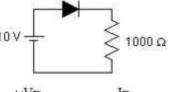
Test Bank for Electronic Devices and Circuit Theory 11th Edition by Boylestad Nashelsky ISBN 0132622262 9780132622264

Full link download


Solution Manual

https://testbankpack.com/p/solution-manual-for-electronic-devices-and-circuit-theory-11th-edition-by-boylestad-nashelsky-isbn-0132622262-9780132622264/

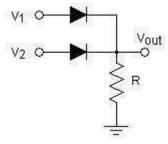
Test Bank

https://testbankpack.com/p/test-bank-for-electronic-devices-and-circuit-theory-11th-edition-by-boylestad-nashelsky-isbn-0132622262-9780132622264/

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) For this circuit, determine the load-line intersection with the two axis.

$^{A})^{V}D = 10 \text{ V and } ^{I}D = 1 \text{ mA}$	BVD = 1 V and ID = 1 mA
$C_{VD} = 10 \text{ V and } I_{D} = 10 \text{ mA}$	DND = 1 V and ID = 10 mA

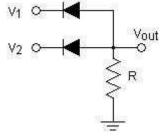
2) If one silicon diode and one germanium diode are connected in series, the voltage drop across


the combination of the two diodes will be equal to_____

A) the forward drop equal to that of the silicon diode

B) the forward drop equal to that of the difference of the voltage drops across the two diodes

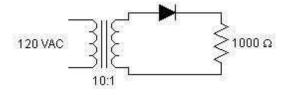
- C) the forward drop equal to that of the sum of the voltage drops across the two diodes
- D) the forward drop equal to that of the germanium diode


3) Name the logic gate that is formed by this circuit.

A) positive logic AND gateC) negative logic OR gate

B) negative logic AND gateD) positive logic OR gate

4) Name the logic gate that is formed by this circuit.

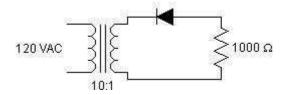

A) positive logic AND gateC) positive logic OR gate

B) negative logic OR gateD) negative logic AND gate

4)

1)

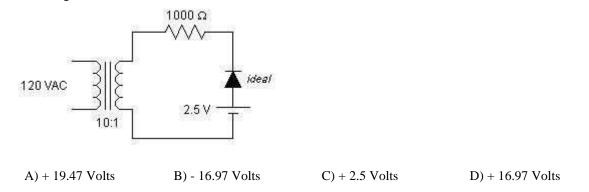
2)

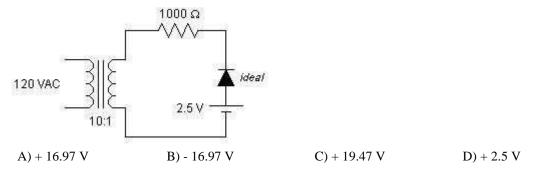

A) The diode will block all current and there will be no current flowing through the load.

B) positive half cycle of the input waveform

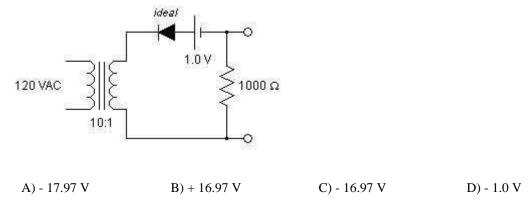
C) negative half cycle of the input waveform

D) entire input waveform


6) Calculate the peak current that will flow through this circuit, assuming an ideal diode.

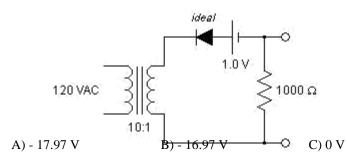

B) 16.97 mA during the negative half cycleD) 12 mA during the positive half cycle

A) 16.97 mA during the positive half cycleC) 12 mA during the negative half cycle

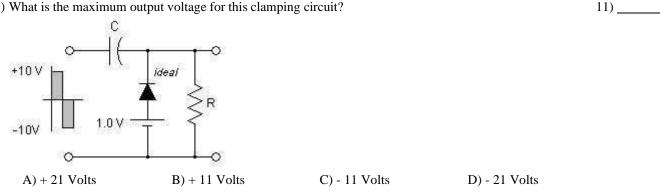

7) For this clipping circuit, what will be the maximum output voltage when the diode is conducting?

8) For this clipping circuit, what is the maximum output voltage when the diode is not conducting?

9) For this clipping circuit, what is the minimum output voltage when the diode is conducting?

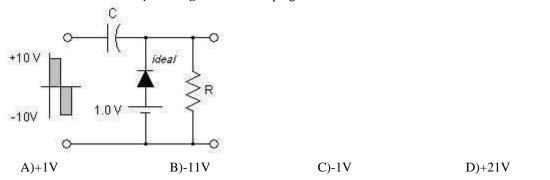


10) What is the minimum output voltage for this clipping circuit when the diode is not conducting?

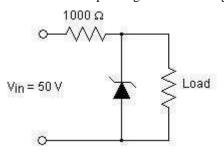

6)

7)

8)



11) What is the maximum output voltage for this clamping circuit?

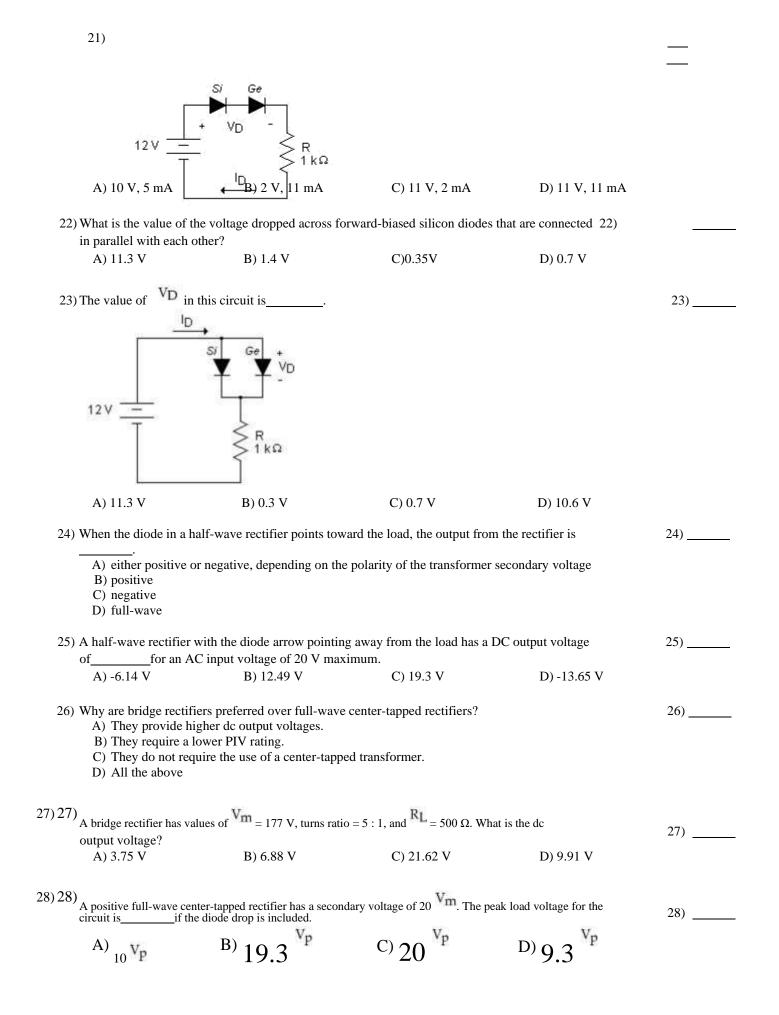


D) + 16.97 V

12) What is the minimum output voltage for this clamping circuit?

13) What are the minimum and maximum values of current flowing in the variable load resistor while the diode is operating in the Zener region? The zener voltage is 10 V.

- A) 8 mA and 35 mA
- B) 12.5 mA and 40 mA
- C) Need to know the load resistance to determine the values.
- D) 8 mA and 40 mA


14) The point of intersection between the characteristic curve of the diode and the resistors loadline

known is

12)

21) The resistor voltage and resistor current in this circuit are_____

29) A full-wave center-tapped re load resistance. What is the	ectifier has a secondary r dc load current for the ci	naximum voltage of 20 rcuit?	and a 4.7 $k\Omega$	29)
A) 2.61 mA	B) 629.8 mA	C) 1.26 mA	D) 1.4 mA	
30)Which of the following circu	uits is used to eliminate a	a portion of a signal?	Vm	30)
A) Voltage multiplier		B) Clipper		
C) Voltage divider		D) Damper		
31)The two general categories of	of clippore are			31)
A) half-wave and full-wa		B) series and parallel		
C) dc restorer and dc elin		D) regenerator and elin	minator	
,		<i>, C</i>		32)
32) The circuit shown here is a \mathbb{R}				
A) series clamper	B) shunt clamper	C) shunt clipper	D) series clipper	
22) (()				22)
33) A(n)is commonly A) eliminator	B) clipper	nt protection. C) clamper	D) multiplier	33)
A) eminiator	B) cupper	C) clamper	D) multiplier	
34) Which of the following circu the shape of the signal?	uits is used to change the	dc reference of a signal with	hout changing	34)
A) a clamper		B) a voltage multiplier	r	
C) a voltage divider		D) a clipper		
35) A clamper must have a(n) during diode conduction.	that is large end	ough to maintain the capacito	or's charge	35)
A) dc restorer		B) applied voltage		
C) diode voltage		D) RC time constant		
36) This circuit uses a 1μF				36)
	-0			
v ₁ <u>5v</u> <u>↑</u> ₹	100 kΩ V ₀			
0 4 4	-0			
A) negative clipperC) positive clipper		B) positive clamper D) negative clamper		

37) Assuming this circuit uses a silicon diode, the output voltage is clamped to_____.

1µF	
+10 V + + 1	
V _i	
5V - V Vo	
A) 4.3 \bar{V}^{20} V - + - \bar{D} B) 5.3 V C) 5.7 V D) 10.7 V	
38) The biased clamper has a dc reference voltage that is	38)
A) approximately equal to zero volts	50)
B) dependent on the peak-to-peak value of the ac input	
C) equal to the dc average of the circuits output signal	
D) approximately equal to the dc voltage that is applied to the diode	
39) Given that a 1000 Hz signal is applied to a clamper with a resistor value of 10 k Ω . What is the	39)
minimum value of capacitor needed to maintain safe clamping action?	
A) 0.25 pF B) 250 pF C) 5 pF D) 10 pF	
M 0.25 pr D 250 pr C 5 pr D 10 pr	
40) When the output signal to a clamper circuit is clamped to zero, the total swing of the output is	40)
equal to .	
A) the total diode voltage drop B) half the total voltage drop	
C) half the total input voltage swing D) the total input voltage swing	
41) The Zener diode is on if the applied voltage, V, is	41)
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	
42) V7	
When in its "on" state, the voltage across an ideal Zener diode, $\frac{VZ}{Z}$.	42)
A) increases sharply with a decrease in applied voltage	
B) gets smaller with an increase in applied voltage	
C) gets larger with an increase in applied voltage	
D) None of these	
43) The Zener diode must be operated such that	43)
A) Ver Les Ver De	·
the applied voltage is greater than $B \times =$	
C) PZ is less than the specified PZ D) All of these	
is less than the specified	
44) The most frequent application for a is in regulator networks and as a reference voltage.	44)
A) Zener diode B) half-wave rectifier	,
C) ideal diode D) full-wave rectifier	
45) A typical Zener diode regulator circuit uses a	45)
A) resistor in parallel with the load	
B) Zener diode in parallel with the series resistor	
C) dropping resistor in series with the load	
D) Zener diode in series with the load	
D ₁ Lener aroue in series with the load	
46) When the Zener regulator is used to stabilize the output voltage, given a fixed input voltage and	a variabl

e load resistanc e, a load resistanc e that is too small results in	46)		
	A) V_L being greater than C) V_L being equal to V_Z	B) VZ being equal to V_{in} D) VL being less than VZ	
47)	When a Zener diode circuit is used to stabilize the	being less than	47)
47)	a variable input voltage, the input voltage must be		+7)
		B) large enough to turn on the Zener diode	
	C) small enough to turn on the Zener diode	D) large enough to turn off the Zener diode	
48)	48) Two Zener diodes connectedcan be used as an ac regulator.		48)
	A) in series with the load	B) in series with the input voltage	
	C) in parallel with each other	D) back-to-back	
49)	A Zener diode is designed to operate in the	region of its characteristic curve.	49)
	A) reverse breakdown	B) reverse bias	
	C) zero voltage	D) forward operating	
50)	 When analyzing a diode circuit with both a dc and A) first determine the bulk resistance of the dio B) only the dc source is considered C) use superposition 		50)
	D) Thevenize the circuit		