Solution Manualfor Fluid Mechanics 2nd Edition by Hibbeler ISBN 013464929X9780134649290

 Full link download

 Full link download Solution Manual:

https://testbankpack.com/p/solution-manual-for-fluid-mechanics-2nd-edition-by-hibbeler-isbn-013464929x9780134649290/
© 2018 Pearson Education, Inc., 330 Hudson Street, NY, NY 10013. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

1-1. Represent each of the following quantities with combinations of units in the correct SI form, using an appropriate prefix: (a) $\mathrm{mm} \cdot \mathrm{MN}$, (b) $\mathrm{Mg} / \mathrm{mm}$, (c) $\mathrm{km} / \mathrm{ms}$, (d) $\mathrm{kN} /(\mathrm{mm})$.

SOLUTION

a) $\mathrm{mm} \cdot \mathrm{MN}=\left(1 \mathrm{O}^{\prime} \mathrm{m}\right)(\mathrm{ON})=\| \mathrm{ON} \cdot \mathrm{m}=\mathrm{kN} \cdot \mathrm{m}$

Ans.
b) $\mathrm{Mg} / \mathrm{mm}=\left(10^{\circ} \mathrm{g}\right) /\left(1 \mathrm{O}^{\prime} \mathrm{m}\right)=10^{\prime \prime} \mathrm{g} / \mathrm{m}=\mathrm{Gg} / \mathrm{m}$ Ans.
c) $\mathrm{km} / \mathrm{ms}=\left(10^{\circ} \mathrm{m}\right) /\left(1 \mathbf{O}^{\circ} \mathrm{s}\right)=10^{\circ} \mathrm{m} / \mathrm{s}=\mathbf{M m} / \mathrm{s} \quad$ Ans.
d) $\mathrm{kN} /(\mathrm{mm})=\left(10^{\circ} \mathrm{N}\right) /(1 \mathrm{Om})=1 \mathrm{ON} / \mathrm{m}=\mathrm{GN} / \mathrm{n} \quad$ Ans.

Ans:
a) $\mathrm{kN} \cdot \mathrm{m}$
b) Gg / m
c) Mm / s
d) GN / m ?

1-2. Evaluate each of the following to three significant figures, and express each answer in SI units using an appropriate prefix: (a) $[4.86(1 \mathrm{O})] \mathrm{mm}$, (b) (348 mm), (e) 83700 mN .

SOLUTION

a) $[4.86(1 \mathrm{O})] \mathrm{mm}=\left[4.86(1 \mathrm{O})\left(1 \mathrm{O}^{\prime} \mathrm{m}\right)=23.62(1 \mathrm{O}) \mathrm{m}=23.6 \mathrm{Gm}\right.$ Ans.
b) $(348 \mathrm{~mm}){ }^{\circ}=[348(1 \mathrm{O}) \mathrm{m}]=42.14(1 \mathrm{O}) \mathrm{m}^{\prime}=42.1(1 \mathrm{O}) \mathrm{m}^{\prime} \quad$ Ans.
c) $(83,700 \mathrm{mN})=[83,700(1 \mathrm{O}) \mathrm{N}]=7.006(1 \mathrm{O}) \mathrm{N}=7.01\left(10^{\circ}\right) \mathrm{N} \quad$ Ans.

Ans:
a) 23.6 Gm
b) $42.1(1 \mathrm{O}) \mathrm{m}^{\prime}$
e) $7.01\left(10^{\circ}\right) \mathrm{N}$?

1-3. Evaluate each of the following to three significant figures, and express each answer in ST units using an appropriate prefix: (a) $749 \mu, \mathrm{~m} / 63 \mathrm{~ms}$, (b) $(34 \mathrm{~mm})(0.0763 \mathrm{Ms}) / 263 \mathrm{mg}$, (c) $(4.78 \mathrm{~mm})(263 \mathrm{Mg})$.

SOLUTION

a) $749 \mathrm{~m} / 63 \mathrm{~ms}=749(1 \mathrm{O}) \mathrm{m} / 63(1 \mathrm{O}) \mathrm{s}=11.88(1 \mathrm{O}) \mathrm{m} / \mathrm{s}$

$$
=11.9 \mathrm{~mm} / \mathrm{s} \quad \text { Ans. }
$$

b) $(34 \mathrm{~mm})(0.0763 \mathrm{Ms}) / 263 \mathrm{mg}=[34(1 \mathrm{O}) \mathrm{m}][0.0763(1 \mathrm{O}) \mathrm{s}] /\left[263(1 \mathrm{O})\left(10^{*}\right) \mathrm{g}\right]$

$$
=9.86(1 \mathrm{O}) \mathrm{m} \cdot \mathrm{~s} / \mathrm{kg}=9.86 \mathrm{Mm} \cdot \mathrm{~s} / \mathrm{kg} \quad \text { Ans. }
$$

e) $(4.78 \mathrm{~mm})(263 \mathrm{Mg})=[4.78(1 \mathrm{O}) \mathrm{m}][263(1 \mathrm{O}) \mathrm{g}]$

$$
=1.257(1 \mathrm{O}) \mathrm{g} \cdot \mathrm{~m}=1.26 \mathrm{Mg} \cdot \mathrm{~m} \quad \text { Ans. }
$$

Ans:
a) $11.9 \mathrm{~mm} / \mathrm{s}$
b) $9.86 \mathrm{Mm} \cdot \mathrm{s} / \mathrm{kg}$
c) $1.26 \mathrm{Mg} \cdot \mathrm{m}$

1-4. Convert the following temperatures: (a) 250 K to degrees Celsius, (b) 322 F to degrees Rankine, (c) $230^{\circ} \mathrm{F}$ to degrees Celsius, (d) 4OC to degrees Fahrenheit.

SOLUTION

a) $T=T e+273 ; \quad 250 \mathbf{K}=T+273 \quad T=23 . \mathrm{OC} \quad$ Ans.
b) $T,=T,+460=322 \mathrm{~F}+460=782 \mathrm{R}$

Ans.
e) $\boldsymbol{T} \overline{\overline{5}},-32)-\} \mathbf{O r}-3 \mathrm{~s} 2)=1 \mathrm{crc}$
) $T \%=\frac{9}{9}(r,-\mathrm{s} 2) \quad 4 \mathrm{rc}=(r,-32) T,=1+\mathrm{F}$
Ans.

Ans.

Ans:
a) $-23.0^{\circ} \mathrm{C}$
) 782 R
e) 110 C
d) 104 F

1-5. The tank contains a liquid having a density of 1.22 slug ft . Determine the weight of the liquid when it is at the level shown.

SOLUTION

The specific weight of liqe liquid and the volume of th liquid are

$$
4=(4 \boldsymbol{f})(2 \boldsymbol{f})(2 \boldsymbol{f})=16 \boldsymbol{f}
$$

Then the weight of the liuid is

$$
W=\mathbf{g I}=(39.2841 \mathrm{~b} \mathbf{f t})(16 \mathbf{C})=628.54 \mathrm{lb}=629 \mathrm{lb}
$$

1-6. If air within the tank is at an absolute pressure of 680 kPa and a temperature of $70^{\circ} \mathrm{C}$, determine the weight of the air inside the tank. The tank has an interior volume of $1.35 \mathrm{~m}^{\prime}$.

SOLUTION

From the table in Appendix A, the gas constant for air is $R=286.9 / \mathrm{kg} \cdot \mathbf{K}$.

$$
\begin{aligned}
p & =o R T \\
680\left(10^{\prime}\right) \mathrm{N} / \mathrm{m} & =\mathrm{p}(286.9 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K})\left(70^{\circ}+273\right) \mathrm{K} \\
p & =6.910 \mathrm{~kg} / \mathrm{m}^{3}
\end{aligned}
$$

The weight of the air in the tank is

$$
\begin{aligned}
W & =O \zeta=\left(6910 \mathrm{~kg} / \mathrm{m}^{\prime}\right)(9.81 \mathrm{~m} / \mathrm{s})\left(1.35 \mathrm{~m}^{\prime}\right) \\
& =91.5 \mathrm{~N}
\end{aligned}
$$

Ans.

Ans:
$W=91.5 \mathrm{~N}$

1-7. The bottle tank has a volume of $0.35 \mathrm{~m}^{\prime}$ and contains 40 kg of nitrogen at a temperature of $40^{\circ} \mathrm{C}$. Determine the absolute pressure in the tank.

SOLUTION

The density of nitrogen in the tank is

$$
\mathbf{r}=\mathrm{m}_{4}^{m}=\underset{0.35 \mathrm{~m}}{40 \mathrm{~kg}}=114.29 \mathrm{~kg} \mathrm{~m}^{3}
$$

From the table in Appendix A, the gas constant for nitrogen is $\quad R=296.8 \mathrm{~J} \mathrm{~kg} \mid \mathrm{K}$. Applying the ideal gas law,

Ans:
$p=10.6 \mathrm{MPa}$
:1-8. The bottle tank contains nitrogen having a temperature of $60^{\circ} \mathrm{C}$. Plot the variation of the pressure in the tank (vertical axis) versus the density for $0=p=5 \mathrm{~kg} / \mathrm{m}$ '. Report values in increments of $A p=50 \mathrm{kPa}$.

SOLUTION

From the table in Appendix A, the gas constant for nitrogen is $R=296.8 \mathbf{J} / \mathrm{kg} \cdot \mathbf{K}$. The constant temperature is $T=\left(60^{\circ} \mathrm{C}+273\right) \mathbf{K}=333 \mathbf{K}$. Applying the ideal gas law,

$$
\begin{aligned}
p & =p R T \\
p & =\mathrm{p}(296.8 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K})(333 \mathrm{~K}) \\
p & =(98 ., 834 \mathrm{p}) \mathrm{Pa} \\
& =(98.8 \mathrm{p}) \mathrm{kPa}
\end{aligned}
$$

$\mathrm{p}(\mathrm{kPa})$	150	200	250	300	350	400
$\rho\left(\mathrm{~kg} / \mathrm{m}^{\prime}\right)$.52	2.02	2.53	3.04	3.54	4.05

The plot of p vs p is shown in Fig. a.

Ans.

(a)

Ans:
$p=(98.8 \mathrm{p}) \mathrm{kPa}$

1-9. Determine the specific weight of hydrogen when the temperature is $85{ }^{\circ} \mathrm{C}$ and the absolute pressure is 4 MPa .

SOLUTION

From the table in Appendix A, the gas constant for hydrogen is $\quad R=4124 \mathrm{~J} \mathrm{~kg}^{\prime} \mathrm{K}$ Applying the ideal gas law,

$$
\begin{aligned}
4\left(10^{6}\right) \mathrm{N} \begin{aligned}
? \boldsymbol{P} & =\boldsymbol{R} \boldsymbol{T} \quad> \\
\mathrm{m}^{\prime} & \left.=44124 \mathrm{~J} \mathrm{~kg}^{\prime} \mathrm{K}\right)(85 \mathrm{C}+273) \mathrm{K} \\
& =2.7093 \mathrm{~kg} \mathrm{~m}
\end{aligned}
\end{aligned}
$$

Then the specific weight of hydrogen is

$$
\mathbf{g}=\mathbf{r} \mathbf{g}=(7093 \mathrm{~kg} \mathrm{~m})(9.81 \mathrm{~m} \mathrm{~s})
$$

$$
=26.58 \mathrm{~m}^{\prime}
$$

1-10. Dry air at $25{ }^{\circ}$ Chas a density of $1.23 \mathrm{~kg} \mathrm{~m}^{3}$. But ifit has 100% humidity at the same pressure, its density is 0.65% less. At what temperature would dry air produce this same smaller density?

SOLUTION

For both cases, the pressures are the same. Applying the ideal gas la w with $\quad \mathbf{r}=1.23 \mathrm{~kg} \mathrm{~m}, \quad \mathbf{r}=(1.23 \mathrm{~kg} \mathrm{~m})(1-0.0065)=1222005 \mathrm{~kg} \mathrm{~m}^{\prime} \quad$ and $\left.T_{1}=\mathbf{O} 5 \mathbf{C}+273\right)=298 \mathbf{K} \quad>$

$$
P=+\mathbf{R} \mathbf{T}_{\boldsymbol{s}}=\left(1.23 \mathrm{~kg} m^{\prime}\right) R(298 \mathrm{~K})=366.54 \mathrm{R}
$$

Then

$$
p=\mathbf{r}_{2} R T_{2} ; \quad \begin{aligned}
366.54 R & =\left(1.222005 \mathrm{~kg} m^{\prime}\right) R\left(T_{\mathrm{C}}+273\right) \\
T_{\mathrm{C}} & =26.9^{\circ} \mathrm{C}
\end{aligned}
$$

Ans.

Ans:
$T_{\mathrm{C}}=26.9 \mathrm{C}$

1-11. The tanker carries $900(10)$ barrels of crude oil in its hold.
Determine the weight of the oil ifits specific gravity 7.48 gal $>\mathbf{f t}$. is 0.940 . Each barrel contains 42 gallons, and there are

SOLUTION

The specific weight of the crude oil is

$$
g^{\prime}=\mathrm{S} g=0.940(62.4 \mathrm{lb}>\mathrm{ft})=58.656 \mathrm{lb}>\mathrm{ft}{ }^{\prime}
$$

The volume of the crude oil is

$$
\boldsymbol{\tau}=3900(1 \mathbf{O}) \mathrm{bl} 4 \mathrm{a} 1 \underset{\mathrm{ft}}{\mathbf{1}} \mathrm{~b} \mathrm{a} 7.48 \mathrm{gal}{ }^{\prime} \mathrm{b}=5.0535(106) \mathrm{ft} 42 \text { gall }
$$

Then, the weight of the crude oil is

$$
W=g \not \subset=158.656 \quad 6 \quad l b>f t \quad 235.0535110
$$

$2 \boldsymbol{T}$

$$
=296.41(10) \mathrm{lb}
$$

$$
=296(10) \mathrm{lb} \mathrm{~A}
$$

Ans:
$W .=296(10) \mathrm{lb}$
© 2018 Pearson Education, Inc., 330 Hudson Street, NY, NY 10013. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

1-12. Water in the swimming pool has a measured depth of 3.03 m when the temperature is $5^{\circ} \mathrm{C}$. Determine its approximate depth when the temperature becomes $35^{\circ} \mathrm{C}$. Neglect losses due to evaporation.

SOLUTION

From Appendix A, at T, $=5 \mathrm{C},(\boldsymbol{p})=1000.0 \mathrm{~kg} / \mathrm{m}$. The volume of the water is $=$ Ah.Thus. $\rightarrow=(9 \mathrm{~m})(4 \mathrm{~m})(3.03 \mathrm{~m})$. Then
\forall

$$
\begin{aligned}
m \text { I } & 1000 . \mathrm{Okg} / \mathrm{m}^{\prime} & =\frac{\mathrm{m}}{36} \frac{m}{\mathrm{~m}(3.03} \overline{\mathrm{m})} \\
\left(\rho_{w}\right)_{1}=\boldsymbol{\xi} . & m & =109.08(1 \mathrm{O}) \mathrm{kg}
\end{aligned}
$$

$\operatorname{At} T,=35^{\circ} \mathrm{C},(0,)_{»}=994.0 \mathrm{~kg} / \mathrm{m}$. Then
3

$$
\left(\rho_{w}\right)_{2}=\frac{m}{\forall_{2}} ; \quad h \equiv \frac{994.0 \mathrm{~kg} / \mathrm{n}}{3.048 \mathrm{~m}=3.05 \mathrm{~m}}
$$

Ans.

1-13. Determine the weight of carbon tetrachloride that should be mixed with 15 lb of glycerin so that the combined mixture has a density of 2.85 slug/ ft^{3}.

SOLUTION

From the table in Appendix A, the densities of glycerin and carbon tetrachloride at s.t.p. are $p,=2.44$ slug $/ \mathrm{ft}^{\prime}$ and $p a=3.09$ slug $/ \mathrm{ft}^{\prime}$, respectively. Thus, their volumes are given by

$$
\begin{aligned}
P e & =\frac{M,}{\boldsymbol{V}_{8}}-244 \mathrm{slug} / \mathrm{ft}^{3}=\frac{(1 כ 10) /(5.2 \mathrm{ft} / \mathrm{s})}{8} \\
\rho_{c t} & =\frac{m_{c t}}{\forall_{c t}} ; 3.09 \text { slug } / \mathrm{ft}^{3}=\frac{\mathrm{W} / /(32.2 \mathrm{f} / \mathrm{s})}{\forall_{c l}} \quad-,=0.1909 \mathrm{ft}
\end{aligned}
$$

The density of the mixture is

$$
\begin{aligned}
\rho_{m}=\frac{m_{m}}{V_{m}} ; \quad 2.85 \mathrm{slug} / \mathrm{ft} & =\begin{array}{r}
\mathrm{W}, /(32.2 \mathrm{ft} / \mathrm{s})+(151 \mathrm{~b}) /(32.2 \mathrm{f} / \mathrm{S}) \\
0.1909 \mathrm{ft}^{3}+0.01005 \mathrm{~W},
\end{array} \\
W_{s} & =32.5 \mathrm{lb}
\end{aligned}
$$

Ans.

1-14. The tank contains air at a temperature of 18 C and an absolute pressure of 160 kPa . If the volume of the tank is $3.48 \mathrm{~m}^{\circ}$ and the temperature rises to $42^{\circ} \mathrm{C}$, determine the mass of air that must be removed from the tank to maintain the same pressure.

SOLUTION

For $T,=\left(18^{\circ} \mathrm{C}+273\right) \mathbf{K}=291 \mathrm{~K}$ and $R=286.9 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}$ for air (Appendix A). the ideal gas law gives

$$
\begin{aligned}
p_{1}=\rho_{1} R T_{1} ; \quad 160\left(10^{\prime}\right) \mathrm{N} / \mathbf{n} & =\mathrm{p},(286.9 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K})(291 \mathrm{~K}) \\
p_{2} & =19164 \mathrm{~kg} / \mathrm{m}^{\prime}
\end{aligned}
$$

Thus, the mass of the air at T, is

$$
\mathrm{m}_{2}=D=\left(1.9164 \mathrm{~kg} / \mathrm{m}^{\prime}\right)\left(3.48 \mathrm{~m}^{\prime}\right)=6.6692 \mathrm{~kg}
$$

For $T,=(42 \mathrm{C}+273) \mathbf{K}=315 \mathbf{K}$, and $R=2869 \mathbf{J} / \mathrm{kg} \cdot \mathbf{K}$, $\boldsymbol{P}=\boldsymbol{O R T} ; \quad 160(1 \mathrm{O}) \mathrm{N} / \mathrm{nm}=\mathrm{p} 5(286.9 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K})(315 \mathrm{~K})$

$$
p=1.7704 \mathrm{~kg} / \mathrm{m}^{\prime}
$$

Thus, the mass of air at Tis

$$
\mathbf{m}=\mathbb{D}=(1.7704 \mathrm{~kg} / \mathbf{m})(3.48 \mathrm{~m})=6.1611 \mathrm{~kg}
$$

Finally, the mass of air that must be removed is

$$
A m=\mathrm{m}_{,}-m,=6.6692 \mathrm{~kg}-6.1611 \mathrm{~kg}=0.508 \mathrm{~kg} \quad \text { Ans. }
$$

1-15. The tank contains 4 kg of air at an absolute pressure of 350 kPa and a temperature of 18 C . If 0.8 kg of air is added to the tank and the temperature rises to $38^{\circ} \mathrm{C}$, determine the resulting pressure in the tank.

SOLUTION

For $\mathrm{T},=(18 \mathrm{C}+273) \mathrm{K}=291 \mathrm{~K} \cdot \mathrm{p},=350 \mathrm{kPa}$ and $R=286.9 \mathbf{J} / \mathrm{kg} \cdot \mathbf{K}$ for air (Appendix A), the ideal gas law gives

$$
\begin{aligned}
p,=o, R T \quad 350\left(10^{\prime}\right) \mathrm{N} / \mathrm{m} & =,(286.9 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K})(291 \mathrm{~K}) \\
\mathrm{p}_{2} & =4.1922 \mathrm{~kg} / \mathrm{m}^{\prime}
\end{aligned}
$$

Since the volume is constant,

$$
\forall=\frac{m_{1}}{\rho_{1}}=\frac{m_{2}}{\rho_{2}} ; \quad \rho_{2}=\frac{m_{2}}{m_{1}} \rho_{1}
$$

Here, $M,=4 \mathrm{~kg}$ and $M,=(4+0.8) \mathrm{kg}=4.8 \mathrm{~kg}$

$$
\left.p_{2}=\left(\frac{48}{4 \mathrm{~kg}}\right)\left(4.1922 \mathrm{~kg} / \mathrm{m}^{3}\right)^{3}\right)=5.0307 \mathrm{~kg} / \mathrm{m}^{\prime}
$$

Again, applying the ideal gas law with T, $=(38 \mathrm{C}+273) \mathbf{K}=311 \mathbf{K}$,

$$
\begin{aligned}
p_{-}=\boldsymbol{R} \boldsymbol{T}_{i} & =(5.0307 \mathrm{~kg} / \mathrm{m})(286.9 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K})(311 \mathbf{K}) \\
& =448.86\left(10^{\prime}\right) \mathrm{Pa} \\
& =449 \mathrm{kPa}
\end{aligned}
$$

Ans.

1-16. The 8 -m-diameter spherical baUoon is filled with helium that is at a temperature of $28^{\circ} \mathrm{C}$ and an absolute pressure of 106 kPa . Determine the weight of the hdlium contained in the balloon. The volume of a sphere is $V=\pi r_{3}^{3}$

SOLUTION

For helium, the gas constant is $R=2077 \mathrm{~J} / \mathrm{kg} \cdot \mathbf{K}$. Applying the ideal gas law at $T=(28+273) \mathbf{K}=301 \mathbf{K}$.

$$
\begin{aligned}
p=o R T \quad 106(1 \mathrm{O}) \mathrm{N} / \mathbf{n} & =\mathrm{p}(2077 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K})(301 \mathrm{~K}) \\
p & =0.1696 \mathrm{~kg} / \mathrm{m}^{\prime}
\end{aligned}
$$

Here,

$$
\forall=\frac{4}{3} m r^{\prime}=\frac{4}{3} \mathbf{n}(4 \mathrm{~m})^{\prime}=\frac{256}{3} \mathbf{m}
$$

Then, the mass of the helium is

$$
M=p V=(0.1696 \mathrm{~kg} / \mathbf{m}) /\left(\stackrel{256}{\left(\mathbf{n m}^{\prime}\right)}=45.45 \mathrm{~kg}\right.
$$

Thus,

$$
W=m g=(45.45 \mathrm{~kg})(9.81 \mathrm{~m} / \mathrm{s})=445.90 \mathrm{~N}=446 \mathrm{~N}
$$

Ans.

1-17. Gasoline is mixed with $8 \mathrm{ft}^{\prime}$ of kerosene so that the volume of the mixture in the tank becomes $12 \mathrm{ft}^{3}$. Determine the specific weight and the specific gravity of the mixture at standard temperature and pressure.

SOLUTION

From the table in Appendix A, the densities of gasoline and kerosene at s.t.p. are $\boldsymbol{p}=1.41$ slug/ ft and $\boldsymbol{p}=1.58$ slug/ $\mathrm{f} \mathbf{t}$,respectively. The volume of gasoline is

$$
\forall_{\mathrm{g}}=12 \mathrm{ft}^{\circ}-8 \mathrm{ft}^{\prime}=4 \mathrm{ft}^{\prime}
$$

Then the total weight of the mixture is therefore

$$
\begin{aligned}
W, \sim & =P \boldsymbol{g}^{\prime},+u g h \\
& =(141 \mathrm{slug} / \mathrm{rte})(32.2 \mathrm{ft} / \mathrm{s})(4 \mathbf{f})+(1.58 \mathrm{slug} / \mathrm{ft})(32.2 \mathrm{ft} / \mathrm{s})(8 \mathrm{ft}) \\
& =588.62 \mathrm{lb}
\end{aligned}
$$

Thus, the specific weight and specific gravity of the mixture are

$$
\begin{aligned}
& \mathrm{Y}_{\%}-\frac{\%_{0}}{V_{\mathrm{II}}}=\frac{588 \cdot \frac{62 \mathrm{lb}}{12 \mathrm{t}}-49.05 \mathrm{fe}=49.1 \mathrm{ft}}{} \quad \text { Ans. } \\
& \mathrm{S}_{\mathrm{m}_{\mathrm{m}}}{ }^{l}=\frac{}{n}=\frac{49.05 \mathrm{lb} / \mathrm{ft}^{\prime}}{\frac{1}{62} \cdot 4 \mathrm{lb} / \mathrm{ft}}=0.786
\end{aligned} \text { Ans. }
$$

© 2018 Pearson Education, Inc., 330 Hudson Street, NY, NY 10013. All rights reserved. This material is protected under all copyright laws as they currently exist No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

1-18. Determine the change in the density of oxygen when the absolute pressure changes from 345 kPa to 286 kPa , while the temperature remains constant at $25^{\circ} \mathrm{C}$. This is called an isothermal process.

SOLUTION

Applying the ideal gas law with $T,=(25 \mathbf{C}+273) \mathbf{K}=298 \mathbf{K}, p,=345 \mathrm{kPa}$ and $R=259.8 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}$ for oxygen (table in Appendix A),

$$
\begin{aligned}
p,=\boldsymbol{R T}: \quad 345\left(10^{\prime}\right) \mathrm{N} / \mathrm{m} & =0,(259.8 \mathbf{J} / \mathrm{kg} \cdot \mathrm{~K})(298 \mathrm{~K}) \\
p & =4.4562 \mathrm{~kg} / \mathrm{m}^{\prime}
\end{aligned}
$$

For $p=286 \mathrm{kPa}$ and $T,=T,=298 \mathbf{K}$,

$$
\begin{gathered}
p_{2}=\rho_{2} R T_{2} ; \quad 286\left(10^{\prime}\right) \mathrm{N} / \mathrm{m} ?=0,(259.8 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{~K})(298 \mathrm{~K}) \\
p=3.6941 \mathrm{~kg} / \mathrm{m}
\end{gathered}
$$

Thus, the change in density is

$$
\begin{aligned}
A p=P-0 & =3.6941 \mathrm{~kg} / \mathrm{m}^{\prime}-4.4562 \mathrm{~kg} / \mathrm{m}^{\prime} \\
& =-0.7621 \mathrm{~kg} / \mathrm{m}^{\prime}=-0.762 \mathrm{~kg} / \mathrm{m}^{3}
\end{aligned}
$$

Ans.
The negative sign indicates a decrease in density.

Ans:

$4 p=-0.762 \mathrm{~kg} / \mathrm{m}^{\prime}$

1-19. The container is filled with water at a temperature of $25^{\circ} \mathrm{C}$ and a depth of 2.5 m . If the container has a mass of 30 kg , determine the combined weight of the container and the water.

SOLUTION

From Appendix A, re= 997.1 kg m at $T=25 \mathrm{C}$. Here, the volume of water is

$$
t=w h=105 \mathrm{~m}(2.5 \mathrm{~m})=0.625 \mathrm{~m}^{\prime}
$$

Thus, the mass of water is >

$$
M_{\bar{w}}=\mathbf{r}_{w}{ }^{Y}=997.1 \mathrm{~kg} \mathrm{~m}(0.625, \mathbf{m})=1957.80 \mathrm{~kg}
$$

The total mass is

$$
M_{T}=M_{w}+M_{\epsilon}=(1957.80+30) \mathrm{kg}=1987.80 \mathrm{~kg}
$$

Then the total weight is

$$
W=M, g=(1987.80 \mathrm{~kg})(9.8 \mathrm{zm}
$$

1-20. The rain cloud has an approximate volume of 6.50 mile' and an average height, top to bottom, of 350 ft . If a cylindrical container 6 ft in diameter collects 2 in . of water after the rain falls out of the cloud, estimate the total weight of rain that fell from the cloud. 1 mile $=5280 \mathrm{ft}$.

SOLUTION

The volume of rain water collected is $っ=\mathrm{n}(3 \mathrm{ft}(7 \mathrm{ft})=1.5 \mathrm{nft}$. Then, the weight of the rain water is $W=-\quad=(62.4 \mathrm{lb} / \mathrm{ft})(1.5 \mathrm{n} \mathrm{ft})=93.6 \mathrm{n} \mathrm{lb}$. Here, the volume of the overhead cloud th ${ }_{w}$ produced this amount of rain is

$$
V_{,}=\mathbf{a}\left(3 \mathrm{ft}(350 \mathrm{ft})=3150 \mathrm{n} \mathrm{ft}^{\prime}\right.
$$

Thus,

$$
=\frac{W}{\forall_{c}^{\prime}}=\frac{93.6 \mathrm{n} \mathrm{lb}}{3150 \nRightarrow \mathrm{t}^{3}} \text { O. } 02971 \mathrm{lb} / \mathrm{ft}^{\prime}
$$

Then

$$
\left.\overline{-} \|_{0}=(\mathrm{n} D)[\mathrm{SO}\rangle\left(\frac{80^{3}}{1}\right)\right]
$$

$=28.4(10) \cdot \mathrm{bb}$
Ans.
$\mathbf{1 - 2 1}$. A volume of $8 \mathrm{~m}^{\prime}$ of oxygen initially at 80 kPa of absolute pressure and $15^{\circ} \mathrm{C}$ is subjected to an absolute pressure of 25 kPa while the temperature remains constant. Determine the new density and volume of the oxygen.

SOLUTION

From the table in Appendix A, the gas constant for oxygen is $R=259.8 \mathrm{~J} / \mathrm{kg} \cdot \mathrm{K}$. Applying the ideal gas law,

$$
\begin{aligned}
p,=\boldsymbol{O R T : \quad 8 0 (1 O) \mathrm { N } / \mathrm { m } ^ { \prime }}= & =\mathrm{p},(259.8 \mathbf{J} / \mathrm{kg} \cdot \mathrm{~K})(15 \mathbf{C}+273) \mathbf{K} \\
P t & =1.0692 \mathrm{~kg} / \mathrm{m}^{\prime}
\end{aligned}
$$

For $T,=T$, and $p=25 \mathrm{kPa}$

$$
\begin{aligned}
\frac{P}{P>}=\frac{\rho R T}{O R T} ; \quad \frac{p}{P} & =\frac{P}{P} \\
\frac{80 \mathrm{kPa}}{25 \mathrm{kPa}} & =\frac{1.0692 \mathrm{~kg} / \mathrm{m}^{\prime}}{P 2} \\
\mathbf{p} & =0.3341 \mathrm{~kg} / \mathrm{m}^{\prime}=0.334 \mathrm{~kg} / \mathrm{m}^{\prime}
\end{aligned}
$$

Ans.
The mass of the oxygen is

$$
m=\bigcap^{\prime}=\left(1.0692 \mathrm{~kg} / \mathrm{m}^{\prime}\right)\left(8 \mathrm{~m}^{\prime}\right)=8.5536 \mathrm{~kg}
$$

Since the mass of the oxygen is constant regardless of the temperature and pressure,

$$
m=\infty ; 8.5536 \mathrm{~kg}=\left(0.3341 \mathrm{~kg} / \mathrm{m}^{\circ}\right)
$$

$$
=25.6 \mathrm{~m} \quad \text { Ans. }
$$

1-22. When a pressure of 650 psi is applied to a solid, its specific weight increases from $310 \mathrm{lb} / \mathrm{ft}^{\prime}$ to $312 \mathrm{lb} / \mathrm{ft}^{3}$. Determine the approximate bulk modulus.

SOLUTION

Differentiatin $S=\underset{Y}{W}$ with respect toy, we obtain

$$
d=\frac{W}{\mathbf{y}} d y
$$

Then

$$
E \backsim-\frac{d p}{-\frac{d p}{-}}=-\frac{d p}{\left[-\frac{W}{\gamma^{2}} d \gamma /(W / \gamma)\right]}=\frac{d y / y}{}
$$

Therefore,

The more precise answer can be obtained from

1-23. Water at $20^{\circ} \mathrm{C}$ is subjected to a pressure increase of 44 MPa . Determine the percent increase in its density. Take $E=2.20 \mathrm{GPa}$.

SOLUTION

To find $/ s$, use $E v=\frac{\left.\begin{array}{c}A p \\ -d\end{array}, \bar{m} / \mathrm{m}\right) .}{(\mathrm{m} /,}=\frac{V_{1}}{\forall_{2}}-1$

$$
\begin{aligned}
& d \quad \text { dp } \\
& \underline{\mathrm{v}}=-\underline{E}
\end{aligned}
$$

$$
\int_{V_{1}}^{V_{2}} \frac{d \forall}{\forall}=-\frac{1}{E_{\forall}} \int_{p_{1}}^{p_{2}} d p
$$

$$
\ln \left(\frac{F_{1}}{Z_{2}}\right)=\frac{1}{E_{V}} \Delta p_{p}
$$

$$
;-5 t
$$

So, since the bulk modulus of water at $2 \mathbf{O C}$ is $\boldsymbol{E}=2.20 \mathrm{GPa}$,

$$
\begin{aligned}
{ }^{A 4 p} & =o p / E _1 \\
\underline{p} & =a(4 \mathrm{MPa}) / 2.20 \mathrm{GPa})-1 \\
& =0.0202=2.02 \%
\end{aligned}
$$

Ans.

Ans:
$\begin{array}{ll}99 & 2.02 \% \\ p\end{array}$
*1-24. If the bulk modulus for water at $70{ }^{\circ} \mathrm{F}$ is $319 \mathrm{kip} \mathrm{In}^{2}$, determine the change in pressure required to reduce its volume by 0.3%.

SOLUTION

Use $E_{¥}=-d p \quad(d ¥ w)$.

$$
\begin{aligned}
& d--r,\} \\
& \begin{aligned}
A p & \mathbf{L}^{p_{f}} d p=-E \mathbf{L}^{{ }_{f}} \underline{d \Psi} \quad \mathbf{b}
\end{aligned} \\
& =-.\left(319 \mathrm{kip}>\mathrm{in}^{2}\right) \ln ^{V} \mathbf{a}^{\text {然 }}-0.03 \neq \\
& -4 \\
& =0.958 \mathrm{kip}
\end{aligned}
$$

$\mathbf{1 - 2 5}$. At a point deep in the ocean, the specific weight of seawater is $64.2 \mathrm{lb} / \mathrm{ft}^{3}$. Determine the absolute pressure in $\mathrm{lb} / \mathrm{in}^{2}$ at this point if at the surface the specific weight is $y=63.61 \mathrm{~b} / \mathrm{ft}^{\circ}$ and the absolute pressure is $\mathrm{p},,=14.71 \mathrm{~b} / \mathrm{in}$. Take $\boldsymbol{E}=48.7\left(10^{\circ}\right) \mathrm{lb} / \mathrm{ft}$.

SOLUTION

Differentiating $\mathcal{S}=\frac{W}{Y}$ with respect to y , we obtain

$$
o=\frac{W}{' \mathrm{Y} 2} d y
$$

Then

$$
\begin{aligned}
E e=-\overbrace{d}^{d p} & =-\frac{d p}{\left(-\frac{W}{\gamma^{2}} d \gamma\right) /(W / \gamma)}=\frac{d p}{d \gamma / \gamma} \\
d p & =E_{Y}^{d y}
\end{aligned}
$$

Integrate this equation with the initial condition at $p=P a y=Y_{0}$, then

$$
\begin{aligned}
& \int_{0 .}^{p} d p=\boldsymbol{E}^{\boldsymbol{Z}\| \| d y} \\
& p_{-} P=E I{ }_{\%}^{\circ}{ }_{\%}^{\circ} \\
& p=P+E \ln \frac{\mathrm{Y}}{\mathrm{Y} 0}
\end{aligned}
$$

$\mathrm{y},=63.61 \mathrm{~b} / \mathrm{ft}$ and $\mathrm{y}=64.2 \mathrm{lb} / \mathrm{ft}^{\prime}$ into this equation,
$p=14.7 \mathrm{lb} / \mathrm{in}+[338.19(1 \mathrm{O}) \mathrm{lb} / \mathrm{in}]]^{\mathrm{h}]}{ }^{\mathrm{h}} \frac{\left.\left.64.2 \mathrm{lb} / \mathrm{ft}^{3}\right)\right]}{\frac{63.6 \mathrm{lb} / \mathrm{ft}}{3}}$
$=3.190(1 \mathrm{O}) \mathrm{psi}$
$=3.19(1 \mathbf{O}) \mathrm{psi}$
Ans.

Ans:

$p=3.19$ (1 O) psi
© 2018 Pearson Education, Inc., 330 Hudson Street, NY, NY 10013. All rights reserved. This material is protected under all copyright laws as they currently exist No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

1-26. A 2 -kg mass of oxygen is held at a constant
temperature of $50{ }^{\circ} \mathrm{C}$ and an absolute pressure of 220 kPa . Determine its bulk modulus.

SOLUTION

$$
\begin{aligned}
& p=\boldsymbol{R} T \\
& d p=d, R T \\
& E \mathbb{Z}=\underset{-}{-\quad \underset{-}{d, R \mathbb{T}}=\underbrace{\not Z}} \\
& =\begin{array}{c}
\bar{m} \\
4
\end{array} \\
& \text { r } \\
& \begin{aligned}
d_{\mathbf{r}} & =-\frac{m d \underline{Y}}{F^{2}} \\
E_{F} & =\frac{m d \vec{F} p+}{H^{2}(m+) d F}
\end{aligned}
\end{aligned}
$$

Note: This illustrates a general point. For an ideal get in isotiernme (constant
temperature) bulk modulus equals the absolute pressure 10

Ans:

$E_{-火}=220 \mathrm{kPa}$

1-27. The viscosity of SAE 10 W 30 oil is $\boldsymbol{p}=0.100 \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}$.
Determine its kinematic viscosity. The specific gravity is
$S_{\text {, }}=0.92$. Express the answer in SI and FPS units.

SOLUTION

The density of the oil can be determined from

$$
P_{>}=S^{(} O_{,}=0.92\left(1000 \mathrm{~kg} / \mathrm{m}^{\prime}\right)=920 \mathrm{~kg} / \mathrm{m}^{\prime}
$$

Then,

$$
{ }_{o}=\frac{\Gamma}{P_{0}} \cdots \frac{0.100 \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}}{920 \mathrm{~kg} / \mathrm{m}^{\prime}}=108.70(1 \mathrm{O}) \mathrm{nm} / \mathrm{s}=109(1 \mathrm{O}) \mathrm{m} / \mathrm{s} \quad \text { Ans. }
$$

In FPS units

$$
\begin{aligned}
- & -\left[\mathfrak{n}^{10^{-}}\right]\left(\mathbf{a}_{\bullet}^{-} \cdot \bullet\right) \\
& =1.170(10) / \mathrm{s}=4.17(1 \mathrm{O}) \mathrm{ft} / \mathrm{s} \quad \text { Ans. }
\end{aligned}
$$

Ans:

$v_{n}=109(1 \mathrm{O}) \mathrm{n} / \mathrm{s}$
© 2018 Pearson Education, Inc., 330 Hudson Street, NY, NY 10013. All rights reserved. This material is protected under all copyright laws as they currently exist No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
*1-28. If the kinematic viscosity of glycerin is $\mathrm{n}=1.15\left(1 \mathrm{O}^{\prime}\right) \mathrm{M}$ s, determine its viscosity in FPS units. At the temperature considered, glycerin has a specific gravity of $S_{g}=1.26$.

SOLUTION

The density of glycerin is

$$
\mathbf{r},=\mathrm{S}_{\mathrm{g} \boldsymbol{>}_{w}}=1.26(1000 \mathrm{~kg} \mathrm{~m})=1260 \mathrm{~kg} \mathrm{~m}
$$

Then,

$$
{ }_{\mathrm{m}} \text { \& }=\frac{\mathbf{n}}{\mathbf{r g}} ; 1.15 \quad 10^{-3} \mathrm{~m}^{2} \mathrm{~s}=\frac{\mathrm{mg}^{>}}{1260 \mathrm{~kg} \mathrm{~m}^{3}}
$$

$$
=0.03026 \text { Prop }
$$

1-29. An experimental test using human blood at $T=30^{\circ} \mathrm{C}$ indicates that it exerts a shear stress of $r=0.15 \mathrm{~N} / \mathrm{m}$ on surface A, where the measured velocity gradient is 16.8 s . Since blood is a non-Newtonian fluid, determine its apparent viscosity at A.

SOLUTION

Here, $d y-16.8 \mathrm{~s}^{-1}$ and $r=0.15 \mathrm{~N} / \mathrm{m}^{2}$. Thus,

$$
\tau=\mu_{a} \frac{d u}{d y} ; \quad 0.15 \mathrm{~N} / \mathrm{m}=>\left(16.8 \mathrm{~s}^{\prime}\right)
$$

$$
, \Rightarrow=8.93(1 \mathrm{O}) \mathrm{N} \cdot \mathrm{~s} / \mathrm{m} \quad \text { Ans. }
$$

Realize that blood is a non-Newtonian fluid. For this reason, we are calculating the apparent viscosity

Ans:

,, $=8.93(1 \mathrm{O}) \mathrm{N} \cdot \mathrm{s} / \mathrm{m}$
© 2018 Pearson Education, Inc., 330 Hudson Street, NY, NY 10013. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.
$\mathbf{1 - 3 0}$. The plate is moving at $0.6 \mathrm{~mm} / \mathrm{s}$ when the force applied to the plate is 4 mN . If the surface area of the plate in contact with the liquid is 0.5 m , determine the approximate viscosity of the liquid, assuming that the velocity distribution is linear.

SOLUTION

The shear stress acting on the fluid contact surface is

$r=\bar{A}=\frac{F(10-) \mathrm{N}}{\underline{A}}$| $\overline{5 \mathrm{~m}^{2}}$ |
| :--- | $8.00\left(1 \mathrm{O}^{\circ}\right) \mathrm{N} / \mathrm{m}$

Since the velocity distribution is assumed to be linear, the velocity gradient is a constant.

$$
\left.\tau=\mu \frac{d u}{d y} ; \quad \quad-3\right) \mathrm{N}
$$

$$
80000 \quad \% \quad\left[{ }^{1 \prime} e \| 0_{4(10)}^{11} / \mathrm{S}\right]
$$

$$
\mu,=0.0533 \mathrm{~N} \cdot \mathrm{~s} / \mathrm{m}^{2} \quad \text { Ans. }
$$

