Test Bank for Essential Calculus Early Transcendentals 2nd Edition by Stewart ISBN 1133112285 9781133112280

Full link download:

https://testbankpack.com/p/test-bank-for-essential-calculus-early-transcendentals-2nd-edition-by-stewart-isbn-1133112285-978113311228/

MULTIPLE CHOICE

1. Find an equation of the tangent line to the parabola $y = 5x^3$ at the point (-5, -145). a. y = 395x - 1730b. y = 395x + 1730c. y = 395x - 1730d. y = 375x - 1730e. y = 375x + 1730ANS: E Medium REF: 2.1.3 PTS: 1 DIF: MSC: Bimodal NOT: Section 2.1 2. Find an equation of the tangent line to the curve $y = x^3 - 2x$ at the point (2, 6). a. y = 6 + 2xb. y = x - 6c. y = 2 - 2xd. y = 2 + 2xe. None of these ANS: E PTS: 1 DIF: Medium REF: 2.1.4 MSC: Bimodal NOT: Section 2.1 3. Find the slope of the tangent line to the curve $y = 5x^2$ at the point (-4, 22). a. 40 b. c. d. e. ANS: C PTS: 1 DIF: Medium REF: 2.1.5 MSC: Bimodal NOT: Section 2.1

- 4. If an equation of the tangent line to the curve y = f(x) at the point where a = 3 is y = 4x 9, find f(3) and f'(3).
 - a. f(2) = 3f'(2) = 3
 - b. f(2) = 3f'(2) = 4

	c. $f(2) = -3$ f'(2) = 3					
	d. $f(2) = 9$ f'(2) = 4					
	e. None of these					
	ANS: B MSC: Bimodal	PTS: 1 NOT: Section 2.1	DIF:	Medium	REF:	2.1.17
5.	Use the definition of t	he derivative to find	f'(3), w	where $f(x) = x^3$	- 2 x .	
	a25 b. 25 c. 18 d. 27 e. does not exist					
	ANS: B MSC: Bimodal	PTS: 1 NOT: Section 2.1	DIF:	Medium	REF:	2.1.25
6			of a corta	in commodity	ic	

6. The cost (in dollars) of producing x units of a certain commodity is $C(x) = 4,571 + 17x + 0.02x^2$.

Find the instantaneous rate of change with respect to x when x = 103. (This is called the *marginal cost*.)

a. 21.12 b. 23.18 c. 19.06 d. 19.06 e. 4.12				
ANS: A MSC: Bimodal	PTS: 1 NOT: Section 2.1	DIF:	Medium	REF: 2.1.26

NUMERIC RESPONSE

1. Find the derivative of the function.

 $f(x) = 14 - 4x + 5x^2$

ANS:

PTS:	1	DIF:	Medium	REF:	2.1.41a
MSC:	Numerical Res	sponse		NOT:	Section 2.1

2. The cost (in dollars) of producing *x* units of a certain commodity is

 $C(x) = 4,336 + 12x + 0.07x^2.$

Find the average rate of change with respect to x when the production level is changed from x = 105 to x = 107.

ANS:

PTS:	1	DIF:	Medium	REF:	2.1.41b
MSC:	Numerical Response			NOT:	Section 2.1

3. If a cylindrical tank holds 10000 gallons of water, which can be drained from the bottom of the tank in an hour, then Torricelli's Law gives the volume of water remaining in the tank after *t* minutes as

$$V(t) = 10000 \left(1 - \frac{1}{60} t \right)^2, 0 \le t \le 60$$

Find the rate at which the water is flowing out of the tank (the instantaneous rate of change of V with respect to t) as a function of t.

ANS:
$$V'(t) = \frac{-1000}{3} + \frac{50t}{9}$$

PTS:	1	DIF:	Medium	REF:	2.1.42
MSC:	Numerical Response			NOT:	Section 2.1