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15. (a) The isoclines have the form y = −x + c, which are straight                            3 
 

lines with slope −1.                                                                                       
2
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2 
(b)  The isoclines have the form x 

centered at the origin. 

2                                                                   y 
+ y  = c, which are circles 

2 

 
1

 
x 

–2        –1                          1       2 
 

–1 

 
–2 

 

 
 
 
 

16.  (a) When x = 0 or y = 4, dy/dx = −2 so the lineal elements have slope −2. When y = 3 or y 
 

= 5, dy/dx = x − 2, so the lineal elements at (x, 3) and (x, 5) have slopes x − 2. 

 
(b)  At (0, y0) the solution curve is headed down. If y → ∞ as x increases, the graph must 

eventually turn around and head up, but while heading up it can never cross y = 4 

where a tangent line to a solution curve must have slope −2. Thus, y cannot 
 

approach ∞ as x approaches ∞. 
 

1     2    ′       2                                                                                               y

17.  When y < 2 x , y  = x − 2y is positive and the portions of         3

solution curves “outside” the nullcline parabola are increasing.         2 

1     2    ′      2
When y > 2 x , y = x − 2y is negative and the portions of the         1

solution curves “inside” the nullcline parabola are decreasing. 0                                                                                                    x 

 
–1 

 
–2 

 
–3 

–3   –2    –1      0      1      2       3
 

 
 
 

18.  (a) Any horizontal lineal element should be at a point on a nullcline.  In Problem 1 the
2 

nullclines are x 
2 

− y   = 0 or y = ±x. In Problem 3 the nullclines are 1 − xy = 0 or y =

1/x. In Problem 4 the nullclines are (sin x) cos y = 0 or x = nπ and y = π/2 + nπ, 

where n is an integer. The graphs on the next page show the nullclines for the equations 

in Problems 1, 3, and 4 superimposed on the corresponding direction field. 

y                                                               y                                                                                       y 
3                                                                      4 
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2                                                                      
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–2           –1 

 
1            2 
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–1 

1  

  

 

 

′ 
(b)  An autonomous first-order differential equation has the form y 

 

= f (y). Nullclines have

the form y = c where f (c) = 0. These are the graphs of the equilibrium solutions of the 

differential equation. 
 

 
 
 

19.  Writing the differential equation in the form dy/dx = y(1 − y)(1 + y) we see that 

critical points are y = −1, y = 0, and y = 1. The phase portrait is shown at the 
right. 

1 
 

(a)          y                                                                (b)                                y 

5                                                                                                                                                                                 0 

4                                                                                                                            
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3                                                                                                                                                                               
–1 

2 

1                                                                                                                                                               x 
–2           –1                                1            2 

x 
1                             2 

 
(c)                                y                                      (d)            y 

 
x 

1                           2 
x                          –1 

–2 
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                                                                                               –4 
 

–5 
 

 

20.  Writing the differential equation in the form dy/dx = y 
2 
(1 − y)(1 + y) we see that

critical points are y = −1, y = 0, and y = 1. The phase portrait is shown at the 
right. 
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2 
21.  Solving y 

 

− 3y = y(y − 3) = 0 we obtain the critical points 0 and 3. From the

phase portrait we see that 0 is asymptotically stable (attractor) and 3 is unstable 
(repeller).                                                                                                                         3 

 
 
 

0 

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

2     3      2
22.  Solving y  −y = y (1−y) = 0 we obtain the critical points 0 and 1. From the phase

portrait we see that 1 is asymptotically stable (attractor) and 0 is semi-stable. 

1 

 
 
 

0 
 
 
 
 
 
 
 
 
 
 
 
 
 

4 
23.  Solving (y − 2) 

 

= 0 we obtain the critical point 2. From the phase portrait we see

that 2 is semi-stable. 
 

 
 

2
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2 
24.  Solving 10 + 3y − y 

 

= (5 − y)(2 + y) = 0 we obtain the critical points −2 and 5.

From the phase portrait we see that 5 is asymptotically stable (attractor) and −2 is 

unstable (repeller).                                                                                                           5 

 
 
 

–2 
 

 
 
 
 
 
 
 
 
 
 
 
 
 

2          2       2
25. Solving y (4 − y ) = y (2 − y)(2 + y) = 0 we obtain the critical points −2, 0, and

2. From the phase portrait we see that 2 is asymptotically stable (attractor), 0 is 
2 

semi-stable, and −2 is unstable (repeller). 
 

0 

                                          –2

 

 
 
 
 
 
26.  Solving y(2 − y)(4 − y) = 0 we obtain the critical points 0, 2, and 4. From the phase 

portrait we see that 2 is asymptotically stable (attractor) and 0 and 4 are unstable 
4 

(repellers). 
 

2 

 
 

0



 

 

27.  Solving y ln(y+2) = 0 we obtain the critical points −1 and 0. From the phase portrait 

we see that −1 is asymptotically stable (attractor) and 0 is unstable (repeller). 
0 

 

 
 

–1 
 

 
 

–2 

 
 
 
 
 
 

y 
28.  Solving ye 

y 
− 9y = y(e 

y 
− 9) = 0 (since e 

 

is always positive) we obtain the

critical points 0 and ln 9. From the phase portrait we see that 0 is asymptotically      1N 9 

stable (attractor) and ln 9 is unstable (repeller). 
 

                                                                    0 

 

 
29.  The critical points are 0 and c because the graph of f (y) is 0 at these points. Since f (y) > 0 

for y < 0 and y > c, the graph of the solution is increasing on the y-intervals (−∞, 0) and (c, 

∞). Since f (y) < 0 for 0 < y < c, the graph of the solution is decreasing on the y-interval (0, 

c). 
 

 
y 

 
 
 

C 
C 

 
 

 
0                                                                                                                x
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π 

 

 

30.  The critical points are approximately at −2, 2, 0.5, and 1.7. Since f (y) > 0 for y < −2.2 and 
 

0.5 < y < 1.7, the graph of the solution is increasing on the y-intervals (−∞, −2.2) and (0.5, 
 

1.7). Since f (y) < 0 for −2.2 < y < 0.5 and y > 1.7, the graph is decreasing on the y-interval 
 

(−2.2, 0.5) and (1.7, ∞). 
 
 
 

 
0.5 

y 

2 
1.7 

1 

 
x

 

 
 
 

–2.2 

–2     –1                   1    2 

–1 
 

–2

 
 

 
31.  From the graphs of z = π/2 and z = sin y we see that                              1 

 

π                                                       y 
–π                       –                                                    π             π 

we see that the critical points are −π/2, 0, and π/2.                           2                                     2 
–1 

 
 

 
From the graph at the right we see that 

 
 

< 0 
2 y     sin y 

 
for    y < −π/2                              π

π   −            > 0    for    y > π/2                                 2 
 

 

 2 
y    sin y 

 

 

> 0  for 

0 
 

 

− π/2 < y < 0                         –

π    −              < 0  for    0 < y < π/2                               
2
 

 

 
 
 
 

This enables us to construct the phase portrait shown at the right. From this portrait we 

see that π/2 and −π/2 are unstable (repellers), and 0 is asymptotically stable (attractor). 

32.  For dy/dx = 0 every real number is a critical point, and hence all critical points are noniso- 

lated. 
 

33.  Recall that for dy/dx = f (y) we are assuming that f and f 
′ 
are continuous functions of y on

some interval I. Now suppose that the graph of a nonconstant solution of the differential 

equation crosses the line y = c. If the point of intersection is taken as an initial condition we 

have two distinct solutions of the initial-value problem. This violates uniqueness, so the
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graph of any nonconstant solution must lie entirely on one side of any equilibrium solution. 

Since f is continuous it can only change signs at a point where it is 0. But this is a critical 

point. Thus, f (y) is completely positive or completely negative in each region Ri. If y(x) is 

oscillatory or has a relative extremum, then it must have a horizontal tangent line at some 

point (x0, y0). In this case y0 would be a critical point of the differential equation, but we 

saw above that the graph of a nonconstant solution cannot intersect the graph of the 

equilibrium solution y = y0. 
 

 
34.  By Problem 33, a solution y(x) of dy/dx = f (y) cannot have relative extrema and hence must 

′ 
be monotone. Since y (x) = f (y) > 0, y(x) is monotone increasing, and since y(x) is 

bounded above by c2, limx→∞ y(x) = L, where L ≤ c2. We want to show that L = c2. Since 
′ 

L is a horizontal asymptote of y(x), limx→∞ y (x) = 0. Using the fact that f (y) is continuous 
we have 

 

 
f (L) = f      lim  y(x)   = lim     f (y(x)) = lim   y′(x) = 0. 

x→∞                     x→∞                         x→∞ 

 
But then L is a critical point of f . Since c1 < L ≤ c2, and f has no critical points between c1 

and c2, L = c2. 
 

 
35.  Assuming the existence of the second derivative, points of inflection of y(x) occur where 

′′                                                                    2       2        ′
y (x) = 0. From dy/dx = f (y) we have d y/dx 

′ 
= f  (y) dy/dx. Thus, the y-coordinate of a

point of inflection can be located by solving f (y) = 0. (Points where dy/dx = 0 correspond

to constant solutions of the differential equation.) 
 

2 
36. Solving y 

 

− y − 6 = (y − 3)(y + 2) = 0 we see that 3 and −2                   y

are critical points. Now d y/dx = (2y − 1) dy/dx = (2y − 1)(y −                       5

3)(y + 2), so the only possible point of inflection is at y =          1      , 
2 

although the concavity of solutions can be different on either side
′′ 

of y = −2 and y = 3. Since y (x) < 0 for y < −2 and 
1       

< y < 3,                   
2                                                                                                                     x

and y (x) > 0 for −2 < y < 2    and y > 3, we see that solution                                           5 

  1

curves are concave down for y < −2 and 2    < y < 3 and concave

 

up for −2 < y <     2                                                                                                                                                                                                    –5 

autonomous differential equations will have the same y-coordinates 

because between critical points they are horizontal translations of 

each other. 
 

 

37.  If (1) in the text has no critical points it has no constant solutions. The solutions have 

neither an upper nor lower bound. Since solutions are monotonic, every solution assumes 

all real values.
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38. The critical points are 0 and b/a.  From the phase portrait we see that 0 is an 

attractor and b/a is a repeller.  Thus, if an initial population satisfies P0  > b/a, 

the population becomes unbounded as t increases, most probably in finite time,            
 b

 
 

a 

i.e. P (t) → ∞ as t → T . If 0 < P0 < b/a, then the population eventually dies out, 
that is, P (t) → 0 as t → ∞. Since population P > 0 we do not consider the case            0 

P0<0. 
 
 
 
 

 
39.  From the equation dP/dt = k (P − h/k) we see that the only critical point of the autonomous 

differential  equationis  the  positive  number  h/k.  A  phase  portrait  shows  that  this  point  is 

unstable, that is, h/k is a repeller. For any initial condition P (0) = P0 for which 0 < P0 < h/k, 

dP/dt < 0 which means P (t) is monotonic decreasing and so the graph of P (t) must cross 

the t-axis or the line P − 0 at some time t1 > 0. But P (t1) = 0 means the population is 

extinct at time t1. 
 
 
 

40.  Writing the differential equation in the form 

dv 

dt 

we see that a critical point is mg/k. 

k    mg 

=m     k  − v 
mg 

k

 

From the phase portrait we see that mg/k is an asymptotically stable critical point. 
Thus, lim v = mg/k. 

t→∞ 

 
 

41.  Writing the differential equation in the form 

dv       k mg k         mg                  mg 
2

dt   =m     k  − v =m         k  − v k   + v                                 mg 
k

 

we see that the only physically meaningful critical point is     mg/k. 
 

From the phase portrait we see that mg/k is an asymptotically stable critical 
point. Thus, lim v = mg/k. 

t→∞ 
 

 

42.  (a) From the phase portrait we see that critical points are α and β. Let X(0) = X0. 

If X0 < α, we see that X → α as t → ∞. If α < X0 < β, we see that X → α 

as t → ∞. If X0 > β, we see that X(t) increases in an unbounded manner,  β 

but more specific behavior of X(t) as t → ∞ is not known. 

 
α
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 x x  

   
2α 

 

 α α  

 α / 2   

–2/α 
t 

1 / α 
t 

 

 

 
 
 

(b)  When α = β the phase portrait is as shown.  If X0  < α, then X(t) → α 

as t → ∞. If X0 > α, then X(t) increases in an unbounded manner. This 
could happen in a finite amount of time. That is, the phase portrait does not 
indicate that X becomes unbounded as t → ∞. 

α 
 
 
 
 
 
 

(c) When k = 1 and α = β the differential equation is dX/dt = (α − X) 
2 

2 
. For X(t) = α − 1/(t +

c) we have dX/dt = 1/(t + c) and

 

 

2 
(α−X)  = 

    1       2         1        dX 

2

 

 

For X(0) = α/2 we obtain 

α−  α− t + c =(t + c) 
 

 
1 

= dt  .

 

 
 

For X(0) = 2α we obtain 

X(t) = α − t + 2/α . 
 

 
1 

 

X(t) = α − t − 1/α .
 

 

 
For X0 > α, X(t) increases without bound up to t = 1/α. For t > 1/α, X(t) increases but 

 
X → α as t → ∞. 

 

2.2      Separable Variables 
 

 
In many of the following problems we will encounter an expression of the form ln |g(y)| = f (x)+c. To

f (x)+c 
solve for g(y) we exponentiate both sides of the equation. This yields |g(y)| = e 

c  f (x) 
= e e 

 

which

c 
implies g(y) = ±e 

f (x) 
e 

c 
. Letting c1 = ±e 

f (x) 
we obtain g(y) = c1e     . 

1
1. From dy = sin 5x dx we obtain y = − 

 

2 

5 cos 5x + c. 

1              3

2. From dy = (x + 1) dx we obtain y = 3 (x + 1) + c.
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2 

t 

y 

 

−3x 1     −3x

3. From dy = −e 
 

1 

2 
4. From (y − 1) 

dx we obtain y = 
 
 
 

dy = dx we obtain − 

3 e 
 

1 
 

y − 1 

+ c. 
 
 
 

= x + c or y = 1 − 

 

 

1 
 

x + c .

1            4 
4

5. From y dy = x dx we obtain ln |y| = 4 ln |x| + c or y = c1x .

 

1                                          1                                             1

2 
6. From y 

 

dy = −2x dx we obtain − 
2 

y = −x 
 

+ c or y = 
2 

x  + c1   .

−2y 
7. From e 

 

y 

3x 
dy = e 
 

−x 

−2y 
dx we obtain 3e 
 

−3x 

3x 
+ 2e 
 

y 

 

= c. 
 

y      −x 

 

 
1=      −3x

8. From ye dy =  e    + e dx we obtain ye  − e  + e +   3 e = c. 

3

1                                                           2                                    x              1 
                         2                                                                                                                                                                           3

9. From     y + 2 +y dy = x  ln x dx we obtain 2 + 2y + ln |y| = 3  ln |x| − 9 x  + c.

 

1                      1                                  2             1
10. From            dy = 

(2y + 3) 
 

(4x + 5) 
2       
dx we obtain                         =              + c. 

2y + 3   4x + 5

 

 
11. From 

 

1                     1 

csc y dy   =   − sec
2 

x dx or sin y dy = 

 

 
2 

− cos 

 

 
x dx 

 
1 

=  −  2 (1 + cos 2x) dx we obtain

1                 1 

− cos y = − 2 x −
sin4  

s
3
in
x
2x + c   or  4 cos y = 2x + sin 2x + c1.                     

12.  From 2y dy = − 
 

 
3 

cos 

2 
dx or 2y dy = − tan 3x sec 

3x6
 

2       1 
3x dx we obtain y  = − 

2 
sec 3x + c.

 

13. From      ey         dy = 
x 

    −e     dx we obtain 
y        −1 

(e  + 1) 
x 

=  1     (e 
−2 

+ 1) 
 

+ c.

y       2 
(e  + 1) 

x       3 
(e  + 1)                        −                      2

14. From 
       y        

dy = 
      x         

dx we obtain  1 + y 2  1/2 =   1 + x 2    1/2 + c.
 

(1 + y2) 
  1 

1/2  

(1 + x2) 
1/2 
 

 
kr

15.  From S dS = k dr we obtain S = ce  .

 

   1                                                                                                                   kt
16. From Q    70 dQ = k dt we obtain ln |Q − 70| = kt + c or Q − 70 = c1e  . 

−
 

 
17. From  P 

P 

1 

P 2  dP = 
− 

1             1 

P +1    P 
P  − 

 

 

dP = dt we obtain ln |P | − ln |1 − P | = t + c so that 
t 

c1e

ln                         = t + c or                               = c1e
t
. Solving for P we have P =                                                                                        . 

1 − P                   1 − P                                                          1 + c1e 

1 

18. From 
t+2 

N dN =   tet+2 − 1 dt we obtain ln |N | = te 
t+2 

− e 
te 

T+2
 

− t + c or N = c1e 

T+2 
 

−e 

 

−t.
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19. From  y − 2 dy = x − 1   dx or   1       5    dy =    1−
 

y + 3        x + 4                 
− 

y + 3 
5 

 

     5     dx we obtain 
x + 4

x + 4  

x−y
y − 5 ln |y + 3| = x − 5 ln |x + 4| + c or y + 3 = c1e     .
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. 

2 

1       1                                         1 

 
 

20. From   y + 1 dy = x + 2 dx  or     1 +   2      dy =     1 +   5       dx we obtain 

y − 1         x − 3                      y − 1       2                x − 3 
y + 2 ln y  1 = x + 5 ln x  3 + c or         (y − 1)    = c e

x−y

| −  |                                                           | −  |                (x 

 
2 

3)
5              

1 

− 

−1                                  2

21. From x dx =     1        dy we obtain 1 x = sin y + c or y = sin     x   + c1  .

 

1 − y 
2 2                                                                                             2

1                 1                   ex                                                              1 
 

−1   x

22. From y dy = 

1 

e
x 

+ e x dx = 
− 

x 2 
(e ) + 1   dx we obtain − y = tan e  + c or

 
y = − 

 

−1  x 
tan    e  + c   .

    1   

23. From x
2 

+ 1 

 

−1 
dx = 4 dt we obtain tan 

 
x = 4t + c. Using x(π/4) = 1 we find c = −3π/4. The 

3π                                        3π

−1 
solution of the initial-value problem is tan 

 

x = 4t − 
 

4  or x = tan    4t −  4     .

1                      1               1            1 

2                   2 

1               1       1               1

24. From y − 1 dy = x  − 1 dx or 2       y − 1 −y + 1 dy = 2        x − 1 − x + 1 dx we obtain

ln y     1     ln y + 1  = ln x       1      ln x + 1 + ln c or  y − 1  = c(x − 1)   . Using y(2) = 2 we 
|−|−            |        |                |−|−   |        |                y + 1       x + 1 

find c = 1. A solution of the initial-value problem is    y − 1 =   x − 1  or y = x. 
y + 1                                                                                                x + 1 

 

−1/x 
25. From 1  dy =   1 − x  dx =                  dx we obtain ln y   =            ln x    = c or xy = c1e      .

y            x
2 

2 
x  − x        −1

 
− 

| |       x   −    | |  
−1−1/x

Using y( 
− 

1) = 
−              

1 we find c1 = e
 

−(1+1/x) 

. The solution of the initial-value problem is xy = e

or y = e /x.  
−2t

26. From     1      dy = dt we obtain     1  ln 1 

1 −  2y                                    − 2   | 

2y = t + c or 1 

−    | 

2y = c1e 

−  1 

. Using y(0) = 5/2 we

−2t 
find c1 = −4. The solution of the initial-value problem is 1 − 2y = −4e 

 

27.  Separating variables and integrating we obtain 

−2t 
or y = 2e 

 

+ 2 .

     dx          dy   
 

−1            −1

√         2 − 
1 − x 

 

1 − y 
2  = 0  and  sin x − sin y = c.

√   
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2 

2 

Setting x = 0 and y = 3/2 we obtain c = −π/3. Thus, an implicit solution of the initial-value
−1 

problem is sin 
−1 

x − sin 
 

y = π/3. Solving for y and using an addition formula from

trigonometry, we get 
 

√  √
−1 

y = sin sin    x + π    = x cos  π 
3                    3 

+   1      x 

− 
sin   π    =x 

3      2 
+     3    1 − x      . 

2
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4 

 

28.From 
1                    −x 

dy =   
 

dx we obtain

1 + (2y)2 1 + (x2)2

 

 

1                              1 
−1                      −1   2 

 

−1               −1   2

2 tan 2y = − 2 tan x  + c or  tan 2y + tan x  = c1.

 

 
 

Using y(1) = 0 we find c1 = π/4. Thus, an implicit solution of the initial-value problem is

−1 
tan 

−1 
2y + tan 

2 
x  = π/4 . Solving for y and using a trigonometric identity we get

 
 

π 
−1   2

2y = tan 4 − tan    x

1                π 

−1   2
y = 2 tan 4 − tan    x 

2

π   
− tan (tan

−1 
x ) = 1  tan 4             

π 

−1  2 
2   1 + tan 4 tan (tan    x ) 

2 
1 1 − x 

=            . 
2 1 + x2 

 
 
 

 
29.  Separating variables and then proceeding as in Example 5 we get 

 
 

    dy 
dx 

1 dy 

 

−x2
 

= ye 
 

2

 
y dx 

 

x  1  dy 

= e−x 

ˆ 
x 

2

ˆ  4   y(t) dt dt =   4 

ˆ 
x            x 

e−t  dt

ln y(t)  = 

ˆ 4 
x 

2 

e−t  dt

ln y(x) − ln y(4) =        e
−t2 dt 

4 

ˆ x 

ln y(x) =          e
−t2 dt 

4 

´X        2 
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e−T    dt 
y(x) = e 4



 

ˆ 

2 

30.  Separating variables and then proceeding as in Example 5 we get 
 
 
 
 

 

  dy    2          2
dx 
1 dy 

= y  sin (x )

        = sin 
2 

(x2) y  dx 
x     1   dy            x

 
2

ˆ     y (t) dt 

−2
 

dt =ˆ 

−2
 

sin (t ) dt

 

−1  
x
 

ˆ x 
=    sin (t2) dt

y(t) −2 

−1  +    1     = 

−2 

x 
sin (t2) dt

y(x) y(−2)       −2

y(x)            ˆ  x 

−1    + 3 =      sin (t 

−2 

2 
) dt

 

y(x) =  3 − 
ˆ x 

sin (t2) dt −1

−2 
 

 
 
 
 
 
 
 
 

31.  Separating variables we get 
 

dy = 2x + 1 

dx        2y 
 

2y dy = (2x + 1) dx 
 

ˆ               ˆ 
2y dy =     (2x + 1) dx 

2      2 
y  = x 

 

+ x + c

 
 
 

√ 
2           2                                 2

The condition y(−2) = −1 implies c = −1. Thus y 
order for y to be negative. Moreover for an interval 

= x  + x − 1 and y = − x + x − 1 in

 
2 

x  + x − 1 > 0 we get  −∞, − 

 

 1          √5 

2  −    2    . 

containing −2 for values of x such that



 

32. Separating variables we get 
 

dy 
2

(2y − 2) dx = 3x 
 

2 

+ 4x + 2

(2y − 2) dy =  3x + 4x + 2  dx

ˆ                 ˆ 
(2y − 2) dy = 

 

ˆ                  ˆ 
2 (y − 1) dy = 

 
2 

3x  + 4x + 2  dx 

 
2 

3x  + 4x + 2  dx

 

2      3 
(y − 1)  = x 

 

2 
+ 2x 

 
+ 2x + c 

√    
3        2

The condition y(1) = −2 implies c = 4. Thus y = 1 − x + 2x + 2x + 4 where the minus sign

3 
is indicated by the initial condition. Now x 

2 
+ 2x 

2 
+ 2x+ 4 = (x + 2) x 

 

+ 1 > 0 implies

x > −2, so the interval of definition is (−2, ∞). 
 

33.  Separating variables we get 
y            −x 

e  dx − e 

y 
e 

x 
e 

 

dy = 0 

−x 
dx = e    dy 

−y 
dx = e    dy 

ˆ  −y
ˆ   ex dx = 

x 

e   dy 

−y

e  = −e    + c 
−y 

The condition y(0) = 0 implies c = 2. Thus e 
x 

= 2 − e 
x 

. Therefore y = − ln (2 − e 
 

). Now

x 
we must have 2 − e 

x 
> 0 or e 

x 
< 2. Since e 

 

is an increasing function this imples x < ln 2

and so the interval of definition is (−∞, ln 2). 
34.  Separating variables we get 

 
sin x dx + y dy = 0 

 

ˆ                  ˆ             ˆ 
sin x dx +    y dy =     0 dx 

 

1    2
− cos x + 2 y  = c 

1 

 

 
1   2         1        2

The condition y(0) = 1 implies c = − .       Thus − cos x + y   = − or y = 2 cos x − 1.

√                                                                       2                                                             2                 2 

Therefore y = 2 cos x − 1 where the positive root is indicated by the initial condition. Now 

1
we must have 2 cos x − 1 > 0 or cos x > 

 

of definition is (−π/3, π/3). 

2 . This means −π/3 < x < π/3, so the the interval

 

35. (a) The equilibrium solutions y(x) = 2 and y(x) = −2 satisfy the initial conditions y(0) = 2
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e      = 23 − e . 

 

 

1                                             4x              4x
and y(0) = −2, respectively. Setting x = 
obtain 

4 and y = 1 in y = 2(1 + ce )/(1 − ce ) we

1 + ce                                                                            1 
 

1 = 2 1 − ce ,  1 − ce = 2 + 2ce,     −1 = 3ce,       and  c = −3e . 
The solution of the corresponding initial-value problem is 

 

y = 2 
1 − 

 

1 + 

1 

3       4x−1                     4x−1 
1 

3 e4x−1         3 + e4x−1

(b)  Separating variables and integrating yields 

1 

4 ln |y − 2| − 

1 

4 ln |y + 2| + ln c1    = x

 

ln |y − 2| − ln |y + 2| + ln c = 4x 
 

ln   c(y − 2)  = 4x 
y + 2 

 

y  −  2      4x
c   y  + 2 = e    .

4x 
Solving for y we get y = 2(c + e 

4x 
)/(c − e 

 

). The initial condition y(0) = −2 implies 2(c

+ 1)/(c − 1) = −2 which yields c = 0 and y(x) = −2. The initial condition y(0) = 2 does 

not correspond to a value of c, and it must simply be recognized that y(x) = 2 is a 
1                                           4x            4x

solution of the initial-value problem. Setting x = 4 and y = 1 in y = 2(c + e )/(c − e   )

leads to c = −3e. Thus, a solution of the initial-value problem is 
4x 

y = 2−3e + e   = 2  3 − e4x−1  
. 

4x
 

36. Separating variables, we have 

−3e − e 3 + e4x−1

dy         dx 

2 
y  − y   = x 

 

 
or       ˆ 

dy 
 

y(y − 1) 

 

 
= ln |x| + c.

Using partial fractions, we obtain 
 

ˆ       1      1       dy = ln x     + c 
y    1 

−      
y                          | | 

− 
 

ln |y − 1| − ln |y| = ln |x| + c 
 

ln  y − 1   = c 
xy

 

c 
y − 1    = e 
xy 

 
= c1.

 

Solving for y we get y = 1/(1 − c1x). We note by inspection that y = 0 is a singular solution 

of the differential equation.
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1 

 
 

 
 
 

 

 
 

 
–0.004 –0.002 
 

 
0.98 

0.002  0.004 

 

   

   
 

 

 

(a)  Setting x = 0 and y = 1 we have 1 = 1/(1 − 0), which is true for all values of c1. Thus, 

solutions passing through (0, 1) are y = 1/(1 − c1x). 

 

(b)  Setting x = 0 and y = 0 in y = 1/(1 − c1x) we get 0 = 1. Thus, the only solution passing 

through (0, 0) is y = 0. 
 

(c)  Setting x = 
1 
2  and y = 

1 
2  we have 

1 
2 = 1/(1 − 

1 
2 c1), so c1 = −2 and y = 1/(1 + 2x).

 

(d) Setting x = 2 and y = 
3 

1 
4 we have 

1 
4 = 1/(1 − 2c1), so c1 = − 

3 
2  and

y = 1/(1 + 2 x) = 2/(2 + 3x).

2 
37. Singular solutions of dy/dx = x 1 − y 

x 
are y = −1 and y = 1. A singular solution of (e  +

−x                 2 
e   )dy/dx = y 

 

is y = 0.

 

2 
38.  Differentiating ln (x 

 

+ 10) + csc y = c we get 
 

2x                         dy 
2

x  + 10 − csc y cot y dx 
2x            1    cos y dy 

2 

= 0,

x  + 10 − 
 

or 

sin y ·sin y dx = 0,

2 
2x sin 

2 
y dx − (x 

 

+ 10) cos y dy = 0.

 
Writing the differential equation in the form 

 

2 
dy           2x sin   y   

2
dx   =(x + 10) cos y 

 

2
we see that singular solutions occur when sin y = 0, or y = kπ, where k is an integer.

 

39. The singular solution y = 1 satisfies the initial-value problem.                  1.01  
y
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0.97
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40. Separating variables we obtain      dy   = dx. Then 
   
 (y − 1)  

 

5 ln 10y − 11 = x + c. 

 10y − 9  

 

 
 

 
y 

1.02 
2 

 
 

     1  
 

 

− 

 
 
 

= x + c and y =      x + c − 1 . 

1.01 
 

 
 

x

y − 1                                     x + c 
Setting x = 0 and y = 1.01 we obtain c = −100. The solution 
is 

y = x − 101 .  

x − 100 

–0.004 –0.002                    0.002  0.004 
 

 
0.99 

 

 
0.98 

 
y

 
 
 

41. Separating variables we obtain 

 
 
 

(y − 1) 

 

dy 

2 
+ 0.01 = dx. Then 

1.0004 
 

 
1.0002

 
−1 

10 tan 

 

 

10(y − 1) = x + c   and   y = 1 + 

1 

10 tan 

x + c 

10   . 

 
x 

–0.004 –0.002                 0.002 0.004

Setting x = 0 and y = 1 we obtain c = 0. The solution is 
 

y = 1 + 
 1 

tan 
 x   

. 
10         10 

 
0.9998 
 

 
0.9996

 

 
dy 

42. Separating variables we obtain (y − 1)2 − 0.01 = dx. 
1 

y 

 
1.0004 
 

 
1.0002

Then,  with u = y − 1 and a = 10 , we get  
x 

–0.004 –0.002                  0.002 0.004 

 
0.9998

Setting x = 0 and y = 1 we obtain c = 5 ln 1 = 0. The 
solution is 

 

0.9996

5 ln  10y − 11  = x. 

10y − 9

Solving for y we obtain 
 
 

 11 + 9e 
  x/5 

y =                x/5 . 
10 + 10e

Alternatively, we can use the fact that 

          dy         1       −1  y − 1                       −1

ˆ   (y 
− 

1) 2 

− 
0.01 =− 0.1 

tanh 0.1 = − 10 tanh 10(y − 1).

 

(We use the inverse hyperbolic tangent because |y − 1| < 0.1 or 0.9 < y < 1.1. This follows 

from the initial condition y(0) = 1.) Solving the above equation for y we get y = 1 + 0.1 tanh 

(x/10).
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4  

 
2 

–4  –2 
 

 
–4 

2  4 
–2 

 

4  
 
2 

–4 –2 2  4 

 –2 
 

–4 –4 

 

y 

2x 

 
 

43.  Separating variables, we have 
 

dy 

3 

 dy  1  1/2  1/2  

y − y = y(1 − y)(1 + y) = y + 1 − y − 1 + y dy = dx. 

Integrating, we get  

1                 1
ln |y| − 

 
When y > 1, this becomes 

 

1 

2 ln |1 − y| − 
 
 
 

1 

2 ln |1 + y| = x + c. 
 
 
 

y 

2
ln y − 2 ln (y − 1) − 2 ln (y + 1) = ln y  − 1 = x + c.

 

Letting x = 0 and y = 2 we find c = ln (2/ 
√ 

where x > ln (   3/2). 
 

When 0 < y < 1 we have 

 

√                                                       x   √ 
3 ). Solving for y we get y1(x) = 2e /                                                                                                    4e 

 
2x − 3 ,

1 
 

ln y − 2 ln (1 − y) − 

1 
 
2 ln (1 + y) = ln 

y 

2 
1 − y 

 

 
 

= x + c.

 

1                                                                                                 √                                                       x  √    2x

Letting x = 0 and y = 
 

where −∞ < x < ∞. 

2       we find c = ln (1/    3 ). Solving for y we get y2(x) = e /                     e    + 3 ,

 

When −1 < y < 0 we have 

ln (  y)     1  ln (1 
 

−      − 2     − 

 

 
 

y)     1     ln (1 + y) = ln    −y      = x + c. 

− 2                     1 −  
2

1                                                                                           √                                                       x  √    2x 

Letting x = 0 and y = −   2    we find c = ln (1/   3 ). Solving for y we get y3(x) = −e /                        e    + 3 , 

where −∞ < x < ∞. 
 

When y < −1 we have

ln (  y)       1 ln (1 
− 

y)      1 ln (  1 
 

y) = ln       −y     = x + c. 

2

−       2        − 
√ 

− 2    −   − y  − 1

Letting x = 0 and y = −2 we find c = ln (2/                  3 ). Solving for y we get 

x   √                                       √

y4(x) = −2e / 
 

4e     − 3 , where x > ln (   3/2).
 

y                                                                   y                                            y                            y 
 

4                                                                                                                                                      4 
 

2 2 

 
–2 –2 

–4 

12345 x                                           x                                           x 12345 x
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44. (a) The second derivative of y is                                                                8 

 
d y
    2                    2  2                      3

 
 

The solution curve is concave down when d 

 
 

y/dx 

 

3 
 

< 0                    2

or y > 3, and concave up when d y/dx > 0 or y < 3. 
 
–4        –2                   2        4    x

From the phase portrait we see that the solution curve                   –2 

is decreasing when y < 3 and increasing when y > 3. 

y 

(b) Separating variables and integrating we obtain                                     8 
 

6 

(y − 3) dy = dx                                                            4 

1   2 

2 y  − 3y = x + c                                                         2 
 

2
y  − 6y + 9 = 2x + c1 

2 
–1                                      12345 x 

–2

(y − 3) = 2x + c1 
√  

 

y = 3 ±  2x + c1 . 
 

The initial condition dictates whether to use the plus or minus sign. 
√        

 

When y1(0) = 4 we have c1 = 1 and y1(x) = 3 + 
 

√  2x + 1 where (−1/2, ∞).

When y2(0) = 2 we have c1 = 1 and y2(x) = 3 −          2x + 1 where (−1/2, ∞). 
√            

When y3(1) = 2 we have c1 = −1 and y3(x) = 3 −                    2x − 1 where (1/2, ∞). 
√            

 

When y4(−1) = 4 we have c1 = 3 and y4(x) = 3 +       2x + 3 where (−3/2, ∞). 

45.  We separate variables and rationalize the denominator. Then
 

dy =       1   
 

 1 − sin x dx = 
 

 1 − sin x  dx = 
2 

 

1 − sin x dx 
2

1 + sin x 
 

2 

· 1 − sin x 1 − sin  x cos x

= sec x − tan x sec x dx.

 

Integrating, we have y = tan x − sec x + C.

 
46.  Separating variables we have 

 

 

ˆ 

√ 
y dy = sin 

 

 

√ 

√ 
x dx. Then 

2 

ˆ       √

ˆ √   y dy = sin x dxand 3 y3/2 = sin x dx.

√                                                           √                          1             1 

 √
To integrate sin   x we first make the substitution u =  x. Then du =       2 x dx = 2u du and
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ˆ  sin 

√        ˆ 
x dx = 

 

 

(sin u) (2u) du = 2 ˆ  u sin u du.
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ˆ 

 
 

Using integration by parts we find 

√ 
ˆ  u sin u du = −u cos u + sin u = − 

 
x cos 

√         √ 
x + sin   x.

Thus  

 
2 

3 y = 

 
 

ˆ     √ 
sin 

 
 

√ 
x dx = − 2 

 
 

 

x cos 

 
 

√ 
x + 2 sin 

 
 

√ 
x + C

and  

 
2/3    √         √            √

 

y = 3       −  x cos 

√   

 

x + sin   x + C . 

√                        ˆ     √
47.  Separating variables we have dy/ 

2 
y + y = dx/ ( x + x). To integrate dx/ x + x we

substitute u = x and get 

√
   2u   

2 
 

u + u 

  2     
du = ̂  
 

1 + u 

du = 2 ln 1 + u + c = 2 ln 1 + 
 

|| 

 

x  + c.

Integrating the separated differential equation we have 

√                                                      √  
 

2 ln (1 + 
√ 

y ) = 2 ln   1 + x 

√ 

√ 
+ c or   ln (1 + 
 

2 

 

y ) = ln 1 +      x  + ln c1.

Solving for y we get y = [c1 (1 + x) − 1] .

 

48.  Separating variables and integrating we have 

 
 

ˆ 
 

     
 
2/3 

  dy       
1/3 

ˆ 
=   dx 

 y  1 − y   

 

ˆ        y2/3 

 

1 − y1/3 

 

 

dy = x + c 
1

1/3 
−3 ln 1 − y 

 
 

1/3 

 
= x + c1 

 

x  

ln 1 − y = −   3 + c2

1/3 
1 − y 

 

1/3 
1 − y 

 

1/3 

−x/3 
= c3e 
 

−x/3 
= c4e 

 
 
 
 

 
−x/3
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y     = 1 + c5e 
 

y =   1 + c5e 

 

 
−x/3 3 

.
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√                                        2
49. Separating variables we have y dy = e x  dx. If u = 

ˆ √                                        ˆ 
√ x , then u = x and 2u du = dx. Thus,

x                  u 
e    dx =  2ue 

 

du and, using integration by parts, we find
 

ˆ 
 

 

and 

ˆ  √ 
y dy =   e 

x 

dxso 

 1 
2 

2   y  = 
ˆ     u 

2ue 

 

u 
du = −2e 

√ 
+ C = 2 

 
√ 

x e√ x − 2e 

 

 

x + C,

 
 
 
 

To find C we solve y(1) = 4. 

√     √ x                 √ x 

 

y = 2       x e    − e 

 
 

+ C .

 
√    √  1           √  1                           √

 

y(1) = 2 
 

1 e   − e    +C=2 C=4 
 
 

√     √ x 

 

so      C=4. 
√ x

and the solution of the intial-value problem is y = 2       x e    − e 

−1 
+ 4 .

50.  Seperating variables we have y dy = x tan 
−1 

x dx. Integrating both sides and using integration

by parts with u = tan x and dv = x dx we have 
ˆ

−1 
y dy = x tan 

 

x dx

1  2    1  2      −1 1     1    −1

    y  =   x tan x −   x +    tan x + C

 

2            2                              2           2 
 
 
 

2       −1                    −1  
y =   x tan x − x + tan x + C1

 

 

To find C1 we solve y(0) = 3. 
 

  2       −1                    −1  
y(0) =     0 tan 0 − 0 + tan 0 + C1 =   C1 = 3       so      C1 = 9, 

√   

and the solution of the initial-value problem is y =     x
2 

tan
−1 

x − x + tan
−1 

x + 9 . 
√   

2 
51.  (a) While y2(x) = − 25 − x 

′ 
is defined at x = −5 and x = 5, y2 (x) is not defined at these

 

values, and so the interval of definition is the open interval (−5, 5). 
 

(b)  At any point on the x-axis the derivative of y(x) is undefined, so no solution curve can 

cross the x-axis. Since −x/y is not defined when y = 0, the initial-value problem has no 

solution. 
1     2         2                       1     2 1/2        1     2
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52. The derivative of y = 4 x    −  1      is  dy/dx  =  x    4  x    −  1 . We note that  xy      =  x    4  x    −

1/2 
1 .  We see from the graphs of y (black), dy/dx (red), and xy 

on (−∞, 2] and [2, ∞). 

1/2 
(blue), below that dy/dx = xy
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4 x
2 

− 1 , 

e 

 

 

 
 

2 
Alternatively, because √ X 

 

= |X| we can write

1/2                                        1  2                                 2              1  2                                                                        1     2
1 

√                                                  x  4 

2 
x  − 1 ,    −∞ < x ≤ −2

xy   = x y = x         x       1 
− 

= x     x 
4      − 

1 =      x 4 x        1 ,    2 < x < 2

4                                                                                                                             −                                                                                                −                                                                                       − 

 

x  1                                           2 ≤ x < ∞ . 
 

1/2 
From this we see that dy/dx = xy 

 

on (−∞, −2] and on [2, ∞).

 
y 

2      2                                     3.5
53. Separating variables we have dy/ 1  + y  sin y = dx                       3

which is not readily integrated (even by a CAS). We note 

that dy/dx ≥ 0 for all values of x and y and that dy/dx = 0 

when y = 0 and y = π, which are equilibrium solutions. 

2.5 

2 

1.5 

1 

0.5 

x 
–6      –4       –2                    2         4         6         8

 

′                                     x 
54.  (a) The solution of y = y, y(0) = 1, is y = e . Using separation of variables we find that the 

′                                                               x−e
solution of y = y [1 + 1/ (x ln x)], y(e) = 1, is y = e 
simultaneously we obtain 

ln x. Solving the two solutions

x 
e 

(e    ) 

x−e 
= e 

e 
ln x,       so      e 
 

1,656,520 

= ln x       and      x =  
eE 

.

(b)  Since y = e   EE
 ≈ 2.33 × 10 , the y-coordinate of the point of intersection of

the two solution curves has over 1.65 million digits. 

55.  We are looking for a function y(x) such that 
 

 
2 

 

 
dy   2

y   +   dx = 1.

Using the positive square root gives  
 

dy            
2

dx  = 

dy 

1 − y

             = dx 
2 

1 − y 

−1
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sin y = x + c.
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–3  
 

3 

       

     

 

 
 

Thus a solution is y = sin (x + c). If we use the negative square root we obtain 

y = sin (c − x) = − sin (x − c) = − sin (x + c1). 

Note that when c = c1 = 0 and when c = c1 = π/2 we obtain the well known particular 

solutions y = sin x, y = − sin x, y = cos x, and y = − cos x. Note also that y = 1 and y = −1 

are singular solutions. 
 

56. (a)                        y 

3 

 
 
 

 
x 

 
 

 
–3 

 
(b) For |x| > 1 and |y| > 1 the differential equation is dy/dx =   y 

ing variables and integrating, we obtain 

   dy          √  dx   

2                √ 
− 1 /   x 

 
2 

− 1 . Separat-

2                                                                                                 2  
y    − 1                                                                                                                                                                                            x    − 1  

= 
−1 

and  cosh 
−1 

y = cosh 
 

x + c.

−1 
Setting x = 2 and y = 2 we find c = cosh 
An explicit solution is y = x. 

−1 
2 − cosh 

−1 
2 = 0 and cosh 

−1 
y = cosh    x.

 

57.  Since the tension T1 (or magnitude T1) acts at the lowest point of the cable, we use symmetry 

to solve the problem on the interval [0, L/2]. The assumption that the roadbed is uniform 

(that is, weighs a constant ρ pounds per horizontal foot) implies W = ρx, where x is 
 

measured in feet and 0 ≤ x ≤ L/2. Therefore (10) becomes dy/dx = (ρ/T1)x. This last equation 

is a separable equation of the form given in (1) of Section 2.2 in the text. Integrating and 

using the initial condition y(0) = a shows that the shape of the cable is a 
2

parabola: y(x) = (ρ/2T1)x +a. In terms of the sag h of the cable and the span L, we see

from Figure 2.2.5 in the text that y(L/2) = h + a. By applying this last condition to y(x) = 
2                                                                                                                    2   2

(ρ/2T1)x + a enables us to express ρ/2T1 in terms of h and L: y(x) = (4h/L )x + a. Since

y(x) is an even function of x, the solution is valid on −L/2 ≤ x ≤ L/2. 
 

58.  (a) Separating variables and integrating, we have                                             
y

2 
(3y 

3 
+ 1) dy = −(8x + 5) dx and y 

2 
+ y = −4x 

4 

− 5x + c.

Using a CAS we show various contours of                             2

3 
f (x, y) = y 

2 
+ y + 4x 

 

+ 5x. The plots shown on [−5,       0                                                                          x

 

5]×[−5, 5] correspond to c-values of 0, ±5, ±20, ±40, 

±80, and ±125. 

 
–2 

 
–4 

 
–4      –2        0        2         4
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–4 –2 2 

 –2 

 

 
 
 

y 

(b)  The value of c corresponding to y(0) = −1 is f (0, −1) = 
4 

−2; to y(0) = 2 is f (0, 2) = 10; to y(−1) = 4 is f (−1, 4) = 
2 

67; and to y(−1) = −3 is −31. 
0                                                   x 

 
–2 

 
–4 

 
–4     –2       0       2       4 

 

3 
59.  (a) An implicit solution of the differential equation (2y + 2)dy − (4x 

 

+ 6x) dx = 0 is

2               4 
y  + 2y − x 

2 
− 3x 

 

+ c = 0.

2 
The condition y(0) = −3 implies that c = −3. Therefore y 

4 
+ 2y − x 

2 
− 3x 

 

− 3 = 0.

 
 

(b)  Using the quadratic formula we can solve for y in terms of x: 

 
4        2 

y = −2 ±    4 + 4(x  + 3x  + 3) . 
2 

 
The explicit solution that satisfies the initial condition is then 

 
 

y = −1 −     x
4 

+ 3x
3 

+ 4 . 
 

4 
(c)  From the graph of the function f (x) = x 

3 
+ 3x 

 

+ 4 below we see that f (x) ≤ 0 on the

 

approximate interval −2.8 ≤ x ≤ −1.3. Thus the approximate domain of the function
 

4 
y = −1 −     x 

 

3 
+ 3x 

 
+ 4 = −1 −     f (x)

 

 

is x ≤ −2.8 or  x ≥ −1.3. The graph of this function is shown below. 
 

 
f(x) 

 

4 

–1 –   f(x) 

x

2 

 
x 

–4     –2 
 

–2 

 
–4 

 
–4 

 
–6 

 
–8 

 
–10
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–1 –   f(x)  
 

2 
 

x 

–2  
 

 

–4 
 
 

 

–6 
 
 

 

–8 
 
 

 

–10  
 

 

 
 
 

(d)  Using the root finding capabilities of a CAS, the zeros of f are found 
 

to be −2.82202 and −1.3409. The domain of definition of the solution 

y(x) is then x > −1.3409. The equality has been removed since the 

derivative dy/dx does not exist at the points where f (x) = 0. The 

graph of the solution y = φ(x) is given on the right. 
 
 
 
 
 
 
 
 
 
 

60. (a) Separating variables and integrating, we have 
y 

 

2                    2
(−2y + y ) dy = (x − x ) dx                     4

and                                                                        
2
 

 

2            1 3     1   2       1  3                                  
0                                                                                 x

 

−y   + 3 y   = 2 x    − 3 x   + c                 –2 

Using a CAS we show some contours of             
–4

 

 

f (x, y) = 2y 3 − 6y 2 + 2x 3           2  . 
− 3x                                                                                                                     –6     –4       –2         0            2         4          6 

 

 
The plots shown on [−7, 7] × [−5, 5] correspond to c-values of −450, −300, −200, 

 

−120, −60, −20, −10, −8.1, −5, −0.8, 20, 60, and 120. 
 
 
 
 

 

(b) The value of c  corresponding to y(0)  =     3     is                          y 
2

3 

f  0,  2 
 27                                                                                              4 

= −   4 .     The portion of the graph be-

tween the dots corresponds to the solution curve       2
 

satisfying the intial condition. To determine the           0                                                                          x 

interval of definition we find dy/dx for                        –2

 
3        2 

2y  − 6y 

 
3 

+ 2x 

 

2       27 
− 3x  = −      4 . 

 
–4 
 

–2          0            2             4            6

 

 

′              2     2
Using implicit differentiation we get y = (x − x )/(y − 2y), which is infinite when y = 0

3 
and y = 2. Letting y = 0 in 2y 

2 
− 6y 

3 
+ 2x 

2 
− 3x 

27 
= −    4 and using a CAS to solve for

x we get x = −1.13232. Similarly, letting y = 2, we find x = 1.71299. The largest 

interval of definition is approximately (−1.13232, 1.71299).
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Y 
 

4   

2   

0  X 

 

 

 
 
 

(c)   The value of c corresponding to y(0) = −2 is f (0, 

−2) = −40. The portion of the graph to the right of 

the   dot   corresponds   to   the   solution   curve 

satisfying the initial condition. To determine the      
– 2

 
– 4 

interval of definition we find dy/dx for                            
– 6

 

3        2 
2y  − 6y 

 

3 
+ 2x 

 

2 
− 3x 

 
= −40. 
 

′ 

–8 

–4     –2       0        2       4        6        8       10 
 

2     2

Using implicit differentiation we get y = (x − x )/(y − 2y), which is infinite when y = 0

3 
and y = 2. Letting y = 0 in 2y 

2 
− 6y 

3 
+ 2x 

2 
− 3x 

 

= −40 and using a CAS to solve for x

we get x = −2.29551. The largest interval of definition is approximately (−2.29551, ∞). 
 

2.3     Linear Equations 
 
 

′                                                          −´ 5 dx 
 

−5x  d   

−5x                             5x

1. For y − 5y = 0 an integrating factor is e = e      so that dx   e y  = 0 and y = ce

 

for −∞ < x < ∞. 
 

′                                                          ´ 2 dx      2x  d  
2x 

 

−2x

2. For y + 2y = 0 an integrating factor is e 
 

−2x 

= e    so that  dx   e y  = 0 and y = ce for

−∞ < x < ∞. The transient term is ce     . 
 

 d                                              1
′             3x ´ dx      x x         4x 3x       −x

3. For y + y = e an integrating factor is e 
 

−x 

= e  so that dx [e y] = e and y = 4 e + ce

for −∞ < x < ∞. The transient term is ce   . 
 

4 

 

 

  d                     4                           1

′ 
4. For y +4y = 

 

3  an integrating factor is e 
´ 4 dx      4x 

= e 

−4x 

 

so that dx 
4x             4x 

e  y    =3 e 
 

and y = 3  +ce 
−4x

for −∞ < x < ∞. The transient term is ce     . 

′        2        2 ´ 3x2 dx      x3
 d    x3

 
 

2  x3

5. For y + 3x y = x an integrating factor is e = e    so that dx e    y   = x e and

1          −x3
 −x3

y =  3 + ce for −∞ < x < ∞. The transient term is ce     .

′                 3                                            ´ 2x dx       x2
 d    x2

 
 

3  x2

6. For y + 2xy = x an integrating factor is e = e    so that  dx e    y   = x e and

1     2    1 −x2
 −x2



 

y =  2 x  − 2 + ce for −∞ < x < ∞. The transient term is ce     .

′      1         1  
 

´ (1/x) dx d          1    1          c   

7. For y + x y = x 2 an integrating factor is e = x so that dx [xy] = x and y = x ln x+ x

 

for 0 < x < ∞. The entire solution is transient.
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ce 

−x 

4 

 
 

′             2                                                −´ 2 dx 
 

−2x  d 

8. For y −2y = x +5 an integrating factor is e = e      so that dx e−2xy = x2e−2x+5e−2x

1   2       1  11          2x

and y = − 2 x − 2 x − 4 + ce for −∞ < x < ∞. There is no transient term.

′     
 1                                                                       

− ´ (1/x) dx      
1  d     1

9. For y − x y = x sin x an integrating factor is e =  x so that dx  x y  = sin x and

 

y = cx − x cos x for 0 < x < ∞. There is no transient term. 
 

2        3                                                                                          d 
3 

′                                                            ´ (2/x)dx      2                       2                                     −2
10. For y + x y = x an integrating factor is e 

 

−2 

= x  so that dx x y  = 3x and y = 2 +cx

for 0 < x < ∞. The trancient term is cx   . 

4 
′                 2                                                  ´ (4/x)dx      4  d  

4         6      4

11. For y + x y = x − 1 an integrating factor is e = x  so that dx  x y  = x − x  and

1     3    1             −4                                                                  −4
y =  7 x  − 5 x + cx for 0 < x < ∞. The transient term is cx   .

 

′             x   ´                                       −x

12. For  y  − 
d 

(1 + x) 
 

−x 

y =  x an integrating factor       is  e− [x/(1+x)]dx          = (x + 1)e 
2x + 3          x

 

−x 

so    that

dx  (x + 1)e y   = x(x + 1)e and y = −x − x + 1 +x + 1 for −1 < x < ∞. There

 

is no transient term. 
 

x 

′               
2           e   

 
´[1+(2/x)]dx      2  x

 
 

d    
2  x         2x

13. For y +     1 +x 
x 

1 e 

2 

2 
y = x 

−x 
ce 

2 

an integrating factor is e = x e 
−x 

ce 

2 

so that dx [x e y] = e

and y =  2   x    +    x for 0 < x < ∞. The transient term is      x    .

 

′                 
1                   1    −x                                                           ´                            x

14. For y +     1 + x y =   x e sin 2x an integrating   factor  is e [1+(1/x)]dx  =   xe so  that

d                                                1                      ce
 

dx   [xe 
x 
y] = sin 2x and y = − 

−x 
2x e 

 

cos 2x +   x 
 

for 0 < x < ∞.       The entire solution

is transient. 
 

dx    4 
5 

 

− ´ (4/y) dy   d 
y         −4                       −4

15. For dy − y x = 4y an integrating factor is e = eLN
 −      = y so that dy  y x   = 4y

 

6 
and x = 2y 
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4 
+ cy 

 
for 0 
< y < 
∞. 
Ther
e is 
no 
trans
ient 
term.

dx      2                    y 
 

´ (2/y) dy       2  d     2          2  y

16. For dy + y  x = e an integrating factor is e = y        so that dy y x   = y e and

y       2  y        2   y       c                                                                c
 

x = e  − 
2 

y e       +y  e + 
2                                                                     2 

y   for 0 < y < ∞. The transient term is     y     .



 

′ 

e 

e 
2 

e ce ce 

2 
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17.  For y + (tan x)y = sec x an integrating factor is e TAN

 

 

x dx      d 
= sec x so that dx 

 

2  ´ 
[(sec x)y] = sec  x

 

and y = sin x + c cos x for −π/2 < x < π/2. There is no transient term. 
 

 

′                           2 
18. For y + (cot x)y = sec 

 

x csc x an integrating factor is e 
´ COT x dx 

= eLN | 
 
SIN x| 

= sin x so that

 d                          
2 

dx [(sin x) y] = sec 

 
x and y = sec x + c csc x for 0 < x < π/2. There is no transient term.

 

 
′ 

19. For  y + 

 

x + 2 

x + 1 y = 

−x 
2xe   

x + 1 

 
´ 

an  integrating  factor is 
2 

 
 

[(x+2)/(x+1)]dx =  (x + 1)ex,  so

d                                                     x                          c 

x
dx [(x + 1)e y]  =  2x and y    = 

solution is transient. 

x + 1 e−x + x + 1 e−x  for −1 < x       <      ∞. The entire

 

′ 
20. For y + 

d 

   4   

x + 2 y = 
 

4 

  5  (x + 

2)2 

 

2 

´ 
an integrating   factor is   e 

5 
−1 

4 
[4/(x+2)] dx        =   (x + 2) 
 

−4 

 
so that

dx  (x + 2) y   = 5(x + 2) and y =     3 (x + 2) + c(x + 2) for −2 < x < ∞. The

 

entire solution is transient. 
 

 
21.  For 

dr 
 dθ + r sec θ = cos θ an integrating factor is e 

d 

 

SEC θ dθ 
 

= e
LN | SEC x+TAN x| 

 
= sec θ + tan θ so

that dθ [(sec θ + tan θ)r] = 1 + sin θ and (sec θ + tan θ)r = θ − cos θ + c for −π/2 < θ < π/2. 

´
There is no transient term. 

 
 

dP 
22. For  dt 

´ (2t−1) dt 
+ (2t −  1)P = 4t− 2 an integrating factor is e =   

t2−t  d 
so that dt 

 

et −tP  =

(4t − 2)  
t2 −t

 and P = 2 +    
t−t2

 

 

1             e−3x 

for −∞ < t < ∞. The transient term is    
t−t2 . 

 
d

′ 
23. For y + 

and y = e−3x + 

 

3 +x   y = 
ce−3x 

x 

 

x   an integrating factor is e 
´ [3+(1/x)]dx 3x 

= xe 
 

so that dx 
3x 

xe   y  = 1

 
for 0 < x < ∞. The transient term is ce     /x. 

′                                                                               ´[2/(x2−1)]dx
24. For y +    2   y = x + 1 an integrating factor is e 

 

= x − 1

x  − 1 x − 1 x + 1

so that   d x − 1 y   = 1 and (x 1)y = x(x + 1) + c(x + 1) for −1 < x < 1. There is no

dx  x + 1                        − 
 



 

transient term.
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′                                                          ´ −5 dx 
 

−5x  d   

−5x 
 

−5x

25. For y − 5y = x an integrating factor is e = e      so that dx  e y  = xe and

 

ˆ                                   

1 

 

  1 
−5x 

 

1            1 
5x

y = e5x xe−5x dx = e5x  − 5 xe−5x − 25 e + c = − 5 x − 25 + ce   .

 

  1                 1       1     76 5x 

If y(0) = 3 then c =     25 and y = − 5   x− 25  + 25 e  . The solution is defined on I = (−∞, ∞). 

  d  
′                                                               ´  3 dx      3x 3x             3x

26. For y + 3y = 2x and integrating factor is e = e    so that dx  e y  = 2xe and

 

ˆ      3x
 

2 
−3x 

2 
3x          3x 

2         2 
−3x

y = e−3x 2xe dx = e 3 xe − 9 e + c = 3 x − 9 + ce     .

 

1             5             2     2   5 
 
−3x

If y(0) = 3 then c = 9 and y = 3 x −   9 +   9 e . THe solution is defined on I = (−∞, ∞).

 

′      1       1  x 

 

´(1/x)dx                       d 
 

x               1   x      c
27. For y + x y = x e  an integrating factor is e = x so that dx 

x 
[xy] = e and y = x e  + x

for 0 < x < . If y(1) = 2 then c = 2 e and y =  1 e +  2 − e . The solution is defined on

∞                                       −                  x           x 

I = (0, ∞).  
 
− ´(1/y)dy

28. For  dx      1 x = 2y an integrating factor is e = 1    so that     d     1     x = 2 and

− 
dy        y y                         dy     y

 

2 
x = 2y 

 

2 
+ cy for 0 < y < ∞. If y(1) = 5 then c = −49/5 and x = 2y  − 

49 

5 y. The solution is

 

defined on I = (0, ∞). 

di 
29. For  dt 

R 
+L i = 

E                                        ´ (R/L) dt 
L  an integrating factor is e 

 

Rt/L 
= e 

 
so that 

 d 
dt  eRt/L i = 

 E 
L eRt/L

E                                                                                                                        E 
−Rt/L

and i = 
E 

R + ce 
 

−Rt/L 

for −∞ < t < ∞. If i(0) = i0  then c = i0                − E/R and i =      R  +

i0 −  R   e . The solution is defined on I = (−∞, ∞)

dT                                                      ´ (−k) dt 
 
−kt     d   −kt

30.  For dt − kT = −Tmk an integrating factor is e = e      so that dt   [e T ] =
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−kt 
−Tmke 

 

kt 

kt 
and T = Tm +ce 

 

for −∞ < t < ∞. If T (0) = T0 then c = T0 −Tm and T = Tm +(T0

−Tm)e 
 

′ 

. The solution is defined on I = (−∞, ∞) 
 

1             1 

 

 

´ (1/x) dx                       d

31. For y + x y = 4 + x an integrating factor is e = x so that dx [xy] = 4x + 1 and

 

1 
 

y =  x ˆ 

 

1 

(4x + 1) dx =  x 

 

c 
2 

2x  + x + c = 2x + 1 +   x .



 

2 

2 2 2 2 

′ 

2 2 

2 
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5 
 

If y(1) = 8 then c = 5 and y = 2x + 1 + 

 
 

x . The solution is defined on I = (0, ∞).

 

′                 3  x2
 ´                    2                     

 d  
 

2x2
 

 

3 3x2

32. For y + 4xy = x e 
 

ˆ 

an integrating factor is e 

 
1 

4x dx = e2x 

 

 1 

so that dx 

 
 1 

[e    y] = x e 

 
  1 

and

y = e−2x 

1 

x3e3x dx = e−2x 6 x2e3x − 18 e3x + c = 6  x2ex − 18 ex  + ce−2x .

7                                                              1            2       1      2       17         2

 

If y(0) = −1 then c = − 
 

I = (−∞, ∞). 

 

18 and y = 
2  x 

6 x e 
x 

−  18 e 

 

− 18 e−2x    . The solution is defined on

 

33. For y +    1   y =  ln x  an integrating factor is e 

 

´ [1/(x+1)] dx 
 

= x+1 so that  d     [(x+1)y] = ln x

x + 1 
 

and 

x + 1 dx

 

 

x                                                                  x            c
 

y =  x + 1 
 

ln x − 
 

x + 1 
 

+ x + 1 
 

for       0 < x < ∞.

 

 

If y(1) = 10 then c = 21 and y = 

x 

x + 1 

 

 

ln x − 

x 

x + 1 

21 

+x + 1 

 

 

. The solution is defined on

 
I = (0, ∞). 

 

′                                                                                                 ´
34. For  y +      1  y  =       1      an integrating  factor  is    e 

x + 1x (x + 1) 
 

 d   
[(x + 1) y] = 

 1  
and 

dx                     x 

[1/(x+1)] dx = x + 1 so that

 

1           1              1                        ln x           c
 

y =  x + 1 ˆ 
 

x dx = 
 

x + 1 
 

(ln x + c) = 
 

x + 1 
 

+ x + 1  .
 
 

 

If y(e) = 1 then c = e and y = 

ln x 

x + 1 + 

e 

x + 1 

 

 

. The solution is defined on I = (0, ∞).

 

′                                                                             ´ (− SIN x) dx             x  d  
x

35. For y − (sin x) y = 2 sin x an integrating factor is e 

2 (sin x) eCOS x 
and 

= eCOS
 so that dx [eCOS

 y] =

 

ˆ y 
= 

e
− 

C

O

S 

x 

 
2 (sin x) eCOS x

 



 

e 

 

− 
dx = e 

 
COS 

 

x 

(−2eCOS
 

 

x                      
− 
+ 
c
) 
= 
−
2 
+ 
c
e 

 

COS x 
.

 

If y(π/2) = 1 then c = 3 and y = −2 + 3 
− COS x

 

 

. The solution is defined on I = (−∞, ∞).



 

1 

2 

, x > 1. 

1 

′                                   2 
36. For y + (tan x)y     =  cos 

d 

 

x an integrating factor is e 
´ TAN x dx  

= eLN 
| SEC x|  

= sec x so that

 

dx [(sec x) y] = cos x and y =     sin x cos x + c cos x for −π/2 < x < π/2.  If y(0)           = −1 

 

then c = −1 and y = sin x cos x − cos x. The solution is defined on I = (−π/2, π/2). 
 

′                                                               2x
37. For y + 2y = f (x) an integrating factor is e 

e2x + c  ,  0 ≤ x ≤ 3 
so that                      y

ye2x =  2 

1 
 

 

c2,              x > 3.                                                                       5            x 

 
If y(0) = 0 then c1 = −1/2 and for continuity we must 

 1   6      1

have c2 = 2 e − 2  so that 
−2x

 0 ≤ x ≤ 3

y =   2 (1 − e    ), 

1 
 

 
1     6                2x

(e                                     1)e ,              x > 3.

2                                                                                                                                                                    −                                                                                                                                                                                   −  

 

 
 

′                                                             x
38.  For y + y = f (x) an integrating factor is e 

e                            
x       1              ≤        ≤

 so that                         y

yex = 

x                                                                        1 

+ c ,      0    x     1
e   + c2,     x > 1. 

5 x 

− 
If y(0) = 1 then c1 = 0 and for continuity we must have                –1

 

c2 = 2e so that 
 

y = 1,  0 ≤ x ≤ 1 
 2e1−x 

 

 
 
 

− 

1,  x > 1. 

′                                                                 x239.  For y + 2xy = f (x) an integrating factor is e 
yex

2  
=             2 ex                  + c1,  0 ≤ x ≤ 1 

1     2 
 

c2,              x > 1. 

so that                   y 

2

 

 
 

If y(0) = 2 then c1 = 3/2 and for continuity we must
 

have c2 = 
1 
2 e + 

1 
3                                                                                                                3            x 

2 so that 
3

+   e−x ,          0 ≤ x ≤ 1

2        2 
y = 

1         3           2 
2e  +                                                                                                                                                                                                                          2                                                                                                   e−x
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x 

2        1 

1                                                                  2 

′ 
y  + 

 

 

40. For 
2x 

y =     1 + x2 

, 0 ≤ x ≤ 1 
 

 

1                                                        If

1 +  
2                                          x                                                                             y 

x  

 

−     ,   x > 1, 
2 

1 2+ x 

 

 
 
–1                                         5         x

an integrating factor is 1 + x 
1 + x2 y = 2 

so that  
0 ≤ x ≤ 1

1 
 

 

1  2 
x    + c ,       x > 1. 

     − 2                                         2 

 

 
y(0) = 0 then c  = 0 and for continuity we must have c  = 1 so that 

2
− 

2 ( 1 + x2 ) 
,  0  ≤  x ≤  1

 

y =     1             1   
3                   1 

 

 
−   , x > 1. 

2 (1 + x2)   2 

 

 

′ 
41. We first solve the initial-value problem y 

 

+ 2y   = 4x,                                  y

y(0) = 3 on the interval [0, 1].      The integrating factor is                                20 

´ 

e 2 dx = e2x, so 
d                                                                                                            15

2x 
dx [e 

2x 
y] = 4xe                                                                                       10

2x      ˆ 
e   y = 

 

2x 
4xe 

 

2x 
dx = 2xe 

−2x 

 

2x 
− e    + c1                                                  5

y = 2x − 1 + c1e     .  

3    
x 

−2x
Using the initial condition, we find y(0) = −1 + c1 = 3, so c1 = 4 and y = 2x − 1 + 4e     , 

 

−2               −2
0 ≤ x ≤ 1. Now, since y(1) = 2 − 1 + 4e = 1 + 4e , we solve the initial-value problem

 

′                                               −2
y − (2/x)y = 4x, y(1) = 1 + 4e 

´ 

e  (−2/x) dx = e−2 LN x = x−2, so 

on the interval (1, ∞). The integrating factor is

 d    −2 −2       4

dx [x y] = 4xx    =   x 
 

ˆ    4
x−2y = x dx = 4 ln x + c2

 

2                 2
y = 4x ln x + c2x .

 

 
(We use ln x instead of ln |x| because x > 1.) Using the initial condition we find



 

−2                  2 −2   2

y(1) = c2 = 1 + 4e , so y = 4x ln x + (1 + 4e )x , x > 1.  Thus,

−2x 
y = 2x − 1 + 4e 

2 

 

,         
2   2     0 ≤ x ≤ 1

 

 
4x ln x +  1 + 4e

−                 x ,x > 1. 

 
 
 

 
′ 

42. We first solve the initial-value problem y + y = 0, 
y 

y(0) = 4 on the interval [0, 2]. The integrating factor                            1 

´
is e 1 dx = ex , so 

 d   x                                                                                                                                                    5 x

[e  y] = 0 

dx                                                                               –1
 

ˆ
ex y = 0 dx = c1

 

−x 
y = c1e    . 

−x 
Using the initial condition, we find y(0) = c1 = 4, so c1 = 4 and y = 4e 

 

, 0 ≤ x ≤ 2. Now,

 

−2                                                               ′                                 −2
since y(2) = 4e , we solve the initial-value problem y + 5y = 0, y(1) = 4e on the interval

 

(2, ∞). The integrating factor is e 

´             

5 dx 5x 
= e    , so

 

 

d 
e5x y = 0 

dx 

ˆ 
5x 

e    y =   0 dx = c2 

 

−5x 
y = c2e      . 

 
 
 

−10        −2 8                   8  −5x

Using the initial condition we find y(2) = c2e = 4e , so c2 = 4e and y = 4e e      =

8−5x 
4e 

 

, x > 2. Thus, the solution of the original initial-value problem is

 

4e
−x 

,         0 ≤ x ≤ 2 

y =
8−5x 

4x 
 

,     x > 2.
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e 

2 

2                                                2 

T                            X 

π 

x 

 

 

′                        −x243.  An integrating factor for y − 2xy = 1 is e . Thus

d   −x 

dx  [e 

 

2 y] =   
−x2

 

e−x 
x         2               √ 

y = 
ˆ    e

0       
−t      dt = 2 

√   
  π  x

 

erf(x) + c 
 

 
x

y =  
2 e 2 erf(x) + ce 2 .

√ 
 

From y(1) = ( 

 
1 

− 
π/2)e erf(1) + ce = 1 we get c = e    − 

 

 √ π 

 
2 

 
 

erf(1). The solution of the

initial-value problem is 

√π      2 

x 
√π                      2 

−1                             x

y =    2  e 
 

2 

x 

erf(x) +  e    − 

√ π     2 

x 

2  erf(1)  e

= e  −1 + 
 

′ 

2  e 
 

−x2
 

(erf(x) − erf(1)).

44.  An integrating factor for y − 2xy = −1 is e 
 

d        2                                2 

. Thus

−x 
dx [e 

−x 
y] = −e 

2                           x      2                      √ 
π

e−x  y = −  ˆ  0 

 

√ 

e−t dt = − 2  erf(x) + c. 
 

√

From y(0) = π/2, and noting that erf(0) = 0, we get c = π/2. Thus

2           √π 
 

√ π            √π 
 

x                                    √π   x

 

y = e      − 
 

2 erf(x) +    2 
 

=  2 e  (1 − erf(x)) = 
 

2 e      erfc (x).

 

′      x                                                    eX45.  For y + e y = 1 an integrating factor is e . Thus

e 
dx   e 
  d   

e 
y  = e 

e 
and e 

ˆ 
y =  x        dt + c. 

ee

X                                     X                                                     X                                                    T 

 

0 

 
From y(0) = 1 we get c = e, so y = e 

−eX 
´ 

 

x 
0  ee   dt + e1−e  .

2                  ′       1  

1/x
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46. Dividing by x we have y − x 

 

 d  

2 y = x. An integrating factor is e 
 

x 

ˆ 

. Thus

dx   e1/xy = xe1/x  and e1/xy = 
 

1    te 1/t  

dt + c.

−1/x ´x 1/t

 
1
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x 

0 

 

47.  An integrating factor for 
 

 

y + 
′y = 

2 10 sin x  

x     x3 

2
is x . Thus

 d     
2
 
 

y  = 10 sin x

dx                    x 

x 

 

 
sin t

ˆ t 
x2y = 10 0 

 
dt + c

−2                  −2
y = 10x Si (x) + cx   .

 
 

From y(1) = 0 we get c = −10 Si (1). Thus 
 

−2 
y = 10x 

−2 
Si (x) − 10x 

−2 
Si (1) = 10x 

 

(Si (x) − Si (1)) .

 

 

′             2                   − ´ t  dt

48. The integrating factor for y −  sin x 
 

 d  

y = 0 is e 

 
´
 

X SIN   2 
0 . Then

dx     e− 
X 

SIN t
2
 dty = 0

´ X 

e−  0 

 

2 
SIN t 

 

dty = c1

 

´ 
X

 

y = c1e 0 SIN t
2 

dt 

 
 

Letting t =      π/2 u we have dt =    π/2 du and 
 

x 

ˆ     sin t
2 

dt =
 

π           
√2/π x 

ˆ 

 
π                          π               2 

sin    u2      du =        S          x
 

0 
 

√ π/2 S  √ 2/π 

2                                       2                                   2                   π 
0 

 

x                                                                                                              √ π/2 S √ 

 

 
 
2/π x

so y = c1e                      . Using S(0) = 0 and y(0) = c1 = 5 we have y = 5e                       . 
 

′ 
49.  We want 4 to be a critical point, so we use y = 4 − y. 

 

 

5  x      4  x        4
50.  (a) All solutions of the form y = x e − x e + cx satisfy the initial condition. In this case,
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since 4/x is discontinuous at x = 0, the hypotheses of Theorem 1.2.1 are not satisfied 

and the initial-value problem does not have a unique solution.
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2 2 

 
 

(b)  The differential equation has no solution satisfying y(0) = y0, y0 > 0. 
 

 
 

(c)  In this case, since x0 > 0, Theorem 1.2.1 applies and the initial-value problem has a 

5  x      4  x        4 4            x       x

unique solution given by y = x e − x e + cx where c = y0/x 0 − x0e 0  + e 0  .

 

 

51.  On the interval (−3, 3) the integrating factor is 
 

 
 
 
 

and so 

 

 

´                           ´ 
e x dx/(x −9)   = e− 

 

 
x dx/(9−x ) = e 

1 

 

LN (9−x2) 
2 

 

 

=  9 − x2

 

  d                  
2 

 

      c     

dx      9 − x y  = 0  and  y =      √ 
 

 
−x 

2  . 
9 − x 
 

−x

52.  We want the general solution to be y = 3x − 5 + ce . (Rather than e , any function that

 
 

approaches 0 as x → ∞ could be used.) Differentiating we get 
 

′               −x
y = 3 − ce = 3 − (y − 3x + 5) = −y + 3x − 2,

 

 

′ 
so the differential equation y + y = 3x − 2 has solutions asymptotic to the line y = 3x − 5. 

53.  The left-hand derivative of the function at x = 1 is 1/e and the right-hand derivative at x = 1 

is 1 − 1/e. Thus, y is not differentiable at x = 1. 
3 

54.  (a) Differentiating yc = c/x 
 

we get 
 
 

′ 

 

 
 
 

3c   

 

 
 
 

 3  c        3
yc = − x 4 = − x x 3 = − x  yc

3 
so a differential equation with general solution yc = c/x 

 

3 
= x 

′ 
is xy 

 

+ 3y = 0. Now using yp

 

′                      2           3          3
xyp + 3yp = x(3x ) + 3(x ) = 6x

 
3      3        ′                 3

so a differential equation with general solution y = c/x + x  is xy + 3y = 6x . This will
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be a general solution on (0, ∞).
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3 
(b) Since y(1) = 1 

3 
Since y(1) = 1 

 

3 
−1/1 

3 
+2/1 

y 

= 0, an initial condition is y(1)    = 0.        3 

= 3, an initial condition is y(1)    = 3.

 

In each case the interval of definition is (0, ∞). The initial- 

′                3                                               3
value problem xy +3y = 6x , y(0) = 0 has solution y = x

for −∞ < x < ∞. In the figure the lower curve is the                                   5             x
 

3         3
graph of y(x) = x − 1/x , while the upper curve is the

3         3
graph of y = x − 2/x . 

–3
 

 

(c)  The first two initial-value problems in part (b) are not unique.  For example, setting 

3 
y(2) = 2 

3 
− 1/2 

 

= 63/8, we see that y(2) = 63/8 is also an initial condition leading to

 

3         3
the solution y = x − 1/x .

 
´                               ´                            ´

 

55.  Since e 
P (x) dx+c c 

= e e 
P (x) dx  

= c1e 
P (x) dx 

, we would have

 

ˆ                                                                      ˆ
 ́                                          

P (x) dx  ́                                          

P (x) dx  ́                           

P (x) dx  ́

P (x) dx

c1e y = c2 +   c1e f (x) dx  and   e y = c3 +    e f (x) dx,

 

 

which is the same as (4) in the text. 
 

 
 

56.  We see by inspection that y = 0 is a solution. 
 
 

−λ t
57.  The solution of the first equation is x = c1e 1 . From x(0) = x0 we obtain c1 = x0 and so x

 

−λ t
= x0e 1 . The second equation then becomes

dy 
−λ t 

dy 
−λ1t

dt = x0λ1e 1   − λ2yor dt + λ2y = x0λ1e

 
λ t 

which is linear. An integrating factor is e 2 . Thus 
 

d 
      eλ2ty = x0λ1e−λ1teλ2t = x0λ1e(λ2−λ1)t 

dt 
x λ 
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 eλ2ty = 

0  1 
e(λ2−λ1)t + c2 

 λ2−λ1  

 

y = 
0  1 

 

e−λ1t + c2e−λ2t. 
 λ2−λ1  

 

 

x λ



2.3 Linear Equations 79 79 CHAPTER 2  FIRST-ORDER DIFFERENTIAL EQUATIONS  
 
 

 

y =   x0λ1   e−λ1t + y0λ2 − y0λ1  

 λ2−λ1 λ2−λ1 

 

 

 

From y(0) = y0 we obtain c2 = (y0λ2 − y0λ1 − x0λ1) / (λ2 − λ1). The solution is 
 

 

− x0λ1 e−λ2t. 
 

 
58.  Writing the differential equation as 

 

t/RC 

dE           1 
dt + RC 

 
E = 0 we see that an integrating factor is

e       . Then  

 

    d   t/RC 

dt   e 

 

 
 
 

E          = 0

 

et/RC E = c 
 
 

E = ce−t/RC 

 

−4/RC 
From E(4) = ce 

4/RC 
= E0  we find c = E0e 

 

. Thus, the solution of the initial-value

 

problem is 

 

E = E0e4/RC e−t/RC = E0e−(t−4)/RC . 
 
 
 
 

59. (a) y  

(b) Using a CAS we find y(2) ≈ 0.226339. 
  

5 
 

 

 
 
 
 
 

x 
5 

 

60. (a)            y 

2 
 

1 
 

x 
1             2              3              4              5 

–1 
 

–2 
 

–3 
 

–4 
 

–5
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(b)  From the graph in part (b) we see that the absolute maximum occurs around x = 1.7. 
 

′ 
Using the root-finding capability of a CAS and solving y (x) = 0 for x we see that the 

 

 

absolute maximum is (1.688, 1.742). 
 
 

61. (a)                                        y 

 

 
 

10 
 

 
5 

 

 
–10                   –5                                              5                     10         

x
 

 
 

 
(b)  From the graph we see that as x → ∞, y(x) oscillates with decreasing amplitudes ap- 

 

1                                         √ π/8
proaching 9.35672.                                                  Since xlim S(x) = 

→∞ 
1 

2    , we have                 xlim y(x) = 5e                                                           ≈ 9.357, and 

→∞ 
√ π/8

since x               lim S(x) = − 2    , we have x                          lim         y(x) = 5e                                          ≈ 2.672.

→−∞                                                   →−∞ 

(c)  From the graph in part (b) we see that the absolute maximum occurs around x = 1.7 

and the absolute minimum occurs around x = −1.8. Using the root-finding capability of 
 

′ 
a CAS and solving y (x) = 0 for x, we see that the absolute maximum is (1.772, 

 

 
12.235) and the absolute minimum is (−1.772, 2.044). 

 

2.4      Exact Equations 
 

 

1. Let M = 2x − 1 and N = 3y + 7 so that My  = 0 = Nx. From fx  = 2x − 1 we obtain
2                      ′                                          3     2 2          3     2

f = x − x + h(y), h (y) = 3y + 7, and h(y) = 2 y  + 7y. A solution is x − x +  2 y + 7y = c.

 

2. Let M = 2x + y and N = −x − 6y. Then My = 1 and Nx = −1, so the equation is not exact.
 

3 
3. Let M = 5x + 4y and N = 4x − 8y 

 

5 
so that My = 4 = Nx. From fx = 5x + 4y we obtain f =  2

2                          ′               3 4                        5     2                   4

x  + 4xy + h(y), h (y) = −8y , and h(y) = −2y . A solution is 2 x  + 4xy − 2y = c.

 

4. Let M = sin y − y sin x and N = cos x + x cos y − y so that My = cos y − sin x = Nx. From fx 
′                                        1     2

= sin y − y sin x we obtain f = x sin y + y cos x + h(y), h (y) = −y, and h(y) = − 2 y . A

1     2
solution is x sin y + y cos x − 2 y  = c.
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2                               2                                                                      2
5. Let M = 2y x − 3 and N = 2yx + 4 so that My = 4xy = Nx. From fx = 2y x − 3 we obtain f =

2 2                        ′                                                               2 2
x y  − 3x + h(y), h (y) = 4, and h(y) = 4y. A solution is x y − 3x + 4y = c.

3 
6. Let M = 4x 

2 

2 
− 3y sin 3x − y/x 

2 
and N = 2y − 1/x + cos 3x so that My = −3 sin 3x − 1/x 

 

and

Nx = 1/x − 3 sin 3x. The equation is not exact.

2 
7. Let M = x 

exact. 

2                  2 
− y  and N = x 

 

− 2xy so that My = −2y and Nx = 2x − 2y. The equation is not

 
8. Let M = 1 + ln x + y/x and N = −1 + ln x so that My = 1/x = Nx. From fy = −1 + ln x we 

′ 
obtain f = −y + y ln x + h(x), h (x) = 1 + ln x, and h(x) = x ln x. A solution is −y + y ln x + x ln 
x = c. 

3 
9. Let M = y 

2                                      2 
− y  sin x − x and N = 3xy 

2 
+ 2y cos x so that My = 3y 

 

− 2y sin x = Nx. From fx

3       2                                               3       2                1     2                ′
= y   − y sin x − x we obtain f = xy   + y cos x − 2 x   + h(y), h (y) = 0, and h(y) = 0. A

3      2              1     2
solution is xy  + y 

3      3 
cos x −  2 x 

2 
= c. 

2                                3                      3

10. Let M = x  + y and N = 3xy so that My  = 3y = Nx. From fx = x + y   we obtain

1     4        3               ′ 1     4        3

f =  4 x + xy + h(y), h (y) = 0, and h(y) = 0. A solution is 4 x  + xy = c.

−xy 
11.  Let M = y ln y − e 

 

and N = 1/y + x ln y so that My = 1 + ln y + xe 
−xy  

The 

 

and Nx = ln y.

equation is not exact. 

2         y                  3         y 2       y                                  2         y

12.  Let M = 3x y + e and N = x + xe − 2y so that My = 3x + e  = Nx. From fx = 3x y + e

3        y              ′ 2                          3        y     2

we obtain f = x 

2 
y+xe +h(y), h (y) = −2y, and h(y) = −y 

x 
. A solution is x y+xe 

2 
−y  = c. 

x

13.  Let M = y − 6x − 2xe and N = x so that My  = 1 = Nx. From fx = y − 6x − 2xe

3          x         x               ′                                                                        3
we obtain f = xy − 2x − 2xe + 2e + h(y), h (y) = 0, and h(y) = 0. A solution is xy − 2x  −

x 
2xe 

x 
+ 2e 

 

= c.

 

14.  Let M = 1 − 3/x + y and N = 1 − 3/y + x so that My = 1 = Nx. From fx = 1 − 3/x + y 

′                  3    
we obtain f = x − 3 ln |x| + xy + h(y), h (y) = 1 − y 

 

y + xy − 3 ln |xy| = c. 

, and h(y) = y − 3 ln |y|. A solution is x +

2 3                   2                             3 2                                2 2
15. Let       M = x y − 1/ 1 + 9x and      N  = x y so that  My  = 3x y = Nx.            From

2 3                   2 
1    3 3      1                                                                       ′

fx      = x y − 1/ 1 + 9x 
3 

we obtain f       = 3 x y 
3 

−  3  arctan (3x) + h(y), h (y) = 0,        and



 

h(y) = 0. A solution is x y − arctan (3x) = c.

 

16. Let M = −2y and N = 5y − 2x so that My  = −2 = Nx.                   From fx  = −2y we obtain 
′                                  5     2                                     5     2

f  = −2xy + h(y), h (y) = 5y, and h(y) = 2 y . A solution is −2xy + 2 y  = c.

 

17. Let M = tan x − sin x sin y and N = cos x cos y so that My = − sin x cos y = Nx. From fx = 

′ 
tan x − sin x sin y we obtain f = ln | sec x| + cos x sin y + h(y), h (y) = 0, and h(y) = 0. A 

 

solution is ln | sec x| + cos x sin y = c.
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2 

y 

− 

 

2  xy2
 2               xy2

18.  Let M = 2y sin x cos x − y + 2y e and N = −x + sin x + 4xye so that

3  xy2
 xy2

My = 2 sin x cos x − 1 + 4xy e + 4ye = Nx.

2  xy2
 2                    xy2                      ′

From fx = 2y sin x cos x − y + 2y e 
2 

we obtain f = y sin 
xy2

 

x − xy + 2e + h(y), h (y) = 0,

and h(y) = 0. A solution is y sin x − xy + 2e = c.

 

19. Let M    = 4t 
3            2 
y − 15t 

4 
− y and N       = t 

2 
+ 3y 

3 
− t so that My  = 4t 

 

− 1 = Nt.               From

3            2                                                    4         3 ′             2                       3

ft  = 4t y − 15t − y we obtain f                   = t y − 5t − ty + h(y), h (y) = 3y , and h(y) = y .

 

A solution is t 
4         3 
y − 5t 

2 

3 
− ty + y 

2 

 

= c. 
2 

 

 
y            2      2

20. Let M = 1/t + 1/t − y/      t  + y and N = ye + t/    t  + y so that

2     2 
My  =      y  − t 

2      2 2 
/ t  + y 

2 
=     Nt.   From ft  =                1/t + 1/t 

2      2 
− y/ t  + y 

 

we obtain

1                        t 

′             y                          y      y
f = ln |t| − t − arctan   y + h(y), h (y) = ye , and h(y) = ye − e  . A solution is

1                              t 
y      y

ln |t| − 
 

2                 2 

t − arctan y   + ye 
 

2 

− e  = c.

21. Let M = x + 2xy + y and N = 2xy + x − 1 so that My  = 2(x + y) = Nx.         From

2 
fx = x 

2 
+ 2xy + y 1 

we obtain f =     3 
3      2 

x  + x 
2 

y + xy 
′ 

+ h(y), h (y) = −1, and h(y) = −y. The

1 
solution is 3 

3      2 
x  + x 

2 
y + xy 

 

−y = c. If y(1) = 1 then c = 4/3 and a solution of the initial-value

1   3      2          2             4

problem is  3 x 
x 

+ x y + xy − y =   3  . 
y                                                         x                                 x

22.  Let M = e + y and N = 2 + x + ye so that My = 1 = Nx. From fx = e + y we obtain f = e  +

′                    y 
xy + h(y), h (y) = 2 + ye 

y 
, and h(y) = 2y + ye 

y                                x 
− e  . The solution is e 

y      y 
+ xy + 2y + ye  − e 
x                          y

= c. If y(0) = 1 then c = 3 and a solution of the initial-value problem is e 
y 

+ xy + 2y + ye  −

e  = 3. 
 

23.  Let M = 4y + 2t − 5 and N = 6y + 4t − 1 so that My = 4 = Nt. From ft = 4y + 2t − 5 we obtain 
2                       ′                                              2                                              2                2

f = 4ty + t − 5t + h(y), h (y) = 6y − 1, and h(y) = 3y − y. The solution is 4ty + t − 5t + 3y 
2

− y = c. If y(−1) = 2 then c = 8 and a solution of the initial-value problem is 4ty + t 
2 

− 5t +

3y  − y = 8. 
4 

 

2     2     5                                5                                   4

24.  Let M = t/2y and N =  3y  − t 
2 /y  so that My = −2t/y = Nt.  From ft = t/2y  we

t                                       3                                    3                               t               3
 

obtain f = 
4                  ′ 

4y   + h(y), h (y) = 
  3 

, and h(y) = −     2 
. The solution is     4         2 

4y        2y 
 

= c. If
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 2y 

t2                 3        5
 

y(1) = 1 then c = −5/4 and a solution of the initial-value problem is 
4 

4y  − 
2 

2y  = − 4   .

2 
25.  Let M = y 

 

cos x − 3x 
2                                               3 
y − 2x and N = 2y sin x − x 

2 
+ ln y so that My = 2y cos x − 3x 

 

= Nx.

2                    2                                       2 3         2                ′

From fx = y cos x − 3x y − 2x we obtain f = y sin x − x y − x + h(y), h (y) = ln y, and

2 
h(y) = y ln y − y. The solution is y 

3 
sin x − x 

2 
y − x 

 

+ y ln y − y = c. If y(0) = e then c = 0

2               3        2
and a solution of the initial-value problem is y 

2 
sin x − x 

2 
y − x + y ln y − y = 0.

26. Let M = y + y sin x and N = 2xy − cos x − 1/ 1 + y so that     My = 2y + sin x = Nx. From

2 
fx = y 

2 
+ y sin x we obtain f = xy 

′ 
y cos x + h(y), h (y) = 

− 

  −1   

1 + y
2 , and h(y) =

 

−1 
tan    y. 

−



 

e 

2.4 Exact Equations                 79 
 

2 
The solution is xy −1 

− y cos x − tan 
 

y = c. If y(0) = 1 then c = −1 − π/4 and a solution of

 

2 
the initial-value problem is xy 

 
− y cos x − tan 

−1                π 
y = −1 −    4 .

2 
27.  Equating My = 3y 

3 
+ 4kxy 
 

2 

2 
and Nx = 3y 

3 
+ 40xy 
 

2 

 

we obtain k = 10.

28.  Equating My = 18xy − sin y and Nx = 4kxy − sin y we obtain k = 9/2.

 

2 2                   2                              2
29.  Let M = −x y 

2 
sin x + 2xy cos x and N = 2x y cos x so that 

2                                       2 2

My = −2x y sin x + 4xy cos x = Nx. From fy = 2x y cos x we obtain f = x y cos x + h(y),

′                                                                                                            2 2
h (y) = 0, and h(y) = 0. A solution of the differential equation is x y cos x = c.

2                 2     2                 2 2                 2     2                 2

30.  Let M = (x + 2xy − y )/(x 
3 + 2xy + y ) and N = (y + 2xy − x 

2 
)/(y 
2 

+ 2xy + x 
2 

) so 
2

that My  = −4xy/(x + y) = Nx.         From fx  =     x + 2xy + y − 2y /(x + y) we obtain

2y2              ′
f = x + + h(y), h (y) = −1, and h(y) = −y. A solution of the differential equation is x + y

2      2 
x  + y 

 

= c(x + y). 
 

 
´ 

dx/x                             2       2
31. We note that (My −Nx)/N = 1/x, so an integrating factor is e = x. Let M = 2xy +3x and

2 
N = 2x 

2 
y so that My = 4xy = Nx. From fx = 2xy 

2 
+3x 

2  2 
we obtain f = x y 

3              ′ 
+x  +h(y), h (y) =

2 2      3 
0, and h(y) = 0. A solution of the differential equation is x y  + x 

´
 

 

= c.

 

32. We note that (My − Nx)/N = 1, so an integrating factor is e 
dx      x 

= e . Let

x      2  x         x                     x           x x           x       x

M = xye + y e + ye and N = xe + 2ye so that My = xe + 2ye + e  = Nx. From fy =

x            x                                 x       2  x                 ′
xe   + 2ye we obtain f = xye   + y e 

x      2  x 
+ h(x), h (x) = 0, and h(x) = 0. A solution of the

differential equation is xye + y e = c.  
´ 

2 dy/y      2                       3
33.  We note that (Nx − My )/M = 2/y, so an integrating factor is e = y . Let M = 6xy and

3        2 2                                2 3                             2 3                ′

N = 4y + 9x y so that My = 18xy = Nx. From fx = 6xy we obtain f = 3x y + h(y), h (y)

3                       4                                                                           2 3      4
= 4y , and h(y) = y . A solution of the differential equation is 3x y + y  = c. 

´

34. We note that (My − Nx)/N = − cot x, so an integrating factor is   
−  COT x dx

 
 

= csc x.  Let

M = cos x csc x = cot x and N = (1 + 2/y) sin x csc x = 1 + 2/y, so that My = 0 = Nx. From 
′                                                         2

fx = cot x we obtain f = ln (sin x) + h(y), h (y) = 1 + 2/y, and h(y) = y + ln y 
2 . A solution of

the differential equation is ln (sin x) + y + ln y = c.  
´ 

3 dx      3x
35. We note that (My − Nx)/N = 3, so an integrating factor is e = e   . Let



 

M  = (10 − 6y + e 
−3x   3x 

)e 
3x 

= 10e 
3x 

− 6ye 
3x 

+ 1 and N = −2e 
3x 

, so that My = −6e = Nx. From

3x 
fx = 10e 

3x 
− 6ye + 1 we obtain f = 

10     3x 
3 e 

3x 
− 2ye 

′ 
+ x + h(y), h (y) = 0, and h(y) = 0.

 

A solution of the differential equation is 
10     3x 

3 e 
3x 

− 2ye 
 

+ x = c. 
´ 

−3  dy/y          3
36. We note that (Nx − My)/M = −3/y, so an integrating factor is e = 1/y .                  Let

2        3    3 2              3             3                   2

M = (y + xy )/y = 1/y + x and N = (5y − xy + y sin y)/y = 5/y − x/y + sin y, so that

2                                                                           1   2             ′
My = −1/y = Nx. From fx = 1/y+x we obtain f = x/y+ 2 x +h(y), h (y) = 5/y+sin y, and h(y)

1     2
= 5 ln |y| − cos y. A solution of the differential equation is x/y + 2 x  + 5 ln |y| − cos y = c.
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2 
y2 

  

2 

–2  

 
–4 

 
1 

 
–6 

 

 

2 

2 

y 

 

 

2
37.  We note that (My − Nx)/N = 2x/(4 + x ), so an integrating factor is

−2 ´ x dx/(4+x2)                 2 2                    2                       2

e                       = 1/(4 + x ).  Let M = x/(4 + x 
2 

) and N = (x 
1 

y + 4y)/(4 + x 
2                 ′ 

) = y, so

that My = 0 = Nx. From fx = x(4 + x ) we obtain f = ln (4 + x 
2 ) + h(y), h (y) = y, and 

2

h(y) =    1 y . A solution of the differential equation is                          1  ln (4 + x )+         1                

y 
2
 

= c. Multiplying both

2                                                                                                                           
y 

sides by 2 the last equation can be written as e 

2                                          2 
2 

x    + 4    = c1. Using the initial condition

y             2 

y(4) = 0 we see that c1 = 20. A solution of the initial-value problem is e      x 
´ 

 
+4 =20.

−3 dx/(1+x) 
38. We note that (My −Nx)/N = −3/(1+x), so an integrating factor is e 

3 
= 1/(1+x) 

 

. Let

2      2                    3 3                     2                                         3

M = (x + y   − 5)/(1 + x) and N = −(y + xy)/(1 + x) = −y/(1 + x) , so that My = 2y/(1 + x)   =

2                           1    2           2               ′           2                   3
Nx. From fy = −y/(1 + x) 

2 
we obtain f = − 2 y /(1 + x) + h(x), h (x) = (x − 5)/(1 + x) , and h(x)

= 2/(1 + x) + 2/(1 + x) + ln |1 + x|. A solution of the differential equation is 
 

 

y2                            2              2

2 
− 2(1 + x) 

2 
+(1 + x) 

 

+(1 + x) + ln |1 + x| = c.

 

Using the initial condition y(0) = 1 we see that c = 7/2. A solution of the initial-value 

problem is 
2                         

2             2                         7 

2                 2
− 2 (1 + x) 

 

3 

+(1 + x) 
 

2        2 

+1 + x + ln |1 + x| =  2

39. (a) Implicitly differentiating x + 2x y + y = c and solving for dy/dx we obtain 
2

2                   2
dy                   dy                    dy           3x  + 4xy 

2
3x  + 2x dx + 4xy + 2y dx = 0 and dx = − 2x  + 2y . 

2                       2
By writing the last equation in differential form we get (4xy + 3x )dx+ (2y + 2x )dy = 0.

 

3        2        2
(b)  Setting x = 0 and y = −2 in x + 2x y + y = c we find c = 4, and setting x = y = 1 we

also find c = 4. Thus, both initial conditions determine the same implicit solution. 
 

3        2        2
(c)  Solving x + 2x y + y = 4 for y we get                                                     y

2                 3      4                                                
4

y1(x) = −x −      4 − x  + x

and  
2 

y2(x) = −x 

 

+      4 − x
3

 

 
4 

+ x  . 

 
x 

–4      –2                                4
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Observe in the figure that y1(0) = −2 and y2(1) = 1.                                        y 
 
 
 
 

 

40.  To see that the equations are not equivalent consider dx = −(x/y) dy. An integrating factor 

is µ(x, y) = y resulting in y dx + x dy = 0. A solution of the latter equation is y = 0, but this is 

not a solution of the original equation.
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2 

 

 

2               2                            2
41.  The explicit solution is y = (3 + cos 

2 
x)/(1 − x ) . Since 3 + cos x > 0 for all x we must

have 1 − x > 0 or −1 < x < 1. Thus, the interval of definition is (−1, 1).

xy 
42. (a) Since fy  = N (x, y) = xe 

xy 
+ 2xy + 1/x we obtain f = e 

2 
+ xy 

y 
+x   + h(x) so that

y                                                                             y
 

xy      2 
fx = ye    + y  − 

 

′                                   xy      2 
x2 + h (x). Let M (x, y) = ye    + y  − 

 

x2   .

1/2 
(b) Since fx = M (x, y) = y −1/2 

x 2       −1 
+ x        x  + y 

 

we obtain

1/2
 
1/2    1       2

 
−1/2

 
1/2    1    2       −1

f  = 2y    x +       ln x 
1 

+ y + g(y) so that fy = y 
−1 

x     +   2 x  + y ′ 
+ g (y). Let

 
 
 

43. First note that 

x2 + y 
2 

.N(x,y)=y−1/2x1/2+

 

2       2                   x                       y  
d    x  + y    = 

 
2

 

2 
x  + y 

2 dx + 2 
x  + y 

2 dy.

Then x dx + y dy =     x
2 

+ y dx becomes

       x                    y                        2      2
2 

x  + y 
2 dx + 2 

x  + y 
2 dy = d      x  + y = dx.

2 
The left side is the total differential of x 

2 
+ y  and the right side is the total differential of x

2      2 
+ c. Thus x  + y 

 

= x + c is a solution of the differential equation.
 

44.  To see that the statement is true, write the separable equation as −g(x) dx + dy/h(y) = 0. 

Identifying M = −g(x) and N = 1/h(y), we see that My = 0 = Nx, so the differential equation 

is exact. 

45.  (a) In differential form  

 
2 

v  − 32x  dx + xv dv = 0
 

This is not an exact equation, but µ(x) = x is an integrating factor. The new equation
2           2 

xv  − 32x 
2 

dx + x v dv = 0 is exact and solving yields 
1   2  2    32 

x v  − 
3 

x  = c. When x = 3,

2                      3 

 
 

x       9 

2
v(x) = 8 3  − x  .

(b)  The chain leaves the platform when x = 8, and so 
 

 
 
 

46. (a) Letting 

 

 

v(8) = 8 

8        9 

3 −  64 

 

 

≈ 12.7 ft/s
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M (x, y) =      2xy           and       N (x, y) = 1 + 2      2   
  y  − x

 

 

we compute 

2      2 2 
(x  + y ) 
 

3          2 

2      2 2 
(x  + y )

My = 2x  − 8xy 
2      2 3 

= Nx,

(x  + y )
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y   3 x     y   
3            

 

2 
  2      2   

 
1 

  1       

1 
  

  
x    y       

1 2        3 –1.5 –1 –0.5 0.5 1 1.5 –3 –2 –1 1 2 3 
 

–1   
 

–1      –1   

–2   –2      –2   

 

–3   
 

–3      
 

–3   

 

( 

 
 

so the differential equation is exact. Then we have 

∂f                             2xy               2 
= M (x, y) =             22 2  = 2xy(x 

 

+ y2)−2

∂x                      (x + y ) 
y

2      2 −1                        2      2
f (x, y) = −y(x + y ) + g(y) = −  x  + y + g(y)

∂f  =     y
2 

− x
2  

+ g
′ 
y) = N (x, y) = 1 +     y

2 
− x

2   
.

2 
∂y       (x 

 
′
 

2 2 
+ y ) 

 

 
     y   

2  

2      2 2 
(x  + y )

Thus, g (y) = 1 and g(y) = y. The solution is y − 
2 

x  + y 
= c. When c = 0 the solution

2      2 
is x  + y 

 

= 1.

 
2      2

(b)  The first graph below is obtained in Mathematica using f (x, y) = y − y/(x + y ) and

 

 

ContourPlot[f[x, y], {x, -3, 3}, {y, -3, 3}, 
 

Axes−>True, AxesOrigin−>{0, 0}, AxesLabel−>{x, y}, 

Frame−>False, PlotPoints−>100, ContourShading−>False, 

Contours−>{0, -0.2, 0.2, -0.4, 0.4, -0.6, 0.6, -0.8, 0.8}] 

 
The second graph uses 

 
3        2                                           3        2 

x =        y  − cy  − y       andx =            y  − cy  − y . 
−          c     y                                                       c        y 

−                                                − 
 

In this case the x-axis is vertical and the y-axis is horizontal. To obtain the third graph, 
2      2

we solve y−y/(x +y ) = c for y in a CAS. This appears to give one real and two

complex solutions. When graphed in Mathematica however, all three solutions contribute 

to the graph. This is because the solutions involve the square root of expressions 

containing c. For some values of c the expression is negative, causing 

an apparent complex solution to actually be real. 
 
 
 

3 
 

 
 
 
 
 

–3       –2      –1
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2.5      Solutions by Substitutions 
 

 
 

1. Letting y = ux we have 

 

(x − ux) dx + x(u dx + x du) = 0 

d
d
x
x
+ x du = 0 

 

x + du = 0 
 

ln |x| + u = c 
 

x ln |x| + y = cx. 
 
 

 
2. Letting y = ux we have 

 

 
(x + ux) dx + x(u dx + x du) = 0 

(1 + 2u) dx + x du = 0 

dx   +  du   = 0 
x 1 + 2u 

1

ln |x| + 2 ln |1 + 2u| = c

 
2            y 

x    1 + 2x 

2 

 
= c1

x  + 2xy = c1. 
 
 

 

3. Letting x = vy we have 
 

 
 

vy(v dy + y dv) + (y − 2vy) dy = 0
2               2 

vy  dv + y v 
 

− 2v + 1 dy = 0

 

     v dv    
2 

 

dy 
+     = 0

(v − 1)       y 
1

ln |v − 1| − v      1 + ln |y| = c 
−

x 
ln  y − 1  − 

1 
x/y 

− 

 

1 + ln |y| = c

(x − y) ln |x − y| − y = c(x − y).



 

    

    
 

4. Letting x = vy we have 
 
 

y(v dy + y dv) − 2(vy + y) dy = 0 
 

y dv − (v + 2) dy = 0
 

dv 

v + 2 − 

 

dy 

y  = 0

 

ln |v + 2| − ln |y| = c 
 

x 
ln   y + 2 − ln |y| = c 

2 
x + 2y = c1y . 

 

 
 

5. Letting y = ux we have 
 

 

2 2        2            2
u x  + ux dx − x (u dx + x du) = 0 

2
u  dx − x du = 0 

dx     du 
2 

x  −  u    = 0 
1 

 

ln |x| +  u  = c 

x 

ln |x| +  y  = c 
 

y ln |x| + x = cy. 
 

 
 

6. Letting y = ux and using partial fractions, we have 
 

 

2 2        2            2
u x  + ux dx + x (u dx + x du) = 0

2    2                    3 
x   u  + 2u dx + x 

 

du = 0

 

dx         du 

x   + u(u + 2)   = 0 
 

1                    1

ln |x| + 2 ln |u| −  2 ln |u + 2| = c 
2

x u

u + 2 
 

2 

= c1 

y

x  
x   

= c1 
x 

+ 2 

2 
x y = c1(y + 2x).



 

7. Letting y = ux we have 
 

 
 

(ux − x) dx − (ux + x)(u dx + x du) = 0 
2 

u  + 1 dx + x(u + 1) du = 0 
 

dx       u + 1 
2

x   + u 
2 

+ 1 du = 0 
−1

ln x   +  1 ln  u + 1 + tan u = c

| |    2    
2

 

ln x 2   y    

+ 1   + 2 tan 
−1  y  

= c1

x2                                   x

2      2 
ln  x  + y 

 

+ 2 tan 
−1 y 

x = c1

 

 
8. Letting y = ux we have 

 

 
 

(x + 3ux) dx − (3x + ux)(u dx + x du) = 0 
2 

u  − 1 dx + x(u + 3) du = 0 
dx            u + 3 

x  + (u − 1)(u + 1) du = 0

 

ln |x| + 2 ln |u − 1| − ln |u + 1| = c 
2 

  x(u − 1)  = c1 
u + 1 
y        2               y 

 

x   x − 1     = c1  x   + 1 
 

2
(y − x) = c1(y + x).

 

 
9. Letting y = ux we have 

 

√    
−ux dx + (x +  u x)(u dx + x du) = 0

√ 
(x2 + x2 

 

 

u ) du + xu 

 
3/2 

 

 

dx = 0

u−3/2 +  1    du +  dx = 0 
u             x 

2u−1/2   + ln u   + ln x   = c 

−                   | |         | |               
 

ln |y/x| + ln |x| = 2        x/y + c 
2

y(ln |y| − c) = 4x.



 

    

    
 

10.  Letting y = ux we have 
 

2      2 2           2
x  − u x  dx − x 

2           2 
du = 0

x   1 − u 
 

dx 

dx − x 
 

du 

du = 0,   (x > 0) 
 
 
2

x  − √ 1 − u   = 0 
−1

ln x 
− 

sin u = c 
 

−1
sin u = ln x + c1

−1 y
sin x = ln x + c2 

y 

x = sin (ln x + c2) 
 

y = x sin (ln x + c2).

 
See Problem 33 in this section for an analysis of the solution. 

 
11. Letting y = ux we have 

 

3      3 3             2 3
x  − u x dx + u x (u dx + x du) = 0 

2

dx + u x du = 0 

2
dx + u 
x 

 

 
ln |x| + 
3 

du = 0 
 

 

1   3 
 

3u    = c 
3          3

3x  ln |x| + y = c1x .  
 

3             3        3
Using y(1) = 2 we find c1 = 8. The solution of the initial-value problem is 3x 

 

12. Letting y = ux we have 

ln |x|+y = 8x .

 

2        2 2              2
(x  + 2u x )dx − ux (u dx + x du) = 0

2          2              3
x (1 + u )dx − ux du = 0

 

dx      u du 
2 

x  −  1 + u   = 0 

1                  2
ln |x| − 2 ln(1 + u 

   x2   

) = c 

 
= c

1 
1 + u2 

4           2      2
x  = c1(x + y ).  

 

4      2      2
Using y(−1) = 1 we find c1 = 1/2. The solution of the initial-value problem is 2x  = y + x .
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13. Letting y = ux we have 
 

u               u
(x + uxe ) dx − xe (u dx + x du) = 0 

u
dx − xe 

dx 

du = 0 
 

u

x − e du = 0 
 

u
ln |x| − e 

y/x 
ln |x| − e 

= c 
 

= c.

 

Using y(1) = 0 we find c = −1. The solution of the initial-value problem is ln |x| = e 
 

14. Letting x = vy we have 
 

 
y(v dy + y dv) + vy(ln vy − ln y − 1) dy = 0 

y dv + v ln v dy = 0 

y/x  

− 1.

 

  dv    +d  y   = 0 
v ln v      y 

 
ln |ln |v|| + ln |y| = c 

x

y ln  y = c1.

x 

Using y(1) = e we find c1 = −e. The solution of the initial-value problem is y ln y 

 

 

= −e.

 

′     1        1  −2 

 

3             dw        3       3
15.  From y + x 

3 
y = x  y 
3         3 

and w = y 

3 
we obtain 

−3 
dx + x w = x . An integrating factor

is x so that x w = x + c or y = 1 + cx   .

′             x 2                  −1                   dw               x                                             x
16.  From y − y = e y and w = y we obtain dx + w = −e . An integrating factor is e  so

x          1     2x −1       1     x        −x

that e w = −  2 e 

′               4 

+ c or y    = − 
 

−3 

2 e  + ce   . 

dw  
 

 

−3x

17.  From y + y = xy and w = y we obtain dx − 3w = −3x. An integrating factor is e

−3x −3x    1 −3x −3           1          3x

so that e w = xe +  3 e + c or y = x + 3 + ce   .

1 
′                               2                  −1 

dw                 1

18. From y −  1 + x    y = y and w = y we obtain    dx +  1 + x 
1      c 

w = −1. An integrating

x factor is xe 
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so that xe 
x             x 
w = −xe 

x              
−1 

+ e  + c 
or y 

 

= −1 + 
 

x   +x 

e−x.

′     1     1   2 −1             dw      1        1

19.  From y − t y = − t  2 y and w = y we obtain dt + t w = t 2 . An integrating factor

−1    1         c                                 t
is t so that tw = ln t + c or y =   t ln t + t . Writing this in the form y 

t/y 
= ln t + c, we see

that the solution can also be expressed in the form e = c1t.



 

2 

2           4 

 

′ 
20. From y + 

        2    
2  y = 

      2t     4 
2  y 

 

−3 
and w = y 

 
we obtain 

dw 
−      2t  

w = 
 −2t   

2 
 
. An

3 (1 + t ) 1 3 (1 + t )   w             1 

2                       2             2 

dt    1 + t2              1 + t 

−3                       2

integrating factor is 1 + t so that 1 + t =1 + t + c or y = 1 + c 1 + t   .

2            3                                              dw    6              9 
′                    4                   −3

21. From y −  x y = x2 y and w = y we obtain   dx +x   w = − x2
 .  An integrating factor

6                 6                      
9    5 −3                   9    −1        

−6  1                                          49

is x so that x w = − 5 x  + c or y = −  5 x + cx .    If y(1) = 2     then c = 5  and

−3       9 −1    49     −6

y    = −  5 x 

 
′ 

+    5 x   . 

 
−1/2 

 

 
 
3/2 

 
 

dw       3        3 

 

 
 
3x/2

22.  From y + y = y and w = y we obtain dx + 2 w = 2 . An integrating factor is e

 

so that e 
3x/2  

w = e 
3x/2 3/2 

+ c or y 
 

= 1 + ce 
−3x/2 3/2 

. If y(0) = 4 then c = 7 and y 
 

= 1 + 7e 
−3x/2 

.

du             2               1   
23. Let u = x + y + 1 so that du/dx = 1 + dy/dx. Then 

−1 
dx − 1 = u  or 1 + u du = dx. Thus

tan u = x + c or u = tan (x + c), and x + y + 1 = tan (x + c) or y = tan (x + c) − x − 1.

24. Let u = x + y so that du/dx = 1 + dy/dx. Then             du 
 

1 =1 − u    or u du = dx. Thus

 

1   2                    2 2                      
dx −             u

2 u  = x + c or u = 2x + c1, and (x + y) = 2x + c1. 
 

du                 2               2
25. Let u = x + y so that du/dx = 1 + dy/dx. Then dx   − 1 = tan u or cos u du = dx. Thus

1 
u +  

1                     sin 2u = x + c or 2u + sin 2u = 4x + c1, and 2(x + y) + sin 2(x + y) = 4x + c1  or 

2y + sin 2(x + y) = 2x + c1.
 
 

26. Let u = x + y so that du/dx = 1 + dy/dx. Then 

 

du 

dx − 1 = sin u or 
2 

 

1 

1 + sin u 

 
 

du = dx.

Multiplying by (1 
− 

sin u)/(1 
− 

sin u) we have 1 − sin u du = dx or (sec 
cos  u 

u   sec u tan u)du = dx. 
−

 

Thus tan u − sec u = x + c or tan (x + y) − sec (x + y) = x + c. 

du                √          1

27. Let u = y − 2x + 3 so that du/dx = dy/dx − 2. Then dx + 2 = 2 +  u or    √u du = dx. Thus

√                   √ 
2  u = x + c and 2 

 

 

y − 2x + 3 

 

 

= x + c. 

 

 
 

du    

 
 

 
u       −u

28.  Let u = y − x + 5 so that du/dx = dy/dx − 1. Then dx + 1 = 1 + e or e du = dx. Thus

−u                          −y+x−5 
−e    = x + c and −e 

 

= x + c. 
 
 
du                                        1

 



 

29. Let u = x + y so that du/dx = 1 + dy/dx. Then 
 

dx − 1 = cos u and 1 + cos u 
 

du = dx. Now

 
        1   

 

= 1 − cos u 
2 

 

=1 − cos u = csc
2 

u 
2 

 
csc u cot u

´           
1 + cos u     1 − cos u        sin  u                −

 

so we have (csc
2 

u − csc u cot u) du = 
´       

dx and − cot u + csc u = x + c. Thus − cot (x + y) + 
√ 

 

csc (x + y) = x + c. Setting x = 0 and y = π/4 we obtain c = 
√   

csc (x + y) − cot (x + y) = x +     2 − 1. 

 

2 − 1. The solution is
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α 

 

du 

30. Let u = 3x + 2y so that du/dx = 3 + 2 dy/dx.        Then  dx 
 u + 2   du = dx. Now by long division 
5u + 6 

2u 

= 3 +u + 2 

5u + 6 

= u + 2 

 
and

 

 u + 2    =1   +       4  
 

 

so we have 

5u + 6    5 25u + 30

1          4
 
 

1           4 

ˆ      5   +25u  + 30 du = dx

and 5 u + 25 ln |25u + 30| = x + c. Thus 
 

1                     4 
5 (3x + 2y) + 25 

 
 
 

ln |75x + 50y + 30| = x + c.

 

4  
Setting x = −1 and y = −1 we obtain c = 25 

 
ln 95. The solution is

 

1 

5(3x + 2y) + 
 

or 

 

4 

25 ln |75x + 50y + 30| = x + 

 

4 

25 ln 95

 

 

5y − 5x + 2 ln |75x + 50y + 30| = 2 ln 95 
 

 

31.  We write the differential equation M (x, y)dx + N
M

(x,
x
y
,
)d
y
y = 0 as dy/dx = f (x, y) where 

(     ) 
 

f (x, y) = −              . 
 

 

The function f (x, y) must necessarily be homogeneous of degree 0 when M and N are ho- 
α

mogeneous of degree α. Since M is homogeneous of degree α, M (tx, ty) = t 

letting t = 1/x we have 
M (x, y), and

 

  1                                            α
M (1, y/x) = α M (x, y)  or        M (x, y) = x 

x 
M (1, y/x).

Thus                                               
x
  

M (1, y/x)
dy                                                                    M (1, y/x)                      y 

α
dx = f (x, y) = − 

2        2 

x N (1, y/x) = − N (1, y/x)  = F    x   .

32.  Rewrite (5x − 2y )dx − xy dy = 0 as  

 

  dy      2        2
 

 
and divide by xy, so that 

xy dx = 5x − 2y

dy     x         y
 
 

We then identify 
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dx    = 5 y − 2 x  
.

F  x
y
 

 

= 5   x 
y   −1 y 

− 2   x    .
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33.  (a) By inspection y = x and y = −x are solutions of the differential equation and not (ln 

members of the family y = x sin x + c2). 
 

−1
(b)  Letting x = 5 and y = 0 in sin 

−1 
(y/x) = ln x + c2 we get             

y

sin 
−1 

sin 

0 = ln 5 + c2 or c2 = − ln 5. Then 

(y/x) = ln x − ln 5 = ln (x/5). Because the range of        
20

the arcsine function is [−π/2, π/2] we must have                   15 

π        x     π 
−    2 ≤ ln   5 ≤    2                        

10
 

x                                         5

e−π/2 ≤  5 ≤ eπ/2 
 

x 
5       10      15      20

5e−π/2 ≤ x ≤ 5eπ/2 

 

The interval of definition of the solution is approximately [1.04, 24.05]. 
6x 

34.  As x → −∞, e 
6x 

→ 0 and y → 2x+3. Now write (1+ce 
−6x 

6x 
)/(1−ce 

−6x 
) as (e 

−6x 
+c)/(e 

 

−c).

Then, as x → ∞, e → 0 and y → 2x − 3.

35.  (a) The substitutions y = y1 + u and 
 
 
 
 

lead to 

 
 
 

dy    
=

dy1    +
du 

dx      dx     dx

 

dy1 

dx 

 

du 

+dx 

 
2 

= P + Q(y1 + u) + R(y1 + u) 

2                                   2
= P + Qy1 + Ry1 

 

or                                             
du

 

+ Qu + 2y1Ru + Ru 
 

 
 

2

dx  − (Q + 2y1R)u = Ru . 

This is a Bernoulli equation with n = 2 which can be reduced to the linear equation 
 

dw 
 

dx   + (Q + 2y1R)w = −R 
 

−1
by the substitution w = u   . 

 

2 

 

dw         1     4

(b) Identify P (x) = −4/x , Q(x) = −1/x, and R(x) = 1. Then 
 1 

dx    + − x +  x 
1 

w = −1.

3                3                 4 −3  −1

An integrating factor is x so that x w = − 4 x  + c or u =    −4 x + cx . Thus,

2                        2           1                −1 

−3
y =  x + u or  y = 

′
 

x +  − 4    x + cx
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36.  Write the differential equation in the form x(y /y) = ln x + ln y du/dx and let u = ln y. Then x 
′

= y /y and the differential equation becomes x(du/dx) = ln + u or du/dx − u/x =
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v 

 

− ´ dx/x 
(ln x)/x, which is first-order and linear.      An integrating factor is e 
(using integration by parts) 

d     1          ln x             u        1     ln x 

2 

 

= 1/x, so that

 
The solution is 

dx   x u     = x and x = − x − x   + c.

 
ln y = −1 − ln x + cx  or y = 

37.  Write the differential equation as 

ecx−1 

x    .

 
 

 
2 

and let u = v 

 
 
 
 

or v = u 

 
 

 
1/2 

. Then 

dv   +1 v = 32 
−1  

, 

dx     x 
 

 
dv   = 1 u−1/2   du , 
dx     2           dx

and substituting into the differential equation, we have 
 

 1 u−1/2  du  +1 u1/2 = 32u−1/2    or   du   + 2 u = 64.
2          dx     x dx       x 

 

´
 

d     2              2
 

 

and 

dx  x u  = 64x

2         64  3                                          2         64        c 
x u =                    x       + c or v                                    =         x +              

2 
.
 

3                               3        x 
2                        −1               −1

38.  Write the differential equation as dP/dt − aP = −bP 
dp              du 

−2 

and let u = P or P = u . Then

dt = −u dt   ,

and substituting into the differential equation, we have 

du                                            du
−2               −1 

−u     dt − au 
−2 

= −bu 
 

or       dt 
 

+ au = b. 
´

 

 
 
 

and 

 

d   at 

dt  [e 

 
at       

u] = be 
 
 

at          b   at 

e  u =a e  + c 
 

eatP −1 =
b 

eat + c 
a 

 

P−1 =
b 

+ ce−at 
a 

P   =       
1         

=
      a       

. 

 
 
= e  , so

 

b/a + ce 
−at  

b + c1e 
−at
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2.6      A Numerical Method 
 

 

1. We identify f (x, y) = 2x − 3y + 1. Then, for h = 0.1, 
 

yn+1 = yn + 0.1(2xn − 3yn + 1) = 0.2xn + 0.7yn + 0.1, 
 

and 
 

 

For h = 0.05, 

and 

y(1.1) ≈ y1 = 0.2(1) + 0.7(5) + 0.1 = 3.8 

y(1.2) ≈ y2 = 0.2(1.1) + 0.7(3.8) + 0.1 = 2.98 

 

 

yn+1 = yn + 0.05(2xn − 3yn + 1) = 0.1xn + 0.85yn + 0.1,

 

y(1.05) ≈ y1 = 0.1(1) + 0.85(5) + 0.1 = 4.4 
 

y(1.1) ≈ y2 = 0.1(1.05) + 0.85(4.4) + 0.1 = 3.895 y(1.15) 

≈ y3 = 0.1(1.1) + 0.85(3.895) + 0.1 = 3.47075 y(1.2) ≈ y4 

= 0.1(1.15) + 0.85(3.47075) + 0.1 = 3.11514 

2
2. We identify f (x, y) = x + y . Then, for h = 0.1, 

2                                     2
 

 
and 

yn+1 = yn + 0.1(xn + yn ) = 0.1xn + yn + 0.1yn , 
 

 
 

2
y(0.1) ≈ y1 = 0.1(0) + 0 + 0.1(0)  = 0 

2
y(0.2) ≈ y2 = 0.1(0.1) + 0 + 0.1(0) = 0.01

 

For h = 0.05, 
2                                          2

 

 

and 

yn+1 = yn + 0.05(xn + yn ) = 0.05xn + yn + 0.05yn , 
 

 
2

y(0.05) ≈ y1 = 0.05(0) + 0 + 0.05(0)  = 0 
2

y(0.1) ≈ y2 = 0.05(0.05) + 0 + 0.05(0) = 0.0025 
2

y(0.15) ≈ y3 = 0.05(0.1) + 0.0025 + 0.05(0.0025) = 0.0075 

2
y(0.2) ≈ y4 = 0.05(0.15) + 0.0075 + 0.05(0.0075) 

3. Separating variables and integrating, we have 

dy 

= 0.0150

y = dx and  ln |y| = x + c. 

x                                                                          x
Thus y = c1e 

problem. 

and, using y(0) = 1, we find c = 1, so y = e is the solution of the initial-value
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h = 0.1 h = 0.05

 

X 
N 

Y 
N 

ACTUAL 

VALUE 

ABS. 

ERROR 

%REL. 

ERROR 

   X 
N 

Y 
N 

ACTUAL 

VALUE 

ABS. 

ERROR 

%REL. 

ERROR 

0.00 1.0000 1.0000 0.0000 0.00    0.00 1.0000 1.0000 0.0000 0.00 

1.10 1.1000 1.1052 0.0052 0.47    0.05 1.0500 1.0513 0.0013 0.12 

0.20 1.2100 1.2214 0.0114 0.93    0.10 1.1025 1.1052 0.0027 0.24 

0.30 1.3310 1.3499 0.0189 1.40    0.15 1.1576 1.1618 0.0042 0.36 

0.40 1.4641 1.4918 0.0277 1.86    0.20 1.2155 1.2214 0.0059 0.48 

0.50 1.6105 1.6487 0.0382 2.32    0.25 1.2763 1.2840 0.0077 0.60 

0.60 1.7716 1.8221 0.0506 2.77    0.30 1.3401 1.3499 0.0098 0.72 

0.70 1.9487 2.0138 0.0650 3.23    0.35 1.4071 1.4191 0.0120 0.84 

0.80 2.1436 2.2255 0.0820 3.68    0.40 1.4775 1.4918 0.0144 0.96 

0.90 2.3579 2.4596 0.1017 4.13    0.45 1.5513 1.5683 0.0170 1.08 

1.00 2.5937 2.7183 0.1245 4.58    0.50 1.6289 1.6487 0.0198 1.20 

 0.55 1.7103 1.7333 0.0229 1.32 

0.60 1.7959 1.8221 0.0263 1.44 

0.65 1.8856 1.9155 0.0299 1.56 

0.70 1.9799 2.0138 0.0338 1.68 

0.75 2.0789 2.1170 0.0381 1.80 

0.80 2.1829 2.2255 0.0427 1.92 

0.85 2.2920 2.3396 0.0476 2.04 

0.90 2.4066 2.4596 0.0530 2.15 

0.95 2.5270 2.5857 0.0588 2.27 

1.00 2.6533 2.7183 0.0650 2.39 

 

 
 
 

4. Separating variables and integrating, we have 
 

dy 
2 

y  = 2x dx and  ln |y| = x 

 

 

+ c.

x2                                                                                   −1 x2−1

Thus y = c1e and, using y(1) = 1, we find c = e , so y = e is the solution of the

initial-value problem. 
 
 

h = 0.1 h = 0.05

 

X 
N 

Y 
N 

ACTUAL 

VALUE 

ABS. 

ERROR 

%REL. 

ERROR 

   X 
N 

Y 
N 

ACTUAL 

VALUE 

ABS. 

ERROR 

%REL. 

ERROR 

1.00 1.0000 1.0000 0.0000 0.00    1.00 1.0000 1.0000 0.0000 0.00 

1.10 1.2000 1.2337 0.0337 2.73    1.05 1.1000 1.1079 0.0079 0.72 

1.20 1.4640 1.5527 0.0887 5.71    1.10 1.2155 1.2337 0.0182 1.47 

1.30 1.8154 1.9937 0.1784 8.95    1.15 1.3492 1.3806 0.0314 2.27 

1.40 2.2874 2.6117 0.3243 12.42    1.20 1.5044 1.5527 0.0483 3.11 

1.50 2.9278 3.4903 0.5625 16.12    1.25 1.6849 1.7551 0.0702 4.00 

 1.30 1.8955 1.9937 0.0982 4.93 

1.35 2.1419 2.2762 0.1343 5.90 

1.40 2.4311 2.6117 0.1806 6.92 

1.45 2.7714 3.0117 0.2403 7.98 

1.50 3.1733 3.4903 0.3171 9.08 
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9. 
 

h = 0.1 
  

 

h = 0.05 
  10. 

 

h = 0.1 
  

 

h = 0.05 
 

 X Y  X Y   X Y  X Y 

             
 1.00 1.0000  1.00 1.0000   0.00 0.5000  0.00 0.5000 

 1.10 1.0000  1.05 1.0000   0.10 0.5250  0.05 0.5125 

 1.20 1.0191  1.10 1.0049   0.20 0.5499  0.10 0.5250 

 1.30 1.0588  1.15 1.0147   0.30 0.5747  0.15 0.5375 

 1.40 1.1231  1.20 1.0298   0.40 0.5991  0.20 0.5499 

 1.50 1.2194  1.25 1.0506   0.50 0.6231  0.25 0.5623 

    1.30 1.0775      0.30 0.5746 

    1.35 1.1115      0.35 0.5868 

    1.40 1.1538      0.40 0.5989 

    1.45 1.2057      0.45 0.6109 

    1.50 1.2696      0.50 0.6228 

 

 
 
 

5. 
 

h = 0.1   
 

   
 

 

h = 0.05   
 

   
 6. 

 

h = 0.1   
 

   
 

 

h = 0.05   
 

   

 X Y  X Y   X Y  X Y 

 
N N 

 
N N 

  
N N 

 
N N 

 0.00 0.0000  0.00 0.0000   0.00 1.0000  0.00 1.0000 

 0.10 0.1000  0.05 0.0500   0.10 1.1000  0.05 1.0500 

 0.20 0.1905  0.10 0.0976   0.20 1.2220  0.10 1.1053 

 0.30 0.2731  0.15 0.1429   0.30 1.3753  0.15 1.1668 

 0.40 0.3492  0.20 0.1863   0.40 1.5735  0.20 1.2360 

 0.50 0.4198  0.25 0.2278   0.50 1.8371  0.25 1.3144 

    0.30 0.2676      0.30 1.4039 

    0.35 0.3058      0.35 1.5070 

    0.40 0.3427      0.40 1.6267 

    0.45 0.3782      0.45 1.7670 

    0.50 0.4124      0.50 1.9332 

 
 
 
 
 
 

 

7. 
 

h = 0.1 
   

 

h = 0.05 
  8. 

 

h = 0.1 
   

 

h = 0.05 
 

 
X Y 

  
X Y 

  
X Y 

  
X Y 

 
N N 

  
N N 

  
N N 

  
N N 

 0.00 0.5000   0.00 0.5000   0.00 1.0000   0.00 1.0000 

 0.10 0.5250   0.05 0.5125   0.10 1.1000   0.05 1.0500 

 0.20 0.5431   0.10 0.5232   0.20 1.2159   0.10 1.1039 

 0.30 0.5548   0.15 0.5322   0.30 1.3505   0.15 1.1619 

 0.40 0.5613   0.20 0.5395   0.40 1.5072   0.20 1.2245 

 0.50 0.5639   0.25 0.5452   0.50 1.6902   0.25 1.2921 

 0.30 0.5496       0.30 1.3651 

0.35 0.5527       0.35 1.4440 

0.40 0.5547       0.40 1.5293 

0.45 0.5559       0.45 1.6217 

0.50 0.5565       0.50 1.7219 

 
 
 
 
 
 
 
 

 
N                               N                                                         N                               N                                                                                       N                               N                                                         N                               N
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y 
10 

h = 0.1  

 
 

 
 

8 
 

 
RK4 

 

 
6 

 

 
 

 
 

 

4 
 

 
 

 
 

 

2  
 

 
EULER 

 
 

   x 

 

 

 

11.  Tables of values were computed using the Euler and RK4 methods. The resulting points 

were plotted and joined using ListPlot in Mathematica. 
h = 0.25 

y 
h = 0.1 

y 
h = 0.05 

y

7                                            RK4 

6 

5 

4 

3 

2                                                       EULER 

1 
x 

7                                               RK4 
6 

5 

4 

3 

2 

1                                                       EULER 

x 

7                                               RK4 

6                                                       EULER 

5 
4 

3 

2 

1 

x

2         4        6            8         10 2        4            6          8         10 2          4          6          8         10

 

 
12.  See the comments in Problem 11 above. 

h = 0.25 
y 

6 

5 

 

 
RK4 

h = 0.1 
y 

6 

5 

 

 
RK4 

h = 0.05 
y 

6 

5 

 

 
RK4

4                          
EULER 

3 

2 

1 

4                       
EULER

 

3 

2 

1 

x 

4                     EULER 

3 

2 

1 

x                                                                         x

1        2            3          4          5 1         2          3         4          5 1        2            3          4         5

 

 

13.  Using separation of variables we find that the solution of the differential equation is y = 
2

1/(1 − x ), which is undefined at x = 1, where the graph has a vertical asymptote. Because

the actual solution of the differential equation becomes unbounded at x approaches 1, 

very small changes in the inputs x will result in large changes in the corresponding outputs 

y. This can be expected to have a serious effect on numerical procedures. The graphs 

below were obtained as described in Problem 11. 
 

y                           
h = 0.05 

10 

8                                                        
RK4 

 
6 

 
4                                                    

EULER 

2 

 
x

0.2             0.4             0.6              0.8              1 0.2            0.4             0.6         0.8                  1

 

 

14. (a) The graph to the right was obtained using RK4 
and ListPlot in Mathematicawith h = 0.1.



 

e 
x 

2 

e e e e 

′ 
(b)  Writing the differential equation in the form y + 2xy = 1 we see that an integrating

´ 2xdx 
factor is e 

 

 
 

and
 

=   
x2

 

 

, so  
d    x

2                   2 

dx [e    y] = e

ˆ 
y = e−x 

x    2                    2 

et dt + ce−x   . 
0

This solution can also be expressed in terms of the inverse error function as 

√π 
y =     2 e 

−x2 
 
erfi(x) + ce 

−x2 .

 

Letting x = 0 and y(0) = 0 we find c = 0, so the solution of the initial-value problem is

2 
ˆ x    2

 √π= 
2

y = e−x et  dt = 
 
0 

2
e−x

 

 

′ 

erfi(x).

(c)  Using  FindRoot  in Mathematica  we see that  y (x)  =  0  when  x =  0.924139. Since 
 

y(0.924139) = 0.541044, we see from the graph in part (a) that (0.924139, 0.541044) 

is a relative maximum. Now, using the substitution u = −t in the integral below, we 

have 
ˆ −x                                                       ˆ x                                                                                   ˆ x

y(−x) =   
−(−x)2

 
t2 dt =  

−x2
 e

(−u)2
 (−du) = −  

−x2
 

u2 
e    du = −y(x).

0                                    0                                                     0 

 
Thus, y(x) is an odd function and (−0.924139, −0.541044) is a relative minimum. 

 
 

Chapter 2 in Review 
 

 

′ 
1. Writing the differential equation in the form y = k(y + A/k) we see that the critical point −A/k 

 

is a repeller for k > 0 and an attractor for k < 0. 

2. Separating variables and integrating we have 
 

dy       4 
y = x  dx 

4 
ln y = 4 ln x + c = ln x  + c 

4 
y = c1x . 

 

 

We see that when x = 0, y = 0, so the initial-value problem has an infinite number of 

solutions for k = 0 and no solutions for k = 0. 
 

3. True; y = k2/k1 is always a solution for k1 = 0. 

 
4. True; writing the differential equation as a1(x) dy + a2(x)y dx = 0 and separating variables

yields                                                   
dy

  
a (x) 

= −   2       dx.
y          a1(x)
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x 

5 

 

3 
d y 

 

5. dx3 = x sin y         (There are many answers.) 

dr
6. False:   dθ = rθ + r + θ + 1 = (r + 1) (θ + 1).

 

7. True 
 

′ 
8. Since the differential equation in the form y = 2 − |y| is seen to be autonomous, 2 − |y| = 0 

 

has critical points 2 and −2 so y1 = 2 and y2 = −2 are constant (equilibrium) solutions.

dy 

9.   y 

 

x 
= e  dx 
 

x
ln y = e  + c 

X                             X 
e  +c               c e                                  eX

y = e = e e      or  y = c1e

10.       y′    = x             ,      y(  1) = 2 
 

| |           − 
 

dy =    −x,      x < 0 
dx

 
2 − 2 x 

x,        x ≥ 0 
+ c1,  x < 0 

1

 

y = 
1         + c2,   x ≥ 0 

 
The initial condition y(−1) = 2 implies 2 = − 

1 
2 + c1 and thus c1 = 

5 
2 . Now y(x) is supposed

to be differentiable and so continuous. At x = 0 the two parts of the functions must agree 
5 

and so c2 = c1 = 2 . So,
 

2 
y =   2 5 − x 

1 

y 

,  x < 0                               
10

 
1    

2                                                             -4 -2     2  4 x 

               x            + 5 ,  x         0 
2                                                                                                                                                       ≥                                                                                                                                                                                                                                                                                                            -5 

 
 

 

ˆ  x 

11.  y = eCOS x               te− COS t dt 
0 

x
 

-10

dy                                                  ˆ 
dx = eCOS xxe− COS x + (− sin x) eCOS x     0 

 
te− COS t dt

dy                                  dy

dx = x − (sin x) y    or 

dy                      dy 

 

dx + (sin x) y = x. 
 

2

12.dx = y + 3, dx 
= (y + 3)
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    dy 
13.  dx 

    dy 

 
= (y − 1) 

 

2           2 
(y − 3) 

 
2

14.  dx = y(y − 2) (y − 4) 

n                                 n
15.  When n is odd, x 

n 
< 0 for x < 0 and x > 0 for x > 0. In this case 0 is unstable. When n is

even, x > 0 for x < 0 and for x > 0. In this case 0 is semi-stable.

n 
When n is odd, −x 

n 
> 0 for x < 0 and −x 

n 

 

< 0 for x > 0. In this case 0 is asymptotically

stable. When n is even, −x < 0 for x < 0 and for x > 0. In this case 0 is semi-stable.

 

16.  Using a CAS we find that the zero of f occurs at approximately P = 1.3214. From the graph 

we observe that dP/dt > 0 for P < 1.3214 and dP/dt < 0 for P > 1.3214, so P = 1.3214 is an 

asymptotically stable critical point. Thus, lim P (t) = 1.3214. 
t→∞ 

y 
17. 

 

 
 
 
 

x 
 

 
 
 
 
 

18. 
 

 

(a) linear in y, homogeneous, exact                (b) linear in x 
 

 

(c) separable, exact, linear in x and y             (d) Bernoulli in x 
 

 

(e) separable                                                   (f ) separable, linear in x, Bernoulli 
 

 

(g) linear in x                                                   (h) homogeneous 
 

 

(i) Bernoulli                                                      (j) homogeneous, exact, Bernoulli
 

(k) linear in x and y, exact, separable, 
homogeneous 

(l) exact, linear in y

 

 

(m) homogeneous                                               (n) separable 
2 

19.  Separating variables and using the identity cos 
1 

x =  2 (1 + cos 2x), we have

2                   y  
cos 

 
 1          1 

x dx = 2 
y 

1 

dy, 
+ 1

2 
x + 

4
 sin 2x = 

2 
ln y2 + 1 + c,



Chapter 2 in Review 99 

99 CHAPTER 2  FIRST-ORDER DIFFERENTIAL EQUATIONS  

 
 
 

and  
 

2 
2x + sin 2x = 2 ln y 

 

 
 

+ 1 + c.

20. Write the differential equation in the form 

x                   x 
 

y ln y dx =    x ln y 

 

 
 
 

− y dy.

 

This is a homogeneous equation, so let x = uy. Then dx = u dy + y du and the differential 

equation becomes 
 

y ln u(u dy + y du) = (uy ln u − y) dy  or        y ln u du = −dy. 

Separating variables, we obtain  

 

dy 
ln u du = −     y

 

u ln |u| − u = − ln |y| + c 
 

x      x      x
 

y ln  y 
 

− y = − ln |y| + c

 

x(ln x − ln y) − x = −y ln |y| + cy. 

21. The differential equation 2 
dy           2                3x

 

dx   +6x + 1 y = − 
3 

 

6x + 1 y−2

is Bernoulli. Using w = y , we obtain the linear equation 
2 

dw          6                 9x
 

dx 
 

An integrating factor is 6x + 1, so 

 

+6x + 1 w = − 
 

6x + 1  .

   d                      2 

dx  [(6x + 1)w] = −9x , 
3

 
 

 
and 

 

 

w = − 

3x 
 

6x + 1 
 

 
3 

c 
 

+6x + 1 , 
 

 
3

(6x + 1)y = −3x + c.

(Note: The differential equation is also exact.) 
 

2 
22.  Write the differential equation in the form (3y 

2 

 

 
 

2 
+ 2x)dx + (4y 

 

 
 

2 
+ 6xy)dy = 0. Letting M = 3y

+ 2x and N = 4y + 6xy we see that My = 6y = Nx, so the differential equation is exact.

2                                       2     2 ′             2                     ′

From fx = 3y +2x we obtain f = 3xy +x  +h(y). Then fy = 6xy +h (y) = 4y +6xy and h (y)

2                 4     3
= 4y so h(y) = 3 y . A one-parameter family of solutions is

2      2    4    3
3xy + x  + 3 y  = c.



Chapter 2 in Review 10
0 

100 CHAPTER 2  FIRST-ORDER DIFFERENTIAL EQUATIONS  

 
 
 

23.  Write the equation in the form  

dQ  +  1   Q = t
3 

ln t.
 

An integrating factor is eLN t = t, so 

dt    t

 d   [tQ] = t
4 

ln t 
dt

 

 
 
 

and 

 

 1  5 

tQ = − 25 t 

 

1 5 

+5 t 

 
 

ln t + c

1   4      1 4              c
 

 
24. Letting u = 2x + y + 1 we have 

 

Q = − 
 

25 t  + 
 

5 t   ln t + t .

du    
= 2 +

dy 
, 

dx                  dx 

and so the given differential equation is transformed into

du 

u   dx 

 

 
− 2 = 1 or 

 

du 

dx = 

 

2u + 1 

u    .

 

Separating variables and integrating we get 

u

2u + 1 

1        1     1 

du = dx

 

2  −  2  2u + 1 
 

1          1 

 

du = dx

2  u − 4 ln |2u + 1| = x + c 
 

2u − ln |2u + 1| = 4x + c1. 

 
Resubstituting for u gives the solution 

 

4x + 2y + 2 − ln |4x + 2y + 3| = 4x + c1 
 

or 

2y + 2 − ln |4x + 2y + 3| = c1. 

25.  Write the equation in the form 
 

 

dy        8x              2x
 

dx 

An integrating factor is   x
2 

+ 4 
4
, so 

d 

dx 

2 
+x  + 4 y = 

2 
x  + 4 .

2       4 
x  + 4 

2       3 
y = 2x x  + 4

 

2       4 
x  + 4 

1    2       4 
y =   4 x  + 4   + c
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e 

 

and 
 

 
 

1            2       −4
y =   4 + c x  + 4     . 

 

2 
26.  Letting M = 2r 

2 
cos θ sin θ + r cos θ and N = 4r + sin θ − 2r cos 

 

θ we see that

Mr = 4r cos θ sin θ + cos θ = Nθ, so the differential equation is exact. From fθ =
2                                                                 2 

2r  cos θ sin θ + r cos θ we obtain f = −r 
2 

cos θ + r sin θ + h(r). Then

2                      ′                                        2              ′                                2
fr = −2r cos 
solution is 

θ + sin θ + h (r) = 4r + sin θ − 2r cos θ and h (r) = 4r so h(r) = 2r . The

2       2 
−r  cos 

2 
θ + r sin θ + 2r 

 

= c.

27. We put the equation   d y + 4 (cos x) y = x in the standard form dy + 2 (cos x) y =   1 x then

dx                                                                          dx                               2

the integrating factor is   
´ 2 COS x dx

 = e
2 SIN x 

 

. Therefore

 

d                    1 
 

dx    e2 SIN xy =2 xe2 SIN x

x  d   

ˆ     dt 

 

2 SIN
 

e t  
1 

y(t)  dt =2 

x 

ˆ   te2 SIN t dt

0                                                      0 

1                 
x 

2 SIN x             0           1
e         y(x) − e 

 

 
2 SIN x

 

y(0) = 2 

 
1 

ˆ   te2 SIN t dt 
0 

x

e        y(x) − 1 = 2 ˆ   te2 SIN t dy 
0 

1                   x
 

y(x) = e 
−2 SIN x 

 

+ 2 e−2 SIN x ˆ 
 

0   te2 SIN t dt

 

 
28. The equation 

dy                      2 
dx − 4xy = sin x 

 
is already in standard form so the integrating factor is

´                    2                       d          2
 −2x2             2

e−   4x dx = e−2x .  Therefore dx e−2x y   = e sin x .  Because of the initial condition

y(0) = 7 we write 
 

x  d        2                                        x          2
 

ˆ              2
ˆ 0   dt 

 

 

−2x2
 

e−2t y(t) dt =  0 

7 

0            ˆ x 

e−2t  sin t  dt 
 
 

2

e       y(x) − e y(0) = 0    e−2t sin t2 dt
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2 
 

y(x) = 7e 

 

2x2 2x2   
ˆ x 

+ e 
0 

 

e−2t 

 

sin t2 dt
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X 

ˆ 

dy 

x 

 

 

dy 
29.  We put the equation x dx 

 

x2
 

+2y = xe 
       dy 

into standard form dx 
2      x 

+ x  y = e 2
 

 
. Then the integrating

´  2  dx 
factor is e = eLN 

x2  = x
2
 
 

. Therefore 
2

2 dy                       2   x

x  dx + 2xy = x e 
2

d     2              2    x 

dx   x   y = x e 

x d                          x         2 

2 

ˆ 1  dt 
 
 

2 

t y(t)  dt = 
 

3 

2 t 
1  t e   dt 

 

ˆ 
2

x y(x) − y(1) = 1     t2et dt

3       1    x          
2

 
 

 
30. 

 

y(x) = 
 

 
 

    dy 

2          2 
x   +  x   ˆ1 

2  t 
t e    dt

x dx + (sin x) y = 0

 

 dy   + sin x y = 0 
dx x 

 

X 

´   
SINT     

dy
The integrating factor is e  0     T . Therefore, 

X

 d       ´ 
dx  e 0 

´ 

SINT 

 
T 

 
dty = 0

ˆ x   d  e 0              du                       ˆ   x 
dt                                                                                                                                                                                                                                                                                          

U                                                                                       y(t)  dt =                           0 dt = 0 

 

0                                                                                           0 
 

X                                            
10 

SINT 

dt             0
e´ 

0       T 
y(x) − e y(0) =0 

´ 
y(x) =10e−  0

X
 

 
SIN T 

 

T     dt

31.  
−x 

e 
+ y = f (x),  y(0) = 5,where f (x) = 

 
 
,   0    x < 1 

≤

dx 
0,      x ≥ 1 

For 0 ≤ x < 1, 
 

 

 d    
x

dx [e y] = 1 

x
e y = x + c1 

−x          −x
y = xe 
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+ c1e
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−x 
Using y(0) = 5, we have c1 = 5. Therefore y = xe 

−x 
+ 5e 

 

. Then for x ≥ 1,

    d   x 

dx  [e 
 

x 

 
y] = 0

e y = c2 

−x 
y = c2e 

Requiring that y(x) be continuous at x = 1 yields 
−1      −1 

c2e    = e 
−1 

+ 5e

 

 
 

Therefore 

c2 = 6 
 

 
−x        −x

 
y(x) = 

xe    + 5e 
 

−x
 

,  0      x < 1 
≤

 

 
 

32. 

6e   ,                        x     1 
≥

 

dy                    x                                                                                1,    0 ≤ x < 1
dx 

 

 

For 0 ≤ x < 1, 

+ P (x)y = e ,  y(0) = −1,            where  P (x) =  

 

−1,  x ≥ 1

    d   x 

dx  [e 

 

2x 
y] = e

 

x 
e y = 

1      2x 

2 e 

1      x 

 

 

+ c1 

−x

y =   2 e + c1e

 
 

d     −x 

dx  e 

 
y  = 1

 

−x 
e   y = x + c2 

x          x
y = xe + c2e

 

Requiring that y(x) be continuous at x = 1 yields 
 

1       3

e + c2e = 2 e −2 e−1

1 

c2 = − 2 

x          −x 

3 

− 2e−2

Therefore 
y(x) = 2 e  − 2 e ,               0 ≤ x < 1
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1          3 

x       1 x 3 x   2

xe                              e                        e      −,  x                       1 
−

 

− 2                                                                                               2                                                                                                                                                                                                                                                                                                                                    ≥
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. 

 
 

33.  The differential equation has the form (d/dx) [(sin x)y] = 0. Integrating, we have (sin x)y = c 

or y = c/ sin x. The initial condition implies c = −2 sin (7π/6) = 1. Thus, y = 1/ sin x, where 

the interval (π, 2π) is chosen to include x = 7π/6. 

34.  Separating variables and integrating we have 

dy 
2 

y  = −2(t + 1) dt 
1 

2
− y = −(t + 1) 

 

1 
2 

y = (t + 1) 
 

1 

+ c 
 

 
 

+ c1 ,        where − c = c1

The initial condition y(0) = − 8  implies c1 = −9, so a solution of the initial-value problem is

1 
y =              2 

1 
or       y =    2                        ,

 

 

where −4 < t < 2. 

√ 

(t + 1) − 9 t     + 2t − 8

35.  (a) For y < 0, y is not a real number.

(b)  Separating variables and integrating we have 

√ 
 dy = dx    and   2 

√ y 

√ 

 

 
 

y  = x + c.

Letting y(x0) = y0 we get c = 2 y0   − x0, so that

√             √y    1               √ y   − x0)
2

2  y  = x + 2 
√  

0 − x0   and   y = 

1 
4 (x + 2 

√   
0 
 

must be positive. Thus,

Since y > 0 for y = 0, we see that dy/dx = 2 (x + 2 y0 − x0) 
√

the interval on which the solution is defined is (x0 − 2 y0, ∞).

36.  (a) The differential equation is homogeneous and we let y = ux. Then 
 

2      2
 

2      2 2 
(x  − y 

2 
) dx + xy dy = 0

(x  − u x ) dx + ux (u dx + x du) = 0 

dx + ux du = 0 
 

dx
 

u du = − x 
1    2 

2 u  = − ln |x| + c 
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2 
y 

= −2 ln |x| + c . 
x2                            1 

2      2
The initial condition gives c1 = 2, so an implicit solution is y = x (2 − 2 ln |x|).
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(b) Solving for y in part (a) and being sure that the initial con- 
√                                                                      y 

1/2 
dition is still satisfied, we have y = − 2 |x |(1 − ln |x|)    ,                       2

where −e ≤ x ≤ e so that 1 − ln |x| ≥ 0. The graph of this 
function indicates that the derivative is not defined at x = 
0 and x = e. Thus, the solution of the initial-value 

√     
1/2 

1 
 

x 
–2     –1       1                    2 

–1

problem is y = −    2 x(1 − ln x) , for 0 < x < e.                                     –2

 
37.  The graph of y1(x) is the portion of the closed blue curve lying in the fourth quadrant. Its 

 

interval of definition is approximately (0.7, 4.3). The graph of y2(x) is the portion of the left- 

hand blue curve lying in the third quadrant. Its interval of definition is (−∞, 0). 

38.  The first step of Euler’s method gives y(1.1) ≈ 9 + 0.1(1 + 3) = 9.4. Applying Euler’s method 
√    

one more time gives y(1.2) ≈ 9.4 + 0.1(1 + 1.1 9.4 ) ≈ 9.8373. 

 
39.  Since the differential equation is autonomous, all lineal 

elements on a given horizontal line have the same slope. 

The direction field is then as shown in the figure at the 

right. It appears from the figure that the differential 

equation has critical points at −2 (an attractor) and 

at 2 (a repeller). Thus, −2 is an aymptotically stable 

critical point and 2 is an unstable critical point. 
 

 
 
 

40.  Since  the  differential  equation  is  autonomous,  all 

lineal elements on a given horizontal line have the 

same slope. The direction field is then as shown in the 

figure at the right. It appears from the figure that the 

differential equation has no critical points. 


