
Solution manual for Digital Systems Design Using Verilog 1st Edition by Roth
John Lee ISBN 1285051076 9781285051079

Full link download:
Solution manual:

https://testbankpack.com/p/solution-manual-for-digital-systems-design-using-
verilog-1st-edition-by-roth-john-lee-isbn-1285051076-9781285051079/

This file contains the exercises, hints, and solutions for Chapter 2 of the

book ”Introduction to the Design and Analysis of Algorithms,” 3rd edition, by

A. Levitin. The problems that might be challenging for at least some students

are marked by B; those that might be difficult for a majority of students are

marked by I

Exercises 2.1

1. For each of the following algorithms, indicate (i) a natural size metric for

its inputs, (ii) its basic operation, and (iii) whether the basic operation

count can be different for inputs of the same size:

a. computing the sum of numbers

b. computing !

c. finding the largest element in a list of numbers

d. Euclid’s algorithm

e. sieve of Eratosthenes

f. pen-and-pencil algorithm for multiplying two -digit decimal integers

2. a. Consider the definition-based algorithm for adding two × matrices.

What is its basic operation? How many times is it performed as a function

of the matrix order ? As a function of the total number of elements in the

input matrices?

b. Answer the same questions for the definition-based algorithm for

matrix multiplication.

3. Consider a variation of sequential search that scans a list to return the

number of occurrences of a given search key in the list. Will its

efficiency differ from the efficiency of classic sequential search?

4. a. Glove selection There are 22 gloves in a drawer: 5 pairs of red

gloves, 4 pairs of yellow, and 2 pairs of green. You select the gloves in

the dark and can check them only after a selection has been made. What

is the smallest number of gloves you need to select to have at least

one matching pair in the best case? in the worst case?

b. Missing socks Imagine that after washing 5 distinct pairs of socks, you

discover that two socks are missing. Of course, you would like to have the

largest number of complete pairs remaining. Thus, you are left with 4

https://testbankpack.com/p/solution-manual-for-digital-systems-design-using-verilog-1st-edition-by-roth-john-lee-isbn-1285051076-9781285051079/
https://testbankpack.com/p/solution-manual-for-digital-systems-design-using-verilog-1st-edition-by-roth-john-lee-isbn-1285051076-9781285051079/

complete pairs in the best-case scenario and with 3 complete pairs in the

worst case. Assuming that the probability of disappearance for each

1

2

of the 10 socks is the same, find the probability of the best-case

scenario; the probability of the worst-case scenario; the number of pairs

you should expect in the average case.

5. a.B Prove formula (2.1) for the number of bits in the binary

representation of a positive integer.

b.B Prove the alternative formula for the number of bits in the binary

representation of a positive integer :

= dlog2(+ 1)e

c. What would be the analogous formulas for the number of decimal

digits?

d. Explain why, within the accepted analysis framework, it does not

mat-ter whether we use binary or decimal digits in measuring ’s size.

6. Suggest how any sorting algorithm can be augmented in a way to make

the best-case count of its key comparisons equal to just − 1 (is a list’s

size, of course). Do you think it would be a worthwhile addition to any

sorting algorithm?

7. Gaussian elimination, the classic algorithm for solving systems of linear

equations in unknowns, requires about
algorithm’s basic operation.

1 3
3 multiplications, which is the

a. How much longer should you expect Gaussian elimination to work

on a system of 1000 equations versus a system of 500 equations?

b. You are considering buying a computer that is 1000 times faster than

the one you currently have. By what factor will the faster computer in-

crease the sizes of systems solvable in the same amount of time as on

the old computer?

8. For each of the following functions, indicate how much the function’s

value will change if its argument is increased fourfold.

√
a. log2 b.

2
c. d.

3
e. f. 2

9. Indicate whether the first function of each of the following pairs has a

smaller, same, or larger order of growth (to within a constant multiple)

than the second function.

3

2
a. (+ 1) and 2000

2
b. 100

2

3
and 0 01

2

c. log2 and ln d. log2
−1

and log2

e. 2 and 2 f. (1)! and !
−

10. Invention of chess a. According to a well-known legend, the game of

chess was invented many centuries ago in northwestern India by a

certain sage. When he took his invention to his king, the king liked the

game so much that he offered the inventor any reward he wanted. The

inventor asked for some grain to be obtained as follows: just a single

grain of wheat was to be placed on the first square of the chess board,

two on the second, four on the third, eight on the fourth, and so on, until

all 64 squares had been filled. If it took just 1 second to count each

grain, how long would it take to count all the grain due to him?

b. How long would it take if instead of doubling the number of grains for

each square of the chessboard, the inventor asked for adding two grains?

4

Hints to Exercises 2.1

1. The questions are indeed as straightforward as they appear, though

some of them may have alternative answers. Also, keep in mind the

caveat about measuring an integer’s size.

2. a. The sum of two matrices is defined as the matrix whose elements are

the sums of the corresponding elements of the matrices given.

b. Matrix multiplication requires two operations: multiplication and ad-

dition. Which of the two would you consider basic and why?

3. Will the algorithm’s efficiency vary on different inputs of the same size?

4. a. Gloves are not socks: they can be right-handed and left-handed.

b. You have only two qualitatively different outcomes possible. Count

the number of ways to get each of the two.

5. a. First, prove first that if a positive decimal integer has digits in its

binary representation, then

−1
2 ≤ 2

Then, take logarithms to base 2 of the terms in this inequality.

b. The proof is similar to the proof of formula (2.1).

c. The formula will be the same, with just one small adjustment to ac-

count for the different radix.

d. How can we switch from one logarithm base to another?

6. Insert a verification of whether the problem is already solved.

7. A similar question was investigated in the section.

8. Use either the difference between or the ratio of (4) and () whichever is

more convenient for getting a compact answer. If it is possible, try to get

an answer that does not depend on

9. If necessary, simplify the functions in question to single out terms defining

their orders of growth to within a constant multiple. (We will discuss formal

methods for answering such questions in the next section; however, these

questions can be answered without knowledge of such methods.)

P
10. a. Use the formula =0

2 =2

+1

−1.

b. Use the formula for the sum of the first odd numbers or the for-mula

for the sum of arithmetic progression.

5

Solutions to Exercises 2.1

1. The answers are as follows.

a. (i) ; (ii) addition of two numbers; (iii) no

b. (i) the magnitude of , i.e., the number of bits in its binary repre-

sentation; (ii) multiplication of two integers; (iii) no

c. (i) ; (ii) comparison of two numbers; (iii) no (for the standard list

scanning algorithm)

d. (i) either the magnitude of the larger of two input numbers, or the

magnitude of the smaller of two input numbers, or the sum of the

magni-tudes of two input numbers; (ii) modulo division; (iii) yes

e. (i) the magnitude of , i.e., the number of bits in its binary represen-

tation; (ii) elimination of a number from the list of remaining candidates

to be prime; (iii) no

f. (i) ; (ii) multiplication of two digits; (iii) no

2. a. Addition of two numbers. It’s performed
2 2

times (once for each of

elements in the matrix being computed). .Since the total number of
2

elements in two given matrices is = 2
2 the total number of additions

can also be expressed as = 2

b. Since on most computers multiplication takes longer than addition,
multiplication is a better choice for being considered the basic operation

2
of the standard algorithm for matrix multiplication. Each of elements of

the product of two -by- matrices is computed as the scalar (dot) product
of two vectors of size which requires multiplications. The total number of

2 3
multiplications is · =

3 2
= (2) .

3. This algorithm will always make key comparisons on every input of size

whereas this number may vary between and 1 for the classic version of

sequential search.

4. a. The best-case number is, obviously, two. The worst-case number is

twelve: one more than the number of gloves of one handedness.

b. There are just two possible outcomes here: the two missing socks

make a pair (the best case) and the two missing stocks do not make a

pair (the worst case). The total number of different outcomes (the ways

¡ ¢

45 =

to choose the missing socks) is 10 = 45 The number of best-case ones

is 5; hence its probability is 5 2 1 The number of worst-case ones is
45 = 9 40 8

40; hence its probability is
45−5 = 1 8 28 1 9 On average, you should

expect 4 · 9

+ 3 · 9

= 9 = 3 9 matching pairs.

5. a. The smallest positive integer that has binary digits in its binary expansion is 10 0
−1

which is 2 ; the largest positive integer that has
|{z}
−1

−1 −2

binary digits in its binary expansion is 11 1 which is 2

|{z}
−1

+2 + +1 =

2 − 1 Thus,

Hence

log2 2

or

−1

2 ≤ 2

−1

≤ log2 log2 2

− 1 ≤ log2

These inequalities imply that − 1 is the largest integer not exceeding

log2 In other words, using the definition of the floor function, we con-
clude that

− 1 = blog2 c or = blog2 c + 1

b. If 0 has bits in its binary representation, then, as shown in part a,

Hence

and therefore

log2 2

or

−1

2 ≤ 2

−1

2 +1≤2

−1

log2(+ 1) ≤ log2 2

− 1 log2(+ 1) ≤

These inequalities imply that is the smallest integer not smaller than log

2(+ 1) In other words, using the definition of the ceiling function, we
conclude that

= dlog2(+ 1)e

c. = blog10 c + 1 = dlog10(+ 1)e

d. = blog2 c + 1 ≈ log2 = log2 10 log10 ≈ (log2 10) , where =

6

7

2

3

2

blog10 c + 1 That is, the two size metrics are about equal to within a

constant multiple for large values of

6. Before applying a sorting algorithm, compare the adjacent elements of

its input: if ≤ +1 for every = 0 − 2 stop. Generally, it is not a worthwhile

addition because it slows down the algorithm on all but very special
inputs. Note that some sorting algorithms (notably bubble sort and
insertion sort, which are discussed in Sections 3.1 and 4.1,
respectively) intrinsically incorporate this test in the body of the
algorithm.

1 3

 (2) 3 (2)
1 3

7. a. () ≈ 3 = 8, whereis the time of one multiplication

b. We can estimate the running time for solving systems of order on the

old computer and that of order on the new computer as () ≈
1 3

3 and ()

≈ 10
−3 1 3

3 respectively, where is the time of one multiplication on the

old computer. Replacing () and () by these estimates in the equation ()

= () yields
1 3

3 ≈ 10
−3 1

3
3

or ≈ 10

8. a. log2 4 − log2 = (log2 4 + log2) − log2 = 2

√
4

b. √ = 2

d. (4) = 42
2

e. (4) = 43
3

f.
2 4

= 2
3

3
= (2)

9. a. (+ 1) ≈
2 2

has the same order of growth (quadratic) as 2000 to

within a constant multiple.

2
b. 100

(quadratic) has a lower order of growth than 0.01
3

(cubic).

c. Since changing a logarithm’s base can be done by the formula

log = log log

8

all logarithmic functions have the same order of growth to within a con-

stant multiple.

9

64
X

63
X

2−1=
64 1

2 =2 −1≈18·10
=1 =0

d. log
2

2 = log2 log2 and log2
2

2 2
= 2 log Hence log

2 has a higher order

of growth than log2
−1

e. 2
1

= 2 2 has the same order of growth as 2 to within a con-stant

multiple

f. (− 1)! has a lower order of growth than ! = (− 1)!

10. a. The total number of grains due to the inventor is

9

(It is many times more than one can get by planting with grain the entire

surface of the planet Earth.) If it took just one second to count each grain,

the total amount of time needed to count all these grains comes to about

585 billion years, over 100 times more than the estimated age of our planet.

b. Here, the total amount of grains would have been equal to

2
1+3+ +(2·64−1)=64

With the same speed of counting one grain per second, he would have

needed less than one hour and fourteen minutes to count his modest

re-ward.

10

a. (+ 1) 2 ∈ (
3
)

b.

(+ 1) 2 ∈ (

c. (+ 1) 2 ∈ Θ(
3
)

d.

(+ 1) 2 ∈ Ω()

Exercises 2.2

1. Use the most appropriate notation among Θ and Ω to indicate the time

efficiency class of sequential search (see Section 2.1)

a. in the worst case.

b. in the best case.

c. in the average case.

2. Use the informal definitions of Θ and Ω to determine whether the fol-

lowing assertions are true or false.

2
)

3. For each of the following functions, indicate the class Θ(()) the function

belongs to. (Use the simplest () possible in your answers.) Prove your

assertions.

2 10
a. (+ 1)

2 2

√ 2
b. 10 +7 +3

c. 2 lg(+ 2)

e. blog2 c

+ (+ 2) lg d. 2 +1 + 3 −1

2

4. a. Table 2.1 contains values of several functions that often arise in

analysis of algorithms. These values certainly suggest that the functions

2 3
log log 2 !

are listed in increasing order of their order of growth. Do these values

prove this fact with mathematical certainty?

b. Prove that the functions are indeed listed in increasing order of their

order of growth.

5. Order the following functions according to their order of growth (from

the lowest to the highest):

10 2
(−2)! 5 lg(+ 100) 2

0 001
4 3 2 √

+ 3 + 1 ln , 3 3

−1
6. a. Prove that every polynomial of degree () = + −1 +

· · · + 0 with 0 belongs to Θ()

b. Prove that exponential functions have different orders of growth for

different values of base 0

11

7. Prove (by using the definitions of the notations involved) or disprove (by

giving a specific counterexample) the following assertions.

a. If () ∈ (()) then () ∈ Ω(())

b. Θ(()) = Θ(()) where 0

c. Θ(())= (())∩Ω(())

d.B For any two nonnegative functions () and () defined on the set of

nonnegative integers, either () ∈ (()) or () ∈ Ω(()) or both.

8. B Prove the section’s theorem for

a. Ω notation.

b. Θ notation.

9. We mentioned in this section that one can check whether all elements of an

array are distinct by a two-part algorithm based on the array’s presorting.

a. If the presorting is done by an algorithm with the time efficiency in Θ(

log) what will be the time efficiency class of the entire algorithm?

b. If the sorting algorithm used for presorting needs an extra array of

size what will be the space efficiency class of the entire algorithm?

10. The range of a finite nonempty set of real numbers is defined as the

difference between the largest and smallest elements of For each repre-

sentation of given below, describe in English an algorithm to compute the

range. Indicate the time efficiency classes of these algorithms using the

most appropriate notation (Θ or Ω)

a. An unsorted array

b. A sorted array

c. A sorted singly linked list

d. A binary search tree

11. Lighter or heavier? You have 2 identical-looking coins and a two-pan

balance scale with no weights. One of the coins is a fake, but you do

not know whether it is lighter or heavier than the genuine coins, which

all weigh the same. Design a Θ(1) algorithm to determine whether the

fake coin is lighter or heavier than the others.

12

12. B Door in a wall You are facing a wall that stretches infinitely in both

directions. There is a door in the wall, but you know neither how far

away nor in which direction. You can see the door only when you are

right next to it. Design an algorithm that enables you to reach the door

by walking at most () steps where is the (unknown to you) number of

steps between your initial position and the door. [Par95]

13

Hints to Exercises 2.2

1. Use the corresponding counts of the algorithm ’s basic operation (see

Sec-tion 2.1) and the definitions of Θ and Ω

2. Establish the order of growth of (+ 1) 2 first and then use the informal

definitions of Θ and Ω. (Similar examples were given in the section.)

3. Simplify the functions given to single out the terms defining their orders

of growth.

4. a. Check carefully the pertinent definitions.

b. Compute the ratio limits of every pair of consecutive functions on the

list.

5. First simplify some of the functions. Then, use the list of functions in

Table 2.2 to “anchor” each of the functions given. Prove their final

placement by computing appropriate limits.

6. a. You can prove this assertion either by computing an appropriate limit

or by applying mathematical induction.

b. Compute lim
→∞1 2

7. Prove the correctness of (a), (b), and (c) by using the appropriate de- finitions;

construct a counterexample for (d) (e.g., by constructing two functions

behaving differently for odd and even values of their arguments).

8. The proof of part (a) is similar to the one given for the theorem ’s

assertion in Section 2.2. Of course, different inequalities need to be

used to bound the sum from below.

9. Follow the analysis plan used in the text when the algorithm was men-

tioned for the first time.

10. You may use straightforward algorithms for all the four questions asked.

Use the notation for the time efficiency class of one of them, and the Θ

notation for the three others.

11. The problem can be solved in two weighings.

12. You should walk intermittently left and right from your initial position

until the door is reached.

14

)

2

Solutions to Exercises 2.2
1. a. Since() =() ∈ Θ()

b. Since() = 1(1) ∈ Θ(1)

c. Since() =

()∈Θ()

(+1)

2

+ (1−)=(1−2) +

2 where 0 ≤ ≤ 1

2
2. (+ 1) 2 ≈

2 is quadratic. Therefore

a. (+ 1) 2 ∈ (
3
) is true. b. (+ 1) 2 ∈ (

2
) is true.

c. (+ 1) 2 ∈ Θ(
3
) is false. d. (+ 1) 2 ∈ Ω() is true.

2
3. a. Informally, (

10
+ 1) ≈ (

2 10
) =

20
∈ Θ(

20
) Formally,

2 10 2 10 2

lim (+1) lim (+1) = lim +1 10 == lim 1 10 = 1
´

→∞ 20
=

→∞ (
2 10

→∞
³

2 →∞ 1 + 2

2
Hence (

10
+ 1)

∈ Θ(
20

) ¡ ¢

Note: An alternative proof can be based on the binomial formula and

the assertion of Exercise 6a.

b. Informally,

√ 2 √
10 + 7 + 3 ≈ 10

2 √
= 10 ∈ Θ() Formally,

√ 2
10 +7 +3 = lim 10 +7 +3 = lim 10 + 7 + 3 √

lim

→∞ √ 2
q q

→∞ 2 →∞

= 10

2

Hence 10 +7 +3∈Θ()
2

c. 2 lg(+ 2)
2

+ (+ 2)

lg 2 = 2 2 lg(+ 2) + (+ 2)
2
(lg − 1) ∈ Θ(lg) + Θ(

2
lg) = Θ(

2
lg)

+1
d. 2 +3

−1
=2 2+3

1
3 ∈Θ(2)+Θ(3)=Θ(3)

e. Informally, blog2 c ≈ log2 ∈ Θ(log) Formally, by using the in-

equalities − 1 b c ≤ (see Appendix A), we obtain an upper bound

15

blog2 c ≤ log2

and a lower bound

blog2 c log2 − 1 ≥ log2 −

1

2 log2 (for every ≥ 4) =

1

2 log2

Hence blog2 c ∈ Θ(log2) = Θ(log)

 1 log

2 2

0

∈ Θ(4)

+3
4)

Θ 2

3

2

+1

4. a. The order of growth and the related notations Ω, and Θ deal with the

asymptotic behavior of functions as goes to infinity. Therefore no

specific values of functions within a finite range of ’s values, suggestive

as they might be, can establish their orders of growth with mathematical

certainty.
0

b. lim log = lim (log)

= lim = log lim 1 = 0

2 2 2

0
→∞ →∞ () →∞ 1 2 →∞

lim = lim 1 = 0

→∞ log2

log

→∞ 2

lim log = lim log = (see the first limit of this exercise) = 0
2

→∞ →∞
2

lim = lim 1 = 0

→∞ →∞
3 3 0 2

2 2 0

lim = lim () = lim 3 = 3 lim = 3 lim ()

→∞ 2 →∞(2) →∞2 ln 2 ln 2 →∞ 2
0

0
ln 2 →∞(2)

= 3 lim 2 = 6
2 lim = 6

2 lim ()
0

ln 2 2 ln 2 ln 2 2 ln 2 (2)

6 lim→∞ 1 6 lim→∞ 1 →∞

3
= ln 2 →∞ 2 ln 2 = ln 2 →∞ 2 = 0

lim 2 = (see Example 3 in the section) 0

→∞ !

5. (

2)!
− ∈

Θ((
−

10
2)!) 5 lg(+ 100)

= 50 lg(+2100) ∈ Θ 2

2
(log) 2 =

2
(2)

1
0001

4 3
 ∈ Θ() ln

√

∈ Θ(log 3 ∈

Θ(3) 3 ∈Θ(3) The list of these functions ordered in increasing
order of growth looks as follows:

10
5 lg(+ 100)

2 √
ln 3 0001

4 3 2
+3 +1 3 2

(−2)!

6. a.
()

−1
+ + +

 0

lim = lim −1 0 = lim (+ −1 + +)
→∞ →∞ →∞

= 0

Hence () ∈ Θ()

b.
1

lim

= lim 1 = 1 if 1 = 2 ⇔ 1
∈

()

0 if ()

→∞ 2

µ
→∞ 2 ¶

∈
if 1 2 ⇔ ()

1 2 1 2

∞ ⇔ ∈
7. a. The assertion should be correct because it states that if the order of

growth of () is smaller than or equal to the order of growth of () then

14

15

implies

1

(

) () ≤ () for all ≥

() = if is even and () = 2 if is even

the order of growth of () is larger than or equal to the order of growth of

() The formal proof is immediate, too:

() ≤ () for all ≥ 0 where 0

0

b. The assertion that Θ(()) = Θ(()) should be true because () and ()

differ just by a positive constant multiple and, hence, by the definition of

Θ must have the same order of growth. The formal proof has to show

that Θ(()) ⊆ Θ(()) and Θ(()) ⊆ Θ(()) Let () ∈ Θ(()); we’ll show

that () ∈ Θ(()) Indeed,

() ≤() for all ≥ 0 (where0)

can be rewritten as

() ≤ 1 () for all ≥ 0 (where 1 = 0), i.e., () ∈ Θ((

))

Let now () ∈ Θ(()); we’ll show that () ∈ Θ(()) for 0 Indeed, if () ∈

Θ(())

and therefore

() ≤ () for all ≥ 0 (where 0)

() ≤ ()=1 () for all ≥ 0 (where 1 = 0),

i.e., () ∈ Θ(())

c. The assertion is obviously correct (similar to the assertion that = if
and only if ≤ and ≥). The formal proof should show that Θ(()) ⊆ (()) ∩
Ω(()) and that (()) ∩ Ω(()) ⊆ Θ(()) which immediately follow from

the definitions of Ω, and Θ

d. The assertion is false. The following pair of functions can serve as a

counterexample

2 if is odd if is odd

16

8. a. We need to prove that if 1() ∈ Ω(1()) and 2() ∈ Ω(2()), then

1() + 2() ∈ Ω(max{ 1() 2()}).

Proof Since 1() ∈ Ω(1()) there exist some positive constant 1 and

some nonnegative integer 1 such that

1() ≥ 1 1() for all ≥ 1

Since 2() ∈ Ω(2()) there exist some positive constant 2 and some

nonnegative integer 2 such that

2() ≥ 2 2() for all ≥ 2

Let us denote = min{ 1 2} and consider ≥ max{ 1 2} so that we can use

both inequalities. Adding the two inequalities above yields the following:

1()+2() ≥ 11()+22()

 ≥

≥

1()+ 2()= [1()+ 2()]

max{ 1() 2()}

Hence 1() + 2() ∈ Ω(max{ 1() 2()}), with the constants and 0 required

by the definition being min{ 1 2} and max{ 1 2} re-spectively.

b. The proof follows immediately from the theorem proved in the text

(the part), the assertion proved in part (a) of this exercise (the Ω part),

and the definition of Θ (see Exercise 7c)

9. a. Since the running time of the sorting part of the algorithm will still

dominate the running time of the second, it’s the former that will deter-

mine the time efficiency of the entire algorithm. Formally, it follows from

equality

Θ(log) + () = Θ(log)

whose validity is easy to prove in the same manner as that of the

section’s theorem.

b. Since the second part of the algorithm will use no extra space, the

space efficiency class will be determined by that of the first (sorting)

part. Therefore, it will be Θ()

10. a. Scan the array to find the maximum and minimum values among its

elements and then compute the difference between them. The algorithm’s

time efficiency is Θ() Note: Although one can find both the maximum and

minimum values in an -element array with about 1.5 comparisons

17

(see the solutions to Problem 5 in Exercises in 2.3 and Problem 2 in Ex-

ercises 5.1), it doesn’t change the linear efficiency class, of course.

b. For a sorted array, we can simply compute the difference between

its first and last elements: [− 1] − [0] The time efficiency class is

obviously Θ(1)

c. The smallest element is in the first node of the list and hence its

values can be obtained in constant time. The largest element is in the

last node reachable only by the traversal of the entire list, which

requires linear time. Computing the difference between the two values

requires constant time. Hence, the time efficiency class is Θ()

d. The smallest (largest) element in a binary search tree is in the left-

most (rightmost) node. To reach it, one needs to start with the root and

follow the chain of left-child (right-child) pointers until a node with the

null left-child (right-child) pointer is reached. Depending on the structure

of the tree, this chain of nodes can be between 1 and nodes long. Hence,

the time of reaching its last node will be in () The running time of the

entire algorithm will also be linear: () + () + Θ(1) = ()

11. The puzzle can be solved in two weighings as follows. Start by taking

aside one coin if is odd and two coins if is even. After that divide the

remaining even number of coins into two equal-size groups and put

them on the opposite pans of the scale. If they weigh the same, all

these coins are genuine and the fake coin is among the coins set aside.

So we can weigh the set aside group of one or two coins against the

same number of genuine coins: if the former weighs less, the fake coin

is lighter, otherwise, it is heavier. If the first weighing does not result in a

balance, take the lighter group and, if the number of coins in it is odd,

add to it one of the coins initially set aside (which must be genuine).

Divide all these coins into two equal-size groups and weigh them. If

they weigh the same, all these coins are genuine and therefore the fake

coin is heavier; otherwise, they contain the fake, which is lighter.

Note: The puzzle provides a very rare example of a problem that can be

solved in the same number of basic operations (namely, two weighings)

irrespective of how large the problem ’s instance (here, the number of

coins) is. Of course, had we considered putting one coin on the scale as

the algorithm’s basic operation, the algorithm’s efficiency would have

been in Θ() instead of Θ(1)

12. The key idea here is to walk intermittently right and left going each time
exponentially farther from the initial position. A simple implementation of
this idea is to do the following until the door is reached: For = 0 1

make 2 steps to the right, return to the initial position, make 2 steps to

−1
the left, and return to the initial position again. Let 2 ≤ 2 The

18

number of steps this algorithm will need to find the door can be

estimated above as follows:
−1

X −1
4·2 +3·2 =4(2 −1)+3·2 7·2 =14·2 14

=0

Hence the number of steps made by the algorithm is in () (Note: It is

not difficult to improve the multiplicative constant with a better

algorithm.)

19

Exercises 2.3

1. Compute the following sums.

a. 1+3+5+7+···+999

b. 2+4+8+16+···+1024
P

P P 1

c. +1 1 d. +1 e. −1 (+1)
=3 =3 =0

P +1

f. =13
P

g. =1

P P −

=1 h. =0

1 (+ 1)

2. Find the order of growth of the following sums.

2
a. −1 (

=0

P

2
+1)

b. −1 lg 2

P =2

1 1

P
c. =1

−1
(+1)2

P
d. =0

− P−

=0(+)

Use the Θ(()) notation with the simplest function () possible.

3. The sample variance of measurements 1 2 can be computed as
P − 1 P

2
=1(− ¯)

or

2
=1 −(=1

where ¯ = =1

2

)

− 1

Find and compare the number of divisions, multiplications, and addi-

tions/subtractions (additions and subtractions are usually bunched to-

gether) that are required for computing the variance according to each

of these formulas.

4. Consider the following

algorithm. Algorithm Mystery()

//Input: A nonnegative integer
← 0

for ← 1 to do

← + ∗
return

a. What does this algorithm compute?

b. What is its basic operation?

c. How many times is the basic operation executed?

20

d. What is the efficiency class of this algorithm?

e. Suggest an improvement, or a better algorithm altogether, and in-

dicate its efficiency class. If you cannot do it, try to prove that, in fact, it

cannot be done.

5. Consider the following algorithm.

Algorithm Secret([0 − 1])
//Input: An array [0 − 1] of real numbers

minval ← [0]; maxval ← [0]

for ← 1 to − 1 do
if [] minval

minval ← []
if [] maxval
maxval ← []

return maxval − minval

Answer questions a—e of Problem 4 about this algorithm.

6. Consider the following algorithm.

Algorithm Enigma([0 − 1 0 − 1])

//Input: A matrix [0 − 1 0 − 1] of real numbers for ← 0
to − 2 do

for ← + 1 to − 1 do if []

=6 [] return false

return true

Answer the questions a—e of Problem 4 about this algorithm.

7. Improve the implementation of the matrix multiplication algorithm (see

Example 3) by reducing the number of additions made by the algorithm.

What effect will this change have on the algorithm’s efficiency?

8. Determine the asymptotic order of growth for the total number of times

all the doors are toggled in the locker doors puzzle (Problem 12 in

Exercises 1.1).

9. Prove the formula

X

 (+1)
=1+2+···+ = 2

=1

either by mathematical induction or by following the insight of a 10-year-

old schoolboy named Karl Friedrich Gauss (1777—1855) who grew up

to become one of the greatest mathematicians of all times.

21

10. Mental arithmetic A 10×10 table is filled with repeating numbers on its

diagonals as shown below. Calculate the total sum of the table’s numbers

in your head. (after [Cra07, Question 1.33])

1 2 3 9 10

2 3 9 10 11

3 9 10 11

 9 10 11

9 10 11

9 10 11

9 10 11

 9 10 11 17

9 10 11 17 18

10 11 17 18 19

11. Consider the following version of an important algorithm that we will

study later in the book.

Algorithm GE ([0.. − 1 0])

//Input: An × (+ 1) matrix [0 − 1 0] of real numbers for ← 0 to −
2 do

for ← + 1 to − 1 do

for ← to do

[]←[]−[]∗[][]

return

a.B Find the time efficiency class of this algorithm.

b.B What glaring inefficiency does this pseudocode contain and how

can it be eliminated to speed the algorithm up?

12. von Neumann’s neighborhood How many one-by-one squares are gener-

ated by the algorithm that starts with a single square square and on each of

its iterations adds new squares all round the outside. How many one-by-

one squares are generated on the th iteration? [Gar99] (In the parlance of

cellular automata theory, the answer is the number of cells in the von

Neumann neighborhood of range .) The results for = 0, 1, and

22

2 are illustrated below.

=0 =1 =2

13. Page numbering Find the total number of decimal digits needed for

num-bering pages in a book of 1000 pages. Assume that the pages are

num-bered consecutively starting with 1.

23

Hints to Exercises 2.3

1. Use the common summation formulas and rules listed in Appendix A.

You may need to perform some simple algebraic operations before

applying them.

2. Find a sum among those in Appendix A that looks similar to the sum in

question and try to transform the latter to the former. Note that you do

not have to get a closed-end formula for a sum before establishing its

order of growth.

3. Just follow the formulas in question.

4. a. Tracing the algorithm to get its output for a few small values of (e.g.,

= 1 2 and 3) should help if you need it.

b. We faced the same question for the examples discussed in the text.

One of them is particularly pertinent here.

c. Follow the plan outlined in the section.

d. As a function of , the answer should follow immediately from your

answer to part (c). You may also want to give an answer as a function

of the number of bits in the ’s representation (why?).

e. Have you not encountered this sum somewhere?

5. a. Tracing the algorithm to get its output for a few small values of (e.g.,

= 1 2 and 3) should help if you need it.

b. We faced the same question for the examples discussed in the sec-

tion. One of them is particularly pertinent here.

c. You can either follow the section’s plan by setting up and comput-

ing a sum or answer the question directly. (Try to do both.)

d. Your answer will immediately follow from the answer to part (c).

e. Does the algorithm always have to make two comparisons on each

iteration? This idea can be developed further to get a more significant

improvement than the obvious one–try to do it for a four-element array

and then generalize the insight. But can we hope to find an algorithm

with a better than linear efficiency?

6. a. Elements [] and [] are symmetric with respect to the main diagonal

of the matrix.

b. There is just one candidate here.

24

 −1
X

= +
=1 =1

c. You may investigate the worst case only.

d. Your answer will immediately follow from the answer to part (c).

e. Compare the problem the algorithm solves with the way it does this.

7. Computing a sum of numbers can be done with − 1 additions. How

many does the algorithm make in computing each element of the

product matrix?

8. Set up a sum for the number of times all the doors and toggled and find

its asymptotic order of growth by using some properties from Appendix

A.

9. For the general step of the proof by induction, use the formula

X

The young Gauss computed the sum 1 + 2 + · · · + 99 + 100 by noticing

that it can be computed as the sum of 50 pairs, each with the same sum.

10. There are at least two different ways to solve this problem, which

comes from a collection of Wall Street interview questions.

11. a. Setting up a sum should pose no difficulties. Using the standard sum-

mation formulas and rules will require more effort than in the previous

examples, however.

b. Optimize the algorithm’s innermost loop.

12. Set up a sum for the number of squares after iterations of the algorithm

and then simplify it to get a closed-form answer.

13. To derive a formula expressing the total number of digits as a function

of the number of pages where 1 ≤ ≤ 1000 it’s convenient to partition the

function’s domain into several natural intervals.

=1 =1 =1 2

 P P 500

− 2

2

g. P P P P P

)

P
2

+

6 2

Solutions to Exercises 2.3
500

500

500

1. a. 1+3+5+7+ +999 = (2 -1) = 2 - 1=2 500∗501 -500 = 250 000

2
(Or by using the formula for the sum of odd integers: (2 -1) = 500 =

=1

250 000
P

Or by using the formula for the sum of the arithmetic progression with

1 = 1= 999 and = 500:
 (1+)

=
 (1+999)500

= 250 000)
2 2

b. 2+4+8+16+ +1 024 =

P10 P10
2 =

2 −1 = (2

11
−1)−1 = 2 046

=1 =0

(Or by using the formula for the sum of the geometric series with = 2

= 2, and = 9:
 +1

1 = 2
10

−1 =2 046)

−1 2−1
+1

c.
=3 1=(+1)−3+1= −1
+1 +1 2
P
1 P P (+1)(+2)

d. =

=3 =0

=

− =0 2

3 = +3 −4

− 2

− −
1 1 1

e. (+1)=
P

(
2

)= − 2
+ − = (−1) (2 −1) + (−1)

P

P P

=0 =0 =0 =0

= (−1) 3

+1
f. 3

=3 3 =3[3 1]=3[3

+1
1 1] = 3

+2
9

P P P
=1 =1 =0

− −

− 3−1 − 2

P

 (+1) (+1) = = = =

 (+1) (+1)

=1 =1 =1 =1 =1 2 2 =1 2 2

2 2

= (+1) 4

P P 1 1

h. =1 1 (+1)= =1 (− +1)

1 1 1 1 1 1 1 1 1

=(1 − 2)+(2 − 3)+ +(− 1 −)+(− +1)=1− +1 = +1 (This is a special

case of the so-called telescoping series–see Appendix

P
A– =(− −1)= − −1.)

2. a.

P−1

(2 + 1)2 =

P−1

(4 + 2 2 + 1) =

P−1

4 + 2

P−1

P−1
2 + 1

=0 =0 =0 =0 =0

∈Θ(
5

3
+ Θ()

5
+ Θ() = Θ()

P−1
(or just (

2 2 P−1 4 5
+ 1) ≈ ∈ Θ())

−1 2 −1 −1 =0 =0

b.
2P

log

P

= 2 log

= 2
P

log

P

= 2 log

− 2 log

=2 2 =2 2 =2 2 =1 2 2

Θ(log)
∈

Θ(log) = Θ(log)
−

25

26

2 3 2 1

6

c. (+1)2−1 = 2 −1 + 2 −1 = 1 2 + −1 2
P P P

2
P 1 P

=1 =1 =1 =1 =0

−1

∈
Θ(2) + Θ(2) = Θ(2) (or

P
=1

(+1)2
≈ 2 =1

2
∈ Θ(2))

1 1 1 1 1
− − − −

[
 1 P 1

− − (−1)) −

P P P P P P P

d. =0 =0(+)= =0
1 1

=0 + =0] =

=0 [+

2] =

=0 [2 − 2]

3 − 2 1 − 3 2 3
P P

= 2 =0 −2 =0 ∈Θ()−Θ()=Θ()

3. For the first formula: () = 2 () = () + () = [(− 1) + (−1)]+(+1)=3 −1

For the second formula: () = 2 () = + 1 () + () = [(−1)+(−1)]+2=2

P 2
4. a. Computes () =

=1

b. Multiplication (or, if multiplication and addition are assumed to take

the same amount of time, either of the two).

P
c. ()= 1= .

=1

d. () = ∈ Θ() Since the number of bits = blog2 c + 1 ≈ log2 and

hence ≈ 2 () ≈ 2 ∈ Θ(2)
P

e. Use the formula 2 =
 (+1)(2 +1)

to compute the sum in Θ(1)
=1

time (which assumes that the time of arithmetic operations stay

constant irrespective of the size of the operations’ operands).

5. a. Computes the range, i.e., the difference between the array’s largest

and smallest elements.

b. An element comparison.

P−1
c. ()=

d. Θ()

2=2(−1).
=1

e. An obvious improvement for some inputs (but not for the worst case)

is to replace the two if-statements by the following one:

27

if [] minval minval ← []

28

else if [] maxval maxval ← []

Another improvement, both more subtle and substantial, is based on the

observation that it is more efficient to update the minimum and maximum

values seen so far not for each element but for a pair of two consecutive

elements. If two such elements are compared with each other first, the

updates will require only two more comparisons for the total of three com-

parisons per pair. Note that the same improvement can be obtained by a

divide-and-conquer algorithm (see Problem 2 in Exercises 5.1).

6. a. The algorithm returns “true” if its input matrix is symmetric and “false”

if it is not.

b. Comparison of two matrix elements.

c. ()=

P−2 P−1 P−2
1=

[(−1)−(+1)+1)

P−2
=

=0

=0 =+1 =0

(−1−)=(−1)+(−2)+ +1=

(− 1)

2

d. Quadratic:() ∈ Θ(
2
) (or () ∈ (

2
))

e. The algorithm is optimal because any algorithm that solves this prob-

lem must, in the worst case, compare (− 1) 2 elements in the upper-

triangular part of the matrix with their symmetric counterparts in the

lower-triangular part, which is all this algorithm does.

7. Replace the body of the loop by the following fragment:

[]←[0]∗[0] for ← 1 to
− 1 do

[]←[]+[]∗[]

This will decrease the number of additions from

3

3 3

to −

2
, but the

number of multiplications will still be
will remain cubic.

The algorithm’s efficiency class

8. Let () be the total number of times all the doors are toggled. The

problem statement implies that

Since − 1 b c ≤ and

X

() = b c
=1

=1 1 ≈ ln + , where = 0 5772 (see

X

1

Appendix A),

X
() ≤ =

Similarly,

X
1 ≈ (ln +) ∈ Θ(log)

=1 =1

() (−1)=
=1 =1

X

1 −
X= 1

1 ≈ (ln +) − ∈ Θ(log)

This implies that () ∈ Θ(log)

Note: Alternatively, we could use the formula for approximating sums

by definite integrals (see Appendix A):
Z

1) ≤ (1+ 1 1
()≤=1 = (1+ =2) = (1+ln) ∈ Θ(log)

X X

and

()=1

X

(− 1)= = 1

+1

X X
1 − =1 1 ≥ Z1 − = l n (+ 1) − ∈ Θ (l o g)

9. Here is a proof by mathematical induction that = (+1) for every

positive integer

=1
2

P

(i) Basis step: For = 1 = 1 = 1 and (+1) = 1(1+1) = 1

=1 2
=1

=1 2
¯

P P

(ii) Inductive step: Assume that =
(+1)

2

¯
¯

for a

positive integer

We need to show that then

P+1

P

=
(+1)(+2)

=1

This is obtained as follows:
2

P+1 P
=1

= +(+1)= (+1) +(+1)= (+1)+2(+1) = (+1)(+2)
2 2 2

=1 =1

The young Gauss computed the sum

1+2+···+99+100

by noticing that it can be computed as the sum of 50 pairs, each with
the sum 101:

1+100=2+99= =50+51=101

Hence the entire sum is equal to 50·101 = 5 050 (The well-known historic

anecdote claims that his teacher gave this assignment to a class to keep

28

29

the class busy.) The Gauss idea can be easily generalized to an arbitrary

by adding

and

to obtain

()=1+2+···+(−1)+

()= +(−1)+···+2+1

2 () = (+ 1) and hence () =

(+ 1)

2

10. The object here is to compute (in one’s head) the sum of the numbers

in the table below:

1 2 3 9 10

2 3 9 10 11

3 9 10 11

9 10 11

9 10 11

9 10 11

9 10 11

9 10 11 17

9 10 11 17 18

10 11 17 18 19

The first method is based on the observation that the sum of any two num-

bers in the squares symmetric with respect to the diagonal connecting the

lower left and upper right corners is equal to 20: 1+19, 2+18, 2+18, and so

on. So, since there are (10· 10-10)/2 = 45 such pairs (we subtracted the

number of the squares on that diagonal from the total number of squares),

the sum of the numbers outside that diagonal is equal to 20·45

= 900. With 10·10 = 100 on the diagonal, the total sum is equal to 900

+ 100 = 1000.

The second method computes the sum row by row (or column by column).

The sum in the first row is equal to 10· 11/2 = 55 according to formula (S2).

The sum of the numbers in second row is 55 + 10 since each of the

numbers is larger by 1 than their counterparts in the row above. The same

is true for all the other rows as well. Hence the total sum is equal to 55 +

(55+10) + (55+20) + ...+ (55+90) = 55·10 + (10+20+...+90) =

30

+

55·10 + 10·(1+2+...+9) = 55·10 + 10·45 =1000.

Note that the first method uses the same trick Carl Gauss presumably

used to find the sum of the first hundred integers (Problem 9 in Exercises

2.3). We also used this formula (twice, in fact) in the second solution to

the problem.

11. a. The number of multiplications () and the number of divisions ()

made by the algorithm are given by the same sum:

−2 −1 −2 −1
X X X X X

() =()= 1 = (− +1)=
=0 =+1 = =0 =+1

−2 −2
X X

= (− +1)(−1−(+1)+1)=(− +1)(− −1)
=0 =0

= (+1)(−1)+ (−2)+ +3∗1
−1 −1 −1

X X X

= (+2)=
2

2= (−1) (2 −1) + 2 (−1)

=1 =1 =1
6 2

(−1)(2 +5) 1
= ≈ 3∈Θ (3)

63

b. The inefficiency is the repeated evaluation of the ratio [] [] in the

algorithm’s innermost loop, which, in fact, does not change with the loop

variable Hence, this loop invariant can be computed just once before

entering this loop: ← [] []; the innermost loop is then changed to

[]← []− []∗

This change eliminates the most expensive operation of the algorithm,

the division, from its innermost loop. The running time gain obtained by

this change can be estimated as follows:

1 3 1 3
 () 3 + 3

1 3
 +

= = + 1

() ≈ 3

where and are the time for one division and one multiplication,

respectively.

12. The answer can be obtained by a straightforward evaluation of the sum

X 2
2 (2 −1)+(2 +1)=2

=1

+2 +1

31

(One can also get the closed-form answer by noting that the cells on

the al-ternating diagonals of the von Neumann neighborhood of range

compose two squares of sizes + 1 and , respectively.)

13. Let () be the total number of decimal digits in the first positive integers

(book pages). The first nine numbers are one-digit, therefore () = for 1

≤ ≤ 9 The next 90 numbers from 10 to 99 inclusive are two-digits. Hence

() = 9 + 2(− 9) for 10 ≤ ≤ 99

The maximal value of () for this range is (99) = 189 Further, there are

900 three-digit decimals, which leads to the formula

() = 189 + 3(− 99) for 100 ≤ ≤ 999

The maximal value of () for this range is (999) = 2889 Adding four

digits for page 1000, we obtain (1000) = 2893

32

Exercises 2.4

1. Solve the following recurrence relations.

a. () = (− 1) + 5 for 1 (1) = 0

b. () = 3 (− 1) for 1 (1) = 4

c. () = (− 1) + for 0 (0) = 0

d. () = (2) + for 1 (1) = 1 (solve for = 2)

e. () = (3) + 1 for 1 (1) = 1 (solve for = 3)

2. Set up and solve a recurrence relation for the number of calls made by

F () the recursive algorithm for computing !

3. Consider the following recursive algorithm for computing the sum of the
3

first cubes: () = 1

Algorithm ()

3 3
+ 2 + · · · +

//Input: A positive integer

//Output: The sum of the first cubes if =
1 return 1

else return (− 1) + ∗ ∗

a. Set up and solve a recurrence relation for the number of times the

algorithm’s basic operation is executed.

b. How does this algorithm compare with the straightforward

nonrecursive algorithm for computing this function?

4. Consider the following recursive algorithm.

Algorithm ()

//Input: A positive integer if =
1 return 1

else return (− 1) + 2 ∗ − 1

a. Set up a recurrence relation for this function’s values and solve it to

determine what this algorithm computes.

b. Set up a recurrence relation for the number of multiplications made

by this algorithm and solve it.

c. Set up a recurrence relation for the number of additions/subtractions

made by this algorithm and solve it.

33

5. Tower of Hanoi a. In the original version of the Tower of Hanoi puzzle, as it

was published by Edouard Lucas, a French mathematician, in the 1890s,

the world will end after 64 disks have been moved from a mystical Tower of

Brahma. Estimate the number of years it will take if monks could move one

disk per minute. (Assume that monks do not eat, sleep, or die.)

b. How many moves are made by the th largest disk (1 ≤ ≤) in this

algorithm?

c. Find a nonrecursive algorithm for the Tower of Hanoi puzzle and im-

plement it in the language of your choice.

6. B Restricted Tower of Hanoi Consider the version of the Tower of Hanoi

puzzle in which disks have to be moved from peg A to peg C using peg

B so that any move should either place a disk on peg B or move a disk

from that peg. (Of course, the prohibition of placing a larger disk on top

of a smaller one remains in place, too.) Design a recursive algorithm for

this problem and find the number of moves made by it.

7. B a. Prove that the exact number of additions made by the recursive

algorithm BinRec() for an arbitrary positive integer is blog2 c

b. Set up a recurrence relation for the number of additions made by
the nonrecursive version of this algorithm (see Section 2.3, Example 4)

and solve it.

8. a. Design a recursive algorithm for computing 2 for any nonnegative

−1 −1
integer that is based on the formula: 2 = 2 + 2

b. Set up a recurrence relation for the number of additions made by

the algorithm and solve it.

c. Draw a tree of recursive calls for this algorithm and count the number

of calls made by the algorithm.

d. Is it a good algorithm for solving this problem?

9. Consider the following recursive algorithm.

Algorithm Riddle([0 − 1])
//Input: An array [0 − 1] of real numbers

if = 1 return [0]

else temp ← Riddle([0 − 2])
if temp ≤ [− 1] return temp
else return [− 1]

a. What does this algorithm compute?

34

b. Set up a recurrence relation for the algorithm’s basic operation count

and solve it.

10. Consider the following algorithm to check whether a graph defined by

its adjacency matrix is complete.

Algorithm GraphComplete([0 − 1 0 − 1])

//Input: Adjacency matrix [0 − 1 0 − 1]) of an undirected graph with ≥ 1

vertices

//Output: 1 (true) if is complete and 0 (false) otherwise

if = 1 return 1 //one-vertex graph is complete by definition else

if not GraphComplete([0 − 2 0 − 2]) return 0 else for
← 0 to − 2 do

if [− 1] = 0 return 0

return 1

What is the algorithm’s efficiency class in the worst case?

11. The determinant of an × matrix

= 1. 0 1 −1

 0 0
.

0 −1

 .

−1 0

−1 −1

denoted det can be defined as 00 for = 1 and, for 1 by the recursive formula

X
det =

−1

0 det

=0

where is +1 if is even and −1 if is odd, 0 is the element in row 0 and
column , and is the (−1) × (−1) matrix obtained from matrix by deleting
its row 0 and column .

a.B Set up a recurrence relation for the number of multiplications made
by the algorithm implementing this recursive definition.

b.B Without solving the recurrence, what can you say about the solu-
tion’s order of growth as compared to ! ?

12. von Neumann’s neighborhood revisited Find the number of cells in the
von Neumann neighborhood of range (Problem 12 in Exercises 2.3) by
setting up and solving a recurrence relation.

35

13. Frying hamburgers There are hamburgers to be fried on a small grill

that can hold only two hamburgers at a time. Each hamburger has to be

fried on both sides; frying one side of a hamburger takes one minute,

re-gardless of whether one or two hamburgers are fried at the same time.

Consider the following recursive algorithm for executing this task. If ≤ 2

fry the hamburger (or the two hamburgers together if = 2) on each side.

If 2 fry two hamburgers together on each side and then fry the remaining

− 2 hamburgers by the same algorithm.

a. Set up and solve the recurrence for the amount of time this algo-

rithm needs to fry hamburgers.

b. Explain why this algorithm does not fry the hamburgers in the mini-

mum amount of time for all 0.

c. Give a correct recursive algorithm that executes the task in the mini-

mum amount of time for all 0 and find a closed-form formula for the

minimum amount of time.

14. B Celebrity problem A celebrity among a group of people is a person

who knows nobody but is known by everybody else. The task is to

identify a celebrity by only asking questions to people of the form: "Do

you know him/her?" Design an efficient algorithm to identify a celebrity

or determine that the group has no such person. How many questions

does your algorithm need in the worst case? [Man89]

36

Hints to Exercises 2.4

1. Each of these recurrences can be solved by the method of backward

sub-stitutions.

2. The recurrence relation in question is almost identical to the recurrence

relation for the number of multiplications, which was set up and solved

in the section.

3. a. The question is similar to that about the efficiency of the recursive

algorithm for computing !

b. Write a pseudocode for the nonrecursive algorithm and determine its

efficiency.

4. a. Note that you are asked here about a recurrence for the function’s

values, not about a recurrence for the number of times its operation is

executed. Just follow the pseudocode to set it up. It is easier to solve

this recurrence by forward substitutions (see Appendix B).

b. This question is very similar to one we have already discussed.

c. You may want to include the substraction needed to decrease

5. a. Use the formula for the number of disk moves derived in the section.

b. Solve the problem for 3 disks to investigate the number of moves

made by each of the disks. Then generalize the observations and prove

their validity for the general case of disks.

6. The required algorithm and the method of its analysis are similar to those of

the classic version of the puzzle. Because of the additional constraint, more

than two smaller instances of the puzzle need to be solved here.

7. a. Consider separately the cases of even and odd values of and show

that for both of them blog2 c satisfies the recurrence relation and its
initial condition.

b. Just follow the algorithm’s pseudocode.

−1 −1
8. a. Use the formula 2 = 2 + 2

without simplifying it; do not forget to

provide a condition for stopping your recursive calls.

b. A similar algorithm was investigated in Section 2.4.

c. A similar question was investigated in Section 2.4.

d. A bad efficiency class of an algorithm by itself does not mean that

37

the algorithm is bad. For example, the classic algorithm for the Tower of

Hanoi puzzle is optimal despite its exponential-time efficiency.

Therefore, a claim that a particular algorithm is not good requires a

reference to a better one.

9. a. Tracing the algorithm for = 1 and = 2 should help.

b. It is very similar to one of the examples discussed in the section.

10. Get the basic operation count either by solving a recurrence relation or

by computing directly the number of the adjacency matix elements the

algorithm checks in the worst case.

11. a. Use the definition’s formula to get the recurrence relation for the

num-ber of multiplications made by the algorithm.

b. Investigate the right-hand side of the recurrence relation. Computing

the first few values of () may be helpful, too.

12. You might want to use the neighborhood’s symmetry to obtain a simple

formula for the number of squares added to the neighborhood on the th

iteration of the algorithm.

13. The minimum amount of time needed to fry three hamburgers is smaller

than four minutes.

14. Solve first a simpler version in which a celebrity must be present.

38

Solutions to Exercises 2.4

1. a. () = (− 1) + 5 for 1 (1) = 0

() = (−1)+5

= [(−2)+5]+5= (−2)+5·2

= [(−3)+5]+5·2= (−3)+5·3

=

= (−)+5·

=

= (1)+5·(−1)=5(−1)

Note: The solution can also be obtained by using the formula for the

term of the arithmetical progression:

()= (1)+ (−1)=0+5(−1)=5(−1)

b. () = 3 (− 1) for 1 (1) = 4

() = 3(−1)
2

= 3[3 (−2)]=3
2

(−2)
3

= 3 [3 (−3)]=3

=

(−3)

= 3(−)

=
−1

= 3

−1
(1)=4·3

Note: The solution can also be obtained by using the formula for the

term of the geometric progression:

()= (1)
−1 −1

=4·3

c. () = (− 1) + for0 (0)=0

() = (−1)+

= [(−2) +(−1)]+ = (−2)+(−1)+

= [(−3) +(−2)]+(−1)+ = (−3)+(−2)+(−1)+
=

= (−)+(− +1)+(− +2)+···+
=

39

= (0)+1+2+···+ =

(+1)

2

40

d. () = (2) + for 1 (1) = 1 (solve for = 2)

−1
(2) = (2

= [(2

)+2
−2

)+2

−1
]+2 = (2

−2 −1
)+2 +2

= [(2

=

−3
)+2

−2
]+2

−1
+2 = (2

−3
)+2

−2 −1
+2 +2

−
= (2

=

)+2
−+1

+2
−+2

+···+2

−
= (2

1
)+2

2
+2 +···+2 =1+2

1 2
+2 +···+2

+1
= 2 −1=2·2 −1=2 −1

e. () = (3) + 1 for 1 (1) = 1 (solve for = 3)

−1
(3) = (3

= [(3

= [(3

=
−

)+1
−2

)+1]+1= (3
−3

)+1]+2= (3

−2
)+2

−3
)+3

= (3

=

= (3

)+

−

) + = (1) + = 1 + log3

2. () = (− 1) + 1 (0) = 1 (there is a call but no multiplications when = 0)

() = (−1)+1=[(−2)+1]+1= (−2)+2=

= (−)+ = = (0)+ =1+

3. a. Let () be the number of multiplications made by the algorithm. We

have the following recurrence relation for it:

()= (−1)+2 (1)=0

41

We can solve it by backward substitutions:

() = (−1)+2

= [(−2)+2]+2= (−2)+2+2

= [(−3)+2]+2+2= (−3)+2+2+2

=

= (−)+2

=

= (1)+2(−1)=2(−1)

b. Here is a pseudocode for the nonrecursive option:

Algorithm NonrecS ()

//Computes the sum of the first cubes nonrecursively
//Input: A positive integer //Output: The sum of the first
cubes.

← 1

for ← 2 to do

← +∗∗ return

The number of multiplications made by this algorithm will be

X X

 2=21=2(−1)
=2 =2

This is exactly the same number as in the recursive version, but the

nonre-cursive version doesn’t carry the time and space overhead

associated with the recursion’s stack.

4. a. () = (− 1) + 2 − 1 for 1 (1) = 1

Computing the first few terms of the sequence yields the

following: (2)= (1)+2·2−1=1+2·2−1=4; (3)=

(2)+2·3−1=4+2·3−1=9; (4)= (3)+2·4−1=9+2·4−1=16

Thus, it appears that () =
2

We’ll check this hypothesis by substi-tuting

this formula into the recurrence equation and the initial condition. The
2

left hand side yields () = The right hand side yields

(−1)+2 −1=(−1)
2 2
+2 −1=

2
The initial condition is verified immediately: (1) = 1 = 1

b. () = (− 1) + 1 for 1 (1) = 0 Solving it by backward substitutions (it’s

almost identical to the factorial example–see Example 1 in the section)

or by applying the formula for the th term of an arith-metical progression

yields () = − 1

c. Let () be the number of additions and subtractions made by the

algorithm. The recurrence for () is () = (− 1) + 3 for 1 (1) = 0 Solving it

by backward substitutions or by applying the formula for the th term of

an arithmetical progression yields () = 3(− 1)

Note: If we don’t include in the count the subtractions needed to de-

crease the recurrence will be () = (− 1) + 2 for 1 (1) = 0 Its solution is (

) = 2(− 1)

5. a. The number of moves is given by the formula: () = 2 − 1 Hence

64
2

60 24

−1

365 ≈

13
3 5 10

·

years

· ·
9

vs. the age of the Universe estimated to be about 13 · 10 years.

b. Observe that for every move of the th disk, the algorithm first moves

the tower of all the disks smaller than it to another peg (this requires

one move of the (+ 1)st disk) and then, after the move of the th disk,

this smaller tower is moved on the top of it (this again requires one

move of the (+ 1)st disk). Thus, for each move of the th disk, the

algorithm moves the (+ 1)st disk exactly twice. Since for = 1, the

number of moves is equal to 1, we have the following recurrence for the

number of moves made by the th disk:

Its solution is () = 2

(+ 1) = 2 () for 1 ≤ (1) = 1

−1
for = 1 2 (The easiest way to obtain this formula

is to use the formula for the generic term of a geometric progression.)
Note that the answer agrees nicely with the formula for the total number
of moves:

X
()=

X
()=

−1
2 =1+2+···+2

−1
=2 −1

=1 =1

6. If = 1 move the single disk from peg A first to peg B and then from peg

B to peg C. If 1 do the following:

transfer recursively the top − 1 disks from peg A to peg C through peg

B

41

42

move the disk from peg A to peg B

transfer recursively − 1 disks from peg C to peg A through peg B
move the disk from peg B to peg C

transfer recursively − 1 disks from peg A to peg C through peg B.

The recurrence relation for the number of moves () is

() = 3 (− 1) + 2 for 1 (1) = 2

It can be solved by backward substitutions as follows

() = 3 (−1)+2
2

= 3[3 (−2)+2]+2=3
2

(−2)+3·2+2

3 2

= 3 [3 (−3)+2]+3·2+2=3

=

(−3)+3 ·2+3·2+2

−1
= 3 (−)+2(3 +3

=

−2
+···+1)=3 (−)+3 −1

−1
= 3 (1)+3

−1
−1=3

−1
·2+3

−1
−1=3 −1

7. a. We’ll verify by substitution that () = blog2 c satisfies the recurrence

for the number of additions

() = (b 2c) + 1 for every 1

Let be even, i.e., = 2

The left-hand side is:

() = blog2 c = blog2 2 c = blog2 2 + log2 c = (1 + blog2 c) = blog2 c +
1
The right-hand side is:

(b 2c) + 1 = (b2 2c) + 1 = () + 1 = blog2 c + 1

Let be odd, i.e., = 2 + 1

The left-hand side is:

() = blog2 c = blog2(2 + 1)c = using blog2 c = dlog2(+ 1)e − 1 dlog2(2 +

2)e − 1 = dlog2 2(+ 1)e − 1

= dlog2 2 + log2(+ 1)e − 1 = 1 + dlog2(+ 1)e − 1 = blog2 c + 1
The right-hand side is:

(b 2c) + 1 = (b(2 + 1) 2c) + 1 = (b + 1 2c) + 1 = () + 1 = blog2 c + 1

The initial condition is verified immediately: (1) = blog2 1c = 0

43

b. The recurrence relation for the number of additions is identical to

the one for the recursive version:

() = (b 2c) + 1 for 1 (1) = 0 with the

solution () = blog2 c + 1.

8. a. Algorithm Power()
−1 −1

//Computes 2 recursively by the formula 2 = 2 + 2
//Input: A nonnegative integer

//Output: Returns 2 if
= 0 return 1

else return(− 1) +(− 1)

b. ()=2 (−1)+1(0)=0

() = 2 (−1)+1
2

= 2[2 (−2)+1]+1=2
2

(−2)+2+1

3 2

= 2 [2 (−3)+1]+2+1=2

=

(−3)+2 +2+1

−1
= 2 (−)+2

=

−2
+2 +···+1

= 2 (0)+2
−1 −2

+2

+···+1=2
−1 −2

+2

+···+1=2 −1 c. The tree of

recursive calls for this algorithm looks as follows:

n

n-1 n-1

...
n-2 n-2

...
n-2 n-2

...

1 1 1 1

0 0 0 0 0 0 0 0

Note that it has one extra level compared to the similar tree for the

Tower of Hanoi puzzle.

d. It’s a very bad algorithm because it is vastly inferior to the algo-rithm

that simply multiplies an accumulator by 2 times, not to mention much more

efficient algorithms discussed later in the book. Even if only additions are
−1

allowed, adding two 2 times is better than this algorithm.

44

9. a. The algorithm computes the value of the smallest element in a given

array.

b. The recurrence for the number of key comparisons is (

) = (− 1) + 1 for 1 (1) = 0 Solving it by backward

substitutions yields () = − 1

10. Let () be the number of times the adjacency matrix element is checked

in the worst case (the graph is complete). We have the following

recurrence for ()

() = (− 1) + − 1 for 1 (1) = 0

Solving the recurrence by backward substitutions yields the following:

() = (−1)+ −1

= [(−2)+ −2]+ −1

= [(−3)+ −3]+ −2+ −1

=
= (−)+(−)+(− +1)+···+(−1)

=
= (1)+1+2+···+(−1)=0+(−1) 2=(−1) 2

This result could also be obtained directly by observing that in the worst

case the algorithm checks every element below the main diagonal of

the adjacency matrix of a given graph.

11. a. Let () be the number of multiplications made by the algorithm based on the formula det =
P −1

0

=0

multiplications by , which are just ±1 then

−1

det If we don’t include

X
()= ((−1)+1)

=0

i.e.,
() = ((− 1) + 1) for 1 and (1) = 0

b. Since () = (− 1) + the sequence () grows to infinity at least as fast

as the factorial function defined by () = (− 1)

45

12. The number of squares added on the th iteration to each of the four

symmertic sides of the von Neumann neighborhood is equal to Hence

we obtain the following recurrence for () the total number of squares in

the neighborhood after the th iteration:

() = (− 1) + 4 for 0 and (0) = 1

Solving the recurrence by backward substitutions yields the following:

() = (−1)+4

= [(−2)+4(−1)]+4 = (−2)+4(−1)+4

= [(−3)+4(−2)]+4(−1)+4 = (−3)+4(−2)+4(−1)+4

=

= (−)+4(− +1)+4(− +2)+···+4

=

= (0)+4·1+4·2+···+4 =1+4(1+2+···+)
2

= 1+4 (+1) 2=2 +2 +1

13. a. Let () be the number of minutes needed to fry hamburgers by the

algorithm given. Then we have the following recurrence for ():

() = (− 2) + 2 for 2 (1) = 2 (2) = 2

Its solution is () = for every even 0 and () = + 1 for every odd 0 can be

obtained either by backward substitutitons or by apply-ing the formula

for the generic term of an arithmetical progression.

b. The algorithm fails to execute the task of frying hamburgers in the

minimum amount of time for any odd 1. In particular, it requires (3) = 4

minutes to fry three hamburgers, whereas one can do this in 3 minutes:

First, fry pancakes 1 and 2 on one side. Then fry pancake 1 on the

second side together with pancake 3 on its first side. Finally, fry both

pancakes 2 and 3 on the second side.

c. If ≤ 2 fry the hamburger (or the two hamburgers together if = 2) on

each side. If = 3 fry the pancakes in 3 minutes as indicated in the

answer to the part b question. If 3 fry two hamburgers together on each

side and then fry the remaining − 2 hamburgers by the same algorithm.

The recurrence for the number of minutes needed to fry hamburgers

looks now as follows:

() = (− 2) + 2 for 3 (1) = 2 (2) = 2 (3) = 3

For every 1 this algorithm requires minutes to do the job. This is the

minimum time possible because pancakes have 2 sides to be fried

and any algorithm can fry no more than two sides in one minute. The

algorithm is also obviously optimal for the trivial case of = 1 requiring

two minutes to fry a single hamburger on both sides.

Note: The case of = 3 is a well-known puzzle, which dates back at least

to 1943. Its algorithmic version for an arbitrary is included in Al-

gorithmic Puzzles by A. Levitin and M. Levitin, Oxford University Press,

2011, Problem 16.

14. The problem can be solved by a recursive algorithm. Indeed, by asking just

one question, we can eliminate the number of people who can be a

celebrity by 1, solve the problem for the remaining group of − 1 people

recursively, and then verify the returned solution by asking no more than

two questions. Here is a more detailed description of this algorithm:

If = 1 return that one person as a celebrity. If 1 proceed as follows:

Step 1 Select two people from the group given, say, A and B, and ask A

whether A knows B. If A knows B, remove A from the remaining people

who can be a celebrity; if A doesn’t know B, remove B from this group.

Step 2 Solve the problem recursively for the remaining group of − 1 people
who can be a celebrity.

Step 3 If the solution returned in Step 2 indicates that there is no celebrity

among the group of − 1 people, the larger group of people cannot contain

a celebrity either. If Step 2 identified as a celebrity a person other than

either A or B, say, C, ask whether C knows the person removed in Step

1 and, if the answer is no, whether the person removed in Step 1

knows C. If the answer to the second question is yes," return C as a

celebrity and "no celebrity" otherwise. If Step 2 identi fied B as a celebrity,

just ask whether B knows A: return B as a celebrity if the answer is no

and "no celebrity" otherwise. If Step 2 identified A as a celebrity, ask

whether B knows A: return A as a celebrity if the answer is yes and "no

celebrity" otherwise.

The recurrence for (), the number of questions needed in the worst case,

is as follows:

() = (− 1) + 3 for 2 (2) = 2 (1) = 0 Its solution is () = 2

+ 3(− 2) for 1 and (1) = 0

Note: A discussion of this problem, including an implementation of this al-

gorithm in a Pascal-like pseudocode, can be found in Udi Manber’s

Introduction to Algorithms: A Creative Approach. Addison-Wesley, 1989.

46

47

) (+1) ̧ = 1 1

(1) () 0 1

Exercises 2.5

1. Find a Web site dedicated to applications of the Fibonacci numbers and

study it.

2. Fibonacci’s rabbits problem A man put a pair of rabbits in a place sur-

rounded by a wall. How many pairs of rabbits will be there in a year if

the initial pair of rabbits (male and female) are newborn, and all rabbit

pairs are not fertile during their first month of life but thereafter give birth

to one new male/female pair at the end of every month?

3. Climbing stairs Find the number of different ways to climb an -stair

staircase if each step is either or two stairs. For example, a 3-stair

staircase can be climbed three ways: 1-1-1, 1-2, and 2-1.

4. How many even numbers are there among the first Fibonacci numbers?

Give a closed-form formula valid for every 0
1 ˆ

5. Check by direct substitutions that the function √5 (−) indeed satisfies
recurrence (2.6) and initial conditions (2.7).

6. The maximum values of the Java primitive types int and long are 2
31

−1

and 2
63

− 1, respectively. Find the smallest for which the th Fibonacci

number is not going to fit in a memory allocated for

a. the type int. b. the type long.

7. Consider the recursive definition-based algorithm for computing the th
Fibonacci number (). Let () and () be the number of times (1) and (0)
respectively, are computed. Prove that

a. () = ()b. () = (− 1)

8. Improve algorithmof the text so that it requires only Θ(1) space.

9. Prove the equality
∙ (

−

∙ ¸ for ≥ 1

10. B How many modulo divisions are made by Euclid’s algorithm on two

consecutive Fibonacci numbers () and (− 1) as the algorithm’s in-put?

11. Dissecting a Fibonacci rectangle Given a rectangle whose sides are two

consecutive Fibonacci numbers, design an algorithm to dissect it into

squares with no more than two of the squares be of the same size.

What is the time efficiency class of your algorithm?

48

12. In the language of your choice, implement two algorithms for computing

the last five digits of the th Fibonacci number that are based on (a) the

recursive definition-based algorithm F (n); (b) the iterative definition-

based algorithm Fib(n). Perform an experiment to find the largest value

of for which your programs run under 1 minute on your computer.

49

Hints to Exercises 2.5

1. Use a search engine.

2. Set up an equation expressing the number of rabbits after months in

terms of the number of rabbits in some previous months.

3. There are several ways to solve this problem. The most elegant of them

makes it possible to put the problem in this section.

4. Writing down the first, say, ten Fibonacci numbers makes the pattern

obvious.

ˆ
5. It is easier to substitute and into the recurrence equation separately

Why will this suffice?

6. Use an approximate formula for () to find the smallest values of to

exceed the numbers given.

7. Set up the recurrence relations for () and () with appropriate initial

conditions, of course.

8. All the information needed on each iteration of the algorithm is the

values of the last two consecutive Fibonacci numbers. Modify the

algorithm to take advantage of this fact.

9. Prove it by mathematical induction.

10. Consider first a small example such as computing gcd(13 8).

11. Take advantage of the special nature of the rectangle’s dimensions.

12. The last digits of an integer can be obtained by computing mod 10
Performing all operations of your algorithms modulo 10 (see Appendix

A) will enable you to circumvent the exponential growth of the

Fibonacci numbers. Also note that Section 2.6 is devoted to a general

discussion of the empirical analysis of algorithms.

50

Solutions to Exercises 2.5

1. n/a

2. Let () be the number of rabbit pairs at the end of month Clearly, (0) = 1

and (1) = 1. For every 1, the number of rabbit pairs, (), is equal to the

number of pairs at the end of month −1, (−1), plus the number of rabbit

pairs born at the end of month , which is according to the problem ’s

assumptions is equal to (− 2), the number of rabbit pairs at the end of

month − 2. Thus, we have the recurrence relation

() = (− 1) + (− 2) for 1 (0) = 1 (1) = 1

The following table gives the values of the first thirteen terms of the se-

quence, called the Fibonacci numbers, defined by this recurrence relation:

 0 1 2 3 4 5 6 7 8 9 10 11 12

() 1 1 2 3 5 8 13 21 34 55 89 144 233

Note that () differs slightly from the canonical Fibonacci sequence,
which is defined by the same recurrence equation () = (− 1) +

(−2) but the different initial conditions, namely, (0) = 0 and (1) = 1

Obviously, () = (+ 1) for ≥ 0

Note: The problem was included by Leonardo of Pisa (aka Fibonacci) in

his 1202 book Liber Abaci, in which he advocated usage of the Hindu-

Arabic numerals.

3. Let () be the number of different ways to climb an -stair staircase. (−1)

of them start with a one-stair climb and (−2) of them start with a two-

stair climb. Thus,

() = (− 1) + (− 2) for ≥ 3 (1) = 1 (2) = 2

Solving this recurrence either “from scratch” or better yet noticing that

the solution runs one step ahead of the canonical Fibonacci sequence (

), we obtain () = (+ 1) for ≥ 1

4. Starting with (0) = 0 and (1) = 1 and the rule () = (− 1) +

(− 2) for every subsequent element of the sequence, it’s easy to see
that the Fibonacci numbers form the following pattern

even, odd, odd, even, odd, odd, ...

Hence the number of even numbers among the first Fibonacci numbers

can be obtained by the formula d 3e

51

2

5. On substituting into the left-hand side of the equation, we obtain

()− (−1)− (−2)= −
−1 −2

− =
−2 2

(− −1)=0
2

because is one of the roots of the characteristic equation − − 1 = 0 ˆ

The verification of works out for the same reason. Since the equation

() − (− 1) − (− 2) = 0 is homogeneous and linear, any linear

combination of its solutions and , i.e., any sequence of the form + will

also be a solution to () − (− 1) − (− 2) = 0 In particular, it will be the

case for the Fibonacci sequence √5 − √5 Both initial conditions are

checked out in a quite straightforward manner
ˆˆ

11 ˆ
(but, of course, not individually for and) ˆ

31

6. a. The question is to find the smallest value of such that () 2 −1
1

Using the formula () = √ 5 rounded to the nearest integer, we get

(approximately) the following inequality:

1 31 √ 31

√ 5 2 − 1 or 5(2 − 1)

After taking natural logarithms of both hand sides, we obtain
√

ln(5(
31

 − 1)) ≈ 46 3
ln

Thus, the answer is = 47

63
b. Similarly, we have to find the smallest value of such that () 2

Thus,

− 1.

1 63 √ 63

√ 5 2 − 1 or 5(2 − 1)

or, after taking natural logarithms of both hand sides,
√

ln(5(263 − 1))
 ≈ 92 4

ln

Thus, the answer is = 93

7. Since () is computed recursively by the formula () = (− 1) + (− 2) the

recurrence equations for () and () will be the same as the recurrence

for (). The initial conditions will be:

(0) = 0(1) = 1 and (0) = 1(1) = 0

for () and () respectively. Therefore, since both the recurrence

equation and the initial conditions for () and () are the same, () =

52

= ∙ 1 1 ̧ ∙ () (+1) ¸ = (+1) (+2) .

 0 1 (1) () () (+1)

∙

∙

∙ ¸

() As to the assertion that () = (− 1) it is easy to see that it should be

the case since the sequence () looks as follows:

1 0, 1, 1, 2, 3, 5, 8, 13, 21, ...,

i.e., it is the same as the Fibonacci numbers shifted one position to the

right. This can be formally proved by checking that the sequence (−1)

(in which (−1) is defined as 1) satisfies the recurrence relation

() =(− 1) + (− 2) for 1 and (0) = 1 (1) = 0

It can also be proved either by mathematical induction or by deriving an

explicit formula for () and showing that this formula is the same as the

value of the explicit formula for () with replaced by − 1

8. Algorithm Fib2()

//Computes the -th Fibonacci number using just two variables
//Input: A nonnegative integer

//Output: The -th Fibonacci number

←0; ←1

for ← 2 to do

← + ←
−

if = 0 return 0

else return

9. (i) The validity of the equality for = 1 follows immediately from the
definition of the Fibonacci sequence.

(ii) Assume that

(1) () 0 1

− ∙
∙ () (+1) ¸ = 1 1 ¸ for a positive integer

We need to show that then ¸
(+1) (+2)

∙
= 1 1 ̧

() (+1) 0 1
+1

Indeed,
1 1 ¸

∙
= 1 1 ̧ ∙ 1 1 ¸

0 1
+1

0 1 0 1
−

53

10. The principal observation here is the fact that Euclid’s algorithm

replaces two consecutive Fibonacci numbers as its input by another

pair of consec-utive Fibonacci numbers, namely:

gcd(() (− 1)) = gcd((− 1) (− 2)) for every ≥ 4 Indeed, since (

− 2) (− 1) for every ≥ 4

()= (−1)+ (−2) 2(−1)

Therefore for every ≥ 4 the quotient and remainder of division of () by (

− 1) are 1 and () − (− 1) = (− 2) respectively. This is exactly what we

asserted at the beginning of the solution. In turn, this leads to the

following recurrence for the number of of divisions ():

() = (− 1) + 1 for ≥ 4 (3) = 1

whose initial condition (3) = 1 is obtained by tracing the algorithm on the

input pair (3) (2) i.e., 2,1. The solution to this recurrence is:

() = − 2 for every ≥ 3

(One can also easily find directly that (2) = 1 and (1) = 0)

11. Given a rectangle with sides () and (+ 1) the problem can be solved by

the following recursive algorithm. If = 1 the problem is already solved

because the rectangle is a 1 × 1 square. If 1 dissect the rectangle into

the () × () square and the rectangle with sides (−1) and () and then

dissect the latter by the same algorithm. The algorithm is illustrated

below for the 8 × 13 square.

1×1 1×1

3×3

8×8

2×2

5×5

54

Since the algorithm dissects the rectangle with sides () and (+ 1) into

squares–which can be formally obtained by solving the recurrence for

the number of squares () = (−1)+1 (1) = 1–its time efficiency falls into

the Θ() class.

12. n/a

55

Exercises 2.6

1. Consider the following well-known sorting algorithm (we shall study it

more closely later in the book) with a counter inserted to count the num-

ber of key comparisons.

Algorithm SortAnalysis([0 − 1])

//Input: An array [0 − 1] of orderable elements

//Output: The total number of key comparisons made

← 0

for ← 1 to − 1 do

← []
← − 1

while ≥ 0 and []do
←+ 1

[+1]← []

← − 1

[+1]←

Is the comparison counter inserted in the right place? If you believe it is,

prove it; if you believe it is not, make an appropriate correction.

2.a. Run the program of Problem 1, with a properly inserted counter (or

counters) for the number of key comparisons, on 20 random arrays of siz es

1000, 1500, 2000, 2500,...,9000, 9500.

b. Analyze the data obtained to form a hypothesis about the algorithm ’s

average-case efficiency.

c. Estimate the number of key comparisons one should expect for a ran-

domly generated array of size 10,000 sorted by the same algorithm.

3.Repeat Problem 2 by measuring the program’s running time in millisec-

onds.

4.Hypothesize a likely efficiency class of an algorithm based on the following

empirical observations of its basic operation’s count:

size 1000 2000 3000 4000 5000 6000 7000 8000 9000 10000

count 11,966 24,303 39,992 53,010 67,272 78,692 91,274 113,063 129,799 140,538

5.What scale transformation will make a logarithmic scatterplot look like a

linear one?

6.How can we distinguish a scatterplot for an algorithm in Θ(lg lg) from

a scatterplot for an algorithm in Θ(lg)?

56

7. a. Find empirically the largest number of divisions made by Euclid’s al-

gorithm for computing gcd() for 1 ≤ ≤ ≤ 100

b. For each positive integer find empirically the smallest pair of in-tegers

1 ≤ ≤ ≤ 100 for which Euclid’s algorithm needs to make divisions in

order to find gcd().

8. The average-case efficiency of Euclid’s algorithm on inputs of size can
be measured by the average number of divisions () made by the

algorithm in computing gcd(1) gcd(2) ..., gcd() For example,

1

(5)= 5(1+2+3+2+1)=18

Produce a scatterplot of () and indicate a likely average-case effi-ciency

class of the algorithm.

9. Run an experiment to ascertain the efficiency class of the sieve of

Eratos-thenes (see Section 1.1).

10. Run a timing experiment for the three algorithms for computing gcd()

presented in Section 1.1.

57

Hints to Exercises 2.6

1. Does it return a correct comparison count for every array of size 2?

2. Debug your comparison counting and random input generating for small

array sizes first.

3. On a reasonably fast desktop, you may well get zero time, at least for

smaller sizes in your sample. Section 2.6 mentions a trick for overcoming

this difficulty.

4. Check how fast the count values grow with doubling the size.

5. A similar question was discussed in the section.

6. Compare the values of the functions lg lg and lg for = 2

7. Insert the division counter into a program implementing the algorithm

and run it for the input pairs in the range indicated.

8. Get the empirical data for random values of in a range of between, say,
2 4

10 and 10
5

or 10 and plot the data obtained. (You may want to use

different scales for the axes of your coordinate system.)

9. n/a

10. n/a

58

Solutions to Exercises 2.6

1. It doesn’t count the comparison [] when the comparison fails (and, hence,

the body of the while loop is not executed). If the language implies that

the second comparison will always be executed even if the first clause

of the conjunction fails, the count should be simply incremented by one

either right before the while statement or right after the while statement’s

end. If the second clause of the conjunction is not executed after the first

clause fails, we should add the line

if ≥ 0 ← + 1

right after the while statement’s end.

2. a. One should expect numbers very close to
2

4 (the approximate the-

oretical number of key comparisons made by insertion sort on random
arrays).

2
b. The closeness of the ratios ()

2
to a constant suggests the Θ()

average-case efficiency. The same conclusion can also be drawn by
observ-ing the four-fold increase in the number of key comparisons in
response to doubling the array’s size.

2
c. (10 000) can be estimated either as 10 000

4 or as 4 (5 000)

3. See the answers to Exercise 2. Note, however, that the timing data is

inherently much less accurate and volatile than the counting data.

4. The data exhibits a behavior indicative of an lg algorithm.

5. If () ≈ log , then the transformation = (1) will yield

() ≈ (log)

6. The function lg lg grows much more slowly than the slow-growing func-

tion lg Also, if we transform the plots by substitution = 2 the plot of the

former would look logarithmic while the plot of the latter would appear

linear.

7. a. 9 (for = 89 and = 55)

b. Two consecutive Fibonacci numbers– = +2 = +1–are the smallest pair

of integers ≥ 0 that requires comparisons for every ≥ 2 (This is a well-
known theoretical fact established by G. Lamé (e.g., [KnuII].) For = 1

the answer is +1 and , which are both equal to 1.

59

8. The experiment should confirm the known theoretical result: the average-
case efficiency of Euclid’s algorithm is in Θ(lg) For a slightly different metric

12 ln 2
() investigated by D. Knuth, () ≈

[KnuII], Section 4.5.3).

9. n/a

10. n/a

ln ≈ 0 843 ln (see
2

