Test Bank for College Algebra Real Mathematics Real People 7th Edition by Larson ISBN 13050717279781305071728

Full link download:

Test Bank:

https://testbankpack.com/p/test-bank-for-college-algebra-real-mathematics-real-people-7th-edition-by-larson-isbn-13050717279781305071728/

Solution Manual:

https://testbankpack.com/p/solution-manual-for-college-algebra-real-mathematics-real-people-7th-edition-by-larson-isbn-1305071727-9781305071728/
\qquad Class: \qquad Date: \qquad

Chapter 2

Multiple Choice

Identify the choice that best completes the statement or answers the question.
\qquad 1. Solve for x : $-\frac{35}{3} x-a x=7\left(-\frac{5}{3} x-1\right)+b$
A) $x=\frac{7-a}{b}$
B) $x=\frac{b-7}{a}$
C) $x=\frac{7-b}{a}$
D) $x=\frac{a-b}{7}$
E) $x=\frac{b-a}{7}$
\qquad 2. Solve for x, rounding your answer to the nearest thousandth.
$2.657-1.397(4.193 x-0.27)=5.968 x-3$
A) 0.003
B) 0.510
C) 0.061
D) -54.668
E) 6.525
\qquad 3. Solve the following equation.

$$
\frac{x+4}{5}=\frac{x-3}{9}
$$

A) $x=-\frac{7}{4}$
B) $x=-\frac{39}{14}$
C) $x=-\frac{19}{4}$
D) $x=-\frac{51}{4}$
E) $x=\frac{3}{2}$
4. Determine any point(s) of intersection between the following equations. $y=3-x$
$y=\frac{6}{5}-\frac{9}{5} x$
A) $\left(-\frac{9}{14}, \frac{3}{2}\right)$
B) $\left(\frac{3}{4}, \frac{9}{4}\right)$
C) $\left(-\frac{9}{4}, \frac{21}{4}\right)$
D) $\left(\frac{15}{4},-\frac{3}{4}\right)$
E) $\left(\frac{3}{2}, \frac{21}{5}\right)$
5. Simplify $(-4+i)(-9+5 i)$ and write the answer in standard form.
A) $-11-29 i$
B) $31-49 i$
C) $-41-29 i$
D) $-41+41 i$
E) $31-29 i$
6. Simplify $\frac{4+5 i}{6 i}$ and write the answer in standard form.
A) $-\frac{5}{6}-\frac{2 i}{3}$
B) $\frac{5}{6}-\frac{2 i}{3}$
C) $\frac{5}{6}+\frac{2 i}{3}$
D) $\frac{2}{3}+\frac{5 i}{6}$
E) $-\frac{2}{3}+\frac{5 i}{6}$
7. Solve $9+4 x^{2}-12 x=0$ by factoring.
A) $x=\frac{3}{2}$
B) $x=2,-3$
C) $x=\frac{3}{2},-\frac{3}{2}$
D) $x=3,-2$
E) $x=\frac{2}{3},-\frac{2}{3}$
8. Find two quadratic equations having the following solutions. $3+2 \sqrt{6}, 3-2 \sqrt{6}$
A) $x^{2}-6 x+24=0 ; \quad 2 x^{2}-12 x+48=0$
B) $x^{2}-15=0 ; \quad 2 x^{2}-30=0$
C) $x^{2}-6 x-15=0 ; \quad 2 x^{2}-12 x-30=0$
D) $x^{2}+12 x-15=0 ; \quad 2 x^{2}+24 x-30=0$
E) $x^{2}-6 x+12=0 ; \quad 2 x^{2}-12 x+24=0$
9. Find all solutions of the following equation algebraically.
$6\left(\frac{r}{r-1}\right)^{2}-7\left(\frac{r}{r-1}\right)-5=0$
A) $r=\frac{5}{3},-\frac{1}{2}$
B) $r=3,-1$
C) $r=-\frac{1}{2},-\frac{5}{3}$
D) $r=\frac{5}{2}, \frac{1}{3}$
E) $r=5,2$
10. Find all solutions of $\sqrt{x}-\sqrt{x-13}=1$.
A) $x=7$
B) $x=\sqrt{7}$
C) $x=14$
D) $x=49$
E) $x=-7$
11. Find all solutions of the following equation algebraically.
$4 m^{2 / 3}+20 m^{1 / 3}+25=0$
A) $m=-\frac{5}{2}$
B) $m=\frac{25}{4}$
C) $m=-\frac{125}{8}$
D) $m=-\frac{25}{4}$
E) $m=\frac{5}{2}$
12. Find all solutions of the following equation algebraically.
$(x+8)^{2 / 3}=4$
A) $x=\sqrt[3]{4}-8$
B) $x=-4$
C) $x=\sqrt[3]{4}-64$
D) $x=\frac{1}{8}$
E) $x=0$
13. Find all solutions of $\left(x^{2}+7\right)^{3 / 2}=64$.
A) $x= \pm 3$
B) $x=\sqrt[3]{7}$
C) $x=-3$
D) $x=4$
E) $x= \pm \sqrt[3]{7}$
14. Find the x-intercepts of the graph of the equation $y=2 x+\sqrt{9-35 x}$
A) $(9,0)$
B) $(-9,0),\left(\begin{array}{ll}1 & 0\end{array}\right)$
C) $(-9,0)$
D) $(10,0),\left(\frac{1}{5}, 0\right)$
E) $(10,0),\left(\frac{1}{3}, 0\right)$
15. Set $y=0$ and solve the resulting equation.
$y=2 \sqrt{x}-\frac{20}{\sqrt{x}}-6$
A) $y=-2,25$
B) $y=10$
C) $y=-2,10$
D) $y=25$
E) $y=3$
16. Find all solutions of the following equation.
$|x-5|=x^{2}-5 x$
A) $x=0,1$
B) $x=0,5$
C) $x=-1,5$
D) $x=-1,0$
E) $x=-1$
17. Find all solutions of the following equation.
$x-8=\left|x^{2}-8 x\right|$
A) $x=1,8$
B) $x=-8,8$
C) $x=-8,0$
D) $x=8$
E) $x=0,1$
18. Given the following equation, set $y=0$ and solve the resulting equation.
$y=x+\frac{1}{x+2}+4$
A) $x=-4$
B) $x=-4,4$
C) $x=-3,3$
D) $x=-3$
E) $x=4$
19. Find the x-intercepts of the graph of the equation $y=|-7 x+2|-3$.
A) $\left(\frac{1}{7}, 0\right),\left(-\frac{5}{7}, 0\right)$
B) $\left(-\frac{1}{7}, 0\right),\left(-\frac{5}{7}, 0\right)$
C) $\left(-\frac{1}{7}, 0\right),\left(\frac{1}{7}, 0\right)$
D) $\left(-\frac{5}{7}, 0\right),\left(\frac{5}{7}, 0\right)$
E) $\left(-\frac{1}{7}, 0\right),\left(\frac{5}{7}, 0\right)$
20. Find an equation that has $x=i,-i,-5$, and 4 as solutions.
A) $x^{4}+x^{3}-19 x^{2}+x-20=0$
B) $x^{4}+x^{3}-21 x^{2}+x-20=0$
C) $x^{4}+9 x^{3}-19 x^{2}+x-20=0$
D) $x^{4}+9 x^{3}-21 x^{2}+x-20=0$
E) $x^{4}+x^{3}-19 x^{2}+9 x-20=0$
21. Use absolute value notation to define the interval shown below.

A) $|x+3|<0$
B) $|x|>-3$
C) $|3-x|>0$
D) $|x|<3$
E) $|x-3|>0$
22. Determine the intervals on which the following polynomial is entirely negative and those on which it is entirely positive.
$-x^{2}-2 x+3$
A) entirely negative: $(-\infty, 2)$; entirely positive: $(2, \infty)$
B) entirely negative: $(-\infty,-3),(1,2)$; entirely positive: $(-3,2)$
C) entirely negative: $(-\infty,-3),(1, \infty)$; entirely positive: $(-3,1)$
D) entirely negative: $(-3,2)$; entirely positive: $(-\infty,-3)$, $(1,2)$
E) entirely negative: $(-\infty, 0)$; entirely positive: $(0, \infty)$
23. Solve: $x^{2}-5 x-14<0$
A) $(-\infty,-5)$
B) $(-2, \infty)$
C) $(-2,7)$
D) $(-\infty, 7)$
E) $(7, \infty)$
24. Determine whether there is positive correlation, negative correlation, or no discernible correlation between the variables shown in the scatter plot below.

A) positive correlation
B) negative correlation
C) no discernable correlation
25. The scatter plots of different data are shown below. Determine whether there is a positive correlation, negative correlation, or no discernible correlation between the variables.

A) negative correlation
B) no discernible correlation
C) positive correlation

Chapter 2

Answer Section

MULTIPLE CHOICE

1. ANS: C
2. ANS: B
3. ANS: D
4. ANS: C
5. ANS: E
6. ANS: B
7. ANS: A
8. ANS: C
9. ANS: D
10. ANS: D
11. ANS: C
12. ANS: E
13. ANS: A
14. ANS: C
15. ANS: D
16. ANS: C
17. ANS: D
18. ANS: D
19. ANS: E
20. ANS: A
21. ANS: D
22. ANS: C
23. ANS: C
24. ANS: C
25. ANS: A

PTS: 1
\qquad Class: \qquad Date:

Chapter 2

Multiple Choice

Identify the choice that best completes the statement or answers the question.
\qquad 1. Solve for x : $\frac{16}{3} x-a x=8\left(\frac{2}{3} x-1\right)+b$
A) $x=\frac{b-8}{a}$
B) $x=\frac{a-b}{8}$
C) $x=\frac{8-a}{b}$
D) $x=\frac{8-b}{a}$
E) $x=\frac{b-a}{8}$
\qquad 2. Solve for x, rounding your answer to the nearest thousandth.
$2.657-1.397(4.193 x-0.27)=5.968 x-3$
A) 0.003
B) 0.510
C) 0.061
D) -54.668
E) 6.525
\qquad 3. Solve the following equation.

$$
\frac{x+4}{5}=\frac{x-3}{9}
$$

A) $x=-\frac{7}{4}$
B) $x=-\frac{39}{14}$
C) $x=-\frac{19}{4}$
D) $x=-\frac{51}{4}$
E) $x=\frac{3}{2}$
4. Determine any point(s) of intersection between the following equations. $y=3-x$
$y=\frac{6}{5}-\frac{9}{5} x$
A) $\left(-\frac{9}{14}, \frac{3}{2}\right)$
B) $\left(\frac{3}{4}, \frac{9}{4}\right)$
C) $\left(-\frac{9}{4}, \frac{21}{4}\right)$
D) $\left(\frac{15}{4},-\frac{3}{4}\right)$
E) $\left(\frac{3}{2}, \frac{21}{5}\right)$
5. Simplify $(-4+i)(-9+5 i)$ and write the answer in standard form.
A) $-11-29 i$
B) $31-49 i$
C) $-41-29 i$
D) $-41+41 i$
E) $31-29 i$
6. Simplify $\frac{4+5 i}{6 i}$ and write the answer in standard form.
A) $-\frac{5}{6}-\frac{2 i}{3}$
B) $\frac{5}{6}-\frac{2 i}{3}$
C) $\frac{5}{6}+\frac{2 i}{3}$
D) $\frac{2}{3}+\frac{5 i}{6}$
E) $-\frac{2}{3}+\frac{5 i}{6}$
7. Solve $9+4 x^{2}-12 x=0$ by factoring.
A) $x=\frac{3}{2}$
B) $x=2,-3$
C) $x=\frac{3}{2},-\frac{3}{2}$
D) $x=3,-2$
E) $x=\frac{2}{3},-\frac{2}{3}$
8. Find two quadratic equations having the following solutions. $3+2 \sqrt{6}, 3-2 \sqrt{6}$
A) $x^{2}-6 x+24=0 ; \quad 2 x^{2}-12 x+48=0$
B) $x^{2}-15=0 ; \quad 2 x^{2}-30=0$
C) $x^{2}-6 x-15=0 ; \quad 2 x^{2}-12 x-30=0$
D) $x^{2}+12 x-15=0 ; \quad 2 x^{2}+24 x-30=0$
E) $x^{2}-6 x+12=0 ; \quad 2 x^{2}-12 x+24=0$
9. Find all solutions of the following equation algebraically.
$6\left(\frac{r}{r-1}\right)^{2}-7\left(\frac{r}{r-1}\right)-5=0$
A) $r=\frac{5}{3},-\frac{1}{2}$
B) $r=3,-1$
C) $r=-\frac{1}{2},-\frac{5}{3}$
D) $r=\frac{5}{2}, \frac{1}{3}$
E) $r=5,2$
10. Find all solutions of $\sqrt{x}-\sqrt{x-13}=1$.
A) $x=7$
B) $x=\sqrt{7}$
C) $x=14$
D) $x=49$
E) $x=-7$
11. Find all solutions of the following equation algebraically.
$4 m^{2 / 3}+20 m^{1 / 3}+25=0$
A) $m=-\frac{5}{2}$
B) $m=\frac{25}{4}$
C) $m=-\frac{125}{8}$
D) $m=-\frac{25}{4}$
E) $m=\frac{5}{2}$
12. Find all solutions of the following equation algebraically.
$(x+8)^{2 / 3}=4$
A) $x=\sqrt[3]{4}-8$
B) $x=-4$
C) $x=\sqrt[3]{4}-64$
D) $x=\frac{1}{8}$
E) $x=0$
13. Find all solutions of $\left(x^{2}+7\right)^{3 / 2}=64$.
A) $x= \pm 3$
B) $x=\sqrt[3]{7}$
C) $x=-3$
D) $x=4$
E) $x= \pm \sqrt[3]{7}$
14. Find the x-intercepts of the graph of the equation $y=2 x+\sqrt{9-35 x}$
A) $(9,0)$
B) $(-9,0),\left(\begin{array}{ll}1 & 0\end{array}\right)$
C) $(-9,0)$
D) $(10,0),\left(\frac{1}{5}, 0\right)$
E) $(10,0),\left(\frac{1}{3}, 0\right)$
15. Set $y=0$ and solve the resulting equation.
$y=2 \sqrt{x}-\frac{20}{\sqrt{x}}-6$
A) $y=-2,25$
B) $y=10$
C) $y=-2,10$
D) $y=25$
E) $y=3$
16. Find all solutions of the following equation.
$|x-5|=x^{2}-5 x$
A) $x=0,1$
B) $x=0,5$
C) $x=-1,5$
D) $x=-1,0$
E) $x=-1$
17. Find all solutions of the following equation.
$x-8=\left|x^{2}-8 x\right|$
A) $x=1,8$
B) $x=-8,8$
C) $x=-8,0$
D) $x=8$
E) $x=0,1$
18. Given the following equation, set $y=0$ and solve the resulting equation.
$y=x+\frac{1}{x+2}+4$
A) $x=-4$
B) $x=-4,4$
C) $x=-3,3$
D) $x=-3$
E) $x=4$
19. Find the x-intercepts of the graph of the equation $y=|-7 x+2|-3$.
A) $\left(\frac{1}{7}, 0\right),\left(-\frac{5}{7}, 0\right)$
B) $\left(-\frac{1}{7}, 0\right),\left(-\frac{5}{7}, 0\right)$
C) $\left(-\frac{1}{7}, 0\right),\left(\frac{1}{7}, 0\right)$
D) $\left(-\frac{5}{7}, 0\right),\left(\frac{5}{7}, 0\right)$
E) $\left(-\frac{1}{7}, 0\right),\left(\frac{5}{7}, 0\right)$
20. Find an equation that has $x=i,-i,-5$, and 4 as solutions.
A) $x^{4}+x^{3}-19 x^{2}+x-20=0$
B) $x^{4}+x^{3}-21 x^{2}+x-20=0$
C) $x^{4}+9 x^{3}-19 x^{2}+x-20=0$
D) $x^{4}+9 x^{3}-21 x^{2}+x-20=0$
E) $x^{4}+x^{3}-19 x^{2}+9 x-20=0$
21. Use absolute value notation to define the interval shown below.

A) $|x+3|<0$
B) $|x|>-3$
C) $|3-x|>0$
D) $|x|<3$
E) $|x-3|>0$
22. Determine the intervals on which the following polynomial is entirely negative and those on which it is entirely positive.
$-x^{2}-2 x+3$
A) entirely negative: $(-\infty, 2)$; entirely positive: $(2, \infty)$
B) entirely negative: $(-\infty,-3),(1,2)$; entirely positive: $(-3,2)$
C) entirely negative: $(-\infty,-3),(1, \infty)$; entirely positive: $(-3,1)$
D) entirely negative: $(-3,2)$; entirely positive: $(-\infty,-3)$, $(1,2)$
E) entirely negative: $(-\infty, 0)$; entirely positive: $(0, \infty)$
23. Solve: $x^{2}-5 x-14<0$
A) $(-\infty,-5)$
B) $(-2, \infty)$
C) $(-2,7)$
D) $(-\infty, 7)$
E) $(7, \infty)$
24. Determine whether there is positive correlation, negative correlation, or no discernible correlation between the variables shown in the scatter plot below.

A) positive correlation
B) negative correlation
C) no discernable correlation
25. The scatter plots of different data are shown below. Determine whether there is a positive correlation, negative correlation, or no discernible correlation between the variables.

A) negative correlation
B) no discernible correlation
C) positive correlation

Chapter 2

Answer Section

MULTIPLE CHOICE

1. ANS: D
2. ANS: B
3. ANS: D
4. ANS: C
5. ANS: E
6. ANS: B
7. ANS: A
8. ANS: C
9. ANS: D
10. ANS: D
11. ANS: C
12. ANS: E
13. ANS: A
14. ANS: C
15. ANS: D
16. ANS: C
17. ANS: D
18. ANS: D
19. ANS: E
20. ANS: A
21. ANS: D
22. ANS: C
23. ANS: C
24. ANS: C
25. ANS: A

PTS: 1

DIF: Medium REF: 41-56
DIF: Medium REF: 21-34
DIF: Medium REF: 21-34
DIF: Medium REF: 57-64
DIF: Medium REF: 25-36
DIF: Medium REF: 45-52
DIF: Medium REF: 5-14
DIF: Medium REF: 67-76
DIF: Medium REF: 1-14
DIF: Medium REF: 19-48
DIF: Medium REF: 19-48
DIF: Medium REF: 19-48
DIF: Medium REF: 19-48
DIF: Medium REF: 49-52
DIF: Medium REF: 49-52
DIF: Difficult REF: 53-66
DIF: Difficult REF: 53-66
DIF: Medium REF: 67-70
DIF: Medium REF: 67-70
DIF: Medium REF: 87-92
DIF: Medium REF: 39-46
DIF: Medium REF: 47-52
DIF: Medium REF: 53-62
DIF: Easy REF: 3-6
DIF: Easy REF: 3-6
\qquad Class: \qquad Date:

Chapter 2

Multiple Choice

Identify the choice that best completes the statement or answers the question.
\qquad 1. Solve for x : $\frac{32}{3} x-a x=8\left(\frac{4}{3} x-1\right)+b$
A) $x=\frac{b-8}{a}$
B) $x=\frac{8-b}{a}$
C) $x=\frac{b-a}{8}$
D) $x=\frac{a-b}{8}$
E) $x=\frac{8-a}{b}$
\qquad 2. Solve for x, rounding your answer to the nearest thousandth.
$2.761+1.765(4.193 x-3.006)=6.478 x-3$
A) -0.494
B) -0.033
C) 5.491
D) -0.365
E) 6.009
\qquad 3. Solve the following equation.

$$
\frac{x+5}{2}=\frac{x-2}{7}
$$

A) $x=\frac{31}{9}$
B) $x=-\frac{7}{5}$
C) $x=-\frac{9}{5}$
D) $x=-\frac{39}{5}$
E) $x=-\frac{37}{9}$
4. Determine any point(s) of intersection between the following equations. $y=5-x$
$y=\frac{4}{3}-\frac{10}{3} x$
A) $\left(\frac{19}{13}, \frac{46}{3}\right)$
B) $\left(\frac{15}{7}, \frac{20}{7}\right)$
C) $\left(-\frac{11}{13}, \frac{46}{13}\right)$
D) $\left(-\frac{1}{7}, \frac{36}{7}\right)$
E) $\left(-\frac{11}{7}, \frac{46}{7}\right)$
5. Simplify $(-4+i)(-9-11 i)$ and write the answer in standard form.
A) $47+95 i$
B) $47+35 i$
C) $53+35 i$
D) $103+25 i$
E) $103+35 i$
6. Simplify $\frac{-8-5 i}{7 i}$ and write the answer in standard form.
A) $-\frac{5}{7}-\frac{8 i}{7}$
B) $-\frac{5}{7}+\frac{8 i}{7}$
C) $\frac{5}{7}+\frac{8 i}{7}$
D) $\frac{8}{7}-\frac{5 i}{7}$
E) $-\frac{8}{7}-\frac{5 i}{7}$
7. Solve $9+16 x^{2}-24 x=0$ by factoring.
A) $x=\frac{3}{4}$
B) $x=\frac{3}{4},-\frac{3}{4}$
C) $x=-3,4$
D) $x=\frac{4}{3},-\frac{4}{3}$
E) $x=-4,3$
8. Find two quadratic equations having the following solutions. $1+2 \sqrt{6}, 1-2 \sqrt{6}$
A) $x^{2}-2 x+24=0 ;-2 x^{2}+4 x-48=0$
B) $x^{2}-2 x+12=0 ;-2 x^{2}+4 x-24=0$
C) $x^{2}-2 x-23=0 ;-2 x^{2}+4 x+46=0$
D) $x^{2}-23=0 ;-2 x^{2}+46=0$
E) $x^{2}+12 x-23=0 ;-2 x^{2}-24 x+46=0$
9. Find all solutions of the following equation algebraically.
$-25\left(\frac{n}{n-1}\right)^{2}-30\left(\frac{n}{n-1}\right)-9=0$
A) $n=-5,-3$
B) $n=\frac{3}{8}, \frac{3}{8}$
C) $n=3,5$
D) $n=-\frac{3}{8},-\frac{3}{8}$
E) $n=-\frac{3}{5},-\frac{3}{5}$
10. Find all solutions of $\sqrt{x}-\sqrt{x-9}=1$.
A) $x=-5$
B) $x=10$
C) $x=5$
D) $x=\sqrt{5}$
E) $x=25$
11. Find all solutions of the following equation algebraically.
$9 z^{2 / 3}+42 z^{1 / 3}+49=0$
A) $z=-\frac{49}{9}$
B) $z=\frac{7}{3}$
C) $z=\frac{49}{9}$
D) $z=-\frac{7}{3}$
E) $z=-\frac{343}{27}$
12. Find all solutions of the following equation algebraically.
$(x-3)^{2 / 3}=25$
A) $x=\sqrt[3]{25}+3$
B) $x=28$
C) $x=\sqrt[3]{25}-9$
D) $x=128$
E) $x=\frac{125}{9}$
13. Find all solutions of $\left(x^{2}+5\right)^{3 / 2}=27$.
A) $x=\sqrt[3]{5}$
B) $x=-2$
C) $x=3$
D) $x= \pm 2$
E) $x= \pm \sqrt[3]{5}$
14. Find the x-intercepts of the graph of the equation $y=5 x+\sqrt{6-149 x}$
A) $(6,0)$
B) $(7,0),\left(\frac{1}{0} 0\right)$
C) $(-6,0),\left(\frac{1}{25}, 0\right)$
D) $(7,0),\left(\frac{1}{24}, 0\right)$
E) $(-6,0)$
15. Set $y=0$ and solve the resulting equation.
$y=3 \sqrt{x}-\frac{15}{\sqrt{x}}-12$
A) $y=-1,25$
B) $y=1$
C) $y=5$
D) $y=-1,5$
E) $y=25$
16. Find all solutions of the following equation.

$$
|x-9|=x^{2}-9 x
$$

A) $x=-1,0$
B) $x=-1$
C) $x=0,9$
D) $x=-1,9$
E) $x=0,1$
17. Find all solutions of the following equation.
$x-4=\left|x^{2}-4 x\right|$
A) $x=1,4$
B) $x=-4,0$
C) $x=0,1$
D) $x=4$
E) $x=-4,4$
18. Given the following equation, set $y=0$ and solve the resulting equation.
$y=x+\frac{1}{x+8}+10$
A) $x=-10,10$
B) $x=-9$
C) $x=-10$
D) $x=-9,9$
E) $x=10$
19. Find the x-intercepts of the graph of the equation $y=|-10 x-7|-6$.
A) $\left(-\frac{13}{10}, 0\right),\left(\frac{13}{10}, 0\right)$
B) $\left(\frac{13}{10}, 0\right),\left(\frac{1}{10}, 0\right)$
C) $\left(-\frac{13}{10}, 0\right),\left(\frac{1}{10}, 0\right)$
D) $\left(-\frac{13}{10}, 0\right),\left(-\frac{1}{10}, 0\right)$
E) $\left(\frac{1}{10}, 0\right),\left(-\frac{1}{10}, 0\right)$
20. Find an equation that has $x=i,-i, 2$, and -5 as solutions.
A) $x^{4}-7 x^{3}-9 x^{2}+3 x-10=0$
B) $x^{4}+3 x^{3}-11 x^{2}+3 x-10=0$
C) $x^{4}-7 x^{3}-11 x^{2}+3 x-10=0$
D) $x^{4}+3 x^{3}-9 x^{2}+3 x-10=0$
E) $x^{4}+3 x^{3}-9 x^{2}-7 x-10=0$
21. Use absolute value notation to define the interval shown below.

A) $|x+7|<0$
B) $|x|<3$
C) $|x-7|>0$
D) $|x|>-7$
E) $|7-x|>0$
22. Determine the intervals on which the following polynomial is entirely negative and those on which it is entirely positive.
$-x^{2}-6 x+7$
A) entirely negative: ($-7,4$); entirely positive:
B) entirely negative: $(-\infty, 0)$; entirely positive: $(-\infty,-7)$
$(-\infty,-7)$
$(0, \infty)$
C) entirely negative: $(-\infty, 4)$; , $(1, \infty)$; entirely positive: $(-7,1)$
D) entirely negative: $(-\infty,-7)$ entirely positive: $(4, \infty)$
E) entirely negative: $\quad(1,4)$; entirely positive: $(-7,4)$
23. Solve: $x^{2}-2 x-24<0$
A) $(-\infty, 6)$
B) $(-4,6)$
C) $(-\infty,-2)$
D) $(-4, \infty)$
E) $(6, \infty)$
24. Determine whether there is positive correlation, negative correlation, or no discernible correlation between the variables shown in the scatter plot below.

A) negative correlation
B) positive correlation
C) no discernable correlation
25. The scatter plots of different data are shown below. Determine whether there is a positive correlation, negative correlation, or no discernible correlation between the variables.

A) no discernible correlation
B) negative correlation
C) positive correlation

Chapter 2

Answer Section

MULTIPLE CHOICE

1. ANS: B
2. ANS: A
3. ANS: D
4. ANS: E
5. ANS: B
6. ANS: B
7. ANS: A
8. ANS: C
9. ANS: B
10. ANS: E
11. ANS: E
12. ANS: D
13. ANS: D
14. ANS: E
15. ANS: E
16. ANS: D
17. ANS: D
18. ANS: B
19. ANS: D
20. ANS: D
21. ANS: B
22. ANS: C
23. ANS: B
24. ANS: C
25. ANS: C

PTS: 1
\qquad Class: \qquad Date: \qquad

Chapter 2

Multiple Choice

Identify the choice that best completes the statement or answers the question.

1. Solve: $-5(x-5)=-2(2-x)-2$
A) $x=\frac{1}{4}$
B) $x=-\frac{19}{3}$
C) $x=\frac{31}{4}$
D) $x=\frac{31}{7}$
E) $x=-\frac{19}{7}$
2. Solve: $-\frac{7}{3 x+1}-\frac{12 x}{3 x-1}=-4$
A) $x=\frac{1}{3}$
B) $x=\frac{1}{11}$
C) $x=\frac{3}{19}$
D) $x=-\frac{1}{3}$
E) $x=\frac{11}{3}$
3. Which of the following is a zero of the given function?
$f(x)=\frac{x+10}{3}-\frac{x+5}{7}+6$
$x=-\frac{211}{4}, x=\frac{71}{4}, x=\frac{181}{10}$,
$\left.x=-\frac{181}{4} \mathrm{~A}\right)_{x=\frac{71}{4}}$
B) $x=-\frac{181}{181}$
C) $x=\frac{181}{10}$
D) $x=-\frac{211}{4}$
E) none of these
4. Which of the following is a zero of the given function?
$f(x)=x+4-\frac{5}{x}$
$x=-1, x=-5, x=-6, x=4$
A) $x=-5$
B) $x=-1$
C) $x=-6$
D) $x=4$
E) none of these
5. Solve the following equation.
$\frac{x+5}{5}=\frac{x-2}{7}$
A) $x=-\frac{37}{12}$
B) $x=-\frac{15}{2}$
C) $x=-\frac{7}{2}$
D) $x=\frac{25}{12}$
E) $x=-\frac{45}{2}$
6. Solve the following equation.
$(x+8)^{2}+14(x+14)=(x+8)(x+14)$
A) $x=-\frac{10}{7}$
B) $x=-22$
C) $x=-\frac{74}{7}$
D) $x=-\frac{37}{2}$
E) $x=\frac{61}{2}$
7. Determine any point(s) of intersection between the following equations.
$y=2-x$
$y=\frac{5}{4}-\frac{11}{4} x$
A) $\left(-\frac{3}{7}, \frac{17}{7}\right)$
B) $\left(\frac{3}{7}, \frac{11}{7}\right)$
C) $\left(\frac{8}{7}, \frac{6}{7}\right)$
D) $\left(\frac{13}{15}, \frac{17}{4}\right)$
E) $\left(-\frac{1}{5}, \frac{17}{15}\right)$
8. Simplify $(3+i)(4+9 i)$ and write the answer in standard form.
A) $23+31 i$
B) $33+21 i$
C) $33+31 i$
D) $3+31 i$
E) $3+39 i$
\qquad 9. Simplify $\frac{3+i}{5+2 i}$ and write the answer in standard form.
A) $\frac{17}{29}+\frac{1}{29} i$
B) $\frac{17}{29}-\frac{1}{29} i$
C) $-\frac{17}{29}-\frac{1}{29} i$
D) $-\frac{1}{29}+\frac{17}{29} i$
E) $-\frac{1}{29}-\frac{17}{29} i$
9. Simplify $(\sqrt{-3})^{9}$ and write the answer in standard form.
A) $-81 \sqrt{3} i$
B) The expression cannot be simplified.
C) $81 \sqrt{3}$
D) $81 \sqrt{3} i$
E) $6561 \sqrt{3} i$
10. Solve $4+9 x^{2}+12 x=0$ by factoring.
A) $x=-\frac{2}{3}$
B) $x=-\frac{3}{2}, \frac{3}{2}$
C) $x=-\frac{2}{3}, \frac{2}{3}$
D) $x=2,3$
E) $x=-3,-2$
\qquad 12. Solve the following quadratic equation by factoring.
$(w+a)^{2}-16 b^{2}=0$
A) $w=a,-16 b$
B) $w=a-4 b, a+4 b$
C) $w=-a, 16 b$
D) $w=-a+4 b,-a-4 b$
E) $w=-a+4 b, a+4 b$
11. Solve $0=4 x^{2}+20 x+20$ using the quadratic formula.
A) $x=\frac{-5 \pm \sqrt{5}}{2}$
B) $x=\frac{5}{2}$
C) $x=\frac{-2 \pm \sqrt{5}}{5}$
D) $x=\frac{5 \pm \sqrt{5}}{2}$
E) $x=\frac{ \pm \sqrt{5}}{2}$
12. Solve the following equation using any convenient method. $(x+9)^{2}=-100$
A) $x=-10 \pm 9 i$
B) $x=-100,10$
C) $x=-9 \pm 10 i$
D) $x=-100,-9$
E) $x=-9,10$
\qquad 15. Find all solutions of $\frac{1}{x^{2}}+\frac{8}{x}+15=0$.
A) $x=-5,3$
B) $x=-\frac{1}{8}, \frac{1}{2}$
C) $x=-5,-3$
D) $x=-\frac{1}{5},-\frac{1}{3}$
E) $x=\frac{1}{8},-\frac{1}{2}$
\qquad 16. Find all solutions of the following equation algebraically. $4 \sqrt{x-3}-\sqrt{x+7}=0$
A) $x=\frac{2}{3}$
B) $x=\frac{3}{7}$
C) $x=\frac{19}{7}$
D) $x=\frac{11}{3}$
E) $x=\frac{19}{3}$
13. Find all solutions of the following equation algebraically.
$(x+4)^{2 / 3}=4$
A) $x=\frac{1}{2}$
B) $x=4$
C) $x=0$
D) $x=\sqrt[3]{4}-16$
E) $x=\sqrt[3]{4}-4$
14. Find the x-intercepts of the graph of the equation $y=7 x+\sqrt{8-391 x}$
A) $(8,0)$
B) $(-8,0),\left(\frac{1}{49}, 0\right)$
C) $(9,0),\left(\frac{1}{48}, 0\right)$
D) $(9,0),\left(\frac{1}{50}, 0\right)$
E) $(-8,0)$
15. Set $y=0$ and solve the resulting equation.
$y=2 \sqrt{x}-\frac{20}{\sqrt{x}}-6$
A) $y=3$
B) $y=-2,10$
C) $y=-2,25$
D) $y=25$
E) $y=10$
16. Solve: $5(x-2)>5 x-5$
A) $x<-2$
B) no solution
C) $-5<x<2$
D) $x>5$
E) $x \leq-8$
17. Use absolute value notation to define the interval shown below.

A) $8-|x+1| \leq 0$
B) $|x+1|-8 \geq 0$
C) $|x-1|-8 \geq 0$
D) $-7 \leq x \leq 9$
E) $|-1-x| \geq 8$
18. Solve the inequality $16 x-x^{3}<0$ and write the solution set in interval notation.
A) $(-4,4)$
B) $(-\infty,-4) \cup(0,4)$
C) $(-\infty, 4)$
D) $(-4,0) \cup(4, \infty)$
E) $(-\infty, \infty)$
19. Hooke's Law states that the force F required to compress or stretch a spring (within its elastic limits) is proportional to the distance d that the spring is compressed or stretched from its original length. That is, $F=k d$ where k is the measure of the stiffness of the spring and is called the spring constant. The table below shows the elongation d in centimeters of a spring when a force of F kilograms is applied.

Force, \boldsymbol{F}	Elongation, \boldsymbol{d}
20	2.1
40	3.8
60	6.0
80	8.0
100	9.9

Sketch a scatter plot of the data.
A)

D)

B)

E)

C)

24. Hooke's Law states that the force F required to compress or stretch a spring (within its elastic limits) is proportional to the distance d that the spring is compressed or stretched from its original length. That is, $F=k d$ where k is the measure of the stiffness of the spring and is called the spring constant. The table below shows the elongation d in centimeters of a spring when a force of F kilograms is applied.

Force, \boldsymbol{F}	Elongation, \boldsymbol{d}
20	2.8
40	5.0
60	8.0
80	10.6
100	13.2

Find the equation of the line that seems to best fit the data. Use the model to estimate the elongation of the spring when a force of 30 kilograms is applied. Round your answer to one decimal place.
A) 6.0 centimeters
B) 4.0 centimeters
C) 8.0 centimeters
D) 3.0 centimeters
E) 2.0 centimeters
25. The average lengths L of cellular phone calls in minutes from 1999 to 2004 are shown in the table below.

Year	Average length, \boldsymbol{L} (in minutes)
1999	2.38
2000	2.56
2001	2.74
2002	2.73
2003	2.87
2004	3.05

Use the regression feature of a graphing utility to find a linear model for the data. Let t represent the year, with $t=9$ corresponding to 1999. Use the model to predict the average lengths of cellular phone calls for the year 2010. Round your answer to two decimal places.
A) 7.52 minutes
B) 2.76 minutes
C) 4.76 minutes
D) 1.88 minutes
E) 3.76 minutes

Chapter 2

Answer Section

MULTIPLE CHOICE

1. ANS: D
2. ANS: B
3. ANS: B
4. ANS: A
5. ANS: E
6. ANS: D
7. ANS: A
8. ANS: D
9. ANS: B
10. ANS: D
11. ANS: A
12. ANS: D
13. ANS: A
14. ANS: C
15. ANS: D
16. ANS: D
17. ANS: B
18. ANS: E
19. ANS: D
20. ANS: B
21. ANS: C
22. ANS: D
23. ANS: D
24. ANS: B
25. ANS: E

PTS: 1
\qquad Class: \qquad Date: \qquad

Chapter 2

Multiple Choice

Identify the choice that best completes the statement or answers the question.

1. Solve: $-7(x-7)=-3(2-x)-2$
A) $x=\frac{57}{10}$
B) $x=\frac{19}{2}$
C) $x=-\frac{41}{4}$
D) $x=\frac{1}{6}$
E) $x=-\frac{41}{10}$
2. Solve: $\frac{2}{3 x+1}-\frac{24 x}{3 x-1}=-8$
A) $x=-\frac{5}{9}$
B) $x=-\frac{5}{11}$
C) $x=\frac{1}{3}$
D) $x=-\frac{3}{5}$
E) $x=-\frac{1}{3}$
\qquad 3. Which of the following is a zero of the given function?
$f(x)=\frac{x+4}{3}-\frac{x-5}{5}+4$
$x=-\frac{65}{2}, x=\frac{25}{2}, x=\frac{95}{8}$,
$x=-\frac{95}{2}=-\frac{\mathrm{A} 95}{2}$
B) $x=-\frac{95}{2}$
C) $x=\frac{25}{2}$
D) $x=\frac{95}{8}$
E) none of these
3. Which of the following is a zero of the given function?
$f(x)=x-4-\frac{12}{x}$
$x=-6, x=-2, x=-8, x=-4$
A) $x=-6$
B) $x=-2$
C) $x=-4$
D) $x=-8$
E) none of these
4. Solve the following equation.
$\frac{x+6}{5}=\frac{x-7}{9}$
A) $x=-\frac{61}{14}$
B) $x=\frac{19}{14}$
C) $x=-\frac{41}{4}$
D) $x=-\frac{89}{4}$
E) $x=-\frac{13}{4}$
5. Solve the following equation.

$$
(x+16)^{2}+18(x+18)=(x+16)(x+18)
$$

A) $x=\frac{89}{4}$
B) $x=-\frac{73}{4}$
C) $x=\frac{110}{9}$
D) $x=-\frac{146}{9}$
E) $x=-34$
7. Determine any point(s) of intersection between the following equations.
$y=5-x$
$y=\frac{4}{3}-\frac{10}{3} x$
A) $\left(-\frac{11}{7}, \frac{46}{7}\right)$
B) $\left(\frac{15}{7}, \frac{20}{7}\right)$
C) $\left(-\frac{11}{13}, \frac{46}{13}\right)$
D) $\left(\frac{19}{13}, \frac{46}{3}\right)$
E) $\left(-\frac{1}{7}, \frac{36}{7}\right)$
8. Simplify $(-4+i)(-7-8 i)$ and write the answer in standard form.
A) $60+20 i$
B) $36+52 i$
C) $39+25 i$
D) $36+25 i$
E) $60+25 i$
9. Simplify $\frac{7+3 i}{5+6 i}$ and write the answer in standard form.
A) $-\frac{27}{61}+\frac{53}{61} i$
B) $-\frac{53}{61}-\frac{27}{61} i$
C) $\frac{53}{61}-\frac{27}{61} i$
D) $\frac{53}{61}+\frac{27}{61} i$
E) $-\frac{27}{61}-\frac{53}{61} i$
10. Simplify $(\sqrt{-3})^{7}$ and write the answer in standard form.
A) $-27 \sqrt{3}$
B) The expression cannot be simplified.
C) $27 \sqrt{3} i$
D) $-27 \sqrt{3} i$
E) $729 \sqrt{3} i$
11. Solve $4+9 x^{2}+12 x=0$ by factoring.
A) $x=-3,-2$
B) $x=-\frac{2}{3}$
C) $x=2,3$
D) $x=-\frac{2}{3}, \frac{2}{3}$
E) $x=-\frac{3}{2}, \frac{3}{2}$
12. Solve the following quadratic equation by factoring.
$(v+a)^{2}-25 b^{2}=0$
A) $v=-a+5 b, a+5 b$
B) $v=a-5 b, a+5 b$
C) $v=a,-25 b$
D) $v=-a+5 b,-a-5 b$
E) $v=-a, 25 b$
13. Solve $0=64 x^{2}+80 x+20$ using the quadratic formula.
A) $x=\frac{-5 \pm \sqrt{5}}{8}$
B) $x=\frac{5}{8}$
C) $x=\frac{-8 \pm \sqrt{5}}{5}$
D) $x=\frac{5 \pm \sqrt{5}}{8}$
E) $x=\frac{ \pm \sqrt{5}}{8}$
14. Solve the following equation using any convenient method.
$(x-8)^{2}=-81$
A) $x=-81,8$
B) $x=8,9$
C) $x=-9 \pm 8 i$
D) $x=8 \pm 9 i$
E) $x=-81,9$
\qquad 15. Find all solutions of $\frac{1}{x^{2}}+\frac{8}{x}+15=0$.
A) $x=-\frac{1}{8}, \frac{1}{2}$
B) $x=-5,-3$
C) $x=\frac{1}{8},-\frac{1}{2}$
D) $x=-\frac{1}{5},-\frac{1}{3}$
E) $x=-5,3$
\qquad 16. Find all solutions of the following equation algebraically. $4 \sqrt{x-10}-\sqrt{x+6}=0$
A) $x=\frac{46}{3}$
B) $x=\frac{23}{7}$
C) $x=\frac{16}{15}$
D) $x=\frac{1}{7}$
E) $x=\frac{166}{15}$
17. Find all solutions of the following equation algebraically.

$$
(x-6)^{2 / 3}=9
$$

A) $x=\sqrt[3]{9}-36$
B) $x=33$
C) $x=15$
D) $x=\sqrt[3]{9}+6$
E) $x=\frac{3}{4}$
18. Find the x-intercepts of the graph of the equation $y=2 x+\sqrt{4-15 x}$
A) $(-4,0)$
B) $(-4,0),\left(\begin{array}{ll}1 & 0\end{array}\right)$
C) $(4,0)$
D) $(5,0),\left(\frac{1}{5}, 0\right)$
E) $(5,0),\left(\frac{1}{3}, 0\right)$
19. Set $y=0$ and solve the resulting equation.
$y=2 \sqrt{x}-\frac{6}{\sqrt{x}}-4$
A) $y=9$
B) $y=3$
C) $y=1$
D) $y=-1,9$
E) $y=-1,3$
20. Solve: $7(x-6)>7 x-35$
A) no solution
B) $x<-6$
C) $x \leq-36$
D) $x>7$
E) $-7<x<6$
21. Use absolute value notation to define the interval shown below.

A) $|x-4|-4 \geq 0$
B) $|4-x| \geq 4$
C) $4-|x-4| \leq 0$
D) $-8 \leq x \leq 0$
E) $|x+4|-4 \geq 0$
22. Solve the inequality $16 x-x^{3}<0$ and write the solution set in interval notation.
A) $(-\infty, 4)$
B) $(-\infty,-4) \cup(0,4)$
C) $(-4,0) \cup(4, \infty)$
D) $(-\infty, \infty)$
E) $(-4,4)$
23. Hooke's Law states that the force F required to compress or stretch a spring (within its elastic limits) is proportional to the distance d that the spring is compressed or stretched from its original length. That is, $F=k d$ where k is the measure of the stiffness of the spring and is called the spring constant. The table below shows the elongation d in centimeters of a spring when a force of F kilograms is applied.

Force, \boldsymbol{F}	Elongation, \boldsymbol{d}
20	1.4
40	2.5
60	4.0
80	5.3
100	6.6

Sketch a scatter plot of the data.
A)

D)

B)

E)

C)

24. Hooke's Law states that the force F required to compress or stretch a spring (within its elastic limits) is proportional to the distance d that the spring is compressed or stretched from its original length. That is, $F=k d$ where k is the measure of the stiffness of the spring and is called the spring constant. The table below shows the elongation d in centimeters of a spring when a force of F kilograms is applied.

Force, \boldsymbol{F}	Elongation, \boldsymbol{d}
20	3.5
40	6.3
60	10.0
80	13.3
100	16.5

Find the equation of the line that seems to best fit the data. Use the model to estimate the elongation of the spring when a force of 35 kilograms is applied. Round your answer to one decimal place.
A) 2.9 centimeters
B) 8.7 centimeters
C) 4.4 centimeters
D) 5.8 centimeters
E) 11.6 centimeters
25. The average lengths L of cellular phone calls in minutes from 1999 to 2004 are shown in the table below.

Year	Average length, \boldsymbol{L} (in minutes)
1999	2.38
2000	2.56
2001	2.74
2002	2.73
2003	2.87
2004	3.05

Use the regression feature of a graphing utility to find a linear model for the data. Let t represent the year, with $t=9$ corresponding to 1999. Use the model to predict the average lengths of cellular phone calls for the year 2006. Round your answer to two decimal places.
A) 6.54 minutes
B) 1.64 minutes
C) 2.27 minutes
D) 4.27 minutes
E) 3.27 minutes

Chapter 2

Answer Section

MULTIPLE CHOICE

1. ANS: A
2. ANS: A
3. ANS: B
4. ANS: B
5. ANS: D
6. ANS: B
7. ANS: A
8. ANS: D
9. ANS: C
10. ANS: D
11. ANS: B
12. ANS: D
13. ANS: A
14. ANS: D
15. ANS: D
16. ANS: E
17. ANS: B
18. ANS: A
19. ANS: A
20. ANS: A
21. ANS: E
22. ANS: C
23. ANS: B
24. ANS: D
25. ANS: E

PTS: 1
\qquad Class: \qquad Date: \qquad

Chapter 2

Multiple Choice

Identify the choice that best completes the statement or answers the question.

1. Solve: $-9(x-9)=-5(2-x)-2$
A) $x=-\frac{69}{4}$
B) $x=\frac{3}{8}$
C) $x=\frac{93}{14}$
D) $x=-\frac{69}{14}$
E) $x=\frac{93}{8}$
2. Solve: $\frac{7}{3 x+1}-\frac{18 x}{3 x-1}=-6$
A) $x=-\frac{13}{11}$
B) $x=\frac{13}{3}$
C) $x=\frac{1}{13}$
D) $x=\frac{1}{3}$
E) $x=-\frac{1}{3}$
3. Which of the following is a zero of the given function?
$f(x)=\frac{x-3}{2}-\frac{x+4}{6}+6$
$x=-\frac{31}{2}, x=\frac{49}{2}, x=\frac{23}{4}$,
$x=-\frac{23}{2}=-\frac{A 31}{2}$
B) $x=-\frac{23}{2}$
C) $x=\frac{23}{4}$
D) $x=\frac{49}{2}$
E) none of these
4. Which of the following is a zero of the given function?
$f(x)=x-5-\frac{14}{x}$
$x=-7, x=-2, x=-9, x=-5$
A) $x=-2$
B) $x=-5$
C) $x=-7$
D) $x=-9$
E) none of these
5. Solve the following equation.
$\frac{x+4}{4}=\frac{x-8}{9}$
A) $x=\frac{4}{13}$
B) $x=-\frac{44}{13}$
C) $x=-\frac{12}{5}$
D) $x=-\frac{36}{5}$
E) $x=-\frac{68}{5}$
6. Solve the following equation. $(x+18)^{2}-16(x-16)=(x+18)(x-16)$
A) $x=-\frac{434}{9}$
B) $x=-\frac{178}{9}$
C) $x=-2$
D) $x=\frac{55}{4}$
E) $x=\frac{217}{4}$
7. Determine any point(s) of intersection between the following equations.
$y=3-x$
$y=\frac{6}{5}-\frac{9}{5} x$
A) $\left(-\frac{9}{14}, \frac{3}{2}\right)$
B) $\left(\frac{15}{4},-\frac{3}{4}\right)$
C) $\left(\frac{3}{4}, \frac{9}{4}\right)$
D) $\left(\frac{3}{2}, \frac{21}{5}\right)$
E) $\left(-\frac{9}{4}, \frac{21}{4}\right)$
8. Simplify $(-2+i)(5+9 i)$ and write the answer in standard form.
A) $47-i$
B) $47-13 i$
C) $-19+43 i$
D) $-23-13 i$
E) $-19-13 i$
9. Simplify $\frac{3+i}{5+2 i}$ and write the answer in standard form.
A) $-\frac{1}{29}-\frac{17}{29} i$
B) $\frac{17}{29}-\frac{1}{29} i$
C) $-\frac{1}{29}+\frac{17}{29} i$
D) $-\frac{17}{29}-\frac{1}{29} i$
E) $\frac{17}{29}+\frac{1}{29} i$
10. Simplify $(\sqrt{-3})^{11}$ and write the answer in standard form.
A) $-243 \sqrt{3}$
B) $59,049 \sqrt{3} i$
C) $-243 \sqrt{3} i$
D) The expression cannot be simplified.
E) $243 \sqrt{3} i$
11. Solve $9+16 x^{2}+24 x=0$ by factoring.
A) $x=-\frac{3}{4}, \frac{3}{4}$
B) $x=4,3$
C) $x=-3,-4$
D) $x=-\frac{4}{3}, \frac{4}{3}$
E) $x=-\frac{3}{4}$
12. Solve the following quadratic equation by factoring.
$(p+a)^{2}-36 b^{2}=0$
A) $p=a,-36 b$
B) $p=a-6 b, a+6 b$
C) $p=-a, 36 b$
D) $p=-a+6 b,-a-6 b$
E) $p=-a+6 b, a+6 b$
13. Solve $0=16 x^{2}+40 x+15$ using the quadratic formula.
A) $x=\frac{ \pm \sqrt{10}}{4}$
B) $x=\frac{5}{4}$
C) $x=\frac{-5 \pm \sqrt{10}}{4}$
D) $x=\frac{-4 \pm \sqrt{10}}{5}$
E) $x=\frac{5 \pm \sqrt{10}}{4}$
14. Solve the following equation using any convenient method.
$(x+2)^{2}=-81$
A) $x=-2 \pm 9 i$
B) $x=-2,9$
C) $x=-81,9$
D) $x=-81,-2$
E) $x=-9 \pm 2 i$
\qquad 15. Find all solutions of $\frac{1}{x^{2}}+\frac{10}{x}+16=0$.
A) $x=-2,-8$
B) $x=-2,8$
C) $x=-\frac{1}{2},-\frac{1}{8}$
D) $x=-\frac{1}{10}, \frac{1}{6}$
E) $x=\frac{1}{10},-\frac{1}{6}$
\qquad 16. Find all solutions of the following equation algebraically.
$3 \sqrt{x-4}-\sqrt{x-3}=0$
A) $x=-\frac{6}{7}$
B) $x=\frac{9}{7}$
C) $x=\frac{33}{8}$
D) $x=\frac{1}{8}$
E) $x=\frac{9}{2}$
15. Find all solutions of the following equation algebraically.
$(x+3)^{2 / 3}=25$
A) $x=22$
B) $x=\sqrt[3]{25}-3$
C) $x=\frac{125}{9}$
D) $x=122$
E) $x=\sqrt[3]{25}-9$
16. Find the x-intercepts of the graph of the equation $y=7 x+\sqrt{10-489 x}$
A) $(-10,0)$
B) $(11,0),\left(\frac{1}{50}, 0\right)$
C) $(11,0),\left(\frac{1}{48}, 0\right)$
D) $(10,0)$
E) $(-10,0),\left(\frac{1}{49}, 0\right)$
17. Set $y=0$ and solve the resulting equation.
$y=2 \sqrt{x}-\frac{15}{\sqrt{x}}-1$
A) $y=-3,9$
B) $y=2$
C) $y=-3,8$
D) $y=8$
E) $y=9$
18. Solve: $3(x-4)>3 x-9$
A) no solution
B) $x<-4$
C) $-3<x<4$
D) $x>3$
E) $x \leq-8$
19. Use absolute value notation to define the interval shown below.

A) $5-|x+4| \leq 0$
B) $|x-4|-5 \geq 0$
C) $|-4-x| \geq 5$
D) $|x+4|-5 \geq 0$
E) $-1 \leq x \leq 9$
20. Solve the inequality $36 x-x^{3}<0$ and write the solution set in interval notation.
A) $(-6,0) \cup(6, \infty)$
B) $(-6,6)$
C) $(-\infty, \infty)$
D) $(-\infty,-6) \cup(0,6)$
E) $(-\infty, 6)$
21. Hooke's Law states that the force F required to compress or stretch a spring (within its elastic limits) is proportional to the distance d that the spring is compressed or stretched from its original length. That is, $F=k d$ where k is the measure of the stiffness of the spring and is called the spring constant. The table below shows the elongation d in centimeters of a spring when a force of F kilograms is applied.

Force, \boldsymbol{F}	Elongation, \boldsymbol{d}
20	3.5
40	6.3
60	10.0
80	13.3
100	16.5

Sketch a scatter plot of the data.
A)

D)

B)

C)

E)

24. Hooke's Law states that the force F required to compress or stretch a spring (within its elastic limits) is proportional to the distance d that the spring is compressed or stretched from its original length. That is, $F=k d$ where k is the measure of the stiffness of the spring and is called the spring constant. The table below shows the elongation d in centimeters of a spring when a force of F kilograms is applied.

Force, \boldsymbol{F}	Elongation, \boldsymbol{d}
20	1.4
40	2.5
60	4.0
80	5.3
100	6.6

Find the equation of the line that seems to best fit the data. Use the model to estimate the elongation of the spring when a force of 70 kilograms is applied. Round your answer to one decimal place.
A) 2.3 centimeters
B) 4.6 centimeters
C) 6.9 centimeters
D) 9.2 centimeters
E) 3.5 centimeters
25. The average lengths L of cellular phone calls in minutes from 1999 to 2004 are shown in the table below.

Year	Average length, L (In minutes)
1999	2.38
2000	2.56
2001	2.74
2002	2.73
2003	2.87
2004	3.05

Use the regression feature of a graphing utility to find a linear model for the data. Let t represent the year, with $t=9$ corresponding to 1999. Use the model to predict the average lengths of cellular phone calls for the year 2012. Round your answer to two decimal places.
A) 5.00 minutes
B) 8.00 minutes
C) 4.00 minutes
D) 2.00 minutes
E) 3.00 minutes

Chapter 2

Answer Section

MULTIPLE CHOICE

1. ANS: C
2. ANS: B
3. ANS: B
4. ANS: A
5. ANS: E
6. ANS: A
7. ANS: E
8. ANS: E
9. ANS: B
10. ANS: C
11. ANS: E
12. ANS: D
13. ANS: C
14. ANS: A
15. ANS: C
16. ANS: C
17. ANS: D
18. ANS: A
19. ANS: E
20. ANS: A
21. ANS: B
22. ANS: A
23. ANS: C
24. ANS: B
25. ANS: C

PTS: 1

