square \square 160 \square 248$, or 248 chirps per minute.
35. a. $2 x \square 3 p \square 18 \square 0$, so setting $x \square 0$ gives
$3 p \square 18$, or $p \square 6$. Next, setting $p \square 0$ gives $2 x \square 18$, or $x \square 9$.

b. If $p \square 4$, then $2 x \square 3 \square 4 \square \square 18 \square 0$, $2 x \square 18 \square 12 \square 6$, and $x \square 3$. Therefore, the quantity demanded when $p \square 4$ is 3000 .
(Remember that x is measured in units of a 1000.)
37. a. $p \square \square 3 x \square 60$, so when $x \square 0, p \square 60$ and when $p \square 0, \square 3 x \square \square 60$, or $x \square 20$.

b. When $p \square 30,30 \square \square 3 x \square 60,3 x \square 30$, and $x \square 10$. Therefore, the quantity demanded when $p \square 30$ is 10,000 units.
36. a. $5 p \square 4 x \square 80 \square 0$, so setting $x \square 0$ gives $p \square$ 16. Next, setting $p \square 0$ gives $x \square 20$.

b. $5 \square 10 \square \square 4 x \square 80 \square 0$, so $4 x \square 80 \square 50$ and $x \square 7 \square 5$, or 7500 units (Remember that x represents the quantity demanded in units of
1000.)
38. a. $p \square \square 0 \square 4 x \square 120$, so when $x \square 0, p \square 120$, and when $p \square 0, \square 0 \square 4 x \square \square 120$, or $x \square$ 300.

b. When $p \square 80,80 \square \square 0 \square 4 x \square 120,0 \square 4 x$ 40 , or $x \square 100$. Therefore, the quantity demanded when $p \square 80$ is 100,000 .
39. When $x \square 1000, p \square 55$, and when $x \square 600, p \square 85$. Therefore, the graph of the linear demand equation is the straight line passing through the points $\square 1000 \square 55 \square$ and $\square 600 \square 85 \square$. The slope of the $\xrightarrow{85 \square 55}$ line is $\square \square \frac{3}{\square}$.

200 $\quad 600 \square 1000 \quad 40$ Using this slope and the point $\square 1000 \square 55 \square$, we find that the required equation is $p \square 55 \square \frac{3}{4}{ }_{40} \square x \square 1000 \square$, or $p \square \square \frac{3}{40} x \square 130$. When $x \square 0, p \square 130$, and this means that there will be no demsnd above $\$ 130$. When $p \square 0$, $x \square 1733 \square 33$, and this means that 1733 units is the maximum quantity demanded.
40. When $x \square$ 200, $p \square 90$, and when $x \square 1200, p \square 40$. Therefore, the graph of the linear demand equation is the straight line passing through the points $\square 200 \square 90 \square$ and $\square 1200 \square 40 \square$. The slope is $m \square \frac{40 \square 90}{1200 \sqcup 200} \square \square \frac{50}{1000} \square \square 0 \square 05$. Using the point-slope form of

41. The demand equation is linear, and we know that the line passes through the points $\square 1000 \square 9 \square$ and $\square 6000 \square 4 \square$. Therefore, the slope of the line is given by $m \square \frac{4 \square 9}{6000 \square 1000} \square \square \frac{5}{5000} \square \square 0 \square 001$. Since the equation of the line has the form $p \square a x \square b, 9 \square \square 0 \square 001 \square 1000 \square \square b$, so $b \square 10$. Therefore, an equation of the line is $p \square \square 0 \square 001 x \square 10$. If $p \square 7 \square 50$, we have $7 \square 50 \square \square 0 \square 001 x \square 10$, so $0 \square 001 x \square 2 \square 50$ and $x \square 2500$. Thus, the quantity demanded when the unit price is $\$ 7 \square 50$ is 2500 units.
42. $p \square \square 0 \square 025 x \square 50$, so when $p \square 0, x \square 2000$ and when $x \square 0$, $p \square 50$. The highest price anyone would pay for the watch is $\$ 50$ (when $x \square 0$).

43. a. $3 x \square 4 p \square 24 \square 0$. Setting $x \square 0$, we obtain $3 \square 0 \square \square 4 p \square 24 \square 0$, so $\square 4 p \square \square 24$ and $p \square 6$. Setting $p \square 0$, we obtain $3 x \square 4 \square 0 \square \square 24 \square 0$, so $3 x \square \square 24$ and $x \square \square 8$.
b. When $p \square 8,3 x \square 4 \square 8 \square \square 24 \square 0,3 x \square 32 \square 24 \square 8$, and
$\overline{3}$

supplied at a unit price of $\$ 8$. (Here again x is measured in units of 1000.)
44. a. $\frac{1}{2} x \square \frac{2}{3} p \square 12 \square 0$. When $p \square 0, x \square \square 24$, and when $x \square 0$, $p \square 18$.
$\overline{2} \quad \overline{3}$
$\overline{2}$
8000 units.

45. a. $p \square 2 x \square 10$, so when $x \square 0, p \square 10$, and when $p \square 0$, $x \square \square 5$.

Therefore, when $p \square 14$ the supplier will make 2000 units of the commodity available.

46. a. $p \square \frac{1}{2} x \square 20$, so when $x \square 0, p \square 20$ and when $p \square 0$, ${ }_{2} x \square \square 20$ and $x \square \square 40$.
b. When $p \square 28,28 \square \frac{1}{-x} \square 20$, so ${ }^{-1} x \square 8$ and $x \square 16$.

Therefore, 16,000 units will be supplied at a unit price of $\$ 28$.

47. When $x \square 10,000, p \square 45$ and when $x \square 20,000, p \square 50$. The slope of the line passing through $\square 10000 \square 45 \square$ and $\square 20000 \square 50 \square \mathrm{j}$ (\$) $m \square \frac{50 \square 45}{20,000 \sqcup 10,000} \square \frac{5}{10,000} \square 0 \square 0005$, so using the point-slope form of an equation of a line with the point $\square 10000 \square 45 \square$, we have $p \square 45 \square 0 \square 0005 \square x \square 10,000 \square$, $p \square 0 \square 0005 x \square 5 \square 45$, and $p \square 0 \square 0005 x \square 40$.
 If $p \square 70$, then $70 \square 0 \square 0005 x \square 40$ and $0 \square 0005 x \square 30$, so $x \square \square \square 000,000$. (If x is expressed in units of a 30 thousand, then the equation may be written in the form $p \square \frac{1}{2} x \square 40$.)
48. When $x \square 2000, p \square 330$, and when $x \square 6000, p \square 390$. Therefore, the graph of the linear equation passes through $\square 2000 \square 330 \square$ and $\square 6000 \square 390 \square$. The slope of the line is $\square 330 \quad \begin{gathered}3000 \\ 200\end{gathered}$. Using the point-slope form of 6000

200

an equation of a line with the point $\square 2000 \square 330 \square$, we obtain $p \square 330 \frac{200}{200} \square x \square 2000 \square$, or $p \square \quad x \square 300$, as the required supply equation. When $p \square 450$, we have $450 \square \frac{3}{200} x \square 300, \frac{3}{x} \square \square 150$ or $x \square 10,000$, and the number of refrigerators marketed at this price is 10,000 . When $x \square 0, p \square 300$, and the lowest price at which a refrigerator will be marketed is $\$ 300$.
49.

b. The highest price is $\$ 200$ per unit.
c. To find the quantity demanded when $p \square 100$, we solve $\sqcup 0 \square 005 x \quad 200 \quad 100$, obtaining $x \sqcup \frac{\square 100}{\square 0 \square 05} \square 2000$, or 2000 units per month.
50.

b. The highest price is $\$ 80$ per unit.
c. We solve the equation $\square 0 \square 02 x \square 80 \square 20$, obtaining
51.

b. The lowest price is $\$ 50$ per unit.
c. We solve the equation $0 \square 025 x \square 50 \square 100$, obtaining $x \sqcup \frac{100 \sqcup 50}{0} \square 2000$, or 2000 units per month. $\square 002$ 5
52.

b. The lowest price is $\$ 80$ per unit.
c. We solve the equation $0 \square 03 x \square 80 \square 110$, obtaining $x \quad \begin{gathered}110 \square 80 \\ 0 \\ \square\end{gathered} \quad \begin{gathered}\square 000 \text {, or } 1000 \text { units per month. } \\ 3\end{gathered}$
53. False. $P \square x \square \square R \square x \square \square C \square x \square \square s x \square \square c x \square F \square \square \square s \square c \square x \square F$. Therefore, the firm is making a profit if

$$
P \square x \square \square \square s \square c \square x \square F \square 0, \text { or } x-\frac{F}{\square \varepsilon}
$$

54. True.

Technology Exercises

page 43

1. $2 \square 2875$
2. $3 \square 0125$
3. $2 \square 880952381$
4. $0 \square 7875$
5. $7 \square 2851648352$
6. $\square 26 \square 82928836$
7. $2 \square 4680851064$
8. $1 \square 24375$

1.4 Intersection of Straight Lines

Concept Questions page 49

1. The intersection must lie in the first quadrant because only the parts of the demand and supply curves in the first quadrant are of interest.
2.

3.

1. We solve the system $y \square 3 x \square 4, y \square \square 2 x \square 14$. Substituting the first equation into the second yields $3 x \square 4 \square \square 2 x \square 14,5 x \square 10$, and $x \square 2$. Substituting this value of x into the first equation yields $y \square 3 \square 2 \square \square 4$, so
$y \square 10$. Thus, the point of intersection is $\square 2 \square 10 \square$.
2. We solve the system $y \square \square 4 x \square 7, \square y \square 5 x \square 10$. Substituting the first equation into the second yields $\square \square \square 4 x \square 7 \square \square 5 x \square 10,4 x \square 7 \square 5 x \square 10$, and $x \square \square 3$. Substituting this value of x into the first equation, we obtain $y \square \square 4 \square \square 3 \square \square 7 \square 12 \square 7 \square 5$. Therefore, the point of intersection is $\square \square 3 \square 5 \square$.
3. We solve the system $2 x \square 3 y \square 6,3 x \square 6 y \square 16$. Solving the first equation for y, we obtain $3 y \square 2 x \square 6$, so $y \square \stackrel{2}{-} x \square 2 \quad \square$ Substituting this value of y into the second equation, we obtain $3 x \square 6-{ }^{2} x \square \square 16$, 2

3
3
$3 x \square 4 x \square 12 \square 16,7 x \square 28$, and $x \square 4$. Then $y \square \frac{2}{3} \square 4 \square \square 2 \square_{3}^{2}$, so the point of intersection is $\quad 4 \square^{2}$.
4. We solve the system $2 x \square 4 y \square 11, \square 5 x \square 3 y \square 5$. Solving the first equation for x, we find $x \square \square 2 y \square \frac{11}{2}$. Substituting this value into the second equation of the system, we have $\square 5 \quad \square 2 y \square \frac{11}{2} \square 3 y \square 5$, so $10 y \square \frac{55}{2} \square 3 y \square 5,20 y \square 55 \square 6 y \square 10,26 y \square 65$, and $y \square \frac{5}{2}$. Substituting this value of y into the first equation, we have $2 x \square 4 \frac{5}{2}^{\frac{5}{2}} \square 11$, so $2 x \square 1$ and $x \square_{2}{ }^{1}$. Thus, the point of intersection is $\frac{1}{2}^{1} \frac{1}{2}{ }^{5}$.
5. We solve the system $y \square \frac{1}{4} x \square 5,2 x \square \frac{3}{2} y \square 1$. Substituting the value of y given in the first equation into the second equation, we obtain $2 x \square \frac{3}{2} \begin{gathered}-1 \\ 2\end{gathered} \frac{1}{4} \square 5 \square 1$, so $2 x \square \frac{3}{8} x \square \frac{15}{2} \square 1,16 x \square 3 x \square 60 \square 8$, $13 x \square \square 52$, and $x \square \square 4$. Substituting this value of x into the first equation, we have $y \square \frac{1}{4} \square \square 4 \square \square 5 \square \square 1 \square 5$, so $y \square \square 6$. Therefore, the point of intersection is $\square \square 4 \square \square 6 \square$.
6. We solve the system $y \square \frac{2}{3} x \square 4, x \square 3 y \square 3 \square 0$. Substituting the first equation into the second equation, we obtain $x \square 3 \frac{2}{3} x \square 4 \square 3 \square 0$, so $x \square 2 x \square 12 \square 3 \square 0,3 x \square 9$, and $x \square 3$. Substituting this value of x into the first equation, we have $y \square \frac{2}{3} \square 3 \square \square 4 \square \square 2$. Therefore, the point of intersection is $\square 3 \square \square 2 \square$.
7. We solve the equation $R \square x \square \square C \square x \square$, or $15 x \square 5 x \square 10,000$, obtaining $10 x \square 10,000$, or $x \square 1000$. Substituting this value of x into the equation $R \square x \square \square 15 x$, we find $R \square 1000 \square \square 15,000$. Therefore, the breakeven point is
$\square 1000 \square 15000 \square$.
8. We solve the equation $R \square x \square \square C \square x \square$, or $21 x \square 15 x \square 12,000$, obtaining $6 x \square 12,000$, or $x \square 2000$.

Substituting this value of x into the equation $R \square x \square \square 21 x$, we find $R \square 2000 \square \square 42,000$. Therefore, the breakeven point is
$\square 2000 \square 42000 \square$.
9. We solve the equation $R \square x \square \square C \square x \square$, or $0 \square 4 x \square 0 \square 2 x \square 120$, obtaining $0 \square 2 x \square 120$, or $x \square 600$.

Substituting this value of x into the equation $R \square x \square \square 0 \square 4 x$, we find $R \square 600 \square \square 240$. Therefore, the breakeven point is $\square 600 \square 240 \square$.
10. We solve the equation $R \square x \square \square C \square x \square$ or $270 x \square 150 x \square 20,000$, obtaining $120 x \square 20,000$ or $x \frac{3}{3}^{500} \square 167$. Substituting this value of x into the equation $R \square x \square \square 270 x$, we find $R \square 167 \square \square 45,090$. Therefore, the breakeven point is $\square 167 \square 45090 \square$.
11. a.

c.

b. We solve the equation $R \square x \square \square C \square x \square$ or $14 x \square 8 x \square 48,000$, obtaining $6 x \square 48,000$, so $x \square 8000$. Substituting this value of x into the equation $R \square x \square \square 14 x$, we find $R \square 8000 \square \square 14 \square 8000 \square \square 112,000$. Therefore, the break-even point is $\square 8000 \square 112000 \square$.
d. $P \square x \square \square R \square x \square \square C \square x \square \square 14 x \square 8 x \square 48,000 \square 6 x \square 48,000$. The graph of the profit function crosses the x-axis when $P \square x \square \square 0$, or $6 x \square 48,000$ and $x \square 8000$. This means that the revenue is equal to the cost when 8000 units are produced and consequently the company breaks even at this point.
12. a. $R \square x \square \square 8 x$ and $C \square x \square \square 25,000 \square 3 x$, so $P \square x \square \square R \square x \square \square C \square x \square \square 5 x \square 25,000$. The break-even point occurs when $P \square x \square \square 0$, that is, $5 x \square 25,000 \square 0$, or $x \square 5000$. Then $R \square 5000 \square \square 40,000$, so the break-even point is
$\square 5000 \square 40000 \square$.
b. If the division realizes a 15% profit over the cost of making the income tax apps, then $P \square x \square \square 0 \square 15 C \square x \square$, so
$5 x \square 25,000 \square 0 \square 15 \square 25,000 \square 3 x \square, 4 \square 55 x \square 28,750$, and $x \square 6318.68$, or approximately 6319 income tax apps.
13. Let x denote the number of units sold. Then, the revenue function R is given by $R \square x \square \square 9 x$. Since the variable cost is 40% of the selling price and the monthly fixed costs are $\$ 50,000$, the cost function C is given by $C \square x \square \square 0 \square 4 \square 9 x \square \square 50,000 \square 3 \square 6 x \square 50,000$. To find the break-even point, we set $R \square x \square \square C \square x \square$, obtaining
$9 x \square 3 \square 6 x \square 50,000,5 \square 4 x \square 50,000$, and $x \square 9259$, or 9259 units. Substituting this value of x into the equation $R \square x \square \square 9 x$ gives $R \square 9259 \square \square 9 \square 9259 \square \square 83,331$. Thus, for a break-even operation, the firm should manufacture
9259 bicycle pumps, resulting in a break-even revenue of $\$ 83,331$.
14. a. The cost function associated with renting a truck from the Ace Truck Leasing Company is $C_{1} \square x \square \square 25 \square 0 \square 5 x$. The cost 60 function associated with renting a truck from the Acme Truck Leasing Company is $C_{2} \square x \square \square 20 \square 0 \square 6 x$.
c. The cost of renting a truck from the Ace Truck Leasing Company for one day and driving 30 miles is
$C_{1} \square 30 \square \square 25 \square 0 \square 5 \square 30 \square \square 40$, or $\$ 40$.
b.

The cost of renting a truck from the Acme Truck Leasing Company for one day and driving it 30 miles is
$C_{2} \square 30 \square \square 20 \square 0 \square 60 \square 30 \square \square 38$, or $\$ 38$. Thus, the customer should rent the truck from Acme Truck Leasing Company. This answer may also be obtained by inspecting the graph of the two functions and noting that the graph of $C_{2} \square x \square$ lies below that of $C_{1} \square x \square$ for $x \square 50$.
d. $C_{1} \square 60 \square \square 25 \square 0 \square 5 \square 60 \square \square 55$, or $\$ 55 . C_{2} \square 60 \square \square 20 \square 0 \square 6 \square 60 \square \square 56$, or \$56. Because $C_{1} \square 60 \square \square$ $C_{2} \square 60 \square$, the customer should rent the truck from Ace Trucking Company in this case.
15. a. The cost function associated with using machine I is $C_{1} \square x \square \square 18,000 \square 15 x$. The cost function associated with using machine II is $C_{2} \square x \square \square 15,000 \square 20 x$.
c. Comparing the cost of producing 450 units on each machine, we find $C_{1} \square 450 \square \square 18,000 \square 15 \square 450 \square \square 24,750$ or \$24,750
$\begin{array}{llllllllll}\$ 24,000 & \text { on machine II. Therefore, machine II should be used } & 0 & 200 & 400 & 600 & 800 & x\end{array}$

b. in this case. Next, comparing the costs of producing 550 units on each machine, we find $C_{1} \square 550 \square \square 18,000 \square 15 \square 550 \square \square 26,250$ or $\$ 26,250$ on machine I, and $C_{2} \square 550 \square \square 15,000 \square 20 \square 550$ 26,000 , or $\$ 26,000$ on machine II. Therefore, machine II should be used in this instance. Once again, we compare the
cost of producing 650 units on each machine and find that $C_{1} \square 650 \square \square 18,000 \square 15 \square 650 \square \square 27,750$, or $\$ 27,750$ on machine I and $C_{2} \square 650 \square \square 15,000 \square 20 \square 650 \square \square 28,000$, or $\$ 28,000$ on machine II. Therefore, machine I should be used in this case.
d. We use the equation $P \square x \square \square R \square x \square \square C \square x \square$ and find $P \square 450 \square \square 50 \square 450 \square \square 24,000 \square \square 1500$, indicating a loss of
$\$ 1500$ when machine II is used to produce 450 units. Similarly, $P \square 550 \square \square 50 \square 550 \square \square 26,000 \square 1500$, indicating a profit of $\$ 1500$ when machine II is used to produce 550 units. Finally, $P \square 650 \square \square 50 \square 650 \square$ $27,750 \square 4750$, for a profit of $\$ 4750$ when machine I is used to produce 650 units.
16. First, we find the point of intersection of the two straight lines. (This gives the time when the sales of both companies are the same). Substituting the first equation into the second gives $2 \square 3 \square 0 \square 4 t \square 1 \square 2 \square 0 \square 6 t$, so $1 \square 1$ $\square 0 \square 2 t$ and $t \square^{1 \square 1} \square 5 \square 5$. From the observation that the sales of Cambridge Pharmacy are increasing at a faster rate than that of the Crimson Pharmacy (its trend line has the greater slope), we conclude that the sales of the Cambridge Pharmacy will surpass the annual sales of the Crimson Pharmacy in 5^{1} years.
17. We solve the two equations simultaneously, obtaining $18 t \square 13 \square 4 \square \square 12 t \square 88$, 30t $\square 74 \square 6$, and $t \square$ $2 \square 486$, or approximately $2 \square 5$ years. So shipments of LCDs will first overtake shipments of CRTs just before mid-2003.
18. a. The number of digital cameras sold in 2001 is given by $f \square 0 \square \square 3 \square 05 \square 0 \square \square 6 \square 85 \square 6 \square 85$, or $6 \square 85$ million. The number of film cameras sold in 2001 is given by $g \square 0 \square \square \square 1 \square 85 \square 0 \square \square 16 \square 58$, or $16 \square 58$ million. Therefore, more film cameras than digital cameras were sold in 2001.
b. The sales are equal when $3 \square 05 t \square 6 \square 85 \square \square 1 \square 85 t \square 16 \square 58,4 \square 9 t \square 9 \square 73$, qr $t \square^{9 \square 73} \square 1 \square 986$, approximately

2 years. Therefore, digital camera sales surpassed film camera sales near the end of 2003.

b. We solve the two equations simultaneously,
obtaining $\underset{3}{\frac{11}{t} t \square 23} \sqcup \sqcup \underset{9}{\underline{11} t} \square 43, \frac{44}{9} t \square 20$,
and $t \square 4 \square 09$. Thus, electronic transactions
first exceeded check transactions in early 2005.
20. a.

b. $6 \square 5 t \square 33 \square \square 3 \square 9 t \square 42 \square 5,10 \square 4 t \square 9 \square 5$,
$t \square 0 \square 91$, and so $f \square 0 \square 91 \square \square g \square 0 \square 91$ $38 \square 9$.
The number of U.S. broadband Internet households was the same as the number of dial-up Internet households (39 million each) around November of 2004. Since then, the former has exceeded the latter.
21. We solve the system $4 x \square 3 p \square 59,5 x \square 6 p \square \square 14$. Solving the first equation for p, we find $p \square \square \frac{4}{3} x \square \frac{59}{3}$.

Substituting this value of p into the second equation, we have $5 x \square 6^{\square}{ }^{4} x \square^{59} \square \square 14,5 x \square 8 x \square 118 \square \square 14$, $\square \overline{3}$
$13 x \square 104$, and $x \square$. Substituting this value of x into the equation $p \square \square \frac{4}{3} x \square \frac{59}{3}$, we have $p \square \square \frac{4}{3} \square 8 \square \frac{\square}{3}^{59} \frac{27}{3} \square 9$. Thus, the equilibrium quantity is 8000 units and the equilibrium price is $\$ 9$.
22. We solve the system $2 x \square 7 p \square 56,3 x \square 11 p \square \square 45$. Solving the first equation for x, we obtain $2 x \square \square 7 p \square 56$, or $x \square \square \frac{7}{2} p \square 28$. Substituting this value of x into the second equation, we obtain $3 \sqcup \frac{7}{2} p \square 28 \quad \square 11 p \square \square 45$,
$\square \frac{21}{2} p \square 84 \square 11 p \square \square 45, \square 43 p \square \square 258$, and $p \square 6$. Then $x \square \square \frac{7}{2} \square 6 \square \square 28 \square \square 21 \square 28 \square 7$. Therefore, the equilibrium quantity is 7000 units and the equilibrium price is $\$ 6$.
23. We solve the system $p \square \square 2 x \square 22, p \square 3 x \square 12$. Substituting the first equation into the second, we find $\square 2 x \square 22 \square 3 x \square 12$, so $5 x \square 10$ and $x \square 2$. Substituting this value of x into the first equation, we obtain $p \square \square 2 \square 2 \square \square 22 \square 18$. Thus, the equilibrium quantity is 2000 units and the equilibrium price is $\$ 18$.
24. We solve the system $p \square \square 0 \square 3 x \square 6, p \square 0 \square 15 x \square 1.5$. Equating the right-hand sides, we have $\square 0 \square 3 x \square 6 \square 0 \square 15 x \square 1 \square 5$, so $\square 0.45 x \square \square 4 \square 5$, or $x \square 10$. Substituting this value of x into the first equation gives $p \square \square 0 \square 3 \square 10 \square \square 6$ and $p \square 3$. Thus, the equilibrium quantity is 10,000 units and the equilibrium price is $\$ 3$.
25. Let x denote the number of DVD players produced per week, and p denote the price of each DVD player.
a. The slope of the demand curve is given by $\begin{aligned} & \square p \\ & \square x \\ & \square \square \frac{250}{250} \square \square \frac{2}{25}\end{aligned}$. Using the point-slope form of the equation of a line with the point $\square 3000 \square 485 \square$, we have $p \square 485 \square \stackrel{2}{\square}_{25} \square x \square 3000 \square$, so $p \stackrel{2}{\square} \square{ }_{25} x \square 240 \square 485$ or $p \square \square 0 \square 08 x \square 725$.
b. From the given information, we know that the graph of the supply equation passes through the points $\square 0 \square 300 \square$ and $\square 2500 \square 525 \square$. Therefore, the slope of the supply curve is $m \frac{525 \square 300}{2500 \square 0} \quad \begin{gathered}225 \\ \square\end{gathered} \quad 2500$$\square 0 \square 09$. Using the point-slope form of the equation of a line with the point $\square 0 \square 300 \square$, we find that $p \square 300 \square 0 \square 09 x$, so $p \square 0 \square 09 x \square 300$.
c. Equating the supply and demand equations, we have $\square 0 \square 08 x \square 725 \square 0 \square 09 x \square 300$, so $0 \square 17 x \square 425$ and $x \square 2500$. Then $p \square \square 0 \square 08 \square 2500 \square \square 725 \square 525$. We conclude that the equilibrium quantity is 2500 units and the equilibrium price is $\$ 525$.
26. We solve the system $x \square 4 p \square 800, x \square 20 p \square \square 1000$. Solving the first equation for x, we obtain $x \square \square 4 p \square 800$. Substituting this value of x into the second equation, we obtain $\square 4 p \square 800 \square 20 p \square \square 1000, \square 24 p \square \square 1800$, and $p \square 75$. Substituting this value of p into the first equation, we obtain $x \square 4 \square 75 \square \square 800$, or $x \square 500$. Thus, the equilibrium quantity is 500 and the equilibrium price is $\$ 75$.
27. We solve the system $3 x \square p \square 1500,2 x \square 3 p \square \square 1200$. Solving the first equation for p, we obtain $p \square 1500 \square 3 x$. Substituting this value of p into the second equation, we obtain $2 x \square 3 \square 1500 \square 3 x \square \square \square 1200$, so $11 x \square 3300$ and $x \square 300$. Next, $p \square 1500 \square 3 \square 300 \square \square 600$. Thus, the equilibrium quantity is 300 and the equilibrium price is $\$ 600$.
28. Let x denote the number of espresso makers to be produced per month and p the unit price of the espresso makers.
a. The slope of the demand curve is given by $\frac{\square p}{\square x} \square \frac{110 \square 140}{1000 \square 250} \square \square \frac{1}{25}$. Using the point-slope form of the equation of a line with the point $\square 250 \square 140 \square$, we have $p \square 140 \square{ }^{1}{ }_{25} \square x \square 250 \square$, so $p \square \square \frac{1}{25} x \square 10 \square 140 \square \square \frac{1}{25} x \square 150$.
b. The slope of the supply curve is given by $\square p \quad 80 \square 60 \quad 20 \quad{ }^{1}$. Using the point-slope form of the

$$
\overline{\square x} \square \overline{2250 \square 750} \square \overline{1500} \square \overline{75}
$$

equation of a line with the point $\square 750 \square 60 \square$, we have $p \square 6075^{1} \square x \square 750 \square$, so ${ }_{P 5} \square^{1} x \square 10 \square 60$ and $p \square \frac{1}{75} x \square 50$.
c. Equating the right-hand sides of the demand equation and the supply equation, we have $\square \frac{1}{25} x \square 150 \square \frac{1}{75} x \square 50$, so $\square \frac{4}{75} x \square \square 100$ and $x \square 1875$. Next, $p \square \frac{1}{75} \square 1875 \square \square 50 \square 75$. Thus, the equilibrium quantity is 1875 espresso makers and the equilibrium price is $\$ 75$.
29. We solve the system of equations $p \square 0 \square 05 x \square 200, p \square 0 \square 025 x \square 50$, obtaining $0 \square 025 x \square 50 \square \square 0 \square 05 x \square$ 200,
$0 \square 075 x \square 150$, and so $x \square 2000$. Thus, $p \square \square 0 \square 05 \square 2000 \square \square 200 \square 100$, and so the equilibrium quantity is 2000 per month and the equilibrium price is $\$ 100$ per unit.
30. We solve the system of equations $p \square \square 0 \square 02 x \square 80, p \square 0 \square 03 x \square 20$, obtaining $0 \square 03 x \square 20 \square \square 0 \square 02 x \square 80$, $0 \square 05 x \square 60$, and so $x \square 1200$. Thus, $p \square 0 \square 03 \square 1200 \square \square 20 \square 56$, and so the equilibrium quantity is 1200 per month and the equilibrium price is $\$ 56$ per unit.
31. a. We solve the system of equations $p \square c x \square d, p \square a x \square b$. Substituting the first into the second gives $c x \square d \square a x \square b$, so $\square c \square a \square x \square b \square d$ or $x \square \frac{b \square d}{\square a}$. Since $a \square 0$ and $c \square 0$, and $b \square d \square 0$, c and $c \square a \square 0, x$ is well-defined. Substituting this value of x into the second equation, we obtain
 $p \square a \frac{c \square a}{c \square a} \square b \square \quad c \square a$ (1). Therefore, the equilibrium quantity is $c \square a$ and the equilibrium price is $\overline{c \square a}$.
b. If c is increased, the denominator in the expression for x increases and so x gets smaller. At the same time, the first term in equation (1) for p decreases (because a is negative) and so p gets larger. This analysis shows that if the unit price for producing the product is increased then the equilibrium quantity decreases while the equilibrium price increases.
c. If b is decreased, the numerator of the expression for x decreases while the denominator stays the same. Therefore x decreases. The expression for p also shows that p decreases. This analysis shows that if the (theoretical) upper bound for the unit price of a commodity is lowered, then both the equilibrium quantity and the equilibrium price drop.
32. The break-even quantity is found by solving the equation $C \square x \square \square R \square x \square$, or $c x \square F \square s x$; that is, $x \frac{F}{\square} \quad c$ $(s \square c)$. Substituting this value of x into $R \square x \square \square s x$ gives the break-even revenue as $R \square x \square \quad \frac{F}{s \square c} \quad \square \frac{s F}{s \square c}$.
$\square s$

Our analysis shows that for a break-even operation, the break-even quantity must be equal to the ratio of the fixed cost times the unit selling price and the difference between the unit selling price and unit cost of production.
33. True. $P \square x \square \square R \square x \square \square C \square x \square \square s x \square \square c x \square F \square \square \square s \square c \square x \square F$. Therefore, the firm is making a profit if $P \square x \square \square \square s \square c \square x \square F \square 0$; that is, if $x \frac{F}{\square c}(s \sqcup c)$. s
34. True. In the typical linear demand curve, p drops as x increases, that is, the straight line has negative slope.
35. Solving the two equations simultaneously to find the point(s) of intersection of L_{1} and L_{2}, we obtain $m_{1} x \square b_{1} \square m_{2} x \square b_{2}$, so $\square m_{1} \square m_{2} \square x \square b_{2} \square b_{1}$ (1).
a. If $m_{1} \square m_{2}$ and $b_{2} \square b_{1}$, then there is no solution for (1) and in this case L_{1} and L_{2} do not intersect.
b. If $m_{1} \square m_{2}$, then (1) can be solved (uniquely) for x, and this shows that L_{1} and L_{2} intersect at precisely one point.
c. If $m_{1} \square m_{2}$ and $b_{1} \square b_{2}$, then (1) is satisfied for all values of x, and this shows that L_{1} and L_{2} intersect at infinitely many points.
36. a. Rewrite the equations in the form $y \square \square \frac{a_{1}}{b_{1}} x \square \frac{c_{1}}{b_{1}}$ and $y \square \square \frac{a_{2}}{b_{2}} x \square{ }_{\underline{b_{2}}}^{c_{2}}$, and think of these equations as the equations of the lines L_{1} and L_{2}, respectively. Using the results of Exercise 33, we see that the system has no solution if and only if $\square \frac{a_{1}}{b_{1}} \square \square \frac{a_{2}}{b_{2}}$, or $a_{1} b_{2} \square a_{2} b_{1} \square 0$, and $\begin{aligned} & c_{1} \\ & b_{1}\end{aligned} c_{2}^{c_{2}}{ }_{b_{2}}$.
b. The system has a unique solution if and only if $a_{1} b_{2} \square a_{2} b_{1} \square 0$.
c. The system has a infinitely many solutions if and only if $a_{1} b_{2} \square a_{2} b_{1} \square 0$ and $\frac{c_{1}}{b_{1}} \square \frac{c_{2}}{b_{2}}$, or $c_{1} b_{2} \square b_{1} c_{2} \square 0$.

1. $\square 0 \square 6 \square 6 \square 2 \square$
2. $\square 0 \square 5273 \square 6 \square 8327 \square$
3. $\square 3 \square 8261 \square$
$0 \square 1304 \square$
4. $\square 4 \square 2256 \square$
$\square 0 \square 4007 \square$
5. $\square 386 \square 9091 \square 145 \square 3939 \square$
6. $\square \square 1 \square 5125 \square$
7. a.

c. The x-intercept is approximately 3548 .
8. a. $\square 2492 \square 610518 \square$
c. $\square 150 \square 61 \square$
d. If the distance driven is less than or equal to 150 mi, rent from Acme Truck Leasing; if the distance driven is more than 150 mi , rent from Ace Truck Leasing.
9. a. Randolph Bank: $D_{1} \square t \square \square 20 \square 384$
$1 \square 019 t$; Madison Bank: $D_{2} \square t \square \square$
$18 \square 521 \square 1 \square 482 t$.
c. Yes; 4 years from now.
10. a. $p \square \square \frac{1}{10} x \square 284 ; p \square \frac{1}{60} x \square 60$
b.

The graphs intersect at roughly $\square 1920$ $92 \square$.
b.

From the graph, we see that the break-even point is approximately $\square 3548 \square 27997 \square$
b. 3438 units
b.

b.

12. a.

b. 558 units; $\$ 75 \square 51$
c. $1920 \square$ wk; $\$ 92 \square$ radio.

1.5 The Method of Least Squares

Concept Questions

 page 601. a. A scatter diagram is a graph showing the data points that describe the relationship between the two variables x and y.
b. The least squares line is the straight line that best fits a set of data points when the points are scattered about a straight line.
2. See page 55 of the text.

Exercises page 60

1. a. We first summarize the data.

x	y	x^{2}	$x y$
1	4	1	4
2	6	4	12
3	8	9	24
4	11	16	44
Sum	10	29	30

The normal equations are $4 b \square 10 m \square 29$ and $10 b \square 30 m \square 84$. Solving this system of equations, we obtain $m \square 2 \square 3$ and $b \square 1 \square 5$, so an equation is $y \square 2 \square 3 x \square 1 \square 5$.
2. a. We first summarize the data.

x	y	x^{2}	$x y$
1	9	1	9
3	8	9	24
5	6	25	30
7	3	49	21
	9	2	81
	18		
Sum	25	28	165

b.

The normal equations are $165 m \square 25 b \square 102$ and $25 m \square 5 b \square 28$. Solving, we find $m \square \square 0 \square 95$ and $b \square$ $10 \square 35$, so the required equation is $y \square \square 0 \square 95 x \square 10 \square 35$.
3. a. We first summarize the data.

x	y	x^{2}	$x y$

	1	$4 \square 5$	1	$4 \square 5$
	2	5	4	10
	3	3	9	9
	4	2	16	8
	4	$3 \square 5$	16	14
	6	1	36	6
Sum	20	19	82	$51 \square 5$

The normal equations are $6 b \square 20 m \square 19$ and $20 b \square 82 m \square 51 \square 5$. The solutions are $m \square \square 0 \square 7717$ and $b \square 5 \square 7391$, so the required equation is $y \square \square 0 \square 772 x \square 5 \square 739$.
4. a. We first summarize the data:

x	y	x^{2}	$x y$	
	1	2	1	2
1	3	1	3	
2	3	4	6	
3	$3 \square 5$	9	$10 \square 5$	
4	$3 \square 5$	16	14	
	4	4	16	16
	5	5	25	25
	Sum	20	24	72
	$76 \square 5$			

The normal equations are $72 m \square 20 b \square 76 \square 5$ and $20 m \square 7 b \square 24$. Solving, we find $m \square 0 \square 53$ and $b \square 1 \square 91$. The required equation is $y \square 0 \square 53 x \square 1 \square 91$.
5. a. We first summarize the data:

2	5	4	10	
3	5	9	15	
4	7	16	28	
5	8	25	40	
Sum	15	28	55	96

b.

b.

6. a. We first summarize the data:

x	y	x^{2}	$x y$

b.

	7	4	49	28
	10	1	100	10
Sum	25	25	179	88

The normal equations are $5 b \square 25 m \square 25$ and $25 b \square 179 m \square 88$. The solutions are $m \square \square 0 \square 68519$ and $b \square 8 \square 4259$, so the required equation is $y \square \square 0 \square 685 x \square 8 \square 426$.
7. a. We first summarize the data:

marize the data:		b.	
x	y	x^{2}	$x y$
4	$0 \square 5$	16	2
$4 \square 5$	$0 \square 6$	$20 \square 25$	$2 \square 7$
5	$0 \square 8$	25	4
$5 \square 5$	$0 \square 9$	$30 \square 25$	$4 \square 95$

	6	$1 \square 2$	36	$7 \square 2$
Sum	25	4	$127 \square 5$	$20 \square 85$

The normal equations are $5 b \square 25 m \square 4$ and $25 b \square 127 \square 5 m \square 20 \square 85$. The solutions are $m \square 0 \square 34$ and b $\square 0 \square 9$, so the required equation is $y \square 0 \square 34 x \square 0 \square 9$.
b.
 c. $x \square 6 \square 4$, then $\square 0 \square 34 \square 6 \square 4 \square \square 0 \square 9 \square 1 \square 276$, and so
1276 completed applications can be expected.
8. a. We first summarize the data:

x	y	x^{2}	$x y$
1	426	1	426
2	437	4	874
3	460	9	1380
4	473	16	1892
	5	477	25
Sum	15	2273	55

The normal equations are $55 m \square 15 b \square 6957$ and
$15 m \square 5 b \square 2273$. Solving, we find $m \square 13 \square 8$ and $b \square 413 \square 2$, so the required equation is $y \square 13 \square 8 x \square 413 \square 2$.
b.

c. When $x \square 6$,
$y \square 13 \square 8 \square 6 \square \square 413 \square 2 \square 496$, so the predicted net sales for the upcoming year are $\$ 496$ million.
9. a. We first summarize the data:

x	y	x^{2}	$x y$	
1	436	1	436	
2	438	4	876	
3	428	9	1284	
4	430	16	1720	
	5	426	25	2138
Sum	15	2158	55	6446

The normal equations are $5 b \square 15 m \square 2158$ and
$15 b \square 55 m \square 6446$. Solving this system, we find $m \square \square 2 \square 8$ and
$b \square 440$. Thus, the equation of the least-squares line is
$y \square \square 2 \square 8 x \square 440$.
b.

c. Two years from now, the average sat verbal score in that area will be
$y \square \square 2 \square 8 \square 7 \square \square 440 \square$ $420 \square 4$, or approximately 420 .
10. a. We first summarize the data:

x	y	x^{2}	$x y$
1	$2 \square 1$	1	$2 \square 1$
2	$2 \square 4$	4	$4 \square 8$
	3	$2 \square 7$	9
Sum	6	$7 \square 2$	14

b. The amount of money that Hollywood is projected to spend in 2015 is approximately
$0 \square 3 \square 5 \square \square 1 \square 8 \square 3 \square 3$, or $\$ 3 \square 3$ billion.

The normal equations are $3 b \square 6 m \square 7 \square 2$ and $6 b \square 14 m \square$
15. Solving the system, we find $m \square 0 \square 3$ and $b \square 1 \square 8$. Thus, the equation of the least-squares line is $y \square 0 \square 3 x \square 1 \square 8$.

x	y	x^{2}	$x y$

$0 \quad 154 \square 5 \quad 0$
Q $\quad 381 \square 8 \quad 1$
$2 \quad 654 \square 5 \quad \hat{4}^{\sim} \quad 1309$
$\begin{array}{llll}3 & 845 & 9 & 2535\end{array}$
$\begin{array}{lllll}\text { Sum } & 6 & 2035 \square 8 \quad 14 \quad 4225\end{array}$
12. a.

$\begin{array}{llll}1 & 33 \square & 1 & 33 \square 4\end{array}$
$2 \quad 39 \square \quad 4 \quad 79$
$\begin{array}{llll}3 & 50 & 9 & 150\end{array}$
$4 \quad 59 \square \quad 16 \quad 238 \square 4$
$\begin{array}{lllll}\text { Sum } & 10 & 207 \square & 30 & 500 \square 8\end{array}$

The normal equations are $4 b \square 6 m \square 2035 \square 8$ and $6 b \square 14 m \square 4225 \square 8$. The solutions are $\square 234 \square 42$ and
m
$b \square 157 \square 32$, so the required equation is $y \square 234 \square 4 x \square$ $157 \square 3$.
b. The projected number of Facebook users is
$f \square 7 \square \square 234 \square 4 \square 7 \square \square 157 \square 3 \square 1798 \square 1$, or approximately $1798 \square 1$ million.

The normal equations are $5 b \square 10 m \square 207 \square 8$ and $10 b \square 30 m$
m $500 \square 8$. The solutions are $\square 8 \square 52$ and
$b \square 24 \square 52$, so the required equation is $y \square 8 \square 52 x \square$ $24 \square 52$.
b. The average rate of growth of the number of e-book readers between 2011 and 2015 is projected to be approximately
$8 \square 52$ million per year.
13. a.

x	y	x^{-}	$x y$
1	20	1	20
2	24	4	48
3	26	9	78
4	28	16	112
	5	32	25
	160		
Sum	15	130	55

14. a.

x					y	x^{2}	$x y$
0	$26 \square 2$	0	0				
1	$26 \square 8$	1	$26 \square 8$				
2	$27 \square 5$	4	$55 \square 0$				
3	$28 \square 3$	9	$84 \square 9$				
4	$28 \square 7$	16	$114 \square 8$				
Sum	10	$137 \square 5$	30				

15. a.

x	y	x^{2}	$x y$
1	$26 \square 1$	1	$26 \square 1$
2	$27 \square 2$	4	$54 \square 4$
3	$28 \square 9$	9	$86 \square 7$
4	$31 \square 1$	16	$124 \square 4$
5	$32 \square 6$	25	$163 \square 0$
Sum	15	$145 \square 9$	55

16. a.

x	y	x^{2}	$x y$
0	$34 \square 4$	0	0
1	$34 \square 1$	1	$34 \square 1$
2	$33 \square 4$	4	$66 \square 8$
3	$33 \square 1$	9	$99 \square 3$
	4	$32 \square 7$	16
	$130 \square 8$		
Sum	10	$167 \square 7$	30

The normal equations are $5 b \square 15 m \square 130$ and $15 b \square 55 m \square 418$. The solutions are $m \square 2 \square 8$ and $b \square$ $17 \square 6$,
and so an equation of the line is $y \square 2 \square 8 x \square 17 \square 6$.
b. When $x \square 8, y \square 2 \square 8 \square 8 \square \square 17 \square 6 \square 40$. Hence, the state subsidy is expected to be $\$ 40$ million for the eighth year.

The normal equations are $5 b \square 10 m \square 137 \square 5$ and $10 b \square 30 m \square 281 \square 5$. Solving this system, we find $m \square 0 \square 65$ and $b \square 26 \square 2$. Thus, an equation of the least-squares line is $y \square 0 \square 65 x \square 26 \square 2$.
b. The percentage of the population enrolled in college in 2014 is projected to be $0 \square 65 \square 7 \square \square 26 \square 2 \square 30 \square 75$, or $30 \square 75$

The normal equations are $5 b \square 15 m \square 145 \square 9$ and $15 b \square 55 m \square 454 \square 6$. Solving this system, we find $m \square$ and $b \square 24 \square 11$. Thus, the required equation is $y \square f \square x \square \square 1 \square 69 x \square 24 \square 11$.
b. The predicted global sales for 2014 are given by $f \square 8 \square \square 1 \square 69 \square 8 \square \square 24 \square 11 \square 37 \square 63$, or $37 \square 6$ billion.

The normal equations are $5 b \square 10 m \square 167 \square 7$ and $10 b \square 30 m \square 331$. Solving this system, we find $m \square \square 0 \square 44$
and $b \square 34 \square 42$. Thus, an equation of the least-squares line $\dot{y} \square \square 0 \square 44 x \square 34 \square 42$.
b. The percentage of households in which someone is under 18 years old in 2013 is projected to be $\square 0 \square 44 \square 6 \square \square 34 \square 42 \square 31 \square 78$, or $31 \square 78 \%$.
17.
$\left.\begin{array}{cccc}\hline x & y & x^{-} & x y \\ 0 & 82 \square & 0 & 0 \\ 1 & 84 \square 7 & 1 & 84 \square 7 \\ 2 & 86 \square 8 & 4 & 173 \square 6 \\ 3 & 89 \square 7 & 9 & 269 \square 1 \\ 4 & 91 \square 8 & 16 & 367 \square 2 \\ \hline \text { Sum } & 10 & 435 & 30\end{array}\right) 894 \square 6$
18. a.

x	y	x^{2}	$x y$
1	$95 \square 9$	1	$95 \square 9$
2	$91 \square 7$	4	$183 \square 4$
3	$83 \square 8$	9	$251 \square 4$
4	$78 \square 2$	16	$312 \square 8$
	5	$73 \square 5$	25

19. a.

x	y	x^{2}	$x y$
0	$29 \square 4$	0	0
1	$32 \square 2$	1	$32 \square 2$
2	$34 \square 8$	4	$69 \square 6$
3	$37 \square 7$	9	$113 \square 1$
	4	$40 \square 4$	16

20. a.

x	y	x^{2}	$x y$
0	$2 \square 0$	0	0
1	$3 \square 1$	1	
$3 \square 1$			
2	$4 \boxminus 5$	9^{4}	$18 \square 9$
$9 \square 0$	$7 \square 8$	16	$31 \square 2$
4	$7 \square$		
5	$9 \square 3$	25	$46 \square 5$

The normal equations are $5 b \square 10 m \square 435$ and
$10 b \square 30 m \square 894 \square 6$. The solutions are $m \square 2 \square 46$ and $b \square 82 \square 08$, so the required equation is $y \square 2 \square 46 x \square$ Q) $\square 1$
b. The estimated number of credit union members in 2013 is $f \square 5 \square \square 2 \square 46 \square 5 \square \square 82 \square 1 \square 94 \square 4$, or 944 million.

The normal equations are $5 b \square 15 m \square 423 \square 1$ and $15 b \square 55 m \square 1211$. Solving this system, we find $m \square \square 5 \square 83$ and $b \square 102 \square 11$. Thus, an equation of the least-squares line $\stackrel{\imath}{y} \square \square 5 \square 83 x \square 102 \square 11$.
b. The volume of first-class mail in 2014 is projected to be $\square 5 \square 83 \square 8 \square \square 102 \square 11 \square 55 \square 47$, or approximately $55 \square 47$ pieces.

The normal equations are $5 b \square 10 m \square 174 \square 5$ and $10 b \square 30 m \square 376 \square 5$. The solutions are $\square 2 \square 75$ and
m $b \square 29 \square 4$, so $y \square 2 \square 75 x \square 29 \square 4$.
b. The average rate of growth of the number of subscribers from 2006 through 2010 was $2 \square 75$ million per year.

The normal equations are $6 b \square 15 m \square 33$ and $15 b \square 55 m \square 108 \square 7$. Solving this system, we find $\square 1 \square 50$
m and $b \square 1 \square 76$, so an equation of the least-squares line is $y \square 1 \square 5 x \square 1 \square 76$.
b. The rate of growth of video advertising spending between 2011 and 2016 is approximated by the slope of the least-squares line, that is $\$ 1 \square 5$ billion $\square \mathrm{yr}$.
21. a.

x	y	x^{2}	$x y$
0	$6 \square$	0	0
1	$6 \square 8$	1	$6 \square 8$
2	$7 \square 1$	4	$14 \square 2$
3	$7 \square 4$	9	$22 \square 2$
4	$7 \square 6$	16	$30 \square 4$
Sum	10	$35 \square 3$	30

22. a.

x	y	x^{2}	$x y$
0	$12 \square 9$	0	0
1	$13 \square 9$	1	$13 \square 9$
2	$14 \square 65$	4	$29 \square 3$
3	$15 \square 25$	9	$45 \square 75$
4	$15 \square 85$	16	$63 \square 4$
Sum	10	$72 \square 55$	30

The normal equations are $5 b \square 10 m \square 35 \square 3$
$10 b \square 30 m \square 73 \square 6$. The solutions are $m \square 0 \square 3$ and $b \square$ $6 \square 46$, so the required equation is $y \square 0 \square 3 x \square 6 \square 46$.
b. The rate of change is given by the slope of the least-squares line, that is, approximately $\$ 0 \square 3$ billion $\square \mathrm{yr}$.

The normal equations are $5 b \square 10 m \square 72 \square 55$ and $10 b \square 30 m \square 152 \square 35$. The solutions are $m \square 0 \square 725$ and $b \square 13 \square 06$, so the required equation is $y \square 0 \square 725 x \square$ $13 \sqcap 06$
b. $y \square 0 \square 725 \square 5 \square \square 13 \square 06 \square 16 \square 685$, or approximately $\$ 16 \square 685$ million.
23. a. We summarize the data at right. The normal equations are
$6 b \square 39 m \square 195 \square 5$ and $39 b \square 271 \square 1309$. The solutions are $b \square 18 \square 38$ and $m \square 2 \square 19$, so the required least-squares line is given by $y \square 2 \square 19 x \square 18 \square 38$.
b. The average rate of increase is given by the slope of the least-squares line, namely $\$ 2 \square 19$ billion $\square \mathrm{yr}$.
c. The revenue from overdraft fees in 2011 is $y \square 2 \square 19 \square 11 \square \square 18 \square 38 \square 42 \square 47$, or approximately $\$ 42 \square 47$ billion.

x	y	x^{2}	$x y$
4	$27 \square 5$	16	110
5	29	25	145
6	31	36	186
7	34	49	238
8	36	64	288
	9	38	81
	342		
Sum	39	$195 \square 5$	271

24. a.

x	y	x^{2}	$x y$
0	$15 \square 9$	0	0
10	$16 \square 8$	100	168
20	$17 \square 6$	400	352
30	$18 \square 5$	900	555
40	$19 \square 3$	1600	772
	50	$20 \square 3$	2500
	1015		
Sum	150	$108 \square 4$	5500

The normal equations are $6 b \square 150 m \square 108 \square 4$ and $150 b \square 5500 m \square 2862$. The solutions are $b \square 15 \square 90$ $m \square 0 \square 09$, so $y \square 0 \square 09 x \square 15 \square 9$.
b. The life expectancy at 65 of a male in 2040 is $y \square 0 \square 09 \square 40 \square \square 15 \square 9 \square 19 \square 5$, or $19 \square 5$ years.
c. The life exnectancy at 65 of a male in 2030 is $y \square 0 \square 09 \square 30 \square \square 15 \square 9 \square 18 \square 6$, or $18 \square 6$ years.
21. a.
25. a.

x	y	x^{2}	$x y$	
	0	60	0	0
2	74	4	148	
	4	90	16	360
	6	106	36	636
8	118	64	944	
10	128	100	1280	
	12	150	144	1800

26. a.

t	y	t^{2}	$t y$

0	$1 \square 38$	0		
	9	$1 \square 44$	1	$1 \square 44$
	2	$1 \square 49$	4	$2 \square 98$
	3	$1 \square 56$	9	$4 \square 68$
	4	$1 \square 61$	16	$6 \square 44$
	5	$1 \square 67$	25	$8 \square 35$
	6	$1 \square 74$	36	$10 \square 44$
	7	$1 \square 78$	49	$12 \square 46$
Sum	28	$12 \square 67$	140	$46 \square 79$

The normal equations are $5 b \square 10 m \square 35 \square 3$ The normal equations are $7 b \square 42 m \square 726$ and $42 b \square 364 m \square 5168$. The solutions are $m \square 7 \square 25$ and $b \square 60 \square 21$, so the required equation is $y \square 7 \square 25 x \square 60 \square 21$.
b. $y \square 7 \square 25 \square 11 \square \square 60 \square 21 \square 139 \square 96$, or $\$ 139 \square 96$ billion.
c. $\$ 7 \square 25$ billion $\square \mathrm{yr}$.

The normal equations are $8 b \square 28 m \square 12 \square 67$ and $28 b \square 140 \square 46 \square 79$. The solutions are $\square 0 \square 058$ and m
$b \square 138$, so the required equation is $y \square 0 \square 058 t \square 138$.
b. The rate of change is given by the slope of the least-squares line, that is, approximately $\$ 0 \square 058$ trillion $\square \mathrm{yr}$, or $\$ 58$ billion $\square \mathrm{yr}$.
c. $y \square 0 \square 058 \quad \square \quad \square 1 \square 96$, or $\$ 1 \square 96$ trillion.
$\begin{array}{cl}\text { c. } y \square 0 \square 058 & \square \\ \square 10 \square & 1 \square 38\end{array}$

27. False. See Example 1 on page 56 of the text.

28. True. The error involves the sum of the squares of the form $\quad f \square x_{i} \square \quad y_{i}{ }^{\square}$, where f is the least-squares function and y_{i} is a data point. Thus, the error is zero if and only if $f \square x_{i} \square \square y_{i}$ for each $1 \square i \square n$.
29. True.
30. True.

Technology Exercises page 67

1. $y \square 2 \square 3596 x \square 3 \square 8639$
2. $y \square 1 \square 4068 x \square 2 \square 1241$
3. $y \square \square 1 \square 1948 x \square 3 \square 5525$
4. $y \square \square 2 \square 07715 x \square 5 \square 23847$
5. a. $22 \square 3 x \square 143 \square 5$
b. $\$ 22 \square 3$ billion $\square \mathrm{yr}$
c. $\$ 366 \square 5$ billion
6. a. $0 \square 305 x \square 0 \square 19$
b. $\$ 0 \square 305$ billion $\square \mathrm{yr}$
c. $\$ 3 \square 24$ billion
7. a. a. $y \square 1 \square 5857 t \square 6 \square 6857$ b. $\$ 19 \square 4$ billion
8. a. $y \square 1 \square 751 x \square 7 \square 9143$ b. $\$ 22$ billion

The normal equations are $5 b \square 10 m \square 35 \square 3.70 \square 7 \%$
10. a. $y \square 46 \square 6 x \square 495$
b. $\$ 46 \square 60 \square$ buyer $\square \mathrm{yr}$

CHAPTER 1 Concept Review Questions page 68

1. ordered, abscissa (x-coordinate), ordinate (y-coordinate)
2. a. $x-, y-$
b. third
3. $\square c \square a \square^{2} \square \square d \square b \square^{2}$
4. a. $\frac{y_{2} \square y_{1}}{x_{2} \square x_{1}}$
b. undefined
c. zero
d. positive
5. $m_{1} \square m_{2}, m_{1} \square \square \frac{1}{m_{2}}$
6. $\square x \square a \square^{2} \square \square y \square b \square^{2} \square r^{2}$
a. $y \square y_{1} \square m \square x \square x_{1} \square$, point-slope
b. $y \square m x \square b \square$ slope-intercept
7. a. $A x \square B y \square C \square 0$, where A and B are not both zero
b. $\square a \square b$
8. $m x \square b$
9. a. price, demanded, demand
b. price, supplied, supply
10. break-even
11. demand, supply

CHAPTER 1 Review Exercises page 69

1. The distance is d \square

2. The distance is d $\square 2 \square 6 \square^{2} \square \square 6 \square 9 \square^{2}$ $\square \square \square \square \square^{2} \square \square$ $\square 3 \square^{2} \square^{\square} 25 \square 5$.
3. The distance is $\left.d \square \square \overline{[1 \square \square \square 2 \square]^{2} \square[\square 7 \square \square \square 3} \square\right]^{2} \square 3^{2} \square \square \square 4 \square^{2} \square \quad 9 \square 16 \square \square 25 \square 5$.
4. The distance is d

5. Substituting $x \square \square 1$ and $y \square \square \frac{5}{4}$ into the $\overline{\text { left-hand side of the equation gives } 6 \square \square 1 \square \square \square^{5} \square 16 \square \square 12 \text {. The }}$ 8
equation is not satisfied, and so we conclude that the point $\quad 1 \square \square^{5} \quad$ does not lie on the line $6 x \square 8 y \square 16 \square 0$.
4
6. An equation is $x \square \square 2$.
7. An equation is $y \square 4$.

	$5 \square \square \square \square$	5

$y \square \square \frac{1}{10} x \square \frac{19}{5}$. The general form of this equation is $x \square 10 y \square 38 \square 0$.
9. The line passes through the points $\square \square 2 \square 4 \square$ and $\square 3 \square 0 \square$, so its slope is $\frac{4 \square 0}{\square 2 \square 3} \square \square \frac{4}{5}$. An equation is
$m \square$

$$
y \square 0 \square \square \frac{4}{5} \square x \square 3 \square \text {, or } y \square \stackrel{4}{\unlhd}_{5} x \stackrel{12}{2}_{5} .
$$

10. Writing the given equation in the form $y \square \frac{5}{2} x \square 3$, we see that the slope of the given line is $\frac{5}{2}$. Thus, an equation is $y \square 4 \square \frac{5}{2} \square x \square 2 \square$, or $y \square_{2}{ }^{5} x \square 9$. The general form of this equation is $5 x \square 2 y \square 18 \square 0$.
11. Writing the given equation in the form $y \square \square \frac{4}{3} x \square 2$, we see that the slope of the given line is $\square \frac{4}{3}$. Therefore, the slope of the required line is $\frac{3}{4}$ and an equation of the line is $y \square 4 \square \frac{3}{4} \square x \square 2 \square$, or $y \square_{4}{ }^{3} x \square_{\frac{2}{2}}{ }^{11}$.
12. Using the slope-intercept form of the equation of a line, we have $y \square \square \frac{1}{2} x \square 3$.
13. Rewriting the given equation in slope-intercept form, we have $\square 5 y \square \square 3 x \square 6$, or $y \square \frac{3}{5} x \square \frac{6}{5}$. From this equation, we see that the slope of the line is $\frac{3}{5}$ and its y-intercept is $\square \frac{6}{5}$.
14. Rewriting the given equation in slope-intercept form, we have $4 y \square \square 3 x \square 8$, or $y \square \square \frac{3}{4} x \square 2$, and we conclude that the slope of the required line is $\square \frac{3}{4}$. Using the point-slope form of the equation of a line with the point $\square 2 \square$ $3 \square$ and slope $\square \frac{3}{3}$, we obtain $y \square 3 \sqcup \sqcup \frac{3}{6} \square \square 2 \square$, so $y \quad-{ }^{3} x \square \square 3 \square \square^{-} x \square^{-}$. The general form of this equation is $3 x \square 4 y \square 18 \square 0$.
15. The slope of the line joining the points $\square \square 3 \square 4 \square$ and $\square 2 \square 1 \square$ is $\frac{1 \square 4}{\square \quad 3} \square \frac{3}{\square}$. Using the point-slope 2

5
form of the equation of a line with the point $\square \square 1 \square 3 \square$ and slope $_{5}{ }^{3}$, we have $y \square 3 \square 5 \quad[x \square \square \square 1 \square$], so $y \square \square \frac{3}{5} \square x \square 1 \square \square 3 \square \frac{3}{5}{ }_{5} x \stackrel{12}{5}{ }_{5}$.
16. Rewriting the given equation in the slope-intercept form $y \square \frac{2}{3} x \square 8$, we see that the slope of the line with this equation is $\frac{2}{3}$. The slope of the required line is $\square \frac{3}{2}$. Using the point-slope form of the equation of a line with the point $\square \square 2 \square \square 4 \square{\text { and slope- } \square_{2}^{3}}^{3}$, we have $y \square \square \square 4 \square \square_{2}^{3} \square \quad[x \square \square \square 2 \square]$, or $\begin{gathered}3 \\ y \\ 2\end{gathered} \square \square x \square 7$. The general form of equation is $3 x \square 2 y \square 14 \square 0$.
17. Substituting $x \square 2$ and $y \square \square 4$ into the equation, we obtain $2 \square 2 \square \square k \square \square 4 \square \square \square 8$, so $\square 4 k \square \square 12$ and $k \square 3$.
18. $f \square 1 \square \square m \square 1 \square \square b \square 3$ and $f \square 3 \square \square m \square 3 \square \square b \square \square 2$. The first equation gives $b \square 3 \square m$. Substituting this into the
second equation gives $3 m \square \square 3 \square m \square \square \square 2$, so $2 m \square \square 5$ and $m \square \overline{2}^{5}$. Thus, $b \square 3 \quad \begin{gathered}5 \\ \square \\ \square \overline{2}^{11} \square \overline{2}\end{gathered}$.

19. Setting $x \square 0$ gives $y \square \square 6$ as the y-intercept.
 Setting $y \square 0$ gives $x \square 8$ as the x-intercept.

20. Setting $x \square 0$ gives $5 y \square 15$, or $y \square 3$. Setting $y \square 0$ gives $\square 2 x \square 15$, or $x \square \square \frac{15}{2}$.

21. In 2015 (when $x \square$ 5), we have $S \square 5 \square \square 6000 \square 5 \square \square 30,000 \square 60,000$.
22. Let x denote the time in years. Since the function is linear, we know that it has the form $f \square x \square \square m x \square b$.
a. The slope of the line passing through $\square 0 \square 2 \square 4 \square$ and $\square 5 \square \quad \frac{7 \square 4 \square 2 \square 4}{5}$ 1. Since the line passes through
$7 \square 4 \square$ is m $7 \square 4 \square$ is m
$\square 0 \square 2 \square 4 \square$, we know that the y-intercept is $2 \square 4$. Therefore, the required function is $f \square x \square \square x \square 2 \square 4$.
b. In 2013 (when $x \square$ 3), the sales were $f \square 3 \square \square 3 \square 2 \square 4 \square 5 \square 4$, or $\$ 5 \square 4$ million.
23. The slope of the line segment joining A and B is given by $m_{1} \square \frac{3 \square 1}{5 \square 1} \square \frac{2}{4} \square \frac{1}{2}$. The slope of the line segment joining B and C is $m_{2} \square \frac{5 \square 3}{4 \square 5} \square \frac{2}{\square 1} \square \square 2$. Since $m_{1} \square \square 1 \square m_{2}, \square A B C$ is a right triangle.
a
a
24. a. $D \square \square \square \square \frac{150}{} \square$. The given equation can be expressed in the form $y \square m x \square b$, where $m \square \frac{\square}{150}$ and $b \square 0$.
b. If $a \square 500$ and $\square \square 35, D \square 35 \square \square_{150}^{500} \square 35 \square \square \frac{116^{2}}{}$, or approximately 117 mg .
25. Let V denote the value of the building after t years.
a. The rate of depreciation is $\square \frac{\square V}{\square t} \square \frac{6,000,000}{30} \square 200,000$, or $\$ 200,000 \square$ year.
b. From part a, we know that the slope of the line is $\square 200,000$. Using the point-slope form of the equation of a line, we have $V \square 0 \square \square 200,000 \square t \square 30 \square$, or $V \square \square 200,000 t \square 6,000,000$. In the year 2020 (when $t \square 10$), we have $V \square \square 200,000 \square 10 \square \square 6,000,000 \square 4,000,000$, or $\$ 4,000,000$.
26. Let V denote the value of the machine after t years.
a. The rate of depreciation is $\square \frac{\square V}{\square t} \square \frac{300,000 \square 30,000}{12} \square \frac{270,000}{12} \square 22,500$, or \$22,500 \square year.
b. Using the point-slope form of the equation of a line with the point $\square 0 \square 300000 \square$ and $m \square \square 22,500$, we have $V \square 300,000 \square \square 22,500 \square t \square 0 \square$, or $V \square \square 22,500 t \square 300,000$.
27. Let x denote the number of units produced and sold.
a. The cost function is $C \square x \square \square 6 x \square 30,000$.
b. The revenue function is $R \square x \square \square 10 x$.
c. The profit function is $P \square x \square \square R \square x \square \square C \square x \square \square 10 x \square \square 30,000 \square 6 x \square \square 4 x \square 30,000$.
d. $P \square 6000 \square \square 4 \square 6000 \square \square 30,000 \square \square 6,000$, a loss of $\$ 6000$; $P \square 8000 \square \square 4 \square 8000 \square \square 30,000 \square 2,000$, a profit of
\$2000; and $P \square 12,000 \square \square 4 \square 12,000 \square \square 30,000 \square 18,000$, a profit of $\$ 18,000$.
28. a. The graph of f is the line L passing through $\square 0 \square 23 \square 4 \square$ and $\square 4 \square 25 \square 2 \square$. The $\quad \frac{25 \square 2 \square}{23 \square 4} \square 0 \square 45$, so an
slope of L is
equation of L is $y \square 23 \square 4 \square 0 \square 45 \square t \square 0 \square$, or $y \square 0 \square 45 t \square 23 \square 4$. Thus, $f \square t \square \square 0 \square 45 t \square 23 \square 4$.
b. The percentage is $f \square 6 \square \square 0 \square 45 \square 6 \square \square 23 \square 4 \square 26 \square 1$, or $26 \square 1 \%$.
29. a, b.
y (\$millions)

c. The slope of L is \qquad $\square 182$, so an equation of L is $y \square 887 \square 182 \square t \square 0 \square$ or $y \square 182 t \square 887$.
d. The amount consumers are projected to spend on Cyber Monday, $2014(t \square 5)$ is $182 \square 5 \square \square 887$, or $\$ 1 \square 797$ billion.
30. The slope of the demand curve is $\begin{array}{cc}\square p & 10 \\ \square x \\ \square \frac{\square}{200}\end{array}$
the 05 . Using

31. The slope of the supply curve is $\square p \quad 100 \square 50 \quad 50 \quad 1$. Using the point-slope form of the equation of a $\overline{\square x} \square \overline{2000 \square 200} \square \overline{1800} \square \overline{36}$
 or $36 p \square x \square 1600 \square 0$.
32. a.

b. The highest price is $\$ 40$ per unit.
c. We solve the equation $\square 0 \square 02 x \square 40 \square 20$, obtaining $x \square 1000$. Thus, the quantity demanded per week is 1000 units.
b. The lowest price is $\$ 10$ per unit.
c. We solve the equation $10 \square 20$, obtaining $x \square 250$. $0 \square 04 x$

Thus, the supplier will make 250 headphones available per week.
34. We solve the system $3 x \square 4 y$
y $7,2 x \square 5 y$ 11. Solving the first equation for x, we have $3 x$ $\square \square 4 y \square 6$ and $x \square \square \frac{4}{3} y \square 2$. Substituting this value of x into the second equation yields $2 \square \frac{4}{3} y \square 2 \square 5 y \square \square 11$, so

[^0]35. We solve the system $y \square \frac{3}{4} x \square 6,3 x \square 2 y \square \square 3$. Substituting the first equation into the second equation, we have $3 x \square 2 \underset{4}{-3} x \square 6 \square \square 3,3 x \square \frac{3}{2} x \square 12 \square \square 3, \frac{3}{2} x \square 9$, and $x \square 6$. Substituting this value of x into the first equation, we have $y \square \frac{3}{4} \square 6 \square \square 6 \square_{2}^{21}$. Therefore, the point of intersection is $\quad \frac{G}{2}{ }^{21}$.
36. Setting $C \square x \square \square R \square x \square$, we have $12 x \square 20,000 \square 20 x, 8 x \square 20,000$, and $x \square 2500$. Next, $R \square 2500 \square \square 20 \square 2500 \square \square 50,000$, and we conclude that the break-even point is $\square 2500 \square$ $50000 \square$.
37. We solve the system $3 x \square p \square 40,2 x \square p \square \square 10$. Solving the first equation for p, we obtain $p \square 40 \square 3 x$. Substituting this value of p into the second equation, we obtain $2 x \square \square 40 \square 3 x \square \square \square 10,5 x \square 40 \square \square 10,5 x \square 30$, and $x \square 6$. Next, $p \square 40 \square 3 \square 6 \square \square 40 \square 18 \square 22$. Thus, the equilibrium quantity is 6000 units and the equilibrium price is $\$ 22$.
38. a. The slope of the line is $m \square \frac{1 \square 0 \square 5}{4 \square 2} \square 025$. Using the point-slope form of an equation of a line, we have $y \square 1 \square 0 \square 25 \square x \square 4 \square$, or $y \square 0 \square 25 x$.
b. $y \quad 0 \square 25 \square 6 \square 4 \square \square 1 \square 6$, or 1600 applications.
39. We solve the system of equations $2 x \square 7 p \square 1760 \square 0,3 x \square 56 p \square 2680 \square 0$. Solving the first equation for x yields $x \square \square \frac{7}{2} p \square 880$, which when substituted into the second equation gives $3 \square \frac{7}{2} p \square 880 \square \square 56 p \square 2680 \square 0$, 21 10,640
$\square \frac{{ }_{2}}{} p \square 2640 \square 56 p \square \square 2680, \square 21 p \square 5280 \square 112 p \square \square 5360, \square 133 p \square \square 10,640$, and $p \square \quad 133 \quad \square 80$.

Substituting this value of p into the expression for x, we find $x \square \square{ }_{2} \square 80 \square \square 880 \square 600$. Thus, the equilibrium quantity is 600 refrigerators and the equilibrium price is $\$ 80$.
40. a.

	x	y	x^{2}	$x y$
	1	$87 \square 9$	1	$87 \square 9$
2	90	4	180	
3	$94 \square 2$	9	$282 \square 6$	
4	$97 \square 5$	16	390	
	5	$102 \square 6$	25	513
	6	$106 \square 8$	36	$640 \square 8$
Sum	21	579	91	$2094 \square 3$

The normal equations are $6 b \square 21 m \square 579$ and $21 b \square 91 m \square 2094 \square 3$. The solutions are $m \square 3 \square 87$ and $\underset{8 \rightarrow \square 94}{b} \square 92 \square$, so the required equation is $y \square 3 \square 87 x \square$
b. The FICA wage base for the year 2012 is given by $y \square 3 \square 17 \square 9 \square \square 82 \square 94 \square 117 \square 77$, or $\$ 117,770$.
41. We solve the system $p \square \square 0 \square 02 x \square 40, p \square 0 \square 04 x \square 10$, obtaining $0 \square 04 x \square 10 \square \square 0 \square 02 x \square 40,0 \square 06 x \square 30$, $x \square 500$, and $p \square \square 0 \square 02 \square 500 \square \square 40 \square 30$. Thus, the equilibrium quantity is 500 units per week and the equilibrium price is $\$ 30$ per unit.
42. a.

x	y	x^{2}	$x y$
0	$19 \square 5$	0	0
10	20	100	200
20	$20 \square 6$	400	412
30	$21 \square 2$	900	636
40	$21 \square 8$	1600	872
	50	$22 \square 4$	2500
	1120		
Sum	150	$125 \square 5$	5500
	3240		

The normal equations are $6 b \square 150 \mathrm{~m} \square 125 \square 5$ and $150 b \square 5500 m \square 3240$. Solving, we obtain $b \square 19 \square 45$ $m \square 0 \square 0586$. Therefore, $y \square 0 \square 059 x \square 19 \square 5$.
b. The life expectancy at 65 of a female in 2040 is $y \square 0 \square 059 \square 40 \square \square 19 \square 5 \square 21 \square 86$, or $21 \square 9$ years.
c. The life expectancy at 65 of a female in 2030 is $v \quad 0 \sqcap 059 \sqcap 30 \square \quad 19 \square 5 \quad 71 \sqcap 77$ or $71 \sqcap 3$ vears. The gives a life expectancy of $21 \square 2$ years.

CHAPTER 1 Before Moving On... page 71

1.

2. Solving the equation $3 x \square y \square 4 \square 0$ gives $y \square 3 x \square 4$, and this tells us that the slope of the second line is 3 . Therefore, the slope of the required line is $m \square 3 \square$ It equation is $y \square 1 \square 3 \square x \square 3 \square$, or $y \square 3 x \square 8$. is $\frac{5 \square 2}{3 \square 1} \square \frac{\underline{3}}{2}$. Solving
$2 x \square 3 y \square 10$ gives $y \square \square \frac{2}{3} x \square \frac{10}{3}$, and the slope of the line with this equation is $m_{2} \square \square{ }_{3}^{2} \square \square \frac{1}{m_{1}}$. Thus, the two lines are perpendicular.
4. a. The unit cost is given by the coefficient of x in $C \square x \square$; that is, $\$ 15$.
b. The monthly fixed cost is given by the constant term of $C \square x \square$; that is, $\$ 22,000$.
c. The selling price is given by the coefficient of x in $R \square x \square$; that is, $\$ 18$.
5. Solving $2 x \square 3 y \square \square 2$ for x gives $x \square \frac{3}{2} y \square 1$. Substituting into the second equation gives $9 \quad \frac{3}{2} y \square 1 \quad \square 12 y \square 25$,

6. We solve the equation $S_{1} \square S_{2}: 4 \square 2 \square 0 \square 4 t \square 2 \square 2 \square 0 \square 8 t$, so $2 \square 0 \square 4 t$ andt $\square 5$. So Lowe's sales will surpass 2

Best's in 5 years.

CHAPTER 1
 Explore \& Discuss

Page 4

1. Let $P_{1} \square \square 2 \square 6 \square$ and $P_{2} \square \square \square 4 \square 3 \square$. Then we have $x_{1} \square 2$, $y_{1} \square 6, x_{2} \square \square 4$, and $y_{2} \square 3$. Using Formula (1), we have $\overline{d \square \quad \square \square 4 \square 2 \square^{2} \square \square 3 \square 6 \square^{2} \square} 3 \overline{36} \square 9 \square^{-} 45 \square 3$ 5, as obtained in Example 1.
2. Let $P_{1} \square x_{1} \square y_{1} \square$ and $P_{2} \square x_{2} \square y_{2} \square$ be any two points in the plane. Then the result follows from the equality
$\overline{\square x_{2} \square x_{1} \square^{2} \square \square y_{2} \square} \quad \square \frac{x_{1} \square x_{2} \square^{2} \square \square y_{1} \square y_{2} \square^{2}}{}$.
$y_{1} \square^{2}$

Page 6

1. a. All points on and inside the circle with center $\square h \square k \square$ and radius r.
b. All points inside the circle with center $\square h \square k \square$ and radius r.
c. All points on and outside the circle with center $\square h \square k \square$ and radius r.
d. All points outside the circle with center $\square h \square k \square$ and radius r.
2. a. $y^{2} \square 4 \square x^{2}$, and so $y \square \square \overline{4 \square x^{2}}$.
b. i. The upper semicircle with center at the origin and radius 2 .
ii. The lower semicircle with center at the origin and radius 2 .

Page 12

Refer to the accompanying figure. Observe that triangles $\square P_{1} Q_{1} P_{2}$ and $\square P_{3} Q_{2} P_{4}$ are similar. From this we conclude that
$m \sqcup \overline{x_{2} \square x_{1}} \square \overline{x_{4} \square x_{3}}$. Because P_{3} and P_{4} are arbitrary, the conclusion follows.

Page 17
In Example 11, we are told that the object is expected to appreciate in value at a given rate for the next five years, and the equation obtained in that example is based on this fact. Thus, the equation may not be used to predict the value of the object much beyond five years from the date of purchase.

CHAPTER 1 Exploring with Technology

Page 15
1.

2.

Page 16
1.

The straight lines with the given equations are shown in the figure. Changing the value of m in the equation $y \square m x \square b$ changes the slope of the line and thus rotates it.

The straight lines L_{1} and L_{2} are shown in the figure.
a. L_{1} and L_{2} seem to be parallel.
b. Writing each equation in the slope-intercept form gives $y \square \square 2 x \square 5$ and $y \square \square \frac{41}{20} x \square \frac{11}{20}$, from which we see that the slopes of L_{1} and L_{2} are $\square 2$ and $\square \frac{41}{20} \square \square 2 \square 05$, respectively. This shows that L_{1} and L_{2} are not parallel.

The straight lines L_{1} and L_{2} are shown in the figure.
a. L_{1} and L_{2} seem to be perpendicular.
b. The slopes of L_{1} and L_{2} are $m_{1} \square \square \frac{1}{2}$ and $m_{2} \square 5$, respectively. Because $m_{1} \square \square \frac{1}{2} \square \square \frac{1}{5} \square \square \frac{1}{m_{2}}$, we see that L_{1} and L_{2} are not perpendicular.
2.

The straight lines of interest are shown in the figure. Changing the value of b in the equation $y \square m x \square b$ changes the y-intercept of the line and thus translates it (upward if $b \square 0$ and downward if $b \square 0$).
3. Changing both m and b in the equation $y \square m x \square b$ both rotates and translates the line.

Page 44
1.

Plotting the straight lines L_{1} and L_{2} andusing trace and zoom repeatedly, you will see that the iterations approach the answer $\square 1 \square 1 \square$. Using the intersection feature of the graphing utility gives the result $x \square 1$ and $y \square 1$ immediately.

Page 46
1.

The lines seem to be parallel to each other and do not appear to intersect.
2. Substituting the first equation into the second yields $3 x \square 2 \square \square 2 x \square 3$, so $5 x \square 5$ and $x \square 1$. Substituting this value of x into either equation gives $y \square 1$.
3. The iterations obtained using trace and zoom converge to the solution $\square 1 \square 1 \square$. The use of the intersection feature is clearly superior to the first method. The algebraic method also yields the desired result easily.
2.

They appear to intersect. But finding the point of intersection using trace and zoom with any degree of accuracy seems to be an impossible task. Using the intersection feature of the graphing utility yields the point of intersection $\square \square 40 \square \square 81 \square$ immediately.
3. Substituting the first equation into the second gives $2 x \square 1 \square 2 \square 1 x \square 3$, $\square 4 \square 0 \square 1 x$, and thus $x \square \square 40$. The corresponding y-value is $\square 81$.
4. Using trace and zoom is not effective. The intersection feature gives the desired result immediately. The algebraic method also yields the answer with little effort and without the use of a graphing utility.

2
 SYSTEMS OF LINEAR EQUATIONS AND MATRICES

2.1 Systems of Linear Equations: An Introduction

Concept Questions

1. a. There may be no solution, a unique solution, or infinitely many solutions.
b. There is no solution if the two lines represented by the given system of linear equations are parallel and distinct; there is a unique solution if the two lines intersect at precisely one point; there are infinitely many solutions if the two lines are parallel and coincident.

No solution

A unique solution

Infinitely many solutions
2. a. i. The system is dependent if the two equations in the system describe the same line.
ii. The system is inconsistent if the two equations in the system describe two lines that are parallel and distinct.
b.

Two (coincident) lines in a dependent system

Exercises

1. Solving the first equation for x, we find $x \square 3 y \square 1$. Substituting this value of x into the second equation yields $4 \square 3 y \square 1 \square \square 3 y \square 11$, so $12 y \square 4 \square 3 y \square 11$ and $y \square 1$. Substituting this value of y into the first equation gives $x \square 3 \square 1 \square \square 1 \square 2$. Therefore, the unique solution of the system is $\square 2 \square 1 \square$.
2. Solving the first equation for x, we have $2 x \square 4 y \square 10$, so $x \square 2 y \square 5$. Substituting this value of x into the second equation, we have $3 \square 2 y \square 5 \square \square 2 y \square 1,6 y \square 15 \square 2 y \square 1,8 y \square 16$, and $y \square 2$. Then $x \square 2 \square 2 \square \square 5 \square \square 1$. Therefore, the solution is $\square \square 1 \square 2 \square$.

[^0]: $\square_{\overline{3}} y \square 4 \square 5 y \square \square 11,_{\overline{3}} y \square \square 7$, and $y \square \square 3$. Thus, $x \square \square_{\overline{3}} \square \square 3 \square \square 2 \square 4 \square 2 \square 2$, so the point of intersection is
 $\square 2 \square \square 3 \square$.

