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Density and Specific Gravity 
 
 

 
2-1C 

 

Solution        We are to discuss the difference between mass and molar mass. 

 
Analysis           Mass m is the actual mass in grams or kilograms; molar mass M is the mass per mole in grams/mol or 
kg/kmol.  These two are related to each other by m = NM, where N is the number of moles. 

 

Discussion       Mass, number of moles, and molar mass are often confused. Molar mass is also called molecular weight. 
 

 
 
 

2-2C 
Solution        We are to discuss the difference between intensive and extensive properties. 

 
Analysis           Intensive properties do not depend on the size (extent) of the system but extensive properties do depend 

on the size (extent) of the system. 
 

Discussion       An example of an intensive property is temperature. An example of an extensive property is mass. 
 

 
 
 

2-3C 
Solution        We are to define specific gravity and discuss its relationship to density. 

 

Analysis           The specific gravity, or relative density, is defined as the ratio of the density of a substance to the density 

of some standard substance at a specified temperature (the standard is water at 4°C, for which H2O = 1000 kg/m3). That

is, SG   / H2O  . When specific gravity is known, density is determined from   SG H2O .

 

Discussion       Specific gravity is dimensionless and unitless [it is just a number without dimensions or units]. 
 
 

 
2-4C 

 

Solution        We are to decide if the specific weight is an extensive or intensive property. 
 

Analysis           The original specific weight is 
 

    
 W 

1      
V 

 

If we were to divide the system into two halves, each half weighs W/2 and occupies a volume of V /2. The specific weight 
of one of these halves is 

 

  
 W / 2 

 


V / 2      
1
 

which is the same as the original specific weight. Hence, specific weight is an intensive property. 
 

Discussion       If specific weight were an extensive property, its value for half of the system would be halved.
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
m 

 
2-5C 

 

Solution        We are to define the state postulate. 

Analysis           The state postulate is expressed as: The state of a simple compressible system is completely specified by 

two independent, intensive properties. 
 

Discussion       An example of an intensive property is temperature. 
 
 
 
 

2-6C 
Solution        We are to discuss the applicability of the ideal gas law. 

 
Analysis           A gas can be treated as an ideal gas when it is at a high temperature and/or a low pressure relative to its 

critical temperature and pressure. 

 
Discussion       Air and many other gases at room temperature and pressure can be approximated as ideal gases without any 

significant loss of accuracy. 
 
 
 
 

2-7C 
Solution        We are to discuss the difference between R and Ru. 

 
Analysis           Ru is the universal gas constant that is the same for all gases, whereas R is the specific gas constant that is

different for different gases.  These two are related to each other by 

the molecular weight) of the gas. 

R  R
u  

/ M , where M is the molar mass (also called

 

Discussion       Since molar mass has dimensions of mass per mole, R and Ru do not have the same dimensions or units. 
 
 
 
 

2-8 

Solution        The volume and the weight of a fluid are given. Its mass and density are to be determined. 

Analysis           Knowing the weight, the mass and the density of the fluid are determined to be
 

W        225 N
 

 

1 kg  m/s 
3 

                                     
g     9.80 m/s 

2        1 N  
 23.0 kg 



 

  
 m 

 
 23.0 kg 

 0.957 kg/L 
V      24 L 

Discussion       Note that mass is an intrinsic property, but weight is not.
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2-9 
Solution        The pressure in a container that is filled with air is to be determined. 

Assumptions    At specified conditions, air behaves as an ideal gas.

 
Properties        The gas constant of air is R  0.287 

 

kJ    kPa  m
3  

                0.287 

 

kPa  m
3

 
 
(see also Table A-1).

kg  K 

Analysis           The definition of the specific volume gives 
 

V     0.100 m 
3 

v                        0.100 m  /kg 

kJ      kg  K

m        1 kg 
 

Using the ideal gas equation of state, the pressure is 

RT     (0.287 kPa  m3 /kg  K)(27  273.15 K)
Pv  RT     P                                                                        861kPa

v                          0.100 m
3 
/kg 

 

Discussion       In ideal gas calculations, it saves time to convert the gas constant to appropriate units. 
 
 
 
 
 

 
2-10E 

Solution        The volume of a tank that is filled with argon at a specified state is to be determined. 

Assumptions    At specified conditions, argon behaves as an ideal gas. 

Properties        The gas constant of argon is obtained from Table A-1E, R = 0.2686 psiaft3/lbmR. 

Analysis           According to the ideal gas equation of state, 

mRT      (1lbm)(0.2686 psia ft 
3 
/lbm R)(100 460 R) 

V                                                                                        0.7521ft 
P                                     200 psia 

 

Discussion       In ideal gas calculations, it saves time to write the gas constant in appropriate units. 
 
 
 
 
 

 
2-11E 
Solution        The specific volume of oxygen at a specified state is to be determined. 

Assumptions    At specified conditions, oxygen behaves as an ideal gas. 

Properties        The gas constant of oxygen is obtained from Table A-1E, R = 0.3353 psiaft3/lbmR. 

Analysis           According to the ideal gas equation of state, 

RT      (0.3353 psia ft 
3 
/lbm R)(80 460 R) 

v                                                                       4.53 ft  /lbm 
P                              40 psia 

 

Discussion       In ideal gas calculations, it saves time to write the gas constant in appropriate units.
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                  

1 

2 

 

2-12E 

Solution        An automobile tire is under-inflated with air. The amount of air that needs to be added to the tire to raise its 
pressure to the recommended value is to be determined. 

 

Assumptions    1 At specified conditions, air behaves as an ideal gas.  2 The volume of the tire remains constant.
 

 
Properties        The gas constant of air is R

 
 
 53.34

 

 

ft  lbf  
 

1 psia 
 

 
 0.3794

 
 

psia  ft
3 

.

u                        
lbm  R 

 
144 lbf/ft2   lbm  R

 

Analysis           The initial and final absolute pressures in the tire are 
 

P1 = Pg1 + Patm = 20 + 14.6 = 34.6 psia 

P2 = Pg2 + Patm = 30 + 14.6 = 44.6 psia 
 

Treating air as an ideal gas, the initial mass in the tire is 
3

 

 
Tire 

2.60 ft3
 

90F 
20 psia

m    
P1V  

1       
RT 

 
          (34.6 psia)(2.60 ft  )   

(0.3704 psia  ft 
3
/lbm R)(550 R) 

 

 0.4416 lbm

 

Noting that the temperature and the volume of the tire remain constant, the final mass in the tire becomes 
3

m     
P2V  

2       
RT 

 
          (44.6 psia)(2.60 ft  )   

(0.3704 psia  ft 
3 
/lbm  R)(550 R) 

 

 0.5692 lbm

 

Thus the amount of air that needs to be added is 

m  m2   m1   0.5692  0.4416  0.128 lbm 
 

Discussion       Notice that absolute rather than gage pressure must be used in calculations with the ideal gas law.
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Solution        An automobile tire is inflated with air. The pressure rise of air in the tire when the tire is heated and the 
amount of air that must be bled off to reduce the temperature to the original value are to be determined. 

 

Assumptions    1 At specified conditions, air behaves as an ideal gas.  2 The volume of the tire remains constant. 
 

Properties        The gas constant of air is R  0.287 kJ    kPa  m
3  

                0.287 kPa  m
3 

.

kg  K 
 

Analysis           Initially, the absolute pressure in the tire is 
 

P1  Pg  Patm   210 100  310 kPa 

kJ      kg  K

 

Treating air as an ideal gas and assuming the volume of the tire to remain 

constant, the final pressure in the tire is determined from
 

PV      P V 
 

T           323K
   1   1     2   2    P2     2  P1 

 (310kPa)  336kPa

T1             T2 T1              298K

 

Thus the pressure rise is 
 

P  P2   P1   336  310  26.0 kPa 
 

The amount of air that needs to be bled off to restore pressure to its original value is 

 

Tire 

25C 

210 kPa

 

PV             (310kPa)(0.025m 
3 
)   

m1     1                                                        0.0906kg
RT1 (0.287kPa  m3 /kg  K)(298K) 

3

P V             (310kPa)(0.025m  )   
m2      2                                                        0.0836kg

RT2 (0.287kPa  m3 /kg  K)(323K)

m  m1  m2   0.0906  0.0836  0.0070 kg 
 

Discussion       Notice that absolute rather than gage pressure must be used in calculations with the ideal gas law.
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Solution        A balloon is filled with helium gas. The number of moles and the mass of helium are to be determined. 

 

Assumptions    At specified conditions, helium behaves as an ideal gas. 
 

Properties        The molar mass of helium is 4.003 kg/kmol. The temperature of the helium gas is 20oC, which we must 

convert to absolute temperature for use in the equations: T = 20 + 273.15 = 293.15 K. The universal gas constant is
 

R   8.31447
 kJ      kPa  m

3  
 

 8.31447
 kPa  m

3 

.
u                              

kmol  K 


kJ     


kmol  K
              

 

Analysis           The volume of the sphere is 
 

V  
 4 
 r3  

 
 4 
 (4.5 m)

3  
 381.704 m

3 

3           3                                                                                                                         He
 

Assuming ideal gas behavior, the number of moles of He is determined from 
 

PV                 (200  kPa)(381.704 m3 ) 

D = 9 m 

20C 

200 kPa

N                                                                          31.321 kmol  31.3 kmol
RuT  (8.31447  kPa  m

3 
/kmol  K)(293.15 K)

 

Then the mass of He is determined from 
 

m  NM  (31.321  kmol)(4.003   kg/kmol) 125.38 kg  125 kg 

 
Discussion       Although the helium mass may seem large (about the mass of an adult football player!), it is much smaller 

than that of the air it displaces, and that is why helium balloons rise in the air.
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Solution        A balloon is filled with helium gas. The effect of the balloon diameter on the mass of helium is to be 
investigated, and the results are to be tabulated and plotted. 

 

Properties        The molar mass of helium is 4.003 kg/kmol. The temperature of the helium gas is 20oC, which we must 

convert to absolute temperature for use in the equations: T = 20 + 273.15 = 293.15 K. The universal gas constant is
 

R   8.31447
 kJ      kPa  m

3   

 8.31447
 kPa  m

3 

.
u                              

kmol  K 


kJ     


kmol  K
              

 

Analysis           The EES Equations window is shown below, followed by the two parametric tables and the plot (we 

overlaid the two cases to get them to appear on the same plot). 
 

P = 100 kPa:                                                   P = 200 kPa: 
 

 
 

 
 
 
 
 
 
 
 
 
 
 

 
P = 200 kPa 

 
 
 
 

 

P = 100 kPa 
 
 
 
 
 
 

 
Discussion       Mass increases with diameter as expected, but not linearly since volume is proportional to D3.
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Solution           A cylindrical tank contains methanol at a specified mass and volume. The methanol’s weight, density, 
and specific gravity and the force needed to accelerate the tank at a specified rate are to be determined. 

 

Assumptions       1 The volume of the tank remains constant. 
 

Properties           The density of water is 1000 kg/m3. 
 

Analysis              The methanol’s weight, density, and specific gravity are 

 

 
 

 
 

 
 

The force needed to accelerate the tank at the given rate is 

 



2-10 
PROPRIETARY MATERIAL. © 2014 by McGraw-Hill Education.  This is proprietary material solely for authorized instructor use. 
Not authorized for sale or distribution in any manner.  This document may not be copied, scanned, duplicated, forwarded, distributed, or 
posted on a website, in whole or part. 

Chapter 2 Properties of Fluids 
 

 

 

2-17 
Solution           Using the data for the density of R-134a in Table A-4, an expression for the density as a function of 
temperature in a specified form is to be obtained. 

 

Analysis              An Excel sheet gives the following results. Therefore we obtain 

 

 
 

 
 

 

 
Temp            Temp,K          Density          Rel. Error, % 

-20   253                   1359   

  263                   1327   
 

  273                   1295   
 

  283                   1261   

  293                   1226   
 

  303                   1188   

  313                   1147   
 

  323                   1102   

  333                   1053   
 

  343                   996.2   
 

  353                   928.2   

  363                   837.7   
 

  373                   651.7   

-1.801766 

-10 -0.2446119 

0 0.8180695 

10 1.50943695 

20 1.71892333 

30 1.57525253 

40 1.04219704 

50 0.16279492 

60 -1.1173789 

70 -2.502108 

80 -3.693816 

90 -3.4076638 

  100   10.0190272 
 
 
 

 
 

The relative accuracy is quite reasonable except the last data point.
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2-18E 
Solution        A rigid tank contains slightly pressurized air. The amount of air that needs to be added to the tank to raise 
its pressure and temperature to the recommended values is to be determined. 

 

Assumptions    1 At specified conditions, air behaves as an ideal gas.  2 The volume of the tank remains constant.
 

ft  lbf  


 

1 psia    
 

psia  ft3

Properties        The gas constant of air is 
 

70oF = 70 + 459.67 = 529.67 R 

Ru   53.34                           2    0.3794 
lbm  R  144 lbf/ft                  lbm  R 

. The air temperature is

 

Analysis           Treating air as an ideal gas, the initial volume and the final mass in the tank are determined to be 
 

m RT      (40 lbm)(0.3704  psia ft 
3
/lbm R)(529.67 R) 

V     1        1                                                                             392.380 ft
3

 

P1                                                                20 psia 

PV             (35  psia)(392.380 ft3 )
m     2                                                                67.413 lbm Air, 40 lbm

RT
2

 (0.3704  psia  ft3/lbm  R)(550  R) 
 

20 psia

 

Thus the amount of air added is 
 

m  m
2  
 m

1  
 67.413  40.0  27.413 lbm  27.4 lbm 

70F

 

Discussion       As the temperature slowly decreases due to heat transfer, the pressure will also decrease.
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, 
k

g
/m

 

 

 
 

2-19 
 

Solution        A relation for the variation of density with elevation is to be obtained, the density at 7 km elevation is to be 
calculated, and the mass of the atmosphere using the correlation is to be estimated. 

 

Assumptions    1 Atmospheric air behaves as an ideal gas. 2 The earth is perfectly spherical with a radius of 6377 km at sea 

level, and the thickness of the atmosphere is 25 km. 
 

Properties        The density data are given in tabular form as a function of radius and elevation, where r = z + 6377 km: 
 

r, km 

6377 

z, km 

0 

, kg/m3
 

1.225 

 
1.4 

6378 1 1.112 1.2 

6379 2 1.007 
 

1 

6380 3 0.9093  

6381 4 0.8194 0.8 

6382             5            0.7364 

6383             6            0.6601 

6385             8            0.5258 

6387            10           0.4135 

6392            15           0.1948 

6397            20          0.08891 

6402            25          0.04008 

 

0.6 

 
0.4 

 
0.2 

 
0 
0                5               10              15              20              25 

z, km

 

Analysis           Using EES, (1) Define a trivial function “rho= a+z” in the Equation window, (2) select new parametric table 
from Tables, and type the data in a two-column table, (3) select Plot and plot the data, and (4) select Plot and click on curve 

fit to get curve fit window. Then specify 2nd order polynomial and enter/edit equation. The results are: 
 

(z) = a + bz + cz2 = 1.20252 – 0.101674z + 0.0022375z2 for the unit of kg/m3, 

(or, (z) = (1.20252 – 0.101674z + 0.0022375z2)109 for the unit of kg/km3) 
 

where z is the vertical distance from the earth surface at sea level. At z = 7 km, the equation gives  = 0.600 kg/m3. 

 
(b) The mass of atmosphere is evaluated by integration to be 

m  
h 

dV  
 

(a  bz  cz 2 )4 (r0
 

h 

 z) 2 dz  4 
 

(a  bz  cz 2 )(r 2  2r0 z  z 2 )dz

z0 
V 

z0

 4 ar 
2 
h  r (2a  br )h 

2 
/ 2  (a  2br

 
 cr 

2 
)h

3 
/ 3  (b  2cr0 )h 

4 
/ 4  ch

5 
/ 5

0           0                  0                                       0          0 

where r0   = 6377 km is the radius of the earth, h = 25 km is the thickness  of the atmosphere.  Also, a = 1.20252, 

b = -0.101674, and c = 0.0022375 are the constants in the density function. Substituting and multiplying by the factor 109 to 

convert the density from units of kg/km3 to kg/m3, the mass of the atmosphere is determined to be approximately 
 

m = 5.091018    kg 
 

EES Solution for final result: 
 

a = 1.2025166 

b = -0.10167 

c = 0.0022375 

r = 6377 
h = 25 
m = 4*pi*(a*r^2*h+r*(2*a+b*r)*h^2/2+(a+2*b*r+c*r^2)*h^3/3+(b+2*c*r)*h^4/4+c*h^5/5)*1E+9 

 
Discussion       At 7 km, the density of the air is approximately half of its value at sea level.
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Vapor Pressure and Cavitation 

 
 

 
2-20C 
Solution        We are to define and discuss cavitation. 

 
Analysis           In the flow of a liquid, cavitation is the vaporization that may occur at locations where the pressure 

drops below the vapor pressure. The vapor bubbles collapse as they are swept away from the low pressure regions, 

generating  highly  destructive,  extremely  high-pressure  waves.  This  phenomenon  is  a  common  cause  for  drop  in 

performance and even the erosion of impeller blades. 

 
Discussion       The word “cavitation” comes from the fact that a vapor bubble or “cavity” appears in the liquid.  Not all 

cavitation is undesirable. It turns out that some underwater vehicles employ “super cavitation” on purpose to reduce drag. 
 
 
 
 

2-21C 
Solution        We are to discuss whether the boiling temperature of water increases as pressure increases. 

 
Analysis           Yes. The saturation temperature of a pure substance depends on pressure; in fact, it increases with pressure. 

The higher the pressure, the higher the saturation or boiling temperature. 

 
Discussion       This fact is easily seen by looking at the saturated water property tables. Note that boiling temperature and 

saturation pressure at a given pressure are equivalent. 
 
 
 
 

2-22C 
Solution        We are to determine if temperature increases or remains constant when the pressure of a boiling substance 
increases. 

 
Analysis           If the pressure of a substance increases during a boiling process, the temperature also increases since the 

boiling (or saturation) temperature of a pure substance depends on pressure and increases with it. 

 
Discussion       We are assuming that the liquid will continue to boil. If the pressure is increased fast enough, boiling may 

stop until the temperature has time to reach its new (higher) boiling temperature.  A pressure cooker uses this principle. 
 
 
 
 

2-23C 
Solution        We are to define vapor pressure and discuss its relationship to saturation pressure. 

 
Analysis           The vapor pressure Pv  of a pure substance is defined as the pressure exerted by a vapor in phase 

equilibrium with its liquid at a given temperature. In general, the pressure of a vapor or gas, whether it exists alone or in 
a  mixture with other gases, is called the partial pressure. During phase change processes between the liquid and vapor 

phases of a pure substance, the saturation pressure and the vapor pressure are equivalent since the vapor is pure. 

 
Discussion       Partial  pressure  is not  necessarily  equal  to  vapor  pressure.  For  example,  on  a  dry day (low relative 

humidity), the partial pressure of water vapor in the air is less than the vapor pressure of water. If, however, the relative 

humidity is 100%, the partial pressure and the vapor pressure are equal.
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2-24E 
Solution        The minimum pressure in a pump is given. It is to be determined if there is a danger of cavitation. 

 

Properties        The vapor pressure of water at 70F is 0.3632 psia. 
 

Analysis           To avoid cavitation, the pressure everywhere in the flow should remain above the vapor (or saturation) 

pressure at the given temperature, which is 

Pv   Psat @70F   0.3632 psia 
 

The minimum pressure in the pump is 0.1 psia, which is less than the vapor pressure. Therefore,  there is danger of 

cavitation in the pump. 
 

Discussion       Note that the vapor pressure increases with increasing temperature, and the danger of cavitation increases at 

higher fluid temperatures. 
 
 

2-25 
Solution        The minimum pressure in a pump to avoid cavitation is to be determined. 

 

Properties        The vapor pressure of water at 20C is 2.339 kPa. 
 

Analysis           To avoid cavitation, the pressure anywhere in the system should not be allowed to drop below the vapor (or 

saturation) pressure at the given temperature. That is, 

Pmin   Psat@20C    2.339 kPa 

Therefore, the lowest pressure that can exist in the pump is 2.339 kPa. 
 

Discussion       Note that the vapor pressure increases with increasing temperature, and thus the risk of cavitation is greater 

at higher fluid temperatures. 
 

 
 

2-26 
Solution        The minimum pressure in a piping system to avoid cavitation is to be determined. 

 

Properties        The vapor pressure of water at 30C is 4.246 kPa. 
 

Analysis           To avoid cavitation, the pressure anywhere in the flow should not be allowed to drop below the vapor (or 

saturation) pressure at the given temperature. That is, 
 

Pmin    Psat@30C    4.246 kPa 
 

Therefore, the pressure should be maintained above 4.246 kPa everywhere in flow. 
 

Discussion       Note that the vapor pressure increases with increasing temperature, and thus the risk of cavitation is greater 
at higher fluid temperatures. 

 
 

 
2-27 
Solution        The minimum pressure in a pump is given. It is to be determined if there is a danger of cavitation. 

 

Properties        The vapor pressure of water at 20C is 2.339 kPa. 
 

Analysis           To avoid cavitation, the pressure everywhere in the flow should remain above the vapor (or saturation) 

pressure at the given temperature, which is 
 

Pv   Psat @20C   2.339 kPa 
 

The minimum pressure in the pump is 2 kPa, which is less than the vapor pressure. Therefore, a there is danger of 

cavitation in the pump. 
 

Discussion       Note that the vapor pressure increases with increasing temperature, and thus there is a greater danger of 

cavitation at higher fluid temperatures.

mailto:Psat@70
mailto:Psat@20
mailto:Psat@30
mailto:Psat@20
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Energy and Specific Heats 
 

 
 
 

2-28C 
Solution        We are to define and discuss flow energy. 

 
Analysis           Flow energy or flow work is the energy needed to push a fluid into or out of a control volume. Fluids at 

rest do not possess any flow energy. 

 
Discussion       Flow energy is not a fundamental quantity, like kinetic or potential energy. However, it is a useful concept 

in fluid mechanics since fluids are often forced into and out of control volumes in practice. 
 
 
 
 

2-29C 
Solution        We are to compare the energies of flowing and non-flowing fluids. 

 
Analysis           A flowing fluid possesses flow energy, which is the energy needed to push a fluid into or out of a 

control volume, in addition to the forms of energy possessed by a non-flowing fluid. The total energy of a non-flowing 

fluid consists of internal and potential energies. If the fluid is moving as a rigid body, but not flowing, it may also have 

kinetic energy (e.g., gasoline in a tank truck moving down the highway at constant speed with no sloshing). The total 

energy of a flowing fluid consists of internal, kinetic, potential, and flow energies. 

 
Discussion       Flow energy is not to be confused with kinetic energy, even though both are zero when the fluid is at rest. 

 

 
 
 

2-30C 
Solution        We are to discuss the difference between macroscopic and microscopic forms of energy. 

 
Analysis           The macroscopic forms of energy are those a system possesses as a whole with respect to some outside 

reference frame.  The microscopic forms of energy, on the other hand, are those related to the molecular structure of a 

system and the degree of the molecular activity, and are independent of outside reference frames. 

 
Discussion       We mostly deal with macroscopic forms of energy in fluid mechanics. 

 
 
 

 
2-31C 
Solution        We are to define total energy and identify its constituents. 

 
Analysis           The sum of all forms of the energy a system possesses is called total energy.  In the absence of magnetic, 

electrical, and surface tension effects,  the total energy of a system consists of the kinetic, potential, and internal 

energies. 

 
Discussion       All three constituents of total energy (kinetic, potential, and internal) need to be considered in an analysis of 

a general fluid flow.
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2-32C 
Solution        We are to list the forms of energy that contribute to the internal energy of a system. 

 
Analysis           The internal energy of a system is made up of sensible, latent, chemical, and nuclear energies.   The 

sensible internal energy is due to translational, rotational, and vibrational effects. 

 
Discussion       We deal with the flow of a single phase fluid in most problems in this textbook; therefore, latent, chemical, 

and nuclear energies do not need to be considered. 
 
 

 
2-33C 
Solution        We are to discuss the relationship between heat, internal energy, and thermal energy. 

 
Analysis           Thermal energy is the sensible and latent forms of internal energy. It does not include chemical or 

nuclear forms of energy. In common terminology, thermal energy is referred to as heat. However, like work, heat is not a 

property, whereas thermal energy is a property. 

 
Discussion       Technically speaking, “heat” is defined only when there is heat transfer, whereas the energy state of a 

substance can always be defined, even if no heat transfer is taking place. 
 
 

 
2-34C 
Solution        We are to explain how changes in internal energy can be determined. 

 
Analysis           Using specific heat values at the average temperature, the changes in the specific internal energy of ideal 

gases can be determined from u  cv,avg T .  For incompressible substances, cp  cv  c and u  cavg T . 

 
Discussion       If the fluid can be treated as neither incompressible nor an ideal gas, property tables must be used. 

 

 
 

2-35C 
Solution        We are to explain how changes in enthalpy can be determined. 

 
Analysis           Using specific heat values at the average temperature, the changes in specific enthalpy of ideal gases can be 

determined from h  c p,avg T . For incompressible substances, cp  cv  c and h  u  vP  cavg T  vP . 

 
Discussion       If the fluid can be treated as neither incompressible nor an ideal gas, property tables must be used.
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2-36 
Solution           The total energy of saturated water vapor flowing in a pipe at a specified velocity and elevation is to be 
determined. 

 

Analysis              The total energy of a flowing fluid is given by (Eq. 28) 

 

 
 

The enthalpy of the vapor at the specified temperature can be found in any thermo text to be  . Then the total 

energy is determined as 

 

 
 

Note that only 0.047% of the total energy comes from the combination of kinetic and potential energies, which explains 
why we usually neglect kinetic and potential energies in most flow systems.
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Compressibility 
 
 

 
2-37C 
Solution        We are to discuss the coefficient of compressibility and the isothermal compressibility. 

 
Analysis           The coefficient of compressibility represents the variation of pressure of a fluid with volume or density 

at constant temperature. Isothermal compressibility is the inverse of the coefficient of compressibility, and it represents 

the fractional change in volume or density corresponding to a change in pressure. 

 
Discussion       The coefficient of compressibility of an ideal gas is equal to its absolute pressure. 

 
 
 
 

2-38C 
Solution        We are to define the coefficient of volume expansion. 

 
Analysis           The coefficient of volume expansion represents the variation of the density of a fluid with temperature at 

constant pressure. It differs from the coefficient of compressibility in that the latter represents the variation of pressure of a 

fluid with density at constant temperature. 

 
Discussion       The coefficient of volume expansion of an ideal gas is equal to the inverse of its absolute temperature. 

 
 
 
 

2-39C 
Solution        We are to discuss the sign of the coefficient of compressibility and the coefficient of volume expansion. 

 
Analysis           The coefficient of compressibility of a fluid cannot be negative, but the coefficient of volume expansion can 

be negative (e.g., liquid water below 4C). 

 
Discussion       This is the reason that ice floats on water.
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2-40 
Solution        Water at a given temperature and pressure is heated to a higher temperature at constant pressure. The 
change in the density of water is to be determined. 

 

Assumptions    1 The coefficient of volume expansion is constant in the given temperature range.  2 An approximate 

analysis is performed by replacing differential changes in quantities by finite changes. 
 

Properties        The density of water at 15C and 1 atm pressure is 1 = 999.1 kg/m3. The coefficient of volume expansion 

at the average temperature of (15+95)/2 = 55C is  = 0.484  10-3 K-1. 
 

Analysis           When differential quantities are replaced by differences and the properties  and  are assumed to be 
constant, the change in density in terms of the changes in pressure and temperature is expressed approximately as 

  P  T 
 

The change in density due to the change of temperature from 15C to 95C at constant pressure is 
 

  T  (0.48410
3 

K
-1

)(999.1kg/m 
3 

)(95 15)K  38.7 kg/m3
 

 

Discussion       Noting that   2  1 , the density of water at 95C and 1 atm is 
 

2   1    999.1 (38.7)  960.4 kg/m 
3

 
 

which is very close to the listed value of 961.5 kg/m3  at 95C in water table in the Appendix. This is mostly due to  
varying with temperature almost linearly. Note that the density of water decreases while being heated, as expected. This 

problem can be solved more accurately using differential analysis when functional forms of properties are available. 
 
 
 
 
 
 
 
 

2-41 
Solution        The percent increase in the density of an ideal gas is given for a moderate pressure. The percent increase in 
density of the gas when compressed at a higher pressure is to be determined. 

 

Assumptions    The gas behaves an ideal gas.
 

Analysis           For an ideal gas, P = RT and (P / )T    RT  P / 

 

, and thus  ideal gas   P . Therefore, the coefficient

of compressibility of an ideal gas is equal to its absolute pressure, and the coefficient of compressibility of the gas increases 

with increasing pressure.

Substituting  = P into the definition of the coefficient of compressibility     
 P    

 
 P   

 

and rearranging

 
gives 

 
 
 

 
 
P 

v / v  / 

       P 
 

Therefore, the percent increase of density of an ideal gas during isothermal compression is equal to the percent 

increase in pressure.

 
At 10 atm: 

 
 
P 

 
 11 10 

 10%

       P         10
 

At 1000 atm: 
 

 
P 

 
1001 1000 

 0.1%

       P           1000 
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Therefore, a pressure change of 1 atm causes a density change of 10% at 10 atm and a density change of 1% at 100 atm. 

 
Discussion       If temperature were also allowed to change, the relationship would not be so simple.
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2-42 

Solution        Using the definition of the coefficient of volume expansion and the expression 

 
 ideal gas   1/ T , it is to be

shown that the percent increase in the specific volume of an ideal gas during isobaric expansion is equal to the percent 

increase in absolute temperature. 
 

Assumptions    The gas behaves an ideal gas.
 

Analysis  The coefficient of volume expansion  can be expressed as    
1 
 
v 



  

 
v / v 

. 

 
Noting that  ideal gas   1/ T 

 

v 
 
T 

 

 
 
for an ideal gas and rearranging give 

      

v  T  P          T

v       T 
 

Therefore, the percent increase in the specific volume of an ideal gas during isobaric expansion is equal to the 

percent increase in absolute temperature. 

 
Discussion       We must be careful to use absolute temperature (K or R), not relative temperature (oC or oF). 

 
 
 
 
 

 
2-43 
Solution        Water at a given temperature and pressure is compressed to a high pressure isothermally. The increase in 
the density of water is to be determined. 

 

Assumptions    1 The isothermal compressibility is constant in the given pressure range.   2 An approximate analysis is 

performed by replacing differential changes by finite changes. 

 
Properties        The density of water at 20C and 1 atm pressure is 1 = 998 kg/m3. The isothermal compressibility of water 

is given to be  = 4.80  10-5 atm-1. 

 
Analysis           When differential quantities are replaced by differences and the properties  and  are assumed to be 
constant, the change in density in terms of the changes in pressure and temperature is expressed approximately as 

  P  T 
 

The change in density due to a change of pressure from 1 atm to 400 atm at constant temperature is 
 

  P  (4.8010
5 

atm
-1

)(998 kg/m
3 

)(400 1)atm  19.2 kg/m3
 

 

Discussion       Note that the density of water increases from 998 to 1017.2 kg/m3 while being compressed, as expected. 

This problem can be solved more accurately using differential analysis when functional forms of properties are available.
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2 V 1 1 1 

 

Solution        The volume of an ideal gas is reduced by half at constant temperature. The change in pressure is to be 
determined. 

Assumptions    The process is isothermal and thus the temperature remains constant. 

Analysis           For an ideal gas of fixed mass undergoing an isothermal process, the ideal gas relation reduces to

P2V 2   
 P1V1 

 

          P V 
 

 PV      V           V 
P      1  P       1     P  2P

T2           T1 
2   2         1  1 

2             0.5V1

Therefore, the change in pressure becomes 

P  P2   P1   2P1  P1   P1 

Discussion       Note that at constant temperature, pressure and volume of an ideal gas are inversely proportional. 
 
 
 
 
 

 
2-45 
Solution        Saturated refrigerant-134a at a given temperature is cooled at constant pressure. The change in the density 
of the refrigerant is to be determined. 

 

Assumptions    1 The coefficient of volume expansion is constant in the given temperature range.   2 An approximate 

analysis is performed by replacing differential changes in quantities by finite changes. 
 

Properties        The density of saturated liquid R-134a at 10C is 1 =1261 kg/m3. The coefficient of volume expansion at 

the average temperature of (10+0)/2 = 5C is  = 0.00269 K-1. 
 

Analysis           When differential quantities are replaced by differences and the properties  and  are assumed to be 
constant, the change in density in terms of the changes in pressure and temperature is expressed approximately as 

  P  T 
 

The change in density due to the change of temperature from 10C to 0C at constant pressure is 
 

  T  (0.00269 K
-1

)(1261kg/m 
3 
)(0 10)K  33.9 kg/m3

 

 

Discussion       Noting that   2  1 , the density of R-134a at 0C is 
 

2   1    1261 33.9  1294.9 kg/m 
3

 

 

which is almost identical to the listed value of 1295 kg/m3 at 0C in R-134a table in the Appendix. This is mostly due to 
varying with temperature almost linearly. Note that the density increases during cooling, as expected.
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Solution        A water tank completely filled with water can withstand tension caused by a volume expansion of 0.8%. 
The maximum temperature rise allowed in the tank without jeopardizing safety is to be determined. 

 

Assumptions    1 The coefficient of volume expansion is constant. 2 An approximate analysis is performed by replacing 

differential changes in quantities by finite changes. 3 The effect of pressure is disregarded. 
 

Properties        The average volume expansion coefficient is given to be  = 0.377  10-3 K-1. 
 

Analysis           When differential quantities are replaced by differences and the properties  and  are assumed to be 
constant, the change in density in terms of the changes in pressure and temperature is expressed approximately as 

  P  T 
 

A volume increase of 0.8% corresponds to a density decrease of 0.8%, which can be expressed as   0.008 . Then the 

decrease in density due to a temperature rise of T at constant pressure is 

0.008  T 
 

Solving for T and substituting, the maximum temperature rise is determined to be 
 

T  
 0.008 

 
         0.008          

 21.2 K  21.2C 

        0.377 103 K -1 
 

Discussion       This result is conservative since in reality the increasing pressure will tend to compress the water and 

increase its density. 
 
 
 
 
 
 
 

2-47 

Solution        A water tank completely filled with water can withstand tension caused by a volume expansion of 1.5%. 
The maximum temperature rise allowed in the tank without jeopardizing safety is to be determined. 

 

Assumptions    1 The coefficient of volume expansion is constant. 2 An approximate analysis is performed by replacing 
differential changes in quantities by finite changes. 3 The effect of pressure is disregarded. 

 

Properties        The average volume expansion coefficient is given to be   = 0.377  10-3 K-1. 
 

Analysis           When differential quantities are replaced by differences and the properties  and  are assumed to be 
constant, the change in density in terms of the changes in pressure and temperature is expressed approximately as 

  P  T 
 

A volume increase of 1.5% corresponds to a density decrease of 1.5%, which can be expressed as   0.015 . Then the 

decrease in density due to a temperature rise of T at constant pressure is 

0.015  T 
 

Solving for T and substituting, the maximum temperature rise is determined to be 
 

T  
 0.015 

 
         0.015          

 39.8 K  39.8C 

       0.377 103 K -1 
 

Discussion       This result is conservative since in reality the increasing pressure will tend to compress the water and 

increase its density.  The change in temperature is exactly half of that of the previous problem, as expected.
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0 


) 

 

Solution        The density of seawater at the free surface and the bulk modulus of elasticity are given. The density and 
pressure at a depth of 2500 m are to be determined. 

 

Assumptions    1  The  temperature  and  the  bulk  modulus  of  elasticity  of  seawater  is  constant.  2  The  gravitational 

acceleration remains constant. 
 

Properties        The density of seawater at free surface where the pressure is given to be 1030 kg/m3, and the bulk modulus 

of elasticity of seawater is given to be 2.34  109 N/m2. 
 

Analysis           The coefficient of compressibility or the bulk modulus of elasticity of fluids is expressed as 
 

 P                                      dP
        or              (at constant T )

  T                                                  
d

 

The differential pressure change across a differential fluid height of dz is given as 
 

dP  gdz 
 

Combining the two relations above and rearranging, 

 
z = 0 

z

 

   
gdz 

 g 2  dz 

 

      
 d

 

 
 gdz 

 
2500 m

d              d  2          

Integrating from z = 0 where   0  1030 kg/m 
3  

to z = z where    gives

 


      d 

 
 g 


z 

dz
 

 

      
 1   

 
 1 
 

 gz

0        2         0 0            

 

Solving for  gives the variation of density with depth as 

  
             1   
1 / 0    gz /  

Substituting into the pressure change relation dP  gdz and integrating from z = 0 where P  P0   98 kPa 

P = P gives 

 

 
 
 
 
 
to z = z where

 
P                      z 

P    
dP  0

 

 

           gdz   

1 / 0    gz /  


 

          1           
     P  P  ln 

1   gz /  
0                                               0                   

which is the desired relation for the variation of pressure in seawater with depth. At z = 2500 m, the values of density and 

pressure are determined by substitution to be 
 

  
                                             1                                               

 1041kg/m3 

1/(1030 kg/m 
3 

)  (9.81m/s 
2 

)(2500 m) /(2.34 10
9  

N/m 
2 

) 


P  (98,000 Pa)  (2.34 109  N/m 2 ) ln

 1 (1030 kg/m 

 

 
3 
)(9.81m/s 

2
 

1 

)(2500 m) /(2.34 10
9
 




N/m 2    

 2.55010
7  

Pa 

 25.50 MPa 
 

since 1 Pa = 1 N/m2 = 1 kg/ms2 and 1 kPa = 1000 Pa. 
 

Discussion       Note that if we assumed  = o = constant at 1030 kg/m3, the pressure at 2500 m would be P  P0   gz = 
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0.098 + 25.26 = 25.36 MPa. Then the density at 2500 m is estimated to be 
 

  P  (1030)(2340  MPa)
1 

(25.26 MPa)  11.1kg/m 
3  

and thus  = 1041 kg/m3
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2-49E 

Solution        The coefficient of compressibility of water is given. The pressure increases required to reduce the volume 

of water by 1 percent and then by 2 percent are to be determined. 

Assumptions    1 The coefficient of compressibility is constant. 2 The temperature remains constant. 

Properties        The coefficient of compressibility of water is given to be 7×105 psia. 

Analysis           (a) A volume decrease of 1 percent can mathematically be expressed as 

v 
 
V  

 0.01 
v       V 

The coefficient of compressibility is expressed as 

 P               P
  v        

 

 v T v/v

Rearranging and substituting, the required pressure increase is determined to be 

 v 
P   

 v 
  (7 105 psia)(0.01)  7,000 psia 


(b) Similarly, the required pressure increase for a volume reduction of 2 percent becomes 

 v 
P   

 v 
  (7 105 psia)(0.02)  14,000 psia 


Discussion       Note that at extremely high pressures are required to compress water to an appreciable amount. 
 

 
 
 
 
 
 

2-50E 
Solution        We are to estimate the energy required to heat up the water in a hot-water tank. 

 

Assumptions    1 There are no losses. 2 The pressure in the tank remains constant at 1 atm. 3 An approximate analysis is 

performed by replacing differential changes in quantities by finite changes. 
 

Properties        The specific heat of water is approximated as a constant, whose value is 0.999 Btu/lbmR at the average 

temperature of (60 + 110)/2 = 85oF. In fact, c remains constant at 0.999 Btu/lbmR (to three digits) from 60oF to 110oF. For 

this same temperature range, the density varies from 62.36 lbm/ft3  at 60oF to 61.86 lbm/ft3  at 110oF. We approximate the 

density as constant, whose value is 62.17 lbm/ft3 at the average temperature of 85oF. 

Analysis           For a constant pressure process, u  cavg T . Since this is energy per unit mass, we must multiply by the

total mass of the water in the tank, i.e., U  mcavg T  Vcavg T . Thus, 

 
3

 

 
 

 35.315 ft 
3  

                  U  Vcavg T  (62.17 lbm/ft )(75gal)(0.999Btu/lbm  R)[(110- 60)R]
 264.17 gal  

 31,135 Btu  31,100 Btu

                  
 

where we note temperature differences are identical in oF and R. 
 

Discussion       We give the final answer to 3 significant digits. The actual energy required will be greater than this, due to 

heat transfer losses and other inefficiencies in the hot-water heating system.
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   T 

 

2-51 
Solution        We are to prove that the coefficient of volume expansion for an ideal gas is equal to 1/T. 

 
Assumptions    1 Temperature and pressure are in the range that the gas can be approximated as an ideal gas. 

Analysis           The ideal gas law is  P  RT , which we re-write as 

substitution and differentiation yields 

  
 P  

. By definition, 
RT 

 1   
            

      P 

 

. Thus,

 

 
 
  P    

           
           

 1 
  

RT  

  

 1  
 

  P     
  
  1 

 1/T

ideal gas 

     T     


 
   

RT 
2       T

           
              
              P 

 

where both pressure and the gas constant R are treated as constants in the differentiation. 

 

Discussion       The coefficient of volume expansion of an ideal gas is not constant, but rather decreases with temperature. 

However, for small temperature differences,  is often approximated as a constant with little loss of accuracy. 
 
 
 
 
 

2-52 

Solution           The coefficient of compressibility of nitrogen gas is to be estimated using Van der Waals equation of 
state. The result is to be compared to ideal gas and experimental values. 

 
Assumptions       1 Nitrogen gas obeys the Van der Waals equation of state. 

 
Analysis              From the definition we have 

 

 
 

since 

 

 
 

The gas constant of nitrogen is  (Table A1). Substituting given data we obtain 

 

 
 

For the ideal gas behavior, the coefficient of compressibility is equal to the pressure (Eq. 215). Therefore we get 

 

 
 

whichis in error by             compared to experimentally measured pressure.
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2-53 

Solution           The water contained in a piston-cylinder device is compressed isothermally. The energy needed is to be 

determined. 

Assumptions       1 The coefficient of compressibility of water remains unchanged during the compression. 

Analysis              We take the water in the cylinder as the system. The energy needed to compress water is equal to the 

work done on the system, and can be expressed as 

 
From the definition of coefficient of compressibility we have 

 

 

 
Rearranging we obtain 

 

 

 
which can be integrated from the initial state to any state as follows: 

 
from which we obtain 

 
Substituting in Eq. 1 we have 

 
or 

 

In terms of finite changes, the fractional change due to change in pressure can be expressed approximately as (Eq. 323) 

 
or 

 

where    is the isothermal compressibility of water, which is   at 20 . Realizing that 10 kg water 

occupies initially a volume of                                     the final volume of water is determined to be 
 

 

Then the work done on the water is 
 
 
 

 
from which we obtain 

 

 

since                                     .
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2-54 
Solution           The water contained in a piston-cylinder device is compressed isothermally and the pressure increases 
linearly. The energy needed is to be determined. 

 
Assumptions       1 The pressure increases linearly. 

 
Analysis              We take the water in the cylinder as the system. The energy needed to compress water is equal to the 

work done on the system, and can be expressed as 

 

 
 

For a linear pressure increase we take 

 

 
 

In terms of finite changes, the fractional change due to change in pressure can be expressed approximately as (Eq. 323) 
 

 
 

or 

 

 
 

where  is the isothermal compressibility of water, which is     at 20 . Realizing that 10 kg water 

occupies initially a volume of  the final volume of water is determined to be 

 

 
 

Therefore the work expression becomes 
 
 
 

 
or 

 
 

Thus, we conclude that linear pressure increase approximation does not work well since it gives almost ten times larger 

work.
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Speed of Sound 
 
 

 
2-55C 

Solution        We are to define and discuss sound and how it is generated and how it travels. 

 
Analysis           Sound is an infinitesimally small pressure wave.  It is generated by a small disturbance in a medium. 

It travels by wave propagation. Sound waves cannot travel in a vacuum. 

 
Discussion       Electromagnetic waves, like light and radio waves, can travel in a vacuum, but sound cannot. 

 

 
 

2-56C 

Solution        We are to discuss whether sound travels faster in warm or cool air. 

Analysis           Sound travels faster in warm (higher temperature) air since c  kRT .

 

Discussion       On the microscopic scale, we can imagine the air molecules moving around at higher speed in warmer air, 

leading to higher propagation of disturbances. 
 

 
 

2-57C 

Solution        We are to compare the speed of sound in air, helium, and argon. 

Analysis           Sound travels fastest in helium, since c 

air, 0.35 for argon, and 3.46 for helium. 

kRT and helium has the highest kR value.  It is about 0.40 for

 

Discussion       We are assuming, of course, that these gases behave as ideal gases  – a good approximation  at room 

temperature. 
 

 
 

2-58C 
Solution        We are to compare the speed of sound in air at two different pressures, but the same temperature. 

 
Analysis           Air at specified conditions will behave like an ideal gas, and the speed of sound in an ideal gas depends on 
temperature only. Therefore, the speed of sound is the same in both mediums. 

 
Discussion       If the temperature were different, however, the speed of sound would be different. 

 

 
 

2-59C 
Solution        We are to examine whether the Mach number remains constant in constant-velocity flow. 

 
Analysis           In general, no, because the Mach number also depends on the speed of sound in gas, which depends on the 

temperature of the gas.  The Mach number remains constant only if the temperature and the velocity are constant. 

 
Discussion       It turns out that the speed of sound is not a strong function of pressure. In fact, it is not a function of 

pressure at all for an ideal gas.
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max  

 

 

2-60C 
Solution        We are to state whether the propagation of sound waves is an isentropic process. 

 
Analysis           Yes, the propagation of sound waves is nearly isentropic.  Because the amplitude of an ordinary sound 

wave is very small, and it does not cause any significant change in temperature and pressure. 

 
Discussion       No process is truly isentropic, but the increase of entropy due to sound propagation is negligibly small. 

 
 
 
 

2-61C 
Solution        We are to discuss sonic velocity – specifically, whether it is constant or it changes. 

 
Analysis           The sonic speed in a medium depends on the properties of the medium, and it changes as the properties 

of the medium change. 

 
Discussion       The most common example is the change in speed of sound due to temperature change. 

 
 
 
 

2-62 
Solution        The Mach number of a passenger plane for specified limiting operating conditions is to be determined. 

 

Assumptions    Air is an ideal gas with constant specific heats at room temperature. 

Properties        The gas constant of air is R = 0.287 kJ/kg·K. Its specific heat ratio at room temperature is k = 1.4. 

Analysis           From the speed of sound relation 
 

            2       2 
c    kRT 


(1.4)(0.287 kJ/kg  K)(-60 273 K) 

1000 m   / s    
  293 m/s

     1 kJ/kg     
 

Thus, the Mach number corresponding to the maximum cruising speed of the plane is 

V           (945 / 3.6) m/s 
Ma                                     0.897 

c             293 m/s 
 

Discussion       Note that this is a subsonic flight since Ma < 1. Also, using a k value at -60C would give practically the 
same result.
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1 

2  

 

 

 

Solution        Carbon dioxide flows through a nozzle. The inlet temperature and velocity and the exit temperature of CO2 

are specified. The Mach number is to be determined at the inlet and exit of the nozzle. 
 

Assumptions    1 CO2 is an ideal gas with constant specific heats at room temperature. 2 This is a steady-flow process. 

Properties        The gas constant of carbon dioxide is R = 0.1889 kJ/kg·K. Its constant pressure specific heat and specific 

heat ratio at room temperature are cp = 0.8439 kJ/kgK and k = 1.288. 

Analysis           (a)  At the inlet 
 

            2       2 
c     k RT  


(1.288)(0.1889 kJ/kg  K)(1200 K) 

1000 m   / s    
  540.3 m/s

1 

 
Thus, 

1      1 
 

 
 
 

Ma1
 

 

 
 
 

V         50 m/s   
                         0.0925 

     1 kJ/kg       
 
 

 
1200 K 

 
 
 

 
Carbon

c1 

(b) At the exit, 

540.3 m/s  

 
 
 
            2       2 



50 m/s dioxide 400 K

c      k  RT   


(1.288)(0.1889 kJ/kg  K)(400 K) 
1000 m   / s    

  312.0 m/s

2             2       2      1 kJ/kg     

 

The nozzle exit velocity is determined from the steady-flow energy balance relation,

V 
2 
V 

2 

0  h2  h1  
  2           1         


2 

V 
2 
V 

2 

0  c p (T2   T1 )  
    2           1  

 
2

 

V 
2 
              

2  
                      

0  (0.8439 kJ/kg  K)(400 1200 K)  
  2        (50 m/s)    

 
    1 kJ/kg      

  V
 
 1163 m/s

 

 
Thus, 

 
 
 
 
Ma 2

 

 
 

 
V       1163 m/s 

                        3.73 

2             1000 m 2 / s 2 
              

2

c2         312 m/s 

Discussion       The specific heats and their ratio k change with temperature, and the accuracy of the results can be 
improved by accounting for this variation. Using EES (or another property database): 

At 1200 K: cp = 1.278 kJ/kgK, k = 1.173        c1 = 516 m/s,      V1 = 50 m/s,    Ma1 = 0.0969 

At 400 K:   cp = 0.9383 kJ/kgK, k = 1.252       c2 = 308 m/s,      V2 = 1356 m/s,    Ma2 = 4.41 

Therefore, the constant specific heat assumption results in an error of 4.5% at the inlet and 15.5% at the exit in the Mach 
number, which are significant.
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1 

2  

 

 

 

Solution        Nitrogen flows through a heat exchanger. The inlet temperature, pressure, and velocity and the exit pressure 
and velocity are specified. The Mach number is to be determined at the inlet and exit of the heat exchanger. 

 

Assumptions    1 N2 is an ideal gas. 2 This is a steady-flow process. 3 The potential energy change is negligible. 

Properties        The gas constant of N2 is R = 0.2968 kJ/kg·K. Its constant pressure specific heat and specific heat ratio at 

room temperature are cp = 1.040 kJ/kgK and k = 1.4. 
 

            2       2 
Analysis

 
c     k RT  


(1.400)(0.2968 kJ/kg  K)(283K) 

1000 m   / s    
  342.9 m/s

 

 
Thus, 

1             1      1      1 kJ/kg       

 
120kJ/kg

 

Ma 1
 

V        100 m/s   
                         0.292

c1       342.9 m/s 150 kPa 
10C 

 

100 kPa

From the energy balance on the heat exchanger, 

V 2 V 2 

qin   cp (T2  T1)     2          1  
 

2 

100 m/s 
Nitrogen 200 m/s

 
120 kJ/kg  (1.040 kJ/kg.C)(T2  10C) 

(200 m/s) 
2 
 (100 m/s) 

2  



 

1 kJ/kg     

2       2 


 
It yields 

T2  = 111C = 384 K 

2 
 
 
 
 

            2       2 


 1000 m   / s   

c      k  RT   


(1.4)(0.2968 kJ/kg  K)(384 K) 
1000 m   / s    

  399 m/s

2             2       2 

 
Thus, 

     1 kJ/kg     

 
Ma 2

 
V        200 m/s 

                       0.501

c2        399 m/s 

Discussion       The specific heats and their ratio k change with temperature, and the accuracy of the results can be 

improved by accounting for this variation. Using EES (or another property database): 

At 10C  : cp = 1.038 kJ/kgK, k = 1.400        c1 = 343 m/s,      V1 = 100 m/s,    Ma1 = 0.292 

At 111C  cp =  1.041 kJ/kgK, k = 1.399       c2 = 399 m/s,      V2 = 200 m/s,   Ma2 = 0.501 

Therefore, the constant specific heat assumption results in an error of 4.5% at the inlet and 15.5% at the exit in the Mach 

number, which are almost identical to the values obtained assuming constant specific heats. 
 

 
 
 
 
 
 

2-65 
Solution        The speed of sound in refrigerant-134a at a specified state is to be determined. 

 

Assumptions    R-134a is an ideal gas with constant specific heats at room temperature. 

Properties        The gas constant of R-134a is R = 0.08149 kJ/kg·K. Its specific heat ratio at room temperature is k = 1.108. 

Analysis           From the ideal-gas speed of sound relation, 
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 

 

 1000 m 
2 

/ s 
2 

c    kRT  (1.108)(0.08149 kJ/kg  K)(60  273 K)


 

1 kJ/kg 
  173 m/s 


 

Discussion       Note that the speed of sound is independent of pressure for ideal gases.
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                     

                    

 

 

2-66 
Solution        The Mach number of an aircraft and the speed of sound in air are to be determined at two specified 
temperatures. 

 

Assumptions    Air is an ideal gas with constant specific heats at room temperature. 

Properties        The gas constant of air is R = 0.287 kJ/kg·K. Its specific heat ratio at room temperature is k = 1.4. 

Analysis           From the definitions of the speed of sound and the Mach number, 

(a)  At 300 K, 
 

 1000 m 2 / s 2 
c    kRT  (1.4)(0.287 kJ/kg  K)(300 K)




 

1 kJ/kg  
 347 m/s 



 

and Ma  
 V 
c 
 

 330 m/s 
 0.951 

347 m/s

(b)  At 800 K,  

 
 1000 m2 / s2 

c    kRT  (1.4)(0.287 kJ/kg  K)(800 K)



 

1 kJ/kg  
 567 m/s 



 

and Ma  
 V 
c 
 

 330 m/s 
 0.582 

567 m/s

Discussion       Note that a constant Mach number does not necessarily indicate constant speed. The Mach number of a 

rocket, for example, will be increasing even when it ascends at constant speed.  Also, the specific heat ratio k changes with 

temperature. 
 

 
 
 
 
 
 

2-67E 
Solution        Steam flows through a device at a specified state and velocity.  The Mach number  of steam is to be 
determined assuming ideal gas behavior. 

 

Assumptions    Steam is an ideal gas with constant specific heats. 

Properties        The gas constant of steam is R = 0.1102 Btu/lbm·R. Its specific heat ratio is given to be k = 1.3. 

Analysis           From the ideal-gas speed of sound relation, 
 

               2       2 
c    kRT 


(1.3)(0.1102 Btu/lbm  R)(1160 R) 

25,037 ft   / s    
  2040 ft/s

 

 
Thus, 

 
 

 

Ma  
V 

 
 900 ft/s   

 0.441 

    1 Btu/lbm    

c     2040 ft/s 

Discussion       Using property data from steam tables and not assuming ideal gas behavior, it can be shown that the Mach 

number in steam at the specified state is 0.446, which is sufficiently close to the ideal-gas value of 0.441. Therefore, the 

ideal gas approximation is a reasonable one in this case.
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Temperature, 

T, F 

Mach number 
Ma 

350 0.528 
375 0.520 

400 0.512 

425 0.505 

450 0.498 

475 0.491 

500 0.485 
525 0.479 

550 0.473 

575 0.467 

600 0.462 

625 0.456 

650 0.451 

675 0.446 

700 0.441 

 

       

       

       

       

       

 

  
0.52 

 
0.5 

 
0.48 

 
0.46 

  
0.44 

3 

 

M
a
 

 

 
2-68E 

 

Solution        Problem 2-67e is reconsidered. The variation of Mach number with temperature as the temperature changes 

between 350 and 700F is to be investigated, and the results are to be plotted. 
 

Analysis           The EES Equations window is printed below, along with the tabulated and plotted results. 

 
T=Temperature+460 
R=0.1102 
V=900 k=1.3 

c=SQRT(k*R*T*25037) 

Ma=V/c 
 

0.54 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

50         400         450         500         550         600         650         700 

Temperature, °F 
 

 

Discussion       Note that for a specified flow speed, the Mach number decreases with increasing temperature, as expected.
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2-69E 
Solution        The inlet state and the exit pressure of air are given for an isentropic expansion process. The ratio of the 
initial to the final speed of sound is to be determined. 

Assumptions    Air is an ideal gas with constant specific heats at room temperature. 

Properties        The properties  of air  are R = 0.06855 Btu/lbm·R and k = 1.4. The specific  heat ratio k  varies  with 
temperature, but in our case this change is very small and can be disregarded. 

Analysis           The final temperature of air is determined from the isentropic relation of ideal gases,
 

 P   
(k 1) / k  

      


 

(1.41) / 1.4

T2   T1 
   2   (659.7 R) 

60 

  489.9 R

 P1   170 

Treating k as a constant, the ratio of the initial to the final speed of sound can be expressed as 
 

Ratio  
 c2   

   k1RT1   
 

   T1  
 

   659.7 
 1.16

c1           k2RT2           T2 489.9

Discussion       Note that the speed of sound is proportional to the square root of thermodynamic temperature.
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Solution        The inlet state and the exit pressure of air are given for an isentropic expansion process. The ratio of the 
initial to the final speed of sound is to be determined. 

Assumptions    Air is an ideal gas with constant specific heats at room temperature. 

Properties        The properties of air are R = 0.287 kJ/kg·K and k = 1.4. The specific heat ratio k varies with temperature, 
but in our case this change is very small and can be disregarded. 

Analysis           The final temperature of air is determined from the isentropic relation of ideal gases,
 

     

T    T       2  

(k 1) / k  

 (350.2 K) 
0.4 MPa 




 

(1.41) /1.4
 

 

 

 215.2 K

P                                                
2         1 

     
 P1   2.2 MPa 

Treating k as a constant, the ratio of the initial to the final speed of sound can be expressed as 
 

Ratio  
 c2   

   k1 RT1   
 

   T1   
 

   350.2 
 1.28

c1           k2 RT2            T2 215.2

Discussion       Note that the speed of sound is proportional to the square root of thermodynamic temperature. 
 

 
 
 

2-71 
Solution        The inlet state and the exit pressure of helium are given for an isentropic expansion process. The ratio of the 
initial to the final speed of sound is to be determined. 

Assumptions    Helium is an ideal gas with constant specific heats at room temperature. 

Properties        The properties of helium are R = 2.0769 kJ/kg·K and k = 1.667. 

Analysis           The final temperature of helium is determined from the isentropic relation of ideal gases,
 

     

T    T       2  

(k 1) / k  

 (350.2 K) 
0.4 




 

(1.6671) /1.667
 

 

 

 177.0 K

P                                       
2         1 

     
 P1   2.2 

The ratio of the initial to the final speed of sound can be expressed as 
 

Ratio  
 c2   

   k1 RT1   
 

   T1   
 

   350.2 
 1.41

c1           k2 RT2 T2            177.0

Discussion       Note that the speed of sound is proportional to the square root of thermodynamic temperature. 
 

 
 
 

2-72 
Solution        The expression for the speed of sound for an ideal gas is to be obtained using the isentropic process 
equation and the definition of the speed of sound. 

 

Analysis           The isentropic relation Pvk = A  where A is a constant can also be expressed as 

k

P  A 
1 




 A k

   
 v 

Substituting it into the relation for the speed of sound,
 

2         
  

 (  ) k                   
1
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P 


c                  

A     kA k 


 k( A k 

) /   k(P / )  kRT

   s                s
 

since for an ideal gas P = RT or RT = P/. Therefore, c 
 

kRT , which is the desired relation.

 

Discussion       Notice that pressure has dropped out; the speed of sound in an ideal gas is not a function of pressure.
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Viscosity 
 
 

 
2-73C 
Solution        We are to define and discuss viscosity. 

 
Analysis           Viscosity is a measure of the “stickiness” or “resistance to deformation” of a fluid. It is due to the 

internal frictional force that develops between different layers of fluids as they are forced to move relative to each other. 

Viscosity is caused by the cohesive forces between the molecules in liquids, and by the molecular collisions in gases. In 

general, liquids have higher dynamic viscosities than gases. 
 

Discussion       The ratio of viscosity  to density  often appears in the equations of fluid mechanics, and is defined as the 

kinematic viscosity,  =  /. 
 
 
 
 

2-74C 
Solution        We are to discuss Newtonian fluids. 

 
Analysis           Fluids whose shear stress is linearly proportional to the velocity gradient  (shear strain) are called 

Newtonian fluids.  Most common fluids such as water, air, gasoline, and oils are Newtonian fluids. 

 
Discussion       In the differential analysis of fluid flow, only Newtonian fluids are considered in this textbook. 

 
 
 
 

2-75C 
Solution        We are to discuss how kinematic viscosity varies with temperature in liquids and gases. 

 
Analysis           (a) For liquids, the kinematic viscosity  decreases with temperature.  (b) For gases, the kinematic 

viscosity increases with temperature. 

 
Discussion       You can easily verify this by looking at the appendices. 

 
 
 
 

2-76C 
Solution        We are to discuss how dynamic viscosity varies with temperature in liquids and gases. 

 
Analysis           (a) The dynamic viscosity of liquids decreases with temperature. (b) The dynamic viscosity of gases 

increases with temperature. 

 
Discussion       A good way to remember this is that a car engine is much harder to start in the winter because the oil in the 

engine has a higher viscosity at low temperatures.
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2-77C 
Solution        We are to compare the settling speed of balls dropped in water and oil; namely, we are to determine which 
will reach the bottom of the container first. 

 
Analysis           When two identical small glass balls are dropped into two identical containers, one filled with water and the 

other with oil, the ball dropped in water will reach the bottom of the container first because of the much lower 

viscosity of water relative to oil. 

 
Discussion       Oil is very viscous, with typical values of viscosity approximately 800 times greater than that of water at 

room temperature. 
 
 
 
 
 

2-78E 

Solution        The torque and the rpm of a double cylinder viscometer are 
given. The viscosity of the fluid is to be determined. 

 

Assumptions    1 The inner cylinder is completely submerged in the fluid. 2 
The viscous effects on the two ends of the inner cylinder are negligible. 3 The 

fluid is Newtonian. 
 

Analysis Substituting the given values, the viscosity of the fluid is determined 

to be 

  
     T        

 
      (1.2 lbf ft)(0.035/12 ft)        

 2.72  104 lbf  

s/ft2 

 

 
 
 
 
R 
 
 
 

 
l = 0.035 in 

fluid

4 2 

R
3
n L 

4 2 
(3 /12 ft) 

3 
(250 / 60 s

-1 
)(5 ft)

Discussion          This is the viscosity value at temperature that existed during 

the experiment. Viscosity is a strong function of temperature, and the values can be significantly different at different 

temperatures.
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Solution        A block is moved at constant velocity on an inclined surface. The force that needs to be applied in the 

horizontal direction when the block is dry, and the percent reduction in the required force when an oil film is applied on the 

surface are to be determined. 
 

Assumptions    1 The inclined surface is plane (perfectly flat, although tilted). 2 The friction coefficient and the oil film 

thickness are uniform. 3 The weight of the oil layer is negligible. 
 

Properties        The absolute viscosity of oil is given to be  = 0.012 Pas = 0.012 Ns/m2. 
 

Analysis           (a)  The  velocity  of  the  block  is  constant,  and  thus  its
acceleration and the net force acting on it are zero. A free body diagram of the 

block is given. Then the force balance gives 

V= 0.8 m/s

 Fx   0 : 

 Fy   0 : 

 

F1  F f  cos 20  FN1 sin 20  0 

FN1 cos 20  F f  sin 20 W  0 

(1) 

(2) 

F1 

 

 
200 

 
 

 
FN1

 

Ff 

200 

y

Friction force: F f    fFN1 (3) 200                                                 x

 
Substituting Eq. (3) into Eq. (2) and solving for FN1   gives 

W = 150 N

F     
            W               

 
            150 N             

 177.0 NN1      
cos 20  f sin 20 cos 20  0.27 sin 20

Then from Eq. (1): 

F1   F f  cos 20  FN1 sin 20  (0.27177 N) cos 20  (177 N) sin 20  105.5 N 

(b) In this case, the friction force is replaced by the shear force 

applied on the bottom surface of the block due to the oil. Because 

 
 
 

 
V= 0.8 m/s

of the no-slip condition, the oil film sticks to the inclined surface 

at the bottom and the lower surface of the block at the top. Then 

the shear force is expressed as 

F
shear  

  
w 
A

s 

50 cm                       0.4 mm 
 

F2 
 

Fshear = wAs

  A  
V 

s  
h 

200
 FN2

 0.012 N  s/m
2 0.5  0.2 m

2 
  0.8 m/s  

 
4 10

-4  
m 

W = 150 N

 2.4 N 
Replacing the friction force by the shear force in part (a),

 Fx   0 : 

 Fy   0 : 

 

F2   Fshear  cos 20  FN 2 sin 20  0 

FN 2 cos 20  Fshear  sin 20 W  0 

(4) 

(5)

 

Eq. (5) gives FN 2   (Fshear  sin 20 W ) / cos 20  [(2.4 N) sin 20  (150 N)]/ cos 20  160.5 N 

Substituting into Eq. (4), the required horizontal force is determined to be 
 

F2   Fshear  cos 20  FN 2 sin 20  (2.4 N) cos 20  (160.5 N) sin 20  57.2  N 

Then, our final result is expressed as
 

Percentage reduction in required force = 
F1 F2  100%  

105.5 57.2 
100%  45.8%
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F
1                                           

105.5 

Discussion       Note that the force required to push the block on the inclined surface reduces significantly by oiling the 

surface.
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

 

Solution        The velocity profile of a fluid flowing though a circular pipe is given. The friction drag force exerted on the 
pipe by the fluid in the flow direction per unit length of the pipe is to be determined. 

 

Assumptions    The viscosity of the fluid is constant. 
 

Analysis           The wall shear stress is determined from its definition to be
 

du 
 w   

 

 

 u 

 

 
max

 

 

 d  
1

 

 r 
n  


n 


 

 

 u 

 

 
max

 

 

nr 
n1

 

n
 

 

 
nu max 

dr r R dr  R    r R R       
r R              

R u(r) = umax(1-rn/Rn)

Note that the quantity du /dr is negative in pipe flow, and the negative sign 

is added to the w  relation for pipes to make shear stress in the positive 

(flow) direction a positive quantity. (Or, du /dr  = - du /dy since y = R – r). 
Then the friction drag force exerted by the fluid on the inner surface of the 
pipe becomes 

 
F   w Aw   

      max  
(2R)L  2numax L 

R 
Therefore, the drag force per unit length of the pipe is 

 

F / L  2numax  . 
 

Discussion       Note that the drag force acting on the pipe in this case is independent of the pipe diameter. 

 

 
 
R 

r 

 
0 

umax
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m 

 

 
V = 3 m/s 

 
 

F 

 
 

mm               
A

 

yA 

 

 
 
 

Vw= 0.3 m/s 

 
 

 

Solution        A thin flat plate is pulled horizontally through an oil layer sandwiched between two plates, one stationary 

and the other moving at a constant velocity. The location in oil where the velocity is zero and the force that needs to be 

applied on the plate are to be determined. 
 

Assumptions    1 The thickness of the plate is negligible. 2 The velocity profile in each oil layer is linear. 
 

Properties        The absolute viscosity of oil is given to be  = 0.027 Pas = 0.027 Ns/m2. 
 

Analysis           (a) The velocity profile in each oil layer relative to the fixed wall is as shown in the figure below.  The point 

of zero velocity is indicated by point A, and its distance from the lower plate is determined from geometric considerations 

(the similarity of the two triangles in the lower oil layer) to be 

2.6 y A    
  3   

 

   yA
 

 

= 0.23636 mm

y A              0.3 

 

Fixed wall 
 

 
 

h1=1 m 
 
 
 

h2=2.6 

y 
 

 

Moving wall 
 

(b) The magnitudes of shear forces acting on the upper and lower surfaces of the plate are 
 

Fshear,upper
 

 

  w, upper As
 du 
 As

 

 

 As
 V 0 

 (0.027 N  s/m
2 

)(0.3 0.3 m
2 
) 

    3 m/s      
 7.29 N

dy               h1 1.0 10-3 m

 

Fshear, lower
 

 

  w, lower As
 du 
 As

 

 

 As
 
V  Vw  

 (0.027 N  s/m
2 

)(0.3 0.3 m
2 
) 

[3 (0.3)] m/s 
 3.08 N

dy                h2 2.6 10-3 m

Noting that both shear forces are in the opposite direction of motion of the plate, the force F is determined from a force 

balance on the plate to be 
 

F  Fshear,upper   Fshear, lower    7.29  3.08  10.4 N 
 

 

Discussion       Note that wall shear is a friction force between a solid and a liquid, and it acts in the opposite direction of 

motion.
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o           i 

 

Solution        We are to determine the torque required to rotate the inner cylinder of two 

concentric cylinders, with the inner cylinder rotating and the outer cylinder stationary. We 

are also to explain what happens when the gap gets bigger. 

 
Assumptions    1 The fluid is incompressible and Newtonian. 2 End effects (top and bottom) 

are negligible. 3 The gap is very small so that wall curvature effects are negligible. 4 The 

gap is so small that the velocity profile in the gap is linear. 

 
Inner cylinder 

 

V 
 

h         y         u 
 

Outer cylinder

 

Analysis           (a) We assume a linear velocity profile between the two walls as sketched – the inner wall is moving at 

speed V = iRi and the outer wall is stationary. The thickness of the gap is h, and we let y be the distance from the outer 

wall into the fluid (towards the inner wall). Thus,
 

u  V 
 y 

 
and 

 

   
du 

  
V

h                    dy        h 

where  
 

h  R
o  

- R
i 

 
 

and 

 
 

V  
i 
R

i

 

Since shear stress  has dimensions of force/area, the clockwise (mathematically negative) tangential force acting along the 
surface of the inner cylinder by the fluid is 

 

F   A   
V 

2 R L   
 

i 
R

i    2 R L 
h        

i                
R   R        

i
 

 
But the torque is the tangential force times the moment arm Ri. Also, we are asked for the torque required to turn the inner 
cylinder. This applied torque is counterclockwise (mathematically positive). Thus,

 

2 L R 3 

 

2 L R 3

T  FR
i
                       i     i                           i     i  

R
o  
 R

i                           
h 

 

 

(b) The above is only an approximation because we assumed a linear velocity profile. As long as the gap is very small, 

and therefore the wall curvature effects are negligible, this approximation should be very good. Another way to think about 

this is that when the gap is very small compared to the cylinder radii, a magnified view of the flow in the gap appears 

similar to flow between two infinite walls (Couette flow). However, as the gap increases, the curvature effects are no longer 

negligible, and the linear velocity profile is not expected to be a valid approximation. We do not expect the velocity to 

remain linear as the gap increases. 

 
Discussion       It is possible to solve for the exact velocity profile for this problem, and therefore the torque can be found 

analytically, but this has to wait until the differential analysis chapter.
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n 

n1  n2   2

3                           1          2  
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Solution        A clutch system is used to transmit torque through an oil film between two identical disks. For specified 
rotational speeds, the transmitted torque is to be determined. 

 

Assumptions    1 The thickness of the oil film is uniform.  2 The rotational speeds of the disks remain constant. 
 

Properties        The absolute viscosity of oil is given to be  = 0.38 Ns/m2. 

 
 
 
 

Driving 

   
 
 

Driven 

      

 shaft shaft  

  

 30 cm   
 2 mm 

 

 
 

SAE 30W oil 

   

 
 

Analysis           The disks are rotting in the same direction at different angular speeds of 1 and of 2 . Therefore, we can 

assume one of the disks to be stationary and the other to be rotating at an angular speed of 1 2 . The velocity gradient 

anywhere in the oil of film thickness h is V /h where V  (1 2 )r is the tangential velocity. Then the wall shear stress 

anywhere on the surface of the faster disk at a distance r from the axis of rotation can be expressed as 

     
 du 

  
V 

  
 (1 2 )r 

w            
dr         h                h

Then the shear force acting on a differential area dA on the surface and the 

torque generation associated with it can be expressed as 

(1  2 )r
 

h 
 

2r

dF   w dA   (2r)dr 
h 

r 2
 

1r

dT  rdF   
 (1  2 )      (2r)dr  

 2(1  2 ) r 3dr
h 

Integrating, 

h 
 
 

4   D / 2                                         42(    ) 

T             
1          2  

D / 2                  2(     ) r   

r  dr 
(     ) D   

          
1          2 

h           r 0 h            4 
r 0 

32h

 

Noting that   2
 

, the relative angular speed is 
 

 
 1 min 

1   2   2   rad/rev 1450 1398 rev/min             5.445 rad/s , 
 60 s 

Substituting, the torque transmitted is determined to be 
 

2                                            4
 

T  
(0.38 N s/m  )(5.445 /s)(0.30 m)    

 0.82 N  m 
32(0.002 m) 

 

Discussion  Note  that  the  torque  transmitted  is  proportional  to  the  fourth  power  of  disk  diameter,  and  is  inversely 

proportional to the thickness of the oil film.



2-48 
PROPRIETARY MATERIAL. © 2014 by McGraw-Hill Education.  This is proprietary material solely for authorized instructor use. 
Not authorized for sale or distribution in any manner.  This document may not be copied, scanned, duplicated, forwarded, distributed, or 
posted on a website, in whole or part. 

Chapter 2 Properties of Fluids 
 

 

     

     

     

     

     

 

1          2  

T
q

, 
N

m
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Solution        We are to investigate the effect of oil film thickness on the transmitted torque. 
Analysis           The previous problem is reconsidered. Using EES software, the effect of oil film thickness on the 
torque transmitted is investigated. Film thickness varied from 0.1 mm to 10 mm, and the results are tabulated and 

(     ) D 
4  

plotted.  The relation used is T                             . The EES Equations window is printed below, followed by the 
32h 

tabulated and plotted results. 

mu=0.38 

n1=1450 "rpm" 

w1=2*pi*n1/60 "rad/s" 

n2=1398 "rpm" 

w2=2*pi*n2/60 "rad/s" 

D=0.3 "m" 

Tq=pi*mu*(w1-w2)*(D^4)/(32*h) 

 
Film thickness 

h, mm 
Torque transmitted 

T, Nm 

0.1 16.46 
0.2 8.23 

0.4 4.11 

0.6 2.74 

0.8 2.06 

1 1.65 

2 0.82 

4 0.41 

6 0.27 

8 0.21 

10 0.16 
 

20 
 

 
 

16 
 

 
 

12 
 

 
 

8 
 

 
 

4 
 

 
 

0 
0                    2                    4                    6                    8                   10 

h, mm 
Conclusion Torque transmitted is inversely proportional to oil film thickness, and the film thickness should be as small as 
possible to maximize the transmitted torque. 

 
Discussion       To obtain the solution in EES, we set up a parametric table, specify h, and let EES calculate T for each 

value of h.
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Solution        The viscosities of carbon dioxide at two temperatures are given. The constants of Sutherland correlation for 

carbon dioxide are to be determined and the viscosity of carbon dioxide at a specified temperature is to be predicted and 

compared to the value in table A-10. 
 

Analysis           Sutherland correlation is given by Eq. 232 as 

 

 
 

where  is the absolute temperature. Substituting the given values we have 

 

 
 

 
 

which is a nonlinear system of two algebraic equations. Using EES or any other computer code, one finds the following 

result: 

 

 
 

Using these values the Sutherland correlation becomes 

 

 
 

Therefore the viscosity at 100  is found to be 

 

 
 

The agreement is perfect and within approximately 0.1%.
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Solution        The  variation  of  air  viscosity for  a  specified  temperature  range  is to  be  evaluated  using  power  and 
Sutherland laws and compared to values in Table A-9. 

 

Analysis           For the reference temperature we have  (Table A9). Using an Excel sheet, 

we end up with the following calculations: 

 
T (K) Table A-9 Power-law Sutherland PL-Error % Suth Error % 

373 2.181E-05 2.12848E-05 2.17277E-05 2.41 0.38 

393 2.264E-05 2.20382E-05 2.25649E-05 2.66 0.33 

413 2.345E-05 2.27789E-05 2.33802E-05 2.86 0.30 

433 0.0000242 2.35078E-05 2.41752E-05 2.86 0.10 

453 2.504E-05 2.42255E-05 2.4951E-05 3.25 0.36 

473 2.577E-05 2.49326E-05 2.57089E-05 3.25 0.24 

523 0.0000276 2.66583E-05 2.75316E-05 3.41 0.25 

573 2.934E-05 2.83297E-05 2.92627E-05 3.44 0.26 

623 3.101E-05 2.9953E-05 3.09135E-05 3.41 0.31 

673 3.261E-05 3.15332E-05 3.24935E-05 3.30 0.36 

723 3.414E-05 3.30748E-05 3.40104E-05 3.12 0.38 

773 3.563E-05 3.45811E-05 3.54707E-05 2.94 0.45 

873 3.846E-05 3.74996E-05 3.82427E-05 2.50 0.56 

973 4.111E-05 4.03082E-05 4.08449E-05 1.95 0.64 

1073 4.362E-05 4.30219E-05 4.33038E-05 1.37 0.73 

1173 0.000046 4.56524E-05 4.56397E-05 0.76 0.78 

1273 4.826E-05 4.82088E-05 4.78688E-05 0.11 0.81 
 

Following plot shows the accuracy of both model. 
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
w 

R 2 

 

Solution        For flow over a plate, the variation of velocity with distance is given. A relation for the wall shear stress is 

to be obtained. 

Assumptions    The fluid is Newtonian. 

Analysis           Noting that u(y) = ay – by2, wall shear stress is determined from its definition to be 

2

     
 du 

w           
dy 

 
 
y0 

  
 d (ay by   )

 
dy 

 
 
y0 

 (a  2by) 
 
y0 

 aμ

 

Discussion       Note that shear stress varies with vertical distance in this case. 
 
 
 
 
 

 
2-88 

Solution        The velocity profile for laminar one-dimensional flow through a circular pipe is given. A relation for 
friction drag force exerted on the pipe and its numerical value for water are to be determined. 

 

Assumptions    1 The flow through the circular pipe is one-dimensional. 2 The fluid is Newtonian.
 

Properties        The viscosity of water at 20C is given to be 0.0010 kg/ms. 

 

u(r) = umax(1-r2/R2)

 
           


Analysis           (a) The velocity profile is given by u(r)  umax 1 

R 
2                                                                  R

           

 
the pipe, and umax is the maximum flow velocity, which occurs at the 

center, r = 0. The shear stress at the pipe surface is expressed as 

r 
 

0 

umax

        2  
     

du 
 

 u
  d  

1 
 r    




 

 u
 2r 2u max 

dr r R 

max 
dr  2 

 r R 

max 
R r R              R

Note that the quantity du/dr is negative in pipe flow, and the negative sign is added to the w relation for pipes to make 

shear stress in the positive (flow) direction a positive quantity. (Or, du/dr = du/dy since y = R – r). Then the friction drag 

force exerted by the fluid on the inner surface of the pipe becomes
 

F    A   
 2umax  (2 RL)  4πμLu

D          w    s               
R 

max  

 

      1 N      
                (b) Substituting the values we get FD   4Lumax   4 (0.0010 kg/m  s)(30 m)(3 m/s)

 1 kg  m/s 

2  
 1.13 N 



Discussion       In the entrance region and during turbulent flow, the velocity gradient is greater near the wall, and thus the 

drag force in such cases will be greater.
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



                 

w 
R 2 

 

Solution        The velocity profile for laminar one-dimensional flow through a circular pipe is given. A relation for 
friction drag force exerted on the pipe and its numerical value for water are to be determined. 

 

Assumptions    1 The flow through the circular pipe is one-dimensional. 2 The fluid is Newtonian.

Properties        The viscosity of water at 20C is given to be 0.0010 kg/ms. 
 

u(r) = umax(1-r2/R2)

      r 
2  

           
                                                                           R 

where R is the radius of the pipe, r is the radial distance from the center of                                                                     r

 
center, r = 0. The shear stress at the pipe surface can be expressed as 

 

0 

umax

        2  

     
du 

 

 u
  d  

1 
 r    




 

 u
 2r 2u max 

dr r R 

max 
dr  2 

 r R 

max 
R r R              R

Note that the quantity du/dr is negative in pipe flow, and the negative sign is added to the w relation for pipes to make 

shear stress in the positive (flow) direction a positive quantity. (Or, du/dr = du/dy since y = R – r). Then the friction drag 

force exerted by the fluid on the inner surface of the pipe becomes
 

F    A   
 2umax  (2 RL)  4πμLu

D          w    s               
R 

max  

 

     1 N      
(b) Substituting, we get F

D  
 4Lu

max  
 4 (0.0010 kg/m  s)(30 m)(7 m/s) 

1 kg  m/s2    2.64 N
 

Discussion       In the entrance region and during turbulent flow, the velocity gradient is greater near the wall, and thus the 

drag force in such cases will be larger.
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 

2 3 



 

Solution        A frustum shaped body is rotating at a constant 

angular  speed  in  an  oil  container.  The  power  required  to 

maintain this motion and the reduction in the required power 

input when the oil temperature rises are to be determined. 

Assumptions    The thickness of the oil layer remains constant. 

Properties        The absolute viscosity of oil is given to be  = 

0.1 Pas = 0.1 Ns/m2 at 20C and 0.0078 Pas at 80C. 

Analysis           The velocity gradient anywhere in the oil of 

film thickness h is V/h where V = r is the tangential velocity. 

Then the wall shear  stress  anywhere  on the surface  of the 

frustum at a distance r from the axis of rotation is 

 
 
 
 
 
 
 
 
 
 
 
 
L = 12 cm 

 

 
 
 
 
 
 
 
 
 
D = 12 cm 
 

 
 
d = 4 cm 

 
 
 
 

 
Case

     
 du 

  
V 

  
r 

w            
dr         h         h 

SAE 10W oil of 
z               film thickness h

The shear force acting on differential area dA on the surface,                                                           r 
the torque it generates, and the shaft power associated with it 
are expressed as

 

dF   dA   
r 

dA 
w                   

h 

r 
2 

dT  rdF          dA 
h 
2

T  


h 
r 2 dA 

A 
W s

h 

 T  
  

h 
r 2 dA 

A

Top surface: For the top surface, dA  2rdr . Substituting and integrating,
 

2                                                         2                                            2
 

4   
D / 2                  

2     4

W           
  D / 2                               2  

r  (2r)dr 

D / 2                  2  r   

r  dr   
 D  

sh, top h    r 0 h     r 0 h       4 
r 0 

32h 
 

2    4
 

Bottom surface: A relation for the bottom surface is obtained by replacing D by d, W sh, 

bottom 

 
d   

32h

Side surface: The differential area for the side surface can be expressed as dA  2rdz . From geometric considerations, the
 

variation of radius with axial distance is expressed as r  
 d 
 

 D d 
z .

2      2L

Differentiating gives dr   
D d 

dz or  dz  
  2L    

dr . Therefore, dA  2dz  
 4L  

rdr .  Substituting and integrating,

 

 

 2
 

2L 
 

4L
 

D  d 
 

4 2 
L

 

 

 

4 2 
L r 

4
 

 
D / 2 

D  d 
 

 2 
L(D 

2 
 d 

2 
)

D / 2 

              
2                                 

 D / 2 
3                                    

Wsh, top  
h    r 0  

r
 

rdr                             r 
D  d           h(D  d )  r d / 2 

dr 
h(D  d ) 


4 

r d / 2 
16h(D  d )

Then the total power required becomes 
 

W sh, total   W sh, top W sh, bottom 

W sh,side  


 

 

2 
D 

4                  4
 

1 (d / D) 

 

 

2L[1 (d / D) 
4 

)]
                             ,

 

 
where d/D = 4/12 = 1/3.  Substituting, 

32h      D  d         
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W              W               27 

(0.1 N  s/m 
2 

)(200 /s) 
2 

(0.12 m) 
4   4       2(0.12 m) [1 (1 / 3) 

4 
)]  1 W    

W sh, total  


1 (1 / 3)                  270 W

32(0.0012 m)                   (0.12  0.04) m  1 Nm/s 

Noting that power is proportional to viscosity, the power required at 80C is 
2

W sh, total, 

80C 


     80C   

W  
20C 

 
sh, total, 20C  

 0.0078 N  s/m    
(270 W)  21.1 W 

0.1 N  s/m
2

Therefore, the reduction in the requires power input at 80C is Reduction 

which is about 92%. 

 
sh, total, 20C           sh, total, 80C 0  21.1  249 W ,

Discussion       Note that the power required to overcome shear forces in a viscous fluid greatly depends on temperature. 
-
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o           i 

 

Solution        We are to determine the torque required to rotate the outer cylinder of two 
concentric cylinders, with the outer cylinder rotating and the inner cylinder stationary. 

 
Assumptions    1 The fluid is incompressible and Newtonian. 2 End effects (top and bottom) 

are negligible. 3 The gap is very small so that wall curvature effects are negligible. 4 The gap 

is so small that the velocity profile in the gap is linear. 

 

 
Inner cylinder 

 
h         y         u 

V 
Outer cylinder

 

Analysis           We assume a linear velocity profile between the two walls – the outer wall is moving at speed V = oRo and 

the inner wall is stationary. The thickness of the gap is h, and we let y be the distance from the outer wall into the fluid 
(towards the inner wall) as sketched. Thus,

 

u  V 
 h y 

 
and 

 

   
du 

  
V

h                       dy          h 

where  
 

h  R
o  

- R
i 

 
 

and 

 
 

V  
o 
R

o

 

Since shear stress  has dimensions of force/area, the clockwise (mathematically negative) tangential force acting along the 
surface of the outer cylinder by the fluid is 

 

F   A   
V 

2 R L   


o 
R

o   2 R L 
h        

o                
R   R        

o
 

 
But the torque is the tangential force times the moment arm Ro. Also, we are asked for the torque required to turn the inner 
cylinder. This applied torque is counterclockwise (mathematically positive). Thus,

 

2 L R 3 

 

2 L R 3

T  FR
o

                       o     o                           o     o  

R
o  
 R

i                             
h 

 

 

Discussion       The above is only an approximation because we assumed a linear velocity profile. As long as the gap is very 

small, and therefore the wall curvature effects are negligible, this approximation should be very good. It is possible to solve 

for the exact velocity profile for this problem, and therefore the torque can be found analytically, but this has to wait until 

the differential analysis chapter.
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Solution        A large plate is pulled at a constant speed over a fixed plate. The space between the plates is filled with 

engine oil. The shear stress developed on the upper plate and its direction are to be determined for parabolic and linear 

velocity profile cases. 
 

Assumptions    1 The thickness of the plate is negligible. 
 

Properties        The viscosity of oil is  = 0.8374 Pas (Table A-7). 
 

Analysis 
 

y 
 
 

U = 
 

 
 

h = 5 mm Engine oil

 

 
 
 
 

Considering  a  parabolic  profile  we  would  have  ,  where    is  a  constant.    Since    when 

, we write 

 

 
 

Then the velocity profile becomes 

 

 
 

Assuming Newtonian behavior, the shear stress on the upper wall is 

 

 
 

or 

 

 
 

Since dynamic viscosity of oil is  (see Table A7). If we assume a linear profile we will have 

 

 
 

Then the shear stress in this case would be 

 

 
 

Therefore we conclude that the linear assumption is not realistic since it gives over prediction.
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Solution        A cylinder slides down from rest in a vertical tube whose inner surface is covered by oil. An expression for 
the velocity of the cylinder as a function of time is to be derived. 

 

Assumptions    1 Velocity profile in the oil film is linear. 
 

Analysis 

 
D 

 
 
 
 
 

 
Cylinder                                 L 

 
 
 
 
 
 
 
 
 

 
Oil film, h 

 
 
 
 

Assuming a linear velocity profile in the oil film the drag force due to wall shear stress can be expressed as 
 

 
 
 

where    is the instantaneous velocity of the cylinder and 
 

 
 
 

Applying Newton’s second law of motion for the cylinder, we write 

 

where  is the time. This is a first-order linear equation and can be expressed in standard form as follows: 
 

 
whose solution is obtained to be 

 

 
As             the second term will vanish leaving us with 

 

 

which is constant. This constant is referred to as “limit velocity, ”. Rearranging for viscosity, we have 
 

 
 

Therefore this equation enables us to estimate dynamic viscosity of oil provided that the limit velocity of the cylinder is 

precisely measured.
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V = 5 m/s 

 
 

F 

  

 
 

 

Solution        A thin flat plate is pulled horizontally through the mid plane of an oil layer sandwiched between two 

stationary plates. The force that needs to be applied on the plate to maintain this motion is to be determined for this case 

and for the case when the plate . 
 

Assumptions    1 The thickness of the plate is negligible. 2 The velocity profile in each oil layer is linear. 
 

Properties        The absolute viscosity of oil is given to be  = 0.9 Ns/m2. 
 

Analysis           The velocity profile in each oil layer relative to the fixed wall is as shown in the figure. 

 
Stationary surface 

 
 
 

h1=2 cm 
 
 

h2=2 cm 

y 
 

Stationary surface 
 

 

The magnitudes of shear forces acting on the upper and lower surfaces of the moving thin plate are
 

Fshear, upper
 

 

  w, upper As
 

du 
 As

 

 

 As
 
V 0 

 (0.9 N  s/m2 )(0.5 2 m 2 ) 
 5 m/s   

 225 N

dy               h1 0.02 m

 
Fshear, lower

 

 

  w, lower As
 

 

du 
 As

 

 

 As
 
V Vw   (0.9 N  s/m2 )(0.5 2 m 2 ) 

 5 m/s   
 225 N

dy                h2 0.02 m

Noting that both shear forces are in the opposite direction of motion of the plate, the force F is determined from a force 

balance on the plate to be 

F  Fshear, upper   Fshear,lower    225  225  450 N 

When the plate is 1 cm from the bottom surface and 3 cm from the top surface, the force F becomes
 

Fshear, upper
 

 

  w, upper As
 

du 
 As

 

 

 As
 
V 0 

 (0.9 N  s/m2 )(0.5 2 m 2 ) 
 5 m/s   

 150 N

dy               h1 0.03 m

 
Fshear, lower

 

 

  w, lower As
 

 

du 
 As

 

 

 As
 
V 0 

 (0.9 N  s/m2 )(0.5 2 m 2 ) 
 5 m/s   

 450 N

dy               h2 0.01m

Noting that both shear forces are in the opposite direction of motion of the plate, the force F is determined from a force 

balance on the plate to be 

F  Fshear, upper   Fshear,lower    150  450  600 N 

Discussion       Note that the relative location of the thin plate affects the required force significantly.
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2-95 
Solution        A thin flat plate is pulled horizontally through the mid plane of an oil layer sandwiched between two 

stationary plates. The force that needs to be applied on the plate to maintain this motion is to be determined for this case 

and for the case when the plate . 
 

Assumptions    1 The thickness of the plate is negligible. 2 The velocity profile in each oil layer is linear. 
 

Properties        The absolute viscosity of oil is  = 0.9 Ns/m2 in the lower part, and 4 times that in the upper part. 
 

Analysis           We measure vertical distance y from the lower plate. The total distance between the stationary plates is 

h  h1  h2   4 cm , which is constant. Then the distance of the moving plate is y from the lower plate and h – y from the 

upper plate, where y is variable. 

 
Stationary surface 

 

 
 

h1=h - y 
 
 

h2=y 

y 
 

Stationary surface 
 

The shear forces acting on the upper and lower surfaces of the moving thin plate are
 

F                
 

A    A   
du  

 


A   
   V  

shear, upper 

 

 

F               

w, upper    s 

 

 

A   

upper 

 
 

A
 

s  
dy 

 

du  
 



upper 

 
 

A
 

s  
h  y 

 

V

shear, lower w, lower    s lower s  
dy 

lower    s   
y

Then the total shear force acting on the plate becomes 
 




 
 
   V       




 
 
   V   

 

 

  upper 
 

 

 

 low er  

F  Fshear, upper  Fshear,lower   upper As  
h  y 


 lower As  

h  y 
 AsV  

h  y  
     

y    


 
The value of y that will minimize the force F is determined by setting 

dF 
 0 : 

dy

 upper           low er 
 

0 
(h  y) 

2           
y 

2
 

 

    y    


h  y 

 low er  

 upper

Solving for y and substituting, the value of y that minimizes the shear force is determined to be 

    low er  /  upper                    1 / 4   
y                                 h                 (4 cm)  1cm

1    lower /  upper 

d 2 F 

1   1/ 4

Discussion       By showing that 
 

not a maximum. 

 

dy 
2

 

 0  at y = 1 cm, it can be verified that F is indeed a minimum at that location and
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2-97C 
Solution        We are to determine whether the level of liquid in a tube will rise or fall due to the capillary effect. 
 

Analysis           The liquid level in the tube will drop since the contact angle is greater than 90, and cos(110) < 0. 
 
 
non-wetting liquid with a contact angle (with glass) that is greater than 90o. 

 

 
2-98C 
Solution        We are to define and discuss the capillary effect. 
 
 
caused by the net effect of the cohesive forces (the forces between like molecules, like water) and adhesive forces 

forces between unlike molecules, like water and glass).  The capillary effect is proportional to the cosine of the con 

angle, which is the angle that the tangent to the liquid surface makes with the solid surface at the point of contact. 
 

Discussion       The contact angle determines whether the meniscus at the top of the column is concave or convex. 

 

 
2-99C 

 

Solution We are to analyze the pressure difference between inside and outside of a soap bubble. 

Analysis  

the soap film.  

Discussion You can make an analogy between the soap film and the skin of a balloon. 

 

 
2-100C 
Solution        We are to compare the capillary rise in small and large diameter tubes. 
 

Analysis           The capillary rise is inversely proportional to the diameter of the tube, and thus capillary rise is greate 

the smaller-diameter tube. 

Discussion       Note however, that if the tube diameter is large enough, there is no capillary rise (or fall) at all. Rather, 

the tube does not change for large diameter tubes. 

 

 
 
 

Surface Tension and Capillary Effect 
 
 

 
2-96C 
Solution        We are to define and discuss surface tension. 

 

Analysis           The magnitude of the pulling force at the surface of a liquid per unit length is called surface tension s. 

It is caused by the attractive forces between the molecules. The surface tension is also surface energy (per unit area) since it 
represents the stretching work that needs to be done to increase the surface area of the liquid by a unit amount. 

 

Discussion       Surface tension is the cause of some very interesting phenomena such as capillary rise and insects that can 

walk on water. 
 
 
 
 
 
 
 

 

Discussion       This liquid must be a non-wetting liquid when in contact with the tube material. Mercury is an example of a 
 
 
 
 
 
 

 

Analysis           The capillary effect is the rise or fall of a liquid in a small-diameter tube inserted into the liquid. It is 

(the 

tact 
 
 
 
 
 
 
 
 

 
The pressure inside a soap bubble is greater than the pressure outside, as evidenced by the stretch of 

 
 
 
 
 
 
 
 

 
r in 

 
 

the 
upward (or downward) rise of the liquid occurs only near the tube walls; the elevation of the middle portion of the liquid in
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2-101 
Solution        An air bubble in a liquid is considered. The pressure difference between the inside and outside the bubble is 
to be determined. 

 

Properties        The surface tension s is given for two cases to be 0.08 and 0.12 N/m. 
 

Analysis           Considering that an air bubble in a liquid has only one interface, he pressure difference between the inside 

and the outside of the bubble is determined from 

2
Pbubble   Pi   P0           s 

 

R 
 

Substituting, the pressure difference is determined to be: 

2(0.08 N/m)
 

liquid

(a) s = 0.08 N/m: 

 
(b) s = 0.12 N/m: 

Pbubble  

 
Pbubble  

 
0.00015/2 m 

2(0.12 N/m) 

0.00015/2 m 

 2133 N/m
2  
 2.13 kPa 

 
 3200 N/m

2  
 3.20 kPa 

Air 
bubble 

P

Discussion       Note that a small gas bubble in a liquid is highly pressurized. 
The smaller the bubble diameter, the larger the pressure inside the bubble. 

 

 
 

2-102E 
Solution        A soap bubble is enlarged by blowing air into it. The required work input is to be determined. 

 

Properties        The surface tension of solution is given to be s = 0.0027 lbf/ft. 
 

Analysis           The work associated with the stretching of a film is the surface tension work, and is expressed in differential 

form as Ws    s dAs . Noting that surface tension is constant, the surface tension work is simply surface tension multiplied 

by the change in surface area,
 

W     (A
 

 

 A )  2
 

(D
2  
 D

2 
)
 

 

Air

s           s      2         1 s       2          1

 

The factor 2 is due to having two surfaces in contact with air. Substituting, the required work 

input is determined to be 

 

 
Soap

W   2 (0.0027 lbf/ft)(2.7 /12 ft) 
2 
 (2.4 /12 ft) 

2  1 Btu 
  2.32  10-7 

 

Btu bubble

s                                                                                                            
 778.169 lbf  ft                                                              P 

Discussion       Note that when a bubble explodes, an equivalent amount of energy is released 

to the environment. 
 

 
 
 

2-103 
Solution        A glass tube is inserted into a liquid, and the capillary rise is measured. 
The surface tension of the liquid is to be determined. 

 

Assumptions    1 There are no impurities in the liquid, and no contamination  on  the 

surfaces of the glass tube. 2 The liquid is open to the atmospheric air. 
 

Properties        The density of the liquid is given to be 960 kg/m3. The contact angle is 

given to be 15. 
 

Analysis           Substituting the numerical values, the surface tension is determined from 
the capillary rise relation to be 

 
 
 
 
 

Air                           h 

 
Liquid

gRh
 

(960 kg/m 
3 
)(9.81m/s 

2 
)(0.0012 / 2 m)(0.005 m)       1 N       

                                                                                             s    2 cos  
2(cos15) 
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
 

 1 kg  m/s 
2  

 

0.0146 

N/m 


 

Discussion       Since surface tension depends on temperature, the value determined is valid at the liquid’s temperature.
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2-104 
Solution        The diameter of a soap bubble is given. The gage pressure inside the bubble is to be determined. 

 

Assumptions    The soap bubble is in atmospheric air. 
 

Properties        The surface tension of soap water at 20C is s = 0.025 N/m.                     P0 
 

Analysis           The pressure difference  between  the inside and the outside of a 

bubble is given by
 

Pbubble   Pi   P0  
4s 

R 

Soap 
bubble 

P

In the open atmosphere P0   = Patm, and thus 

pressure. Substituting, 

Pbubble is equivalent  to the gage

 
D = 0.200 cm: P

i,gage
 

 
 P

bubble 

 

 
 4(0.025 N/m)  

 100 N/m
2  
 100 Pa 

0.00200/2 m

 

D = 5.00 cm: P
i ,gage

 

 

 P
bubble  

 4(0.025 N/m) 
 4 N/m

2  
 4 Pa 

0.0500/2 m

 

Discussion       Note that the gage pressure in a soap bubble is inversely proportional to the radius (or diameter). Therefore, 

the excess pressure is larger in smaller bubbles. 
 
 
 
 
 
 
 

2-105E 
Solution        A slender glass tube is inserted into kerosene. The capillary rise of kerosene in the tube is to be determined. 

 

Assumptions    1 There are no impurities in the kerosene, and no contamination on the 

surfaces of the glass tube. 2 The kerosene is open to the atmospheric air. 
 

Properties        The  surface  tension   of  kerosene-glass  at   68F  (20C)  is  s    = 
0.0280.06852 = 0.00192 lbf/ft. The density of kerosene at 68F is  = 51.2 lbm/ft3. 

The contact angle of kerosene with the glass surface is given to be 26. 
 

Analysis           Substituting the numerical values, the capillary rise is determined to be
 

2 cos
 

2 0.00192 lbf/ft  cos26
 

 32.2 lbm  ft/s2  

h      s                                                                                                        
 gR 51.2 lbm/ft

3 32.2 ft/s
2 0.015 / 12 ft   1 lbf         

 0.0539 ft  0.650 in 
 

Discussion       The capillary rise in this case more than half of an inch, and thus it is clearly noticeable.
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Solution        The force acting on the movable wire of a liquid film suspended on a U-shaped wire frame is measured. The 
surface tension of the liquid in the air is to be determined. 

 

Assumptions    1 There are no impurities in the liquid, and no contamination on the surfaces of the wire frame. 2 The liquid 

is open to the atmospheric air. 
 

Analysis           Substituting the numerical values, the surface tension is determined from the surface tension force relation 

to be 

    
 F  

 
 0.024 N   

 0.15 N/ms       
2b 2(0.08 m) Liquid 

b              film                        F

Discussion       The surface tension depends on temperature. Therefore, the value 

determined is valid at the temperature of the liquid. 
 
 
 
 
 
 
 

2-107 
Solution        A capillary tube is immersed vertically in water. The height of water rise in the tube is to be determined. 

 

Assumptions    1 There are no impurities in water, and no contamination on the surfaces of the tube.. 2 Water is open to the 

atmospheric air. 
 

Analysis              The capillary rise is determined from Eq. 238 to be 

 

 
 

 
 
 
 
 
 
 

2-108 

Solution        A capillary tube is immersed vertically in water. The maximum capillary rise and tube diameter for the 
maximum rise case are to be determined. 

 

Assumptions    1 There are no impurities in water, and no contamination on the surfaces of the tube. 2 Water is open to the 

atmospheric air. 
 

Properties           The surface tension is given to be s = 1 N/m. 

 

Analysis              At the liquid side of the meniscus . Therefore the capillary rise would be 

 

 
 

Then the tube diameter needed for this capillary rise is, from Eq. 338, 
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2-109 
Solution        A steel ball floats on water due to the surface tension effect. The maximum diameter of the ball is to be 
determined, and the calculations are to be repeated for aluminum.

 

Assumptions  1  The water is  pure, and its 

temperature  is constant.  2  The  ball  is dropped  on 

water slowly so that the inertial effects are negligible. 

3 The contact angle is taken to be 0 for maximum 
diameter. 

 

Properties        The surface tension of water at 20C 

is s  = 0.073 N/m. The contact angle is taken to be 

0. The densities of steel and aluminum are given to 

be steel = 7800 kg/m3 and Al = 2700 kg/m3. 
 

Analysis           The  surface  tension  force  and  the 

weight of the ball can be expressed as 


 

 
 
 
 
 
 
 
 
 
W = mg

Fs   D s and W  mg  gV  gD
3  

/ 6

When the ball floats, the net force acting on the ball in the vertical direction is zero. Therefore, setting Fs   W and solving

 

for diameter D gives  D 

 
balls become 

6s  
. Substititing the known quantities, the  maximum diameters for the steel and aluminum 

g

 

6                   6(0.073 N/m)
  1 kg  m/s 

2 
       s                                                                                                          3

Dsteel  
g   

     
(7800 kg/m 3 )(9.81m/s 2 )       1 N  

 2.410 


m  2.4 mm

 

6                   6(0.073 N/m)
 

 

 1 kg  m/s 
2 

       s                                                                                                          3
DAl  

g   
     

(2700 kg/m 3 )(9.81m/s 2 )       1 N  
 4.110 


m  4.1mm

Discussion       Note that the ball diameter is inversely proportional to the square root of density, and thus for a given 

material, the smaller balls are more likely to float. 
 
 
 
 

2-110 
Solution        Nutrients dissolved in water are carried to upper parts of plants. 

The height to which the water solution rises in a tree as a result of the capillary 

effect is to be determined. 
 

Assumptions    1 The solution can be treated as water with a contact angle of 

15. 2 The diameter of the tube is constant. 3 The temperature of the water solution 

is 20C. 
 

Properties        The surface tension of water at 20C is s  = 0.073 N/m. The 

density of water solution can be taken to be 1000 kg/m3. The contact angle is given 

to be 15. 
 

Analysis           Substituting   the   numerical   values,   the   capillary   rise   is 
determined to be

 

2  cos
 

2(0.073 N/m)(cos15)
 

 

 1 kg  m/s 
2 

       s                                                                                                                            
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

h 
gR 


(1000 kg/m 

 

3 
)(9.81m/s 

2
 

 

)(1.310
6

 m)       1 N  
 11.1m 



 

Discussion       Other effects such as the chemical potential difference also cause 

the fluid to rise in trees.
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Review Problems 

 
 

 
2-111 

Solution        A relation is to be derived for the capillary rise of a liquid between two large parallel plates a distance t 

apart inserted into a liquid vertically. The contact angle is given to be . 
 

Assumptions    There are no impurities in the liquid, and no contamination on the surfaces of the plates. 
 

Analysis           The magnitude of the capillary rise between two large parallel plates can be determined from a force 

balance on the rectangular liquid column of height h and width w between the plates. The bottom of the liquid column is at 

the same level as the free surface of the liquid reservoir, and thus the pressure there must be atmospheric pressure. This will 

balance the atmospheric pressure acting from the top surface, and thus these two effects will cancel each other. The weight 

of the liquid column is                                                                                                                                     
t
 

 

W  mg  gV  g(w t  h) 

 
Equating the vertical component of the surface tension force to the weight gives 

W  Fsurface        g(w t  h)  2w s cos

 
Canceling w and solving for h gives the capillary rise to be 

 

Capillary rise: 
2   cos                                                                                                             W 

h 
gt

 

Discussion       The relation above is also valid for non-wetting liquids (such as mercury in glass), and gives a capillary 

drop instead of a capillary rise.



2-68 
PROPRIETARY MATERIAL. © 2014 by McGraw-Hill Education.  This is proprietary material solely for authorized instructor use. 
Not authorized for sale or distribution in any manner.  This document may not be copied, scanned, duplicated, forwarded, distributed, or 
posted on a website, in whole or part. 

Chapter 2 Properties of Fluids 

2-112 
 

 

 

Solution        A journal bearing is lubricated with  oil whose viscosity is 

known. The torques needed to overcome the bearing friction during start-up 

and steady operation are to be determined. 
 

Assumptions    1 The gap is uniform, and is completely filled with oil. 2 The 

end  effects  on  the  sides  of  the  bearing  are  negligible.  3  The  fluid  is 

Newtonian. 
 

Properties        The viscosity of oil is given to be 0.1 kg/ms at 20C, and 

0.008 kg/ms at 80C. 
 

Analysis           The radius of the shaft is R = 0.04 m. Substituting the given 

values, the torque is determined to be 

 
 
 
 

 
R 
 
 
 

 
l = 0.08 cm 

fluid

At start up at 20C: 
2    3

 

 

 
2                    3                          -1

T   
 4  R n L 

 (0.1 kg/m  s) 
4  (0.04 m)  (1500 / 60 s  )(0.55 m) 

 4.34 N  m
 

During steady operation at 80C: 
0.0008 m

2    3                                                        2                    3                          -1
 

T   
 4  R n L 

 (0.008 kg/m  s) 
4  (0.04 m)  (1500 / 60 s  )(0.55 m) 

 0.347 N  m 
                                                          0.0008 m 

 

Discussion       Note that the torque needed to overcome friction reduces considerably due to the decrease in the viscosity 
of oil at higher temperature. 

 

 
 
 
 
 
 

2-113 
Solution        A U-tube with a large diameter arm contains water. The difference between the water levels of the two arms 
is to be determined. 

 

Assumptions    1 Both arms of the U-tube are open to the atmosphere. 2 Water is at room temperature. 3 The contact angle 

of water is zero,  = 0. 
 

Properties        The surface tension and density of water at 20C are s = 0.073 N/m and  = 1000 kg/m3. 
 

Analysis           Any difference in water levels between the two arms is due to surface tension effects and thus capillary rise. 

Noting that capillary rise in a tube is inversely proportional to tube diameter there will be no capillary rise in the arm with a 

large diameter. Then the water level difference between the two arms is simply the capillary rise in the smaller diameter 

arm,
 

2  cos
 

2(0.073 N/m)( cos 0) 
 

 1 kg  m/s
2   1000 mm 

h      s                                                   5.95 mm

 gR (1000 kg/m3 )(9.81 m/s2 )(0.0025 m)      1 N      1 m     

 

Discussion       Note that this is a significant difference, and shows the importance of 

using a U-tube made of a uniform diameter tube. 

 
h
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Solution        The cylinder conditions before the heat addition process is specified. The pressure after the heat addition 

process is to be determined. 

Assumptions    1 The contents of cylinder are approximated by the air properties.
2 Air is an ideal gas. 

Analysis           The final pressure may be determined from the ideal gas relation 

Combustion 
chamber 

1.8 MPa

T2 
  1300 273.15 K  450C

P2  
 P1   (1800 kPa)  3916 kPa

T1              450  273.15 K 

Discussion       Note that some forms of the ideal gas equation are more 
convenient to use than the other forms. 

 
 
 
 
 
 
 
 

2-115 

Solution        A rigid tank contains an ideal gas at a specified state. The final temperature when half the mass is 

withdrawn and final pressure when no mass is withdrawn are to be determined. 

Analysis           (a) The first case is a constant volume process. When half of the gas is withdrawn from the tank, the final 

temperature may be determined from the ideal gas relation as 

m   P               100 kPa 
T2      1     2  T1  2 (600 K)  400 K

m2   P1  300 kPa  Ideal gas 
300 kPa

(b) The second case is a constant volume and constant mass process. The ideal gas 
relation for this case yields 

600 K

T2 
  400 K 

P2  
 P1   (300 kPa)  200 kPa

T1              600 K 

Discussion       Note that some forms of the ideal gas equation are more convenient to use than the other forms. 
 
 
 
 
 

 
2-116 
Solution        The pressure in an automobile tire increases during a trip while its volume remains constant. The percent 
increase in the absolute temperature of the air in the tire is to be determined. 

 

Assumptions    1 The volume of the tire remains constant. 2 Air is an ideal gas. 
 

Analysis           Noting that air is an ideal gas and the volume is constant, the ratio of absolute temperatures after and before 

the trip are
 

P1V1     
P2V 2  

 

 
T2    

P2  = 
 335 kPa 

= 1.047

T1             T2 T1        P1 320 kPa
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Therefore, the absolute temperature of air in the tire will increase by 4.7% during this trip. 

 
Discussion       This may not seem like a large temperature increase, but if the tire is originally at 20oC (293.15 K), the 
temperature increases to 1.047(293.15 K) = 306.92 K or about 33.8oC.
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V V 

m m m 

m 

V 

m 

 

2-117E 
Solution        The minimum pressure on the suction side of a water pump is given. The maximum water temperature to 
avoid the danger of cavitation is to be determined. 

 

Properties        The saturation temperature of water at 0.95 psia is 100F. 
 

Analysis           To avoid cavitation at a specified pressure, the fluid temperature everywhere in the flow should remain 

below the saturation temperature at the given pressure, which is 
 

Tmax   Tsat @ 0.95 psia   100F 
 

Therefore, T must remain below 100F to avoid the possibility of cavitation. 
 

Discussion       Note that saturation temperature increases with pressure, and thus cavitation may occur at higher pressure at 

locations with higher fluid temperatures. 
 
 
 
 
 

 
2-118 
Solution        Suspended solid particles in water are considered. A relation is to be developed for the specific gravity of 

the suspension in terms of the mass fraction C
s, mass   

and volume fraction C
s , vol  of the particles. 

 

Assumptions    1 The solid particles are distributed uniformly in water so that the solution is homogeneous. 2 The effect of 

dissimilar molecules on each other is negligible. 

Analysis           Consider solid particles of mass ms and volume Vs dissolved in a fluid of mass mf   and volume Vm. The total 
volume of the suspension (or mixture) is 

Vm  Vs  V f 
 

Dividing by Vm  and using the definition Cs, vol  V s  /Vm   give
 

V f 
1  Cs,vol 

m 

 

V f 
             1 Cs,vol 

m 

 
(1)

The total mass of the suspension (or mixture) is 

mm   ms   m f 
 

Dividing by mm and using the definition Cs, mass   ms  / mm  give
 

m f   f V f   f   

 (1 C 

 

V m  

) 

 
(2)

1  Cs,mass  
m 

 Cs,mass   
  V           

        


s,mass 
f

 

Combining equations 1 and 2 gives 

 f        1 Cs,mass 


 m         1 Cs,vol 

When the fluid is water, the ratio  f  / m  is the inverse of the definition of specific gravity. Therefore, the desired relation 

for the specific gravity of the mixture is 

       1 C 
SG         m                  s ,vol   

 f         1 Cs ,mass 

 

which is the desired result. 
 

Discussion       As a quick check, if there were no particles at all, SGm = 0, as expected.
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1 

2 

 

Solution        The specific gravities of solid particles and carrier fluids of a slurry are given. The relation for the specific 

gravity of the slurry is to be obtained in terms of the mass fraction Cs, mass   
and the specific gravity SGs of solid particles. 

 

Assumptions    1 The solid particles are distributed uniformly in water so that the solution is homogeneous. 2 The effect of 

dissimilar molecules on each other is negligible. 
 

Analysis           Consider solid particles of mass ms and volume Vs dissolved in a fluid of mass mf and volume Vm. The total

volume of the suspension (or mixture) is 

Dividing by Vm   gives 

Vm  Vs  V f  .

 

V       V f   
1     

 s   
         

 

V f   
 1 

Vs    1 
 ms  / s     1 

 ms    m   1 C 

 

 
s,mass

 

 

SG m  

 

 
(1)

V m      V m Vm                Vm mm  / m mm   s SGs

 

since ratio of densities is equal two the ratio of specific gravities, and ms  / mm   Cs, mass .  The total mass of the suspension 

(or mixture) is mm   ms   m f  . Dividing by mm and using the definition Cs, mass   ms  / mm  give
 

 

1  C 

 

 
s ,mass

 

 

m  
    

 f   
 C 

 

 
s ,mass

 

 

V  
    

f      f  
 

 

        
 m    

         V f   

 

 
(2)

mm                               mVm  f        (1 Cs,mass )V m

 

Taking the fluid to be water so that m  /  f    SGm   and combining equations 1 and 2 give
 

 
SGm 

 

1 C       SG    / SG  
         

s ,mass          m              s 
 

1 Cs ,mass

 

Solving for SGm and rearranging gives

 
SGm 

 

 
               1   
1 Cs, mass (1 SG s  1)

 

which is the desired result. 

 
Discussion       As a quick check, if there were no particles at all, SGm = 0, as expected. 

 
 
 
 

 

2-120 
Solution        A large tank contains nitrogen at a specified temperature and pressure. Now some nitrogen is allowed to 

escape, and the temperature and pressure of nitrogen drop to new values. The amount of nitrogen that has escaped is to be 

determined. 
 

Assumptions    The tank is insulated so that no heat is transferred. 

 
Analysis           Treating N2 as an ideal gas, the initial and the final masses in the tank are determined to be 

3
 

m   
 P1V  

 
           (800 kPa)(10 m  )             

 90.45 kg
RT1 (0.2968 kPa  m3 /kg  K)(298 K) 

3                                                                                                                                                               
N2

m   
 P2V  

 
           (600 kPa)(10 m  )             

 69.00 kg
 800 kPa

RT2 (0.2968 kPa  m3 /kg  K)(293 K) 
25C 
10 m3
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Thus the amount of N2 that escaped is m  m1   m2   90.45  69.00  21.5 kg

 

Discussion       Gas  expansion  generally  causes  the  temperature  to  drop.  This  principle  is  used  in  some  types  of 

refrigeration.
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function “a=mu+T” in the equation window, (2) 0.0004 
select  new  parametric  table  from  Tables,  and 
type the data in a two-column table, (3) select 

 
0.0002 

Plot and plot the data, and (4) select  plot and 
click  on  “curve  fit”  to  get  curve  fit  window. 

27 

 

273.15 1.78710-3
 

278.15 1.51910-3
 

283.15 1.30710-3
 

293.15 1.00210-3
 

303.15 7.97510-4
 

313.15 6.52910-4
 

333.15 4.66510-4
 

353.15 3.54710-4
 

373.15 2.82810-4 

 

 

Solution        Air in a partially filled closed water tank is evacuated. The absolute pressure in the evacuated space is to be 
determined. 

 

Properties        The saturation pressure of water at 60C is 19.94 kPa. 
 

Analysis           When air is completely evacuated, the vacated space is filled with water vapor, and the tank contains a 

saturated water-vapor mixture at the given pressure. Since we have a two-phase mixture of a pure substance at a specified 

temperature, the vapor pressure must be the saturation pressure at this temperature.  That is, 
 

Pv   Psat@60C    19.94 kPa  19.9 kPa 
 

Discussion       If there is any air left in the container, the vapor pressure will be less. In that case the sum of the component 

pressures of vapor and air would equal 19.94 kPa. 
 
 
 
 
 

2-122 
 

Solution        The variation of the dynamic viscosity of water with absolute temperature is given. Using tabular data, a 

relation is to be obtained for viscosity as a 4th-order polynomial. The result is to be compared to Andrade’s equation in the 

form of   D  e
B /T 

. 
 

Properties        The viscosity data are given in tabular form as
 

T (K)             (Pas) 
 

0.0018 

 
0.0016 

 
0.0014

 

0.0012 

 
0.001 

 
0.0008 

 
Analysis           Using EES, (1) Define a trivial 

0.0006

 
 
 

0           292            314            336            358            380 
T 

Then specify polynomial and enter/edit equation.  The equations and plot are shown here. 

 

 = 0.489291758 - 0.00568904387T + 0.0000249152104T2 - 4.8615574510-8T3 + 3.5619807910-11T4
 

 = 0.000001475*EXP(1926.5/T) [used initial guess of a0=1.810-6 and a1=1800 in mu=a0*exp(a1/T)] 
 

At T = 323.15 K, the polynomial and exponential curve fits give 

Polynomial:  (323.15 K) = 0.0005529 Pas              (1.1% error, relative to 0.0005468 Pas) 

Exponential:  (323.15 K) = 0.0005726 Pas            (4.7% error, relative to 0.0005468 Pas) 
 

Discussion       This problem can also be solved using an Excel worksheet, with the following results: 

Polynomial:                A = 0.4893, B = -0.005689, C = 0.00002492, D = -0.000000048612, and E = 0.00000000003562

Andrade’s equation:   1.807952E  6* e
1864.06 T

mailto:Psat@60
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Solution        A newly produced pipe is tested using pressurized water. The additional water that needs to be pumped to 

reach a specified pressure is to be determined. 

Assumptions    1 There is no deformation in the pipe. 

Properties        The coefficient of compressibility is given to be 2.10  109 Pa. 

Analysis              From Eq. 213, we have 
 

 

 
from which we write 

 
Then the amount of additional water is 
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Solution        The pressure is given at a certain depth of the ocean. An analytical relation between density and pressure is 
to be obtained and the density at a specified pressure is to be determined. The density is to be compared with that from Eq. 

2-13. 

Properties        The coefficient of compressibility is given to be 2350 MPa. The liquid density at the free surface isgiven to 

be 1030 kg/m3. 

Analysis              (a) From the definition, we have 

 
Integrating 

 

 

 
With the given data we obtain 

 

(b) Eq. 213 can be rearranged to give 

or 

which is identical with (a). Therefore we conclude that linear approximation (Eq. 213) is quite reasonable.
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
w 

h 
h 2 

 

Solution        The velocity profile for laminar one-dimensional flow between two parallel plates is given. A relation for 
friction drag force exerted on the plates per unit area of the plates is to be obtained.

 

Assumptions    1 The flow between the plates is one-dimensional. 2 The 

fluid is Newtonian. 

Analysis           The velocity profile is given by u( y)  4umax y  h  y  h2 

u( y)  4umax y  h  y  h2 

 

where h is the distance between the two plates, y is the vertical distance 
from the bottom plate, and umax is the maximum flow velocity that occurs at               

y 

midplane. The shear stress at the bottom surface can be expressed as 
0 

 
umax           

h

          2                                   
     

du 
 

 4u
  d  

 
 y 
 

 y    



 

 4u
 1    2 y 

         
 4u  

        
max 

dy 
y0 

max 
dy  h 2  

 y0 

max 
 h    y0              

h

 

Because of symmetry, the wall shear stress is identical at both bottom and top plates. Then the friction drag force exerted by 

the fluid on the inner surface of the plates becomes
 

F    2   A 8u  
        max  A

D            w    plate 
h        

plate

Therefore, the friction drag per unit plate area is 

8u 
FD  / Aplate   

          max 
 

h 

Discussion       Note that the friction drag force acting on the plates is inversely proportional to the distance between plates.
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Solution        Two immiscible Newtonian liquids flow steadily between two large parallel plates under the influence of an 

applied pressure gradient. The lower plate is fixed while the upper one is pulled with a constant velocity. The velocity 

profiles for each flow are given. The values of constants are to be determined. An expression for the viscosity ratio is to be 

developed. The forces and their directions exerted by liquids on both plates are to be determined. 

Assumptions    1 The flow between the plates is one-dimensional. 2 The fluids are Newtonian. 

Properties        The viscosity of fluid one is given to be .

Analysis 
 

U = 10 m/s
 
 
 

 
y 

Liquid 1 
 

Liquid interface 
 

 
 

Liquid 2 
 
 
 
 

 

(a) The velocity profiles should satisfy the conditions ,   and . It is clear that 

. 
 

 

 
 

 

 
Finally, 

 
Therefore we have the velocity profiles as follows: 

 
 
 

(b) The shear stress at the interface is unique, and then we have 

 
(c) 

Lower plate: 

 
Upper plate: 
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Solution        A shaft is pulled with a constant velocity through a bearing. The space between the shaft and bearing is 
filled with a fluid. The force required to maintain the axial movement of the shaft is to be determined. 

 

Assumptions    1 The fluid is Newtonian. 
 

Properties        The viscosity of the fluid is given to be 0.1 Pas. 
 

Analysis 
 
 

 
Bearing 

 

 
 

Viscous oil, 

 
Shaft 

 
 
 
 
 
 
 

 
The varying clearance  can be expressed as a function of axial coordinate  (see figure).  According to this sketch we 
obtain 

 

 
 

Assuming a linear velocity distribution in the gap, the viscous force acting on the differential strip element is 
 
 
 

 
Integrating 

 

 
 

 
For the given data, we obtain 
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Solution        A shaft rotates with a constant angual speed in a bearing. The space between the shaft and bearing is filled 
with a fluid. The torque required to maintain the motion is to be determined. 

 

Assumptions    1 The fluid is Newtonian. 
 

Properties        The viscosity of the fluid is given to be 0.1 Pas. 
 

Analysis              The varying clearance  can be expressed as a function of axial coordinate  (see figure below). 
 

 
 
 
 
 
 
 
 

    

   

 

 
According to this sketch we obtain 

 

 
 

Assuming a linear velocity distribution in the gap, the viscous force acting on the differential strip element is 

 

 
 

where  in this case. Then the viscous torque developed on the shaft 

 

 
 

Integrating 

 

 
 

For the given data, we obtain 
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

 

Solution        A cylindrical shaft rotates inside an oil bearing at a specified 
speed. The power required to overcome friction is to be determined. 

 

Assumptions    1 The gap is uniform, and is completely filled with oil. 2 The 

end effects on the sides of the bearing are negligible. 3 The fluid is Newtonian. 
R 

Properties        The viscosity of oil is given to be 0.300 Ns/m2. 
 

Analysis           (a) The radius of the shaft is R = 0.05 m, and thickness of the oil 

layer is    = (10.3 – 10)/2 = 0.15 cm. The power-torque relationship is 
2    3                                                                                                                           l

W   T  

2n T 

 

where, from Chap. 2, T   
 4  R  n L

 

Substituting, the required power to overcome friction is determined to be

63 
R 

3 
n  

2 
L

 2     6
3 (0.05 m) 3 (600 / 60 s -1 ) 2 (0.40 m)     1 W     

W   


 (0.3N s/m  )                 186 W

 

(b) For the case of n   1200 rpm 

: 

0.0015 m  1 N  m/s 

63 
R 

3 
n  

2 
L

 2     6
3 (0.05 m) 3 (1200 / 60 s -1 ) 2 (0.40 m)     1 W     

W   


 (0.3N s/m  )                 744 W

                                                         0.0015 
m 

 1 N  m/s 

 

Discussion       Note the power dissipated in journal bearing is proportional to the cube of the shaft radius and to the square 

of the shaft speed, and is inversely proportional to the oil layer thickness. 
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Solution  Air spaces in certain bricks form air columns of a specified diameter. The height that water can rise in those 
tubes is to be determined. 

 

Assumptions 1 The interconnected air pockets form a cylindrical air column. 2 The air columns are open to the atmospheric 

air. 3 The contact angle of water is zero,  = 0. 
 

Properties The surface tension is given to be 0.085 N/m, and we take the water density to be 1000 kg/m3.
 

Analysis Substituting the numerical values, the capillary rise is determined to be 
 

Air

2  cos


2(0.085 N/m)(cos0)
  1 kg  m/s 2 

       s                                                                                                                         


Brick
h 

gR 


(1000 kg/m 

 

3 
)(9.81m/s 

2
 

 

)(310
6

 m)      1 N  
 5.78 m 



 

Discussion The surface tension depends on temperature. Therefore, the value 

determined may change with temperature. 

h 

Mercury
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The specific gravity of a fluid is specified to be 0.82. The specific volume of this fluid is 
 

(a) 0.001 m3/kg                  (b) 0.00122 m3/kg             (c) 0.0082 m3/kg                (d) 82 m3/kg 
 

(e) 820 m3/kg 
 

 
Answer  (b) 0.00122 m3/kg 

 

Solution Solved by EES Software. Solutions can be verified by copying-and-pasting the following lines on a blank EES 

screen. (Similar problems and their solutions can be obtained easily by modifying numerical values). 

SG=0.82 

rho_water=1000 [kg/m^3] 
rho_fluid=SG*rho_water 

v=1/rho_fluid 
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The specific gravity of mercury is 13.6. The specific weight of mercury is 
 

(a) 1.36 kN/m3       (b) 9.81 kN/m3       (c) 106 kN/m3         (d) 133 kN/m3        (e) 13,600 kN/m3
 

 

 
Answer  (d) 133 kN/m3

 
 

Solution Solved by EES Software. Solutions can be verified by copying-and-pasting the following lines on a blank EES 

screen. (Similar problems and their solutions can be obtained easily by modifying numerical values). 

SG=13.6 
rho_water=1000 [kg/m^3] 
rho=SG*rho_water 

g=9.81 [m/s^2] 

SW=rho*g
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An ideal gas flows in a pipe at 20C. The density of the gas is 1.9 kg/m3 and its molar mass is 44 kg/kmol. The pressure of 
the gas is 

 

(a) 7 kPa              (b) 72 kPa            (c) 105 kPa          (d) 460 kPa          (e) 4630 kPa 
 

 
Answer  (c) 105 kPa 

 

Solution Solved by EES Software. Solutions can be verified by copying-and-pasting the following lines on a blank EES 

screen. (Similar problems and their solutions can be obtained easily by modifying numerical values). 

T=(20+273) [K] 
rho=1.9 [kg/m^3] 
MM=44 [kg/kmol] 

R_u=8.314 [kJ/kmol-K] 

R=R_u/MM 
P=rho*R*T 
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A gas mixture consists of 3 kmol oxygen, 2 kmol nitrogen, and 0.5 kmol water vapor. The total pressure of the gas mixture 

is 100 kPa. The partial pressure of water vapor in this gas mixture is 
 

(a) 5 kPa              (b) 9.1 kPa           (c) 10 kPa            (d) 22.7 kPa         (e) 100 kPa 
 

 
Answer  (b) 9.1 kPa 

 

Solution Solved by EES Software. Solutions can be verified by copying-and-pasting the following lines on a blank EES 

screen. (Similar problems and their solutions can be obtained easily by modifying numerical values). 

N_O2=3 [kmol] 
N_N2=2 [kmol] 
N_vapor=0.5 [kmol] 

P_total=100 [kPa] 

N_total=N_O2+N_N2+N_vapor 

y_vapor=N_vapor/N_total 

P_partial=y_vapor*P_total 
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Liquid water vaporizes into water vapor as it flows in the piping of a boiler. If the temperature of water in the pipe is 

180C, the vapor pressure of water in the pipe is 
 

(a) 1002 kPa        (b) 180 kPa          (c) 101.3 kPa       (d) 18 kPa            (e) 100 kPa 
 

 
Answer  (a) 1002 kPa 

 

Solution Solved by EES Software. Solutions can be verified by copying-and-pasting the following lines on a blank EES 

screen. (Similar problems and their solutions can be obtained easily by modifying numerical values). 

T=180 [C] 
P_vapor=pressure(steam, T=T, x=1)
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In a water distribution system, the pressure of water can be as low as 1.4 psia. The maximum temperature of water allowed 

in the piping to avoid cavitation is 
 

(a) 50F               (b) 77F               (c) 100F             (d) 113F             (e) 140F 
 

 
Answer  (d) 113F 

 

Solution Solved by EES Software. Solutions can be verified by copying-and-pasting the following lines on a blank EES 

screen. (Similar problems and their solutions can be obtained easily by modifying numerical values). 

P=1.4 [psia] 
T_max=temperature(steam, P=P, x=1) 
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The thermal energy of a system refers to 
 

(a) Sensible energy (b) Latent energy (c) Sensible + latent energies 

(d) Enthalpy (e) Internal energy  

 

 

Answer  (c) Sensible + latent energies 
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The difference between the energies of a flowing and stationary fluid per unit mass of the fluid is equal to 
 

(a) Enthalpy        (b) Flow energy                 (c) Sensible energy            (d) Kinetic energy 
 

(e) Internal energy 
 

 
Answer  (b) Flow energy
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The pressure of water is increased from 100 kPa to 1200 kPa by a pump. The temperature of water also increases by 

0.15C. The density of water is 1 kg/L and its specific heat is cp = 4.18 kJ/kgC. The enthalpy change of the water during 
this process is 

 

(a) 1100 kJ/kg    (b) 0.63 kJ/kg      (c) 1.1 kJ/kg        (d) 1.73 kJ/kg      (e) 4.2 kJ/kg 
 

 
Answer  (d) 1.73 kJ/kg 

 

Solution Solved by EES Software. Solutions can be verified by copying-and-pasting the following lines on a blank EES 

screen. (Similar problems and their solutions can be obtained easily by modifying numerical values). 

P1=100 [kPa] 
P2=1200 [kPa] 
DELTAT=0.15 [C] 

rho=1000 [kg/m^3] 

c_p=4.18 [kJ/kg-C] 

DELTAh=c_p*DELTAT+(P2-P1)/rho 
 

 
 
 
 
 

2-140 
The coefficient of compressibility of a truly incompressible substance is 

 

(a) 0                    (b) 0.5                  (c) 1                     (d) 100                 (e) Infinity 
 

 
Answer  (e) Infinity 

 

 
 
 
 
 

2-141 
The pressure of water at atmospheric pressure must be raised to 210 atm to compress it by 1 percent. Then, the coefficient 
of compressibility value of water is 

 

(a) 209 atm         (b) 20,900 atm     (c) 21 atm            (d) 0.21 atm         (e) 210,000 atm 
 

 
Answer  (b) 20,900 atm 

 

Solution Solved by EES Software. Solutions can be verified by copying-and-pasting the following lines on a blank EES 

screen. (Similar problems and their solutions can be obtained easily by modifying numerical values). 

P1=1 [atm] 
P2=210 [atm] 
DELTArho\rho=0.01 

DELTAP=P2-P1 

CoeffComp=DELTAP/DELTArho\rho
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When a liquid in a piping network encounters an abrupt flow restriction (such as a closing valve), it is locally compressed. 

The resulting acoustic waves that are produced strike the pipe surfaces, bends, and valves as they propagate and reflect 

along the pipe, causing the pipe to vibrate and produce the familiar sound. This is known as 
 

(a) Condensation               (b) Cavitation      (c) Water hammer             (d) Compression  (e) Water arrest 
 

 
Answer  (c) Water hammer 
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The density of a fluid decreases by 5 percent at constant pressure when its temperature increases by 10C. The coefficient 
of volume expansion of this fluid is 

 

(a) 0.01 K1              (b) 0.005 K1           (c) 0.1 K1                 (d) 0.5 K1                 (e) 5 K1
 

 

 
Answer  (b) 0.005 K1

 
 

Solution Solved by EES Software. Solutions can be verified by copying-and-pasting the following lines on a blank EES 

screen. (Similar problems and their solutions can be obtained easily by modifying numerical values). 

DELTArho\rho=-0.05 

DELTAT=10 [K] 
beta=-DELTArho\rho/DELTAT 
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Water is compressed from 100 kPa to 5000 kPa at constant temperature. The initial density of water is 1000 kg/m3 and the 

isothermal compressibility of water is  = 4.8105 atm1. The final density of the water is 
 

(a) 1000 kg/m3       (b) 1001.1 kg/m3  (c) 1002.3 kg/m3  (d) 1003.5 kg/m3  (e) 997.4 kg/m3
 

 

 
Answer  (c) 1002.3 kg/m3

 
 

Solution Solved by EES Software. Solutions can be verified by copying-and-pasting the following lines on a blank EES 

screen. (Similar problems and their solutions can be obtained easily by modifying numerical values). 

P1=100 [kPa] 
P2=5000 [kPa] 
rho_1=1000 [kg/m^3] 

alpha=4.8E-5 [1/atm] 

DELTAP=(P2-P1)*Convert(kPa, atm) 

DELTArho=alpha*rho_1*DELTAP 

DELTArho=rho_2-rho_1
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The speed of a spacecraft is given to be 1250 km/h in atmospheric air at 40C. The Mach number of this flow is 

 

(a) 35.9                (b) 0.85                (c) 1.0                  (d) 1.13                (e) 2.74 
 

 
Answer  (d) 1.13 

 

Solution Solved by EES Software. Solutions can be verified by copying-and-pasting the following lines on a blank EES 

screen. (Similar problems and their solutions can be obtained easily by modifying numerical values). 

Vel=1250 [km/h]*Convert(km/h, m/s) 
T=(-40+273.15) [K] 
R=0.287 [kJ/kg-K] 

k=1.4 

c=sqrt(k*R*T*Convert(kJ/kg, m^2/s^2)) 

Ma=Vel/c 
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The dynamic viscosity of air at 20C and 200 kPa is 1.83105 kg/ms. The kinematic viscosity of air at this state is 
 

(a) 0.525105 m2/s           (b) 0.77105 m2/s             (c) 1.47105 m2/s             (d) 1.83105 m2/s 
 

(e) 0.380105 m2/s 
 

 
Answer  (b) 0.77105 m2/s 

 

Solution Solved by EES Software. Solutions can be verified by copying-and-pasting the following lines on a blank EES 

screen. (Similar problems and their solutions can be obtained easily by modifying numerical values). 

T=(20+273.15) [K] 

P=200 [kPa] 
mu=1.83E-5 [kg/m-s] 

R=0.287 [kJ/kg-K] 

rho=P/(R*T) 

nu=mu/rho
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A viscometer constructed of two 30-cm-long concentric cylinders is used to measure the viscosity of a fluid. The outer 

diameter of the inner cylinder is 9 cm, and the gap between the two cylinders is 0.18 cm. 

The inner cylinder is rotated at 250 rpm, and the torque is measured to be 1.4 N m. The viscosity of the fluid is 
 

(a) 0.0084 Ns/m2 (b) 0.017 Ns/m2                         (c) 0.062 Ns/m2                         (d) 0.0049 Ns/m2
 

 

(e) 0.56 Ns/m2
 

 

 
Answer  (e) 0.56 Ns/m2

 
 

Solution Solved by EES Software. Solutions can be verified by copying-and-pasting the following lines on a blank EES 

screen. (Similar problems and their solutions can be obtained easily by modifying numerical values). 

L=0.3 [m] 

R=0.045 [m] 
gap=0.0018 [m] 

n_dot=(250/60) [1/s] 

T=1.4 [N-m] 

mu=(T*gap)/(4*pi^2*R^3*n_dot*L) 
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Which one is not a surface tension or surface energy (per unit area) unit? 
 

(a) lbf/ft               (b) Nm/m2                (c) lbf/ft2                     (d) J/m2                        (e) Btu/ft2
 

 

 
Answer  (c) lbf/ft2

 

 

 
 
 
 
 

2-149 

The surface tension of soap water at 20C is s = 0.025 N/m. The gage pressure inside a soap bubble of diameter 2 cm at 20°C 
is 

 

(a) 10 Pa              (b) 5 Pa                (c) 20 Pa              (d) 40 Pa              (e) 0.5 Pa 
 

 
Answer  (a) 10 Pa 

 

Solution Solved by EES Software. Solutions can be verified by copying-and-pasting the following lines on a blank EES 

screen. (Similar problems and their solutions can be obtained easily by modifying numerical values). 

sigma_s=0.025 [N/m] 

D=0.02 [m] 
R=D/2 

DELTAP=4*sigma_s/R 

P_i_gage=DELTAP
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A 0.4-mm-diameter glass tube is inserted into water at 20°C in a cup. The surface tension of water at 20C is s = 0.073 
N/m. The contact angle can be taken as zero degrees. The capillary rise of water in the tube is 

 

(a) 2.9 cm            (b) 7.4 cm            (c) 5.1 cm            (d) 9.3 cm            (e) 14.0 cm 
 

Answer  (b) 7.4 cm 
 

Solution Solved by EES Software. Solutions can be verified by copying-and-pasting the following lines on a blank EES 

screen. (Similar problems and their solutions can be obtained easily by modifying numerical values). 

D=0.0004 [m] 
R=D/2 
sigma_s=0.073 [N/m] 

phi=0 [degrees] 

rho=1000 [kg/m^3] 

g=9.81 [m/s^2] 

h=(2*sigma_s*cos(phi))/(rho*g*R)
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A 

 

 

Design and Essay Problems 
 

 
2-151, 2-152, 2-153 

 
Solution        Students’ essays and designs should be unique and will differ from each other. 

 
 
 
 

2-154 

Solution        We are to determine the inlet water speed at which cavitation is likely to occur in the throat of a converging- 
diverging tube or duct, and repeat for a higher temperature. 

Assumptions    1 The fluid is incompressible and Newtonian. 2 Gravitational effects are negligible. 3 Irreversibilities are 

negligible. 4 The equations provided are valid for this flow. 

Properties        For water at 20oC,  = 998.0 kg/m3 and Psat = 2.339 kPa. 

Analysis           (a) Two equations are given for velocity, pressure, and cross-sectional area, namely,

 
V1 A1  V2 A2

 

 

 
and 

 

V 
2

 

P1  
2 

 

V 
2

 

 P2   
2

1                               2
 

Solving the first equation for V2 gives 
 

 

V   V  
 A1  

 
 

 
(1)

2          1 

2 
 

Substituting the above into the equation for pressure and solving for V1 yields, after some algebra, 
 

   2 P1 
P

2  V1  
   A  

2
 

     
 1  
  A2  


 


1


                

 

But the pressure at which cavitation is likely to occur is the vapor (saturation) pressure of the water. We also know that 

throat diameter D2 is 1/20 times the inlet diameter D1, and since A = D2/4, A1/A2 = (20)2 = 400. Thus, 
 

220.803  2.339 kPa  1000 N/m
2   1 kg  m/s

2                      m
V

1 
                

kg
                                       0.015207

998.0 
m

3
 
4002  1   kPa             N                           s

 

So, the minimum inlet velocity at which cavitation is likely to occur is 0.0152 m/s (to three significant digits). The velocity 

at the throat is much faster than this, of course. Using Eq. (1),

 
 A  

 

D 2  

 
2 

 D  
 

 20 

V  V
 1   V

 1     V 
 1 

   0.015207
 

 6.0828 m/s
t          1  

A
 1 

 D 
2          1     

D
  

1 


t                       t                   t                           
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(b) If the water is warmer (50oC), the density reduces to 988.1 kg/m3, and the vapor pressure increases to 12.35 kPa. At 

these conditions, V1  = 0.0103 m/s. As might be expected, at higher temperature, a lower inlet velocity is required to 

generate cavitation, since the water is warmer and already closer to its boiling point. 

 
Discussion       Cavitation is usually undesirable since it leads to noise, and the collapse of the bubbles can be destructive. It 

is therefore often wise to design piping systems and turbomachinery to avoid cavitation.
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Solution        We are to explain how objects like razor blades and paper clips can float on water, even though they are 
much denser than water. 

 
Analysis           Just as some insects like water striders can be supported on water by surface tension, surface tension is the 

key to explaining this phenomenon. If we think of surface tension like a skin on top of the water, somewhat like a 

stretched piece of balloon, we can understand how something heavier than water pushes down on the surface, but the 

surface tension forces counteract the weight (to within limits) by providing an upward force. Since soap decreases 

surface tension, we expect that it would be harder to float objects like this on a soapy surface; with a high enough soap 

concentration, in fact, we would expect that the razor blade or paper clip could not float at all. 

 
Discussion       If the razor blade or paper clip is fully submerged (breaking through the surface tension), it sinks. 

 

 
 




