Solution Manual for Chemistry A Molecular Approach 3rd Edition by Tro ISBN 0321809246 9780321809247 Full link download:

Solution Manual:

https://testbankpack.com/p/solution-manualfor-chemistry-a-molecular-approach-3rdedition-by-tro-isbn-0321809246-9780321809247/

Test bank:

https://testbankpack.com/p/test-bank-for-chemistry-a-molecular-approach-3rd-edition-by-tro-isbn-0321809246-9780321809247/

Student Objectives

2.1 Imaging and Moving Individual Atoms

Describe scanning tunneling microscopy (STM) and how atoms are imaged on surfaces. Define **atom** and **element**.

2.2 Early Ideas about the Building Blocks of Matter

Describe the earliest definitions of atoms and matter (Greeks). Know that greater emphasis on observation and the development of the scientific method led to the scientific revolution.

2.3 Modern Atomic Theory and the Laws That Led to It

State and understand the law of conservation of mass (also from Section 1.2). State and understand the law of definite proportions. State and understand the law of multiple proportions. Know the four postulates of Dalton's atomic theory.

2.4 The Discovery of the Electron

Describe J. J. Thomson's experiments with the cathode ray tube and understand how they provide evidence for the electron. Describe Robert Millikan's oil-drop experiment and understand how it enables measurement of the charge of an electron.

2.5 The Structure of the Atom

Define **radioactivity**, **nucleus**, **proton**, and **neutron**. Understand Thomson's plum-pudding model and how Ernest Rutherford's gold-foil experiment refuted it by giving evidence for a nuclear structure of the atom.

2.6 Subatomic Particles: Protons, Neutrons, and Electrons in Atoms

Define **atomic mass unit**, **atomic number**, and **chemical symbol**.

Recognize chemical symbols and atomic numbers on the periodic table.

Define **isotope**, **mass number**, and **natural abundance**.

Determine the number of protons and neutrons in an isotope using the chemical symbol and the mass number.

Define **ion**, **anion**, and **cation**.

Understand how ions are formed from elements.

2.7 Finding Patterns: The Periodic Law and the Periodic Table

Define the **periodic law**. Know that elements with similar properties are placed into columns (called groups) in the periodic table. Define and distinguish between metals, nonmetals, and metalloids. Identify main-group and transition elements on the periodic table. Know the general properties of elements in some specific groups: noble gases, alkali metals, alkaline earth metals, and halogens. Know and understand the rationale for elements that form ions with predictable charges.

2.8 Atomic Mass: The Average Mass of an Element's Atoms

Calculate atomic mass from isotope masses and natural abundances. Define **mass spectrometry** and understand how it can be used to measure mass and relative abundance.

2.9 Molar Mass: Counting Atoms by Weighing Them

Understand the relationship between mass and count of objects such as atoms. Define **mole** and **Avogadro's number**. Calculate and interconvert between number of moles and atoms. Calculate and interconvert between number of moles and mass.

Section Summaries

Lecture Outline

Terms, Concepts, Relationships, Skills Figures, Tables, and Solved Examples

Teaching Tips

Suggestions and Examples Misconceptions and Pitfalls

Chapter 2. Atoms and Elements

TeachingLctureOutlineTps

Terms, Concepts, Relationships, Skills

1 Imaging and Moving Individual Atoms	Intro figure: tip of an STM
Description of scanning tunneling mic	ropy (STM) moving across a surface
Introduction to macroscopic and micro	ppic Figure 2.1 Scanning Tunneling
perspectives.	Microscopy
Definitions of atom and element.	Figure 2.2 Imaging Atoms
Introduction to macroscopic and microperspectives.	Figure 2.1 Scanning Tunneling Microscopy

2.2 Early Ideas about the Building Blocks of Matter	
History of chemistry from antiquity (~450 bc)	
Scientific revolution (1400s-1600s)	

2.3 Modern Atomic Theory and the Laws That Led to It	unnumbered figure: models and
Law of conservation of mass	photos of Na and Cl 2 forming
 Matter is neither created nor destroyed. 	NaCl
• Atoms at the start of a reaction may recombine to	Example 2.1 Law of Definite
form different compounds, but all atoms are	Proportions
accounted for at the end.	unnumbered figure: models of
 Mass of reactants = mass of products. 	CO and CO $_2$ illustrating the law of
Law of definite proportions	multiple proportions
 Different samples of the same compound have 	Example 2.2 Law of Multiple
the same proportions of constituent elements	Proportions
independent of sample source or size.	Chemistry in Your Day: Atoms
Law of multiple proportions	and Humans
John Dalton's atomic theory	

TeachingLctureOutlineTps

TeachingLctureOutlineTps

Suggestions and Examples

Misconceptions and Pitfalls

2.1 Imaging and Moving Individual Atoms	STM is not actually showing
Other STM images can be found readily on the Internet. It is useful to reiterate the analogies about size; the one used in the chapter compares an atom to a grain of sand and a grain of sand to a large mountain range.	images of atoms like one might imagine seeing with a light microscope. Atoms are not colored spheres; the images use color to distinguish different atoms.

2.2 Early Ideas about the Building Blocks of Matter The view of matter as made up of small, indestructible particles was ignored because more popular philosophers like Aristotle and Socrates had different views. Leucippus and Democritus may have been proven correct, but they had no more evidence for their ideas than Aristotle did.	Theories are not automatically accepted and may be unpopular for long periods of time. Philosophy and religion can be supported by arguments; science requires that theories be testable and therefore falsifiable.
Observations and data led scientists to question models; the scientific method promotes the use of a cycle of such inquiry.	

 2.3 Modern Atomic Theory and the Laws That Led to It That matter is composed of atoms grew from experiments and observations. Conceptual Connection 2.1 The Law of Conservation of Mass Investigating the law of definite proportions requires preparing or decomposing a set of pure samples of a compound like water. Investigating the law of multiple proportions requires preparing or decomposing sets of pure samples from related compounds like NO, NO 2, and N 2 O 5. Conceptual Connection 2.2 The Laws of Definite and Multiple Proportions 	Measurements to establish early atomic theories were performed at the macroscopic level. The scientists observed properties for which they could collect data (e.g., mass or volume).
--	--

Terms, Concepts, Relationships, Skills

2.4 The Discovery of the Electron	Figure 2.3 Cathode Ray Tube
 Thomson's cathode-ray tube experiments High voltage produced a stream of particles that traveled in straight lines. Each particle possessed a negative charge. Thomson measured the charge-tomass ratio of the electron. Millikan's oil-drop experiments Oil droplets received charge from ionizing radiation. Charged droplets were suspended in an electric field. The mass and charge of each oil drop was used to calculate the mass and charge of a single electron. 	unnumbered figure: properties of electrical charge Figure 2.4 Thomson's Measurement of the Charge-to-Mass Ratio of the Electron Figure 2.5 Millikan's Measurement of the Electron's Charge
2.5 The Structure of the Atom	unnumbered figure: plum-pudding model
Thomson's plum-pudding model: negatively	Figure 2.6 Rutherford's Gold Foil Experiment
charged electrons in a sea of positive charge	Figure 2.7 The Nuclear Atom
Radioactivity	unnumbered figure: scaffolding and
 Alpha decay provides the alpha 	empty space
particles for Rutherford's experiment.	
Rutherford's experiment	
• Alpha particles directed at a thin gold	
film deflect in all directions, including	
back at the alpha source.	
• Only a concentrated positive	
charge could cause the alpha	
particles to bounce back.	
Rutherford's nuclear theory	
 most mass and all positive charge 	
contained in a small nucleus	
 most of atom by volume is 	
empty space	
 protons: positively charged particles 	
$\circ~$ neutral particles with substantial	
mass also in nucleus	

Terms, Concepts, Relationships, Skills

TeachingLctureOutlineTps

<u>Terms,SuggestionsConcepts,andExampleRelationships, Skills</u>	<u>Figures. Tables.MisconceptionsandSolvedExamplePitfallsand</u>
2.4 The Discovery of the Electron	Millikan did not measure the
 Review the attraction, repulsion, and additivity of char Discuss the physics of electric fields generated by metal plates. A demonstration of a cathode ray tube will help stud better understand Thomson's experiments. Demons how Millikan's calculation works and why he could determine the charge of a single electron. 	rges. charge of a single electron; he measured the charge of a number of electrons and dents strate charge of a single electron.

 2.5 The Structure of the Atom It may be useful to give a brief description of radioactivity. Rutherford's experiment makes more sense if one knows some properties of the alpha particle and from where it comes. Thomson identified electrons and surmised the existence of positive charge necessary to form a neutral atom. The plum-pudding model is the simplest way to account for the observations. The figure about scaffolding supports discussion about an atom being mostly empty space but still having rigidity and strength in the macroscopic view. This is another example of apparent differences between the microscopic and macroscopic properties. 	Students often don't understand the source of alpha particles in Rutherford's experiments.
---	--

Terms, Concepts, Relationships, Skills

 2.6 Subatomic Particles: Protons, Neutrons, and Electrons in Atoms Properties of subatomic particles atomic mass units (amu) proton, neutron: ~1 amu electron: ~0.006 amu charge relative value: 1 for electron, +1 for proton absolute value: 1.6 10¹⁹ C Atomic number (number of protons): defining characteristic of an element Isotope: same element, different mass (different number of neutrons) Ion: atom with nonzero charge anion: negatively charged (more electrons) 	unnumbered figure: baseball Table 2.1 Subatomic Particles unnumbered figure: lightning and charge imbalance Figure 2.8 How Elements Differ Figure 2.9 The Periodic Table unnumbered figure: portrait of Marie Curie Example 2.3 Atomic Numbers, Mass Numbers, and Isotope Symbols Chemistry in Your Day: Where Did Elements Come From?
 cation: positively charged (fewer electrons) -2.7 Finding Patterns: The Periodic Law and the Periodic Table 	unnumbered figure: discovery of the
 Periodic Table Periodic law and the periodic table generally arranged by ascending mass o recurring, periodic properties; elements with similar properties arranged into columns: groups (or families) Major divisions of the periodic table metals, nonmetals, metalloids o main-group elements, transition elements Groups (families) noble gases (group 8A) alkali metals (group 1A) alkaline earth metals (group 2A) halogens (group 7A) Ions with predictable charges: based on stability of noble-gas electron count group 1A: 1+ group 2A: 2+ 	elements Figure 2.10 Recurring Properties Figure 2.11 Making a Periodic Table unnumbered figure: stamp featuring Dmitri Mendeleev Figure 2.12 Metals, Nonmetals, and Metalloids Figure 2.13 The Periodic Table: Main-Group and Transition Elements unnumbered figure: the alkali metals unnumbered figure: the alkali metals unnumbered figure: the halogens Figure 2.14 Elements That Form Ions with Predictable Charges Example 2.4 Predicting the Charge of Ions Chemistry and Medicine: The Elements of Life Figure 2.15 Elemental Composition of Humans (by Mass)

Terms, Concepts, Relationships, Skills

group 3A: 3+
 group 5A: 3
 group 6A: 2
 group 7A: 1

LectureTachingOutlinepsT

SuggestionsTerms.Concepts.andExampleRelationships. Skills Figures. Tables.MisconceptionsandSolvedExampleandPitfalls

2. 6 Subatomic Particles: Protons, Neutrons, and Electrons in Atoms	Students sometimes
The analogy of the baseball and a grain of rice to a proton and an	confuse the mass number
electron is meant to illustrate the difference in mass but not size.	as being equal to the
Electrical charge can be demonstrated with static electricity.	number of neutrons, not
Two balloons charged with wool or human hair will repel each other.	the number of neutrons plus the number of
Names of elements come from various sources. Tom Lehrer's	protons.
"Element Song" can be found on the Internet.	Students logically (but
Isotopic abundances are invariant in typical lab-sized samples because of such large numbers of atoms. Conceptual Connection 2.5 The Nuclear Atom, Isotopes, and Ions	mistakenly) presume that the mass of an isotope is equal to the sum of the
The history of chemistry involves considerable cultural and gender diversity. Examples include both Lavoisiers (French), Dalton (English), Thomson (English), Marie Curie (Polish/French), Mendeleev (Russian), Millikan (American),	masses of the protons and neutrons in that isotope.
Robert Boyle (Irish), Amedeo Avogadro (Italian).	
The Chemistry in Your Day box gives a broad description of the	
origin of atoms.	

 2.7 Finding Patterns: The Periodic Law and the Periodic Table Other displays of the periodic table can be found in journals (Schwartz, J. Chem. Educ . 2006, 83, 849; Moore, J. Chem. Educ. 2003, 80, 847; Bouma, J. Chem. Educ. 1989, 66, 741), books, and on the Internet. Periodic tables are arranged according to the periodic law but can compare many features, e.g. phases of matter, sizes of atoms, and common ions. These are presented as a series of figures in the text. Chemistry and Medicine: The Elements of Life provides an opportunity to relate the topics to everyday life. Some of the other elements in the figure and table represent trace minerals that are part of good nutrition. The periodic law accounts for why some are necessary and others are toxic.	The periodic table is better at predicting microscopic properties, though macroscopic properties are also often illustrated.
---	---

LectureTachingOutlinepsT

Terms, Concepts, Relationships, Skills

Lecture TachingOutlineps T

Terms, Concepts, Relationships, Skills

Figures, Tables, and Solved Examples

unnumbered figure: pennies containing $\sim 1 \mod 1$

2.8 Atomic Mass: The Average Mass of an	unnumbered figure: periodic table box for Cl
Element's Atoms	Example 2.5 Atomic Mass
Average atomic mass is based on	Figure 2.16 The Mass Spectrometer
natural abundance and isotopic masses. Mass spectrometry o atoms converted to ions and deflected by magnetic fields to separate by mass o output data: relative mass vs. relative abundance	Figure 2.17 The Mass Spectrum of Chlorine

2.9 Molar Mass: Counting Atoms by Weighing

Mole concept and Avogadro's numberunnumbered figure: 1 tbsp of water contains ~1Converting between moles and number of atoms Converting between mass and number of molesmol of water Example 2.6 Converting between Number of Moles and Number of Atoms unnumbered figure: relative sizes of Al, C, He unnumbered figure: balance with marbles and peas Example 2.7 Converting between Mass and Amount (Number of Moles) Example 2.8 The Mole Concept-Converting between Mass and Number of Atoms Example 2.9 The Mole Concept	- Then		<u> </u>
of atoms Converting between mass and number of moles Example 2.6 Converting between Number of Moles and Number of Atoms unnumbered figure: relative sizes of Al, C, He unnumbered figure: balance with marbles and peas Example 2.7 Converting between Mass and Amount (Number of Moles) Example 2.8 The Mole Concept-Converting between Mass and Number of Atoms			
		of atoms Converting between mass and number	 Example 2.6 Converting between Number of Moles and Number of Atoms unnumbered figure: relative sizes of Al, C, He unnumbered figure: balance with marbles and peas Example 2.7 Converting between Mass and Amount (Number of Moles) Example 2.8 The Mole Concept-Converting between Mass and Number of Atoms

LectureTachingOutlinepsT

Terms, Concepts, Relationships, Skills

LectureTachingOutlinepsT

Terms, Concepts,

Skills

2.8 Atomic Mass: The Average Mass of an Element's Atoms The masses of isotopes must be reconciled with an element having only whole number quantities of protons and neutrons; the values should be nearly integral since the mass of electrons is so small. Mass spectrometry is an effective way to demonstrate where values of natural abundance are obtained.	Students are tempted tocalculate average atomic massby adding together isotopicmasses and dividing by thenumber of isotopes.Atomic mass on the periodictable is usually not integraleven though elements have onlywhole numbers of protons andneutrons.
2.9 Molar Mass: Counting Atoms by Weighing Them Review the strategy for solving numerical problems: sort, strategize, solve, check. Estimating answers is an important skill; the number of atoms will be very large (i.e. some large power of ten) even from a small mass or small number of moles. Conceptual Connection 2.7 Avogadro's Number Conceptual Connection 2.8 The Mole	Many students are intimidated by estimating answers in calculations involving powers of ten.

Additional Problem for Converting between Number of Moles and Number of Atoms (Example 2.6)	Calculate the number of moles of iron in a sample that has 3.83×10^{23} atoms of iron.
	Given 3.83 x 10 ²³ Fe atoms
Sort	
You are given a number of iron atoms and asked to find the amount of iron in moles.	Find mol Fe
asked to in the amount of iron in moles.	
Strategize	Conceptual Plan
Convert between number of atoms and	atoms mol
number of moles using Avogadro's number.	
	6.022 10 ²³ Fe atoms
	Polotionohino Llood
	Relationships Used
Salva	6.022 x 1 0 ²³ = 1 mol (Avogadro's number) Solution
Solve	Solution
Follow the conceptual plan. Begin with 3.83 x	231 m ol Fe
10 Fe atoms and multiply by the ratio that	3.83 10 Fe atoms 6.022 10 ²³ Fe atoms = 0.636 mol Fe
equates moles and Avogadro's number.	

Check

The sample was smaller than Avogadro's number so the answer should be a fraction of a mole. The value of the sample has 3 significant figures, and the answer is provided in that form.

Additional Problem for Converting between Mass and Number of Moles (Example 2.7)	Calculate the number of grams of silver in an American Silver Eagle coin that contains
Sort	0.288 moles of silver. Given 0.288 mol Ag
You are given the amount of silver in moles and asked to find the mass of silver.	Find g Ag
Strategize	Conceptual Plan
Convert amount (in moles) to mass using the molar mass of the element.	mol Ag g Ag $\frac{107.87 \text{ g Ag}}{1 \text{ mol Ag}}$ Relationships Used
Solve Follow the conceptual plan to solve the problem. Start with 0.288 mol, the given number, and multiply _	107.87 g Ag = 1 mol Ag Solution 0.288 mol Ag $\frac{107.87 \text{ g Ag}}{1} = 31.07 \text{ g Ag}$
Check	31.07 g = 31.1 g Ag The magnitude of the answer makes sense since we started with an amount smaller than a mole. The molar amount and answer both have 3

_

Additional Decklass (as the Male Oceanor)	λ/λ bet many of image (in graphic) contains 4.00 40^{22}
Additional Problem for the Mole Concept—	What mass of iron (in grams) contains 1.20 10 ²²
Converting between Mass and Number of	atoms of Fe? A paperclip contains about that number
Atoms (Example 2.8)	of iron atoms.
Sort	Given 1.20 10 ²² Fe toms
You are given a number of iron atoms and asked	Find g Fe
to find the mass of Fe.	
Strategize	Conceptual Plan
Convert the number of Fe atoms to moles using Avogadro's number. Then convert moles Fe into	Fe atoms mol Fe g Fe
grams of iron using the molar mass of Fe.	<u>1 mol Fe</u> 5 <u>5.85 g Fe</u> 6.022 10 ²³ Fe atoms 1 mol Fe
	Relationships Used
	$6.022 \ 10^{23} = 1 \text{ mol} (\text{Avogadro's number})$
Solve	55.85 g Fe = 1 mol Fe Solution
Follow the conceptual plan to solve the problem.	1.20 10^{22} Fe atoms 1 mol 55.85 g Fe
Begin with 1.20 x 10^{22} atoms of Fe, multiply by	6.022 10 ²³ Fe atoms ¹
the ratio derived from Avogadro's number, and finally multiply by the atomic mass of Fe.	= 1.11 g Fe

Check

The units and magnitude of the answer make sense. The sample is smaller than a mole. The number of atoms and mass both have 3 significant figures.

Additional Problem for the Mole Concept (Example 2.9)	An iron sphere contains 8.55 10 ²² iron atoms. What is the radius of the sphere in centimeters?
	The density of iron is 7.87 g/cm ³ .
Sort	Given 8.55 10 ²² Fe atoms
You are given the number of iron atoms in a sphere and the density of iron. You are asked to find the	d = 7.87 g/cm ³ -Find <u>radius (/) of a sphere</u>
radius of th e sphere.	
Strategize	Conceptual Plan
The critical parts of this problem are density, which relates mass to volume, and the mole, which relates number of atoms to mass:	Fe atoms mol Fe g Fe V (cm ³)
(1) Convert from the number of atoms to the number of moles using Avogadro's number;	1 mol Fe 55.85 g Fe 1 cm3 6.022 1023 Fe atoms 1 mol Fe 7.87 g Fe 3
(2) Convert from the number of moles to the	$V(\text{cm}^3)$ $r(\text{cm})$
number of grams using the molar mass of iron;	$V = \frac{1}{3} r^3$
(3) Convert from mass to volume using the density of iron;	Relationships Used
(4) Find the radius using the formula for the volume	$6.022 \times 10^{23} = 1 \text{ mol (Avogadro's number)}$
of a sphere.	55.85 g Fe = 1 mol Fe
	d (density of Fe) = 7.87 g/cm ³
	$V = 4/3 r^3$ [volume of a sphere with
	a radius of r]
Solve	Solution
Follow the conceptual plan to solve the problem.	²² 1 55.85 g Fe
Begin with 8.55 x 10^{22} Fe atoms and convert to	$8.55 \ 10 \ a \underbrace{\frac{1}{23}}_{6.022 \ 10} \ 1 \underbrace{\frac{1}{23}}_{1} \ 1 \underbrace$
moles, then to grams and finally to a volume in cm ³ .	
Solve for the radius using the rearranged equation.	$\sqrt{\frac{1 \text{ cm}}{\sqrt{\frac{1}{2}}}} = 1.00757 \text{ cm}^3$ $\sqrt{\frac{1}{2}} \sqrt{\frac{1}{2}} \frac{1$
	r = 3 $r = 3$ $r = 0.622 cm$

The units (cm) are correct and the magnitude of the answer makes sense compared with previous problems.

Check