Test Bank for Ecology Global Insights and Investigations 2nd Edition by Stiling ISBN 0073532509 9780073532509

Full chapter at:

Test Bank:

https://testbankpack.com/p/test-bank-for-ecology-global-insights-and-investigations-2nd-edition-by-stiling-isbn-0073532509-9780073532509/

Chapter 02 Population Genetics

Multiple Choice Questions

- 1. The first person to publish a theory that species change over time was
- A. Plato
- B. Lamarck
- C. Darwin
- D. Wallace
- E. Mendel

- 2. Charles Robert Darwin
- A. had a thorough understanding of genetics.
- B. sailed on a three year survey around the world.
- C. examined fossil beds in China.
- D. formulated a theory of natural selection.
- E. knew little of geological change.

Chapter 02 - Population Genetics

Learning Outcome: 02.01 Topic: Evolutionary Ecology

3. Malthus proposed that beca byA. food shortage, disease, warB. natural selection.C. survival of the fittest.D. evolution.E. Adaptation.	use the earth was not overrun by	humans they must be limited
Bloom's Level: 1. Remember Learning Outcome: 02.01 Topic: Evolutionary Ecology		
4. Over long periods of time, rA. mutation.B. adaptation.C. hybridization.D. dominance.E. true breeding lines.	natural selection leads to	
Bloom's Level: 1. Remember Learning Outcome: 02.01 Topic: Evolutionary Ecology		
5. In polluted areas ontree trunks. A. normal; more; lichen-cover B. melanic; less; lichen-cover C. melanic; less; dark-colored D. melanic; more; dark-colored E. all the above statements are	red 1 ed	conspicuous to birds
Bloom's Level: 2. Understand		

Learning Outcome: 02.01 Topic: Evolutionary Ecology

Chapter 02 - Population Genetics

- 6. An individual with two identical copies of a gene is said to be
- A. homozygous
- B. heterozygous
- C. dominant
- D. recessive
- E. segregated

Bloom's Level: 2. Understand Learning Outcome: 02.01 Topic: Evolutionary Ecology

- 7. What is NOT one of the nucleotide bases that make-up double-stranded DNA base pairs?
- A. Adenine
- B. Proline
- C. Thymine
- D. Guanine
- E. Cytosine

Bloom's Level: 1. Remember Learning Outcome: 02.02 Topic: Evolutionary Ecology

- 8. When a chromosome breaks in two places and the middle segment turns around and refuses with the same pieces, we call this a(n)
- A. Duplication
- B. Transversion
- C. Deletion
- D. Inversion
- E. Translocation

- 9. The Hardy-Weinberg equation states that $p^2 + 2pq + q^2 = 1$; the genotype frequency of heterozygotes is represented by
- A. p^2
- B. 2pq
- C. q^2 D. $p^2 + q^2$
- E. $p^2 + 2pq$

Bloom's Level: 2. Understand Learning Outcome: 02.03 Topic: Evolutionary Ecology

- 10. In a population of 100 four-o'clock flowers there are 40 red-flowered plants (C^RC^R), 38 pink-flowered plants (C^RC^W), and 22 white-flowered plants (C^WC^W). What is the frequency of the C^W allele in this population?
- **A.** 0.41 or 41%
- B. 0.6 or 60%
- C. 0.4 or 40%
- D. 0.09 or 9%
- E. 0.52 or 52%

Bloom's Level: 4. Analyze Learning Outcome: 02.03 *Topic: Evolutionary Ecology*

- 11. The percentage of individuals exhibiting a recessive disease in a population is 0.04, which is 4% based on a Hardy-Weinberg equilibrium. What percentage of individuals would be expected to be heterozygous carriers?
- A. 48
- B. 40
- C. 60 D. 24
- E. 4

Bloom's Level: 1. Remember Learning Outcome: 02.03 Topic: Evolutionary Ecology

- 12. In the Hardy-Weinberg equation, the letters p and q represent
- A. frequencies of alleles in a population.
- B. the number of individuals of different phenotypes in a population.
- C. the number of individuals of different genotypes in a population.
- D. the frequencies of individuals of different genotypes in a population.
- E. the square of individuals of different genotypes in a population.

Bloom's Level: 4. Analyze Learning Outcome: 02.03 Topic: Evolutionary Ecology

- 13. Below is a list of phenomenon that can occur in a population, which of these would violate the conditions for the Hardy-Weinberg equation?
- A. The population is large.
- B. Mating is nonrandom.
- C. Migration does not occur between different populations.
- D. Natural selection is not occurring.
- E. No new mutations arise.

- 14. If a population does not satisfy the Hardy-Weinberg equilibrium model, what may you assume about that population?
- A. Evolutionary mechanisms are effecting the population.
- B. Evolution is not occurring.
- C. No new mutations are occurring, only nonrandom mating.
- D. No migration is occurring.
- E. Evolutionary mechanisms are affecting the population and evolution is occurring.

Bloom's Level: 5. Evaluate Learning Outcome: 02.03 Topic: Evolutionary Ecology

- 15. If a population is not in Hardy-Weinberg equilibrium, this implies that
- A. the population is going extinct.
- B. the population is very ancient.
- C. one or more of the conditions required for equilibrium are being violated.
- D. the population is abnormal.
- E. one or more of the conditions required for equilibrium are being violated and the population is evolving.

Bloom's Level: 1. Remember Learning Outcome: 02.03 Topic: Evolutionary Ecology

- 16. A large effective population size is important so that a species
- A. can maintain an adequate range.
- B. does not change its trophic relationship.
- C. will not lose large amounts of genetic diversity in the near future.
- D. can minimize edge effects.
- E. can remain endemic to a small area.

Chapter 02 - Population Genetics

 17. In which plant mating system would genetic variability decline slowest? A. self fertilization. B. mating with brothers or sisters. C. mating with cousins. D. mating with second cousins. E. mating with unrelated individuals.
Bloom's Level: 1. Remember Learning Outcome: 02.04 Topic: Evolutionary Ecology
18. A recent genetic analysis has shown that at one point, as few asFlorida panthers were alive. A. 6 B. 20 C. 40 D. 80 E. 120
Bloom's Level: 5. Evaluate Learning Outcome: 02.04 Topic: Evolutionary Ecology
 19. The decline in the numbers of greater prairie chickens in Illinois in the late 20th century was a striking example of A. genetic drift. B. inbreeding. C. an extinction vortex. D. a and b E. b and c

- 20. Inbreeding and small population size of a threatened species can combine to form a downward spiral from which a species cannot easily recover. This is known as a(n)
- A. extinction vortex
- B. random change of allele frequencies.
- C. random mutation.
- D. accelerated evolution of new traits.
- E. Bottleneck effect.

Bloom's Level: 2. Understand Learning Outcome: 02.01 Topic: Evolutionary Ecology

- 21. Studies on the Glanville fritillary butterfly in Finland showed that just one generation of brother-sister mating causes
- A. increased number of eggs to be laid.
- B. increased hatching of eggs.
- C. reduced caterpillar survival.
- D. increased caterpillar parasitism.
- E. increased genetic variability.

Bloom's Level: 1. Remember Learning Outcome: 02.04 Topic: Evolutionary Ecology

- 22. Robert Lacey showed that in a population of 120 individuals, at least _____immigrant(s) every generation would be sufficient to counter genetic drift.
- A. 0.1
- B. 0.5
- **C.** 1
- <u>D.</u> 2
- **E.** 5

- 23. Elephant seals have a smaller effective population size than real population size due to the effects of
- A. inbreeding.
- B. genetic drift.
- C. a harem mating structure.
- D. an extinction vortex.
- E. All of these

Bloom's Level: 1. Remember Learning Outcome: 02.04 Topic: Evolutionary Ecology

True / False Questions

24. The best explanation for species distributions is that each region supports the fauna and flora best adapted to it.

FALSE

Bloom's Level: 1. Remember Learning Outcome: 02.01 Topic: Evolutionary Ecology

25. The inheritance of acquired characteristics suggests that a person who became strong through lifting weights would pass this trait on to his or her children.

TRUE

26. Alfred Russel Wallace was a co-discoverer of evolutionary theory.

TRUE

Bloom's Level: 2. Understand Learning Outcome: 02.01 Topic: Evolutionary Ecology

Matching Questions

- 27. Match the type of chromosome mutation with its effect.
- 1. Duplication

loss of part of the chromosome 2

2. Deletion

added amount of some genes 1

3. Inversion

chromosome breakage, re-positioning and re-fusing

the exchange of segments between two non-homologous

4. Translocation chromosomes 4

Bloom's Level: 1. Remember Learning Outcome: 02.02 Topic: Evolutionary Ecology

28. Match the scientist with their discovery

1. Darwin	natural selection	<u>1</u>
2. Mendel	theory of population growth	<u>3</u>
3. Malthus	transformism	<u>4</u>
4. Lamarck	inheritance	2

29. Match the continents with their fauna

1.	South America	sloths, anteaters, armadillos, monkeys with prehensile	
		tails	<u>1</u>
		zebra, giraffes, lions, baboons, okapi, aardvark	
2.	Australia		<u>3</u>
		bats, Tasmanian devil, wombat, duck-billed platypus,	
3.	Africa	echidna	2

Bloom's Level: 2. Understand Learning Outcome: 02.04 Topic: Evolutionary Ecology

30. Match the following names with their definitions.

1. Allee effect	mating between closely related individuals	<u>4</u>
2. Effective		
population size	random changes in allele frequencies over time	<u>3</u>
	the number of individuals that contribute genes to	
3. Genetic drift	future populations	<u>2</u>
	the likelihood that, in a small population, some	
4. Inbreeding	individuals will fail to mate successfully	1