Finite Mathematics and Calculus with Applications 10th Edition

Test Bank for Finite Mathematics and Calculus with Applications 10th Edition by Lial Greenwell and Ritchey ISBN 0321979400 9780321979407

Full link download:

Test Bank:

https://testbankpack.com/p/test-bank-for-finite-mathematics-andcalculus-with-applications-10th-edition-by-lial-greenwell-andritchey-isbn-0321979400-9780321979407/

Solution Manual:

https://testbankpack.com/p/solution-manual-for-finite-mathematicsand-calculus-with-applications-10th-edition-by-lial-greenwell-andritchey-isbn-0321979400-9780321979407/ Name_____

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Find the slope of the line passing through the given pair of points.

1) (6, 2	e) and (9, 4)				1)
	<u>2</u>	3	2	2	
А	.) - 3	B) $\frac{1}{2}$	$C)\frac{1}{3}$	D) $\frac{1}{5}$	
2) (-8,	8) and (-4, -7) _ <u>4</u>				2)
		15	1	15	
А	.) - 15	B) - 4	C) - ₁₂	D) 4	
					2)
3) (-9,	-4) and (-9, -9)	13		5	3)
А) 0	B) <u>18</u>	C) Not defined	D) - <u>18</u>	
4) (-5,	-8) and (8, -8) 16			16	4)
) - 3	B) Not defined	C) 0	D) - 13	
	, <u>3</u>	,	,	· 13	
5) (19.	-4) and (-3, 14) 11				5)
0) (1))	<u>11</u>	5	9	9	-,
А) - 9	B) ₈	C) - ₁₁	D) ₁₁	
Find the slope	e of the line. 5				
6) y =					6)
А) 0	B) 1	C) $\frac{5}{4}$	D) $\frac{4}{5}$	
			-	5	
7) y =		B) 0	()		7)
А) 1	B) 0	C) -8	D) 8	
8) 2× +	4y = 0				8)
0, 28 1	., 0	1		1	·)
А) 0	B) - <u>-</u> 2	C) 2	D) $\frac{1}{2}$	
9) 4x -	5y = -5	4	4	5	9)

A) 1	B) $\frac{1}{5}$	C) $-\frac{1}{5}$	D) - 4	
10) The x-axis A) -1	B) 1	C) Not defined	D) 0	10)

11) x = 10 A) 0	B) Not defined	C) 10	D) 1	11)
12) A line parallel to $-2y + 5x$ 7	x = 7 2	5	5	12)
A) $\frac{1}{5}$	B) $\frac{1}{5}$	C) $\overline{2}$	D) - <u>2</u>	
13) A line parallel to $8x = 7y$	+ 13 7	8	13	13)
A) $\overline{7}$	B) $\frac{1}{8}$	C) - 7	D) $\frac{1}{8}$	
14) A line perpendicular to 9. 4	x + 4y = 50	9	4	14)
A) - 9	B) 9	C) $\frac{1}{4}$	D) $\frac{1}{9}$	
15) A line perpendicular to 6	$x = 4y + \frac{8}{2}$	2	3	15)
A) 2	B) - 3	C) $\frac{1}{3}$	D) - $\frac{1}{2}$	
Find an equation in slope-intercep 16) Through (0, 3), m = $\frac{2}{3}$	t form (where possible)	for the line.		16)
16) Through (0, 3), m = $\frac{2}{3}$	-	for the line. C) $y = -\frac{2}{x} - 3$	D) $y = \frac{2}{x} - 3$	16)
16) Through (0, 3), m = $\frac{2}{3}$	-		D) $y = \frac{2}{3}x - 3$	16)
16) Through (0, 3), m = $\frac{2}{3}$ A) y = $-\frac{2}{3}x + 3$	B) $y = \frac{2}{x+3}$	C) $y = -\frac{2}{x} - 3$		16) 17)
16) Through (0, 3), m = $\frac{2}{3}$ A) y = $-\frac{2}{x} + 3$ 3 17) Through (13, 5), m = -2	B) $y = \frac{2}{3}x + 3$	C) $y = -\frac{2}{x} - 3$	3	
16) Through (0, 3), m = $\frac{2}{3}$ A) y = $-\frac{2}{x} + 3$ 3 17) Through (13, 5), m = -2 A) y = $-2x + 5$ 18) Through (5, 0), m = -1	B) $y = \frac{2}{x+3}$ 3 B) $y = -2x + 31$	C) $y = -\frac{2}{x} - 3$ 3 C) $y = 2x + 23$	3 D) y = 2x - 31	17)
16) Through (0, 3), m = $\frac{2}{3}$ A) y = $-\frac{2}{x} + 3$ 3 17) Through (13, 5), m = -2 A) y = $-2x + 5$ 18) Through (5, 0), m = -1 A) y = $x - 5$ 19) Through (-5, 4), m = 3	B) $y = \frac{2}{x+3}$ 3 B) $y = -2x + 31$ B) $y = 5x$	C) $y = -\frac{2}{x} - 3$ 3 C) $y = 2x + 23$ C) $y = -x + 5$	3 D) y = 2x - 31 D) y = -5x	17) 18)

21) Through (7, -9), with undefined slope

A)
$$\frac{7}{9}x - 9y = 0$$

B) $\frac{7}{7}x + 7y = 0$
C) $x = 7$
D) $y = -9$

22) Through (5, 5), m =
$$-\frac{2}{7}$$

2 45	2 10	2 45	2 10
A) $y = \frac{1}{7}x - \frac{1}{7}$	B) y = $\frac{1}{7}x + \frac{1}{7}$	C) y = $-\frac{1}{7}x + \frac{1}{7}$	D) y = $-\frac{1}{7}x + \frac{1}{7}$

23) Through (0, -4), m = $\frac{7}{2}$				23)
A) $y = \frac{7}{x+4}$	B) $y = -\frac{7}{2}x - 4$	C) $y = -\frac{7}{2}x + 4$	D) $y = \frac{7}{2}x - 4$	
3	3	3	3	
24) Through (5, 5), m = $-\frac{5}{6}$				24)
A) $y = \frac{5}{x} + \frac{25}{x}$	B) $y = -\frac{5}{x} + \frac{25}{x}$	C) y = $-\frac{5}{2}x + \frac{55}{2}$	D) $y = \frac{5}{x} - \frac{55}{x}$	
6 6	6 6	6 6	6 6	
25) Through (-4, -1), m = -1.5 A) y = -1.5x + 5	B) y = 1.5x + 5	C) y = 1.5x - 7	D) y = -1.5x - 7	25)
26) Through (3, -8) and (1, -21))			26)
$\frac{13}{2}$ $\frac{98}{2}$	13 55 D	2 110	13 23	
A) $y = 2^{x} - 13$	B) $y = \frac{1}{2}x - \frac{1}{2}$	C) $y = \frac{13}{13}x - \frac{13}{13}$	D) $y = -\frac{1}{2}x + \frac{1}{2}$	
27) Through (-7, 4) and (0, -5) 9	9	11	11	27)
A) $y = \frac{1}{7}x - 5$	B) $y = -\frac{1}{7}x - 5$	C) $y = \frac{1}{5}x - 5$	D) y = $-\frac{1}{5}x - 5$	
28) Through (2, 0) and (-8, -3)	a ai			28)
A) $y = \frac{2}{5}x - \frac{31}{5}$	B) $y = -\frac{2}{5}x - \frac{31}{5}$	C) $y = \frac{3}{10}x - \frac{3}{5}$	D) $y = -\frac{3}{10}x - \frac{3}{5}$	
29) Through (-7, 3) and (6, -8)				29)
11 38	5 26	5 26	11 38	
A) $y = -\frac{1}{13}x - \frac{1}{13}x$	B) $y = -\frac{1}{7}x - \frac{1}{7}$	C) $y = \frac{1}{7}x - \frac{1}{7}$	D) $y = \frac{1}{13}x - \frac{1}{13}x$	
30) Through (5, -4) and (-3, 3)				30)
A) $y = -\frac{7}{8}x + \frac{3}{8}$	B) $y = \frac{3}{2}x - \frac{3}{2}$	C) $y = -\frac{3}{2}x - \frac{3}{2}$	D) $y = \frac{7}{8}x + \frac{3}{8}$	
31) Through (-1, -1.5) and (3, 3 A) y = 0.8x - 0.7 C) y = -1.25x - 2.75	3.5)	B) y = -0.8x - 2.3 D) y = 1.25x - 0.25		31)

32) Through (-5, 10) and (-5,	, -7)			32)
A) y = 10	B) $\frac{7}{10}x + 10y = 0$	C) $\frac{10}{7}$ x - 7y = 0	D) x = -5	

33) Through (-9, -1) and	(3, -1)			33)
A) x = -9	B) $\frac{1}{3}x - 9y = 0$	C) $3x + 3y = 0$	D) y = -1	
	5			

34) y-intercept -1, x-intercept 2

A)
$$y = 2x + 2$$
 B) $y = -\frac{1}{2}x - 1$ C) $y = -2x + 2$ D) $y = \frac{1}{2}x - 1$

1

35) Through (-9, -3), perpendicular to 7x + 8y = -87

A)
$$y = \frac{8}{7}x$$
 B) $y = \frac{7}{8}x - 51$ C) $y = \frac{8}{7}x + \frac{51}{7}$ D) $y = -\frac{8}{7}x - \frac{51}{7}$

36) Through (8, -10), parallel to -5x + 3y = -46

37) Through (4, 10), parallel to -4x + 3y = -13

35413414A) $y = \frac{4}{4}x - \frac{1}{2}$ B) $y = -\frac{4}{3}x - \frac{1}{3}$ C) $y = -\frac{4}{3}x - \frac{14}{3}$ D) $y = \frac{4}{3}x + \frac{14}{3}$

38) Through (5, 9), perpendicular to -9x - 4y = -9

A)
$$y = -\frac{4}{9}x + \frac{61}{9}$$
 B) $y = \frac{4}{9}x + \frac{61}{9}$ C) $y = \frac{9}{4}x + \frac{9}{4}$ D) $y = -\frac{5}{4}x - \frac{9}{4}$

39) Through (2, 1), perpendicular to -7x + 6y = -8

- A) $y = \frac{6}{7}x \frac{19}{7}$ B) $y = -\frac{6}{7}x + \frac{19}{7}$ C) $y = -\frac{7}{6}x + 19$ D) $y = -\frac{6}{7}x$
- 40) Through (6, 8), perpendicular to x = 7 A) y = -8 B) x = 7 C) y = 8

 41) The line with y-intercept -10 and perpendicular to x + 2y = 4 41)

 A) $y = \frac{1}{x} - 10$ B) y = 2x - 10 C) y = -2x - 10 D) $y = -\frac{1}{x} + 1$

 2
 2
 2

42) The line with x-interce	ept -8 and perpendicular	to $4x - y = -6$		42)
A) $y = \frac{1}{x} - 2$	B) $y = -4x - 32$	C) y = $-\frac{1}{x} - 8$	D) y = $-\frac{1}{x} - 2$	
4		4	4	

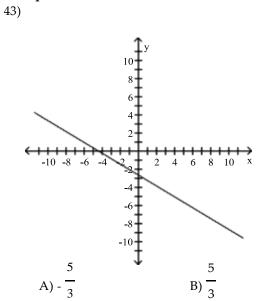
34) _____

35)

36)

37) ____

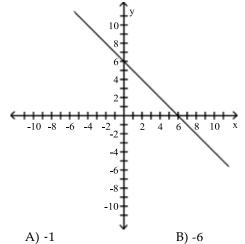
38)


39) _____

40) _____

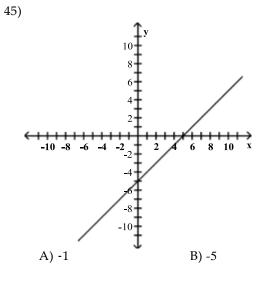
D) y = 7

1


Find the slope of the line.

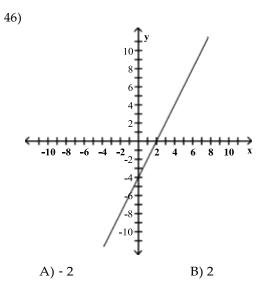
D) - $\frac{3}{5}$

44)

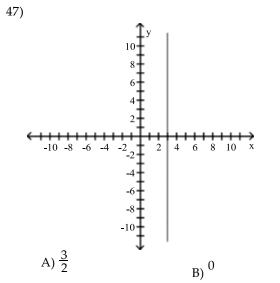


C) 6

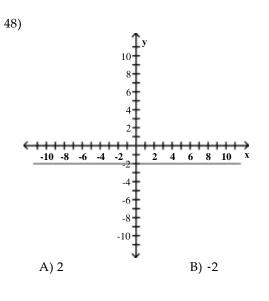
D) 1

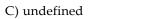


44) _____


D) 5

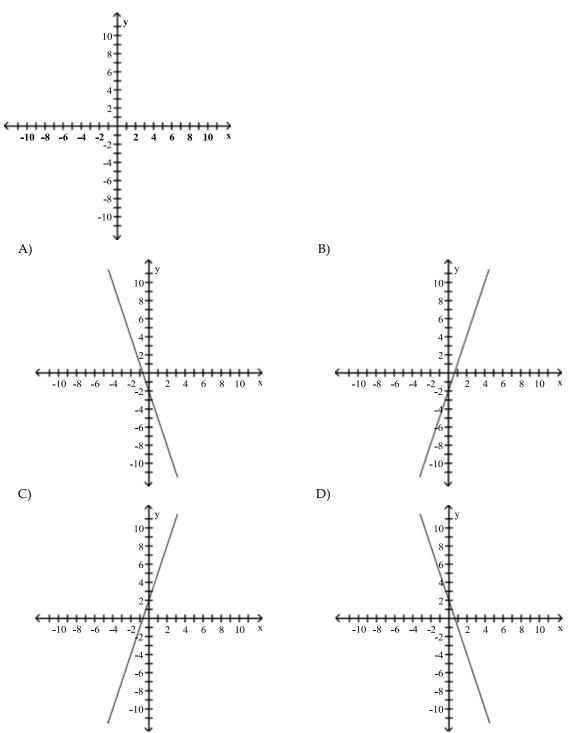
C) 1

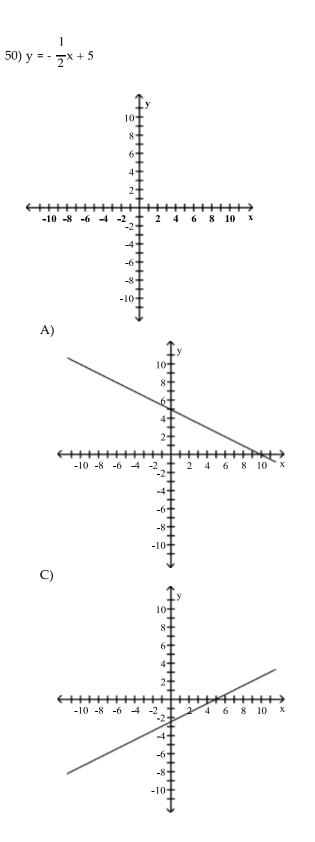


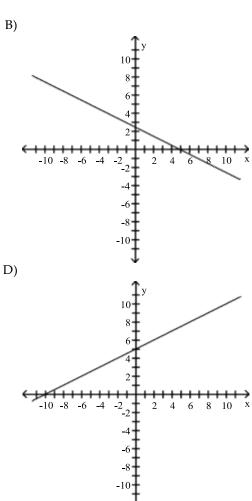

C) 3

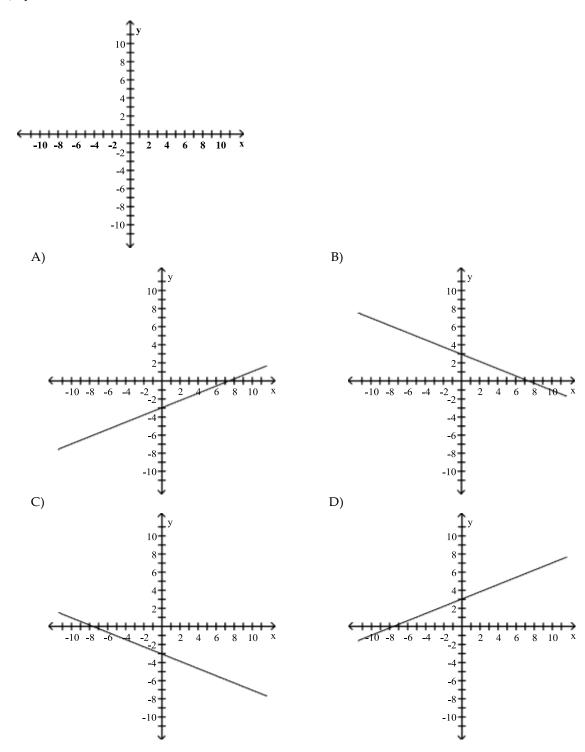
D) undefined

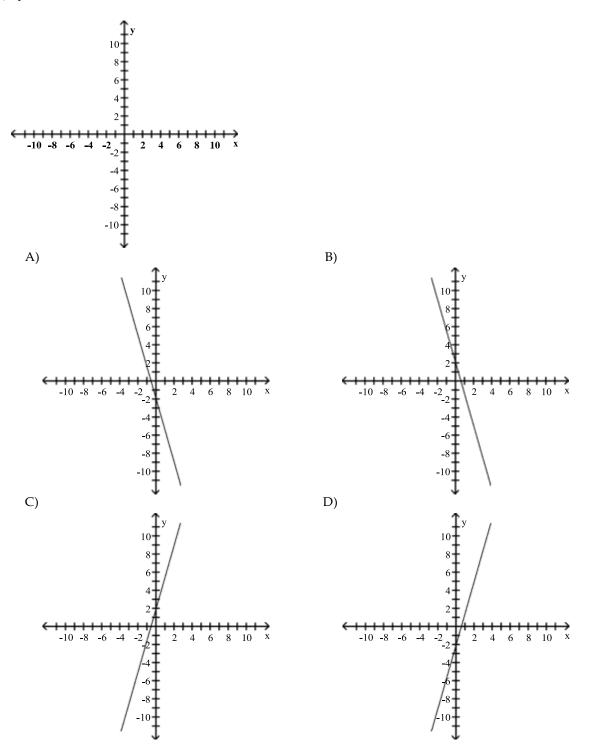
D)<u>1</u>2

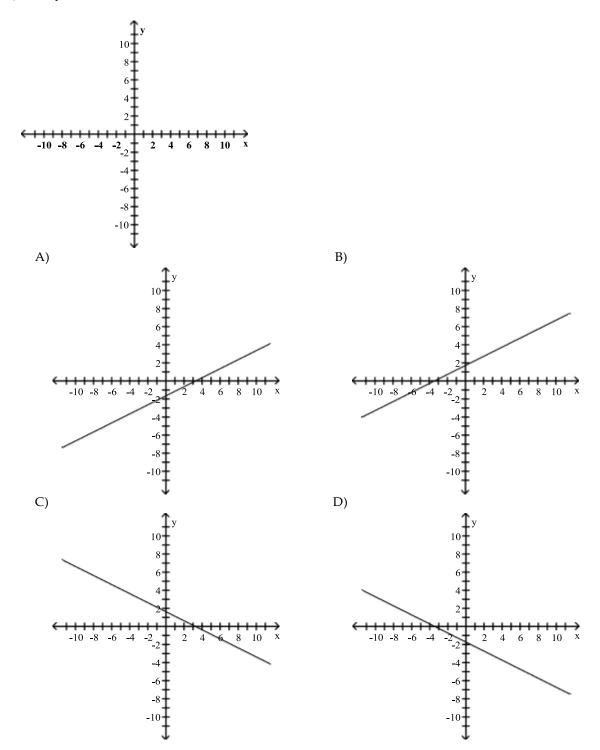


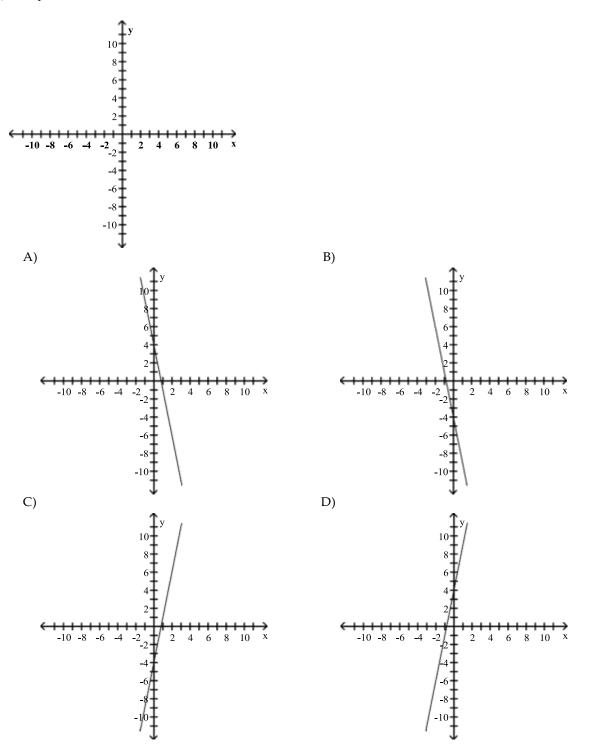


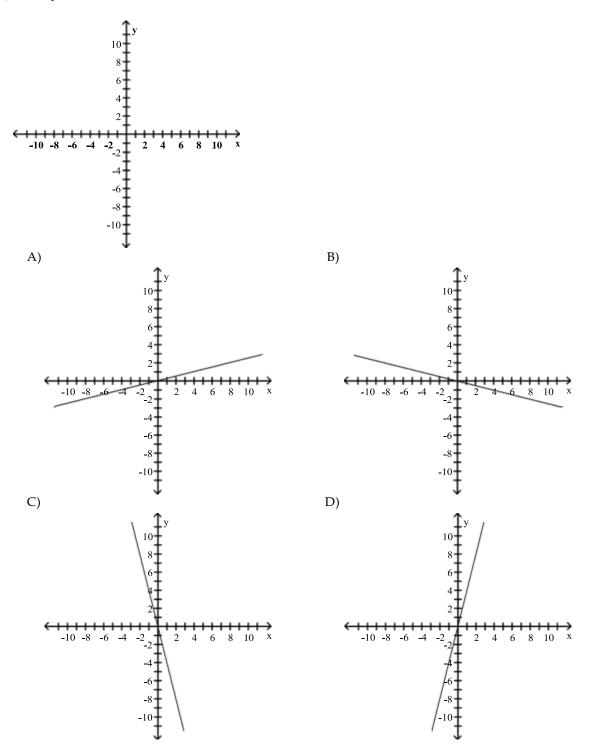


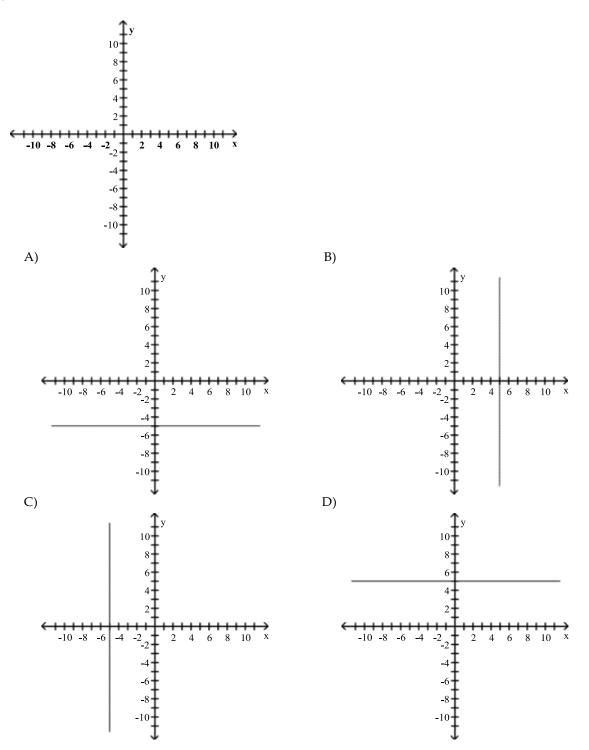

D) 0

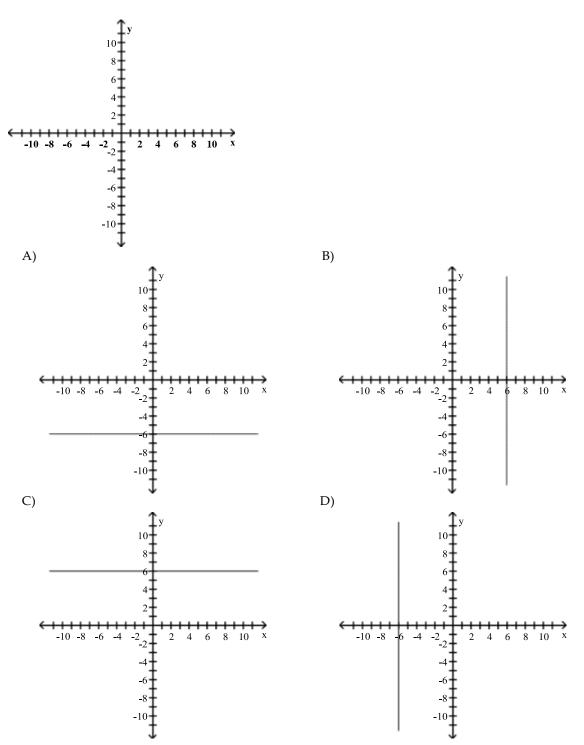

Graph the equation.

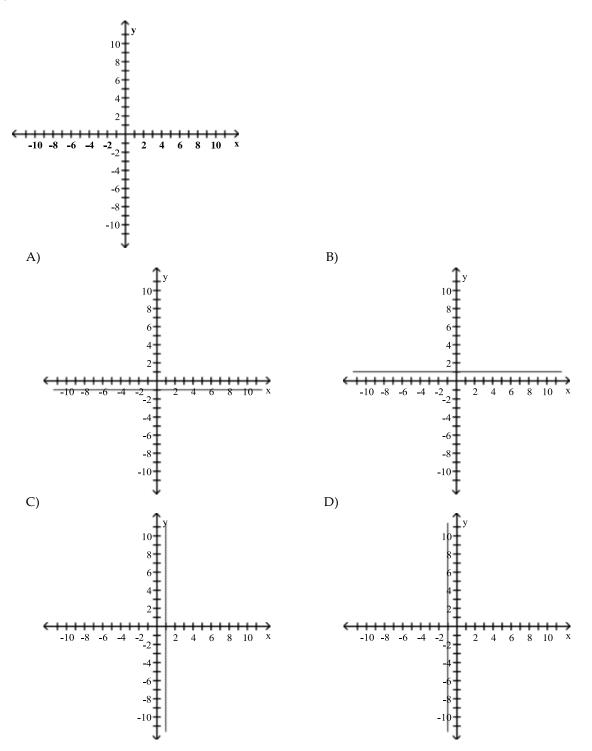




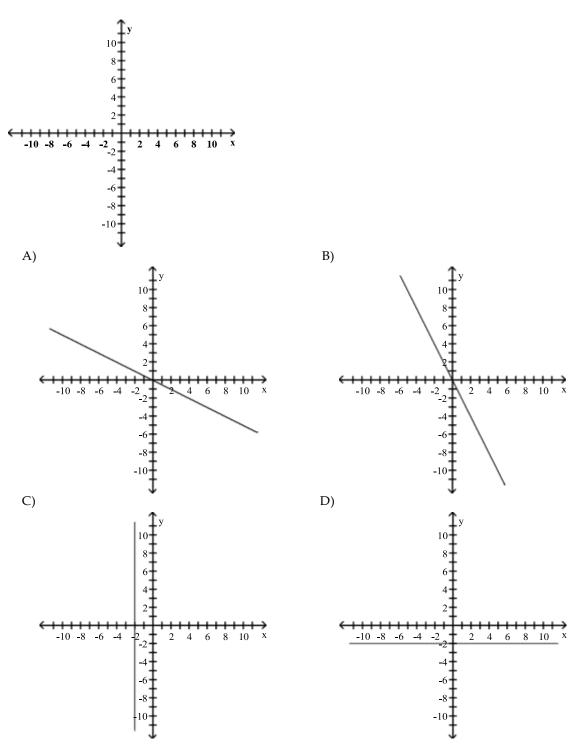








16



20

Solve the problem.

60) In a certain city, the cost of a taxi ride is computed as follows: There is a fixed charge of \$2.45 as soon as you get in the taxi, to which a charge of \$2.05 per mile is added. Find a linear equation that can be used to determine the cost, C, of an x-mile taxi ride.

A) C = 3.00x B) C = 2.45x + 2.05 C) C = 2.05x + 2.45 D) C = 4.50x

60)

61) After two years on the job, an engineer's salary was \$50,000. After seven years on the job, her 61) salary was \$66,000. Let y represent her salary after x years on the job. Assuming that the change in her salary over time can be approximated by a straight line, give an equation for this line in the form y = mx + b. A) y = 3200x + 50,000B) y = 16,000x + 18,000D) y = 16,000x + 50,000C) y = 3200x + 43,60062) Suppose that the population of a certain town, in thousands, was 105 in 1990 and 141 in 2002. 62) Assume that the population growth can be approximated by a straight line. Find the equation of a line which will estimate the population of the town, in thousands, in any given year since 1990. A) y = 4.25x + 90 where x is the number of years since 1990 B) y = 2.5x + 105 where x is the number of years since 1990 C) y = -3x + 177 where x is the number of years since 1990 D) y = 3x + 105 where x is the number of years since 1990 63) Assume that the sales of a certain appliance dealer can be approximated by a straight line. Suppose 63) that sales were \$13,500 in 1982 and \$65,000 in 1987. Let x = 0 represent 1982. Find the equation giving yearly sales S. A) S = 10,300x + 65,000B) S = 51,500x + 65,000C) S = 51,500x + 13,500D) S = 10,300x + 13,50064) The cost of owning a home includes both fixed costs and variable utility costs. Assume that it costs 64) \$5682 per month for mortgage and insurance payments and it costs an average of \$1.35 per unit for natural gas, electricity, and water usage. Determine a linear equation that computes the annual cost of owning this home if x utility units are used. B) y = -1.35x + 5682A) y = -1.35x + 68,184D) y = 1.35x + 5682C) y = 1.35x + 68,18465) In a lab experiment 3 grams of acid were produced in 13 minutes and 10 grams in 39 minutes. Let 65) y be the grams produced in x minutes. Write a linear equation for grams produced. A) $y = -\frac{7}{26}x + \frac{1}{2}$ B) $y = \frac{26}{7}x + \frac{1}{2}$ C) $y = \frac{7}{26}x + \frac{1}{2}$ D) $y = \frac{7}{26}x - \frac{1}{2}$ 66) A biologist recorded 9 snakes on 14 acres in one area and 18 snakes on 21 acres in another area. Let 66) y be the number of snakes in x acres. Write a linear equation for the number of snakes. 9 A) $y = -\frac{9}{7}x + 9$ B) $y = \frac{9}{7}x - 9$ C) $y = \frac{9}{7}x + 9$ D) $y = \frac{7}{9}x + 9$

67) The following data show the list price, x, in thousands of dollars, and the dealer invoice price, y, also in thousands of dollars, for a variety of sport utility vehicles. Find a linear equation that approximates the data, using the points (16.5, 16.1) and (20.0, 18.3).

List Price	Dealer Invoice Price	
16.5	16.1	
17.6	17.0	
20.7	18.2	
23.1	19.3	
20.0	18.3	
24.6	21.0	
A) y = 0.6292	x + 5.73	B) y = 1.59x - 9.11
C) y = 1.59x	- 10.2	D) $y = 0.629x + 6.38$

68) The information in the chart gives the salary of a person for the stated years. Model the data with a 68) ______ linear function using the points (1, 24,100) and (3, 26,800).

Year, x	Salary, y	
1990, 0	\$23,500	
1991, 1	\$24,100	
1992, 2	\$25,200	
1993, 3	\$26,800	
1994, 4	\$27,200	
A) y = -1591x	+ 22,750	B) $y = 1350x$
C) $y = 29.5x +$	22,750	D) $y = 1350x + 22,750$

69) The change in a certain engineer's salary over time can be approximated by the linear equation69) _____y = 1500x + 47,500 where y represents salary in dollars and x represents number of years on the69) _____job. According to this equation, after how many years on the job was the engineer's salary \$64,000?69) _____A) 13 yearsB) 12 yearsC) 10 yearsD) 11 years

70) The relationship between the list price, x, in thousands of dollars, and the dealer invoice price, y, also in thousands of dollars, for pickup trucks can be approximated by the linear equation y = 0.715x + 2.82. Use this equation to predict the dealer invoice price for a pickup truck with a list price of 18.0 thousand dollars.

A) 21.231 thousand dollars	B) 19.305 thousand dollars
C) 12.870 thousand dollars	D) 15.690 thousand dollars

71) Suppose the sales of a particular brand of appliance satisfy the relationship S = 190x + 1200, where 71) _______
S represents the number of sales in year x, with x = 0 corresponding to 1982. Find the number of sales in 1994.
A) 3480 sales B) 6770 sales C) 3290 sales D) 6960 sales

 72) The mathematical model C = 400x + 30,000 represents the cost in dollars a company has in manufacturing x items during a month. Based on this, how much does it cost to produce 400 items?
 72) _____

 A) \$75.00
 B) \$0.19
 C) \$190,000
 D) \$160,000

estimate of $t = 3$		me. Find the actual time th	ar nuo enapoeta for an	
A \ 17		() 124 $($ $($ $)$ $($ $)$	D) 40 m in	
A) 12 min	B) 115.5 min	C) 124.5 min	D) 48 min	
	pany charges \$33 per day to re		and \$0.15 per mile. Juan	74)
-	0 for a one-day rental. How m	-		
A) 173 mi	B) 378 mi	C) 345 mi	D) 158 mi	
75) If an object is dre	opped from a tower, then the v	elocity, V (in feet per secon	nd), of the object after t	75)
	obtained by multiplying t by 3 elocity, V, in terms of the num	0	-	
-	bject at time t = 7.7 seconds.			
A) 256.4 feet p		B) 255.7 feet per see		
C) 257.7 feet p	per second	D) 254.4 feet per see	cond	
76) The information	in the chart below gives the sa	lary of a person for the stat	ed vears. Model the	76)
	r function using the points (1,			-,
	y for the year 2005.	, , , , , ,		
Year, x	Salary, y			
1990, 0	\$23,500			
1991, 1	\$24,100			
1992, 2	\$25,200			
1993, 3	\$26,300			
1994, 4	\$27,200			
A) \$40,020	B) \$40,040	C) \$40,000	D) \$39,980	
77) In order to recei	ve a B in a course, it is necessar	y to get an average of 80%	correct on two one-hour	77)
exams of 100 poi	ints each, on one midterm exar	n of 200 points, and on one	final exam of 500 points.	77)
exams of 100 point If a student scor	ints each, on one midterm exan es 92, and 83 on the one-hour	n of 200 points, and on one exams, and 141 on the mic	final exam of 500 points. Iterm exam, what is the	77)
exams of 100 point If a student scor	ints each, on one midterm exan es 92, and 83 on the one-hour on the final exam that the pers	n of 200 points, and on one exams, and 141 on the mic son can get and still earn a	final exam of 500 points. Iterm exam, what is the B?	77)
exams of 100 point If a student scor	ints each, on one midterm exan es 92, and 83 on the one-hour	n of 200 points, and on one exams, and 141 on the mic	final exam of 500 points. Iterm exam, what is the	77)
exams of 100 point If a student score minimum score A) 584	ints each, on one midterm exames 92, and 83 on the one-hour on the final exam that the pers B) 449	n of 200 points, and on one exams, and 141 on the mic son can get and still earn a	final exam of 500 points. Iterm exam, what is the B?	77)
exams of 100 point If a student score minimum score A) 584	ints each, on one midterm exan es 92, and 83 on the one-hour on the final exam that the pers B) 449 ndicated.	n of 200 points, and on one exams, and 141 on the mic son can get and still earn a	final exam of 500 points. Iterm exam, what is the B?	77)
exams of 100 point If a student score minimum score A) 584	ints each, on one midterm exan es 92, and 83 on the one-hour on the final exam that the pers B) 449 ndicated.	n of 200 points, and on one exams, and 141 on the mic son can get and still earn a	final exam of 500 points. Iterm exam, what is the B?	
exams of 100 point If a student score Minimum score A) 584 Ante the function as in 78) Find f(9) when f A) -26	ints each, on one midterm examples 92, and 83 on the one-hour on the final exam that the pers B) 449 Indicated. f(x) = -3x + 1. B) -28	n of 200 points, and on one exams, and 141 on the mic son can get and still earn a C) 314	final exam of 500 points. Herm exam, what is the B? D) 404	78)
exams of 100 point If a student score A) 584 Mate the function as in 78) Find f(9) when f A) -26 79) Find f(5) when f	ints each, on one midterm examples 92, and 83 on the one-hour on the final exam that the pers B) 449 ndicated. f(x) = -3x + 1. B) -28 (x) = -7x - 3.	n of 200 points, and on one exams, and 141 on the mic son can get and still earn a C) 314 C) -26.9	final exam of 500 points. Iterm exam, what is the B? D) 404 D) 28	
exams of 100 point If a student score Minimum score A) 584 Ante the function as in 78) Find f(9) when f A) -26	ints each, on one midterm examples 92, and 83 on the one-hour on the final exam that the pers B) 449 Indicated. f(x) = -3x + 1. B) -28	n of 200 points, and on one exams, and 141 on the mic son can get and still earn a C) 314	final exam of 500 points. Herm exam, what is the B? D) 404	78)
exams of 100 point If a student score A) 584 Mate the function as in 78) Find f(9) when f A) -26 79) Find f(5) when f	ints each, on one midterm examples 92, and 83 on the one-hour on the final exam that the pers B) 449 ndicated. f(x) = -3x + 1. B) -28 (x) = -7x - 3. B) -10	n of 200 points, and on one exams, and 141 on the mic son can get and still earn a C) 314 C) -26.9	final exam of 500 points. Iterm exam, what is the B? D) 404 D) 28	78)

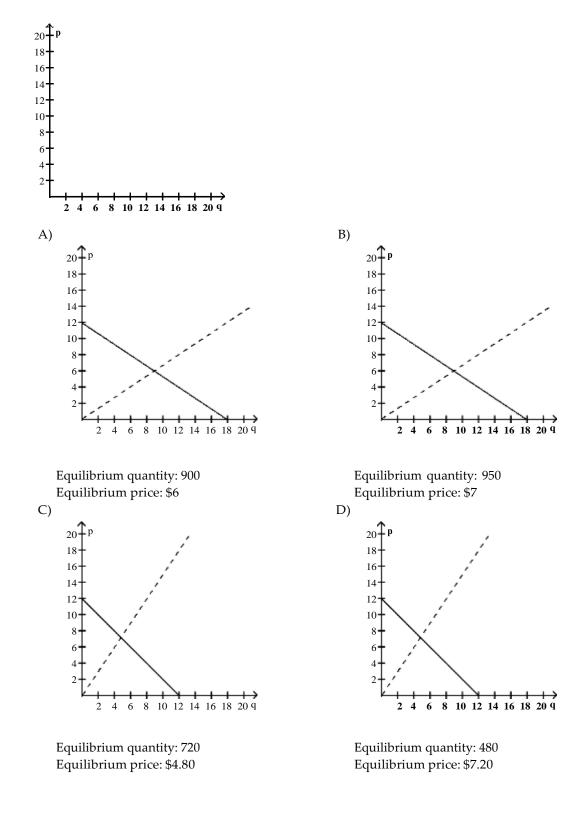
81) Find $f(-7.4)$ when $f(x) = 7.2x + 7$.				
A) -60.28	B) -52.58	C) 60.28	D) -46.28	
82) Find f(6.5) when f(x)	= -2x + 8.8.			82)
A) 21.8	B) -12.12	C) -21.8	D) -4.2	,

	83) Find $g\left(\frac{7}{3}\right)$ when $g(x) = 7 - \frac{1}{3}$	9x.			83)
	A) 0	B) - 14	C) 14	D) 28	
	84) Find f(5.2) when f(x) = 7. A) 7	B) 36.4	C) -7	D) 5.2	84)
	85) Find f(-r) when f(x) = 7 - 4 A) 7 + 4r		C) r - 4x	D) 7 - 4r	85)
	86) Find g(c ²) when g(x) = -8 + A) -8 - 3c ²		C) -8 + 3c ²	D) -8 + c ²	86)
	87) Find g(a - 1) when g(x) = 3 A) $\frac{1}{3}$ a - 2	x - 2. B) 3a - 5	C) 3a - 2	D) 3a + 1	87)
Write	e a cost function for the problem 88) A moving firm charges a fl the moving firm for x hou A) C(x) = 35x + 40	lat fee of \$40 plus \$35 per l rs.	-	_	88)
	 89) A cab company charges a log of using the cab for x minu A) C(x) = 0.10x - 1.00 C) C(x) = 1.00x - 0.10 	-	The entry per minute. Let $C(x)$ B) $C(x) = 1.00x + 0.10$ D) $C(x) = 0.10x + 1.00$	be the cost in dollars	89)
	90) An electrician charges a fee electrician for x hours. A) C(x) = 45x + 60	1 1	Let C(x) be the cost in dol C) C(x) = 60x + 45	U	90)
	91) A cable TV company charge the total cost in dollars of s A) C(x) = 7x - 21		sing x movie channels.	hannel. Let $C(x)$ be D) $C(x) = 7x + 21$	91)
	92) Fixed cost, \$280; 10 items c A) C(x) = 550x + 280 C) C(x) = 1100x + 5780	ost \$5780 to produce	B) C(x) = 550x + 5780 D) C(x) = 1100x + 280		92)

93) Marginal cost, \$130; 80 items cost \$11,500 to produce

A) C(x) = 130x

+ 1100	B) $C(x) = 14x + 11,500$
C) $C(x) = 130x + 11,500$	D) $C(x) = 14x + 1100$


Solve the problem.

94) Let the supply and demand functions for a certain model of electric pencil sharpener be given by $p = S(q) = \frac{2}{q}$ and $p = D(q) = 12 - \frac{2}{q}q$,

3 3

where p is the price in dollars and q is the quantity of pencil sharpeners (in hundreds). Graph these functions on the same axes (graph the supply function as a dashed line and the demand function as a solid line). Also, find the equilibrium quantity and the equilibrium price.

94) _____

95) Let the supply and demand functions for raspberry-flavored licorice be given by $p = S(q) = \frac{5}{2}q$ and $p = D(q) = 90 - \frac{5}{2}q$, 4

4

where p is the price in dollars and q is the number of batches. Graph these functions on the same axes (graph the supply function as a dashed line and the demand function as a solid line). Also,

find the equilibrium quantity and the equilibrium price.

96) Given the supply and demand functions below, find the price when the demand is 145. S(p) = 9p + 12D(p) = 280 - 9p

A) \$1317 B) \$292 C) \$47 D) \$15

97) Suppose that the demand and price for a certain model of graphing calculator are related by p = D(q) = 96 - 1.5q, where p is the price (in dollars) and q is the demand (in hundreds). Find the price if the demand is 600 calculators.				97)	
-	6.00	B) \$105.00	C) \$186.00	D) \$87.00	
		, , , , , , , , , , , , , , , , , , , ,	-, ,	, , , , , , , , , , , , , , , , , , , ,	
S(p) =		nand functions below, find	d the demand when $p = $ \$	12.	98)
A) 1	-	B) 72	C) 60	D) 48	
p = D(demai A) 3	(q) = 112 - 2.5q, when	re p is the price (in dollar	odel of graphing calculator s) and q is the demand (in l to the nearest whole nun B) 820 calculators D) 3280 calculators	hundreds). Find the	99)
p = S(d Find t	q) = 4q, where p is th	ne price (in dollars) and q	lel of graphing calculator a is the supply (in hundred arest whole number if nec C) 2225 calculators	s) of calculators.	100)
dollar	s. Find the equilibriu 5520 - 90p		ed by D(p) and S(p), where a quantity for the given fu		101)
· •	550; 1020	B) \$39; 2010	C) \$24; 3360	D) \$50; 3360	
102) Let the demand and supply functions be represented by $D(p)$ and $S(p)$, where p is the price in dollars. Find the equilibrium price and equilibrium quantity for the given functions. D(p) = 134,750 - 250p S(p) = 300p					102)
· • •	50; 122,250	B) \$50; 73,500	C) \$245; 73,500	D) \$449; 22,500	
dollar D(p) =		-	ed by D(p) and S(p), where a quantity for the given fu		103)
A) \$	524; 4560	B) \$36; 3960	C) \$28; 4360	D) \$28; 4560	
to pro the nu	duce 2000 calculus t	extbooks is \$50,300. Assu	00 calculus textbooks is \$2 ame that the cost C(x) is a l rginal cost of a calculus te C) \$0.02	inear function of x,	104)

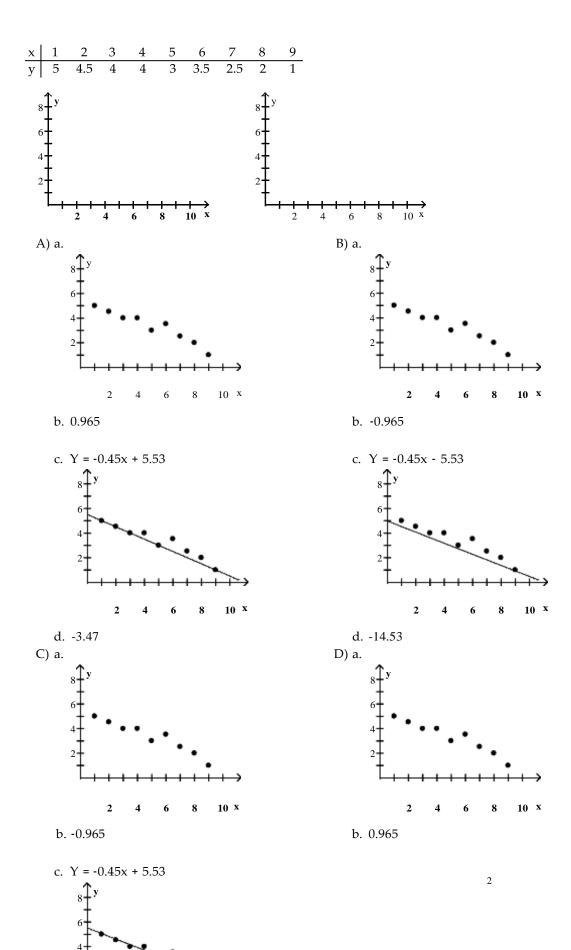
105) In deciding whether or not to set up a new manufacturing plant, analysts for a popcorn company have decided that a linear function is a reasonable estimation for the total cost C(x) in dollars to produce x bags of microwave popcorn. They estimate the cost to produce 10,000 bags as \$5240 and the cost to produce 15,000 bags as \$7540. Find the marginal cost of the bags of microwave popcorn to be produced in this plant.

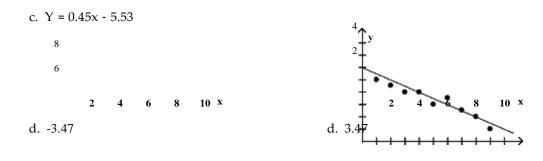
A) \$46.00	B) \$0.46	C) \$2300.00	D) \$4.60

106) A toilet manufacturer has decided to come out with a new and improved toilet. The fixed cost for the production of this new toilet line is \$16,600 and the variable costs are \$70 per toilet. The company expects to sell the toilets for \$155. Formulate a function C(x) for the total cost of producing x new toilets and a function R(x) for the total revenue generated from the sales of x toilets.				
A) C(x) = 16,670; R(x C) C(x) = 16600 + 15		B) C(x) = 16600 + 70x D) C(x) = 70x; R(x) =		
107) A toilet manufacturer has decided to come out with a new and improved toilet. The fixed cost for the production of this new toilet line is \$16,600 and the variable costs are \$69 per toilet. The company expects to sell the toilets for \$157. Formulate a function P(x) for the total profit from the production and sale of x toilets.				
A) $P(x) = 88x + 1660$		B) $P(x) = 88x$		
C) $P(x) = 88x - 1660$	0	D) $P(x) = 157x - 1660$	0	
108) A shoe company will The variable cost will the profit if 600 pairs a	be \$34 per pair of shoes. Th	-		108)
A) \$45,600	B) \$69,600	C) \$62,400	D) \$21,600	
	vice delivers packages whic y truck is \$480 per day. If t be delivered daily to make B) 66 packages	the company charges \$6.1		109)
-	used typewriter platens. The ne linear cost function to reg be reground and sold to b	grind platens. If reground	8	110)
A) $C(x) = 1.70x + 21$	5	B) $C(x) = 1.70x + 300$	1	
break-even = 22		break-even = 29		
C) $C(x) = 1.70x + 21$	5	D) $C(x) = 1.70x + 300$		
break-even = 29		break-even = 41		
	used typewriter platens. T is \$78 per day. If the compa nd daily to break even?			111)
A) 26 platens	B) 35 platens	C) 39 platens	D) 12 platens	
_	olds plastic handles which c ine is \$5616 per week. If the e molded weekly to break o B) 5616 handles	e company sells the handle		112)
,	,	,	,	

¹¹³⁾ Midtown Delivery Service delivers packages which cost \$1.10 per package to deliver. The fixed

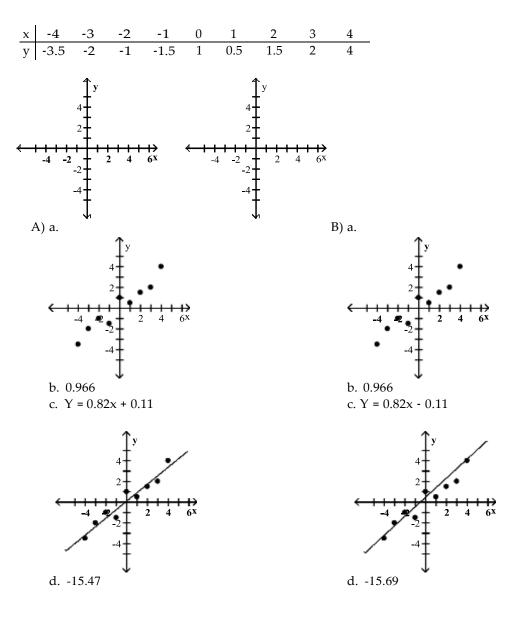
 cost

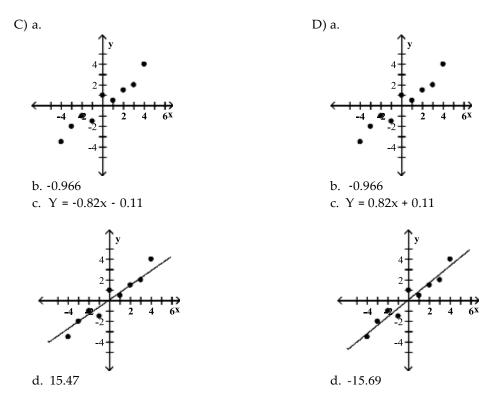

to run the delivery truck is \$60 per day. If the company charges \$7.10 per package, how many				113)
packages must be delivered daily to break even?				
A) 6 packages	B) 10 packages	C) 7 packages	D) 54 packages	

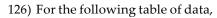

114) A lumber yard has fixed produced. The company daily to break even?	-	nd variable costs of \$1.00 p sold. How many board-fe		114)
A) 992 board-feet	B) 3077 board-feet	C) 1865 board-feet	D) 2798 board-feet	
	\$34 per pair of shoes. The	e fixed cost for the produc e shoes will sell for \$100 fo npany to break even on thi C) 706 pairs	or each pair. How	115)
2	x is the speed of the car in nodel, at what speed will t	miles per hour and y is th he car average 15 miles pe B) 98 miles per hour	e miles per gallon of	116)
C) 149 miles per hour		D) 48 miles per hour		
the Celsius temperature the water 10 degrees? (where x is the number of for of the water at that depth. Round to the nearest foo	eet down from the surface Based on this model, how t.)	of the lake and y is deep in the lake is	117)
A) 47 feet	B) 28 feet	C) 66 feet	D) 10 feet	
118) The bank's temperature o A) 71.6°	display shows that it is 22° B) 97.2°	^o Celsius. What is the temp C) -5.6°	erature in Fahrenheit? D) 30.0°	118)
119) On a summer day, the su temperature in Fahrenho		a temperature of 30° Celsiu	ıs. What is this	119)
A) 62°	B) 54°	C) 86°	D) 30°	
120) On a summer day, the bo temperature in Fahrenho		a temperature of 6° Celsius	s. What is this	120)
A) 6°	B) 10.8°	C) 38°	D) 42.8°	
121) The outdoor temperature A) -10°	e rises to 22° Fahrenheit. W B) 12.2°	/hat is this temperature in C) -5.6°	Celsius? D) 22°	121)
122) A meteorologist in the U What would a Canadian A) -5°		n predicts an overnight lo the same location in Celsi C) -9°		122)
123) Find the temperature at A) 39°	which the Celsius and Fah B) -25°	renheit scales coincide. C) -40° 35	D) 0°	123)

124) For the following table of data,

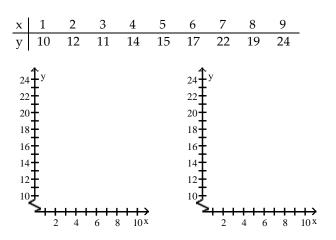
- a. Draw a scatterplot.
- b. Calculate the correlation coefficient.
- c. Calculate the least squares line and graph it on the scatterplot.
- d. Predict the y-value when x is 20.


124) _____

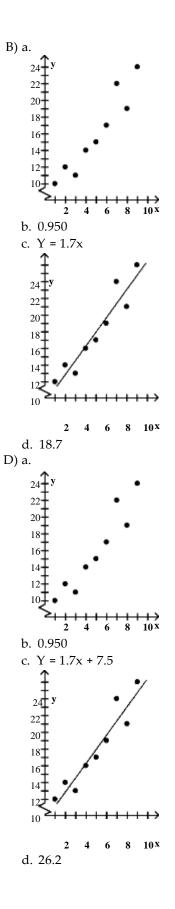




125) For the following table of data,


- a. Draw a scatterplot.
- b. Calculate the correlation coefficient.
- c. Calculate the least squares line and graph it on the scatterplot.
- d. Predict the y-value when x is -19.





- a. Draw a scatterplot.
- b. Calculate the correlation coefficient.
- c. Calculate the least squares line and graph it on the scatterplot.
- d. Predict the y-value when x is 11.

126) _____

			1.0	27.2	- 12						
	x 43. y 7		3	6			8			D) 0.2055	
	A) 0.2899				в) 0	.3257			C) 0	D) -0.3257	
128) [The test scor	res of	6 ran	ndom	ly pic	ked st	udents	and th	e number of hours t	they prepared are as	128)
	follows:				5 1						, _
	Hours	5	10	4	6	10 59	9				
	Score	64	86	69	86	59	87				
	A) 0.2242				B) -	0.6781			C) -0.2242	D) 0.6781	
129) '	The test sco	es of	6 ran	ıdom	ly pic	ked st	udents	and th	e number of hours t	they prepared are as	129)
	follows:				~ 1						, –
	Hours Score	4	10	5	5	3	3				
	Score	54	99	56	99	70	72				
	A) -0.678	1			B) -	0.2241			C) 0.2015	D) 0.6039	
130) (Consider th x 57		-				-		ates:		130) _
130) (Consider th x 57 y 156 A) -0.053	53 5 16	-		61 177		-		ates: - C) 0.2145	D) -0.0783	130) _
	x 57 y 156 A) -0.053	53 5 16 7	3	59 163	61 177 B) 0	53 159 .1085	56 175	60 151	- C) 0.2145	D) -0.0783	, _
	$ \begin{array}{c c} x & 57 \\ y & 156 \\ A) -0.053 \end{array} $ Consider the	53 5 16 7	3 4	59 163 nts w	61 177 B) 0 ith th	53 159 .1085 e follc	56 175 owing c	60 151 oordin	- C) 0.2145	D) -0.0783	130) _ 131) _
	$ \begin{array}{c c} x & 57 \\ y & 156 \\ A) -0.053 \end{array} $ Consider the	53 5 16 7	3 4	59 163 nts w	61 177 B) 0 ith th	53 159 .1085 e follc	56 175 owing c	60 151 oordin	- C) 0.2145	D) -0.0783	, _
	x 57 y 156 A) -0.053	53 5 16 7	3 4	59 163 nts w	61 177 B) 0 ith th 52 164	53 159 .1085 e follc	56 175 owing c 54 174	60 151 oordin	- C) 0.2145	D) -0.0783 D) 0.7537	, _
131) ($\begin{array}{c c} x & 57 \\ \hline y & 156 \\ A & -0.053 \\ \hline \end{array}$ Consider the $\begin{array}{c c} x & 62 \\ \hline y & 158 \\ A & 0 \\ \end{array}$	50 5 16 7 e data 50 3 17	3 4 7 7 6	59 163 nts w 64 151	61 177 B) 0 ith th 52 164 B) -	53 159 .1085 e follc 52 164 0.0810	56 175 wing c 54 174	60 151 oordin 58 162	- C) 0.2145 ates: - C) -0.7749		131) _
131) ($\begin{array}{c c} x & 57 \\ \hline y & 156 \\ A & -0.053 \\ \hline \\ Consider th \\ \hline x & 62 \\ \hline y & 158 \\ A & 0 \\ \hline \\ Consider th \end{array}$	53 5 16 7 8 data 53 17 8 data	3 4 7 7 6 7 6	59 163 nts w 64 151	61 177 B) 0 ith th 52 164 B)	53 159 .1085 e follo 52 164 0.0810 e follo	56 175 wing c 54 174	60 151 00rdin 58 162 00rdin	- C) 0.2145 ates: - C) -0.7749		, _
131) ($\begin{array}{c c c} x & 57 \\ \hline y & 156 \\ \hline A) & -0.053 \\ \hline Consider th \\ \hline x & 62 \\ \hline y & 158 \\ \hline A) & 0 \\ \hline Consider th \\ \hline x & 121 \\ \hline \end{array}$	53 5 16 7 8 data 53 3 17 8 data 10	3 4 7 7 6 7 6	59 163 nts w 64 151 nts w 128	61 177 B) 0 ith th 52 164 B) - ith th 160	53 159 .1085 e follc 52 164 0.0810 e follc 154	56 175 wing c 54 174 wing c 126	60 151 00rdin 58 162 00rdin 134	- C) 0.2145 ates: - C) -0.7749 ates:		131) _
131) ($\begin{array}{c c c} x & 57 \\ \hline y & 156 \\ \hline A) & -0.053 \\ \hline Consider th \\ \hline x & 62 \\ \hline y & 158 \\ \hline A) & 0 \\ \hline Consider th \\ \hline x & 121 \\ \hline \end{array}$	53 5 16 7 8 data 53 3 17 8 data 10	3 4 7 7 6 7 6	59 163 nts w 64 151 nts w 128	61 177 B) 0 ith th 52 164 B) - ith th 160 157	53 159 .1085 e follc 52 164 0.0810 e follc 154	56 175 wing c 54 174	60 151 00rdin 58 162 00rdin 134	- C) 0.2145 ates: - C) -0.7749 ates:		131) _
131) (132) ($\begin{array}{c c c c c c c c c c c c c c c c c c c $	53 7 7 6 53 17 6 10 10 15	4 poir 3 6	59 163 nts w 64 151 nts w 128 168	61 177 B) 0 ith th 52 164 B) ith th 160 157 B) 0	53 159 .1085 e follc 52 164 0.0810 e follc <u>154</u> 164 .5370	56 175 wing cc 54 174 wing c 126 169	60 151 00rdin 58 162 00rdin 134 160	- C) 0.2145 ates: - C) -0.7749 ates: - C) 0.0537	D) 0.7537 D) -0.0781	131) _ 132) _
131) (132) (133) [,]	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	53 5 16 7 8 data 53 3 17 8 data 6 data 10 15	4 poir 3 6	59 163 nts w 64 151 nts w 128 168	61 177 B) 0 ith th 52 164 B) ith th 160 157 B) 0	53 159 .1085 e follc 52 164 0.0810 e follc <u>154</u> 164 .5370	56 175 wing cc 54 174 wing c 126 169	60 151 00rdin 58 162 00rdin 134 160	- C) 0.2145 ates: - C) -0.7749 ates: - C) 0.0537	D) 0.7537	131) _
131) (132) (133) [,]	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	53 7 $6 data$ 53 17 $6 data$ 10 15 15 15 15 15 15 15 15	$\frac{3}{4}$	59 163 nts w 64 151 nts w 128 168 s of <i>a</i>	61 177 B) 0 ith th 52 164 B) ith th 160 157 B) 0	53 159 .1085 e follo 52 164 0.0810 e follo 154 164 .5370 ising ($\frac{56}{175}$ wing c $\frac{54}{174}$ wing c $\frac{126}{169}$ (in thou	60 151 00rdin 58 162 00rdin 134 160 134	- C) 0.2145 ates: C) -0.7749 ates: C) 0.0537 of dollars) and the r	D) 0.7537 D) -0.0781	131) _ 132) _
131) (132) (133) [,]	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c} 5.0 \\ \hline 5.0 \\ \hline 7 \\ 7 \\$	4 2 poin 3 6 2 2 2	59 163 nts w 64 151 nts w 128 168 s of a	61 177 B) 0 ith th 52 164 B) - ith th 160 157 B) 0 advert	53 159 .1085 e follo 52 164 0.0810 e follo 154 164 .5370 ising (56 175 wing c 54 174 wing c 126 169 (in thou	60 151 00rdin 58 162 00rdin 134 160 usands 9	- C) 0.2145 ates: - C) -0.7749 ates: - C) 0.0537	D) 0.7537 D) -0.0781	131) _ 132) _
131) (132) (133) ⁻	$\begin{array}{c c c c c c c c c c c c c c c c c c c $	$\begin{array}{c c} 5.0 \\ \hline 5.0 \\ \hline 7 \\ 7 \\$	4 2 poin 3 6 2 2 2	59 163 nts w 64 151 nts w 128 168 s of a	$\begin{array}{c} 61 \\ 177 \\ B \ 0 \\ \hline \\ 164 \\ B \ -1 \\ \hline \\ 164 \\ B \ -1 \\ \hline \\ 164 \\ B \ -1 \\ \hline \\ 157 \\ B \ 0 \\ \hline \\ 0 \\ \hline \\ 0 \\ 0 \\ \hline \hline \\ 0 \\ \hline 0 \\ \hline \\ 0 \\ \hline 0 \hline$	53 159 .1085 e follo 52 164 0.0810 e follo 154 164 .5370 ising ($\frac{56}{175}$ wing c 54 174 wing c 126 169 (in thou 5 7 86	60 151 00rdin 58 162 00rdin 134 160 usands 9	- C) 0.2145 ates: C) -0.7749 ates: C) 0.0537 of dollars) and the 1 10	D) 0.7537 D) -0.0781	131) _ 132) _

135) The following are the temperatures on randomly chosen days and the amount a certain kind of plant grew (in millimeters):

	Temp	62	76	50	51	71	46	51	44	79	
	Growth	36	39	50	13	33	33	17	6	16	
1	A) -0.2105]	B) 0					C) 0.1955	D) 0.2563

136) The following are the temperatures on randomly chosen days and the amount a certain kind of plant grew (in millimeters):

Temp	77	88	85	61	64	72	73	63	74		
Growth	39	17	12	22	15	29	14	25	43		
A) 0]	B) -0.3	3105			C	2) -0.0	953	D) 0.0396

Find the equation of the least squares line.

137) Ten students in a graduate program were randomly selected. Their grade point averages (GPAs) when they entered the program were between 3.5 and 4.0. The following data were obtained regarding their GPAs on entering the program versus their current GPAs.

Entering GPA (x)	Current GPA (y)	
3.5	3.6	
3.8	3.7	
3.6	3.9	
3.6	3.6	
3.5	3.9	
3.9	3.8	
4.0	3.7	
3.9	3.9	
3.5	3.8	
3.7	4.0	
A) y = 5.81 + 0.497x		B) $y = 2.51 + 0.329x$
C) $y = 3.67 + 0.0313x$		D) $y = 4.91 + 0.0212x$

	Hours (x)	5	10	4	6	10	9	
	Score (y)	64	86	69	86	59	87	
A)	y = 67.3 + 1	1.07	x					B) y = 33.7 - 2.14x
C)	y = 33.7 + 2	2.14	x					D) $y = -67.3 + 1.07x$

139) The paired data below consist of the costs of advertising (in thousands of dollars) and the number 139) ______ of products sold (in thousands).

	Cost (x)	9	2	3	4	2	5	9	10	
	Number (y)	85	52	55	68	67	86	83	73	
A)) y = 55.8 + 2.7	79x								B) y = 55.8 - 2.79x
C)	y = 26.4 + 1.4	12x								D) y = -26.4 - 1.42

137) _____

135) ____

140) The paired data below consist of the temperatures on randomly chosen days and the amount a certain kind of plant grew (in millimeters).

	Temp (x)	62 76	50	51	71	46	51	44	79	
	Growth (y)	36 39	50	13	33	33	17	6	16	
A)	y = 7.30 + 0.7	122x							E	3) y = -14.6 - 0.211x
C)	y = 14.6 + 0.2	211x							Ľ	9) y = 7.30 - 0.112x

141) A study was conducted to compare the average time spent in the lab each week versus course grade for computer students. The results are recorded in the table below.

Number of hours spent in lab (x)	Grade (percent)(y)
10	96
11	51
16	62
9	58
7	89
15	81
16	46
10	51
A) $y = 44.3 + 0.930x$	B) $y = 0.930 + 44.3x$
C) $y = 1.86 + 88.6x$	D) y = 88.6 - 1.86x

142) Two separate tests are designed to measure a student's ability to solve problems. Several students 142) are randomly selected to take both tests and the results are shown below.

	Test $A(x)$	48	52	58	44	43	43	40	51	59	
	Test B (y)	73	67	73	59	58	56	58	64	74	
		-	-			-	-	-			
A)	y = 0.930 -	19.4	x								B) y = 19.4 + 0.930x
C)	y = -0.930	+ 19	.4x								D) y = -19.4 - 0.930x

143) Managers rate employees according to job performance and attitude. The results for several randomly selected employees are given below.

Attitude (x)	59										
Performance (y)	72	67	78	82	75	87	92	83	87	78	
A) y = 92.3 - 0.669x C) y = 11.7 + 1.02x											B) y = -47.3 + 2.02x D) y = 2.81 + 1.35x

140) _____

141)

142) _____

143)

144) Two different tests are designed to measure employee productivity and dexterity. Several employees of a company are randomly selected and asked to complete the tests. The results are below.

Dexterity (x)										36	
Productivity (y)	49	53	59	42	47	53	55	63	67	75	
A) y = 2.36 + 2.03x											B) y = 75.3 - 0.329x
C) $y = 5.05 + 1.91x$											D) y = 10.7 + 1.53x

144) ____

Year x
 1
 2
 3
 4
 5

 Sales y
 30
 40
 60
 90
 130

 A) y =
$$28x - 10$$
 B) y = $18x + 8$
 C) y = $12x + 20$
 D) y = $25x - 5$

Solve the problem.

147) Find an equation for the least squares line representing weight, in pounds, as a function of height,											
in inches, of men. Then, predict the weight of a man who is 68 inches tall to the nearest tenth of a											
pound. The following c	pound. The following data are the (height, weight) pairs for 8 men: (66, 150), (68, 160), (69, 166),										
(70, 175), (71, 181), (72, 1	191), (73, 198), (74, 206).										
A) 165.1 pounds	B) 161.2 pounds	C) 151.4 pounds	D) 160.0 pounds								
			-								

 149) For some reason the quality of production decreases as the year progresses at a light bulb
 149)

 manufacturing plant. The following data represent the percentage of defective light bulbs
 149)

 produced at a light bulb manufacturing plant in the corresponding month of the year.
 149)

month (x) 2 3 5 7 8 9 12 % defective (y) 1.3 1.6 2.0 2.4 2.6 2.8 3.1

Use the equation of the least squares line to predict the percentage of defective bulbs in June.

A) 2.3%

150) For some reason the quality of production decreases as the year progresses at a light bulb manufacturing plant. The following data represent the percentage of defective light bulbs produced at a light bulb manufacturing plant in the corresponding month of the year.

	2						
% defective (y)	1.3	1.6	2.0	2.4	2.6	2.8	3.1

Use the equation of the least squares line to predict in which month the percentage of defective light bulbs would be 1.83%.

A) April	B) February	C) March	D) May
/-F			-) - · - • -)

3.5 3.6	
3.8 3.7	
3.6 3.9	
3.6 3.6	
3.5 3.9	
3.9 3.8	
4.0 3.7	
3.9 3.9	
3.5 3.8	
3.7 4.0	
A) 3.79 B) 3.41 C) 3.59 D) 3.	30

Hours (x)	5	10	4	6	10	9		
Score (y)	64	86	69	86	59	87		
A) 86.8				B) 8	81.2		C) 86.2	D) 76.2

Cost (x)	9	2	3	4	2	5	9	10	
Number (y)	85	52	55	68	67	86	83	73	
A) 79.24 products sold							B) 16,795.8 products sold		
C) 72.54 produc	cts so	old							D) 69.54 products sold

150) ____

154) The paired data below consist of the temperatures on randomly chosen days and the amount a certain kind of plant grew (in millimeters). Use the equation of the least squares line to predict the growth of a plant if the temperature is 53.

Temp (x)	62	76	50 51	71	46	51	44	79		
Growth (y)	36	39	50 13	33	33	17	6	16		
A) 26.63 mm			B) 25	.78 ı	nm			C	2) 24.67 mm	D) 26.21 mm

 155) In the table below, x represents the number of years since 2000 and y represents annual sales (in
 155) _____

 thousands of dollars) for a clothing company. Use the least squares regression equation to
 estimate sales in the year 2006. Round to the nearest thousand dollars.

Year (x) 1	2	3	4 5			
Sales (y) 30	40	60	90 130			
A) \$142,000			B) \$140,	000	C) \$145,000	D) \$147,000

156) A study was conducted to compare the average time spent in the lab each week versus course 156) _____ grade for computer students. The results are recorded in the table below. Use the equation of the least squares line to predict the grade of a student who spends 5 hours in the lab.

Number of hours spent in lab ((x) Grade (percent) (y)	
10	96	
11	51	
16	62	
9	58	
7	89	
15	81	
16	46	
10	51	
A) 80.3% B) 79.3	% C) 83.6%	D) 75.3%

Provide an appropriate response.

157) Find k so that the line through (3, k) and (1, -2) is parallel to 2x - 5y = -8. Find k so that the line is 157) ______ perpendicular to 3x + 4y = -9.

<u>14</u> 2	6 2	6 14	14 14
—			
A) 5;3	B) - ₅ ; ₃	C) - 5; - 3	D) ₅ ; - ₃

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

- 158) John has been a teacher at West Side High School for the past 12 years. His salary during that time can be modeled by the linear equation y = 800x + 33,000 where x is the number of years since he began teaching at West Side and y is his salary in dollars. Explain what the slope, 800, represents in this context.
- 159) If a company decides to make a new product, there are fixed costs and variable costs associated with this new product. Explain the differences of the two types of costs and

why they occur. Use an example

158) ____

154) _

to illustrate your point.	159)
160) Give a definition or an example of the word or phrase: Zero slope	160)

161) Why is the slope of a horizontal line equal to zero? Give an example.	161)
162) Explain what is wrong with the statement "The line has no slope."	162)
163) Why is the slope of a vertical line undefined?	163)
164) Can an equation of a vertical line be written in slope-intercept form? Explain.	164)
165) The total number of reported cases of AIDS in the United States has risen from 372 in 1981	165)
to 100,000 in 1989 and 200,000 in 1992. Does a linear equation fit this data? Explain.	165)
166) Show that the points $P_1(2,4)$, $P_2(5,2)$, and $P_3(7,5)$ are the vertices of a right triangle.	166)

1) C 2) B 3) C 4) C 5) C 6) C 7) D 8) B 9) B 10) D 11) B 12) C 13) A 14) D 15) B 16) B 17) B 18) C 19) D 20) D 21) C 22) C 23) D 24) C 25) D 26) B 27) B 28) C 29) A 30) A 31) D 32) D 33) D 34) D 35) C 36) C 37) D 38) B 39) B 40) C 41) B 42) D 43) D 44) A 45) C 46) B 47) D 48) D 49) B 50) A

51) C 52) C 53) C 54) B 55) A 56) C 57) A 58) C 59) D 60) C 61) C 62) D 63) D 64) C 65) D 66) B 67) A 68) D 69) D 70) D 71) A 72) C 73) B 74) D 75) A 76) C 77) D 78) A 79) A 80) D 81) D 82) D 83) B 84) A 85) A 86) C 87) B 88) A 89) D 90) A 91) D 92) A 93) A 94) A 95) A 96) D 97) D 98) B 99) D 100) C

101) C 102) C 103) A 104) B 105) B 106) B 107) C 108) D 109) C 110) C 111) C 112) C 113) B 114) D 115) B 116) A 117) D 118) A 119) C 120) D 121) C 122) B 123) C 124) C 125) A 126) D 127) B 128) A 129) D 130) B 131) C 132) C 133) C 134) C 135) C 136) C 137) C 138) A 139) A 140) C 141) D 142) B 143) C 144) C 145) A 146) D 147) B 148) B 149) C 150) A

- 151) A
- 152) B
- 153) C
- 154) B
- 155) C
- 156) B
- 157) B
- 158) The slope of 800 indicates that during his 12 years at the school, John's salary has increased by approximately \$800 per year.
- 159) Fixed costs occur only once. These costs may be startup costs related to the production of the new product. Variable costs depend on how much product is made. These costs may consist of labor, material, and maintenance.

For example, a company decided to make oak filing cabinets. Fixed costs would include the costs of purchasing and renovating plant space and the cost of manufacturing equipment. Variable costs would include the cost labor and the cost of materials.

- 160) An equation such as by + c = 0 has a slope of zero. (Answers may vary.)
- 161) Answers may vary. One possibility: The slope of a horizontal line is equal to zero because the y-values do not change as the x-values change. For example, the points (3, 4) and (7, 4) are two points on a horizontal line. The slope of this line is zero because $m = \frac{4 4}{7 3} = \frac{0}{4} = 0$.
- 162) Answers may vary. One possibility: It is not specific enough. The slope of a horizontal line is 0, while the slope of a vertical line is undefined.
- 163) Answers may vary. One possibility: Let (a, b) and (a, c), $b \neq c$, be any two different points on a vertical line. The slope $\frac{y_1 y_2}{y_1 y_2} = \frac{b c}{b c} = \frac{b c}{b c}$ Division has some because in a defined.

of the line = $\frac{y_1 - y_2}{x_1 - x_2} = \frac{b - c}{a - a} = \frac{b - c}{0}$. Division by zero is undefined.

- 164) No. In the slope-intercept form of the equation of a line, x is multiplied by slope; however, the slope of a vertical line is undefined. (Explanations will vary.)
- 165) No, the data cannot be modeled by a linear equation because the reported cases are not increasing at a constant rate. Assume a linear equation, and examine the slope of the two line segments. The slope of the segment from (0, 372) to (8, 100,000) is 12,453.5 while the slope of the segment from (8, 100,000) to (11, 200,000) is 33,333.3.(Explanations will vary.)
- 166) Answers will vary. One possibility: The slope of the line through P₁ and P₂ is -2/3. The slope of the line through P₂ and P₃ is 3/2. Therefore, since the product of these slopes is -1, the lines are perpendicular and constitute a right angle in the triangle, making the triangle formed by these points a right triangle.