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Chapter 2 
 
 

 

2.1  

(a)  

 

 

 

 

 

 
[k(1)] = 

 

 

 

 
[k(2)] = 

 

 

 

 
[k 3 (3)] = 

 

 
[K] = [k(1)] + [k(2)] + [k(3)] 

 

 
[K] = 

 

 
 

(b) Nodes 1 and 2 are fixed so u1 = 0 and u2 = 0 and [K] becomes 

k1 k2 – k2 3 
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– k2 k2 whko3le or in part. 

k1 0 – k1 0 

0 0 0 0 

– k1 0 k1 0 

0 0 0 0 
 

0 
 

0 
 

0 
 

0 

0 0 0 0 

0 0 k2 – k2 

0 0 – k2 k2 

0 0 0 0 

0 k3 0 – k3 

0 0 0 0 

0 – k3 0 k3 

 

k1 0 – k1 0 

0 k3 0 – k3 

– k1 0 k1 k2 – k2 

0 – k3 – k2 k2 k3 
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[K] = 

 
{F} = [K] {d} 

 
= 

 

 
= 

 
{F} = [K] {d}  [K]–1 {F} = [K ]–1 [K] {d} 

 

 

F3x 

F4x 

k1 k2 – k2 

– k2 k2 k3 

u3 

u4 

k1 k2 – k2 

– k2 k2 k3 

u3 

u4 
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k2 k3 k2 

k2 k1 k2 

K]–1 {F} = {d} 

Using the adjoint method to find [K –1] 

C11 = k2 + k3 C21 = (– 1)3 (– k2) 

C12 = (– 1)1 + 2 (– k2) = k2 C22 = k1 + k2 

 
[C] = and CT = 

 
det [K] = | [K] | = (k1 + k2) (k2 + k3) – ( – k2) (– k2) 

 | [K] | = (k1 + k2) (k2 + k3) – k2 2 

[CT ] 
[K –1] = 

 
 

det K 

k2 k3 k2 

 
 

k2 k3 k2 

[K –1] =  k2 k1 k2  
= 

 k2 k1 k2  

(k1 k2 )(k2 k3 ) – k2
2 k1 k2 k1 k3 k2 k3 

 

 

= 

 
 

u3 = 

 

u4 = 

 
k1 k2 k1 k3 k2 k3 

   k2 P   

k1 k2 k1 k3 k2 k3 

  (k1  k2 ) P  

k1 k2  k1 k3 k2 k3 

(c) In order to find the reaction forces we go back to the global matrix F = [K] {d} 

 

 
= 

 

 
 

F1x = – k1 u3 = – k1 

   k2 P   

k1 k2 k1 k3 k2 k3 

F1x = 
  k1 k2 P   

k1 k2  k1 k3 k2 k3 

 

F2x = – k3 u4 = – k 
  (k1  k2 ) P  

k1 k2  k1 k3 k2 k3 

 

 

 
2.2 

 

F2x = 
  k3 (k1 k2 ) P  

k1 k2 k1 k3  k2 k3 

k2 k3 k2 

k2 k1 k2 

u3 

u4 

k2 k3 k2 0 

 k2 k1 k2 P  

F1x 

F2 x 

F3x 

F4x 

3 

k1 0 k1  0  u1 

0 k3 0  k3  u2 

k1 

0 

0 

k3 

k1 

k2 

k2 k2 

k2 

 
k3 

u3 

u4 
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(1) (2) 

k k (1) 

k k (2) 

 

k1 = k2 = k3 = 100 
N

 

mm 

= 1000 
N

 

cm 

 

 

[k(1)] = ; [k(2)] = 

 

 
By the method of superposition the global stiffness matrix is constructed. 

(1) (2) (3) 
 

 k k  0 (1)  k k 0 

[K] = k k k k (2) [K] = k 2k k 

 0 k  k (3)  0 k k 

Node 1 is fixed u1 = 0 and u3 = 

{F} = [K] {d} 
 

 

 

 

 

 
 

 

= 

 

u2 = 
k 

= 
2k 

 

 
= 

20 mm  

2 2 

 

 

 
u2 = 10 mm = 1 cm 

F3x = – k (1 cm) + k (2 cm) 

F3x = (– 1000 
N

 

cm 

) (1 cm) + (1000 
N

 

cm 

 
) (2 cm) 

F3x = 1000 N 

Internal forces 

Element (1) 

 k −k u1 = 0  = 

−k k  


u = 1 cm


 

 2  

 
f1x 

(1) = (– 1000 
N

 

cm 

 
) (1 cm) f1x 

 
(1) = – 1000 N 

 

F3x 

(2) (3) 

k k (2) 

k k (3) 

2k k u2 

k k 

0 

F3x 

2k u2 k 

k u2 k 

f1x
(1) 

f2 x
(2) 

F1x 

F2x 

F3x 

 

0 = 

 

k k 0 

k 2k k 

0 k k 

u1 0 

u2 ? 

u3 
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f2 x 

Element (2) 

(1) = (1000 
N

 

cm 

 
) (1 cm) f2 x 

 
(1) = 1000 N 
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2k k 0 u2 

= k 2k k u3 

0 k 2k u4 

0 

P 

0 

2ku2 

ku2 

ku3 

ku3 

2ku3 

2ku4 

ku4 

u3 

 

2 

 k −k u2 = 1 cm  f2x
(2) = – 1000 N = 

  
−k k  u = 2 cm 

 
f  (2) = 1000 N 

3  3x 

2.3 
 

 

(a) [k(1)] = [k(2)] = [k(3)] = [k(4)] = 

By the method of superposition we construct the global [K] and knowing {F} = [K] {d} 

we have 
 

 

(b)  
 

 

 

 
 

 

u2 =  
u3

 

2 

 

 

; u4 = 
u3

 

2 

(1) 

(2) 

(3) 

Substituting in the second equation above 

P = – k u2 + 2k u3 – k u4 

 P = – k + 2k u3 – k 

 P = k u3 

u3 = 
P

 
k 

u =  
P 

; u4 = 
P

 

2k 2k 

(c) In order to find the reactions at the fixed nodes 1 and 5 we go back to the global 

equation {F} = [K] {d} 

 

 

 

 

 
 

Check 

F1x = – k u2 = –k 
P

 

2k 

F5x = – k u4 = –k 
P

 
2k 

 

1x = 

 

5x = 

 

 

 

 

 

f2 x
(2) 

f3x
(2) 

k k 

k k 

u3 

 

 

 

 

 

F1x 

F2 x 

F3x 

F4x 

F5x 

?  k k 0 0 0 u1 0 

0  k 2k k 0 0 u2 

P = 0 k 2k k 0 u3 

0  0 0 k 2k k u4 

?  0 0 0 k k u5 0 
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P 

2 

F1x 

F2 x 

F3x 

F4x 

F5x 

Fx = 0 F1x + F5x + P = 0 

 
+ + P = 0 

 

= 0 

2.4 
 
 

 

 
(a) [k(1)] = [k(2)] = [k(3)] = [k(4)] = 

 
By the method of superposition the global [K] is constructed. 

Also {F} = [K] {d} and u1 = 0 and u5 =  
 

?  k k 0 0 0 u1 0 

0  k 2k k 0 0 u2 ? 

0 = 0 k 2k k 0 u3 ? 

0  0 0 k 2k k u4 ? 

?  0 0 0 k k u5  

(b) 0 = 2k u2 – k u3 (1) 

0 = – ku2 + 2k u3 – k u4 (2) 

0 = – k u3 + 2k u4 – k   (3) 

From (2) 

u3 = 2 u2 

From (3) 

u4 =   2 u2 

2 

Substituting in Equation (2) 

– k (u2) + 2k (2 u2) – k 
  + 2u2 

 
  
 2  

u2 + 4 u2 – u2 –  = 0 u2 =  

2 4 
 

u3 = 2    u3 =  

4 2 

u4 = 
2 

4 

2 

u4 = 3 

4 

 

 

 

– 

k k 

k k 
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3 

4 

 −  
2 2 4 

 

(c) Going back to the global equation 

{F} = [K] {d} 
 

F1x = – k u2 = k 
4 

F1x = 

 

F5x = – k u4 + k = – k + k  

 

4 

2.5 

 

d1 

[k (1)] = 200 

d d d 
200 

; [k (2)] = 
 

400  − 400 


− 200 200

 

− 400 400

 
 

 
[k (3)] = 

  
d2 
600 


− 600 

− 
d4 

600 
;
 

600
 

d2 d4 

[k (4)] = 
 

800 −800 


−800 800

 

 
[k (5)] = 

d4 

 1000 

d3 

−1000 

 


−1000 1000

 

 
Assembling global [K] using direct stiffness method 


 

200 − 200 0 0 

 

[K] = 
− 200 200 + 400 + 600 + 800 0 − 400 − 600 − 800 


 

  0 0 1000 −1000  

 

 

Simplifying 

0 − 400 − 600 − 800 −1000 400 + 600 + 800 + 1000 

  

 
 

 
200 − 200 0 0  
− 200 2000 0 −1800  N 

[K] =     
0 0 1000 −1000 mm 
0 −1800  −1000 2800 

  

2.6 Now apply + 10,000 N at node 2 in spring assemblage of P 2.5. 

 

 

 
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F2x = 10,000 N 
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u1 0 

u2 

u3 0 

u4 

= 

k –k 

–k k 

  

[K]{d} = {F} 

[K] from P 2.5 

 200 − 200 0 0  
− 200 2000 0 −1800   

 

 

F1  
10, 000 = (A) 

  
0 0 1000 −1000


 

F 
 

0 −1800 −1000 2800 0
3 

 

    

where u1 = 0, u3 = 0 as nodes 1 and 3 are fixed. 

Using Equations (1) and (3) of (A) 

 2000 −1800 u2 
= 

10, 000 
−1800 2800 u 0 

 4    

Solving 

u2 = 11.86 mm, u4 = 7.63 mm 

2.7 
 
 

 

f1x = C, f2x = – C 

f = – k – k(u2 – u1) 
 

 

 

 

 

 

 

 

 

 
2.8 

 

 

 

 

 

 

 

 
 

 
 

f1x = – k(u2 – u1) 

f2x = – (– k) (u2 – u1) 

 
= 

 
same as for 

[K] = 
tensile element 

 

 
 

k1 = 105 ; k2 = 105 

f1x 

f2 x 

k –k 

–k k 

u1 

u2 

1 1 

1 1 
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So 

1 1 

1 1 
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10
5
 

2 10
5
 

 1  
 

 

 

[K] = 105 

 
 

{F} = [K] {d} 

F = ?  
F2 = 0 = 105  

1 1 0 
−1 2  −1 

    

F3 = 2500  0 −1 1 

  0 = 2 10
5 u2 – 10

5 u3 (1) 

2500 = – 105 u2 + 105 u3 (2) 

From (1) 
 

u2 = u 
 
3 = 0.5 u3 (3) 

 

Substituting (3) into (2) 

 2500 = – 105 (0.5 u3) + 105 u3 

 2500 = 0.5 10
5 u3 

 

 
 

Element 1–2 

u3 = 0.05 m = 5 cm 

u2 = (0.5) (5 cm) u2 = 2.5 cm 

 

 1 −1  0  f1x
(1) = − 2500 N 

= 105 − 
    

(1) 

 

Element 2–3 

 1 1  0.025 m f2x = 2500 N 

 1 −1 0.025 m f2x
(2) = − 2500 N 

= 105 − 
    (2) 

 1 1  0.05 m  

0  

f3x = 2500 N 

 

 

 
2.9 

F1x = 105 [1 – 1 0] 0

.025 m 

 

0.05 m  

F1x = − 2500 N 

 

 

 

1 1 0 

1 2 1 

0 1 1 

u1 0 

u2 ? 

u3 ? 

f1x
(1) 

f2 x
(1) 

f2 x
(2) 

f3x
(2) 
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(1) (2) 

[k(1)] = 103 
 

200  − 200 

− 200 200

 
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[k(2)] = 103 

 

(2) (3) 

200  − 200 


− 200 200

 

[k(3)] = 103 

 

(3) (4) 

200  − 200 


− 200 200

 

 
− 200 

[K] = 103   
0 − 200 400 − 200 
0 0 − 200 200 

F1x = ? 
  

  200 − 200 0 0  


F =− 5000  − 200 400 − 200 0 

 2 x  =   

F = 0 
 3x 

  0 −200 400 − 200 
  

F4x = 20, 000 

  u1 = 0 

 0 0 − 200 200  

 

 

Reactions 

 

F1x 

u2 = 0.075 m = 7.5 cm 

u3 = 0.175 m = 17.5 cm 
u4 = 0.275 m = 27.5 cm 

 

 
= 103 [200  – 200  0 0] 

 

 

 
u1 = 0  
u2 = 0.075 

  

 

 

 

 

1x = – 15000 N 

 

 
Element forces 

Element (1) 

 

 

 

 200 −200  0 

u3 = 

u4 = 

 
 

0.175 

0.275 

 
f1x

(1) = −15, 000 N 

= 103    

 
Element (2) 

− 200 200 0.075 f2x 
(1) =  15, 000 N 

 = 103 
 200 − 200 


0.075

 
f2x

(2) = − 20, 000 N 

−   200 200 
 0.175 (2) = 20, 000N 

 

Element (3) 

  f3x 

F 

u1  0 

u2 

u3 

u4 

f1x
(1) 

f2 x
(1) 

f2 x
(2) 

f3x
(2) 

  

(1) (2) (3) (4)  


 

200 − 200 
400 

0 
− 200 

0 
0 



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 = 103  
200 − 200 


0.175

 
f3x

(3) = − 20, 000 

−   200 200 
 0.275 (3) 

= 20, 000 
  f4x 

2.10 
 

f3x
(3) 

f4 x
(3) 
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f1x
(1) 

f2 x
(1) 

  

− 

0 

[k(1)] =103 
  

200 − 200  


− 200 200  

[k(2)] =103 
  

100 −100  


−100  100  

[k(3)] =103 
  

100 −100  

−100 100  

{F} = [K] {d} 

F1x = ?  

 200 − 200 0 0 

 u1 = 0  

F2 x = – 20, 000 
  = 103 

− 200 400 −100  −100 

u2 = ?  


F3x = ?   0 −100 100 0  

u3 = 0 
 


F = ?   

0 
−100 0 100 u = 0 

4x     4  

 
 

 
Reactions 

 
u2 = 

−20, 000 

400 103 

 
= – 0.05 m = −5 cm 

 200 −200 0 0 
200 400 −100 −100 

 0  
−0.05  

= 103     

0 −100 100 0 
0 −100 0 100 

 
0 

 

    

 10, 000  
− 20, 000 = N 
 5000  
  

 

Element (1) 

 5000  

 200 − 200   0   10, 000  
= 103     = 

− 
 N 

 

 

 

 

 

 

 

 

 

 

 
2.11 

 
 

Element (2) 

 

 

 
 

Element (3) 

F1x 

F2 x 

F3x 

F4x 

F1x 

F2 x 

F3x 

F4x 

f1x
(1) 

f2 x
(1) 

 

 
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f2 x
(2) 

f3x
(2) 

f2 x
(3) 

f4 x
(3) 

− 

− 



− 

2

0

0

 

2

0

0 

 



– 

0

.

0

5 



 

 

1

0

, 

0

0

0

 

 

 
1
0
0

−
1
0
0 

 
 
− 
0
.
0
5




– 
5
0
0
0

 
= 103 


 

 

 
= 
 
 N 

 
100
 
100 

 
 
0
 


 
 
5000

 

 

 
100
 
−10
0  
 − 
0.05

 
− 
500
0 

= 103 
 

 

 

 
 N 

 
100
 
100 

 
 
0
 


 
 
5000 

 

f2 x
(2) 

f3x
(2) 

f2 x
(3) 

f4 x
(3) 
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= 

−3 

 

 

[k(1)] =  1000 −1000  
; [k(2)] = 

 3000 −3000  


−1000 1000  

{F} = [K] {d} 


−3000 3000  

= 
 

1000 −1000 0 
 

 

 
 

Reactions 

Element (1) 

−1000 4000 −3000 
  

 0 −3000 3000 

u2 = 0.015 m 

 

F1x = (– 1000) (0.015) F1x = – 15 N 

 f1x  
= 

 1000 −1000 0   f1x  −15 
N 

 
f 

 −1000 1000 0.015  
f  

  
15

 

 2 x  

Element (2) 
 f2 x  

=
 

    2 x    

 
 3000 –3000 0.015  f2 x  

= 
−15 

N
 

 
f 

 –3000 3000 0.02  
f  

  
15

 

 3x      3x    

2.12 
 
 

 

[k(1)] = [k(3)] = 10000 

[k(2)] = 10000 
 3 −3

 
  

3 

 
F1x = ? 

{F} = [K] {d} 

 

F2 x = 450 N 

F1x 

F2x 

F3x 

? 

0 

 

u1 0 

u2 ? 

u3 0.02 m 

1 1 

1 1 

u1 0 

u2 ? 

 1 
−1  
 0 
 0 

−1 

4 

−3 

0 

0 

−3 

0 

0 

4 −1 
 

 −1 1 
 

 
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F 0  = 10000 
F3x = ?  
 4 x  

u3 ? 

u4 0 
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1 1 

1 1 

1 1 

1 1 

−2 

  

 

0 = – 3 u2 + 4 u3 u2 = 
4
 
3 

 
u3 

 
2 = 1.33 u3 

450 N = 40000 (1.33 u3) – 30000 u3 

450 N = (23200 
N 

) u3 u3 = 1.93 10–2 m 

m 

  u2 = 1.5 (1.94 10–2) u2 = 2.57 10–2 m 

Element (1) 

 f1x   0  f1x
(1) = − 257 N 

 

 f 

Element (2) 

 = 10000 
2 x  

  

2.57 10   f2 x
 (1) = 257 N 

 f2 x  
  = 30000 

2.57 10−2  f 

  
2 x 

(2) =  193 N 

 f3x  

Element (3) 

1.93 10 
−2  f3x 

(2) 
= −193 N 

 f3x  1.9310−2  f (3) =  193 N 

   = 10000  0
 3x (3) 


f
4x    f4x = −193 N 

Reactions 

{F } = (10000 
N 

) [1 – 1] 
0  

F = – 257 N 
 

1x m 

2.57 10−2 

 1x

 

N 1.93 10−2  
{F4x} = (10000 m ) [–1 1]  0  

  

 F4x = – 193 N 

2.13 
 
 

 
 

[k(1)] = [k(2)] = [k(3)] = [k(4)] = 60 

 

 
F1x = ? 
F2 x = 0 F = 

{F} = [K] {d} 

 
 

 

1 1 

1 1 

1 1 

1 1 

1 1 0 0 0 

1 2 1 0 0 

0 1 2 1 0 

0 0 1 2 1 

0 0 0 1 1 

u1 0 

u2 ? 

u3 ? 

u4 ? 

u5 0 

 
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5 kN 
 3x  
F4 x = 0  

= 60 

  

F5x = ?  
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1 1 

1 1 

1 1 

1 1 

  

  

0 

0 
 

 

 

 

Element (1) 

 
= u4 

 
5 kN = – 60 u2 + 120 (2 u2) – 60 u2 

5 = 120 u2 u2 = 0.042 m 

u4 = 0.042 m 

u3 = 2(0.042) u3 = 0.084 m 

 f1x   0  f1x
(1) = − 2.5 kN 

 

 f 

Element (2) 

 = 60 
2 x  


0.042


 f2x 

 
(1) 

= 2.5 kN 

 f2 x  0.042 f2x
(2) = − 2.5 kN 

  = 60    

 f3x  

Element (3) 

 0.084 

 
 

0.084 

f3x 
(2) = 2.5 kN 

 

f3x
(3) 2.5 kN 

= 60   
(3) 

 

Element (4) 

0.042 f4 x 2.5 kN 

 f4x  
 

f 
 = 60 

1 1 0.042 f4x
(4) = 2.5 kN 

 
0 

 (4) 1 1 = − 

 5x  
 0  

  f5x 2.5 kN 

F = 60 [1 –1] F = – 2.5 kN 

 

 

 

 

2.14 

1x 
0.042

 1x 

F  = 60 [–1  1] 
0.042 

F = – 2.5 kN 
5x   

0  
 5x 

  

 
 

 
[k(1)] = [k(2)] = 4000 

 
{F} = [K] d} 

 

2 u2 – u3 u2 0.5 u3 

– u3 2 u4 u4 0.5 u3 
 

f3x 

f4 x 

1 1 

1 1 

1 1 

1 1 

F1x 

F2x 

F3x 

? 

100 

200 

1 1 0 u1 0 

1 2 1 u2 ? 

0 1 1 u3 ? 
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= 

4

0

0

0 

 
 

100 = 8000 u2 – 4000 u3 

– 200 = – 4000 u2 + 4000 u3 
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1 1 

1 1 

1  –1 

–1 1 

500 500 

500 500 

– 100 = 4000 u2 u2 = – 0.025 m 

100 = 8000 (– 0.025) – 4000 u3 u3 = – 0.075 m 
Element (1) 

 f1x   0  f1x
(1) = 100 N 

  = 4000    

 f2 x  

Element (2) 

−0.025 f2x 
(1) = −100 N 

 f2x  − 0.025 f2x
(2) = 200 N 

 
f  

 = 4000 

−0.075


  (2) 

 
Reaction 

 3x    

 0  

f3x = − 200 N 

 

 
 

2.15 

{F } = 4000 [1 –1] 
1x  

 

F = 100 N 
 1x 

0.025 

 

 
 

 
 

kN 
 

 
 

 

Reactions 

 

 

 

Element (1) 

u3 = 0.002 m 

 
F1x = (– 500) (0.002)  F1x = – 1.0 kN F2x 

= (– 500) (0.002)  F2x = – 1.0 kN F4x = 

(– 1000) (0.002)  F4x = – 2.0 kN 

 f1x  
= 

 0   f1x  
= 

− 1.0 kN 
        

 f3x  

Element (2) 
0.002  f3x   1.0 kN  

− 

 
[k(1)] = 500 

500 

500 

500 
; [k(2)] = 500 

500 

500 

500 

 
; [k(3)] = 1000 

1000 

1000 

1000 

F1x = ?  500 0  500 0 u1 0    



F2 x = ? 

F = 4 

 = 0 500  500 0 u2 0    

 3x  500 500  2000 1000 u3 ?    

F4 x = ?  0 0  1000 1000 u4 0    
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500 500 

500 500 

1000 1000 

1000 1000 

 f2 x  
= 

 0   f2 x  
= 

− 1.0 kN 
      

 
1.0 kN 


 

 f3x  

Element (3) 
0.002  f3x    

 f3x  
= 0.002  f3x  

= 
2.0 kN   

 
f 

   
0  

  
f 

 − 2.0 kN 

 4 x     4x    
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15 0 0 

60 0 

u3 
500 0 

2.16 
 

 

 F1x   20 −200 0 0  0 

 500  
−20 20 + 20 − 20 0  u2 


−

  =  −20 20 + 20 −20  

 F4x   0 0 − 20 20 

 500  
= 103  40 − 20 


− 

   

  500 −20 40 

u2 = 

u3 = 

2.17 

 

 

 

 

 
= 

 

 

 
0 = 1500 u2 – 600 u3 

1000 = – 600 u2 + 1000 u3 

u3 = u2 = 2.5 u2 

1000 = – 600 u2 + 1000 (2.5 u2) 

1000 = 1900 u2 

u2 = 
1000 

1900 
= 

1 

1.9 

 
mm = 0.526 mm 

 

u2 

u3 

F1x 

 

1000 N 

 

F4 x ? 

500 –500 

400 300 

500 300 

–300 – 300 

–400 

0 0 
u 0 

500 –300 – 300 –400 

 

u2 

0 

0 

(300 300 400) 

– 400 

–400 

400 400 

u  

u4 0 

 

8.33 10 3 m 8.33 mm 

8.33 10 3 m 8.33 mm 



29 
© 2017 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in 

whole or in part. 

 

 

1.9 
u3 = 2.5 mm = 1.316 mm 
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1.9 

 

1.9 

1 2.5 

1.9 1.9 

 

F1x = – 500 = – 263.16 N 

F4x = – 400 400 

= – 400 = –736.84 N 

2.18 

(a) 

Fx = – 263.16 + 1000 – 736.84 = 0 

 

 
 

As in Example 2.4 
p = U +  

1 
 
 

Set up table 

U = k x2,  = – Fx 
2 

p = 
1
 

2 

 

(2000) x2 – 5000 x = 1000 x2 – 5000 x 

 

Deformation x, cm p, Ncm 

– 7.5 93,750 

– 5.0 50,000 

– 2.5 18,750 

0.0 0 

0.5 6250 

2.5 0 

7.5 18,750 
 

= 2000 x – 5000 = 0 x = 2.5 cm yields minimum p as table verifies. 

2.5 
1
 

1.9 
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(b) 
 

 

p = 
1
 

2 

 
kx2 – Fx = 2500 x2 – 5000 x 

 

x, cm p, N cm 

– 3.0 37,5000 

– 2.0 20,000 

– 1.0 7500 

0 0 

1.0 – 2500 

2.0 0 

3.0 7500 
 

 

 

 

 
(c) 

 

 
 

 
 

= 5000 x – 5000 = 0 

 

x = 1.0 in. yields p minimum 
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p = 
1
 

2 

 
(2000) x2 – 3924 x = 1000 x2 – 3924 x 



33 
© 2017 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in 

whole or in part. 

 

= 2000 x – 3924 = 0 
 

   x = 1.962 mm yields p minimum 

p min = 
1
 

2 

 
(2000) (1.962)2 – 3924 (1.962) 

p min = – 3849.45 N mm 
1 

(d) p = 

2 
(400) x2 – 981 x 

 

= 400 x – 981 = 0 
 

   x = 2.4525 mm yields p minimum 

p min = 
1
 

2 

 
(400) (2.4525)2 – 981 (2.4525) 

p min = – 1202.95 N mm 

2.19 

 

p = 
1
 

2 

p = 
1
 

2 

 
kx2 – Fx 

 
 

(125) x2 – 5000 x 

p = (62.5)x2 – 5000 x 

 
= (125)x – 5000 = 0 

 

x = 40.0 mm  

2.20 
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F = k 2 (x = ) 

dU = F dx 
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u1 

u2 

 U = 
x 
(kx2) dx 

0 

 

k x3 
U = 

3 

 = – Fx 

p = 
1
 

3 

 
kx3 – 2500 x 

 

= 0 = kx2 – 2500 

 
0 = 2500 x2 – 2500 

  x = 1.0 cm (equilibrium value of displacement) 

p min = 
1
 

3 

 
(2500) (1.0)3 (2500) (7.0) 

p min = – 1666.7 N  cm 

Solve Problem 2.10 using P.E. approach 
 

 

 

3 

p =  p 
(e) = 

e 1 

1 _ k1
 

2 

 

(u2 – u1)2 + 
1
 

2 

 

k2 (u3 – u2)2 + 
1
 

2 

 
k3 (u4 – u2)2 

 

– f1x
(1) u1 – f2x

(1) u2 – f2x
(2) u2 

– f3x
(2) u3 – f2x

(3) u2 – f4x
(3) u4 

 

p = – k1 u2 + k1 u1 – f1x
(1) = 0 (1) 

 

p = k1 u2 – k1 u1 – k2 u3 + k2 u2 – k3 u4 

+ k3 u2 – f2x
(1) – f2x

(2) – f2x
(3) = 0 (2) 

 

p = k2 u3 – k2 u2 – f3x
(2) = 0 
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(3) u3 



p 

u4 
k3 u4 – k3 u2 – f4x

(3) = 0 = 
(4) 
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f2 x
(1) 

f1x
(1) 

f2 x
(2) 

f3x
(2) 

f4 x
(3) 

f2 x
(3) 

u1 

u2 

4 x 

2 (1) 

 

In matrix form (1) through (4) become 
 

 

= (5) 
 

 

or using numerical values 


 

200 −200 0 0 

 

 
 F1x  

3 −200 400 −200  –200 
= 

− 20, 000 

10    
0 −200 200 0   

F 
 (6) 

  
0 −200 0 200 


 

  

Solution now follows as in Problem 2.10 

Solve 2nd of Equations (6) for u2 = – 0.05 m = 5 cm 

 F3x  

For reactions and element forces, see solution to Problem 2.10 

Solve Problem 2.15 by P.E. approach 
 

 (e) 
1  k1 (u3 – u1)2 + 

1 
2 3 

p = p = 

e 1 2 

k2 (u3 – u2) 
2 

1 
+ k3 (u4 – u3) – f1x  u1 

2 

– f3x
(1) u3 – f2x

(2) u2 – f3x
(2) u3 

– f3x
(3) u3 – f3x

(4) u4 

 
p = 0 = – k1 u3 + k1 u1 – f1x

(1)
 

 
p = 0 = – k2 u3 + k2 u2 – f2x

(2)
 

 

u1 

u2 

u3 

u4 

 

 

 

k1 k1 0 0 

k1 k1  k2 k3 k2 k3 

0 k2 k2 0 

0 k3 0 k3 

u1 

u2 

u3 

u4 



p 

u4 
k3 u4 – k3 u2 – f4x

(3) = 0 = 
(4) 
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u3 

p 
= 0 = k1 u3 + k2 u3 – k2 u2 – k3 u4 + k3 u3 – f3x

(2) – f3x
(3) – f3x

(1) – k1 u1 



p 

u4 
0 = k3 u4 – k3 u3 – f3x

(4)
 = 

39 
© 2017 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in 

whole or in part. 

 

 

 

In matrix form  

 F1x  

=  
F2x  

F = 4 kN 

 

 

For rest of solution, see solution of Problem 2.15. 

 

I = a1 + a2 x 

I (0) = a1 = I1 

I (L) = a1 + a2 L = I2 

 3x 

 

 

F4 x 
 

 
a2 = 

 
 

I2  I1 

L 

 
I = I1 + 

 

 

 
I2  I1 

x 
L 

Now V = IR 

V = – V1 = R (I2 – I1) 

V = V2 = R (I2 – I1) 

= R 

k1 0 k1 0 

0 k2 k2 0 

k1 k2 k1  k2 k3 k3 

0 0 k3 k3 

u1 

u2 

u3 

u4 

V1 

V2 

1 1 

1 1 

I1 

I2 
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Learning Objectives 
• To define the stiffness matrix 

• To derive the stiffness matrix for a spring element 

• To demonstrate how to assemble stiffness matrices into a 

global stiffness matrix 

• To illustrate the concept of direct stiffness method to obtain 

the global stiffness matrix and solve a spring assemblage 

problem 

• To describe and apply the different kinds of boundary 

conditions relevant for spring assemblages 

• To show how the potential energy approach can be used to 

both derive the stiffness matrix for a spring and solve a 

spring assemblage problem 
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Definition of the Stiffness Matrix 

 
• For an element, a stiffness matrix [k] is a matrix 

such that: 
 

 

Where [k] relates nodal displacements {d} to 

nodal forces {f} of a single element, such as to the 

single spring element below 
 
 
 



Logan 

43 

 

 

 
 
 
 

 

Definition of the Stiffness Matrix 

 
• For a structure comprising of a series of elements 

such as the three-spring assemblage shown below: 

 
 
 

• The stiffness matrix of the whole spring assemblage 

[K] relates global-coordinate nodal displacements {d} 

to global forces {F} by the relation: 
 



Logan 

44 

 

 

 
 
 
 

 

Derivation of the Stiffness Matrix 
for a Spring Element 

• Consider the following linear spring element: 
 

• Points 1 and 2 are reference points called nodes 

• f1x and f2x are the local nodal forces on the x-axis 

• µ1 and µ2 are the local nodal displacements 

• k is the spring constant or stiffness of the spring 

• L is the distance between the nodes 
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Derivation of the Stiffness Matrix 
for a Spring Element 

• We have selected our element type and now need to define 

the deformation relationships 
 

• For the spring subject to tensile forces at each node: 

δ = µ2 - µ1 & T = kδ 

Where δ is the total deformation and T is the tensile force 

• Combine to obtain: T = k(µ2 - µ1 ) 
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Derivation of the Stiffness Matrix 
for a Spring Element 

• Performing a basic force balance yields: 
 

• Combining these force eqs with the previous eqs: 
 

• Express in matrix form: 
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Derivation of the Stiffness Matrix 
for a Spring Element 

• The stiffness matrix for a linear element is derived as: 
 

• Here [k] is called the local stiffness matrix for the 

element. 

• Observe that this matrix is symmetric, is square, and 

is singular. 

• This was the basic process of deriving the stiffness 

matrix for any element. 
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Establishing the Global Stiffness 
Matrix for a Spring Assemblage 

• Consider the two-spring assemblage: 
 

 
• Node 1 is fixed and axial forces are applied at 

nodes 3 and 2. 

• The x-axis is the global axis of the assemblage. 
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Establishing the Global Stiffness 
Matrix for a Spring Assemblage 
• For element 1: 

 
 

• For element 2: 

 
• Elements 1 and 2 must remain connected at common 

node 3. The is called the continuity or compatibility 

requirement given by: 
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Establishing the Global Stiffness 
Matrix for a Spring Assemblage 

• From the Free-body diagram of the assemblage: 
 

 
• We can write the equilibrium nodal equations: 
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Establishing the Global Stiffness 
Matrix for a Spring Assemblage 

• Combining the nodal equilibrium equations with the 

elemental force/displacement/stiffness relations we obtain 

the global relationship: 

 
 
 

• Which takes the form: {F} = [K]{d} 

• {F} is the global nodal force matrix 

• {d} is the global nodal displacement matrix 

• [K] is the total or global or system stiffness matrix 
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Direct Stiffness Method 

 
• Reliable method of directly assembling individual 

element stiffness matrices to form the total 

structure stiffness matrix and the total set of 

stiffness equations 

• Individual element stiffness matrices are 

superimposed to obtain the global stiffness 

matrix. 

• To superimpose the element matrices, they must 

be expanded to the order (size) of the total 

structure stiffness matrix. 
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Boundary Conditions 

 
• We must specify boundary (or support) conditions for 

structure models or [K] will be singular. 

• This means that the structural system is unstable. 

• Without specifying proper kinematic constraints or 

support conditions, the structure will be free to move as 

a rigid body and not resist any applied loads. 

• In general, the number of boundary conditions 

necessary is equal to the number of possible rigid body 

modes. 
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Boundary Conditions 

• Homogeneous boundary conditions 

• Most common type 

• Occur at locations completely prevented 

from moving 

• Zero degrees of freedom 

• Nonhomogeneous boundary conditions 

• Occur where finite nonzero values of 

displacements are specified 

• Nonzero degree of freedom 

• i.e. the settlement of a support 
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Homogenous Boundary 
Conditions 

• Where is the homogenous boundary condition for 

the spring assemblage? 

• It is at the location which is fixed, Node 1 

• Because Node 1 is fixed µ1 = 0 

• The system relation can be written as: 
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Homogenous Boundary 
Conditions 

• For all homogenous boundary conditions, we can 

delete the row and columns corresponding to the 

zero-displacement degrees of freedom. 

• This makes solving for the unknown 

displacements possible. 

• Appendix B.4 presents a practical, computer- 

assisted scheme for solving systems of 

simultaneous equations. 
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Nonhomogeneous Boundary 
Conditions 

• Consider the case where there is a known 

displacement, δ, at Node 1 
 

• Let µ1 = δ 

Logan 
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Nonhomogeneous Boundary 
Conditions 

• By considering only the second and third force 

equations we can arrive at the equation: 
 
 

• It can be seen that for nonhomogeneous 

boundary conditions we cannot initially delete row 

1 and column 1 like was done for homogenous 

boundary conditions. 
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Nonhomogeneous Boundary 
Conditions 

• In general for nonhomogeneous boundary 

conditions, we must transform the terms 

associated with the known displacements to the 

force matrix before solving for the unknown nodal 

displacements. 
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Minimum Potential Energy 
Approach 

• Alternative method often used to derive the 

element equations and stiffness matrix. 

• More adaptable to the determination of element 

equations for complicated elements such as: 

• Plane stress/strain element 

• Axisymmetric stress element 

• Plate bending element 

• Three-dimensional solid stress element 
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Minimum Potential Energy 
Approach 

 
• Principle of minimum potential energy is only 

applicable to elastic materials. 

• Categorized as a “variational method” of FEM 

• Use the potential energy approach to derive the 

spring element equations as we did earlier with 

the direct method. 



Logan 

62 

 

 

 
 
 
 

 

Total Potential Energy 

• Defined as the sum of the internal strain energy, 

U, and the potential energy of the external forces, 

Ω 

 
• Strain energy is the capacity of internal forces to 

do work through deformations in the structure. 

• The potential energy of external forces is the 

capacity of forces such as body forces, surface 

traction forces, or applied nodal forces to do work 

through deformation of the structure. 
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Concept of External Work 

 
• A force is applied to a spring and the force- 

deformation curve is given. 

• The external work is given by the area under the 

force-deformation curve where the slope is equal 

to the spring constant k 
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External Work and Internal 
Strain Energy 

• From basic mechanics principles the external 

work is expressed as: 

 

 
• From conservation of mechanical energy principle 

external work is expressed as: 
 

• For when the external work is transformed into 

the internal strain energy of the spring 
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Total Potential Energy of Spring 

 
• The strain energy can be expressed as: 

 
• The potential energy of the external force can be 

expressed as: 
 

• Therefore, the total potential energy of a spring is: 
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Potential Energy Approach to 
Derive Spring Element Eqs. 

• Consider the linear spring subject to nodal forces: 
 

• The total potential energy is: 
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Potential Energy Approach to 
Derive Spring Element Eqs. 

• To minimize the total potential energy the partial 
derivatives of πp with respect to each nodal 

displacement must be taken: 
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Potential Energy Approach to 
Derive Spring Element Eqs. 

• Simplify to: 
 

• In matrix form: 
 

• The results are identical to the direct method 
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Summary 

 
• Defined the stiffness matrix 

• Derived the stiffness matrix for a spring element 

• Established the global stiffness matrix for a spring 

assemblage 

• Discussed boundary conditions (homogenous & 

nonhomogeneous) 

• Introduced the potential energy approach 

• Reviewed minimum potential energy, external work, and 

strain energy 

• Derived the spring element equations using the potential 

energy approach 


