Test Bank for College Algebra 11th Edition by Gustafson and Hughes ISBN 11119909059781111990909

Full link
downloadTest
Bank:

https://testbankpack.com/p/test-bank-for-college-algebra-11th-edition-by-gustafson-and-hughes-isbn-1111990905-9781111990909/

Solution Manual:

https://testbankpack.com/p/solution-manual-for-college-algebra-11th-edition-by-gustafson-and-hughes-isbn-1111990905-9781111990909/

Multiple Choice

Identify the choice that best completes the statement or answers the question.
\qquad 1. How many prime numbers are there between -2 and 18 on the number line?
a. $\quad 17$
b. 0
c. $\quad 1$
d. $\quad 19$
e. $\quad 7$
f. 18
\qquad 2. Select the correct representation of the inequality in interval notation.
$x \leq 9$
a.
b.
c.
d.
e.
\qquad 3. Simplify the expression.
$\left(x^{5}\right)^{4}\left(x^{3}\right)^{3}$
a. $\quad x 15$
b. $x 29$
c. $\quad x 6$
d. $\quad x-9$
\qquad 4. Simplify the expression.
$(-14 x) 0$
Write the answer without using exponents.
$\begin{array}{ll}\text { a. } & -14 \\ \text { b. } & -1\end{array}$
b. -1

College Algebra, 11e, Chapter 0, Test A
c. $\quad 1$
d. 14
\qquad 5. Simplify the expression.
$\frac{1}{x^{-7}}$
Write the answer without using negative exponents. Assume that the variable is restricted to those numbers for which the expression is defined.
a. $\quad x^{7}$
b. $\quad \frac{1}{x^{8}}$
c. x^{8}
d. $\frac{1}{x^{7}}$
6. Simplify the expression.
$\frac{x^{4} x^{2}}{x^{3} x}$
Write the answer without using negative exponents. Assume that the variable is restricted to those numbers for which the expression is defined.
a. $\quad x 4 \mathrm{~b}$.
$x 3 \mathrm{c} . \quad x_{2}$
d. $\quad x 10$
\qquad 7. Simplify the expression.
$\frac{\left(8^{-2} z^{-4} y\right)^{-1}}{\left(5 y^{3} z^{-3}\right)^{4}\left(5 y z^{-3}\right)^{-1}}$

Write the answer without using negative exponents. Assume that all variables are restricted to those numbers for which the expression is defined.
a.

$$
\frac{8 z^{12}}{125 y^{13}}
$$

b. $\quad \frac{64 z^{12}}{125 y^{13}}$
c. $\frac{125 y^{12}}{64 z^{13}}$
d. $\quad \frac{64 z^{13}}{125 y^{12}}$
8. Simplify the expression.
$\left(\frac{7 x^{-5} y^{3} z^{-4}}{28 x^{6} y^{11} z^{-9}}\right)^{3}$
Write the answer without using negative exponents. Assume that all variables are restricted to those numbers for which the expression is defined.
a. $\quad \frac{z^{5}}{4 x^{11} y^{8}}$
b.

$$
\frac{z^{15}}{64 x^{24} y^{33}}
$$

c.

$$
\frac{z^{15}}{64 x^{33} y^{24}}
$$

d.

$$
\frac{z^{15}}{64 x^{-33} y^{-24}}
$$

e.

$$
\frac{z^{5}}{4 x^{33} y^{24}}
$$

\qquad 9. Rationalize the numerator and simplify.

$$
\frac{\sqrt{5}}{20}
$$

a. $\quad \frac{1}{4 \sqrt{3}}$
b. $\quad \frac{1}{4 \sqrt{5}}$
c. $\quad \frac{1}{8 \sqrt{3}}$
d. $\quad \frac{1}{4 \sqrt{9}}$
e. $\quad \frac{1}{5 \sqrt{5}}$
10. Simplify the radical expression.
$\sqrt[6]{8}$
a. $\quad \sqrt[18]{2}$
b. $\quad \sqrt[2]{200}$
c. $\quad \sqrt[6]{2}$
d. $\quad \sqrt[2]{2}$
e. $\quad \sqrt[2]{s}$
\qquad 11. We can often multiply and divide radicals with different indexes. For example:

$$
\sqrt{3} \sqrt[3]{5}=\sqrt[6]{27} \sqrt[6]{25}=\sqrt[6]{(27)(25)}=\sqrt[6]{675}
$$

Use this idea to write the following expression as a single radical.

$$
\frac{\sqrt[4]{2}}{\sqrt{6}}
$$

a.

$$
\frac{\sqrt[4]{72}}{6}
$$

b.

$$
\frac{\sqrt[5]{72}}{6}
$$

c.

$$
\frac{\sqrt[4]{72}}{8}
$$

d.

$$
\frac{\sqrt[4]{72}}{2}
$$

12. Simplify the expression.
$-16^{3 / 2}$
a. -192
b. $\quad 67$
c. $\quad-64$
d. $\quad-66$
e. -128
f. -24
13. Simplify the expression. Assume that all variables represent positive numbers, so that no absolute value symbols are needed.

a. $\quad 8 y \sqrt{3 x y}$
b. $\quad 12 y \sqrt{2 x y}$
c. $\quad 4 y \sqrt{4 x y}$
d. $\quad 4 y \sqrt{2 x y}$
14. Rationalize the denominator and simplify.

$$
\frac{2}{\sqrt[3]{2}}
$$

a.
b.
c.
d.
e.
15. Perform division and write the answer without using negative exponents.
$\frac{-12 x^{6} y^{4} z^{9}}{3 x^{9} y^{6} z^{0}}$
a. $\quad \frac{4 z^{9}}{x^{3} y^{6}}$
b. $\quad \frac{-4 z^{4}}{x^{3} y^{2}}$
c.

$$
\frac{4 z^{9}}{x^{3} y^{2}}
$$

d. $\quad \frac{-4 z^{9}}{x^{3} y^{2}}$
16. Perform the division and write the answer without using negative exponents.
$\frac{160 x^{5} y^{7}-96 x^{2} y^{5}+32 x y}{4 x^{5} y^{4}}$
a.

$$
24 y^{3}-\frac{40 y}{x^{3}}+\frac{32}{x^{4} y^{3}}
$$

b.

$$
40 y^{3}-\frac{40 y}{x^{4}}+\frac{32}{x^{4} y^{3}}
$$

c.

$$
24 y^{3}-\frac{24 y}{x^{3}}+\frac{32}{x^{4} y^{9}}
$$

d.

$$
40 y^{3}-\frac{24 y}{x^{3}}+\frac{8}{x^{4} y^{3}}
$$

17. Give the degree of the polynomial.
$\sqrt{791}$
a. $\quad 1 / 2$
b. 0
c. This is not a polynomial
d. No defined degree
18. Perform the operation and simplify. -
$3 a 2(a+1)+9 a(a 2-6)-a 2(a+6)$
a. $\quad 5 a 3-9 a 2-54 a$
b. $\quad 5 a 3-9 a 2-54$
c. $\quad 5 a 2+9 a 4-54$
d. $\quad 0$
19. Multiply the expression as you would multiply polynomials.

$$
\left(x_{17 / 2}+y_{7 / 2}\right)_{2}
$$

a. $\quad x 17-2 x 17 y 7+y 7$
b. $\quad x 17+x 17 y 7+y 7$
c. $\quad x 17+y 7$
d. $\quad x_{17}+2 x_{1712} y_{7 / 2}+y_{7}$
\qquad 20. Factor the expression completely.
$4 z 2+28 z+49$
a. $\quad(2 z+7) 2$
b. $\quad 7(2 z+7)$
c. $\quad(2 z+7)(2 z-7)$
d. $\quad(2 z-7) 2$
\qquad 21. Perform the operations and simplify.
$\frac{2 a}{13} \cdot \frac{3}{5 b}$

Assume that no denominators are 0 .
a. $\frac{3}{2}$
b. $\quad \frac{13 a}{b 5}$
c.

$$
\frac{6 a}{65 b}
$$

d.

$$
\frac{2}{3}
$$

22. Simplify the fraction.

$$
\frac{x y+6 x+9 y+54}{x^{3}+729}
$$

Assume that denominator is not 0 .
a.

$$
\frac{y-6}{x^{2}-9 x-81}
$$

b.
c.
d.

$$
\frac{y+9}{x^{2}-9 x+81}
$$

$$
\frac{y+6}{x^{2}-9 x+81}
$$

$$
\frac{y-6}{x^{2}-9 x+81}
$$

23. Perform the operations and simplify.

$$
\frac{1}{x-4}+\frac{3}{x+4}-\frac{3 x-4}{x^{2}-16}
$$

Assume that no denominators are
0. a. $\frac{4}{x+4}$
b. $\frac{1}{x+16}$
c. $\frac{1}{x+4}$
d. $\frac{1}{x-4}$
24. Simplify the complex fraction.

$$
\frac{\frac{4 x^{2}}{y^{4}}}{\frac{8 x^{3} z^{3}}{y^{2}}}
$$

Assume that the denominators are not 0 .
a. $\frac{1}{2} x^{-1} y^{-2} z^{-3}$
b. $\quad \frac{1}{2} x^{2} y^{3} z^{3}$
c. $\quad \frac{1}{2} x^{2} y^{-2} z^{-3}$
d. $\quad \frac{1}{2} x^{-1} y^{4} z^{-3}$
25. Simplify each complex fraction.
$\frac{x+1-\frac{6}{x}}{x+5+\frac{6}{x}}$
Assume that no denominators are
0. a. $\frac{x+3}{x-3}$
b. $\frac{x-2}{x+2}$
c. $\frac{x+2}{x-2}$
d. $\quad \frac{x-3}{x+3}$

Answer Section

MULTIPLE CHOICE

1. ANS: E PTS: 1
2. ANS: D PTS: 1
3. ANS: B PTS: 1
4. ANS: C PTS: 1
5. ANS: A PTS: 1
6. ANS: C PTS: 1
7. ANS: D PTS: 1
8. ANS: C PTS: 1
9. ANS: B PTS: 1
10. ANS: D PTS: 1
11. ANS: A PTS: 1
12. ANS: C PTS: 1
13. ANS: D PTS: 1
14. ANS: D PTS: 1
15. ANS: D PTS: 1
16. ANS: D PTS: 1
17. ANS: B PTS: 1
18. ANS: A PTS: 1
19. ANS: D PTS: 1
20. ANS: A PTS: 1
21. ANS: C PTS: 1
22. ANS: C

PTS: 1
23. ANS: C
24. ANS: A
25. ANS: B

PTS: 1
PTS: 1
PTS: 1

Multiple Choice

Identify the choice that best completes the statement or answers the question.
\qquad 1. How many prime numbers are there between -6 and 14 on the number line?
a. $\quad 19$
b. $\quad 13$
c. $\quad 0$
d. $\quad 14$
e. 6
f. $\quad 5$
2. Select the correct representation of the inequality in interval notation.
$x \leq 3$
a.
b.
c.
d.
e.
($-\infty, 9]$
$(-\infty, 9)$
.
$[3, \infty)$
$[-\infty, 3]$
$(3, \infty)$
\qquad 3. Simplify the expression.
$\left(x^{3}\right)^{3}\left(x^{3}\right)^{2}$
a. $\quad x 11$
b. $\quad x-1$
c. $\quad x 10$
d. $\quad x 15$
\qquad 4. Simplify the expression.
$(-13 x) 0$
Write the answer without using exponents.
a. $\quad 1$
b. $\quad 13$
c. $\quad-13$
d. $\quad-1$
\qquad 5. Simplify the expression.
$\frac{1}{x^{-7}}$
Write the answer without using negative exponents. Assume that the variable is restricted to those numbers for which the expression is defined.
a.
b.

$$
\begin{aligned}
& x^{7} \\
& \frac{1}{x^{7}}
\end{aligned}
$$

c.
d.
x^{8}
$\frac{1}{x^{8}}$
\qquad 6. Simplify the expression.

$$
\frac{x^{6} x^{4}}{x^{3} x}
$$

Write the answer without using negative exponents. Assume that the variable is restricted to those numbers for which the expression is defined.
a. $\quad x 8$
b. $\quad x 7$
c. $\quad x 14$
d. $\quad x 6$
\qquad 7. Simplify the expression.
$\frac{\left(8^{-2} z^{-5} y\right)^{-1}}{\left(5 y^{5} z^{-1}\right)^{3}\left(5 y z^{-1}\right)^{-2}}$

Write the answer without using negative exponents. Assume that all variables are restricted to those numbers for which the expression is defined.
a. $\quad \frac{64 z^{6}}{5 y^{14}}$
b. $\quad \frac{5 y^{14}}{64 z^{6}}$
c. $\quad \frac{64 z^{14}}{5 y^{6}}$
d.

$$
\frac{8 z^{5}}{5 y^{15}}
$$

8. Simplify the expression.

$$
\left(\frac{8 x^{-4} y^{5} z^{-8}}{32 x^{4} y^{12} z^{-13}}\right)^{3}
$$

Write the answer without using negative exponents. Assume that all variables are restricted to those numbers for which the expression is defined.
a.

$$
\frac{z^{5}}{4 x^{8} y^{7}}
$$

b.

$$
\frac{z^{15}}{64 x^{24} y^{33}}
$$

c.

$$
\frac{z^{15}}{64 x^{33} y^{24}}
$$

d.

$$
\frac{z^{15}}{64 x^{-24} y^{-21}}
$$

e.

$$
\frac{z^{5}}{4 x^{24} y^{21}}
$$

__ 9. Rationalize the numerator and simplify.

$$
\frac{\sqrt{5}}{25}
$$

a. $\quad \frac{1}{10 \sqrt{2}}$
b. $\quad \frac{1}{5 \sqrt{5}}$
c. $\quad \frac{1}{5 \sqrt{2}}$
d. $\frac{1}{6 \sqrt{5}}$
e. $\frac{1}{5 \sqrt{10}}$
10. Simplify the radical expression.
$\sqrt[4]{4}$
a. $\quad \sqrt[2]{4}$
b. $\quad \sqrt[2]{2}$
c. $\quad \sqrt[2]{200}$
d. $\quad \sqrt[4]{2}$
e. $\quad \sqrt[8]{2}$
11. We can often multiply and divide radicals with different indexes. For example:
$\sqrt{3} \sqrt[3]{5}=\sqrt[6]{27} \sqrt[6]{25}=\sqrt[6]{(27)(25)}=\sqrt[6]{675}$
Use this idea to write the following expression as a single radical.
$\frac{\sqrt[6]{4}}{\sqrt{5}}$
a. $\quad \frac{\sqrt[6]{500}}{3}$
b.
c.

$$
\frac{\sqrt[6]{500}}{5}
$$

$$
\frac{\sqrt[6]{500}}{4}
$$

d.

$$
\frac{7 \sqrt{500}}{5}
$$

\qquad 12. Simplify the expression.
$-25^{4 / 2}$
a. $\quad-1,250$
b. 628
c. $\quad-1,875$
d. $\quad-625$
e. $\quad-50$
f. -627
13. Simplify the expression. Assume that all variables represent positive numbers, so that no absolute value symbols are needed.

a. $\quad 4 y \sqrt{4 x y}$
b. $\quad 4 y \sqrt{2 x y}$
c. $\quad 12 y \sqrt{2 x y}$
d. $\quad 8 y \sqrt{3 x y}$
14. Rationalize the denominator and simplify.

$$
\frac{4}{\sqrt[4]{4}}
$$

a.
b.
c.
d.
e.
15. Perform division and write the answer without using negative exponents.
$\frac{-190 x^{6} y^{4} z^{9}}{19 x^{9} y^{6} z^{0}}$
a. $\frac{10 z^{9}}{x^{3} y^{6}}$
b.

$$
\frac{10 z^{9}}{x^{3} y^{2}}
$$

c. $\frac{-10 z^{4}}{x^{3} y^{2}}$
d. $\frac{-10 z^{9}}{x^{3} y^{2}}$
16. Perform the division and write the answer without using negative exponents.
$\frac{100 x^{5} y^{7}-60 x^{2} y^{5}+20 x y}{10 x^{5} y^{4}}$
a.

$$
6 y^{3}-\frac{6 y}{x^{3}}+\frac{20}{x^{4} y^{9}}
$$

b. $10 y^{3}-\frac{10 y}{x^{4}}+\frac{20}{x^{4} y^{3}}$
c.

$$
10 y^{3}-\frac{6 y}{x^{3}}+\frac{2}{x^{4} y^{3}}
$$

d.

$$
6 y^{3}-\frac{10 y}{x^{3}}+\frac{20}{x^{4} y^{3}}
$$

\qquad 17. Give the degree of the polynomial.
$\sqrt{576}$
a. 0
b. No defined degree
c. $\quad 1 / 2$
d. This is not a polynomial
\qquad 18. Perform the operation and simplify. -
$3 a 2(a+1)+6 a(a 2-4)-a 2(a+10)$
a. $\quad 0$
b. $\quad 2 a 3-13 a 2-24$
c. $2 a 3-13 a 2-24 a$
d. $\quad 2 a 2+13 a 4-24$
19. Multiply the expression as you would multiply polynomials. $\left(x_{7 / 2}+y_{9 / 2}\right)_{2}$
a. $\quad x 7+2 x 7 / 2 y 9 / 2+y 9$
b. $\quad x 7-2 x 7 y 9+y 9$
c. $\quad x 7+x 7 y 9+y 9$
d. $\quad x 7+y 9$
\qquad 20. Factor the expression
completely. $36 z 2+84 z+49$
a. $(6 z+7) 2$
b. $\quad(6 z-7) 2$
c. $\quad(6 z+7)(6 z-7)$
d. $\quad 7(6 z+7)$
21. Perform the operations and simplify.
$\frac{23 a}{2} \cdot \frac{11}{2 b}$

Assume that no denominators are
0. a. $\frac{11}{23}$
b. $\frac{253 a}{4 b}$
c. $\frac{23}{11}$
d. $\quad \frac{2 a}{b 2}$
22. Simplify the fraction.
$\frac{x y+6 x+4 y+24}{x^{3}+64}$
Assume that denominator is not
0. a. $\frac{y-6}{x^{2}-9 x-81}$
b. $\quad \frac{y+9}{x^{2}-9 x+81}$
c. $\frac{y+6}{x^{2}-9 x+81}$
d. $\frac{y-6}{x^{2}-9 x+81}$
23. Perform the operations and simplify.

$$
\frac{1}{x-4}+\frac{3}{x+4}-\frac{3 x-4}{x^{2}-16}
$$

Assume that no denominators are
0. a. $\frac{1}{x+16}$
b. $\frac{1}{x+4}$
c. $\frac{1}{x-4}$
d. $\frac{4}{x+4}$
24. Simplify the complex fraction.

$$
\frac{\frac{3 x^{5}}{y^{2}}}{\frac{6 x^{2} z^{4}}{y^{4}}}
$$

Assume that the denominators are not 0 .
a. $\quad \frac{1}{2} x^{3} y^{2} z^{-4}$
b. $\quad \frac{1}{2} x^{4} y^{2} z^{4}$
c. $\quad \frac{1}{2} x^{5} y^{2} z^{-4}$
d. $\quad \frac{1}{2} x^{3} y^{2} z^{-4}$
25. Simplify each complex fraction.

$$
\frac{x+1-\frac{6}{x}}{x+5+\frac{6}{x}}
$$

Assume that no denominators are
0. a. $\frac{x-2}{x+2}$
b. $\frac{x+2}{x-2}$
c. $\frac{x-3}{x+3}$
d. $\quad \frac{x+3}{x-3}$

Answer Section

MULTIPLE CHOICE

1. ANS: E PTS: 1
2. ANS: B PTS: 1
3. ANS: D PTS: 1
4. ANS: A PTS: 1
5. ANS: A PTS: 1
6. ANS: D PTS: 1
7. ANS: A PTS: 1
8. ANS: B PTS: 1
9. ANS: B PTS: 1
10. ANS: B PTS: 1
11. ANS: B PTS: 1
12. ANS: D PTS: 1
13. ANS: B PTS: 1
14. ANS: D PTS: 1
15. ANS: D PTS: 1
16. ANS: C PTS: 1
17. ANS: A PTS: 1
18. ANS: C PTS: 1
19. ANS: A PTS: 1
20. ANS: A PTS: 1
21. ANS: B PTS: 1
22. ANS: B PTS: 1
23. ANS: B PTS: 1
24. ANS: A
25. ANS: A

PTS: 1
PTS: 1

Multiple Choice

Identify the choice that best completes the statement or answers the question.

1. How many prime numbers are there between -5 and 20 on the number line?
a. 0
b. 4
c. $\quad 19$
d. $\quad 24$
e. 20
f. 8
2. Select the correct representation of the inequality in interval notation.
$x \leq 7$
a.
b.
c.
d.
e.
\qquad 3. Simplify the expression.
$\left(x^{6}\right)^{4}\left(x^{2}\right)^{2}$
a. $x-8$
b. $\quad x 6$
c. $\quad x 14$
d. $\quad x 28$
\qquad 4. Simplify the expression.
$(-4 x) 0$
Write the answer without using exponents.
a. 1
b. 4
c. $\quad-4$
d. $\quad-1$
\qquad 5. Simplify the expression.
$\frac{1}{x^{-8}}$
Write the answer without using negative exponents. Assume that the variable is restricted to those numbers for which the expression is defined.
a.

$$
\frac{1}{x^{9}}
$$

b.

$$
x^{8}
$$

c.
d.

$$
\begin{aligned}
& x^{9} \\
& \frac{1}{x^{8}}
\end{aligned}
$$

6. Simplify the expression.
$\frac{x^{7} x^{4}}{x^{4} x}$
Write the answer without using negative exponents. Assume that the variable is restricted to those numbers for which the expression is defined.
a. $\quad x 16$
b. $\quad x 6$
c. $\quad x 7$
d. $\quad x 8$
\qquad 7. Simplify the expression.
$\frac{\left(8^{-2} z^{-5} y\right)^{-2}}{\left(5 y^{2} z^{-5}\right)^{5}\left(5 y z^{-5}\right)^{-1}}$

Write the answer without using negative exponents. Assume that all variables are restricted to those numbers for which the expression is defined.
a. $\quad \frac{512 z^{29}}{625 y^{12}}$
b. $\quad \frac{625 y^{11}}{4096 z^{30}}$
c. $\frac{409.0 z^{30}}{625 y^{11}}$
d. $\quad \frac{4096 z^{11}}{625 y^{30}}$
8. Simplify the expression.
$\left(\frac{5 x^{-5} y^{5} z^{-7}}{20 x^{6} y^{10} z^{-12}}\right)^{3}$
Write the answer without using negative exponents. Assume that all variables are restricted to those numbers for which the expression is defined.
a.

$$
\frac{z^{5}}{4 x^{33} y^{15}}
$$

b.

$$
\frac{z^{15}}{64 x^{24} y^{33}}
$$

c.

$$
\frac{z^{15}}{64 x^{33} y^{24}}
$$

d.

$$
\frac{z^{5}}{4 x^{11} y^{5}}
$$

e.

$$
\frac{z^{15}}{64 x^{-33} y^{-15}}
$$

\qquad 9. Rationalize the numerator and simplify.
$\frac{\sqrt{2}}{8}$
a. $\quad \frac{1}{8 \sqrt{5}}$
b. $\quad \frac{1}{4 \sqrt{2}}$
c. $\frac{1}{4 \sqrt{6}}$
d. $\quad \frac{1}{5 \sqrt{3}}$
e. $\frac{1}{4 \sqrt{5}}$
10. Simplify the radical expression.
$\sqrt[4]{49}$
a. $\quad \sqrt[8]{7}$
b. $\quad \sqrt[2]{700}$
c. $\quad \sqrt[2]{49}$
d. $\quad \sqrt[4]{2}$
e. $\sqrt[8]{2}$
11. We can often multiply and divide radicals with different indexes. For example:

$$
\sqrt{3} \sqrt[3]{5}=\sqrt[6]{27} \sqrt[6]{25}=\sqrt[6]{(27)(25)}=\sqrt[6]{675}
$$

Use this idea to write the following expression as a single radical.

$$
\frac{\sqrt[6]{4}}{\sqrt{7}}
$$

a.

$$
\frac{\sqrt[6]{1372}}{11}
$$

b.

$$
\frac{\sqrt[7]{1372}}{7}
$$

c.
d.

$$
\frac{\sqrt[6]{1372}}{4}
$$

$$
\frac{\sqrt[6]{1372}}{7}
$$

12. Simplify the expression.

$$
-8^{4 / 3}
$$

a. $\quad-10.6667$
b. $\quad 19$
c. $\quad-32$
d. $\quad-48$
e. $\quad-18$
f. -16
13. Simplify the expression. Assume that all variables represent positive numbers, so that no absolute value symbols are needed.

a. $\quad 12 y \sqrt{2 x y}$
b. $\quad 8 y \sqrt{3 x y}$
c. $\quad 4 y \sqrt{2 x y}$
d. $\quad 4 y \sqrt{4 x y}$
14. Rationalize the denominator and simplify.

$$
\frac{3}{\sqrt[5]{3}}
$$

a.
b.
c.
d.
e.
15. Perform division and write the answer without using negative exponents.
$\frac{-56 x^{6} y^{4} z^{9}}{14 x^{9} y^{6} z^{0}}$
a.

$$
\frac{-4 z^{4}}{x^{3} y^{2}}
$$

b.

$$
\frac{-4 z^{9}}{x^{3} y^{2}}
$$

c.

$$
\frac{4 z^{9}}{x^{3} v^{6}}
$$

d.

$$
\frac{4 z^{9}}{x^{3} y^{2}}
$$

16. Perform the division and write the answer without using negative exponents.

a.

$$
24 y^{3}-\frac{40 y}{x^{3}}+\frac{32}{x^{4} y^{3}}
$$

b.

$$
40 y^{3}-\frac{40 y}{x^{4}}+\frac{32}{x^{4} y^{3}}
$$

c.

$$
24 y^{3}-\frac{24 y}{x^{3}}+\frac{32}{x^{4} y^{9}}
$$

d.

$$
40 y^{3}-\frac{24 y}{x^{3}}+\frac{8}{x^{4} y^{3}}
$$

17. Give the degree of the polynomial.
$\sqrt{127}$
a. $\quad 1 / 2$
b. No defined degree
c. This is not a polynomial d. 0
18. Perform the operation and simplify. -
$3 a 2(a+1)+7 a(a 2-4)-a 2(a+9)$
a. $\quad 3 a 2+12 a 4-28$
b. $\quad 3 a 3-12 a 2-28$
c. $\quad 0$
d. $3 a 3-12 a 2-28 a$
19. Multiply the expression as you would multiply polynomials. $\left(x_{11 / 2}+y_{15 / 2}\right)_{2}$
a. $\quad x_{11}+2 x_{11 / 2} y_{15 / 2}+y_{15}$
b. $\quad x_{11}+x_{11} y_{15}+y_{15}$
c. $\quad x 11-2 x 11 y 15+y 15$
d. $\quad x 11+y 15$
\qquad 20. Factor the expression
completely. $9 z 2+42 z+49$
a. $(3 z-7) 2$
b. $\quad(3 z+7)(3 z-7)$
c. $\quad 7(3 z+7)$
d. $\quad(3 z+7) 2$
__ 21. Perform the operations and simplify.

$$
\frac{5 a}{3} \cdot \frac{2}{7 b}
$$

Assume that no denominators are
0. a. $\frac{3 a}{b 7}$
b. $\quad \frac{5}{2}$
c. $\quad \frac{2}{5}$
d. $\quad \frac{10 a}{21 b}$
22. Simplify the fraction.

$$
\frac{x y+6 x+8 y+48}{x^{3}+512}
$$

Assume that denominator is not
0. a. $\frac{y-6}{x^{2}-9 x-81}$
b. $\frac{y+9}{x^{2}-9 x+81}$
c. $\quad \frac{y+6}{x^{2}-9 x+81}$
d. $\frac{y-6}{x^{2}-9 x+81}$
23. Perform the operations and simplify.

$$
\frac{1}{x-6}+\frac{3}{x+6}-\frac{3 x-6}{x^{2}-36}
$$

Assume that no denominators are
0. a.

$$
\frac{1}{x-6}
$$

b.

$$
\frac{1}{x+36}
$$

c. $\frac{1}{x+4}$
d. $\frac{1}{x-4}$
24. Simplify the complex fraction.

$$
\frac{\frac{2 x^{2}}{y^{3}}}{\frac{4 x^{4} z^{3}}{y^{5}}}
$$

Assume that the denominators are not 0 .
a. $\quad \frac{1}{2} x^{2} y^{2} z^{-3}$
b. $\quad \frac{1}{2} x^{2} y^{-2} z^{-3}$
c. $\quad \frac{1}{2} x^{-1} y^{4} z^{-3}$
d. $\quad \frac{1}{2} x^{5} y^{4} z^{3}$
25. Simplify each complex fraction.

$$
\frac{x+2-\frac{63}{x}}{x+16+\frac{63}{x}}
$$

Assume that no denominators are
0. a. $\frac{x+3}{x-3}$
b. $\frac{x-2}{x+2}$
c. $\frac{x+2}{x-2}$
d. $\frac{x-3}{x+3}$

Answer Section

MULTIPLE CHOICE

1. ANS: F PTS: 1
2. ANS: E PTS: 1
3. ANS: D PTS: 1
4. ANS: A PTS: 1
5. ANS: B PTS: 1
6. ANS: B PTS: 1
7. ANS: C PTS: 1
8. ANS: B PTS: 1
9. ANS: B PTS: 1
10. ANS: E PTS: 1
11. ANS: D PTS: 1
12. ANS: F PTS: 1
13. ANS: C PTS: 1
14. ANS: E PTS: 1
15. ANS: B PTS: 1
16. ANS: A PTS: 1
17. ANS: D PTS: 1
18. ANS: D PTS: 1
19. ANS: A PTS: 1
20. ANS: D PTS: 1
21. ANS: D PTS: 1
22. ANS: D PTS: 1
23. ANS: C PTS: 1
24. ANS: C

PTS: 1
PTS: 1

Multiple Choice

Identify the choice that best completes the statement or answers the question.
\qquad 1. How many natural numbers are there between -16.5 and 6.5 on the number line?
a. 0
b. 7
c. $\quad 12$
d. 6
e. 23
\qquad 2. Identify the correct union of intervals for the inequality.
$x \leq-16$ or $x>5$
a. $\quad(-\infty,-10] \cup(5, \infty)$
b. $\quad(-\infty,-10) \cup[5, \infty)$
c. $\quad(-\infty,-16) \cup(5, \infty)$
d. $\quad(-\infty,-10] \cup(5, \infty]$
e. $\quad(-\infty,-10] \cup[5, \infty)$
\qquad 3. Write the expression without using absolute value symbols.

$$
\begin{aligned}
& |x+4|-|x-11| \text { for } x<-8 \\
& |x+4|-|x-11|=\quad \text { for } x<-8
\end{aligned}
$$

a. $\quad 15$
b. $\quad 2 x-15$
c. $\quad 7$
d. $\quad 15-2 x$
e. $\quad 15$
\qquad 4. Calculate the volume of a box that has dimensions of 6,000 by 8,600 by 4,800 millimeters.
a.
b.
c.
$2.4768 \times 10^{10} \mathrm{~mm}^{3}$
$2.4768 \times 10^{11} \mathrm{~mm}^{3}$
.
$1.9975 \times 10^{10} \mathrm{~mm}^{3}$
$1.9975 \times 10^{11} \mathrm{~mm}^{3}$
\qquad 5. Simplify the expression.

$$
\left(\frac{a^{-5}}{b^{-3}}\right)^{-4}
$$

Write the answer without using negative exponents. Assume that all variables are restricted to those numbers for which the expression is defined.
a.

$$
\frac{a^{12}}{b^{20}}
$$

b.

$$
\frac{a^{20}}{b^{12}}
$$

c.

$$
\frac{b^{12}}{a^{20}}
$$

d.

$$
\frac{b^{20}}{a^{12}}
$$

\qquad 6. Simplify the expression.
$\left(\frac{r^{5} r^{-1}}{r^{3} r^{-3}}\right)^{2}$

Write the answer without using negative exponents. Assume that the variable is restricted to those numbers for which the expression is defined.
a. $\quad r_{2}$
b. $\quad r 8$
c. $\quad r 0$
d. $\quad r 12$
7. Express the number $-176,000,000$ in scientific notation.
a.
-1.76×10^{8}
b.
-1.76×10^{7}
c.
-17.6×10^{9}
d.
-1.76×10^{9}
\qquad 8. We can often multiply and divide radicals with different indexes. For example:

$$
\sqrt{3} \sqrt[3]{5}=\sqrt[6]{27} \sqrt[6]{25}=\sqrt[6]{(27)(25)}=\sqrt[6]{675}
$$

Use this idea to write the following expression as a single radical.
$\sqrt{4} \sqrt[3]{4}$
a. $\quad \sqrt{10124}$
b. $\quad \sqrt[5]{10124}$
c. $\quad \sqrt[3]{1024}$
d. $\quad \sqrt[6]{4}$
e. $\quad \sqrt[6]{256}$
\qquad 9. Simplify the expression.
$\left(9 y^{2}\right)^{1 / 2}$
a.
b.
c.
d.
e.
10. Simplify the expression.
$\left(-\frac{3,125 x^{10}}{32 y^{5}}\right)^{1 / 5}$
a. $\quad \frac{5 x^{2}}{2 y}$
b.

$$
-\frac{5 x^{2}}{2 y^{2}}
$$

c.

$$
\frac{5 x^{3}}{2 y}
$$

d.

$$
-\frac{5 x^{2}}{2 y}
$$

11. Simplify the expression.
$\frac{a^{1 / 5} a^{4 / 5}}{a^{2 / 5}}$
Write all answers without using negative exponents. Assume that all variables represent positive numbers.
a.
b.

$$
\begin{aligned}
& a^{3 / 10} \\
& a^{7 / 5} \\
& a^{3 / 5} \\
& a^{5 / 5} \\
& a^{3 / 8}
\end{aligned}
$$

c.
d.
e.
\qquad 12. Perform the division.
$x ^ { 2 } + x - 1 \longdiv { 1 3 x ^ { 3 } - 8 x ^ { 2 } - 3 4 x + 2 1 }$
a. $\quad 13 x-23$
b. $\quad 13 x-21$
c. $\quad 13 \times 2-21$
d. $\quad 23-13 x$
\qquad 13. Perform the operations and simplify.
$(8 x 3-3 x 2)+(5 x 3-3 x)$
a. $\quad 13 x-3 x_{2}-3 x_{3}$
b. 0
c. $\quad 7 x_{3}$
d. $\quad 13 x^{3}-3 x 2-3 x$
14. Perform the operation and
simplify. $(a-15) 2$
a. $\quad a 2+30 a+225$
b. $\quad a 2-15 a+225$
c. $\quad a 2-225$
d. $\quad a 2-30 a+225$
e. $\quad a 2+225$
15. Multiply the expression as you would multiply polynomials.

$$
\left(a_{11 / 2}+b_{3 / 2}\right)\left(a_{11 / 2}-b_{3 / 2}\right)
$$

a. $\quad a 11-b 3$
b. $\quad(a+b) 4$
c. $\quad(a-b) 7$
d. $\quad a 22-b 6$
16. Perform the multiplication and simplify.

$$
(x-y)(3 x+14 y)^{2}
$$

a.
b.
c.
d.
e.
17. Factor the expression
completely. $10 x 2+5 x 3$
a. $\quad 5 x 2(2-x)$
b. $\quad 5 x 2(2+x 2)$
c. $\quad 5 \times 2(3+x)$
d. $\quad 5 x 2(2+x)$
18. Factor the expression
completely. $3 x 3+3 x 2-13 x-13$
a. $\quad(x-1)(3 x 2+13)$
b. $\quad(1-x)(3 x 2-13)$
c. $\quad(x+1)(3 x 2-13)$
d. $\quad(x+1)(13-3 x 2)$
19. Factor the expression completely. $64 x 10+1$
a. $\quad(8 x 5+1) 2$
b. $\quad(8 x 5-1) 2$
c. $\quad(8 x 5+1)(8 x 5-1)$
d. The expression is prime.
\qquad 20. Factor the expression
completely. 56x2-29xy-40y2
a. $\quad(7 x-8 y)(8 x+5 y)$
b. $\quad(7 x-8 y)(5 x+8 y)$
c. $\quad(5 x-8 y)(8 x+7 y)$
d. $\quad(7 x+8 y)(8 x-5 y)$
\qquad 21. Factor the expression
completely. 22r2-13rs-30s2
a. $(2 r-3 s)(11 r+10 s)$
b. $\quad(3 r-2 s)(11 r+10 s)$
c. $\quad(2 r+3 s)(11 r-10 s)$
d. $(2 r-3 s)(10 r+11 s)$
\qquad 22. Factor the expression completely.
$z 2+4 z+4-144 y 2$
a. $\quad(z-2+12 y)(z+2+12 y)$
b. $\quad(z+2+12 y)(z+2-12 y)$
c. $\quad(z-2+12 y)(z-2-12 y)$
d. $\quad(z+12+2 y)(z+12-2 y)$
\qquad 23. Factor the expression completely.

$$
(4 x-4 y)^{3}+125
$$

a.

$$
(4 x+4 y-5)\left(10 x^{2}-20 x-32 n t+26 y+16 y^{2}+25\right)
$$

b.

$$
(4 x-4 y+5)\left(10 x^{2}+20 x+30 n-26 y-16 y^{2}+25\right)
$$

$$
(4 x+4 y-5) \cdot\left(16 x^{2}+20 x+32 x y-20 y-16 y^{2}+25\right)
$$

d.
e.

$$
(4 x-4 y+5)\left(10 x^{2}-20 x+32 n x-2\left(0 y+16 y^{2}+25\right)\right.
$$

$$
(4 x-4 y+5)\left(10 x^{2}-20 x-32 n+2\left(1 y+16 y^{2}+25\right)\right.
$$

24. Simplify the fraction.
$\frac{3 x-9}{x^{2}-9}$
Assume that the denominator is not
25. a.

$$
\frac{x}{x-3}
$$

b. $\frac{3}{x+3}$
c. $\frac{1}{x-1}$
d. $\frac{1}{x+1}$
e. $\frac{x}{x+3}$
f. $\frac{3}{x-3}$
25. Perform the operations and simplify.
$\frac{x+8}{x^{2}+11 x+24}+\frac{x}{x^{2}-9}$

Assume that no denominators are
0. a. $\frac{2 x-9}{x^{2}-3}$
b. $\quad \frac{2 x+3}{x^{2}-9}$
c. $\quad \frac{2 x-3}{x^{2}-9}$
d. $\frac{2 x-3}{x^{2}+9}$

Answer Section

MULTIPLE CHOICE

1. ANS: D PTS: 1
2. ANS: A PTS: 1
3. ANS: E PTS: 1
4. ANS: B PTS: 1
5. ANS: B PTS: 1
6. ANS: B PTS: 1
7. ANS: A PTS: 1
8. ANS: B PTS: 1
9. ANS: D PTS: 1
10. ANS: D PTS: 1
11. ANS: C PTS: 1
12. ANS: B PTS: 1
13. ANS: D PTS: 1
14. ANS: D PTS: 1
15. ANS: A PTS: 1
16. ANS: D PTS: 1
17. ANS: D PTS: 1
18. ANS: C PTS: 1
19. ANS: D PTS: 1
20. ANS: A

PTS: 1
21. ANS: A
22. ANS: B
23. ANS: E
24. ANS: B

PTS: 1
PTS: 1
PTS: 1
PTS: 1
PTS: 1

Multiple Choice

Identify the choice that best completes the statement or answers the question.
\qquad 1. How many natural numbers are there between -6.5 and 12.5 on the number line?
a. $\quad 10$
b. $\quad 0$
c. $\quad 13$
d. $\quad 12$
e. $\quad 19$
\qquad 2. Identify the correct union of intervals for the inequality.
$x \leq-18$ or $x>4$
a. $\quad(-\infty,-10] \cup(5, \infty)$
b. $\quad(-\infty,-10) \cup[5, \infty)$
c. $\quad(-\infty,-16) \cup(5, \infty)$
d. $\quad(-\infty,-10) \cup(5, \infty]$
e. $\quad(-\infty,-10] \cup[5, \infty)$
\qquad 3. Write the expression without using absolute value symbols.

$$
\begin{aligned}
& |x+4|-|x-14| \text { for } x<-8 \\
& |x+4|-|x-14|=\quad \text { for } x<-8
\end{aligned}
$$

a.	10
b.	18
c.	$2 x-18$
d.	$18-2 x$
e.	18

\qquad 4. Calculate the volume of a box that has dimensions of 4,000 by 8,400 by 5,300 millimeters.
a.
b.
$1.7808 \times 10^{11} \mathrm{~mm}^{3}$
$1.2948 \times 10^{11} \mathrm{~mm}^{3}$
c.
$1.7808 \times 10^{10} \mathrm{~mm}^{3}$
d.
$1.2948 \times 10^{10} \mathrm{~mm}^{3}$
\qquad 5. Simplify the expression.
$\left(\frac{a^{-1}}{b^{-4}}\right)^{-5}$
Write the answer without using negative exponents. Assume that all variables are restricted to those numbers for which the expression is defined.
a.

$$
\frac{a^{12}}{b^{20}}
$$

b.
$\frac{a^{20}}{b^{12}}$
c.

$$
\frac{b^{12}}{a^{20}}
$$

d.

$$
\frac{b^{20}}{a^{12}}
$$

\qquad 6. Simplify the expression.

Write the answer without using negative exponents. Assume that the variable is restricted to those numbers for which the expression is defined.
a. $\quad r 10$
b. $\quad r 0$
c. $\quad r 30$
d. $\quad r 5$
\qquad 7. Express the number $-174,000,000$ in scientific notation.
a.
b.

$$
-1.76 \times 10^{8}
$$

$$
-1.76 \times 10^{7}
$$

c.
-17.6×10^{9}
d.

$$
-1.76 \times 10^{9}
$$

\qquad 8. We can often multiply and divide radicals with different indexes. For example:

$$
\sqrt{3} \sqrt[3]{5}=\sqrt[6]{27} \sqrt[6]{25}=\sqrt[6]{(27)(25)}=\sqrt[6]{675}
$$

Use this idea to write the following expression as a single radical.
$\sqrt{3} \sqrt[3]{3}$
a. $\quad \sqrt[6]{81}$
b. $\quad \sqrt[6]{3}$
c. $\quad \sqrt{243}$
d. $\quad \sqrt[3]{243}$
e. $\quad \sqrt[6]{243}$
\qquad 9. Simplify the expression.
$\left(625 y^{4}\right)^{1 / 4}$
a.
b.
c.
d.
e.
10. Simplify the expression.
$\left(-\frac{343 x^{9}}{125 y^{3}}\right)^{1 / 3}$
a. $\quad \frac{7 x^{3}}{5 y}$
b. $-\frac{7 x^{3}}{5 y}$
c. $-\frac{7 x^{3}}{5 y^{2}}$
d. $\quad \frac{7 x^{4}}{5 y}$
\qquad 11. Simplify the expression.

$$
\frac{a^{3 / 7} a^{2 / 7}}{a^{1 / 7}}
$$

Write all answers without using negative exponents. Assume that all variables represent positive numbers.
a.

$$
\begin{aligned}
& a^{4 / 10} \\
& a^{6 / 7} \\
& a^{4 / 14} \\
& a^{4 / 7} \\
& a^{5 / 7}
\end{aligned}
$$

b.
c.
d.
e.
12. Perform the division.
$x ^ { 2 } + x - 1 \longdiv { 3 x ^ { 3 } - 2 x ^ { 2 } - 8 x + 5 }$
a. $\quad 3 x-10$
b. $\quad 10-3 x$
c. $\quad 3 x-2-5$
d. $\quad 3 x-5$
13. Perform the operations and simplify.
$(7 x 3-5 x 2)+(7 x 3-5 x)$
a. $\quad 14 x-5 x_{2}-5 x 3$
b. $\quad 4 x 3$
c. $\quad 0$
d. $14 \times 3-5 \times 2-5 x$
\qquad 14. Perform the operation and
simplify. $(a-14) 2$
a. $\quad a 2-28 a+196$
b. $\quad a 2-14 a+196$
c. $\quad a 2-196$
d. $\quad a 2+196$
e. $\quad a 2+28 a+196$
15. Multiply the expression as you would multiply polynomials.

$$
\left(a_{19 / 2}+b_{15 / 2}\right)\left(a_{19 / 2}-b_{15 / 2}\right)
$$

a. $\quad a 19-b 15$
b. $\quad(a-b) 17$
c. $\quad(a+b) 2$
d. $\quad a 38-b 30$
16. Perform the multiplication and simplify.
$(x-y)(3 x+14 y)^{2}$
a.
b.
c.
d.
e.
17. Factor the expression
completely. $6 x 2+3 x 3$
a. $\quad 3 \times 2(3+x)$
b. $\quad 3 x 2(2+x)$
c. $\quad 3 x 2(2+x 2)$
d. $\quad 3 \times 2(2-x)$
18. Factor the expression
completely. $8 x 3+8 x 2-5 x-5$
a. $(x-1)(8 x 2+5)$
b. $(1-x)(8 x 2-5)$
c. $\quad(x+1)(8 x 2-5)$
d. $\quad(x+1)(5-8 x 2)$
19. Factor the expression
completely. $64 x 10+1$
a. $\quad(8 x 5-1) 2$
b. The expression is prime.
c. $\quad(8 x 5+1) 2$
d. $(8 x 5+1)(8 x 5-1)$
\qquad 20. Factor the expression
completely. 30x2-13xy-56y2
a. $(5 x-8 y)(6 x+7 y)$
b. $\quad(5 x+8 y)(6 x-7 y)$
c. $\quad(7 x-8 y)(6 x+5 y)$
d. $(5 x-8 y)(7 x+6 y)$
\qquad 21. Factor the expression
completely. $4 r 2-4 r s-35 s 2$
a. $(7 r-2 s)(2 r+5 s)$
b. $\quad(2 r-7 s)(2 r+5 s)$
c. $\quad(2 r+7 s)(2 r-5 s)$
d. $(2 r-7 s)(5 r+2 s)$
\qquad 22. Factor the expression completely.

$$
z 2+8 z+16-196 y 2
$$

a. $\quad(z-4+14 y)(z-4-14 y)$
b. $\quad(z-4+14 y)(z+4+14 y)$
c. $\quad(z+14+4 y)(z+14-4 y)$
d. $\quad(z+4+14 y)(z+4-14 y)$
23. Factor the expression completely.

$$
(4 x-5 y)^{3}+64
$$

a.
$(4 x+4 y-5)\left(10 x^{2}-20 x-32 x+20 y+16 y^{2}+25\right)$
b.

$$
(4 x-4 y+5)\left(10 x^{2}+20 x+32 n-20 y-16 y^{2}+25\right)
$$

c.

$$
(4 x+4 y-5) \cdot\left(16 x^{2}+20 x+32 x y-20 y-16 y^{2}+25\right)
$$

d.

$$
(4 x-4 y+5)\left(10 x^{2}-20 x+32 n-20 y+16 y^{2}+25\right)
$$

e.

$$
(4 x-4 y+5)\left(10 x^{2}-20 x-32 n+20 y+16 y^{2}+25\right)
$$

24. Simplify the fraction.

$$
\frac{7 x-49}{x^{2}-49}
$$

Assume that the denominator is not
0. a.

$$
\frac{1}{x-1}
$$

b.

$$
\frac{7}{x+7}
$$

c.
$\frac{x}{x+7}$
d.

$$
\frac{x}{x-7}
$$

e.

$$
\frac{7}{x-7}
$$

f.

$$
\frac{1}{x+1}
$$

25. Perform the operations and simplify.
$\frac{x+6}{x^{2}+13 x+42}+\frac{x}{x^{2}-49}$

Assume that no denominators are
0. a. $\frac{2 x-49}{x^{2}-7}$
b. $\quad \frac{2 x-7}{x^{2}-49}$
c. $\quad \frac{2 x-7}{x^{2}+49}$
d. $\frac{2 x+7}{x^{2}-49}$

Answer Section

MULTIPLE CHOICE

1. ANS: D
2. ANS: A
3. ANS: B
4. ANS: A
5. ANS: C
6. ANS: A
7. ANS: B
8. ANS: E
9. ANS: A
10. ANS: B
11. ANS: D
12. ANS: D
13. ANS: D
14. ANS: A
15. ANS: A
16. ANS: D
17. ANS: B
18. ANS: C
19. ANS: B
20. ANS: A
21. ANS: B
22. ANS: D
23. ANS: E
24. ANS: B
25. ANS: B

PTS: 1

Multiple Choice

Identify the choice that best completes the statement or answers the question.
\qquad 1. How many natural numbers are there between -12.5 and 6.5 on the number line?
a. $\quad 0$
b. $\quad 19$
c. 6
d. $\quad 10$
e. 7
\qquad 2. Identify the correct union of intervals for the inequality.
$x \leq-14$ or $x>10$
a. $\quad(-\infty,-[4] \cup(10, \infty)$
b. $\quad(-\infty,-14) \cup[10, \infty)$
c. $\quad(-\infty,-14] \cup[10, \infty)$
d. $\quad(-\infty,-14) \cup(10, \infty)$
e. $(-\infty,-[4] \cup(10, \infty]$
\qquad 3. Write the expression without using absolute value symbols.

$$
|x+9|-|x-13| \text { for } x<-13
$$

$$
|x+9|-|x-13|=
$$

\qquad for $x<-13$
a. $\quad 2 x-22$
b. 22
c. $\quad 4$
d. $22-2 x$
e. 22
\qquad 4. Calculate the volume of a box that has dimensions of 6,000 by 9,300 by 4,300 millimeters.
a.
b.
c.
d.
$2.3994 \times 10^{11} \mathrm{~mm}^{3}$
$1.932 \times 10^{11} \mathrm{~mm}^{3}$
$1.932 \times 10^{10} \mathrm{~mm}^{3}$
$2.3994 \times 10^{10} \mathrm{~mm}^{3}$
\qquad 5. Simplify the expression.

$$
\left(\frac{a^{-2}}{b^{-4}}\right)^{-5}
$$

Write the answer without using negative exponents. Assume that all variables are restricted to those numbers for which the expression is defined.
a.

$$
\frac{a^{12}}{b^{20}}
$$

b.

$$
\frac{a^{20}}{b^{12}}
$$

c.
$\frac{b^{12}}{a^{20}}$
d.

$$
\frac{b^{20}}{a^{12}}
$$

\qquad 6. Simplify the expression.

$$
\left(\frac{r^{5} r^{-1}}{r^{6} r^{-6}}\right)^{4}
$$

Write the answer without using negative exponents. Assume that the variable is restricted to those numbers for which the expression is defined.
a. $\quad r 4$
b. $\quad r 24$
c. $\quad r 0$
d. $\quad r 16$
7. Express the number $-187,000,000$ in scientific notation.
a.
-1.76×10^{8}
b.
-1.76×10^{7}
c.
-17.6×10^{9}
d.
-1.76×10^{9}
\qquad 8. We can often multiply and divide radicals with different indexes. For example:

$$
\sqrt{3} \sqrt[3]{5}=\sqrt[6]{27} \sqrt[6]{25}=\sqrt[6]{(27)(25)}=\sqrt[6]{675}
$$

Use this idea to write the following expression as a single radical.
$\sqrt{5} \sqrt[3]{5}$
a. $\quad \sqrt[3]{3125}$
b. $\quad \sqrt[6]{5}$
c. $\quad \sqrt[6]{3125}$
d. $\sqrt{3125}$
e. $\quad \sqrt[6]{625}$
9. Simplify the expression.
$\left(625 y^{4}\right)^{1 / 4}$
a.
b.
c.
d.
e.
10. Simplify the expression.
$\left(-\frac{3,125 x^{10}}{32 y^{5}}\right)^{1 / 5}$
a. $-\frac{5 x^{2}}{2 y^{2}}$
b. $\quad \frac{5 x^{3}}{2 y}$
c. $\quad-\frac{5 x^{2}}{2 y}$
d. $\frac{5 x^{2}}{2 y}$
11. Simplify the expression.
$\frac{a^{2 / 5} a^{2 / 5}}{a^{1 / 5}}$
Write all answers without using negative exponents. Assume that all variables represent positive numbers.
a.
b.
c.

$$
a^{3 / 5}
$$

$a^{4 / 5}$
d.
e.
$a^{5 / 5}$
$a^{3 / 10}$

$$
a^{3 / 8}
$$

12. Perform the division.
$x ^ { 2 } + x - 1 \longdiv { 1 1 x ^ { 3 } - 2 x ^ { 2 } - 2 4 x + 1 3 }$
a. $\quad 11 x-13$
b. $\quad 11 x-15 \mathrm{c}$.

15-11x
d. $11 \times 2-13$
13. Perform the operations and
simplify. $(5 \times 3-6 x 2)+(9 x 3-3 x)$
a. $\quad 14 x-6 \times 2-3 \times 3$
b. $\quad 5 \times 3$
c. $\quad 0$
d. $\quad 14 x 3-6 x^{2}-3 x$
14. Perform the operation and
simplify. $(a-8) 2$
a. $\quad a 2-8 a+64$
b. $\quad a 2-16 a+64$
c. $\quad a 2-64$
d. $\quad a 2+64$
e. $\quad a 2+16 a+64$
15. Multiply the expression as you would multiply polynomials.

$$
\left(a_{19 / 2}+b_{9 / 2}\right)\left(a_{19 / 2}-b_{9 / 2}\right)
$$

a. $\quad(a-b) 14$
b. $\quad a 38-b 18$
c. $\quad(a+b) 5$
d. $\quad a 19-b 9$
\qquad 16. Perform the multiplication and simplify.

$$
(x-y)(4 x+14 y)^{2}
$$

a.
b.
c.
d.
e.
\qquad 17. Factor the expression
completely. $6 x 2+3 x 3$

a.	$3 \times 2(2-x) \mathrm{b}$.
	$3 x 2(2+x)$
c.	$3 x 2(3+x)$
d.	$3 x 2(2+x 2)$

18. Factor the expression
completely. $4 x 3+4 x 2-7 x-7$
a. $(1-x)(4 x 2-7)$
b. $\quad(x-1)(4 x 2+7)$
c. $\quad(x+1)(7-4 \times 2)$
d. $\quad(x+1)(4 \times 2-7)$
\qquad 19. Factor the expression
completely. $25 \times 8+1$
a. The expression is prime.
b. $\quad(5 x 4+1) 2$
c. $\quad(5 x-1) 2$
d. $\quad(5 x 4+1)(5 x 4-1)$
\qquad 20. Factor the expression
completely. 30x2-13xy-56yz
a. $\quad(7 x-8 y)(6 x+5 y)$
b. $\quad(5 x-8 y)(7 x+6 y)$
c. $\quad(5 x-8 y)(6 x+7 y)$
d. $\quad(5 x+8 y)(6 x-7 y)$
\qquad 21. Factor the expression
completely. 8r2-16rs-90s2
a. $(2 r+9 s)(4 r-10 s)$
b. $\quad(9 r-2 s)(4 r+10 s)$
c. $\quad(2 r-9 s)(4 r+10 s)$
d. $(2 r-9 s)(10 r+4 s)$
\qquad 22. Factor the expression completely.
$z 2+6 z+9-36 y 2$
a. $\quad(z+6+3 y)(z+6-3 y)$
b. $\quad(z-3+6 y)(z+3+6 y)$
c. $(z+3+6 y)(z+3-6 y)$
d. $\quad(z-3+6 y)(z-3-6 y)$
\qquad 23. Factor the expression completely.

$$
(2 x-5 y)^{3}+125
$$

a.

$$
(2 x-5 y+5)\left(+x^{2}-10 x-2\left(10 y+25 y+25 y^{2}+25\right)\right.
$$

b.

$$
(2 x-5 y+5)\left(4 x^{2}-10 x+2\left(10 y-25 y+25 y^{2}+25\right)\right.
$$

c.
$(2 x-5 y+5) \cdot\left(4 x^{2}+10 x+20 x y-25 y-25 y^{2}+25\right)$
d.
$(2 x+5 y-5)\left(4 x^{2}+10 x+2010-25 y-25 y^{2}+25\right)$
e.

$$
(2 x+5 y-5)\left(4 x^{2}-10 x-2010 y+25 y+25 y^{2}+25\right)
$$

24. Simplify the fraction.
$\frac{8 x-64}{x^{2}-64}$
Assume that the denominator is not
25. a. $\frac{1}{x-1}$
b. $\quad \frac{7}{x+7}$
c. $\frac{x}{x+7}$
d. $\frac{x}{\pi-7}$
e. $\frac{7}{x-7}$
f. $\frac{1}{x+1}$
26. Perform the operations and simplify.
$\frac{x+3}{x^{2}+9 x+18}+\frac{x}{x^{2}-36}$
Assume that no denominators are
27. a. $\frac{2 x-6}{x^{2}+36}$
b. $\frac{2 x-36}{x^{2}-6}$
c. $\frac{2 x+6}{x^{2}-36}$
d. $\frac{2 x-6}{x^{2}-36}$

Answer Section

MULTIPLE CHOICE

1. ANS: C PTS: 1
2. ANS: A PTS: 1
3. ANS: E PTS: 1
4. ANS: A PTS: 1
5. ANS: D PTS: 1
6. ANS: D PTS: 1
7. ANS: A PTS: 1
8. ANS: C PTS: 1
9. ANS: A PTS: 1
10. ANS: C PTS: 1
11. ANS: A PTS: 1
12. ANS: A PTS: 1
13. ANS: D PTS: 1
14. ANS: B PTS: 1
15. ANS: D PTS: 1
16. ANS: C PTS: 1
17. ANS: B PTS: 1
18. ANS: D PTS: 1
19. ANS: A PTS: 1
20. ANS: C PTS: 1
21. ANS: C PTS: 1
22. ANS: C PTS: 1
23. ANS: A PTS: 1
24. ANS: B PTS: 1
25. ANS: D PTS: 1

Multiple Choice

Identify the choice that best completes the statement or answers the question.
\qquad 1. x represents a real number. Find any restrictions on
x. $x+2=5$
a. $\quad(0, \infty)$
b. $\quad 0$
c. $\quad x \geq-3$
d. $\quad(-\infty, 2)$
e. no restrictions
\qquad 2. Solve the equation.
$4 x+8=36$
a. $\quad x=7 \mathrm{~b}$.
$x=11 \mathrm{c} . x$
$=15$ d. x
$=-11 \mathrm{e}$.
$x=1$
3. Solve the equation

$$
\frac{9}{x-4}=1
$$

a. $\quad x=5 \mathrm{~b}$.
$x=13 \mathrm{c}$.
$x=16 \mathrm{~d}$.
$x=-16 \mathrm{e}$.
$x=-13$
4. Juan scored 10 points higher on his midterm and 26 points higher on his final than he did on his first exam. If his mean (average) score was 45 , what was his score on the first exam?
a. $\quad 32$
b. $\quad 40$
c. $\quad 33$
d. $\quad 31$
e. $\quad 35$
\qquad 5. One morning, John drove 6 hours before stopping to eat. After lunch, he increased his speed by 10 mph . If he completed a 390 -mile trip in 9 hours of driving time, how fast did he drive in the morning?
a. $\quad 36 \mathrm{mph}$
b. $\quad 40 \mathrm{mph}$
c. $\quad 48 \mathrm{mph}$
d. $\quad 33 \mathrm{mph}$
e. $\quad 43 \mathrm{mph}$
\qquad 6. Jake can wash a car in 40 minutes, while Harold can wash the same car in 50 minutes. How long will it take them to wash the car if they work together?
a. $\quad 40$ minutes
b. $\quad \underline{9}$ minutes 200
c. $\quad 10$ minutes
d. $\quad 30$ minutes
e. $\quad \underline{200}$

9 minutes
_7. Solve the equation $x^{2}-12 x-45=0$ by completing the square.
a. $\quad x=-3, x=6$
b. $\quad x=3, x=-15$
c. $\quad x=9, x=15$
d. $\quad x=-3, x=15$
e. $\quad x=6, x=3$
\qquad 8. Solve the formula
$\frac{x^{2}}{g^{2}}+\frac{y^{2}}{e^{2}}=1 ; y$
for the indicated variable.
a.

$$
y=e \sqrt{\left(1-\frac{x}{g}\right)\left(1+\frac{x}{g}\right)}, y=-e \sqrt{\left(1-\frac{x}{g}\right)\left(1+\frac{x}{g}\right)}
$$

b.

$$
y=\sqrt{e(1-x g)(1+x g)}, y=-\sqrt{e(1-x g)(1+x g)}
$$

c.

$$
y=\sqrt{e\left(1-\frac{x}{g}\right)^{2}}, y=-\sqrt{e\left(1-\frac{x}{g}\right)^{2}}
$$

d.

$$
y=e \sqrt{\left(a-\frac{x}{g}\right)\left(a+\frac{x}{g}\right)}, y=-e \sqrt{\left(a-\frac{x}{g}\right)\left(a+\frac{x}{g}\right)}
$$

e.

$$
y=\sqrt{e(2-x g)(1+x g)}, y=-\sqrt{e(2-x g)(1+x g)}
$$

9. Does the equation $6.269 x^{2}-3.015 x+3.445=0$ have any roots that are real numbers?
a. no
b. yes
\qquad 10. A piece of tin, $y=16$ inches on a side, is to have four equal squares cut from its corners, as in the illustration. If the edges are then to be folded up to make a box with a floor area of 16 square inches, find the depth of the box.

a.	11 in
b.	13 in
c.	6 in
d.	12 in
e.	9 in

11. A piece of sheet metal, 16 inches wide, is bent to form the gutter shown in the illustration. If the cross-sectional area is 32 square inches, find the depth of the gutter.

$\begin{array}{ll}\text { a. } & 5 \text { in } \\ \text { b. } & 6 \text { in } \\ \text { c. } & 7 \text { in } \\ \text { d. } & 4 \text { in }\end{array}$
12. A hose can fill a swimming pool in 18 hours. Another hose needs 3 more hours to fill the pool than the two hoses combined. How long would it take the second hose to fill the pool?

a.	9 hours
b.	14 hours
c.	18 hours
d.	6 hours
e.	12 hours

\qquad 13. Simplify the expression.
i_{14}
a. $\quad-6$
b. $\quad-i$
c. $\quad-1$
d. i
e. 1
\qquad 14. Simplify the expression.
i_{-26}
a. $\quad-i$
b. $\quad-3 i$
c. $\quad-1$
d. 1
e. i
\qquad 15. Find the values of x and y.
$x+89 i=y-y i$
a. $\quad x=89, y=89$
b. $\quad x=89, y=178$
c. $\quad x=-89, y=-89$
d. $\quad x=89, y=-89$
e. $\quad x=-89, y=89$
16. Do the operation and express the answer in $a+b i$ form.

$$
\frac{4+i}{8-i \sqrt{3}}
$$

a.

$$
\frac{67+\sqrt{3}}{67}-\frac{8+4 \sqrt{3}}{67} i
$$

b.

$$
\frac{32+\sqrt{3}}{67}+\frac{8-4 \sqrt{3}}{1} i
$$

c.

$$
\frac{67-\sqrt{3}}{67}-\frac{8-4 \sqrt{3}}{67} i
$$

d.

$$
\frac{32-\sqrt{3}}{67}+\frac{8+4 \sqrt{3}}{67} i
$$

e.

$$
\frac{32-\sqrt{3}}{67}-\frac{8-4 \sqrt{3}}{33} i
$$

\qquad 17. Factor the expression over the set of complex
numbers $9 a 2+16$
$\begin{array}{ll}\text { a. } & (-3 a+4 i)(-3 a+4 i) \\ \text { b. } & (3 a+4 i)(3 a-4 i) \\ \text { c. } & (3 a+4)(3 a-4) \\ \text { d. } & (3+4 i)(3-4 i) \\ \text { e. } & (3 a+4 i)(3 a+4 i)\end{array}$
\qquad 18. In electronics, the formula $V=I R$ is called Ohm's law. It gives the relationship in a circuit between the voltage V (in volts), the current I (in amperes), and the resistance R (in ohms).

Find V when $I=8-7 i$ amperes and $R=2+8 i$ ohms.
a. $\quad V=i$ volts
b. $\quad V=72+78 i$ volts
c. $\quad V=72$ volts
d. $\quad V=78$ volts
e. $\quad V=72+50 i$ volts
19. Solve the inequality.
$2 x-13<-7$
a. $\quad(3, \infty)$
b. $[3, \infty)$
c. $\quad(-3, \infty)$
d. $(-\infty, 3)$
e.
($-\infty, 3$]
20. Solve the inequality.
$\frac{12(x-8)}{5} \geq \frac{6(x+4)}{4}$
a.
b.

$$
(-28, \infty)
$$

$(28, \infty)$
c.
$[-28, \infty)$
d.

$$
[28, \infty)
$$

e. none of the above
\qquad 21. Solve the inequality.

$$
\frac{4}{x}>2
$$

a. $\quad(0,2]$
b. $\quad(0,2)$
c. $\quad[0,2]$
d. $\quad(-\infty, 2)$
e. $\quad[0,2)$
22. Express the relationship $4<C<18$ in terms of F, if $F=\frac{3}{2} C+17$

	$24<F<45$
b.	$22<F<43$
c.	$21<F<42$
d.	$27<F<40$
e.	$23<F<44$

23. Solve the inequality. Express the solution set in interval
notation. $|3 x-2|<5$
a.
$(3,7)$
b.

$$
\left(-1, \frac{3}{7}\right)
$$

c.

$$
\left(-1, \frac{7}{3}\right)
$$

d.

$$
\left(1, \frac{7}{3}\right)
$$

e.

$$
\left(-\infty,-\frac{7}{3}\right) \cup(-1, \infty)
$$

24. Solve the inequality. Express the solution set in interval notation. $0<|4 x+7|<11$
a.

$$
\left(-\frac{7}{4}, 1\right)
$$

b.

$$
\left(-\infty,-\frac{7}{4}\right) \cup(1, \infty)
$$

c.

$$
\left(-\frac{9}{2},-\frac{7}{4}\right)
$$

d.

$$
(-\infty,-1) \cup\left(\frac{7}{4}, \infty\right)
$$

e.

$$
\left(-\frac{9}{2},-\frac{7}{4}\right) \cup\left(-\frac{7}{4}, 1\right)
$$

25. Solve the inequality. Express the solution set in interval notation.

$$
5<\left|\frac{x-14}{3}\right|<8
$$

a. $(-38,-29) \cup(1,10)$
b. $\quad(-10,1) \cup(29,38)$
c. $\quad(-10,-1) \cup(29,38)$
d. $(-1,29)$
e.none of the above

Answer Section

MULTIPLE CHOICE

1. ANS: E PTS: 1
2. ANS: A PTS: 1
3. ANS: B PTS: 1
4. ANS: C PTS: 1
5. ANS: B PTS: 1
6. ANS: E PTS: 1
7. ANS: D PTS: 1
8. ANS: A PTS: 1
9. ANS: A PTS: 1
10. ANS: C PTS: 1
11. ANS: D PTS: 1
12. ANS: A PTS: 1
13. ANS: C PTS: 1
14. ANS: C PTS: 1
15. ANS: C PTS: 1
16. ANS: D PTS: 1
17. ANS: B PTS: 1
18. ANS: E PTS: 1
19. ANS: D PTS: 1
20. ANS: D PTS: 1
21. ANS: B PTS: 1
22. ANS: E PTS: 1
23. ANS: C PTS: 1
24. ANS: E
25. ANS: C

PTS: 1
PTS: 1

Multiple Choice

Identify the choice that best completes the statement or answers the question.
\qquad 1. x represents a real number. Find any restrictions on
x. $x+1=8$
a. no restrictions
b. $\quad x \geq-3$
c. 0
d. $\quad(-\infty, 1)$
e. $\quad(0, \infty)$
\qquad 2. Solve the equation.
$2 x+6=22$
a. $\quad x=8$
b. $\quad x=18$
c. $\quad x=2$
d. $\quad x=14$
e. $\quad x=-14$
\qquad 3. Solve the equation
$\frac{6}{x-4}=1$
a. $\quad x=10$
b. $\quad x=-10$
c. $\quad x=2$
d. $\quad x=-13$
e. $\quad x=13$
\qquad 4. Juan scored 4 points higher on his midterm and 2 points higher on his final than he did on his first exam. If his mean (average) score was 138 , what was his score on the first exam?
a. 134
b. 138
c. 136
d. 135
e. $\quad 143$
\qquad 5. One morning, John drove 6 hours before stopping to eat. After lunch, he increased his speed by 10 mph . If he completed a 390 -mile trip in 9 hours of driving time, how fast did he drive in the morning?
$\begin{array}{ll}\text { a. } & 33 \mathrm{mph} \\ \text { b. } & 36 \mathrm{mph} \\ \text { c. } & 48 \mathrm{mph} \\ \text { d. } & 43 \mathrm{mph} \\ \text { e. } & 40 \mathrm{mph}\end{array}$
\qquad 6. Jake can wash a car in 25 minutes, while Harold can wash the same car in 30 minutes. How long will it take them to wash the car if they work together?
a. $\quad \underline{150}$

11 minutes
b. $\quad 5$ minutes
c. $\quad 20$ minutes
d. $\quad \frac{11}{150}$ minutes
e. $\quad 25$ minutes
_7. Solve the equation $x^{2}-12 x-45=0$ by completing the square.
a. $\quad x=6, x=10$
b. $\quad x=3, x=-15$
c. $\quad x=9, x=15$
d. $\quad x=-3, x=15$
e. $\quad x=-3, x=6$
\qquad 8. Solve the formula

$$
\frac{x^{2}}{d^{2}}+\frac{y^{2}}{n^{2}}=1 ; y
$$

for the indicated variable.
a.
b.

$$
y=\sqrt{n(2-x d)(1+x d)}, y=-\sqrt{n(2-x d)(1+x d)}
$$

$$
y=\sqrt{n(1-x d)(1+x d)}, y=-\sqrt{n(1-x d)(1+x d)}
$$

c.

$$
y=n \sqrt{\left(1-\frac{x}{d}\right)\left(1+\frac{x}{d}\right)}, y=-n \sqrt{\left(1-\frac{x}{d}\right)\left(1+\frac{x}{d}\right)}
$$

d.

$$
y=\sqrt{n\left(1-\frac{x}{d}\right)^{2}}, y=-\sqrt{n\left(1-\frac{x}{d}\right)^{2}}
$$

e.

$$
y=n \sqrt{\left(\mathrm{a}-\frac{x}{d}\right)\left(\mathrm{a}+\frac{x}{d}\right)}, y=-n \sqrt{\left(\mathrm{a}-\frac{x}{d}\right)\left(\mathrm{a}+\frac{x}{d}\right)}
$$

9. Does the equation $6.356 x^{2}-8.036 x+1.688=0$ have any roots that are real numbers?
$\begin{array}{ll}\text { a. } & \text { yes } \\ \text { b. } & \text { no }\end{array}$
\qquad 10. A piece of tin, $y=12$ inches on a side, is to have four equal squares cut from its corners, as in the illustration. If the edges are then to be folded up to make a box with a floor area of 16 square inches, find the depth of the box.

$\begin{array}{ll}\text { a. } & 9 \text { in } \\ \text { b. } & 4 \text { in } \\ \text { c. } & 8 \text { in } \\ \text { d. } & 7 \text { in } \\ \text { e. } & 11 \text { in }\end{array}$
\qquad 11. A piece of sheet metal, 9 inches wide, is bent to form the gutter shown in the illustration. If the cross-sectional area is 10 square inches, find the depth of the gutter.

$\begin{array}{ll}\text { a. } & 2 \text { in } \\ \text { b. } & 3 \text { in } \\ \text { c. } & 5 \text { in } \\ \text { d. } & 4 \text { in }\end{array}$
10. A hose can fill a swimming pool in 12 hours. Another hose needs 2 more hours to fill the pool than the two hoses combined. How long would it take the second hose to fill the pool?

a.	4 hours
b.	12 hours
c.	10 hours
d.	6 hours
e.	8 hours

College Algebra, 11e, Chapter 1, Test B

\qquad 13. Simplify the expression.
i_{34}
a. 1
b. i
c. $\quad-i$
d. $\quad-6$
e. $\quad-1$
\qquad 14. Simplify the expression.
\boldsymbol{i}_{-26}
a. $\quad i b$.

1 c .
i
d. $\quad-3 i$
e. $\quad-1$
\qquad 15. Find the values of x and y.

$$
x+62 i=y-y i
$$

a. $\quad x=62, y=62$
b. $\quad x=62, y=-62$
c. $\quad x=-62, y=-62$
d. $\quad x=62, y=124$
e. $\quad x=-62, y=62$
\qquad 16. Do the operation and express the answer in $a+b i$ form.

$$
\frac{3+i}{5-i \sqrt{7}}
$$

a.

$$
\frac{67+\sqrt{3}}{67}-\frac{8+4 \sqrt{3}}{67} i
$$

b.

$$
\frac{32+\sqrt{3}}{67}+\frac{8-4 \sqrt{3}}{1} i
$$

c.
d.

$$
\frac{67-\sqrt{3}}{67}-\frac{8-4 \sqrt{3}}{67} i
$$

$$
\frac{32-\sqrt{3}}{67}+\frac{8+4 \sqrt{3}}{67} i
$$

e.

$$
\frac{32-\sqrt{3}}{67}-\frac{6-4 \sqrt{3}}{33} i
$$

\qquad 17. Factor the expression over the set of complex
numbers $4 a 2+9$
a. $\quad(2+3 i)(2-3 i)$
b. $\quad(2 a+3)(2 a-3)$
c. $\quad(-2 a+3 i)(-2 a+3 i)$
d. $\quad(2 a+3 i)(2 a-3 i)$
e. $\quad(2 a+3 i)(2 a+3 i)$
\qquad 18. In electronics, the formula $V=I R$ is called Ohm's law. It gives the relationship in a circuit between the voltage V (in volts), the current I (in amperes), and the resistance R (in ohms).

Find V when $I=5-2 i$ amperes and $R=6+9 i$ ohms.
a. $\quad V=57$ volts
b. $\quad V=48+57 i$ volts
c. $\quad V=48+33 i$ volts
d. $\quad V=48$ volts
e. $\quad V=i$ volts
19. Solve the inequality.
$2 x-13<-1$
a.
b.
c.
d.
e.
(- $\infty, 6$)
$(-6, \infty)$
$(3, \infty)$
$[3, \infty)$
($-\infty, 6$]
20. Solve the inequality.
$\frac{18(x-8)}{5} \geq \frac{9(x+4)}{4}$
b.
a. none of the above
c.
$(28, \infty)$
$[-28, \infty)$
d.
$(-28, \infty)$
e.
$[28, \infty)$
\qquad 21. Solve the inequality.

$$
\frac{4}{x}>2
$$

a. $\quad(0,2]$
b. $\quad(-\infty, 2)$
c. $(0,2]$
d. $(0,2)$
e. $[0,2]$
22. Express the relationship $6<C<16$ in terms of F, if $F=\frac{9}{2} C+17$.

		42	$<F<87$
	b.	45	$<F<90$
c.	44	$<F<89$	
d.	43	$<F<88$	
e.	48	$<F<85$	

23. Solve the inequality. Express the solution set in interval notation. $|3 x-4|<7$
a.

$$
\left(-1, \frac{11}{3}\right)
$$

b.

$$
\left(-1, \frac{3}{11}\right)
$$

c.

$$
\left(1, \frac{11}{3}\right)
$$

d.
e.

$$
(3,11)
$$

$$
\left(-\infty,-\frac{11}{3}\right) \cup(-1, \infty)
$$

\qquad 24. Solve the inequality. Express the solution set in interval
notation. $0<|4 x+3|<7$
a.

$$
\left(-\frac{5}{2},-\frac{3}{4}\right)
$$

b.

$$
\left(-\frac{5}{2},-\frac{3}{4}\right) \cup\left(-\frac{3}{4}, 1\right)
$$

c.

$$
\left(-\frac{3}{4}, 1\right)
$$

d.

$$
\begin{aligned}
& \left(-\infty,-\frac{3}{4}\right) \cup(1, \infty) \\
& (-\infty,-1) \cup\left(\frac{3}{4}, \infty\right)
\end{aligned}
$$

25. Solve the inequality. Express the solution set in interval notation.

$$
8<\left|\frac{x-23}{3}\right|<10
$$

a.
b.

$$
(-7,-1) \cdot(47,53)
$$

c.

$$
(-53,-47) \cup(1,7)
$$

$(-1,47)$
d. none of the above
e. $(-7,1) \cup(47,53)$

Answer Section

MULTIPLE CHOICE

1. ANS: A PTS: 1
2. ANS: A PTS: 1
3. ANS: A PTS: 1
4. ANS: C PTS: 1
5. ANS: E PTS: 1
6. ANS: A PTS: 1
7. ANS: D PTS: 1
8. ANS: C PTS: 1
9. ANS: A PTS: 1
10. ANS: B PTS: 1
11. ANS: A PTS: 1
12. ANS: D PTS: 1
13. ANS: E PTS: 1
14. ANS: E PTS: 1
15. ANS: C PTS: 1
16. ANS: C PTS: 1
17. ANS: D PTS: 1
18. ANS: C PTS: 1
19. ANS: A PTS: 1
20. ANS: E PTS: 1
21. ANS: D PTS: 1
22. ANS: C PTS: 1
23. ANS: A PTS: 1
24. ANS: B PTS: 1
25. ANS: A PTS: 1
