Solution manual for Conceptual Physics 12th Edition by Hewitt ISBN 9780321909107
Full link download:

Solution Manual:

https://testbankpack.com/p/solution-manual-for-conceptual-physics-12th-edition-by-hewitt-isbn-9780321909107/

Test Bank:

https://testbankpack.com/p/test-bank-for-conceptual-physics-12th-edition-by-
hewitt-isbn-9780321909107/

3-1. (a) Distance hiked $=\mathbf{b}+\mathbf{c k m}$.
(b) Displacement is a vector representing Paul's change in position. Drawing a diagram of Paul's trip we can see that his displacement is $\mathrm{b}+(-\mathrm{c}) \mathrm{km}$ east $=(\mathbf{b}-\mathbf{c}) \mathbf{k m}$ east.
(c) Distance $=5 \mathrm{~km}+2 \mathrm{~km}=\mathbf{7 k m}$; Displacement $=(5 \mathrm{~km}-2 \mathrm{~km})$ east $=\mathbf{3} \mathbf{k m}$ east.

3-2. (a) From ${ }_{-} \frac{d}{t} \quad{ }^{-} \underline{t}$.
(b) $\bar{v} \quad \begin{aligned} & x \\ & t\end{aligned}$. We want the answer in m / s so we'll need to convert 30 km to meters and 8 min to seconds:
$30.0 \mathrm{~km} \quad 1000 \mathrm{~m} 30,000 \mathrm{~m} ; 8.0 \mathrm{~min} \quad 60 \mathrm{~s} 480 \mathrm{~s}$. Therr $\underline{x} \quad \underline{30,000 \mathrm{~m} 63 \mathrm{~m}}$.

In mi/h:
$30.0 \mathrm{~km} \quad \underline{-1 \mathrm{mi}} 18.6 \mathrm{mi} ; 8.0 \mathrm{~min} \quad 1 \mathrm{~h}-0.133 \mathrm{~h}$. Then- $\underline{x} \quad \underline{18.6 \mathrm{mi}} 140 \quad \underline{\mathrm{~min}}$.
v

There is usually more than one way to approach a problem and arrive at the correct answer!

3-3. (a) From $-\underset{-}{d} \quad \underset{b}{d} \underset{v}{\underline{L}}$.

L 24.0

3-4. (a) From $v \quad \underline{d} \boldsymbol{v} \quad \underline{x}$.

$$
\text { (b) } v \underbrace{x} \frac{0 .}{0.010}{ }^{30 \mathrm{~m}} \quad \mathrm{~s} \quad \mathbf{~ 3 0} \quad \mathrm{~s} .
$$

3-5. (a) $\bar{v} \quad \frac{d}{t} \frac{2 r}{t}$.
(b) $\psi^{2} \frac{r 2}{t 40} \mathrm{~s}^{\mathrm{s}} \xrightarrow{(400 \mathrm{~m})} \mathbf{6 3} \mathrm{m}$.

3-6. (a) $\mathrm{t}=$? $\operatorname{From} \bar{v} \frac{\underline{d}}{t} \quad \stackrel{\underline{h}}{\underline{\boldsymbol{h}}}$.
(b) $t \quad \begin{array}{ll}\underline{h} & \frac{505}{} \frac{\mathrm{~m}}{-\frac{m^{-}}{s}} \quad 34 \mathrm{~s} .\end{array}$
(c) Yes. At the beginning of the ride the elevator has to speed up from rest, and at the end of the ride the elevator has to slow down. These slower portions of the ride produce an average speed lower than the peak speed.
$3-7$. (a) $t=?$ Begin by getting consistent units. Convert 100.0 yards to meters using the conversion factor on the inside cover of your textbook: $0.3048 \mathrm{~m}=1.00 \mathrm{ft}$.
$\begin{array}{ccccc}3 \mathrm{ft} & \underline{0.3048 \mathrm{~m}} \quad-\quad \frac{d}{-} & \frac{d}{v} & \mathbf{v 1 . 4} \mathrm{~m}\end{array}$.
Then 100.0 yards 1 yard
$d 91.4 \mathrm{~m}^{2}$$\quad 1 \mathrm{ft} \quad 91.4 \mathrm{~m}$. From $v \quad t \quad t$
(b) t
15 s.

$$
\bar{v} \quad 6.00^{\frac{\mathrm{m}}{\mathrm{~s}}}
$$

3-8. (a) $\mathrm{t}=$? From $v \frac{d}{t} t \quad \underset{v}{\underline{d}} \underset{\boldsymbol{c}}{\boldsymbol{L}}$.
(b) $t \quad \underline{L} \quad \frac{1.00 \mathrm{~m}}{8} 3.3310^{-9} \mathrm{~s} \quad 3.33 \mathrm{~ns}$. (This is $3^{\frac{1}{3}}$ billionths of a second!)

$$
v \quad 3.0010 \mathrm{~s}
$$

3-9. (a) $d=$? From $\bar{v} \quad \frac{d}{t} \quad \boldsymbol{d} * t$.
(b) First, we need a consistent set of units. Since speed is in m / s let's convert minutes to seconds: $5.0 \mathrm{~min} \quad \frac{60 \mathrm{~s}}{\frac{\mathrm{~s}}{\mathrm{~min}}} 300 \mathrm{~s}$. Then $d \quad \bar{v} t \quad 7.5 \underline{\mathrm{~m}}_{\mathrm{s}} 300 \mathrm{~s} \quad \mathbf{2 3 0 0} \mathrm{~m}$.

3-10. (a) $\bar{v} \quad \frac{\nu_{0}}{2} \begin{array}{ll}\overline{v_{f}} & \bar{v} \\ 2\end{array}$.
(b) d ? From $\bar{v} \quad \underset{t}{\underline{d}} \quad d \quad \bar{v} t \quad \boldsymbol{v t}_{\mathbf{2}}$.
(c) $d \quad \underline{v t} \quad 2.0 \underline{m}(1.5 \mathrm{~s}) \mathbf{~} 1.5 \mathrm{~m}$.

(b) First get consistent units: $100.0 \mathrm{~km} / \mathrm{h}$ should be expressed in m / s (since the time is in seconds). $100.0 \frac{\mathrm{~km}}{\underline{m}} \quad \underline{1 \mathrm{~h}} \quad \underline{1000 \mathrm{~m}} 27.8 \quad \underline{\mathrm{~m}}$. Then, $d \quad \underline{\underline{v} t} \quad \underline{27.8} \underline{\underline{\underline{m}}} . \underline{(8.0 \mathrm{~s})} \mathbf{1 1 0} \mathbf{~ m}$.
$\begin{array}{lllll}\text { h } & 3600 \mathrm{~s} 1 \mathrm{~km} & \mathrm{~s} & 2 & 2\end{array}$

3-13. (a) $a^{\frac{\nu}{\underline{\nu}}} \begin{array}{ll}v_{2} & v_{1} \\ t\end{array}$
(b) $v \quad 40 \frac{\mathrm{~km}}{\mathrm{~h}} \quad 15 \frac{\mathrm{~km}}{\mathrm{~h}} \quad 25 \frac{\mathrm{~km}}{\mathrm{~h}}$. Since our time is in seconds we need to convert $\frac{\mathrm{km}}{\mathrm{h}}$ to $\frac{\mathrm{m}}{\text {. }}$ m
$25 \mathrm{~km} \quad \underline{1 \mathrm{hr}} \quad 1000 \mathrm{~m} 6.94 \mathrm{~m}$. Then $a \quad \underline{\underline{v}} \quad \underline{6.94^{\circ}} \mathbf{s} \mathbf{0 . 3 5} \quad \mathrm{m}$.
$\begin{array}{llllll}\mathrm{h} & 3600 \mathrm{~s} & 1 \mathrm{~km} & \mathrm{~s} & t & 20 \mathrm{~s}\end{array} \mathrm{~s}^{2}$

3-14. (a) $a^{\underline{\underline{v}}}$	v_{2}	v_{1}

(b) To make the speed units consistent with the time unit we'll need v in m / s :

$$
\begin{array}{llllllllllll}
v & v & v 20.0 & \underline{\mathrm{~km}} 5.0 & \underline{\mathrm{~km}} 15.0 & \underline{\mathrm{~km}} & \underline{1 \mathrm{hr}} & \underline{1000 \mathrm{~m}} 4.17 & \mathrm{~m} . \text { Then } & \underline{v_{2}} & v_{1} & 4.17 \frac{\mathrm{~m}}{\mathrm{~s}} \mathbf{0 . 4 1 7} \\
a & \mathrm{~m}
\end{array}
$$

$$
\begin{aligned}
& \begin{array}{lllllll}
d v t & \text { at } 2 & 1.4 & (10.0 \mathrm{~s}) & 0.42 & (10.0 \mathrm{~s})^{2} & \mathbf{3 5} \mathbf{m} .
\end{array}
\end{aligned}
$$

3-15. (a) $a \quad \underset{t}{\underline{v}} \quad \stackrel{v_{\mathrm{f}} \quad v_{0}}{\underline{0} \quad \frac{v}{t} \quad \frac{v}{t} . ~}$
(b) $a \quad \underline{v}-\quad \underline{26} \underline{\mathrm{~m}}_{\mathrm{s}}^{\mathrm{m}} 1.3 \mathrm{~m}$.
$t \quad 20 \mathrm{~s}$ s

2
s
$2 s^{2} \quad 2$

$$
\text { Or, d vt } 1 \text { at }{ }^{2} \quad 26 \underline{m}(20 \mathrm{~s}) \quad 1 \quad 1.3 \mathrm{~m} \quad(20 \mathrm{~s}) \quad 260 \mathrm{~m} .
$$

(d) $\mathrm{d}=$? Lonnie travels at a constant speed of $26 \mathrm{~m} / \mathrm{s}$ before applying the brakes, so $d v t 26 \frac{\mathrm{~m}}{\mathrm{~s}}^{(1.5 \mathrm{~s})} 39 \mathrm{~m}$.

3-16. (a) $a \quad-\frac{v}{t} \quad \underline{v_{f}} \underline{v}_{\underline{0}} 0 \frac{v_{\nu}}{t}$.
(b) $a \frac{v}{t} \cdot \frac{72}{12 \mathrm{~s}} \frac{\mathrm{~m}}{\mathrm{~s}} 6.0 \mathrm{~m}_{\mathrm{s}}-$

			\underline{m}
Or, d	$v_{0} t$	${ }_{2} a t^{2}$	72 s

3-17. (a) t ? From $\bar{v} \quad \begin{aligned} & d \\ & t\end{aligned} \quad \begin{aligned} & d \\ & v\end{aligned} \frac{L}{v_{\mathrm{f} 2}} \quad \frac{2 L}{}$
(b) $t \quad \underset{-}{\underline{v}} \underset{v}{L} \quad \underset{15.0 \frac{(1.4 \mathrm{~m}}{\mathrm{s}}}{ }-0.19 \mathrm{~s}$.

3-18. (a) $\bar{v} \stackrel{v}{-}-\frac{v}{2} \quad \frac{v}{2}$.
(b) $\bar{v} \quad \frac{3}{-\frac{3}{-}}{ }^{-\frac{\mathrm{s}}{}} 175 \mathrm{~m}$. Note that the length of the barrel isn't needed-yet!

 \qquad
(b) $\quad d-\frac{v}{2} v_{t=} \frac{25}{2} \frac{\mathrm{~m} 11}{2} \frac{\mathrm{~m}}{\mathrm{~s}}(7.8 \mathrm{~s}) 140 \mathrm{~m}$.

3-20. (a) $\mathrm{v}=$? There's a time t between frames of $\frac{1}{24} \mathrm{~s}$, so $\mathrm{v}=\frac{d}{t} \quad \frac{x}{\frac{1}{4}} \quad 24 \frac{1}{\mathrm{~s}}$. (That's 24 x per second.)
(b) $v \quad 24 \underline{1}_{\mathrm{S}} x \quad 24 \frac{1}{\mathrm{~s}}_{\mathrm{s}}(0.15 \mathrm{~m}) \quad \mathbf{3 . 6} \underline{\mathbf{m}}_{\mathbf{s}}$.

3-21. (a) $\mathrm{a}=$? Since time is not a part of the problem we can use the formula $v_{\mathrm{f}}^{2} \quad v_{0}^{2} 2 \mathrm{ad}$ and
solve for acceleration a. Then, with $\mathrm{v}_{0}=0$ and $\mathrm{d}=\mathrm{x}, a^{\boldsymbol{v}^{2}} \stackrel{2}{\mathbf{2} \bar{x}}$

 0 a m.

$$
\text { Or, from } \bar{v} \begin{array}{llll}
\frac{d}{t} & t & \frac{d}{\bar{v}}-\square & ----\quad 1.810
\end{array}
$$

L	$2 L$	$2(0.10 \mathrm{~m})$		${ }^{-8}$
$v_{1}-v_{\theta}$	$\left(\begin{array}{ll}v & 0\end{array}\right)$	$7 \pm$	1.1	10^{8}
\mathbf{s}.				

3-22. (a) $v_{\mathrm{f}}=$? From $v-\frac{d}{t} \frac{v}{2^{2}} t^{\text {twith } v_{0}} \quad 0 \quad v_{\mathrm{f}} \quad \frac{\mathbf{2 d}}{\boldsymbol{t}}$.
(b) $a=$? From $d \quad v t \quad-\frac{1}{} a t^{2}$ with $v 0 \quad d \quad 1 \quad a t{ }^{2} a \quad \frac{\mathbf{2 d}}{\mathbf{2}}$.
$\begin{array}{ccccccc}\text { (c) } v & \underline{2 d} & \underline{2} \underline{(402 \mathrm{~m})} \mathbf{1 8 1} & \underline{\mathrm{m}} ; a & \frac{2 d}{2} & \frac{2(402 \mathrm{~m})}{(4.45 \mathrm{~s})^{2}} & \begin{array}{c}\mathbf{4 0 . 6 m} \\ \mathrm{f}\end{array} \\ t & 4.45 \mathrm{~s} & \mathrm{~s} & t^{2} & (4.4\end{array}$

(b) $d \quad \frac{V V}{2} t={\underset{\text { s) }}{110} \overline{630 \mathrm{~m} .}}_{\underline{\mathrm{m}} 250}^{\underline{\mathrm{m}}} \cdot \underline{\mathrm{s}_{(3.5}}$

3-24. (a) t ? Let's choose upward to be the positive direction.
From $v \quad v \quad a t$ with v

We get the same result with
$3-25$. (a) $\mathrm{v}_{0}=$? When the potato hits the ground $\mathrm{y}=0$.
$d v t$
_at ${ }^{2} y \quad v t$

3-26. (a) $t=$? Choose downward to be the positive direction. From

From $d \underline{v t}$

t
$v_{\mathrm{f}} \quad v_{\mathrm{O}} \quad \sqrt{a t} \quad 0 \quad \$ t 9.8$

1
0

Or, from $2 a d \sqrt{\nu^{2}} v^{2} \sqrt{\text { with } a g,}$
$3-27$. (a) $\mathrm{v}_{0}=$? Let's call upward the positive direction. Since the trajectory is symmetric, $\mathrm{v}_{\mathrm{f}}=-\mathrm{v}_{0}$. Then from $v_{\mathrm{f}}{ }_{0} \quad v$ at, with $a g \quad v_{0} v_{0} \quad g t 2 v g t v \quad 0 \quad 0 \quad \frac{g t}{\mathbf{2}}$.

| 0 | 2 | 2 |
| :--- | :--- | :--- | :--- |

20 m

We use $t=2.0$ s because we are only considering the time to the highest point rather than the whole trip up and down.

3-28. (a) $\mathrm{v}_{0}=$? Let's call upward the positive direction. Since no time is given, use

(b) v

3-29. (a) Taking upward to be the positive direction, from
$2 a d v_{\mathrm{f}}^{2} v_{0}^{2}$ with $a g$ and $d h \quad{\underset{\mathrm{f}}{\mathrm{f}}}^{v} \sqrt{v_{0}^{2} 2 g h \text {. So }}$ on the way up $v_{\mathrm{f}} \quad \sqrt{L_{0}^{2} \quad 2 g h}$.
(b)From above, on the way down $v_{\mathrm{f}} \sqrt{v_{0}} 2 g h$, same magnitude but opposite direction as (a).
(c) From $a \frac{v v}{t} \quad t \frac{v v}{a} \quad \frac{\sqrt{v^{2} 2 g h} v}{g} \quad \frac{v v^{2} \sqrt{2 g h}}{g}$.
(d) v

$-\mathrm{m} . \quad \frac{v_{\mathrm{f}} \quad v_{0}}{} \quad 9.5 \frac{\mathrm{~m}}{\mathrm{~s}} \cdot 16^{\frac{\mathrm{m}}{\mathrm{s}}} 2.6 \mathrm{~s}$.

3-30. (a) $\mathrm{v}_{\mathrm{f}}=$? Taking upward to be the positive direction, from

$$
\text { 2ad } v^{2} v^{2} \quad \text { with } a g \text { and } d h v \quad \sqrt{v^{2} 2 g h .} \text { The displacement } d \text { is }
$$

negative because upward direction was taken to be positive, and the water balloon ends up below the initial position. The final velocity is negative because the water balloon is heading downward (in the negative direction) when it lands.
(b) $\mathrm{t}=$? From a

(c) $\mathrm{vf}=$? Still taking upward to be the positive direction, from $2 a d v^{2} v^{2} \quad$ with initial velocity $=-v, a g$ and $d h \quad v^{2} \quad v^{2} 2 g h v \quad \boldsymbol{v}^{\mathbf{2}} \mathbf{2 g h}$.

We take the negative square root because the balloon is going downward. Note that the final velocity is the same whether the balloon is thrown straight up or straight down with initial speed v_{0}.
(d) $\begin{gathered}\mathrm{f} \\ \text { tossed upward or } \\ v^{2} 2 g h\end{gathered} \int_{0}^{5.0} \frac{\mathrm{~m}}{\mathrm{~m}} 229.8 \quad \mathrm{~m}(11.8 \mathrm{~m}) \mathbf{1 6} \quad \mathrm{m}$ for the balloon whether it is tossed upward or downward. For the balloon tossed upward,

$$
t \frac{v_{\mathrm{f}} v_{0}}{a} \quad \frac{16 \frac{\mathrm{~m}}{\mathrm{~s}}}{9.8} \frac{5}{\frac{5}{2}} \frac{\frac{\mathrm{~m}}{\mathrm{~s}}}{\mathrm{~s}} \mathrm{~s} .
$$

3-31. (a) Call downward the positive direction, origin at the top.

From the general form of the quadratic formula $x-\frac{\sqrt{b b^{2}}}{2 a} \cdot \frac{4 a c}{}$. we identify
$a \quad \frac{2}{2}, b v, \underset{0}{\text { and }} c h$, which gives t

To get a positive value for the time we take the positive root, and get
$t \frac{\sqrt{v_{0}+\sqrt{v_{0}+2}+2}}{\sqrt{\underline{g h}}}$
(b) From
$2 a d$ vf2 $\quad v 02$ with initial velocity $v 0, a g$ and $d \quad h \quad v f 2 \quad v 02 \quad 2 g h \quad v f \quad \sqrt{v 02 \quad 2 g h}$.

3-32. (a) From $d \underset{0}{v} \quad-\frac{1}{t} t^{2} \quad a \frac{\mathbf{2}(\boldsymbol{d} v}{\mathbf{2}} \underline{\underline{0} t)}$.

(c) $v_{\mathrm{f}} \quad v_{0}$ at $13 \underline{\mathrm{~m}}_{\mathrm{s}^{4.4}} \underline{\mathrm{~m}}^{\frac{\mathrm{m}}{2}}$ (5s) $35 \frac{\mathrm{~m}}{\mathrm{~s}}$.
 an environment that would have a traffic light!

(b) a $\quad \stackrel{v}{v} \quad\left(2 \underline{x} v_{0}\right) v_{0} \quad 2^{\underline{x}} 2 v_{0} \quad \underset{-}{v} \quad{ }^{v} \quad 2$
$t \quad t \quad t t^{2} t$
(c) $v_{\mathrm{f}} \begin{aligned} & 2 x \\ & \underline{t}\end{aligned} \quad \begin{aligned} & v_{0} \\ & \frac{2(95 \mathrm{~m})}{11.9 \mathrm{~s}}\end{aligned} 13 \underline{\mathrm{~m}}_{\mathrm{s}} \quad 3.0 \frac{\mathrm{~m}}{\mathrm{~s}}$.

the hill. To get her time to cross the highway: $\operatorname{From}_{\bar{v}} \quad \underline{d} \quad t$

(b) $t \frac{d}{\sqrt{{ }_{2}^{2}}} \frac{25 \mathrm{~m}}{\sqrt{\sqrt{\mathrm{~m}^{2}}} \frac{21.5^{\frac{\mathrm{m}}{2}}(85 \mathrm{~m})}{}} \mathbf{1 . 5 4 \mathrm { s } .}$

3-35. (a) Since v_{0} is upward, call upward the positive direction and put the origin at the ground. Then ${ }_{2}$
with $a g, d^{2} y h h_{0} v t \frac{1}{2} g t^{2} \quad 2^{\frac{1}{2} g t^{2}} \quad{ }_{0}^{v t} h \quad 0$.
From $d_{0} v t \frac{1}{2} a t^{2}$
From the general form of the quadratic formula $x-\frac{b \sqrt{b^{2}}}{2 a} \cdot \frac{4 a c}{2}$ we identify
$\frac{v_{0} v_{0} \sqrt{{\underset{g}{2}}_{2}^{2}}{ }_{4} \quad(h)}{v_{0} \quad \sqrt{\boldsymbol{v}_{0}^{2} \quad \mathbf{2 g h}}}$.
$a s, b v$, and $c h$, which gives
t

(c) t 2

$9.8 \mathbf{m}^{2}$

f 0

Anthony has to have the ball leave his had either 0.82 s or 3.67 s before midnight. The first time corresponds to the rock hitting the bell on the rock's way up, and the second time is for the rock hitting the bell on the way down.

3-31. (a) $\mathrm{v}_{1}=$? The rocket starts at rest and after time t_{1} it has velocity v_{1} and has risen to a height h_{1}. Taking upward to be the positive direction, from $\begin{array}{lllllll}v_{\mathrm{f}} & v_{0} & a t & \text { with } & v_{0} & 0 & \boldsymbol{v}_{\mathbf{1}}\end{array} \boldsymbol{a}_{\boldsymbol{a}}$.
(b) $\mathrm{h} \quad=$? From $d v t \mathrm{I}_{a t}{ }^{2}$ with $h \quad d$ and $v 0 \quad h \quad \mathbf{1}_{a} t^{2}$.
$\begin{array}{llllllll}1 & 2 & 1 & 0 & 1 & \mathbf{2} & \mathbf{1}\end{array}$
(c) $\mathrm{h}_{2}=$? For this stage of the problem the rocket has initial velocity $\mathrm{v}_{1}, \mathrm{v}_{\mathrm{f}}=0, \mathrm{a}$ $=-g$ and the distance risen $\frac{d}{2}=h_{2} 2$.

	v^{2}	v^{2}	\mathbf{v}^{2}	$\mathbf{a t}^{2}$

$\begin{array}{cccccccc}\text { From } 2 a d & v^{2} & v^{2} & \underline{v} \quad v & \underline{0} v & \underline{v} & \underline{(a t)} & \underline{a t} \\ \mathrm{f} & 0^{d} & \ddots & 2 a & 2^{h} & 2(g) & 2 g & 2 g\end{array} \quad \mathbf{2 g}$
(d) tadditional $=$? To get the additional rise time of the rocket: From

(f) tfalling $=$? Keeping upward as the positive direction, now $v_{0}=0, a=-g$ and $d=-h_{\text {max }}$.

$\begin{array}{llllll}\text { total } & 1 & \text { additional } & \text { falling } & \mathbf{1} & \boldsymbol{g}\end{array}$
additional
2

9
8 s
s^{2}
t

$h_{\max } 173 \mathrm{~m}+2123 \mathrm{~m} \underline{-2296 \mathrm{~m} \quad 2300 \mathrm{~m} .}$

s^{2}

$2 \quad 2 g$
m

$$
\text { total } 1 \quad \text { additional } \quad \text { falling } \quad 1.7 \mathrm{~s} 20.8 \mathrm{~s} 21.7 \mathrm{~s} 44.2 \mathrm{~s} .
$$

3-32. \bar{v} totaldistance $-\underline{x} \quad \underline{2 x} \quad \mathbf{1 . 1 4} \underline{x}$.
total time $\begin{array}{lll}t & 0.75 t & 1.75 t\end{array} t$
(b) $\bar{v} 1.14 \frac{X}{t}_{t}^{140 \mathrm{~km}}-{ }_{2 \mathrm{hr}}{ }^{-} 80 \quad \frac{\mathrm{~km}}{\mathrm{hr}}$.

3-33. (a) \bar{v} total distance. From $v \underline{d} d$ vt.
total time

$$
d \quad d \quad l \quad t^{t_{-}} v \quad t
$$

(b) $+1.5 v \quad 1.5 \quad 1.0 \underline{\mathrm{~m}}_{\mathrm{s}} \quad \mathbf{1 . 5} \frac{\underline{\mathrm{m}}_{\mathrm{s}}}{}$.

$$
\text { (c) } d_{\mathrm{to} \text { cabin }} \bar{v} t_{\mathrm{total}} \bar{v}\left(t_{\text {walk }} \quad t_{\text {jog }}\right) 1.5 \quad \mathrm{~s}(30 \mathrm{~min}+30 \mathrm{~min}) \frac{60}{1} \mathrm{~min} \quad \mathbf{5 4 0 0} \mathbf{~ m}=\mathbf{5 . 4} \mathbf{~ k m} \text {. }
$$

3-34. (a) \bar{v} total distance. $\operatorname{From} v \quad \underline{d} \quad d \quad v t$.

3-35. (a) $)_{\bar{v}}$ total distance. From $v \quad \underline{d} \quad t \quad \underline{d} \quad \underline{x}$.

$$
\begin{aligned}
& \text { total time } \\
& \text { - } \underline{d}_{1}-\frac{d_{2}}{-}-\frac{2 x}{1}-2,-\frac{2 x}{1^{1}} \frac{1}{-2}-\frac{2}{v^{12}} \\
& \text { So } v
\end{aligned}
$$

$$
\begin{array}{ccccc}
t_{1} & t_{2} & v & v & x \\
{ }_{2}-\frac{v}{v}-v_{2}-2 & \frac{v(1.5 v}{-2} & 2^{v} v^{2} v 1 \\
1.5 v & 2 & \frac{1.5 v}{2.5 v}
\end{array}
$$

the lower speed since you spend more time driving at the lower speed than the higher speed.
(b) $\bar{v} 1.2 v \quad 1.2 \quad 28^{\frac{\mathrm{km}}{}} \quad 34^{\frac{\mathrm{km}}{\mathrm{h}}}$.

$$
d
$$

3-36. (a) $d \quad=$? From $V \quad$ Asti $d \quad$ Vt. The time that Asti runs $=$ the time that Judy Anti Anti $t \quad$ Att

3-37. $\bar{v} \quad \underset{t}{\underline{d}} \quad \frac{3 \mathrm{~m}}{1.5 \mathrm{~s}} \quad \underset{\mathrm{~s}}{\mathrm{~m}}$.
3-38. $\mathrm{h}=$? Call upward the positive direction.
From $v^{2} v^{2} \quad 2 a d$ with $d \quad h, v \quad 0$ and $a g$

3-39. d ? From $\quad \bar{v} \underset{t}{\frac{d}{t}} d \quad-{ }_{v t}{ }^{v}-\frac{v}{2},-t \quad \frac{027.5 \mathrm{~m}}{2}$
3-40. $t \quad$? Let's take down as the positive direction. From $d \quad v_{0} t \quad{ }_{2_{2} a t-}{ }^{2}$ with_$v_{0} \quad 0$ and $a \quad g$ d - $\underline{1}_{-g t_{-}}{ }^{2}$
$t \sqrt{\frac{2 d}{g}} \sqrt{\frac{2\left(\underline{16}-\frac{\mathrm{m})}{9 .-\mathrm{m}}\right.}{9 .}} 1.8 \mathrm{~s}$.
3-41. $a \quad \underline{v} \quad \underline{v_{f}} v_{0} \quad 12 \underline{\frac{\mathrm{~m}}{\mathrm{~s}}} \underline{0} \frac{\underline{\mathrm{~m}}}{\mathrm{~s}} 4 \quad \mathrm{~m}$.
$\begin{array}{llll}t & t & 3 \mathrm{~s} & \mathbf{s}^{\mathbf{2}}\end{array}$
3-42. $a \underline{v} \quad \underline{v_{\mathrm{f}} \quad v_{0}} \quad 75 \underline{\frac{\mathrm{~m}}{\mathrm{~s}}} 0 \frac{\mathrm{~m}}{\mathrm{~s}} \mathbf{3 0} \quad \underset{2}{\mathrm{~m}}$

3-43. d = ? With $v_{0} \quad 0, d \quad v_{0} t \quad \frac{1}{2} a t^{2}$ becomes $d \frac{\mathrm{~s}}{2} a t^{2} \quad \frac{1}{2} 2.0 \mathrm{~s}^{\frac{\mathrm{m}}{2}}(8.0 \mathrm{~s})^{2} \quad \mathbf{6 4 ~ m}$.
 at

$$
\begin{array}{lllllll}
0 & 2 & & t^{2} & (2.0 \mathrm{~s})^{2} & \mathbf{2} \\
& v_{0} t & { }_{2} \text { at }
\end{array}
$$

3-46. $\mathrm{v}_{0}=$? Here we'll take upwards to be the positive direction, with $\mathrm{a}=\mathrm{g}$ and $\mathrm{v}_{\mathrm{f}}=0$.

3-47. $t=$? We can calculate the time for the ball to reach its maximum height (where the velocity will be zero) and multiply by two to get its total time in the air. Here we'll take upward to be the positive direction, with $\mathrm{a}=\mathrm{g}$.
 $t \quad a \quad g \quad g \quad \begin{array}{lll}9.8 \mathrm{~m} \\ \mathrm{~s}^{2}\end{array}$
the maximum height. The total trip will take $21.84 \mathrm{~s}=3.7 \mathbf{s}$, which is less than 4 s . Alternatively, this can be done in one step with by recognizing that since the trajectory is symmetric $\mathrm{V}_{\mathrm{f}}=-\mathrm{V}_{\mathrm{o}}$.

$$
t \quad \frac{2 v_{0}}{g} \frac{218 \frac{\mathrm{~m}}{\mathrm{~s}}}{9.8 \frac{\mathrm{~m}}{\mathrm{~s}}} 3.7 \mathrm{~s} .
$$

$3-48 . v_{0}=$? Since she throws and catches the ball at the same height, $v_{f} \quad v_{0}$. Calling upward the positive direction, $a=-g$.
From
$\begin{array}{llllll}v & v & (g) t & 0 & 0 v g t & v g t \\ 0 & 0 & \frac{9.8}{\frac{m}{s^{2}}} \frac{(3.0 \mathrm{~s})}{15} & 2\end{array}$
$3-49$. For a ball dropped with $\mathrm{v}_{0}=0$ and $\mathrm{a}=+\mathrm{g}$ (taking downward to be the positive direction), $d_{\text {fallen, } 1 \text { st second } v o t}{ }^{\frac{1}{2}}$ at ${ }^{2} \frac{1}{2} 9.8 \mathrm{~s}^{\mathrm{m}}{ }_{2}(-\mathrm{s})^{2} 4.9 \mathrm{~m}$. At the beginning of the $2^{\text {nd }}$ second

t is $d \quad \frac{1}{2} g t^{2}$. in the next time interval t the distance fallen is

$d_{\text {from time } t \text { to } 2 t}$
$d_{\text {from time } t \text { to } 2 t}^{d}-$
$d_{\text {from rest in time } t}$
$\frac{2}{2} g t$

3-50. h ? Call upward the positive direction. From $v^{2} v^{2} 2 a d$ with $d h, v \quad 0$ and $a g$ f

3-51. $h \quad$? With $d \quad h, v 0 \quad 22 \quad \frac{\mathrm{~m}}{s}, a-g$ and $t 3.5 \mathrm{~s}, d \quad$ vot $\quad \frac{1}{2} a t^{2}$ becomes

$$
h\left(22_{\mathrm{s}}^{\frac{\mathrm{m}}{\mathrm{~s}}}\right)(3.5 \mathrm{~s}) \frac{\frac{1}{2}}{29.8} \frac{\frac{\mathrm{~m}}{2}}{\mathrm{~s}}(3.5 \mathrm{~s})^{2} \quad \mathbf{1 7} \mathbf{~ m}
$$

$3-52 . \mathrm{t}=?$ From $v \begin{array}{llll}\underline{d} & t & \underline{d} & 65 \underline{\underline{m}} \mathbf{5 . 0} \mathbf{~ s .} \\ t & & v & 13 \frac{\mathrm{~m}}{\mathrm{~s}}\end{array}$
3-53. t ? From $a \quad \underline{\nu} \quad \underline{v_{f}} \underline{v_{0}} \quad t \quad \underline{v_{f}} \underline{v_{0}} \quad \underline{28} \frac{\mathrm{~m}}{\frac{s}{s}} \frac{0}{\underline{m}^{-}} \frac{\mathrm{m}}{\mathrm{s}} 4.0 \mathrm{~s}$.
$\begin{array}{lllll}t & t & a & 7.0 & \mathrm{~s}^{2}\end{array}$

(c) $t \quad \underline{2 d}$
28

3-55. d ? From v
t

3-56. $\mathrm{t}=$? From v

$$
a \underline{v_{0}} \quad \text { ___ } \mathrm{h}
$$

$$
2 d
$$

$$
b \ldots-\ldots
$$

x

2	$2 a$
404	4

© Paul G. Hewitt and Phillip R. Wolf
3-12
$3-59 . \mid v_{0}=$? The candy bar just clears the top of the balcony with height $4.2 \mathrm{~m}+1.1 \mathrm{~m}=5.3 \mathrm{~m}$.
With $v \quad 0, \quad v^{2}-v \quad 2 \quad 2 a d$ with v and ${ }^{2} y$ positive and $a g \quad v_{v^{2}} \quad 2(g) h$

$$
{ }_{0}{ }^{\mathrm{f}} \sqrt{\sqrt{v 2}} g h \sqrt{29.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}(5.3 \mathrm{~m})}{ }^{0} 10.19 \frac{\mathrm{~m}}{\mathrm{~s}} \mathbf{1 0 . 2} \quad \frac{\mathrm{~m}}{\mathrm{~s}} . \text { The total time is the time for the }
$$

way to the top of the balcony rail plus the time to fall 1.1 m to the floor of the balcony.

So $t_{\text {total }} t_{\mathrm{up}} t_{\text {down }} \quad 1.040 \mathrm{~s} \quad 0.47 \mathrm{~s} \quad \mathbf{1 . 5 1}$. An alternative route is: Since v_{0} is upward, call upward the positive direction and put the origin at the ground. Then
From $d \quad v t \quad 1 a t^{2}$ with $a g, d^{2} y 4.2 \mathrm{~m} \quad d v t \quad 1 g t^{2} \quad l^{1} g t^{2} \quad v t d \quad 0$.

From the general form of the quadratic formula $x \frac{b \quad \frac{2}{b^{2} 4 a c}}{2 a}$ we identify
$a \quad g, b v$, and $c \quad d$, which gives t
20

g

g

s
corresponds to the candy reaching 4.2 m but not having gone over the top balcony rail yet. The second answer is the one we want, where the candy has topped the rail and arrives 4.2 m above the ground.

3-58.|Consider the subway trip as having three parts-a speeding up part, a constant speed part, and a slowing down part. d
total

$d_{\text {constant speed }} d_{\text {slowing down }}$.

For $d_{\text {constant speed }} \quad v t$. From the speeding up part we had $\underset{0}{v} 0, a \quad 1.5 \quad{ }_{\mathrm{s}^{2}} \mathrm{~m}^{\mathrm{m}}$ and $t \quad 12 \mathrm{~s}$

$$
\begin{array}{llll}
\text { So } d & d_{\text {total }} d_{\text {speeding up }} & d_{\text {constant speed }} & d_{\text {slowing down }} \\
108 \mathrm{~m} & 684 \mathrm{~m} \mathrm{1} & 108 \mathrm{~m} & \mathbf{9 0 0} \mathbf{~ m} .
\end{array}
$$

3-59. One way to approach this is to use Phil's average speed to find how far he has run during the time it takes for Mala to finish the race.

$$
\operatorname{From} v \quad \underline{d} \quad d t
$$

0
-
m
1
2.
s)
9
4.
m
S
n
e
P
hi
h
a
ก
l

traveled 94.1 m when Mala crosses the finish line, he is behind by 100 m 94.1 m 5.9 m 6 m .

3-60. $t=$? The time for Terrence to land from his maximum height is the same as the time it takes for him to rise to his maximum height. Let's consider the time for him to land from a height of 0.6 m . Taking down as the positive direction:

$$
t \quad \sqrt{\frac{}{g}} \sqrt{\frac{9.8 \frac{\mathrm{~m}}{\mathrm{~s}^{2}}}{}} 0.35 \mathrm{s.}
$$

His total time in the air would be twice this amount, 0.7 s .
3-61.v $\underset{t}{\underline{d}}--\frac{1}{\frac{\mathrm{mi}}{\frac{1 \mathrm{~h}}{2}}-80 \frac{\mathrm{mi}}{\mathrm{h}} .}$
3-62. $\bar{v} \quad \underline{\text { total distance. }}$. If we call the distance she drives d, then from $v \quad \underline{d} \quad t \quad \underline{d}$.

toward the lower speed since Norma spends more time driving at the lower speed than at the higher speed.

