Test Bank for Essential University Physics 3rd Edition by Wolfson ISBN 0321993721 9780321993724

Fulllink download

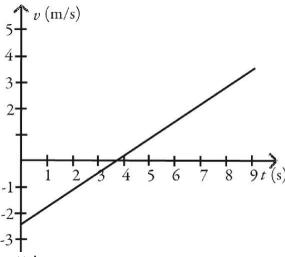
Test Bank:

 $\frac{https://testbankpack.com/p/test-bank-for-essential-university-physics-3rd-edition-by-wolfson-isbn-0321993721-9780321993724/$

Solution Manual:

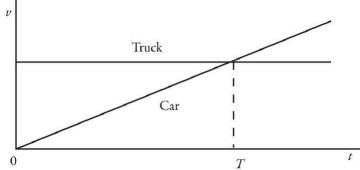
https://testbankpack.com/p/solution-manual-for-essential-university-physics-3rd-edition-by-wolfson-isbn-0321993721-9780321993724/

1) If the acceleration of an object i A) True	s negative, the object must be slowingdown. B) False	1) _
2) If the graph of the position as a following object cannot be accelerating.	function of time for an object is a horizontal line, that	2) _
A) True	B) False	
	rd a point, then it must be getting closer and closer to	3) _
that point. A) True	B) False	
	average velocity of an object is always equal to its	4) _
instantaneous velocity? A) only when the acceleration B) always	is changing at a constant rate	
C) only when the velocity is c D) only when the acceleration		
E) never	15 Constant	
5) Suppose that an object is moving following is an accurate statement	g with constant nonzero acceleration. Which of the ent concerning its motion?	5) _
_	function of time is a horizontalline.	
C) A graph of its position as aD) In equal times its velocity	function of time has a constant slope.	
E) In equal times its speed cha		
	he west (the -x direction) begins to slow down as it	
approaches a traffic light. Which is correct?	n statement concerning its acceleration in the x direction	
A) Both its acceleration and it	s velocity are positive.	


B) Its acceleration is negative but its velocity is positive.

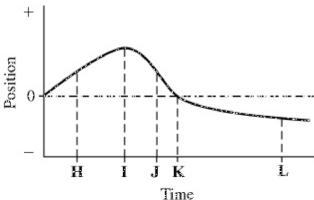
leration is	positiv	e but it	s velo	city	is negative.
	_			-	

6) _____


D) Both its acceleration and its velocity are negative.

7) The motion of a particle is described in the velocity versus time graph shown in the figure. We can say that its speed

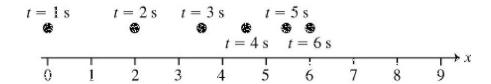
- A) increases.
- C) decreases and then increases.
- B) decreases.
- D) increases and then decreases.
- 8) The motions of a car and a truck along a straight road are represented by the velocity-time graphs in the figure. The two vehicles are initially alongside each other at time t = 0. At time T, what is true about these two vehicles since time t = 0?



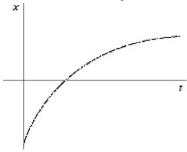
- A) The car will be traveling faster than the truck.
- B) The truck will have traveled further than the car.
- $\mbox{\ensuremath{\text{C}}}\mbox{\ensuremath{\text{C}}}$ The truck and the car will have traveled the same distance.
- D) The car will have traveled further than the truck.

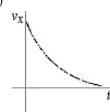
SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

9) The graph in the figure shows the position of an object as a function of time. The letters H-L represent particular moments of time. At which moments shown 9) _____

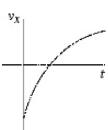

- (H, I, etc.) is the speed of the object
- (a) the greatest?
- (b) the smallest?

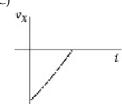
MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

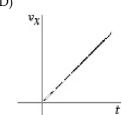

10) The figure shows the position of an object (moving along a straight line) as a function of time. Assume two significant figures in each number. Which of the following statements about this object is true over the interval shown?



- A) The object is accelerating to the left.
- B) The object is accelerating to the right.
- C) The average speed of the object is $1.0\ m/s$.
- D) The acceleration of the object is in the same direction as its velocity.
- 11) The figure shows the graph of the position *x* as a function of time for an object moving in the straight line (the *x*-axis). Which of the following graphs best describes the velocity along the *x*-axis as a function of time for this object?

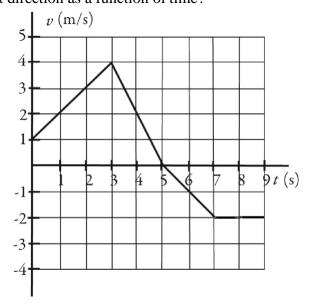


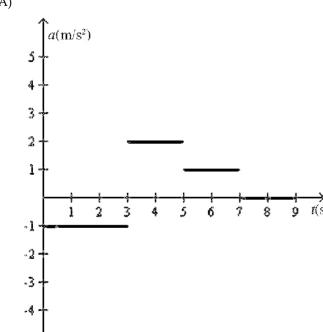


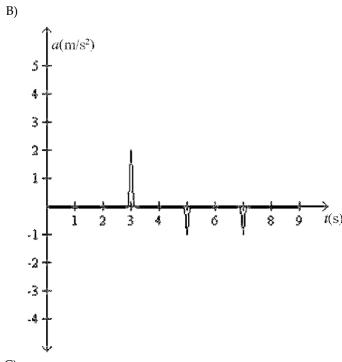

B)

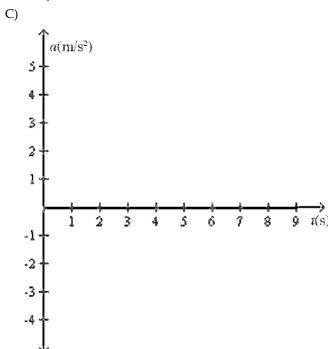
C)

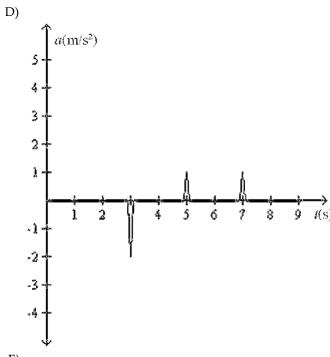
D)

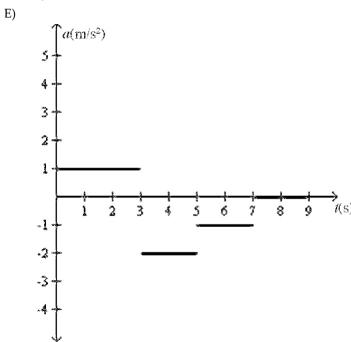

E)

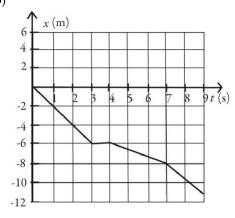

- 12) An object is moving with constant non-zero acceleration along the +x-axis. A graph of the velocity in the x direction as a function of time for this object is A) a straight line making an angle with the time axis.
- 12) _


- B) a vertical straight line.
- C) a parabolic curve.
- D) a horizontal straight line.

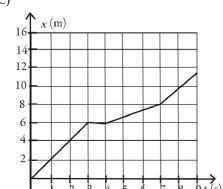

13) An object is moving in a straight line along the x-axis. A plot of its velocity in the x direction as a function of time is shown in the figure. Which graph represents its acceleration in the x direction as a function of time?

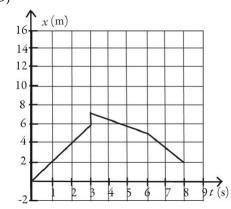


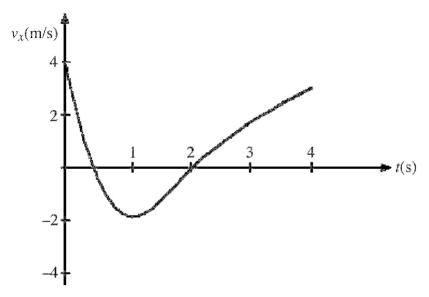

A)



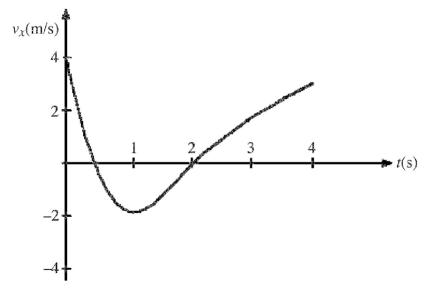
14) An object starts its motion with a constant velocity of 2.0 m/s toward the east. After 3.0 s, the object stops for 1.0 s. The object then moves toward the west a distance of 2.0 m in 3.0 s. The object continues traveling in the same direction, but increases its speed by 1.0 m/s for the next 2.0 s. Which graph below could represent the motion of this object?


A)


B


C)

D)



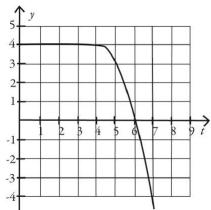
15) The figure shows the velocity of a particle as it travels along the *x*-axis. What is the direction of the acceleration at t = 0.5 s?

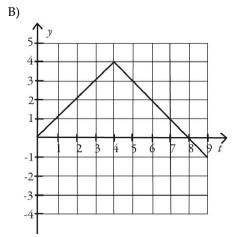
- A) in the -x direction
- B) in the +x direction
- C) The acceleration is zero.
- 16) The figure represents the velocity of a particle as it travels along the *x*-axis. At what value (or values) of *t* is the instantaneous acceleration equal to zero?

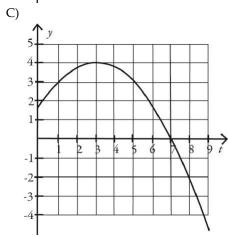
- A) t = 0.5 s and t = 2 s
- B) t = 0

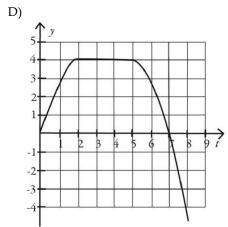
C) t = 1 s

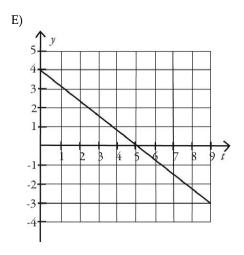
- 17) A ball is thrown directly upward and experiences no air resistance. Which one of the following statements about its motion is correct?
- 17) _____
- A) The acceleration of the ball is downward while it is traveling up and downward while it is traveling down but is zero at the highest point when the ball stops.
- B) The acceleration of the ball is upward while it is traveling up and downward while it is traveling down.
- C) The acceleration of the ball is downward while it is traveling up and upward while it is traveling down.
- D) The acceleration is downward during the entire time the ball is in the air.
- 18) Two objects are thrown from the top of a tall building and experience no appreciable air resistance. One is thrown up, and the other is thrown down, both with the same initial speed. What are their speeds when they hit the street?

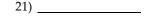

18) _____


- A) The one thrown up is traveling faster.
- B) They are traveling at the same speed.
- C) The one thrown down is traveling faster.
- 19) Two objects are dropped from a bridge, an interval of 1.0 s apart, and experienceno appreciable air resistance. As time progresses, the DIFFERENCE in their speeds


19) _____

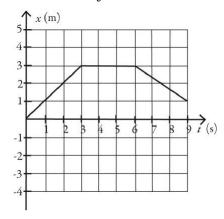

- A) increases.
- B) remains constant.
- C) decreases.
- D) decreases at first, but then stays constant.
- E) increases at first, but then stays constant.
- 20) Which one of the following graphs could possibly represent the vertical position asa function of time for an object in free fall?


A)



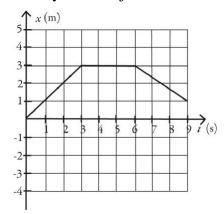
SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

21) A cat runs along a straight line (the *x*-axis) from point *A* to point *B* to point *C*, as shown in the figure. The distance between points *A* and *C* is 5.00 m, the distance between points *B* and *C* is 10.0 m, and the positive direction of the *x*-axis points to the right. The time to run from *A* to *B* is 20.0 s, and the time from *B* to *C* is 8.00 s. As the cat runs along the *x*-axis between points *A* and *C*


- (a) what is the magnitude of its average velocity?
- (b) what is its average speed?

22) The figure shows the position of an object as a function of time. During the time interval from time t = 0.0 s and time t = 9.0 s

- (a) what is the length of the path the object followed?
- (b) what is the displacement of the object?


23) As part of an exercise program, a woman walks south at a speed of 2.00 m/s for 60.0 minutes. She then turns around and walks north a distance 3000 m in 25.0 minutes

23) _____

- (a) What is the woman's average velocity during her entire motion?
 - A) 0.824 m/s south
 - B) 1.93 m/s south
 - C) 2.00 m/s south
 - D) 1.79 m/s south
 - E) 800 m/s south
- (b) What is the woman's average speed during her entire motion?
 - A) 0.824 m/s
 - B) 1.93 m/s
 - C) 2.00 m/s
 - D) 1.79 m/s
 - E) 800 m/s
- 24) The figure shows the position of an object as a function of time, with all numbers accurate to two significant figures. Between time t = 0.0 s and time t = 9.0 s

- (a) what is the average speed of the object?
- (b) what is the average velocity of the object?

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

- 25) If the fastest you can safely drive is 65 mi/h, what is the longest time you can stop for dinner if you must travel 541 mi in 9.6 h total?
- 25) _____

A) 1.0 h

B) 1.3 h

C) 1.4 h

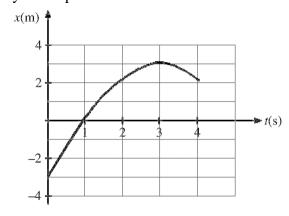
D) You can't stop at all.

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

- 26) Arthur and Betty start walking toward each other when they are 100 m apart. Arthur has a speed of 3.0 m/s and Betty has a speed of 2.0 m/s. Their dog, Spot, starts by Arthur's side at the same time and runs back and forth between them at 5.0 m/s. By the time Arthur and Betty meet, what distance has Spot run?
- 26) _____

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

27) A racing car accelerates uniformly from rest along a straight track. This track has markers spaced at equal distances along it from the start, as shown in the figure. The car reaches a speed of 140 km/h as it passes marker 2. Where on the track was the car when it was traveling at 70 km/h?



- A) Between marker 1 and marker 2
- B) Before marker 1
- C) At marker 1

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

28) The figure represents the position of a particle as it travels along the *x*-axis. Between t = 2 s and t = 4 s, what is (a) the average speed of the particle and (b) the average velocity of the particle?

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

- 29) The position of an object as a function of time is given by $x = bt^2 ct$, where b = 2.0 m/s and c = 6.7 m/s, and x and t are in SI units. What is the instantaneous velocity of the object when t = 2.2?
- 29) _____

- A) 2.1 m/s
- B) 2.7 m/s
- C) 1.7 m/s
- D) $2.3 \,\text{m/s}$

			2 1 2		. 2	30)	
30	30) The position of an object is given by $x = at3 - bt2 + ct$, where $a = 4.1 \text{ m/s}^3$, $b = 2.2 \text{ m/s}^2$, $c = 1.7 \text{ m/s}$, and x and t are in SI units. What is the instantaneous						
				s. What is the instar	itaneous		
		e object when $t = 0$. B) 4.6 m/s ²		12/-2	D) 2.0 /-2		
	A) 13 m/s^2	B) 4.6 m/s ²	C)	-13 m/s ²	D) 2.9m/s^2		
31) The velocity of an	object as a function	n of time is giv	ven by $v(t) = 2.00 \text{ m}$	/s + (3.00 m/s) t -	31)	
	$(1.0 \text{ m/s}^2) t^2$. Dete	ermine the instantar	neous accelera	tion of the object at	time $t = 5.00 \text{ s}$.		
	A) -7.00m/s^2						
	B) -2.00 m/s^2						
	C) -8.00m/s^2						
	D) 0.00m/s^2						
	E) 2.00 m/s^2						
SHORT	ANSWER. Write the v	vord or phrase that be	st completes ea	ch statement or answe	ers the question.		
32	The position of an	object as a function	n of time is giv	ven by	32)		
	-	ct - d, where $a = 3$.	_	•	and		
	d = 7.0 m.	,	,	,			
	(a) Find the instan	ntaneous acceleration	n at $t = 2.4$ s.				
	(b) Find the avera	ge acceleration over	r the first 2.4 s	seconds.			
MULTIP	LE CHOICE. Choose	the one alternative tha	at best complete	s the statement or ans	swers the question.		
33	3) The velocity of an	object is given by	the expression	v(t) = 3.00 m/s + 0.00 m/s	(4 00 m/s ³) _t 2	33)	
	=	ids. Determine the p	_				
) m at time $t = 0.000$		J			
	A) $1.00 \text{ m} + (3.0 \text{ m})$	00 m/s t + (1.33 m/s)	$(3)_{t}$ 3				
	B) $(4.00 \text{ m/s})t +$	- 1.00 m					
	C) $(3.00 \text{ m/s})t +$	$(1.33 \text{ m/s}3)t^3$					
	D) $(4.00 \text{ m/s})t$						
	E) 1.33 m						
34	The acceleration of	of an object as a fun	ction of time i	s given by $a(t) = (3)$	00 m/s^3) t where	34)	
		the object is at rest		• , ,	* *	/	
	object at time $t = 0$	=			•		
	A) 54.0	B) 0.00	C) 18.0	D) 108 m/s	E) 15.0		
	m/s	m/s	m/s		m/s		
35	The acceleration of	of an object as a fun	ction of time i	s given by $a(t) = (3)$.00 m/s ³) <i>t</i> .where	35)	
30		the object has a vel		•		,	
		ne object between ti	•				
	A) 27.0 m	B) 33.0 m	C)	36.0 m	D) 30.0 m		

36) A car acceler	rates from 10.0 m/s to 3	30.0 m/s at a rate	of 3.00 m/s^2 . How	far does the car	36)
travel while a					,
A) 399 m	B) 133 m	C) 2	226 m	D) 80.0 m	
37) A dragster sta	arts from rest and trave	els 1/4 mi in 6.70	s with constant acc	celeration. What	37)
is its velocity	when it crosses the fir	nish line?			
A) 188 mi/	h B) 296 mi	/h C) 2	269 mi/h	D) 135 mi/h	
38) A airplane th	at is flying level needs	to accelerate from	n a speed of 2.00 ×	10 ² m/s to a	38)
speed of 2.40	0×10^2 m/s while it flie	es a distance of 1	.20 km. What mus	t be the	
acceleration	of the plane?				
A) 4.44 m/s	$_{\rm S}2$				
B) 1.34 m/s	$_{\rm S}2$				
C) 2.45 m/	$_{\rm S}2$				
D) 5.78 m/s	$_{\rm S}2$				
E) 7.33 m/s	$_{\rm S}2$				
39) A runner mai	intains constant acceler	ration after startir	ng from rest as she	runs a distance	39)
of 60.0 m. Th	ne runner's speed at the	e end of the 60.0 i	m is 9.00 m/s. How	much time did	
it take the rur	nner to complete the 60				
A) 13.3 s	B) 15.0 s	C) 6.67 s	D) 9.80 s	E) 10.2 s	
10) A 1.		0.00		*.1	40)
•	rts from rest at time t =				40)
	The object travels 12. on of the object?	0 in from time i	= 1.00 s to time <i>t</i> =	= 2.00 s. what is	
A) 4.00 m/s	=				
B) 24.0 m/s					
C) -12.0 m					
D) -4.00 m					
E) 8.00 m/s	_S 2				
41) A car starts fr	rom rest and accelerate	es with a constant	acceleration of 1.0	$00 \text{ m/s}^2 \text{ for } 3.00$	41)
s. The car con	ntinues for 5.00 s at co	nstant velocity. F	How far has the car	traveled from	
its starting po	oint?				
A) 4.50 m	B) 9.00 m	C) 24.0 m	D) 15.0 m	E) 19.5 m	
42) A hall rolls a	cross a floor with an a	cceleration of 0.1	00 m/s2 in a direc	tion opposite to	42)
	The ball has a velocity				± <i>L</i>)
•	vas the initial speed of			Jan der obbuile	
A) 4.15	B) 5.85	C) 5.21	D) 3.85	E) 4.60	
m/s	m/s	m/s	m/s	m/s	

43)	the driver suddenl to apply the brakes after the brakes are A) 4.17 m/s ² B) 2.08 m/s ² C) 2.89 m/s ² D) 3.89 m/s ²	y realizes that sh s, what must be t	e must stop th he magnitude	vard the sign at 40.0 e car. If it takes 0.2 of the constant acceme to rest at the sto	00 s for the driver eleration of the car	43)
44)	If the police car de constant acceleration	elays for 1.00 s being of the police	efore starting,	when it passes a sta what must be the n e speeding car after	nagnitude of the	44)
	travels a distance of A) 1.45 m/s ²	of 300 m?				
	B) 3.00 m/s ²					
	C) 6.00 m/s ²					
	D) 7.41 m/s ²					
	E) 3.70 m/s ²					
SHORT A	NSWER. Write the w	vord or phrase that	best completes	each statement or ans	wers the question.	
45)	A soccer ball is re	leased from rest a	at the top of a	grassy incline. Afte	er 8.6 45)	
,	seconds, the ball tr	ravels 87 meters a	-	this, the ball reache	·	
	bottom of the incli		hall's accelerat	ion, assume it to be	constant?	
	(b) How long was	•	ban's accorda	ion, assume it to be	Constant:	
мі іі тірі	F CHOICE Choose t	he one alternative	that hest comple	etes the statement or a	inswers the auestion	
			_		_	
46)	1 0 1	1		ipward at 15 m/s. It		46)
	when it was releas	•		above the ground w	as the package	
	A) 810 m	B) 1500 r		C) 1000 m	D) 1200 m	
	, 010 111	-, 10001	-	-, 1000	-) 1 2 00 III	
47)	A ball is projected	upward at time	t = 0.0 s, from	a point on a roof 9	0 m above the	47)
	•		_	ound. The initial venen the ball strikes	•	
	A) 9.0 s	B) 8.7 s	C) 10 s	D) 9.7 s	E) 9.4 s	

48)	At the same mom	ent from the top of	of a building 3.0 ×	10 ² m tall, one roc	k is dropped	48)	
				f 10 m/s. Both of th			
	negligible air resis	stance. How much	n EARLIER does th	ne thrown rock stril	ke the ground?		
	A) 0.86 s		B) 0.	95 s			
	C) 0.67 s		D) Tl	ney land at exactly	the sametime.		
49)	Two identical obj	ects A and B fall t	From rest from diffe	erent heights to the	ground and	49)	
	= =		=	ICE as long as obj	ect A to reach		
	•		heights from which	_			
	A) $hA/hB = 1/8$		B) h_A	$A/hB = 1/\sqrt{2}$			
	C) $hA/hB = 1/4$		D) h_{F}	A/hB = 1/2			
SHORT A	NSWER. Write the v	word or phrase that	best completes each	statement or answers	the question.		
50)			air with a speed of		50)		-
		=		maximum height.			
	` '	•	eached by the ball.				
			e ball pass a point 2	5.0 m above the po	int of		
	contact between t						
	(d) Explain why t	nere are two ansv	vers to part (c).				
MULTIPL	E CHOICE. Choose	the one alternative	that best completes t	he statement or answ	ers the question.		
51)	A rock is dropped	from the top of a	vertical cliff and t	akes 3.00 s to reacl	n the ground	51)	
,		-		n the cliff, and it tal	•	,	
				e it is released. Wi			
		_	n, assuming no air				
	A) 4.76 m/s upv	ward					
	B) 12.3 m/s upv	vard					
	C) 12.3 m/s dov						
	D) 5.51 m/s dov						
	E) 4.76 m/s dov	vnward					
52)	To determine the	height of a flagpo	le, Abby throws a	ball straight up and	times it. She	52)	
	sees that the ball g	goes by the top of	the pole after 0.50	s and then reaches	s the top ofthe	·	
	pole again after a	total elapsed time	e of 4.1 s. How hig	h is the pole above	the point		
	where the ball wa	s launched? (You	can ignore air resi	stance.)			
	A) 10 m	B) 26 m	C) 13 m	D) 16 m	E) 18 m		
53)	A test rocket is fin	ed straight up fro	m rest with a net a	ecceleration of 20.0	m/s ² . After	53)	
- /				nues to coast upwar		,	
				does the rocket read			
	A) 487 m	B) 408 m	C) 160 m	D) 327 m	E) 320 m		

54	4) A toy rocket is laur	nched vertically f	rom ground level	(y = 0.00 m), at tin	ne $t = 0.00 \text{ s}$.	54)
	The rocket engine	provides constant	unward accelerat	ion during the burn	nhase At the	,
	instant of engine by	•	-	-	-	
	•			-		
	30 m/s. The rocket		-		•	
	falls back to the gro	ound with negligi	ble air resistance.	The speed of the r	ocket upon	
	impact on the grou	nd is closest to				
	A) 48 m/s	B) 44 m/s	C) 39 m/s	D) 59 m/s	E) 54 m/s	
5	5) A ball is projected	upward at time t	= 0.00 s, from a p	oint on a roof 70 n	n above the	55)
	ground and experie	nces negligible a	r resistance. The b	oall rises, then falls	and strikes the	
	ground. The initial	0 0				
	_	•		-	-	
	the upward direction	on. The velocity of	or the ball when it	is 39 m above the	ground is	
	closest to					
	A) -23 m/s .	B) -45 m/s .	C) -30 m/s.	D) -38 m/s .	E) -15 m/s .	
50	6) On the earth, when	an astronaut thro	ows a 0.250-kg sto	one vertically upwa	rd, it returns to	56)
	his hand a time T la	ater. On planet X	he finds that, und	ler the same circum	istances, the	
	stone returns to his	•				
	velocity and it feels					
		s negligible all le	sistance. The acce.	iciation due to grav	ity on planetz	
	(in terms of g) is					
	A) $g/2$.	B) $g\sqrt{2}$.	C) 2g.	D) $g/\sqrt{2}$.	E) $g/4$.	
5	7) Two identical stone				•	57)
	A is dropped from	height h , and sto	ne <i>B</i> is dropped from	om height $2h$. If sto	one A takes	
	time t to reach the	ground, stone B v	vill take time			
	A) 4 <i>t</i> .	B) 2 <i>t</i> .	C) $t/2$.	D) $t\sqrt{2}$.	E) $t/\sqrt{2}$.	
	,	,	•	•	, ,	
SHORT	ANSWER. Write the w	ord or phrase that b	est completes each	statement or answers	the question.	
		_	_		_	
58	8) A rock is thrown di					
	66.2 meters tall. Th	ne rock misses the	e building on its w	ay down, and is ob	served	
	to strike the ground	d 4.00 seconds af	ter being thrown.	Neglect any effects	s of air	
	resistance. With wl	hat speed was the	rock thrown?			
		1				
59	9) A rocket takes off	vertically from th	e launchpad with	no initial velocity b	out a 59)	
	constant upward ac	<u> </u>	-	•		
	-				•	
	fail completely so t	=		=	-	
	(a) What is the max					
	(b) How fast is the	rocket moving at	the instant before	it crashes onto the		
	launchpad?					
	(c) How long after	engine failure do	es it take for the ro	ocket to crash onto	the	
	launchpad?					

Answer Key

Testname: UNTITLED2

```
1) B
 2) A
 3) B
 4) C
 5) D
 6) C
 7) C
 8) B
 9) (a) J (b) I
10) A
11) A
12) C
13) D
14) A
15) A
16) C
17) D
18) B
19) B
20) C
21) (a) 0.179 m/s (b) 0.893 m/s
22) (a) 5.0 m (b) 1.0 m
23) (a) A (b) C
24) (a) 0.56 m/s (b) 0.11 m/s
25) B
26) 100 m
27) B
28) (a) 1.0 m/s (b) 0.00 m/s
29) A
30) A
31) A
32) (a) 44 \text{ m/s}^2
    (b) 18 \text{ m/s}^2
33) A
34) A
35) A
36) B
37) C
38) E
39) C
40) E
41) E
42) A
43) A
44) D
45) a) 2.4 \text{ m/s}^2
                   b) 110 m
```

46) C

Answer Key

59) (a) 328 m

(b) 80.2 m/s

(c) 11.7 s

Testname: UNTITLED2

```
47) E
48) B
49) C
50) (a) 3.06 s (b) 45.9 m (c) 0.995 s and 5.13
        (d) One value is for the ball traveling upward; one value is for the ball traveling downward.
51) C
52) A
53) A
54) A
55) D
56) A
57) D
58) 3.05 m/s
```