Solution Manual for Fluid Mechanics 1st Edition by Hibbeler ISBN 01327776229780132777629

Full link download Solution Manual:

https://testbankpack.com/p/solution-manual-for-fluid-mechanics-1st-edition-by-hibbeler-isbn-0132777622-

9780132777629/

1-1. Represent each of the following quantities with combinations of units in the correct SI form, using an appropriate prefix: (a) GN • mm , (b) $\mathrm{kg} / \mathrm{mm}$, (c) N / ks, (d) $\mathrm{kN} / \mathrm{ms}$.

SOLUTION

$\begin{array}{ll}\text { a) } \mathrm{GN} \cdot \mathrm{mm}=\left(10^{\circ}\right) \mathrm{N}(1 \mathrm{O}) \mathrm{m}=10^{\circ} \mathrm{N} \cdot \mathrm{m}=\mathrm{kN} \cdot \mathrm{m} & \text { Ans. } \\ \text { b) } \mathrm{kg} / \mathrm{mm}=\left(10^{\prime}\right) \mathrm{g} /(1 \mathrm{O}) \mathrm{m}=10^{\circ} \mathrm{g} / \mathrm{m}=\mathrm{Gg} / \mathrm{m} & \text { Ans. }\end{array}$

$$
\text { d) } \mathrm{kN} / \mathrm{ms}=\left(10^{\circ}\right) \mathrm{N} /(1 \mathrm{O}) \mathrm{s}=10^{\circ} \mathrm{Ns}=\mathrm{GN} / \mathrm{s} \text { Ans. }
$$

s:

An

1-2. Evaluate each of the following to three significant figures, and express each answer in SI units using an appropriae prefix: (a) $(425 \mathrm{mN})$, (b) $(6730 \mathrm{Oms})^{2}$. (e) $[723(10)] \mathrm{mm}$

SOLUTION

Ans.
a) $\left(425 \pi \mathbf{N}^{2}=[425(1 \mathrm{O}) \mathbf{N}]=0.181 \mathrm{~N}\right.$
b) $(67300 \mathrm{~S}=[67.3(1 \mathrm{O})(1 \mathrm{O}) \mathrm{s}]=4.53(1 \mathrm{O}) \mathrm{s}$
e) $[723(10)] / \mathrm{mm}=[723(10)](10) \mathrm{m}=26.9 \mathrm{~m}_{1}$

Ans.

Ans.

Ans:
a) 0.181 N
b) $4.53\left(10^{\prime}\right) \mathrm{s}$
c) 26.9 m

1-3. Evaluate each of the following to three signifi• cant figures, and express each answer in SI units using an appropriate prefix: (a) $749 \mathbf{m} / 63 \mathrm{~ms}$, (b) (34 mm) $(0.0763 \mathrm{Ms}) / 263 \mathrm{mg}$. (c) $(4.78 \mathrm{~mm})(263 \mathrm{Mg})$.

SOLUTION

a) $749 \mathrm{~m} / 63 \mathrm{~ms}=749(1 \mathrm{O}) \mathrm{m} / 63(1 \mathrm{O}) \mathrm{s}=11.88(1 \mathrm{O}) \mathrm{m} / \mathrm{s}$

$$
=119 \mathrm{~mm} / \mathrm{s}
$$

Ans.
b) $(34 \mathrm{~mm}(0.0763 \mathrm{Msl} / 263 \mathrm{mg}=[34(1 \mathrm{O} 7) \mathrm{m}][0.0763(1 \mathrm{O}) \mathrm{s}] /[263(10)(10) \mathrm{g}]$

$$
=9.86\left(10^{\circ}\right) \mathrm{m} \cdot \mathrm{~s} / \mathrm{kg}=9.86 \mathrm{Mm} \cdot \mathrm{~s} / \mathrm{kg} \quad \text { Ans. }
$$

e) $(4.78 \mathrm{~mm})(263 \mathrm{Mg})=[4.78(10) \mathrm{m}][263(1 \mathrm{O}) \mathrm{g}]$

$$
=1.257(1 \mathrm{O}) \mathrm{g} \cdot \mathrm{~m}=1.26 \mathrm{Mg} \cdot \mathrm{~m}
$$

Ans.

Ans:
a) $11.9 \mathrm{~mm} / \mathrm{s}$
b) $9.86 \mathrm{Mm} \cdot \mathrm{s} / \mathrm{kg}$
e) $1.26 \mathrm{Mg} \cdot \mathrm{m}$

1-4. Convert the following temperatures: (a) 2 OC to degrees Fahrenheit, (b) $500 \mathbf{K}$ to degrees Celsius, (c) $125 \mathbf{F}$ to degrees Rankine, (d) $215 \boldsymbol{F}$ to degrees Celsius.

SOLUTION

1-5. Mercury has a specific weight of $133 \mathrm{kN} / \mathrm{m}$ ' when the temperature is 20C. Determine its density and specific gravity at this temperature.
$y=p g$
$133\left(10^{\prime}\right) \mathrm{N} / \mathrm{m}^{\prime}=\mathrm{m} .(9.81 \mathrm{~m} / \mathrm{s})$

$$
\begin{aligned}
& P_{\rightarrow}=13558 \mathrm{~kg} / \mathrm{m} ?=13.6 \mathrm{Mg} / \mathrm{m}^{\prime} \\
& \mathbf{S} \xlongequal{\mathbf{P e}} \frac{13558 \mathrm{~kg} / \mathrm{m}^{\prime}}{100 \mathrm{~kg}}
\end{aligned}
$$

Ans.
Ans.

1-6. The fuel for a jet engine has a density of 1.32 slug/ft. If the total volume of fuel tanks A is 50 ft ; determine the weight of the fuel when the tanks are completely full:

SOLUTION

The specific weight of the fuel is
$\gamma=p g=(1.32 \mathrm{slug} / \mathrm{ft})(32.2 \mathrm{ft} / \mathrm{s})=42.5041 / \mathrm{ft}$
Then, the weight of the fuel is
$W=コ=(42504 \mathrm{lb} / \mathrm{ft})(50 \mathrm{C})=2.13(1 \mathrm{O}) \mathrm{lb}=2.13 \mathrm{kip}$ Ans.

1-7. If air within the tank is at an absolute pressure of 680 kPa and a temperature of 7OC, determine the weight of the air inside the tank. The tank has an interior volume of 1.35 m .

SOLUTION

From the table in Appendix A. the gas constant for air is $R=286.9 \mathbf{J} / \mathrm{kg} \cdot \mathbf{K}$.

$$
\begin{aligned}
p & =R T \\
680(10) \mathrm{N} / \mathrm{n} & =0(286.9 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K})\left(70^{\circ}+273\right) \mathrm{K} \\
p & =6910 \mathrm{~kg} / \mathrm{m}
\end{aligned}
$$

The weight of the air in the tank is

$$
\begin{aligned}
w & =0 \Omega=\left(6910 \mathrm{~kg} / \mathrm{m}^{\prime}\right)(9.81 \mathrm{~m} / \mathrm{s})\left(1.35 \mathrm{~m}^{*}\right) \\
& =91.5 \mathbf{N}
\end{aligned}
$$

Ans.

1-8. The bottle tank has a volume of $112 \mathrm{~m}^{\prime}$ and contains oxygen at an absolute pressure of 12 MPa and a temperature of 30 C . Determine the mass of oxygen in the tank.

SOLUTION

From the table in Appendix A. the gas constant for oxygen is $R=259.8 \mathbf{J} / \mathrm{kg} \cdot \mathbf{K}$

$$
\begin{aligned}
p & =p R T \\
12(1 \mathrm{O}) \mathrm{N} / \mathbf{n} & =\mathrm{o}(259.81 / \mathrm{kg} \cdot \mathrm{~K})\left(30^{\circ}+273\right) \mathrm{K} \\
p & =152.44 \mathrm{~kg} / \mathbf{n}
\end{aligned}
$$

The mass of oxygen in the tank is

$$
\begin{aligned}
m=o v & =(152.44 \mathrm{~kg} / \mathrm{m})(0.12 \mathrm{~m}) \\
& =18.3 \mathrm{~kg}
\end{aligned}
$$

Ans.

1-9. The bottle tank has a volume of $0.12 \mathrm{~m}^{\prime}$ and contains oxygen at an absolute pressure of 8 MPa and temperature of 2 OC . Plot the variation of the temperature in the tank (horizontal axis) versus the pressure for 2OC $\pm T<80 \mathrm{C}$. Report values in increments of $A T=10 \mathrm{C}$.

SOLUTION

	20	30	40	50	60	70	80
$T_{C}\left({ }^{\circ} \mathrm{C}\right)$	8.00	8.27	8.55	8.82	9.09	9.37	9.64
Fpp(imRa) at	e in A	pendir	A, the	gas co	istant	proxys	en is R
For $T=(2 \mathrm{OC}+273) \mathrm{K}=293 \mathrm{~K}$.							
$p=p R T$							
$8\left(10^{\prime \prime}\right) \mathrm{N} / \mathbf{n}=0[259.8 /(\mathrm{g} \cdot \mathrm{K})]($ (93 K)							
$p=105.10 \mathrm{~kg} / \mathrm{m}^{\prime}$							

$\mathrm{p}(\mathrm{MPa})$

$$
p=105.10 \mathrm{~kg} / \mathrm{m}^{\prime}
$$

Since the mass and volume of the oxygen in the tank remain constant, its density will also be constant

$$
\begin{aligned}
& p=p R T \\
& p=(105.10 \mathrm{~kg} / \mathrm{m})[259.8 /(\mathrm{kg} \cdot \mathrm{~K})](T+273) \\
& p=(0.02730 T+7.4539)(1 \mathrm{O}) \mathrm{Pa} \\
& p=(0.02730 \mathrm{~T}+7.4539) \mathrm{MPa} \text { where } T \text { is in } \cdot \mathrm{C} .
\end{aligned}
$$

$\begin{array}{lllllllll}0 & 10 & 20 & 30 & 40 & 50 & 60 & 70 & 80\end{array}$
(a)

The plot of p vs Tis shown in Fig. a.

Ans:
$P=(0.0273 \mathrm{~T},+7.45) \mathrm{MPa}$. where T is in C°
$\mathbf{1 - 1 0}$. Determine the specific weight of carbon dioxide when the temperature is $100^{\circ} \mathrm{C}$ and the absolute pressure is 400 kPa .

SOLUTION

From the table in Appendix A, the gas constant for carbon dioxide is $R=188.9 \mathrm{~J} / \mathrm{kg} \bullet \mathbf{K}$. p

$$
\begin{aligned}
& =p^{R} T \\
400\left(10^{\prime}\right) \mathrm{N} / \mathrm{m} & =\mathrm{p}(188.9 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K})\left(100^{\circ}+273\right) \mathrm{K} p= \\
& 5.677 \mathrm{~kg} / \mathrm{m}^{\prime}
\end{aligned}
$$

The specific weight of carbon dioxide is

$$
\begin{aligned}
& g \not 口 g=(5.677 \mathrm{~kg} / \mathrm{m},)(9.81 \mathrm{~m} / \mathrm{s} ») \\
& =55.7 \mathrm{~N} / \mathrm{ms}
\end{aligned}
$$

Ans.

Ans:

$55.7 \mathrm{~N} / \mathrm{m}^{\prime}$

