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2.1 Solution Curves Without a Solution
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15. (a) The isoclines have the form y = —=x + ¢, which are straight

lines with slope -1.
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. . 2 2 . .
(b) The isoclines have the form x™ + y~ = ¢, which are circles
centered at the origin.

16. (a) When x =0 ory = 4, dy/dx = -2 so the lineal elements have slope -2. Wheny =3 ory

=5, dy/dx = x — 2, so the lineal elements at (X, 3) and (x, 5) have slopes x - 2.

(b) At (0, yp) the solution curve is headed down. If y — « as x increases, the graph must
eventually turn around and head up, but while heading up it can never cross y = 4

where a tangent line to a solution curve must have slope —2. Thus, y cannot

approach « as x approaches «.

1 2 ' 2 . .\ .
17. Wheny < T2 X,y =X - 2y is positive and the portions of 3

solution culrves2 “outside” the nulicline parabola are increasing.
Wheny >72 X",y =X - 2y is negative and the portions of the

G e

solution curves “inside” the nullcline parabola are decreasing.
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18. (a) Any horizontal lineal element should be at a point on a nulicline. In Problem 1 the

. 2 2 .
nullclines are x —y =0ory =X In Problem 3 the nullclinesare 1 —xy=0ory =

1/x. In Problem 4 the nullclines are (sin x) cosy = 0 or x = ntr and y = 11/2 + nT,
where nis an integer. The graphs on the next page show the nullclines for the equations
in Problems 1, 3, and 4 superimposed on the corresponding direction field.
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2.1 Solution Curves Without a Solution

’

(b) An autonomous first-order differential equation has the form y = f (y). Nullclines have

the form y = ¢ where f (c) = 0. These are the graphs of the equilibrium solutions of the
differential equation.

19. Writing the differential equation in the form dy/dx = y(1 - y)(1 + y) we see that
critical points arey = -1,y = 0, and y = 1. The phase portrait is shown at the
right. ‘

(a) (b) y
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(c) y (d) y

2
20. Writing the differential equation in the form dy/dx =y (1 - y)(1 + y) we see that

critical points arey = -1,y = 0, and y = 1. The phase portrait is shown at the |
right. 4
'
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. 2 . o .
21. Solvingy - 3y = y(y — 3) = 0 we obtain the critical points 0 and 3. From the

phase portrait we see that 0 is asymptotically stable (attractor) and 3 is unstable
(repeller).

22. Solving y2 —y3 = y2(1—y) = 0 we obtain the critical points 0 and 1. From the phase

portrait we see that 1 is asymptotically stable (attractor) and 0 is semi-stable.
¥

. 4 . " . .
23. Solving (y — 2) =0 we obtain the critical point 2. From the phase portrait we see
that 2 is semi-stable.
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2.1 Solution Curves Without a Solution

. 2 . o .
24. Solving 10+ 3y -y = (5 -y)(2 +y) = 0 we obtain the critical points -2 and 5.

From the phase portrait we see that 5 is asymptotically stable (attractor) and -2 is
unstable (repeller).

25. Solving y2(4 - y2) = y2(2 - y)(2 + y) = 0 we obtain the critical points -2, 0, and

2. From the phase portrait we see that 2 is asymptotically stable (attractor), 0 is

semi-stable, and - y

26. Solving y(2 - y)(4 - y) = 0 we obtain the critical points 0, 2, and 4. From the phase
portrait we see that 2 is asymptotically stable (attractor) and 0 and 4 are unstable

(repellers).
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27. Solving y In(y+2) = 0 we obtain the critical points —1 and 0. From the phase portrait
we see that —1 is asymptotically stable (attractor) and 0 is unstable (repeller).
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28. Solving yey -9y= y(ey - 9) =0 (since e’ is always positive) we obtain the ,

critical points 0 and In 9. From the phase portrait we see that 0 is asymptotically N9
stable (attractor) and In 9 is unstable (repeller).
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29. The critical points are 0 and ¢ because the graph of f (y) is 0 at these points. Since f (y) > 0

for y < 0 and y > c, the graph of the solution is increasing on the y-intervals (-, 0) and (c,
«). Since f (y) < 0 for 0 <y < ¢, the graph of the solution is decreasing on the y-interval (0O,

c).

A
N
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30. The critical points are approximately at -2, 2, 0.5, and 1.7. Since f (y) > 0 for y < -2.2 and
0.5 <y < 1.7, the graph of the solution is increasing on the y-intervals (-, —=2.2) and (0.5,
1.7). Sincef (y) <0Ofor-2.2<y<0.5andy > 1.7, the graph is decreasing on the y-interval

(-2.2,0.5) and (1.7, «).
y

Y \J2
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31. From the graphs of z = /2 and z = sin y we see that %
b i y
we see that the critical points are —-11/2, 0, and /2. 2 2

From the graph at the right we see that

<0
2y siny  for y<-mp2 .
m - >0 for y>m/2 2
2 >0 for A
y siny -m2<y<0 =
mo- <0 for O<y<m/2 °

This enables us to construct the phase portrait shown at the right. From this portrait we
see that 11/2 and —-11/2 are unstable (repellers), and 0 is asymptotically stable (attractor).

32. For dy/dx = 0 every real number is a critical point, and hence all critical points are noniso-
lated.

33. Recall that for dy/dx = f (y) we are assuming that f and f are continuous functions of y on

some interval I. Now suppose that the graph of a nonconstant solution of the differential
equation crosses the line y = c. If the point of intersection is taken as an initial condition we
have two distinct solutions of the initial-value problem. This violates uniqueness, so the
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34.

35.

37.

CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS 2.1 Solution Curves Without a Solution 44

graph of any nonconstant solution must lie entirely on one side of any equilibrium solution.
Since f is continuous it can only change signs at a point where it is 0. But this is a critical

point. Thus, f (y) is completely positive or completely negative in each region R;. If y(x) is
oscillatory or has a relative extremum, then it must have a horizontal tangent line at some

point (Xg, Yo). In this case yg would be a critical point of the differential equation, but we
saw above that the graph of a nonconstant solution cannot intersect the graph of the

equilibrium solution y = yg.

By Problem 33, a solution y(x) of dy/dx = f (y) cannot have relative extrema and hence must

be monotone. Since y(x) = f (y) > 0, y(x) is monotone increasing, and since y(x) is
bounded above by cp, limx_,~ y(X) = L, where L < co. We want to show that L = co. Since

L is a horizontal asymptote of y(x), limy_,« Yy (x) = 0. Using the fact that f (y) is continuous
we have

fLy=f limyx =lm fyK)=lim y(x)=0

X—>0 X— 0 X—>

But then L is a critical point of f . Since ¢1 <L < ¢y, and f has no critical points between c1
and cp, L = co.

Assumlng the existence of the second derlvatlve pomts of inflection of y(x) occur where
y (X) = 0. From dy/dx = f (y) we have d y/dx = f (y) dy/dx. Thus, the y-coordinate of a

point of inflection can be located by solving f (y) = 0. (Points where dy/dx = 0 correspond

to constant solutions of the differential equation.)

. 2
36. Solvingy -y -6=(y - 3)(y +2) = 0 we see that 3 and -2
are critical points. Now d y/dx = (2y — 1) dy/dx = (2y - 1)(y -

3)(y + 2), so the only possible point of inflectionis aty = L,
2
although the concavity of solutions can be different on either side

" 1
ofy=-2andy=3.Sincey (x) <0fory<-2and 3 <Yy<3

andy (x) >0for-2<y< » and y > 3, we see that solution - 5
_l —
curves are concave down fory < -2 and ; <y < 3 and concave

upfor-2<y< o _ _ _ -5
autonomous differential equations will have the same y-coordinates

because between critical points they are horizontal translations of
each other.

If (1) in the text has no critical points it has no constant solutions. The solutions have
neither an upper nor lower bound. Since solutions are monotonic, every solution assumes
all real values.
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38. The critical points are 0 and b/a. From the phase portrait we see that O is an
attractor and b/a is a repeller. Thus, if an initial population satisfies Pg > b/a,
the population becomes unbounded as t increases, most probably in finite time, =T

ie. P(t) >~ast— T.If 0<Pg<bl/a, then the population eventually dies out,
thatis, P (t) — 0 as t — . Since population P > 0 we do not consider the case 0
P<O0. !

39. From the equation dP/dt = k (P — h/k) we see that the only critical point of the autonomous
differential equationis the positive number h/k. A phase portrait shows that this point is
unstable, that is, h/k is a repeller. For any initial condition P (0) = Pg for which 0 < Pg < h/kK,
dP/dt < 0 which means P (t) is monotonic decreasing and so the graph of P (t) must cross
the t-axis or the line P — 0 at some time t1 > 0. But P (t1) = O means the population is
extinct at time ty.

40. Writing the differential equation in the form
dv. k mg y
d =m Kk -v

we see that a critical point is mg/k. x
A
From the phase portrait we see that mg/k is an asymptotically stable critical point.
Thus, lim v = mg/k.
t—
41. Writing the differential equation in the form

dv  k mg k ‘mg mg ]
dt =m Kk -V =m k —-v k +v n

we see that the only physically meaningful critical pointis  mg/k. y

From the phase portrait we see that mg/k is an asymptotically stable critical

point. Thus, lim v = mg/k.

t—eo

42. (a) From the phase portrait we see that critical points are a and B. Let X(0) = Xp.

If Xo<a,weseethat X - aast— . Ifa<Xg<p, weseethatX — a

ast— «. If Xg > 3, we see that X(t) increases in an unbounded manner, B
but more specific behavior of X(t) as t — « is not known.
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(b) When a = 3 the phase portrait is as shown. If Xg < a, then X(t) — a

ast — . If Xg > a, then X(t) increases in an unbounded manner. This

could happen in a finite amount of time. That is, the phase portrait does not T
indicate that X becomes unbounded as t — .

(c) When k = 1 and a = B the differential equation is dX/dt = (a - X)Z. For X(t)=a - 1/(t +
2

c) we have dX/dt=1/(t +c) and

2 —1 2 1 dax
(a-X) = 2

o- o- t+c =(t+c) =dt .

For X(0) = a/2 we obtain

X®)=a-t+2/q-

For X(0) = 2a we obtain
1

X®)=a-t-1/a-

R

For Xg > a, X(t) increases without bound up to t = 1/a. For t > 1/a, X(t) increases but

X —>aast— «,

2.2 Separable Variables

In many of the following problems we will encounter an expression of the form In |g(y)| = f (x)+c. To
+
solve for g(y) we exponentiate both sides of the equation. This yields |g(y)| = e X7C = 6% Y which

implies g(y) = w:ece]c (X). Lettingcq = +e we obtain g(y) = Clef (X).
1. From dy = sin 5x dx we obtainy = - l5 cos 5x + c.
2 1 3

2. Fromdy =(x+1) dxweobtainy= 3(x+1) +c.
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10.

11.

12.

13.

14.

15.

16.

17.

18.

CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS 2.2 Separable Variables

-3X 1 -3x
Fromdy=-e dxweobtany= 3e +c.
1 1 1
2
.From (y—-1) dy=dxweobtain- y-1=x+cory=1- x+c¢.
T 4 A
.Fromy dy = x dxwe obtainIn|y| =4 In|x| + cory=cyx .
1 1 1

i ] 2 =z
.From Y dy=-2xdx we obtain- y =-X +cory= X +C1

- , -2
From e 2y dy = egxdx we obtain 3¢~ Y + 2e3x =c.
y -X -3x y y -X ]:= -3X
Fromye dy=e +e dx we obtainye -e +e + 3e =c.

3
1 ) \ X 1

.From y+2+y dy=x Inxdxweobtain 2+2y+Injy|= 3 In|x - 9x +c.

1 2 1
From _ dy= ————— dxwe obtain = +c.
@2y+3) (4x + 5) 2y +3 4x+5
1 1
J— —_— . 2 L ,
From cscydy = —sec xdxorsinydy = ~—COS xdx = - (1 + cos 2x) dx we obtain
1 1
—COSY=-,X—_,Sii2x+cCc or 4cos 2X + sin 2x + ¢3.
A 1 yE e L2
From 2y dy = dx or 2y dy = — tan 3x sec” 3x dx we obtain y =-"sec 3x+c.
cos  3x°
X ) y -1 X -2
From___€+—dy= _~-€ dxweobtain (" +1) =1 (e +1) +
@ + 1) € +1)° - )
From Y T—dy = X —,dx we obtain 1+y 2¥2= 1452 W
(1+y?) (1+x?)
_1 kr
FromS dS=kdrwe obtain S=ce .
-L__ . kt
From 'Q 70dQ =k dt we obtain In |Q - 70| =kt+corQ-70=c1e .
1 1 1
From P p2dP= P +1 P dP=dtweobtain|n|P|—In|1—tP|=t+csothat
P - P - cie
In =t+cor = c,€". Solving for P we have P =
1-P 1-P 1+cie

1 T+2 T+2

—_ . +2
From N dN = tett2-1 dtwe obtainIn|N|= tet+2 -e —-t+corN= clete - -t

a7
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y-5Inly+3|=x-5In|x+4|+c or y+3

1 5

x+4

Xy
=c1e

2.2 Separable Variables

dx we obtain

48



49 CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS 2.2 Separable Variables

20.From ¥*ldy=X£t2dx or 1+_2 dy= 1+_5— dxwe obtain

y-1 X—-3 y-1 2 (X3
y+2Ilny 1=x+5Inx 3+c or (y-1) =ce.
I -1 | - | 3 1
2 -1 2
21.Fr0mxdx=__;=__dyweobta|nlx =sin y+cory=sin X +¢1 .
22 2
1-y
1 1 ex 1 -1 x
22.From 7 dy =———xdx= @¢ +1 dXxweobtain—-, =tan e +c or
1
-1 X
y=-tan "e +c
-1r _ . -1
23. From x“+1 dx=4dtwe obtaintan = x = 4t + c. Usmg x(11/4) = 1 we find ¢= -31/4. The

3m

solution of the initial-value problem is tan 1 X=4—- 4 orx=tan 4t- 4
1 1 1 1 1 1 1 1
2 2
24.Fromy —1dy=x -1 dxor2 y-1 -y+1 dy=2 x-1-x+1 dxwe obtain

Inf/ 1 Iny+1 =Inx 1 Inx+1l+Ilncor y-1 =c(x 1) . Using y(2) = 2 we
- | == | | y+l1 x+1
findc=1. A solution of the initial-value problemis y-1 = x-1 ory=x.
y+1 X+1
. -1/x
25.Fromldy= 1-X dx= L 1 dxweobtaniny =_1 Inx =corxy=cie .
y X X-x I =l i
Usingy(_ 1) =_ lwefindcy=e . The solution of the initial-value problem is xy = e
—(1+1/x)
ory=e IX.
-2t
26. From _l_—_ dy=dtweobtain :Inl 2y =t+corl 2y=cie .Usingy(0)=5/2we
1- % -2 | - | -1

find c1 = —4. The solution of the initial-value problem is 1 - 2y = —4e_2t ory= 2e_2t +9.

27. Separating variables and integrating we obtain

dX dV -1 -1

V 2 - 3=0and sin x-sin y=c.

49



50 CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS 2.2 Separable Variables 50

Settingx=0and y = 3/2 V\ie obtain ¢ = —m/3. Thus, an implicit solution of the initial-value
problem is sin = x — sin ~ y = 11/3. Solving for y and using an addition formula from

trigonometry, we get

N p—
y =sin sin_1x+ I =xcosI + 1 xsinI =X +_3 1x
3 3 - 3 2 2
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28.From; dy:x— dx we obtain
1+@2y)2 1+ (x)

1 1
-1 - -1 2 -1 -1 2

2tan 2y=-2tan X +c or tan 2y+tan X =C1.

Using y(1) = 0 we find ¢1 = Ti/4. Thus, an implicit solution of the initial-value problem is

-1 -1 2 . . . o .
tan 2y +tan x =T/4. Solving for y and using a trigonometric identity we get

m
- -1 2
2y=tan 4 —-tan X

1 m

- - -1 2
y=2tan 4 —tan X
2

-1 tan ¥ - tan (tan Ly )

i -1.2
2 1+Jangatan(tan = x)
11-x

_§1+ﬁ'

29. Separating variables and then proceeding as in Example 5 we get

_dy
dx ~=ye ?
1dy )
- — —o
ydx
x 1 dy X 2

- 4Wdt_dt=A4 et dt
X X

ny®), = efat
4 .4

nyo) -Iny@)= e 2t

X
In y(x) = . e 2 gt

’X 2

51
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y() = e

e dt

2.2 Separable Variables

52



30. Separating variables and then proceeding as in Example 5 we get

d
dx_y = y2 sin (x2)
1 dy
___=sin
() ¥ o
X __1- dy X 2
2
y@d~ dt=" sin(t)dt
_2 _2
L7 = sin (@) dt
yt) 2 -2
-1+ -1 = "sin (@) dt

yx)  y(=2) -2

y(X) X 2
=1 +3= sin (t) dt
-2

~

yo) = 3- sin () dt -1

-2

31. Separating variables we get

dy=2x+1
dx 2y -4 -3 -2 ]
-1 e
2y dy = (2x + 1) dx . /,/
~ ~ —3 ‘//.-/
2ydy=(2x+ 1) dx A
2 2 e =
y =X +x+c
\

.. . . 2 2 2 .
The condition y(-2) = -1 implies ¢ = -1. Thus y =X +x-landy=-x +x-1in
order for y to be negative. Moreover for an interval

2 104
X +x-1>0weget -, - 2- 2

containing -2 for values of x such that



32. Separating variables we get

33.

34.

dy )
(2y - 2) dx =3X +4x+2 .

2
-2 \
-3

(2y - 2)dy = 3x +4x+2 dx

2y-2)dy= 3x2+4x+2 dx

~ ~

2(y-1)dy= 3x2+4x+2 dx

(Y‘1)2=X3+2X2+2x+c
\/

The condition y(1) = -2 impliesc=4. Thusy=1 - x3 + 2xZ + 2x + 4 where the minus sign

is indicated by the initial condition. Now x3 + 2x2 +2x+4=(x+2) x2 + 1> 0 implies
X > =2, so the interval of definition is (-2, «).
Separating variables we get

e dx-e " dy=0

e/ dx=¢e © dy
4
X -y
e dx=e " dy
a 2
- /
" exdx= e ydy -5 -4 -3 -2
X -y
e =-e +c¢

The condition y(0) = 0 implies ¢ = 2. Thus e =2-¢&" Therefore y=-1In(2- eX). Now
we must have 2 — e >0 ore’ < 2. Since € is an increasing function this imples x <In 2

and so the interval of definition is (-, In 2).

Separating variables we get e ~——
. // 0.8 \\\
sinxdx+ydy=0 g n \
- N ~ / \
. { 0.4
sinxdx+ ydy= 0dx ( 5 \
|
1 2 -1 0.5 0.5 1
-Ccosx+ 2y =cC
1 12 1 2
The condition y(0) = 1 implies ¢ = - Thus—-cosx+ y =- ory =2cosx-1.
N 2 2 2

Therefore y = 2 cos x — 1 where the positive root is indicated by the initial condition. Now

1 . .
we must have 2 cos x —1 > 0 or cos x > ~2 . This means —-11/3 < x < 11/3, so the the interval
of definition is (-11/3, 11/3).

35. (&) The equilibrium solutions y(x) = 2 and y(x) = -2 satisfy the initial conditions y(0) = 2
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and y(0) = -2, respectively. Setting x = l4 andy=1iny=2(1+ ce4x)/(1 - ce4x) we
obtain

1+ce 1

~1=21-ce, 1-ce=2+2ce, -1=3ce, and c=-3e.
The solution of the corresponding initial-value problem is

yzzkégw _,3-esel

1+ ;e4x—1 3 +esx1

(b) Separating variables and integrating yields
1 1
dinly-2|- 4lnly+2[+incy =x

Inly-2|-Inly+2|+Inc=4x

|n_C(L2) = 4x
y+2
Y - 2 4x
C y + 2~=e¢€

. 4 4
Solving fory we gety =2(c + e X)/(c -e X). The initial condition y(0) = -2 implies 2(c

+ 1)/(c — 1) = -2 which yields ¢ = 0 and y(x) = —2. The initial condition y(0) = 2 does
not correspond to a value of ¢, and it must simply be recognized that y(x) = 2 is a

. . . 1 . 4 4
solution of the initial-value problem. Setting x="4andy=1iny=2(c+e X)/(c -e X)
leads to ¢ = —=3e. Thus, a solution of the initial-value problem is

4x
y:2—3e+e -9 3—ex1

-3e - e4X 3 + eax-1
36. Separating variables, we have

dy dx —ey—
y -y =X or T yly-1) =In|x +c.

Using partial fractions, we obtain

~ L. 1l dy=Inx +c
y 1y [

Inly-1-Injy|=In|x| +c

Iny-1 =c
Xy

y=%t = eC=Cl.
Xy

Solving for y we get y = 1/(1 — c1x). We note by inspection that y = 0 is a singular solution
of the differential equation.
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(&) Setting x=0andy =1 we have 1 =1/(1 - 0), which is true for all values of c1. Thus,

solutions passing through (0, 1) are y = 1/(1 - c1X).

(b) Settingx=0andy=0iny = 1/(1 - c1x) we get 0 = 1. Thus, the only solution passing
through (0, 0) isy = 0.

1 1 1 1
(c) Settingx="2 andy="2 we have T2 =1/(1-"2c1),soc1=-2andy =1/(1 + 2x).

(d) Settingx=2andy = l4 we have l4 =1/(1-2cy),s0cy =- §2 and
3

y=1@A+ 2Xx)=2/(2+3x).

. : 2 . .
37. Singular solutions of dy/dx =x1 -y arey=-1andy = 1. A singular solution of (eX +

e Mdyldx = yZisy = 0.

38. Differentiating In (x2 + 10) + cscy = ¢ we get

2X dy
—_— =2
X +10 -cscycoty dx =0,
2X 1 cosydy

Z
X +10- siny -siny dx =0,
or

.2 2
2xsin ydx - (x +10)cosydy=0.

Writing the differential equation in the form

.2
dy 2xsin_y
dx :(X2 +10) cos y

. . .2 . .
we see that singular solutions occur when sin y = 0, or y = k1T, where k is an integer.

39. The singular solution y = 1 satisfies the initial-value problem. 1.01

—0.004 -0.002 0.002 0.004

0.98
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0.97 -
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40. Separating variables we obtain —3¥— = dx. Then

(y-1) 102

1 1.01

_ =x+cand y= x+c-1.
X
y - 1 X+ C —0.004 —0.002 0.002 0.004
Setting x = 0 and y = 1.01 we obtain ¢ = -100. The solution
is 0.99
y=xz101
X — 100

0.98
y

1.0004
dy I

2
41. Separating variables we obtain (y— 1) +0.01 =dx. Then 1.0002 |
L T XTFC
- N A
10tan " 10(y-1)=x+c and y=1+ 10tan 10 . —gpoa—0002 0.002 0004

Setting x = 0 and y = 1 we obtain ¢ = 0. The solution is 0.9998 »
1 X I

y=1+ 1—Otan1—0 . 0.9996

y

dy 1.0004

1.0002

42. Separating variables we gbtainl(y -1)2-0.01 — dx.

Then, withu=y-1anda=19 ,we get

-0.004 -0.002
5in 0y-11 =y
0.9998
10y -9
Settingx=0andy=1we obtainc=5In1=0. The 0.9996
solution is
5in 10y =11 -y
10y -9

Solving for y we obtain

_ 11+9e—

= " X5 -

10 + 10e
Alternatively, we can use the fact that
_dy 1 -ly -1 -1
- v 12 001 =- 0.1tanh 01 =_10tanh 10(y - 1).

(We use the inverse hyperbolic tangent because |y — 1| < 0.1 or 0.9 <y < 1.1. This follows
from the initial condition y(0) = 1.) Solving the above equation for y we gety = 1 + 0.1 tanh
(x/10).
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43. Separating variables, we have

dy dy 1 1/2 1/2

3
y=y =yd-y@d+y) =y +l-y-1+y dy=adx
Integrating, we get
1 1

Inly|-"2In[1-y[= 2In[l+y|=x+c.
When y > 1, this becomes

1 1 y

2
Iny-2In(y-1)- 2In(y+1)=In y -1l=x+c.

\I/_ettlng X = O and y = 2 We flnd C = In (2/ ‘\/ 3_).Solvingf0rywege1y1(x):2s/ X \/ 4e X - )
where x > In ( 3/2).
When 0 <y < 1 we have
1 1 y
2
Iny-2In(1-y)- 2In(L+y)=In 1-y =x+c.
) V- N
Lettingx=0andy= , wefindc=In(1/ 3). Solving fory we gety>(x) =e / e +3,
where —» < X < o,
When -1 <y < 0 we have
n(y) 1in(@ y) 1l In(Q+y)=In_-y =x+c.
2
- 2 - 72 1-y
1 \/- X \/—gx—
Lettingx=0andy=- 7 we findc=1In(1/ 3).Solving for y we get y3(x) = -e / e +3,

where —«= < X < o,

When y < -1 we have
Nn(y) 1In@ y) din(1 y)=lIn -y =X+CcC.

2
- 2 - -2 - - y -1
\/
Lettingx =0 andj =-2wefindc=In (2/ 3). Solving for y we get
X —— —
ya(x)=-2e/ 4e -3,wherex>In( 3/2).
y i y -y Y
4 4 4 4
I i
2‘2”.”‘.”““““.,.. PPy (R e ‘.12;”. B T o R e e A R e
12345 X X N~ X r——;w.sx
-2 2 & 2 2 4 4 2 24
—4 -2 2
4 44
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—2 —2 —2

The solution curve is concave down when d y/dx <0 x

ory > 3, and concave up whend y/dx >0ory<3. 4 2

From the phase portrait we see that the solution curve -
is decreasing when y < 3 and increasing when y > 3.

44. (a) The second derivative of y is /
\
2 4
y

(b) Separating variables and integrating we obtain

(y - 3) dy = dx /g/
2\

l>
2y —3y=x+¢c
2
y —6y+9=2x+cC1 =)
-2
2

(y-3) =2x *o

y=3%x 2x+cC1.

The initial condition dictates whether to use the p|\}JS or minus sign.

When y1(0) =4 we have cp =1and yi1(x) =3+ + 2x+ 1 where (-1/2, »).
When y2(0) =2 we have c1 =1 and yp(x) =3 - \/2X + 1 where (-1/2, ).

When y3(1) =2 we have ¢c; = -1 and y3(x) =3 - 2x — 1 where (1/2, «).

\/

When y4(-1) = 4 we have c1 =3 and y4(x) =3 + 2x + 3 where (-3/2, «).

45. We separate variables and rationalize the denominator. Then

dy = 1 1-sinX gx = L1-SinX gx= 21-=SinX gx
2 2
1+sinx -1-sinx 1-sin x COS X
2

= sec X-—tanxsecx dx.

Integrating, we have y = tan x — sec x + C.

A _

46. Separating variables we have ydy =sin xdx. Then
_ 2

R -
~+y ydy= sin xdxand 3ysz= sin xdx.

V- V- i—

12345 x

1

To integrate sin  x we first make the substitution u = x. Then du = 2 x dx= 2uduand

57
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\/

~ sin xdx=

2.2 Separable Variables

(sinu) (2u) du=2" usinudu.

58



CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS 2.2 Separable Variables

Using integration by parts we find
V= - -

~usinudu=-ucosu+sinu=- ycos x+sin

Thus

"N - VoA V-

3y = Sin xdx=_-2 xcos x+t2sin x+C

and

a3 V- - V-
y=3 - Xcos x+sin x+C .

voooN -y

47. Separating variables we have dy/ y+y=dx/( x+ Xx). Tointegrate dx/ X+ Xxwe
2

substitute u = x and get

. 2U .~ 2 - \/—
5 du = - du=2In1+utc=2Inl+ y 4

u+u 1+u I

Integrating the separated differential equation we have

h v .- !

2In(1+ y)=2In 1+x tcor In(I+ yy=|n1+ x +Incy.
- 2
Solving forywe gety =[cy (1 + x)-1] .

48. Separating variables and integrating we have

dy
. 212 12 = dX
y 1-y
/3
Y dy=x+c
1-yu3 1

1/3 X
n1-y =- 3+c2
1/3 -x/3
1-y =c3e
1/3 -x/3
1-y  =cyge

173 -x/3
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1+cse

1+cge

-x/3 3

2.2 Separable Variables
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- 2
49. Separating variables we have y dy = e x dx. If u = —~/x,theu =xand 2u du = dx. Thus,

e “dx= 2ue” du and, using integration by parts, we find

~ ~ ~ —_— -_

N 2 -
ydy= e dxso 7y = 2ueudu=—2eu+C=2 xedX—Ze\/x+C,
and

X

I—

To find C we solve y(1) = 4.

V-1 = V—
y(1) = 2 le -e +C=2C=4 so C=4.
N Vx Vx
and the solution of the intial-value problemisy =2 xe -e +4.
-1

50. Seperating variables we have y dy = x tan  x dx. Integrating both sides and using integration
-1
by parts with u =tan  x and dv = x dx we have
-1
ydy =xtan = x dx
1,1, -, 1 1

_y =_Xxtan x- x+ tan x+C

2 -1
y= X tan

-1
X=-x+tan x+Cq

To find C1 we solve y(0) = 3.

2 =1 -1 _
y(O)= O tan " 0-0O+tan 0+C1= C1=3 so C1=09,
N

. _— . 2, -1 1
and the solution of th\e/: initial-value problemisy = x tan " x-x+tan " x+9.

51. (a) While yo(x) = - 25 - x is defined at x = -5 and x = 5, y2 (X) is not defined at these

values, and so the interval of definition is the open interval (-5, 5).

(b) At any point on the x-axis the derivative of y(x) is undefined, so no solution curve can

cross the x-axis. Since —-x/y is not defined when y = 0, the initial-value problem has no
solution.

1 2 2 1 2 1/2 1 2
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52. The derivative of y = 4_x _-_1_ _is_dy/dx_=_x_4_x

-.1.Wenote that_ xy _=_X_4.X _-

1 ._We see from the graphs of y (black), dy/dx (red), and xyll2 (blue), below that dy/dx = xyl/2
on (—«, 2] and [2, «).

62



63

53. Separating variables we have dy/ 1 + yz sin2 y = dx

4.

55.

CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS 2.2 Separable Variables

_ 2
Alternatively, because Y X~ = |X| we can write
1/2 1, 2 1, 1 2
L 2
\/ X 4 X -1, —eo<x<-2
Xy =X y=x =X 1 =x X 1= X X 1, 2<x<2
-— 4 -—
X 41,3,1‘ 2SS X<,

From this we see that dy/dx = xyl/2 on (-, —=2] and on [2, «).

which is not readily integrated (even by a CAS). We note
that dy/dx = O for all values of x and y and that dy/dx = 0
when y = 0 and y = 1, which are equilibrium solutions.

-6 4 2 2 4 6 8

(a) The solution of y y,y(0) =1,isy= e . Using separatlon of variables we find that the

solutionofy =y[1+ 1/ (xInX)],y(e)=1,isy = e ®Inx. Solving the two solutions
simultaneously we obtain

X—e e €
=e Inx, sO e =Inx and x= °F.

e
(e ) 1,656,520
(b) Sincey=e fF =2.33x10 , the y-coordinate of the point of intersection of

the two solution curves has over 1.65 million digits.
We are looking for a function y(x) such that

, Qv o2
y + ux =1

Using the positive square root gives

2
dx = 1-y

63
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sin y=x+c.

2.2 Separable Variables
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Thus a solution is y = sin (x + ¢). If we use the negative square root we obtain
y=sin(c-Xx)=-sin (Xx-c)=-sin (X + cy).

Note that when ¢ = ¢1 = 0 and when ¢ = ¢1 = 1/2 we obtain the well known particular

solutionsy =sin X,y =-sin X, y =cos X, and y = — cos X. Note also thaty =1l andy = -1
are singular solutions.

56. (a) g

3L

\/

(b) For [x| > 1 and |y| > 1 the differential equation is dy/dx = y - 1/ x -1, Separat-
ing variables and integrating, we obtain

dy _  _dx

I -1 -1
= and cosh “y=cosh ~x+c.

Settingx=2andy=2we findc = cosh_l 2 - cosh_1 2=0and cosh_1 y= cosh_1 X.
An explicit solution is 'y = x.

57. Since the tension T1 (or magnitude T1) acts at the lowest point of the cable, we use symmetry
to solve the problem on the interval [0, L/2]. The assumption that the roadbed is uniform
(that is, weighs a constant p pounds per horizontal foot) implies W = px, where x is
measured in feet and 0 < x £ L/2. Therefore (10) becomes dy/dx = (p/T1)x. This last equation

is a separable equation of the form given in (1) of Section 2.2 in the text. Integrating and
using the initial condition y(0) = a shows that the shape of the cable is a

parabola: y(x) = (p/2T1)x2+a. In terms of the sag h of the cable and the span L, we see

from Figure 2.2.5 in the text that y(L/2) = h + a. By applying this last condition to y(x) =
(p/2T1)x2 + a enables us to express p/2T1 in terms of h and L: y(x) = (4h/L 2)x2 + a. Since

y(x) is an even function of x, the solution is valid on -L/2 < x £ L/2.

<

58. (a) Separating variables and integrating, we have
(3y2 + 1) dy =-(8x + 5) dx and y3 +y= —4x2 -5x+c.

Using a CAS we show various contours of 2

N
=\

2 4

3 2
f(x,y) =y +y+ 4x + 5x. The plots shown on [-5, 0

5]x[-5, 5] correspond to c-values of 0, +5, +20, +40, 2
+80, and +125.

S

A
|
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<

)y

(b) The value of ¢ corresponding to y(0) = -1 is f (0, -1) =
-2;toy(0)=2isf(0,2)=10;toy(-1) =4isf (-1, 4) =
67; and to y(-1) = -3 is —31.

.

A

D20 2 4

59. (a) Animplicit solution of the differential equation (2y + 2)dy - (4x3 +6x)dx=0is

y2+2y—x4—3x2+c:0.
" L 2 4 2
The condition y(0) = -3 implies that c = =3. Thereforey +2y-x -3x -3=0.

(b) Using the quadratic formula we can solve for y in terms of x:

y=224% 4+4(x4+3x2+3)_
> d

The explicit solution that satisfies the initial condition is then

y=-1- x4+3x3+4.
_ 4
(c) From the graph of the function f (x) =x + 3x3 + 4 below we see that f (x) < 0 on the

approximate interval —2.8 < x < —1.3. Thus the approximate domain of the function

43
y=-1- X +3x +4=-1- f(x)

isx<-2.8 or x=-1.3. The graph of this function is shown below.
“1- f(x)

f
) «
4 2 2
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(d) Using the root finding capabilities of a CAS, the zeros of f are found

to be -2.82202 and -1.3409. The domain of definition of the solution N
y(x) is then x > -1.3409. The equality has been removed since the v
derivative dy/dx does not exist at the points where f (x) = 0. The _q
graph of the solution y = @(x) is given on the right.

60. (a) Separating variables and integrating, we have

y
2 2 ‘ ,

(-2y+y)dy=(x-x) dx 4 N

and 7 /O»

2 13 T2 13 ¢ \\S X

-y +3y =2x -3x +cC _

Using a CAS we show some contours of q \
f(xy)=2y3-6yz+2x3 . 2. 6 4 2 0 2 4 6

The plots shown on [-7, 7] x [-5, 5] correspond to c-values of —450, —300, —200,
-120, -60, -20, -10, -8.1, -5, -0.8, 20, 60, and 120.

(b) The value of ¢ correspondingtoy(0) = 3 is y
3 41
fO 2 =- 2411. The portion of the graph be- \
tween the dots corresponds to the solution curve 2 / -~
satisfying the intial condition. To determine the ¢ ] x
interval of definition we find dy/dx for = \
3 2. .3 .2 27 g T - A
2y -6y +2x -3X =- 4. P 0 ) 4 6

Using implicit differentiation we gety = (x - x2)/(y2 - 2y), which is infinite when y = 0

andy = 2. Lettingy=0in 2)/3 - 6y2 N 2_74 and using a CAS to solve for

X we get x = -1.13232. Similarly, letting y = 2, we find x = 1.71299. The largest
interval of definition is approximately (-1.13232, 1.71299).



2.3 Linear Equations

(c) The value of ¢ corresponding to y(0) = -2 is f (0, 4
—-2) = -40. The portion of the graph to the right of 2»}
the dot corresponds to the solution curve
satisfying the initial condition. To determine the
interval of definition we find dy/dx for

2y3 - 6y2 + 2x3 - 3x2 = -40. 4
! 2 2
Using implicit differentiation we gety = (x = x )/(y — 2y), which is infinite wheny =0
. . 3 2 3 2 .
andy=2. Lettingy=0in2y -6y +2x -3x =-40and using a CAS to solve for x

we get x = -2.29551. The largest interval of definition is approximately (-2.29551, «).

Linear Equations

d

! -~ 5dx -5x -5x 5X
. Fory - 5y = 0 an integrating factor is e =e sothat dx e y =0andy=ce
for —eo < X < 0,
d
' “2dx 2x - X -2X
. Fory + 2y = 0 an integrating factor is e =e sothat dx e y =0andy=ce for
—2X
- < x <, The transient term is ce
, d N
! 3X dx X - X 4x 3X X
.Fory +y=e anintegrating factor is e —e sothat dx[e yJ=e andy=,e +ce
—X
for = < x < . The transient term is ce
4 4 4 1
' . . . “4dx _ 4x 4x 4x -4x
. Fory+4y = , anintegrating factor is e =e sothatdx €'y =3 andy=,+ce
-4x
for —« < x < =, The transient term is ce
' 2 2 “3x%,dX  Xg d 2 X
5. Fory + 3x y=x an integrating factor is e =—e sothatgy—e y =xe and

y= 3g+ce for —e < x < o, The transient term is ce

' 3 ~ 2x dx Xo d 3 %
6. Fory + 2xy = x an integrating factor is e —e sothat gx e y =xe and

I~
N
I~

X3 X2

63



y= 2X — 2+tce for —« < x < =, The transient term is ce

O S | * (LX) dx d 1 1 C

7.Fory+x y=x »2anintegrating factor is e =xsothatdx [xyl=x andy=x Inx+x

for 0 < x < =, The entire solution is transient.
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' 2 =" 2dx -2X d

8. For y -2y = x +5 an integrating factor is e =e sothatdx e2xy =x2e-2x+5e-2x
lo 4 1l 2%

andy=- 2X — ;x— a4+tce for-«=<x<e, Thereis no transient term.

o1 _@xdx E 4l

9. Fory = xy =xsin x an integrating factor is e = x sothat dx x y =sinxand

y = cx — x cos x for 0 < x < . There is no transient term.

2 3 d ;
10. For y' +;y = :( an integrating factor is e, (@hagax x2 so that & x2y =3xandy= ;+cx_2
-2
for 0 < x < . The trancient term is cx
4, C@dx 4 44 6 4
11.Fory + xy =X -1 an integrating factor is e =x sothat dx xy =x —-x and

1.3 1 -4 . . -4
y="7X —T5x+cx for0<x< . The transient term is cx .

[ -l . -X
12.For y — Tl + x) Y = xan integrating factor is @~ }(I+xdx =(x+1e so that
2X+ 3 ce®
— - —-X
dx x+1e y =x(x+1e andy=-x- Xx+1 +x+1 for -1 <x <. There

is no transient term.

X

' 2 e I+EK)dx 2 x d 5y 2x
13.Fory + 1+x y= x2 an integrating factor is e =X € so that dx[x e y]=e
le ce ce
-7 T -2z
andy= 2 X + X for0<x< e, The transient term is X
' 1 I ’ X
14.Fory + 1+x y = xe “sin2x anintegrating factor jSe [1+@/Xldx = xe" so that
- 1 ce "
X . - =X . .
dx [xe'y]=sin2xandy=- 2xe cos2x+ x for 0 < x < o, The entire solution
is transient.
4 .
dx 4 5 -7 (4ly) dy Ya -4 d -4
15. For dy - yx =4y an integrating factor is e =e™ . =y sothatdy y x =4y

and x = 2y
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dx

2

for O
<y<

Ther
eis
no
trans
ient
term.

y

" (2ly) dy 2

16. For dy + y X=e€ an integrating factor is e =y

X=e

y

2y

ye

2
=
+y

y C
2 . .
e + Y for0<y<w, The transient term is

sothat dy Yy X =y e and

C

-
y

d

2

2y
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d 27
17. Fory + (tan X)y = sec x an integrating factor is e ™" * = sec x so thaf gy [(sec X)y] = sec” x

and y = sin x + ¢ cos x for —11/2 < x < 11/2. There is no transient term.

2 . . . x dx X .
18. Fory + (cotx)y = sec” x csc x an integrating factoris e 7 =N L X! = gin x so that

d
= 2 : .
dx [(sin X) y] =sec x and y = sec x + ¢ csc x for 0 < x < /2. There is no transient term.

X+ 2 2xe

19.For y+ x+1y = Xx+1 an intzegrating factoris e [+2/¢+1ldx = (X+ 1)ex, SO

d X C

X
dx [(x+1)ey] = 2xandy = x+lex+ x+lexfor-1<x < . Theentre
solution is transient.

o4 S (X _ _ _ ’ 4
20.Fory + y 4oy = 2)2 ~ anintegrating factoris e W(¢2ldx = (x+2)" so that
d 5
- 4 2 - -1 -4
dx X+2)y =5x+2) andy= 3 x+2) +c(x+2) for-2<x<, The

entire solution is transient.

dr

21. For (@ + rsec 6 = cos 8 an integrating factor is e

d

that doe [(secB +tan B)r] =1 + sin 6 and (sec 8 + tan B)r =6 — cos 6 + ¢ for —-1/2 < B < 11/2.

0dB _ (n| sec Xtran X
SEC =g |~ sec 8+ tan © so

There is no transient term.

@ d_ et

o] . : : d
22.For gt +(2t— 1)P =4t_ 2 anintegrating factor is e so that et2 P =

t, -t t-t . . colt-t
(4t-2)e? andP=2+ce 2 for -« <t< e, The transient term is C& 2
1 e-3x d

' - _— . . . T [BH(AX)dx _ . 3x — 3x
23.Fory + 3+x y= x anintegrating factoris e =Xxe sothatdx xe y =1

Ce-_3x
andy=e 3+ X

for 0 < x < . The transient termis ce /x.

24.Fory + _2 _y= X+*1 anintegrating factor is e [2/(X2_1)]dx_

= x—31
x -1 x=1 X+1
sothat d X=1ly =1 and(x Dy =x(Xx+ 1) +c(X+ 1)t 1 <y <1 There is no

dx x+1 -



transient term.
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' “=5dx  -5x d —5x -5x
25. Fory — 5y = x an integrating factor is e =e sothat dx e y =xe and
i -1 —-5x 1 1 5x
1
y=e5 xe-5xdx=es — 5xesx—25e +tCc=- 5x- 25+ce

A 1 1 765

If y(0) =3 thenc =

' T 3dx  3x 4 3x 3x
26. Fory + 3y = 2x and integrating factor is e =e sothatdx e y =2xe and
~ 2 2 2 2
3x -3x — 3x -— 3X - - -3X
y = e-3x 2xe dx=e 3Xxe —-9e +Cc= 3x- 9+ce
1 5 2 _2_ 5 _g
Ify(0)= 3thenc= Qgandy= 3x- Q9+ Qe .THe solution is defined on | = (-, «).
1 — 1 X “(2/x)dx _ d X 1

27.Fory + X y=x e anintegrating factoris e
X

forO<x< fy(l)=2thenc=2

x

| = (0, «).

- (ly)dy

28. For 9X  1x =2y an integrating factor is e

dy y
x=2y2+cyfor0<y<°°. If y(1) =5thenc=-49/5and x =

defined on | = (0, «).

a4 R E . (R dt_ RUL
29. For dt +L i= L anintegrating factor is e =e
E

- -Rt/L . . .
andi= R +ce v for —o <t <, Ifi(0) =ig thenc =g
E

-Rt/L

ib- R e . The solution is defined on | = (=, =)

dr

30. For

" (k) dt

dt — KT = —-Tmk an integrating factor is e

25andy=-5 x-25 +25 e . The solution is defined on | = (=, ).

=xsothatdx [xy]=e and37=x_e +X

y= le + 2-e.The solution is defined on

X
1 sothat & 1 x =2and
y dy vy
49
2 L
2y - 5 y. The solution is

d E
sothat dt eRULj= L eRiL
E
-ERandi= R +
Kt _ d
=e sothatdt [e T]=
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—kt _ kt
-Tmke ~and T=Tm +Ce  for —o <t< . If T (0) = Togthenc=Tg-Tmand T = Ty +(To

kt
—-Tm)e . The solution is defined on | = (=, «)
o1 _1 * (1) dx _d
3l.Fory + x y=4+yx anintegrating factoris e =xsothat dx [xy] =4x+ 1and
1 1 )
y= X" (dx+1)dx= x 2X +x+c =2x+1+ X.



2.3 Linear Equations
5

Ify(1l) =8thenc=5andy=2x+ 1+ x.The solution is defined on | = (0, «).
’ e —d
32.Fory +4xy =x e anintegrating factorise 4xdx=g@2x sothat dx [©¢ Y]=xe and

N 2
2 2 l 2 —1- 2 1 2 _1 2

y: e—2x2 X3e3x dx: e—2x 6 XZe3x - 18 e3x +C = 6 X2ex - 18 ex + Ce—2x .

7 - 121217 2

T 2x X
Ify(O)=-1thenc=- 18andy= 6X¢€ - 18€¢ - 18€2x . The solution is defined on

| = (—oo, oo)_

' . . . T [U(x+1)]d
33.Fory+ —1_y= _InX anintegrating factor is e [T dx x+1sothatd [(x+1)y] = In x
x+1 X + 1dx

and

X X C

y=x+1Inx—-x+1 +x+1 for 0<X<eo,

X X 21
Ify(l)=10thenc=21andy = Xx+1Inx-x+1 +x+1 . The solution is defined on

| = (0, «).

34.For y+ _—Ly = __1 _ anintegrating factor is e [W+Dldx = x+ 1 SO that
X+ 1x (X +1)

4 [+ 1)y1=1 and
dx X

1 1 1 In x c
xdx= x+1 (Inx+c)= x+1 +x+1 .

In x e
Ify(e)=1thenc=eandy= x+1+ x+1 .The solutionis defined on I = (0, ).

' " (- g X) dX X d X
35. Fory - (sin X) y = 2 sin x an integrating factor is e =e®%® sothat dx [€°°° y]=
2 (sin x) €°° “ and
- e ¢ s - cos X
):/ N o0 x 2(sinx)e

67



-  cos X
(- 2gC0S

cos X

DO 4N [—0O 4! X

Ify(m/2) = 1thenc=3 and y = -2+ 3 °°5*. The solution is defined on | = (==, =),



' 2 . _ _TanXxdXx L | sec Xl
36. Fory + (tanx)y = cos x an integrating factoris e -e = sec X so that
d

dx [(sec X)y]=cos xandy = sinxcos X + ¢ cos x for —-1/2 <x < 1/2. If y(0) =-1

then c = -1 and y = sin x cos x — cos X. The solution is defined on | = (-11/2, 11/2).

' . . .2
37. Fory + 2y =f(x) an integrating factor is e X s0 that y
yex = 2 1
c2, x> 3. —5 X

If y(0) = 0 then ¢1 = —1/2 and for continuity we must
1 4
have c> = e ~ 2 so that 0<x<3

1

16 ) 2X

—

38. Fory +y=f(x) an integrating factor is e so that
X 1 < <

If y(0) = 1 then c1 = 0 and for continuity we must have
c2 = 2e so that

y= 1, 0=sx<1
2etx 1, x>1.

' . . . X
39. Fory +2xy = f (x) an integrating factor is e
yex” = 2ex +cp, 0sx<1
2

2 50 that

C2, x> 1.

If y(0) =2 tlhen c1,= 3/2 and for continuity we must
have co = T2 e + ~2,s0 that
27251 %3
+ ex, 0sx=s1



2.3 Linear Equations

a

2% , 0sx=1
40. For y= 1+x2 1
1+ >(2 X )
- -, X>1,
2
12+ X =
an integrating factoris 1 + x so that I

y(0) = 0 then c1 = 0 and for continuity we must have c2 = 1 so that

y= 1 1
T 1
41. We first solve the initial-value problem y +2y = 4x,

y(0) =3 ontheinterval [0, 1].  The integrating factor is

e 2dx= eZX’ SO
d

& [e2xy] — 4X€2X

~

2X 2X 2X
e2xy = 4xe” dx=2xe” -e” +c1

-2X
y=2x-1+cqe

Using the initial condition, we find y(0) =-1+c1=3,so0c1=4andy=2x-1+ 4e_2

. -2 -2 i
0=<x<1.Now,sincey(l)=2-1+4e =1+4e ,we solve the initial-value problem

e (-2 dx=g@-2WINx=X"2 S0

i _2 _2 A
dx[X y]=4xx = X
T4
X2y = xdx=4Inx+cp

y = 4x2 Inx + czxz.

y - (2X)y=4x,y(1) =1+ 4e_2 on the interval (1, «). The integrating factor is

(We use In x instead of In |x| because x > 1.) Using the initial condition we find

X

3
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-2 2 -2 2
y(1)=cp=1+4e ,soy=4x Inx+(1+4e )x ,x>1. Thus,

-2
y=2x-1+4e X, s o, 0=x<1

42. We first solve the initial-value problemy +y =0,
y(0) = 4 on the interval [0, 2]. The integrating factor

iSe 1d&x =ex, SO

| U
dy-0 \\\\\\-____

dx E

P

exy= 0Odx=cy

=X
y=cie
Using the initial condition, we find y(0) =c1 =4,soci =4 andy = 4e_x , 0 <x< 2. Now,

. -2 A -2 .
since y(2) = 4e , we solve the initial-value problemy + 5y =0, y(1) = 4e  on the interval

. . . 5d 5X
(2, ). The integrating factor is e X ze , SO

d
__exxy =0
dx y

~

e5Xy= Odx=co

-5x
y = cpe

-10 -2 8 8 -5x
Using the initial condition we find y(2) = coe =4e ,socp=4e andy=4e e =

8-5x . .. s .
4e , X > 2. Thus, the solution of the original initial-value problem is

8-5x
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43. Anintegrating factor fory — 2xy = 1is e 2. Thus

d _ _
dx [e 2yl=e
2 X 2 \/
exy=. -
y e -
o "t dt=2 erf(x)+c
\/ "
I x X

Y= o e erf(x)+ce 2.

V- 1 AT
From y(1) = ( m2)eerf(l)+ce=1wegetc=e - , erf(1). The solution of the
initial-value problem is
\/ﬁ 2 \/'I'r 2
X -1 —_— X
y= 2eerfx)+e - 2 erf(l) e
Vi
X X

=e -1+ 2 e (erf(x) - erf(1)).
r _X2
44. Anintegrating factor fory —2xy =-1ise . Thus
d 2 2

dxle " yl=-e

2 X 2 \/_

exy=- ", etdt=- Terf(x)+c.

v -

Fromy(0) = /2, and noting that erf(0) = 0, we getc = /2. Thus

R R

y=e - 2erf(x)+ 2 = 2e (1-erfx)= 2e erfc(x).

’

45. Fory + eXy = 1 an integrating factor is e Thus

~

e e
dx e y =e and e y=x dt+c.

0

’

Fromy(0)=1wegetc=e,s0y= e X oX ge' gt +et-¢

2 S 1/

71



72
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46. Dividing by x we havey - x 2y =Xx. Anintegrating factorise . Thus
d a X

dx elxy =xelx and elxy = 1 tel/t dt+c.

-1/x x 1t

72
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47. An integrating factor for
y+

10 sin x

<"
1]
N

.2
is X . Thus

d x2y =10sinXx
dx X
X .
sint
"t
x2y=10 © dt+c

-2 _. -2
y=10x Si(x) +cx .

From y(1) = 0 we get ¢ = -10 Si (1). Thus

y = 10X 2 Si (x) - 10 2 Si (1) = 10x > (Si (X) - Si (1)) .

' 2 - t dt
48. The integrating factor fory - sinx y=0ise N 2 _Then

d

dx e- QXS|Nt2dty =0

e- 0X SIN t2 dty =C1

X

Yy =C1€ o snt’at

Lettingt=  T/2uwehavedt= T/2 du and

X 5 - \/ZLU.X . - - 2
sint dt= =" sin—yp du= -—S - X
2 2 2 m
0 0
Vrzs Vom x VsV 2w
soy=cjie . Using S(0) =0 and y(0) =c1 =5 we have y = 5e

49. We want 4 to be a critical point, sowe usey =4 -y.

. 5 x 4 X 4 . - . .
50. (a) All solutions of the formy =x e —x e + cx satisfy the initial condition. In this case,
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since 4/x is discontinuous at x = 0, the hypotheses of Theorem 1.2.1 are not satisfied

and the initial-value problem does not have a unique solution.
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51.

52.

53.

54.

CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS 2.3 Linear Equations

(b) The differential equation has no solution satisfying y(0) = yo, yo > O.

(c) In this case, since xg > 0, Theorem 1.2.1 applies and the initial-value problem has a
5 x 4 X 4 4 X X
unique solution givenbyy=x e —-x e +cx wherec=ypg/X g—Xp€ o+ € o.

On the interval (-3, 3) the integrating factor is

1

- 4 9_
e x dx/(x2—9) —e- x dx/(9—x2) —e , n XZ): 9-x2
and so
d 5 _C
dx 9-x y=0andy= 2.
9-x
—x -X

We want the general solutionto be y=3x -5+ ce . (Ratherthan e , any function that

approaches 0 as x — = could be used.) Differentiating we get

y=3—ce_X=3—(y—3x+5)=—y+3x—2,

so the differential equation y +y = 3x — 2 has solutions asymptotic to the line y = 3x - 5.

The left-hand derivative of the function at x = 1 is 1/e and the right-hand derivative at x = 1

is 1 — 1/e. Thus, y is not differentiable at x = 1.

(a) Differentiating yc = c/x3 we get

: 3c_ 3cC 3

Ye=7X 47X X 37X Yc

so a differential equation with general solution y¢ = c/x3 is Xy + 3y = 0. Now using yp

3
=X

Xyp *+ 3yp = x(3x2) + 3(x3) = 6x3

’

. . . . . 3 3. 3 L
so a differential equation with general solutiony = c/x + x is xy + 3y = 6x . This will

75
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be a general solution on (0, ).

2.3 Linear Equations
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55.

56.

57.

CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS 2.3 Linear Equations

. 3 3
(b) Since y(1)=1, -1/1, = 0, an initial condition is y(1) = 0. 3t
Since y(1) = 1" +2/1" = 3, an initial condition is y(1) = 3. 1

In each case the interval of definition is (0, «). The initial-

value problem xy +3y = 6x3, y(0) = 0 has solutiony = x3

for -« <x < . In the figure the lower curve is the 5 X
graph of y(x) = x = 1/x , while the upper curve is the

graph of y = x3 - 2/x3.
-3

(c) The first two initial-value problems in part (b) are not unique. For example, setting

3 3
y(2) =2 -1/2 = 63/8, we see that y(2) = 63/8 is also an initial condition leading to

. 3 3
the solutiony = x - 1/x .

P (x) dx+c _ ece P (x) dx =cie P(Xx)d

. X
Since e , we would have

P (x) dx P (x) dx P (x) dx P (x) dx
c1e y=co+ cC1e f(x)dx and e y=c3+ e f (x) dx,

which is the same as (4) in the text.
We see by inspection that y = 0 is a solution.

The solution of the first equation is x = cle_)‘lt. From x(0) = xg we obtain ¢c1 = Xg and so X

-At .
=Xpe 1. The second equation then becomes

I d

dt =xphe 1 —Apyor dt + Aoy = xpgA1e
which is linear. An integrating factor is e)\zt. Thus

d
e)\zty = XO)\]_e-)ute)\zt = XO)\]_e()\z—)\l)t
at
XA
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e)\zty = 01 eM-Mt 4 c2

y :—1 e-Mt4+ c2e-A,

2.3 Linear Equations
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From y(0) = yp we obtain c2 = (yoA2 = YoA1 — XoA1) / (A2 — Ap). The solution is

y= _X0M @a-nt+ YoA2 ZVoA1 XM g-nat,

A2—M dE 1 A2—M
58. Writing the differential equation as ~ dt + RC E = 0 we see that an integrating factor is
t/RC
e . Then
d t/RC
dt e E =0
etRCE =
E =ce-tRC
-4/RC . 4/RC . L
From E(4) = ce =Ep we find c = Ege . Thus, the solution of the initial-value
problem is
E = Eoe4RC g-tiRC = Epe-(t-4)RC |
59. (a) . .
(b) Using a CAS we find y(2) = 0.226339.
X
5
60. (a)
/_I\I X
1 2 3 4 5

[ S|
w N

|
I

=N
|l el . — il e

|
a1
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(b) From the graph in part (b) we see that the absolute maximum occurs around x = 1.7.

Using the root-finding capability of a CAS and solving y (x) = 0 for x we see that the

absolute maximum is (1.688, 1.742).

61. (a) yA

(b) From the graph we see that as x — =, y(x) oscillates with decreasing amplitudes ap-

1 \ 7

proaching 9.35672. Since Jim S(x) = = , we have dim y(x) = 5e =~9.357, and

1 NE

since x lim S(x) = - >, we have y lim y(x) = 5e =2.672.

(c) From the graph in part (b) we see that the absolute maximum occurs around x = 1.7

and the absolute minimum occurs around x = —1.8. Using the root-finding capability of

a CAS and solving y(x) = 0 for x, we see that the absolute maximum is (1.772,

12.235) and the absolute minimum is (-1.772, 2.044).

2.4 Exact Equations

1.LetM=2x-1and N=3y+ 7sothat My =0=Ny. Fromfy =2x -1 we obtain
2 ' 3 2 2 3 2
f=x =x+h(y),h(y)=3y+7,andh(y)= 2y +7y.Asolutionisx —-x+ 2y +7y=c.

2. LetM=2x+yand N=-x-6y. Then My =1 and Ny = -1, so the equation is not exact.

3. LetM=5x+4yand N =4x - 8y3 so that My = 4 = Nx. From fy = 5x + 4y we obtain f = §2
2 ' 3 4 5 2 4
X +4xy+h(y), h(y) =-8y , and h(y) = -2y . Asolutionis 2Xx +4xy -2y =c.

4. LetM=siny - ysinxand N = cos x + X cos y - y so that My = cos y - sin x = Nx. From fy
=siny -y sin x we obtain f = x siny + y cos x + h(y), h(y) = -y, and h(y) = - l2 y2. A

L . 1 2
solutionisxsiny+ycosx—-"2y =c.
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10.

11.

12.

13.

14.

15.

2.4 Exact Equations

2 2 2 .
. LetM =2y x-3and N =2yx + 4 so that My = 4xy = Nx. From fyx = 2y "x — 3 we obtain f =

x2y2 - 3x + h(y), h(y) =4, and h(y) = 4y. A solution is X2y2 - 3x+4y=c.

. LetM = 4x3 - 3y sin 3x - y/x2 and N = 2y — 1/x + cos 3x so that My = -3 sin 3x - 1/x2 and

2
Nx = 1/x - 3 sin 3x. The equation is not exact.

2 2 2
. LetM=x"-y and N =X - 2xy so that My = =2y and Nx = 2x - 2y. The equation is not

exact.

: LetM=1+Inx+y/xandN'=—1+InxsothatMy=1/x=NX. From fy = =1 + In x we

obtainf=-y+yInx+h(x), h(xX) =1 +In x, and h(x) = x In x. A solutionis -y +yInx+x1In
X =C.

3 2 . 2 2
. LetM=y -y sinx-xand N =3xy + 2y cos x so that My = 3y - 2y sin x = Nx. From f

= y3 - y2 sin X — x we obtain f = xy3 + y2 COS X — 12 x2 + h(y), h(y) =0, and h(y) = 0. A

L 3 2 1 2
solutionisxy +y cosx-"2X =C.
3 3 2 2 3 3
LetM=x +y andN=23xy sothatMy =3y =Nyx. From fy=x +y we obtain

1 4 3 : 1 4 3
= 424X +xy +h(y), h(y) =0, and h(y) =0. Asolutionis 4X +Xy =c.

Letl\/l:ylny-e_xyandN:1/y+xlnysothatMy=1+Iny+xe_XyThe and Nx =Iny.

eguation is not exact.
2 y 3 y 2 y 2 y
LetM=3xy+e andN=x +xe —2ysothat My=3x +e =Nx. Fromfy=3x y+e

3 y ! 2 3 y 2
we obtain f = x y+xe +h(y), h(y) = -2y, and h(y) = -y . A solutionis x y+xe -y =c.
2 X 2 X

LetM=y-6x -2xe andN=xsothatMy =1=Nyx. Fromfy=y-6x -2xe

. 3 X X ! L 3
we obtain f =xy — 2x - 2xe + 2e + h(y), h(y) =0, and h(y) = 0. A solution is xy - 2x -
2xeX + 2eX =cC.

LetM=1-3/x+yand N=1-3/y+xsothat My=1=Ny. Fromfy=1-3/x+y
we obtain f=x =3 1In x| +xy + h(y), h(y)=1-y ,andh(y) =y - 3In |y|. A solution is x +
y+xy-3In|xy|=c.

Let M = x2y3 -1/1+ 9x2 and N =_x3y2 so that My = 3x2y2 = Ny. From
23 2 133 1 ’
fx =xy —-1/1+9x we obtainf =3X y — jarctan (3x) + h(y), h(y) =0, and

33

77



h(y) = 0. A solution is x y - arctan (3x) =c.

16. Let M = -2y and N = 5y - 2x so that My = -2 = Ny. From fy = -2y we obtain

f =-2xy + h(y), h(y) =5y, and h(y) = ™2 y2. A solution is —2xy + 52 y2= C.

o<

17. Let M =tan x - sin x sin y and N = cos X cos y so that My = - sin x cos y = Nx. From fy =

tan X — sin x sin y we obtain f = In | sec x| + cos x siny + h(y), h(y) =0, and h(y) = 0. A
solutionis In | sec x| + cos x siny = c.
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18.

19.

20.

21.

22.

23.

24,

CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

2 Xy, 2 XY,
LetM=2ysinxcosx—-y+2y e and N = -x + sin X + 4xye so that

3 Xy, XY>
My=2sinxcosx-1+4xy e +4ye =Ny
2 Xy, 2 XYz '
Fromfy=2ysinxcosx—-y+2y e weobtainf=ysin x-xy+2e +h(y),h(y)=0
2 XY

and h(y) = 0. Asolutionisysin x-xy+2e =c.
LetM = 4t3y - 15t2 -yandN = t4 + 3y2 —tsothat My = 4t3 -1=Nt From

3 2 4 3 ! 2 3
ft =4t y - 15t -y we obtain f =ty-5t —ty+h(y),h(y)=3y ,andh(y)=y .

|
A solutionist y - 5t3 -ty + y3 =C.

2 27 2 y 2 2

LetM=1t+ 1t -yl t +y andN=ye +t/ t +y sothat

My = y2 - t2 /t2 + y2 2 _ Nt. Fromfy = 1N+ 1/t2 -yl t2 + y2 we obtain

1 t
f=Injtj- t-arctan y +h(y),h(y)=ye’,andh(y)=ye’ -’ Asolutionis

1 t
Inft|- T —arctan y +ye' -¢ =c.
2 2 2
LetM=x +2xy+y and N = 2xy + x - 1sothat My =2(x +y) = Nx. From

fx = x2 + 2xy + y2 we obtain f = J3‘ x3 + xzy + xy2 + h(y), h(y) = -1, and h(y) = -y. The

3 2 2 . L
3 X7+ Xy +xy -y =c. If y(1) = 1 then ¢ = 4/3 and a solution of the initial-value
13 2 4
problemis 3X +Xy+Xy —“Y= 3.
X y X X

solution is

LetM=e +yandN=2+x+ye sothatMy=1=Ny. Fromfy=e +yweobtainf=e +

xy + h(y), h'(y) =2+ yey , and h(y) = 2y + yey - &’ . The solution is e* + Xy + 2y + yey - e’

. - . X y
= c. If y(0) = 1 then ¢ = 3 and a solution of the initial-value problemise +xy+2y+ye -
y

e =3.
LetM= 4y+2t—5andN 6y+4t—lsothatMy—24 N¢. From fi = 4y+2t—5weobta|n2
f-4ty+t -5t + h(y), h(y) =6y — 1, and h(y) = 3y - y. The solution is 4ty + t —5t+3y

- %— c. If y(-1) = 2 then ¢ = 8 and a solution of the initial-value problem is 4ty + t - 5t +

3y —y=8.
4 2 2 5 5 4

Let M = t/2y %nd N= 3y -t Jy sothatMy=-2tly =Nt Fromfi=t2y we

t 3 3 t 3
obtanf= 2y +h(y),h(= 7% andhy)=- ~—=.Thesolutionis " 2y =c.If
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2y
12 3
- T2
y(1) = 1 then ¢ = -5/4 and a solution of the initial-value problemis 4y - 2y =-

ST Sy

25. LetM=y2cosx—3x2y—2xandN=2ysinx—x3+InysothatMy=2ycosx—3x = Nx.

2 2 2 3 2 '
Fromfy =y cosx—-3x y—-2xweobtanf=y sinx-xy-x +h(y), h(y) =Iny, and

h(y) =y Iny —y. The solution isyzsinx—xgy—x2+ylny—y:c. If y(O)=ethenc=0

. o .2 . 3 2

and a solution of the initial-value problemisy sinx-xy-x +ylny-y=0.
2 2

26.LetM=y +ysinxand N=2xy-cosx-1/1+y sothat My=2y+sinXx=Ny. From

fX:yz+ysinxweobtainf=xy2 _ycosx+h(y),h(y) = ﬁz,andh(y): _tanly.



27.

28.

29.

30.

31

32

33.

34

35

- We note that (My = Nx)/N = - cot x, so an integrating factor is e

2.4 Exact Equations

The solution is xy2 -y cos x - tan Ty=c.If Y(0)=1thenc=-1-/4and a solution of

- 2 -1 LIS
the initial-value problem is xy -y cos x — tan y=-1- 4.

Equating My = 3y2 + 4kxy3 and Ny = 3y2 + 4Oxy3 we obtain k = 10.

2 2
Equating My = 18xy - siny and Ny = 4kxy - siny we obtain k = 9/2.

2.2 . 2 2
LetM=-xy sinx+2xy cosxandN =2xy cos x so that
2 2 22

My = =2x y sin X + 4xy cos X = Nx. From fy = 2x y cos x we obtain f = x y cos x + h(y),

h(y) =0, and h(y) = 0. A solution of the differential equation is x2y2 COS X =C.

2 2 2 2 2 2 2 2
Let M = (x +2xy—y%((x +2xy+y )and N=(y 2+2xy—x%/(y +22xy+x£so

that My = -4xy/(x +y) = Nx. Fromfy = x +2xy+y -2y /(x+y) we obtain
2y, ' . . . o
f=x+ ~=FNh(y), h(y) = -1, and h(y) = —y. A solution of the differential equation is X +y

x2+y2 =c(x +y).

. We note that (My —=Nx)/N = 1/x, so an integrating factor is e dxlx _ X. LetM = 2xy2 +3x2 and

N = 2x2y so that My = 4xy = Nx. From fy = 2xy2 +3x2 we obtain f = x2y2 +x3 +h(y), h'(y) =

0, and h(y) = 0. A solution of the differential equation is x2y2'+ x3 =cC.

. We note that (My — Nx)/N = 1, so an integrating factor is e ox _ e". Let

X 2 X X X X X X X
M=xye +ye +ye andN=xe +2ye sothatMy=xe +2ye +e =Ny Fromfy=

xe* + 2yeX we obtain f =Xxye; J;( y2ex + h(x), h(x) = 0, and h(x) = 0. A solution of the

differential equation is xye +y e =c.

. . . 2 2
We note that (Nx — My )/M = 2/y, so an integrating factor is e dyly =y .LetM= 6xy3 and

3 22 2 3 23 '
N=4y +9xy sothatMy=18xy = Ny. Fromfy=6xy we obtainf=3xy +h(y), h(y)

= 4y3, and h(y) = y4. A solution of the differential equation is 3x2y3 + y4 =cC.

X dx
cot =csc x. Let

M =cos x csc x = cot xand N = (1 + 2/y) sin x csc x = 1 + 2/y, so that My = 0 = Nx. From
fx = cot x we obtain f = In (sin x) + h(y), h (y)2= 1+ 2}y, and h(y) =y +Iny". A solution of
the differential equationisIn (sinx) +y+Iny =c.

3x

: . . 3d
. We note that (My — Nx)/N = 3, so an integrating factor is e =™ Let
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-3X

M =(10-6y+e e = 10e®* - 6ye® + 1 and N = —2¢°

X so that My = —6e = Nx. From

X

f = 10> - 6ye® + 1 we obtain f = 223 > - 2ye® + x + h(y), h(y) = 0, and h(y) = 0.

. . . .. 10 3x 3x
A solution of the differential equationis —3€e —2ye  +x=c.

dyly _ 1/y3

36. We note that (Nx — My)/M = -3/y, so an integrating factor is e_3 Let

2 3 3 2 3 3 2
M= +xy )y =lly+xandN=(by —-xy+y siny)y =5/y—-xly +siny, so that
2 1 2 ! .
My = -1/y = Nx. From fy = 1/y+x we obtain f = x/y+ 2™ x +h(y), h(y) = S/y+sin y, and h(y)

: . . o 1 2
=51In |y| — cos y. A solution of the differential equationis x/y + =2 x +5In|y| - cosy =c.
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37. We note that (My = Nx)/N = 2x/(4 + x2), SO an integrating factor is
=27 x dx/(4+X,) 2 2 2 2
e =1/(4+x ). Let M2= x/(4+X) anle =(xy +24y)/(4 +X )=y, S0
2
that My = 0 = Nx. From fy = x(4 + x ) we obtain f="In (4 4 x ) + h(y), h(y) =y, and
h(y) = 4y . A solution of the differential equation is lin(4+x )+ 1 = ¢. Multiplying both
y

2 2 2

y 2 _ . I .
sides by 2 the last equation can be written as e X" +4 =cj1. Using the initial condition
y 2

y(4) = 0 we see that cq = 20. A solution of the initial-value problemise  x +4 =20.
. . .- 3
38. We note that (My —Nx)/N = -3/(1+x), so an integrating factor is e 8 dxf(1+x) =1/(1+x) . Let
2 2 3 3 2 3

M=(x +y =5)/(1+x) andN=~(y+xy)/(L+x) =-y/(1+Xx),sothatMy=2y/(1+Xx) =
2 . 1 2 2 ' 2 3
Ny. From fg =-yl(1+x) weobtainf=-"2y /(1 +x) +h(x),h(X)=(x —-5)/(1+x),and h(x)

=2/(1+x) +2/(1+x)+In]|l+x|. Asolution of the differential equation is

y2 2 2

—2 = 2
-2(1+x) +(1+X) +@+x)+In|1+x =c.

Using the initial condition y(0) = 1 we see that ¢ = 7/2. A solution of the initial-value

problem is 5
y 2 2 7

Z 2
-2(1+x) +(1+x) +1+x+Injl+x = 2
3 2 2

39. (a) Implicitly differentiating x + 2x y +y = ¢ and solving for dy/dx wezobtain

) Kol dy dy Sx_+4xy,
2 y
3X +2x dx +4xy+2y dx =0 and dx=- 2Xx +2y . i

2 2
By writing the last equation in differential form we get (4xy + 3x )dx+ (2y + 2x )dy = 0.
2

1

. . 2 2 . .
(b) Settingx=0andy=-2 |nx3+2x y+y =cwefindc=4, andsetting®¥=y=1we

also find ¢ = 4. Thus, both initial conditions determine the same implicit‘éolution.
.3 2 2_ 4 ;
(c) Solvingx +2x y+y =4forywege y

2 —3—4
yi(X) ==X -  4-x +X

and ) .
y2X) ==X+  4-x +x . 4 2 \
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Observe in the figure that y1(0) = -2 and y2(1) = 1. y

40. To see that the equations are not equivalent consider dx = —(x/y) dy. An integrating factor
is M(X, ¥) =y resulting iny dx + x dy = 0. A solution of the latter equation is y = 0, but this is
not a solution of the original equation.
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- L . 2
41. The explicit solutionisy = (3 + cosZ xX)/(1 - xz) . Since 3 + cos x> 0 for all x we must
2

have 1 - x >0or -1 <x< 1. Thus, the interval of definition is (-1, 1).

42. (a) Since fy =N (x,y) = xe' + 2xy + 1/x we obtain f = eV + xy2 +¥ + h(x) so that
—¥ y

fe=yeY+y? - e +h). LetM(x, y) =ye ¥ +y* - y2

. 1/2 -1/2 2 -1 .
(b) Sincefy=M(X,y) =y X + X X +Yy  we obtain
1/2 1/2 1 2 -1/2 1/2 1_ 2 -1

f=2y x + - |n>1+y+g(i/)sothatfy=y X + 2X +y +g'(y).Let

; Xe+y . N(X’y):y—l/2xl/2+

43. First note that

d X +y — d
X + = ’
y x2+y2 X+ x2+y2 V.
2
Thenxdx+ydy= x"+y dxbecomes
X A\

- z 7z
2 2dx+ 2 2dy=d X +y =dx
X +y X +y

The left side isthetotal differential of x o y and the right side is the total differential of x

2 2 . . . . .
+c. Thusx +y =x+ cis a solution of the differential equation.

44. To see that the statement is true, write the separable equation as —g(x) dx + dy/h(y) = 0.

Identifying M = —-g(x) and N = 1/h(y), we see that My = 0 = Ny, so the differential equation
is exact.

45. (a) In differential form

v2—32x dx+xvdv=0

Thig is nat an exact equation, but p(x) = x is an integrating factor. The new equation

Xv - 32X dx + x vdv=0isexact and solving yields = x v -~ x =c.Whenx=3,
2 3
X 9
- Z
v(x) =8 3 - X .

(b) The chain leaves the platform when x = 8, and so
§ 29
v(8)=8 3- 64 =12.7ft/s

46. (a) Letting
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M(X,y) = —2XY and
2 2.2
x +y)
we compute
3 2
My = 2x -8x
y ) Y,

2.4 Exact Equations
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so the differential equation is exact. Then we have

of 2 2
L =M y) = —5 =29 +y2)-2
oX x +vy)

2 2.-1 Zy 2
fxy)=-yx +y)  +gy)=- X +y +g(y)

d = ol +g =Ny =1+ yoox—
2.2 27 22
gy (X ty) (x"+y")
' _y_g
Thus, g (y) = 1 and g(y) =y. The solutionis y - 9 = c¢. When c = 0 the solution
X +y

is x2 + y2 =1
(b) The first graph below is obtained in Mathematica using f (X, y) =y - y/(x2 + y2) and

ContourPlot[f[x, y], {x, -3, 3}, {y, -3, 3},
Axes—->True, AxesOrigin—>{0, 0}, AxesLabel->{x, y},
Frame—->False, PlotPoints—>100, ContourShading—>False,
Contours—>{0, -0.2, 0.2, -0.4, 0.4, -0.6, 0.6, -0.8, 0.8}]

The second graph uses

3 2 3 2
X = —Cy - andx = —Cy -Vy.
- c .y c

In this case the x-axis is vertical and the y-axis is horizontal. To obtain the third graph,
we solve y—y/(x2 +y2) = c for y in a CAS. This appears to give one real and two

complex solutions. When graphed in Mathematica however, all three solutions contribute
to the graph. This is because the solutions involve the square root of expressions
containing c. For some values of ¢ the expression is negative, causing

an apparent complex solution to actually be real.

/

-15
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2.5 Solutions by Substitutions

2.5 Solutions by Substitutions

1. Letting y = ux we have

(x—ux)dx+x(udx+xdu)=0

(as(+xdu:O

_X+du=0
In|x]+u=c

xIn |[x] +y = cx.

2. Letting y = ux we have

(x+ux)dx+x(udx+xdu)=0
(1+2u)dx+xdu=0

QX_ +ﬂ‘__:0
X 1+2u

1
In|jx| + 2In|1+2u]=c

2 Y
X 1+2X =C1

2

X +2xy = cCj1.

3. Letting x = vy we have

vy(vdy +ydv)+(y-2vy)dy=0
vy2dv+y v2—2v+1dy=0

(vl-l) y
Inlv-1-7v I+Inlyl=c

X 1
In y-1 -"Xy 1+Injly|=c

X=y)Inx-yl-y=c(x-Yy).
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4. Letting X = vy we have

y(vdy +ydv) -2(vy+y)dy=0
ydv—-(v+2)dy=0

dv d_y
v+2-y =0

Inv+2[-Inly|=c

X
In _y+2—ln|y|:c

X+ 2y= c1y2.
5. Letting y = ux we have

22 2 2
UXx +ux dx—-x (udx+xdu)=0

2
u dx-xdu=0

dx du

- 7

X —-—u =0
1

In|x+ u =c

x

In|x|+§/ =c

yIn |x] + x = cy.

6. Letting y = ux and using partial fractions, we have

22 2 2
Ux +ux dx+x (udx+xdu)=0

x2 u2+2udx+x3du:0

dx du
X +u(u+2) =0
1 1
In|x]+ 2Injul-2 Inju+2|=c
2
X U
u+2 =cC1
2 y
X

=C1—+2
1X

x|

x2y = c1(y + 2x).



7. Letting y = ux we have

(ux=x)dx = (ux +x)(udx +xdu)=0
u +1dx+xu+1)du=0

% u+1l
X +U +1ldu=0
2 -1

nx +linu +1 +tan u=c

! 22)(2 1Y
In x +1 +2tan =C1
X2 X

2 2 -1¥
In X +y +2tan =, =c1

8. Letting y = ux we have

(x+3ux)dx - (3x+ux)(udx+xdu)=0

u2—1dx+x(u+3)du=0
dx u+3

X + (o=t +F1r du=0

Inx| +2Nju-1-Inju+1/=c

x(u—l)zzcl
u+1l
y 2
X x-1 =Cc1 x +1

(y-w2=0ﬂy+@-

9. Letting y = ux we have

N
—uxdx+ (X+ ux)(udx+xdu)=0

3/2
(X2+x2 u)du+xu” dx=0

u-32+ L du+ 9X =0

u X
ou-12 +lnNu +Inx =c

- N 'l —

In|y/x| +In|x] =2 xly + ¢
2
y(Inly] - ¢) =4x.



10. Letting y = ux we have
X —UX dx—x2du=0
- 2 2
X 1-u dx-x du=0, (x>0)
dx du

2
x —V1lZu =0
INX sin Tu=c

-1
sin u=Inx+cy
. -1
sin ¥(=Inx+02
y

X =sin (Inx + c2)

y =xsin (In x + c2).

See Problem 33 in this section for an analysis of the solution.

11. Letting y = ux we have

x3— u3x3 dx + u2x3(u dx +5<du)=0
dx+u xdu=0

2
dX +u du=0
X

1 3

In|x]+ 3u =c
3 3 3

3X In|x|+y =c1x .

. . . . . 3 3 3
Using y(1) = 2 we find ¢1 = 8. The solution of the initial-value problem is 3x  In |x|+y =8x .

12. Letting y = ux we have

(x2 + 2u2x2)dx - ux2(u dx+xdu)=0
x2(1 + uz)dx - ux3 du=0
dx udu
- T Z
x - 1+u =0

1 2
In|x]——2In(1+u’)=c

X2_
X _ .

1+uz
4 2 2
X =ci(x +y).

. . . o . 4 2 2
Using y(-1) = 1 we find c1 = 1/2. The solution of the initial-value problemis2x =y +x .



2.5 Solutions by Substitutions

13. Letting y = ux we have

(x + uxeu) dx - xeu(u dx+xdu)=0
u

dx-xe du=0
ax
x—€ du=0
Inix|-e =c
/
Inx - =c.

yIX

Using y(1) = 0 we find ¢ = —1. The solution of the initial-value problemisIn x| =e” - 1.

14. Letting x = vy we have

15.

16.

17.

18.

yivdy +ydv) +vy(lnvy —Iny-1)dy=0
ydv+vinvdy=0

dv 4dy =p

vinv y
Injin|v||+Inly|=c

X
yIn ? =C1.

X
Using y(1) = e we find c1 = —e. The solution of the initial-value problem is y Iny = —e.

-1 1 5 3 _dw_ 3 3
Fromy +yx y=x y andw=y we obtain dx* x W=x .Anintegrating factor
3 3 3 3 -3

isXx sothatx w=x +cory =1+cx

' X 2 -1 . dw X . . . X
Fromy —y=ey andw=y ~ we obtain dx + w=—e . Anintegrating factor is e so
X 1 2x -1 1l x -X
thate w=- 2e +cory =- 2€ tce
] 4 _3 dw — _3X

Fromy +y=xy andw=y we obtain dx — 3w = =3x. An integrating factor is e

-3X -3x 1 -3x -3 1 3x
sothate w=xe + 3e +cory =x+ 3+ce

1 dw 1
' - 2 -1

Fromy - 1+ x y=y andw=y weobtain dx + 1+x w=-1.An integrating
1 ¢

factor is xe
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X X
w=-xe - = -
so that xe ve ko =71+ X +X
ory e
.1 1, 1 dw_ 1 1

19. Fromy - ty=-t 2y andw=y we obtain dt+ tw=t 2.Anintegrating factor

. 1 1_¢C o t
istsothattw=Int+cory " = tlint+ ¢{.Writing this in the formy =Int+c, we see
tly

that the solution can also be expressed in the form e = cit.
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20.

21.

22.

23.

24.

25.

26.

27.

28.

V2 2t 4 3 dw __2t —2t
Fromy + 2y= 2Y andw=y = we obtain W= 2 An

3(1+t) 1 3(+t) 1 d 1 +¢ 1+t
—z Z Z -3 2

integrating factoris 1+t sothat1+t =1+t +cory =1l+c 1+t

, 2 3 dw 6 9

4 -3 . . .
Fromy - X y=,.y andw=y weobtain dx +x w=-, . Anintegrating factor
26 5 6 :g g 1 1 4
isX sothatx w=- X +cory =- 5Xx +c¢cx . Ify(l)= , thenc= s and
-3 9 -1 49 -6 —

y =- 5X + 5X

' -1/2 372 dw_ 3 _3 3x/2
Fromy +y=y andw=y we obtain dx+ 2w= 2.Anintegrating factor is e

sothate>?w=e>2 +cor y?’/2 =1+ce 2 s y(0) =4thenc=7and y3/2 =1+ 7e"3X/2.
dy 2 L
Letu=x+y+ 1sothat du/dx =1 + dy/dx. Then dXx —1=u"or =712 du=dx Thus
-1

tan u=x+coru=tan(x+c),andx+y+1l=tan(x+c)ory=tan(x+c)—-x—1.

Let u=x +y sothat du/dx = 1 + dy/dx. Then du 1=1-u orudu=dx. Thus
12 5 5 dx - u
2U =x+coru =2x+cy,and (x+y) =2x+cCjq.

du 2 2
Let u = x + y so that du/dx = 1 + dy/dx. Then dXx —1=tan uorcos udu=dx. Thus
u+ + sin 2u = x + ¢ or 2u + sin 2u = 4x + ¢, and 2(x +y) + sin 2(x +y) = 4x + ¢1 or
2y +sin 2(x +y) = 2x + cy.

du 1

Let u=x+y so that du/dx = 1 + dy/dx. Then dx - 1=sin u20r 1+sinu du=dx.

Multiplying by (1 _sin u)/(1_ sinu)we have 1 —sinu du=dxor (sec u_ secutanu)du = dx.

Ccos u

Thustanu-secu=x+cortan (x+y)—sec (x+y)=x+cC.
du \ 1

Letu=y-2x+ 3sothatdu/dx =dy/dx — 2. Then TX+2=2+ uor & du = dx. Thus

V- V
2 y=x+cand2 y-2x+3 =x+c.
du _ U -u

Letu=y-x+5sothatdu/dx =dy/dx - 1. Then dx+1=1+e ore du=dx. Thus

-u —y+x-5
-e =x+cand—ey =X+ C.



29. Let u = x + y so that du/dx = 1 + dy/dx. Then dx = 1=cos uand 1+cosu du = dx. Now

2
1 —1-cosu =1-COSU=csc”u cscucotu
2 2
, l1+cosu 1-cos u sin u -
so we have (csc2 u-cscucotu)du= dx and - cot u + csc u\/= X+ c. Thus —cot (x +vy) +
csc (x +y) = x + c. Setting x = 0 and y = 11/4 we obtain ¢ = 2 - 1. The solution is

csc (x+y)—cot(x+y)=x+ 2-1.
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31.

32.
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du 2u 5u+6
30. Let u = 3x + 2y so that du/dx = 3 + 2 dy/dx. Then dx =3+u+2 =u+2 and

U+ 2 du=dx. Now by long division

5u+6
5u+6 5 25u + 30
SO0 we have
1 4
" 5 +25u +30 du=dx
1 4

and su+25 In|25u+ 30| =x+c. Thus

1 4
T5(3x+2y) ¥25 In|75x + 50y + 30| = x + C.

. . 4
Setting x = -1 and y = =1 we obtain ¢ = 25 ~In 95. The solution is

1 4 4
5(3x +2y) + 25In [75x + 50y + 30| = x + 25In 95

or

5y = 5x+2In [75x + 50y + 30| =2 In 95

We write the differential equation M (X, y)dx + IMX( );(/)dg//)z 0 as dy/dx =f (x, y) where

f(x,y)=- —.

The function f (X, y) must necessarily be homogeneous of degree 0 when M and N are ho-

mogeneous of degree a. Since M is homogeneous of degree a, M (tx, ty) = taM (x,y), and
letting t = 1/x we have

M (1, y/x) = X%M(x, y) or  M(xy)=x"M (1, y/x).

Thus — XGM (1, y/x)

dy M (1, y/x) y

dx =f(x,y)=- XGN(l,y/x) =- NtE5y®r =F X
2 2

Rewrite (bx -2y )dx - xy dy =0 as

d
x> =5 - 2y

and divide by xy, so that

dy x _y
We then identify
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33. (a) By inspection y = x and y = =X are solutions of the differential equation and not (In
members of the family y = x sinx + c2).

(b) Lettingx=5andy=0in sin_l (y/x) =In x + c2 we get
-1

sin 0=In5+cporcy=-1In5. Then

. -1
sin  (y/x) =In x —In 5 =1In (x/5). Because the range of 20 !
the arcsine function is [-11/2, 11/2] we must have 15¢
T X _T 1ol
- 2<In g= 2
X 5[
e-m"2< 5<am2
T R T

Be-m2<x < 5em2
The interval of definition of the solution is approximately [1.04, 24.05].

34. Asx — -, ™ 0andy — 2x+3. Now write (1+ce™)/(1-ce™ ) as (¢ +c)i(e ™ —¢)
—-6x

Then,asx —»>«,e —0andy— 2x- 3.

35. (a) The substitutions y =y1 + u and

& Oy ,du
dx dx dx
lead to
dvi du 5
dx +dx =P+ Q(y1+u)+R(y1+u)
2 2
=P+Qy1+Ry; +Qu+2yjRu+Ru
or du

— 2
dx - (Q+2yi1R)u=Ru .
This is a Bernoulli equation with n = 2 which can be reduced to the linear equation

dw
dx +(Q+2y1Rw=-R

o -1
by the substitutionw =u .

dw 1 4
2 —_ - -
(b) Identify P (x) = —4/x , Q(x) = -1/x, and R(x) = 1. Then dx +-x+ x w=-1.
1 1
3 3 4 -3 -1
An integrating factor is x sothatx w=- ;X +cOru= —4X+Cx . Thus,
2 2 1 -1

y= X+Uuory= X+ - 4 X+cCX
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36. Write the differential equation in the form x(y/y) = In x + In y du/dx and let u = Iny. Then x
= yly and the differential equation becomes x(du/dx) = In +uordu/dx - u/x =

92
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(In x)/x, which is first-order and linear. An integrating factor is e = 1/x, so that
(using integration by parts)

d 1 In x u 1 Inx
- — - -
# Xu =X and x=-%- X +cC.
The solution is
gs:x:l
Iny=-1-Inx+cx or y= X
37. Write the differential equation as
. V_l
dv 41v=32 ~
dx X
and letu = v2 orv= u1/2. Then
dv =1, du,
dx 2 dx
and substituting into the differential equation, we have
Iy du +ly2=32y-12 or AU +2y=64
2 dx x dx X
d
a_x x2u = 64x2
and
2 64 ; 2 64 c
Xu= — X +C orv C— X+ —2 .
3 3 X
. . . . 2 -1 -1
38. Write the differential equation as dP/dt —aP =-bP " andletu=P ~orP=u ". Then
dp du
— L, —
dt=-u dt ,
and substituting into the differential equation, we have
du du
2= -1 -2 —
-u  dt-au =-bu or dt +au=h.
d
dt [eatu] = beat — =e ,so
and
at b at
e u-ae +c
_1=b
eatPp -1== pat+ ¢
a
1=D _
P-1 = +cea
P :_l _ a

-at -at
b/a + ce b+cqe
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2.6 A Numerical Method

1. Weidentify f (x, y) = 2x - 3y + 1. Then, for h = 0.1,

Yn+1 =Yn + 0.1(2Xn — 3yn + 1) = 0.2xn + 0.7yn + 0.1,

and
y(1.1)=y1 =0.2(1) + 0.7(5) + 0.1 = 3.8
y(1.2) =y> =0.2(1.1) + 0.7(3.8) + 0.1 = 2.98
For h = 0.05,
Yn+1=Yn t 005(2Xn - 3yn + 1) =0.1xp + 085yn +0.1,
and

y(1.05)=y1 =0.1(1) + 0.85(5) + 0.1 =4.4

y(1.1) = yo = 0.1(1.05) + 0.85(4.4) + 0.1 = 3.895 y(1.15)
~y3 = 0.1(1.1) + 0.85(3.895) + 0.1 = 3.47075 y(1.2) = y4
= 0.1(1.15) + 0.85(3.47075) + 0.1 = 3.11514

2. Weidentify f (X, y) = x + y2. Then, forh=0.1,

2 2
Yn+1=Yn+ 0.1(Xn +yn ) =0.1Xp + yn + 0.1y ,

and
2
y(0.1) =y = 0.1(0) + 0 + 0.1(0)" = 0
y(0.2) = y» = 0.1(0.1) + 0 + 0.1(0)° = 0.01
For h = 0.05, ) )
Yn+1=Yn *+ 0.05(Xn + yn ) = 0.05%Xn + yn + 0.05yn ,
and

¥(0.05) = y1 = 0.05(0) + 0 + 0.05(0)° = 0
y(0.1) = y» = 0.05(0.05) + 0 + 0.05(0)2 = 0.0025
y(0.15) = y3 = 0.05(0.1) + 0.0025 + o.05(o.0025)2 =0.0075
y(0.2) = y4 = 0.05(0.15) + 0.0075 + 0.05(0.0075)2 =0.0150
3. Separating variables and integrating, we have
dy
y =dx and In|y|=x+c.

Thusy = clex and, usingy(0) =1, wefindc=1,soy= eX is the solution of the initial-value
problem.
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2.6 A Numerical Method

h=0.1 h=0.05
I_ X v AcTuaL Ass. %REL. X v AcTuaL Ass. %REL.
N N VALUE ERROR ERROR N N VALUE ERROR ERROR
0.00 1.0000  1.0000 0.0000 0.00 0.00 1.0000 1.0000 0.0000 0.00
1.10 1.1000  1.1052 0.0052 0.47 0.05 1.0500 1.0513 0.0013 0.12
0.20 1.2100 1.2214 0.0114 0.93 0.10 1.1025 1.1052 0.0027 0.24
0.30 1.3310  1.3499 0.0189 1.40 0.15 1.1576 1.1618 0.0042 0.36
0.40 14641  1.4918 0.0277 1.86 0.20 1.2155 1.2214 0.0059 0.48
0.50 1.6105  1.6487 0.0382 2.32 0.25 1.2763 1.2840 0.0077 0.60
0.60 17716  1.8221 0.0506 2.77 0.30 1.3401 1.3499 0.0098 0.72
0.70 1.9487  2.0138 0.0650 3.23 0.35 1.4071 14191 0.0120 0.84
0.80 2.1436  2.2255 0.0820 3.68 0.40 1.4775 1.4918 0.0144 0.96
0.90 2.3579  2.4596 0.1017 4.13 0.45 1.5513 1.5683 0.0170 1.08
1.00 2.5937 _ 2.7183 0.1245 4.58 0.50 1.6289 1.6487 0.0198 1.20
0.55 1.7103 1.7333 0.0229 1.32
0.60 1.7959 1.8221 0.0263 144
0.65 1.8856 1.9155 0.0299 1.56
0.70 1.9799 2.0138 0.0338 1.68
0.75 2.0789 2.1170 0.0381 1.80
0.80 2.1829 2.2255 0.0427 1.92
0.85 2.2920 2.3396 0.0476 2.04
0.90 2.4066 2.4596 0.0530 2.15
0.95 2.5270 2.5857 0.0588 2.27
1.00 2.6533 2.7183 0.0650 2.39

4. Separating variables and integrating, we have

dy 2
y =2xdx and Inly]=x +c.

X2 _1 X2_1
Thusy=c1e and,usingy(l)=1,wefindc=e ,soy=e is the solution of the
initial-value problem.
h=0.1 h=0.05
X v AcTuAL Ass. %REL. X v AcCTUAL ABs. %REL.
N N VALUE ERROR ERROR N N VALUE ERROR ERROR
1.00 1.0000 1.0000 0.0000 0.00 1.00 1.0000 1.0000 0.0000 0.00
1.10 1.2000 1.2337 0.0337 2.73 1.05 1.1000 1.1079 0.0079 0.72
1.20 1.4640 1.5527 0.0887 5.71 1.10 1.2155 1.2337 0.0182 147
1.30 1.8154 1.9937 0.1784 8.95 1.15 1.3492 1.3806 0.0314 2.27
1.40 22874  2.6117 0.3243 12.42 1.20 1.5044 1.5527 0.0483 3.11
150 29278 34903 05625 16712 1.25 1.6849 1.7551 0.0702 4.00
1.30 1.8955 1.9937 0.0982 4.93
1.35 2.1419 2.2762 0.1343 5.90
1.40 2.4311 2.6117 0.1806 6.92
1.45 2.7714 3.0117 0.2403 7.98
1.50 3.1733 3.4903 0.3171 9.08

93



94

5.

7.

9.

CHAPTER 2 FIRST-ORDER DIFFERENTIAL EQUATIONS

h=01 h=0.05
XN YN XN YN
0.00 0.0000 0.00 0.0000
0.10 0.1000 0.05 0.0500
0.20 0.1905 0.10 0.0976
0.30 0.2731 0.15 0.1429
—0-40——0-3492—1 0.20 0.1863
0.50 0.4198 0.25 0.2278
0.30 0.2676
0.35 0.3058
0.40 0.3427
0.45 0.3782
0.50 0.4124
h=0.1 h=0.05
XN YN XN YN
0.00 0.5000 0.00 0.5000
0.10 0.5250 0.05 0.5125
0.20 0.5431 0.10 0.5232
0.30 0.5548 0.15 0.5322
0.40 0.5613 0.20 0.5395
0.50 0.5639 0.25 0.5452
0.30 0.5496
0.35 0.5527
0.40 0.5547
0.45 0.5559
0.50 0.5565
h=0.1 h=0.05
xN YN xN ! N
1.00 1.0000 1.00 1.0000
1.10 1.0000 1.05 1.0000
1.20 1.0191 1.10 1.0049
1.30 1.0588 1.15 1.0147
1.40 1.1231 1.20 1.0298
1.50 1.2194 1.25 1.0506
1.30 1.0775
1.35 1.1115
1.40 1.1538
1.45 1.2057
1.50 1.2696

6.

8.

10.

2.6 A Numerical Method

h=0.1 h =0.05
><N YN xN YN
0.00  1.0000 0.00  1.0000
0.10  1.1000 0.05  1.0500
020  1.2220 010  1.1053
030  1.3753 0.15 1.1668
—0-46——4-5735— 020  1.2360
050  1.8371 025 1.3144
0.30  1.4039
0.35  1.5070
0.40  1.6267
0.45  1.7670
050  1.9332
h=0.1 h=0.05
XN YN XN YN
0.00  1.0000 0.00  1.0000
0.10  1.1000 0.05  1.0500
020  1.2159 0.10  1.1039
030  1.3505 015 1.1619
040 15072 020  1.2245
050  1.6902 025  1.2921
' 030  1.3651
0.35  1.4440
0.40  1.5293
045  1.6217
050  1.7219
h=0.1 h=0.05
xN ! N 2 N ! N
0.00  0.5000 0.00  0.5000
0.10  0.5250 0.05  0.5125
020  0.5499 0.10  0.5250
0.30  0.5747 0.15  0.5375
0.40  0.5991 0.20  0.5499
050  0.6231 0.25  0.5623
' 030  0.5746
0.35  0.5868
0.40  0.5989
0.45  0.6109
050  0.6228
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11. Tables of values were computed using the Euler and RK4 methods. The resulting points
were plotted and joined using ListPlot in Mathematica.

h=0.25 h=0.1 h=0.05
y y y
RK: RK
R
EuLe
X ; L L X b X
2 4 6 8 10 2 4 6 8 10 2 4 6 8 10
12. See the comments in Problem 11 above.
h=0.25 h=0.1 h=0.05
y y y
6 6
4 RK4 RK4
EuLEr EuLer
Edie
X X X
1 2 3 4 5 1 2 3 4 5 1 2 3 4 5

13. Using separation of variables we find that the solution of the differential equation is y =

2 _ . :
1/(1 - x ), which is undefined at x = 1, where the graph has a vertical asymptote. Because

the actual solution of the differential equation becomes unbounded at x approaches 1,
very small changes in the inputs x will result in large changes in the corresponding outputs
y. This can be expected to have a serious effect on numerical procedures. The graphs
below were obtained as described in Problem 11.

h=0.1 h=0.05

14. (a) The graph to the right was obtained using RK4
and ListPlot in Mathematicawith h = 0.1. 0.5




(b) Writing the ggﬁ&rent@l equation in the form y + 2xy = 1 we see that an integrating
factor is e =e’,s0
d ¥ X
dx[fe y]=e
and

~

y=ex : ef dt+ce.

This solution can also be expressed in terms of the inverse error function as

NT -
y= "pe Zerfix) +ce 2.

Letting x = 0 and y(0) = 0 we find ¢ = 0, so the solution of the initial-value problem is
~ =
2 X 2 - 2

y=ex etdt= 73-X erfi(x).

0

’

(c) Using FindRoot in Mathematica we see that y(x) = 0 when x = 0.924139. Since

y(0.924139) = 0.541044, we see from the graph in part (a) that (0.924139, 0.541044)
is a relative maximum. Now, using the substitution u = -t in the integral below, we
have

y(_X) - e_(_X)Z et2 dt = e_XZ e(_u)z (_du) = _e_x2 eu2 du - _y(X)

0 0 0

Thus, y(x) is an odd function and (-0.924139, —0.541044) is a relative minimum.

Chapter 2 in Review

1. Writing the differential equation in the form y = k(y + A/k) we see that the critical point —A/k

is a repeller for k > 0 and an attractor for k < 0.
2. Separating variables and integrating we have

dy _4
y =X dx

4
Iny=4Inx+c=Inx +c
4
y =C1X .

We see that when x = 0, y = 0, so the initial-value problem has an infinite number of
solutions for k = 0 and no solutions for k = 0.

3. True; y = ko/k1 is always a solution for k1 = 0.

4. True; writing the differential equation as a1(x) dy + a2(x)y dx = 0 and separating variables

yields

d a (x)
_y=— 2 dx.
y ay(x)
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3
dy
5. dx3=xsiny (There are many answers.)

dr
6.False: g8 =r0+r+ 08 +1=(r +1)(6 +1).

7. True

Chapter 2 in Review 97

8. Since the differential equation in the formy = 2 - |y| is seen to be autonomous, 2 - |y| =0
has critical points 2 and -2 so y1 = 2 and y2 = -2 are constant (equilibrium) solutions.

dv
9. y =e dx
X
Iny=e +c <
e"+c ce ex
y=e —ee or y=cjie
10 y =X y(1)=2
| -
dy- _x x<0
dx ’
X, Xx=20
L
y= 1 +cp x20
The initial condition y(-1) = 2 implies 2 =- 2 ¥c1 and thus cq =

2 ~Now y(x) is supposed

to be differentiablesand so continuous. At x = 0 the two parts of the functions must agree

andsocy=c1=2.So,

2
y: 12 5-x , X<0

11. y = ecosx te-costdt
0

gy ~

dx = @cosxx@-cos x + (— Sinx) @cosx o te-costdt

dy dy
d_x=x—(sinx)y or &+(sinx)y=x.

dy dy 2
12.40=Y+3, gy =(+3)
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d
13. dx y =(y- 1)2(y - 3)2

__dy 2
14. dx =y(y-2) (y-4)

n n
15. When nnis odd, x <Oforx<O0andx >0forx>0. In this case 0 is unstable. When n is

even, X > 0 for x < 0 and for x > 0. In this case 0 is semi-stable.

When n'is odd, -x" > 0 for x < 0.and -X" < 0 for x > 0. In this case 0 is asymptotically
n

stable. When n is even, =x < 0 for x < 0 and for x > 0. In this case 0 is semi-stable.

16. Using a CAS we find that the zero of f occurs at approximately P = 1.3214. From the graph
we observe that dP/dt > O for P < 1.3214 and dP/dt < O for P > 1.3214, so P = 1.3214 is an
asymptotically stable critical point. Thus, lim P (t) = 1.3214.

t—o

S O
17. P I SN
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Tes sw .

—sNssSATNAASN
—=SSSsSyYNAaS
STssSssSswso~
SAA\ Y cm e
N\AVAN\N =/ 2y

L AT RN AT AR AT AT AR AT T ¢
s ==x NN\

F=wsaw s
- =wwww
=NV ANN

--—-NANANN
Zs=wns VA NVAN

18.
(a) linear in y, homogeneous, exact (b) linear in x

(c) separable, exact, linear in x and y (d) Bernoulli in x

(e) separable
(9) linear in x

(i) Bernoulli

(k) linear in x and y, exact, separable,
homogeneous

(m) homogeneous

(f) separable, linear in x, Bernoulli
(h) homogeneous

(i) homogeneous, exact, Bernoulli

() exact, linear iny

(n) separable

. . . . . 2 1
19. Separating variables and using the identity cos  x = 72 (1 + cos 2x), we have

2 A
cos X dx="7 . dy,
y +1
1 1 1

2 Xy

sin2x=2 In y2+1 + C,
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and

2x+sin2x=21n y2+1 +cC.

20. Write the differential equation in the form
X X

yIn§dx= xlny-y dy.

This is a homogeneous equation, so let x = uy. Then dx = u dy + y du and the differential
equation becomes

yinu(udy +ydu)=(uyinu-y)dy or y In u du = —dy.
Separating variables, we obtain

d
Inudu=- ly
ulnju-u=-Inly|+c
X X X

ylny —y=-Inly|+c

X(nx=1Iny)=-x==-ylIn|y| +cy.

21. The differential equation 2
dy 2 3X

dx +6x+1y=- 6x+1y-2

is Bernoulli. Using w =y , we obtain the linear equatiog
dw 6 ox

dX +6x+1w=- B6x+1 .

An integrating factor is 6x + 1, so

d 2
dx [(6x+ 1)w] = -9x",
3

3X c
w=-6x+1 +6x+1,
and
3 3

(6x+ 1)y =-3x +c.
(Note: The differential equation is also exact.)

2 . 2
22. Write the differen'éial equation in the form (‘E;y2 + 2x)dx + (4y  + 6xy)dy = 0. Letting M = 3y

+ 2x and N = 4y + 6xy we see that My = 6y = Ny, so the differential equation is exact.
2 2 2 ! 2 !
From fy = 3y +2x we obtain f = 3xy +x +h(y). Then fy = 6xy +h(y) = 4y +6xy and h(y)

= 4y2 so h(y) = é3 y3. A one-parameter family of solutions is

4
3xy2+x2+ §y3=c.
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23. Write the equation in the form

3
A+ 1 Q=t Int
dt t

: . . t
An integrating factor is e " =t, so

d [tQ] = int
dt

ds 1

tQ=-25t +5t Int+c
and
1 4 14 c
Q=- 25t +5t Int+t.
24. Letting u = 2x +y + 1 we have

du _ dy
— = +—
dx 2 dx’
and so the given differential equation is transformed into
du du 2u+1
u dx -2=1or dx= u

Separating variables and integrating we get
u
2u+1 du=dx
1 1 1

2- 22u+1l du=dx
1 1
5u—ZIn|2u+l|=x+c

2u-1In|2u + 1| =4x + c1.
Resubstituting for u gives the solution

Ax+2y+2-Injdx+2y+ 3|=4x+C1
or

2y +2-1In|[4x + 2y + 3| = c1.
25. Write the equation in the form
dy 8x 2X

dx +x£+4y= x“+ 4
An integrating factor is x2 +4 4, so
d
dx

2 4 2
X +4 'y =2xx +43

1

Zaaty=a2ratec

10
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and

1 2 -4
y= 4+cx +4

26. Letting M = 2r2 cosBsinB+rcosband N=4r+sinB-2r 0052 0 we see that

M, = 4r cos B sin B + cos 6 = Ng, so the differential equation is exact. From fg =
2% cos 8 'sin 0 + r cos B we obtain f = —r2 cos? 0 + rsin 8 + h(r). Then

fr=-2r cos2 B+sinB+h(r)=4r+sinB-2r cos2 B and h(r) =4rsoh(r) = 2r2. The
solution is

2 2 . 2
-r cos 6+rsin6+2r =c.

27. We put the equation 9Y. + 4 (cos X) y = x in the standard form d¥ + 2 (cos x) y = 1 x then

dX’Z xdx 2 gpX dx :
the integrating factorise ~ “°*" " =e” ®"" Therefore

d 1
dx 2anny =2xez
- " 25Nt 1 N
da € y(t) dt=2  tezswtdt
0 0

1
X

2 o X (N 1.
e SN7y(x) - e y(0) =3 | tezsntdt

2 gin X 1 X

e y(X) - l =5 AO te2 SINtdy

1 X
y(x) = e_z sin X + §e—2 snx© g te2sntdt
dy 2
28. The equation dx — 4Xxy =sin X is already in standard form so the integrating factor is
2 d 2 2%, 2

e- 4dx=g-2x . Therefore dx e2xy =e sin x . Because of the initial condition

y(0) = 7 we write

Xd 2 A X 2

o dt e2y(t) dt= o ez sint’dt
7

~

-2X, 0 X 2

e yx)-e y(0)= , ez sintzdt

101
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~

2X 2X X 2 .
yx)=7e 2+e 7 " e-2fsint2dt
0
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dy

29. We put the equation X gy +2y = xe 2 into standard form gy

_ INX2

. 2dx 2
factorise , " =e =X . Therefore

2

2-d_y 2 X
X dx +2xy=x e
2
i 2 2 X
dx X y=xe
Xd A X 2
— 2 2t
“pdt ty®) di= 1 te dt
3 ~
2 o X

2

X y(x¥) -y(1)= ; teetdt

3 1 x
2 2. 2t
y(x)= X + X 1 te dt
30.
_dy
Xdx +(sinx)y=0
dy +sinxy=0
dx X
The integrating factorise , . ay . Therefore,
X
4 - =
,d)z €o . dty =0
“xd eo , du e Ko
o 0
10

SINT

, dt 0,
g, - YX-e y0)=0

SINT

y(x) =10e- E .

31.

dy Ty =1, y(0) =5where f(x) =

dx

ForO<sx<1,

=X =X

Chapter 2 in Review 103

2
+x y=€"2. Then the integrating
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+ C1€
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Using y(0) = 5, we have c1 = 5. Therefore y = xe  +5e X. Thenforx =1,

_d 4
dx leyl=0
X
ey=cp
=X
y = coe

Requiring that y(x) be continuous at x = 1 yields
-1 -1 -1
-e +

coe 5e

co2=6

Therefore

y(x) = N =

32.

dy

X 1, 0=sx<1
ax + P (X)y=e, y(0)=-1, where P (X) =

-1, x=1
ForOsx<1,

d
ax €] =e™
1 2X

e'y="pe™ +c1
1 X X

y= 2e +cie

—X
e 'y=x+co
X X
y=xe +cge

Requiring that y(x) be continuous at x =1 yields -

1 3
e+cpe=2 e -2e1

Therefore 2e -2e

y() =

105
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xe —C —e - X 1
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33. The differential equation has the form (d/dx) [(sin X)y] = 0. Integrating, we have (sin X)y = ¢

ory = ¢/ sin x. The initial condition implies ¢ = -2 sin (71/6) = 1. Thus, y = 1/ sin X, where
the interval (11, 2m) is chosen to include x = 711/6.

34. Separating variables and integrating we have

dy

-

y = —2(t + 1) dt
1

_y=-t+1) e

1
e
y=(t+1) +cq, where —c=cj
1
The initial condition y(0) = -= g implies c1 = -9, so a solution of the initial-value problem is
1 1
y= ——>— or y= —70—,
(t+1) -9 t +2t-8

where -4 <t< 2.

Vo

35. (a) Fory <0, yisnotareal number.

(b) Separating variables and integrating we have

dy=dx and 2 y=x+c.

Jy

Letting y(Xo) = yo we getc =2y - xp, so that

v y I Ay x)?

J 2y =x+2 0-x9 and y= 4X+2 o0

1 must be positive. Thus,

Since y>O0fory=0, we seethatdy/dx= 2 (x+2 \)/0 = X0)
the interval on which the solution is defined is (xg — 2 yg, «).
36. (a) The differential equation is homogeneous and we let y = ux. Then
2 2
X -y )dx+xydy=0
2 22 2
(x —ux)dx+ux (udx+xdu)=0
dx +uxdu=0
dx
udu=-yx

2u2=—ln|x|+c
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y
—=-2In|x|+c .
X2 .

- . . . - .. 2 2
The initial condition gives ¢1 = 2, so an implicit solutionisy =x (2 = 2 In [x]).



37.

38.

39.

40.
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(b) Solving for y in part (a) and being sure Shat the initial con-
- y

dition is still satisfied, we have y = - 2 x |(1 - In [x)Y2, 2
where —e < x < e sothat 1 — In |x| 2 0. The graph of this 1
function indicates that the derivative is not defined at x = .
Oand x =e. Thus,vthe solution of the initial-value 2 - ? 2
1/2
problemisy=- 2x(1-Inx) ,forO<x<e. 2

The graph of y1(x) is the portion of the closed blue curve lying in the fourth quadrant. Its

interval of definition is approximately (0.7, 4.3). The graph of y2(x) is the portion of the left-

hand blue curve lying in the third quadrant. Its interval of definition is (=, 0).
The first step of Euler's method gives y(1.1) = 9\7 0.1(1 + 3) = 9.4. Applying Euler's method

one more time gives y(1.2) 9.4+ 0.1(1 + 1.1 sﬂ) = 9.8373.

Since the differential equation is autonomous, all lineal
elements on a given horizontal line have the same slope.
The direction field is then as shown in the figure at the
right. It appears from the figure that the differential

equation has critical points at -2 (an attractor) and
at 2 (a repeller). Thus, -2 is an aymptotically stable
critical point and 2 is an unstable critical point.

Since the differential equation is autonomous, all
lineal elements on a given horizontal line have the
same slope. The direction field is then as shown in the
figure at the right. It appears from the figure that the
differential equation has no critical points.
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