
Solution Manual for A Guide to MySQL 1st Edition by Pratt and

Last 1418836354 9781418836351

Full link download

Solution Manual

https://testbankpack.com/p/solution-manual-for-a-guide-to-mysql-1st-

edition-by-pratt-and-last-1418836354-9781418836351/

Solutions Manual for A Guide to MySQL 1st
Edition by Pratt and Last

Chapter 2

Database Design Fundamentals

Solutions

Answers to Review Questions

1. An entity is a person, place, thing, or event.

2. An attribute is a property of an entity.

3. A relationship is an association between tables (entities). A one-to-many
relationship between two tables is a relationship in which each row in the first table

can be associated with many rows in the second table, but each row in the second
table is associated with only one row in the first table.

4. A repeating group is multiple entries in a single location in a table.

5. A relation is a two-dimensional table in which the entries in the table are single-valued
(each location in the table contains a single entry), each column has a distinct name
(or attribute name), all values in a column are values of the same attribute, the order of
the rows and columns is immaterial, and each row contains unique values.

6. A relational database is a collection of relations.

7. For each table, you write the name of the table and then within parentheses list all of
the columns in the table. Underline the primary keys.

BRANCH (BRANCH_NUM, BRANCH_NAME, BRANCH_LOCATION, NUM_EMPLOYEES)

PUBLISHER (PUBLISHER_CODE, PUBLISHER_NAME, CITY)

AUTHOR (AUTHOR_NUM, AUTHOR_LAST, AUTHOR_FIRST)
BOOK (BOOK_CODE, TITLE, PUBLISHER_CODE, TYPE, PRICE, PAPERBACK)

WROTE (BOOK_CODE, AUTHOR_NUM, SEQUENCE)

INVENTORY (BOOK_CODE, BRANCH_NUM, ON_HAND)

https://testbankpack.com/p/solution-manual-for-a-guide-to-mysql-1st-edition-by-pratt-and-last-1418836354-9781418836351/
https://testbankpack.com/p/solution-manual-for-a-guide-to-mysql-1st-edition-by-pratt-and-last-1418836354-9781418836351/

8. To qualify the name of a field, indicate the table in which the field appears. You do
this by preceding the name of the field with the name of the table and a period.

9. A column (attribute), B, is functionally dependent on another column, A (or possibly
a collection of columns), if at any point in time a value for A determines a single value
for B.

10. Column A (or a collection of columns) is the primary key for a table if (1) All
columns in the table are functionally dependent on A and (2) No subcollection of the

columns in A (assuming A is a collection of columns and not just a single column)
also has property 1. The primary key of the BRANCH table is the BRANCH_NUM
column. The primary key of the PUBLISHER table is the PUBLISHER_CODE
column. The primary key of the AUTHOR table is the AUTHOR_NUM column. The
primary key of the BOOK table is the BOOK_CODE column. The primary key of the
WROTE table is the combination of the BOOK_CODE and AUTHOR_NUM
columns. The primary key of the INVENTORY table is the combination of the BOOK_CODE
and BRANCH_NUM columns.

11. Functional dependencies:

DEPARTMENT_NUM DEPARTMENT_NAME

ADVISOR_NUM
DESCRIPTION

ADVISOR_LAST_NAME, ADVISOR_FIRST_NAME, DEPARTMETNUM COURSE_CODE

STUDENT_NUM

STUDENT_LAST_NAME, STUDENT_FIRST_NAME, ADVISORNUM

STUDENT_NUM, COURSE_CODE

Relations:

GRADE

DEPARTMENT (DEPARTMENT_NUM, DEPARTMENT_NAME)

ADVISOR (ADVISOR_NUM, ADVISOR_LAST_NAME,

ADVISOR_FIRST_NAME, DEPARTMENT_NUM)
COURSE (COURSE_CODE, DESCRIPTION)

STUDENT (STUDENT_NUM, STUDENT_LAST_NAME,

STUDENT_FIRST_NAME, ADVISOR_NUM

STUDENT_COURSE (STUDENT_NUM, COURSE_CODE, GRADE)

Entity-Relationship diagram: (NOTE: Your rectangles may be in different
positions as long as they are connected by the same arrows.)

DEPARTMENT

ADVISOR

STUDENT STUDENT_COURSE COURSE

12. A table (relation) is in first normal form (1NF) if it does not contain repeating groups.

13. A table (relation) is in second normal form if it is in first normal form and no

nonkey column is dependent on only a portion of the primary key. If a table is not in
second normal form, the table contains redundancy, which leads to a variety of

update anomalies. A change in a value can require not just one change, but several.
There is the possibility of inconsistent data. Adding additional data to the database

may not be possible without creating artificial values for part of the key. Finally,

deletions of certain items can result in inadvertently deleting crucial information
from the database.

14. A table is in third normal form if it is in second normal form and if the only

determinants it contains are candidate keys. A change in a value can require not just
one change, but several. There is the possibility of inconsistent data. Adding certain
additional data to the database may not be possible without creating artificial rows in
the table. Finally, deletions of certain items can result in inadvertently deleting
crucial information from the database.

15.

STUDENT (STUDENT_NUM, STUDENT_LAST_NAME,
STUDENT_FIRST_NAME, ADVISOR_NUM)

ADVISOR (ADVISOR_NUM, ADVISOR_LAST_NAME, ADVISOR_FIRST_NAME)

COURSE (COURSE_CODE, DESCRIPTION)

STUDENT_COURSE (STUDENT_NUM, COURSE_CODE, GRADE)

Answers to Premiere Products Exercises

1. NOTES: The CUSTOMER_REP table in the following lists implements the
relationship between customers and reps. If customer 148, for example, is represented
by both rep 20 and rep 35, there would be a row in the table in which the customer
number is 148 and the rep number is 20 as well as a row in which the customer
number is 148 and the rep number is 35. A row would only be allowed in the order

table if the combination of the customer number and the rep number match a row in
the CUSTOMER_REP table.

REP (REP_NUM, LAST_NAME, FIRST_NAME, STREET,

CITY, STATE, ZIP, COMMISSION, RATE)
CUSTOMER (CUSTOMER_NUM, CUSTOMER_NAME, STREET,

CITY, STATE, ZIP, BALANCE, CREDIT_LIMIT)
CUSTOMER_REP (CUSTOMER_NUM, REP_NUM)
ORDERS (ORDER_NUM, ORDER_DATE, CUSTOMER_NUM, REP_NUM)
ORDER_LINE (ORDER_NUM, PART_NUM, NUM_ORDERED,

QUOTED_PRICE)
PART (PART_NUM, DESCRIPTION, ON_HAND, CLASS,

WAREHOUSE, PRICE)

Indicate the changes that need to be made to the design of the Premiere Products database

to support the following: A customer is not necessarily represented by a single sales rep,
but can be represented by several sales reps. When a customer places an order, the sales
rep who gets the commission on the order must be one of the collection of sales reps who
represent the customer.

Relationships: There are one-to-many relationships from REP to
CUSTOMER_REP, CUSTOMER to CUSTOMER_REP, CUSTOMER_REP
to ORDERS, ORDERS to ORDER_LINE, and PART to ORDER_LINE.

Entity-Relationship diagram: (NOTE: Your rectangles may be in different
positions as long as they are connected by the same arrows.)

REP CUSTOMER

CUSTOMER_REP

ORDERS ORDER_LINE PART

2. NOTES: There is no relationship between customers and reps, so there is no

REP_NUM column in the CUSTOMER table nor is there an additional table like the

CUSTOMER_REP table in Exercise 1. A row can only exist in the ORDERS table if

the customer number matches a row in the CUSTOMER table and the rep number

matches a row in the REP table.
REP (REP_NUM, LAST_NAME, FIRST_NAME, STREET, CITY, STATE, ZIP,

COMMISSION, RATE)
CUSTOMER (CUSTOMER_NUM, CUSTOMER_NAME, STREET, CITY,

STATE, ZIP, BALANCE, CREDIT_LIMIT)

ORDERS (ORDER_NUM, ORDER_DATE, CUSTOMER_NUM, REP_NUM)
ORDER_LINE (ORDER_NUM, PART_NUM, NUM_ORDERED, QUOTED_PRICE)
PART (PART_NUM, DESCRIPTION, ON_HAND, CLASS, WAREHOUSE, PRICE)

Relationships: There are one-to-many relationships from REP to ORDERS,

CUSTOMER to ORDERS, ORDERS to ORDER_LINE, and PART to ORDER_LINE.

Entity-Relationship diagram: (NOTE: Your rectangles may be in different
positions as long as they are connected by the same arrows.)

REP CUSTOMER

ORDERS ORDER_LINE PART

3. NOTES: The WAREHOUSE_NUM and ON_HAND columns do not appear in the

PART table. There is a WAREHOUSE table, whose key is WAREHOUSE_NUM and

which contains the warehouse description. Information about units on hand is stored in a

new table, the PART_WAREHOUSE table, whose key is the combination of the part
number and warehouse number. If there are 10 units of part AT94 on hand in warehouse
2, for example, there would be a row in PART_WAREHOUSE on which the part
number is AT94, the warehouse number is 2, and the number of units on hand is 10.

REP (REP_NUM, LAST_NAME, FIRST_NAME, STREET, CITY, STATE, ZIP,

COMMISSION, RATE)

CUSTOMER (CUSTOMER_NUM, CUSTOMER_ NAME, STREET, CITY,
STATE, ZIP, BALANCE, CREDIT_LIMIT, REP_NUM)

ORDERS (ORDER_NUM, ORDER_DATE, CUSTOMER_NUM)
ORDER_LINE (ORDER_NUM, PART_NUM, NUM_ORDERED, QUOTED_PRICE)
PART (PART_NUM, DESCRIPTION, CLASS, PRICE)
WAREHOUSE (WAREHOUSE_NUM, WAREHOUSE_DESCRIPTION)
PART_WAREHOUSE (PART_NUM, WAREHOUSE_NUM, ON_HAND)

Relationships: There are one-to-many relationships from REP to CUSTOMER,
CUSTOMER to ORDERS, ORDERS to ORDER_LINE, PART to ORDER_LINE,
PART to PART_WAREHOUSE, and WAREHOUSE to PART_WAREHOUSE.

Entity-Relationship diagram: (NOTE: Your rectangles may be in different
positions as long as they are connected by the same arrows.)

REP

CUSTOMER

ORDERS ORDER_LINE PART WAREHOUSE

PART_WAREHOUSE

4. Functional Dependencies:

PART_NUM DESCRIPTION, ON_HAND, CLASS, WAREHOUSE, PRICE ORDER_NUM

ORDER_DATE, CUSTOMER_NUM CUSTOMER_NUM

CUSTOMER_NAME

PART_NUM, ORDER_NUM

Relations:
NUM_ORDERED, QUOTED_PRICE

PART (PART_NUM, DESCRIPTION, ON_HAND, CLASS, WAREHOUSE, PRICE)
ORDERS (ORDER_NUM, ORDER_DATE, CUSTOMER_NUM)

CUSTOMER (CUSTOMER_NUM, CUSTOMER_NAME)
ORDER_LINE (PART_NUM, ORDER_NUM, NUM_ORDERED, QUOTED_PRICE)

NOTE: The keys for ORDER_LINE could also have been listed
as ORDER_NUM, PART_NUM.

Answers to Henry Books Exercises

1. Tables (Relations):

DIRECTOR (DIRECTOR_NUM, DIRECTOR_NAME, YEAR_BORN, YEAR_DIED)

MOVIE (MOVIE_NUM, MOVIE_TITLE, YEAR_MADE, TYPE, DIRECTOR_NUM,

CRITICS_RATING, MPAA_RATING, NUM_AWARDS_NOM, NUM_AWARDS_WON)

STAR (STAR_NUM, STAR_NAME, BIRTHPLACE, YEAR_BORN, YEAR_DIED)

MOVIE_STAR (MOVIE_NUM, STAR_NUM)

Relationships: There are one-to-many relationships from DIRECTOR to MOVIE,
MOVIE to MOVIE_STAR, and STAR to MOVIE_STAR.

Entity-Relationship diagram: (NOTE: Your rectangles may be in different
positions as long as they are connected by the same arrows.)

DIRECTOR

MOVIE MOVIE_STAR STAR

2. Functional Dependencies:

BOOK_CODE

AUTHOR_NUM

TITLE, TYPE, PRICE

AUTHOR_LAST, AUTHORSTFI

Tables (Relations):

BOOK (BOOK_CODE, TITLE, TYPE, PRICE)
AUTHOR (AUTHOR_NUM, AUTHOR_LAST, AUTHOR_FIRST))

BOOK_AUTHOR (BOOK_CODE, AUTHOR_NUM)

NOTE: The BOOK_AUTHOR relation is necessary to relate books and authors. (You
could have assigned it any name you like.) The key could have been listed as
AUTHOR_NUM, BOOK_CODE rather than BOOK_CODE, AUTHOR_NUM.

3. Functional Dependencies:

BOOK_CODE TITLE, TYPE, PRICE, PUBCODE

PUB_CODE

PUBLISHER_NAME, CITY

Tables (Relations):

BOOK (BOOK_CODE, TITLE, TYPE, PRICE, PUB_CODE)

PUBLISHER (PUB_CODE, PUBLISHER_NAME, CITY)

Answers to Alexamara Marina Group Exercises

1. NOTES: There are two ways to handle the MARINA_SLIP table, the table that

contains information about the slips within each marina. You can add a column to
identify each slip, for example SLIP_ID (see Figure 1.10 for an illustration of the use

of this column). Alternatively, you could do without this column by making the
primary key the combination of the marina number and the slip number. (If the

SLIP_ID column were missing from Figure 1.10, the primary key would be the
combination of the MARINA_NUM and SLIP_NUM columns.) Both approaches are

legitimate and are illustrated below.

Tables (Relations):

Option 1 (With SlipID added as a unique identifier for MARINA_SLIP):

MARINA (MARINA_NUM, NAME, ADDRESS, CITY, STATE, ZIP)

OWNER (OWNER_NUM, LAST_NAME, FIRST_NAME, ADDRESS, CITY, STATE, ZIP)

MARINA_SLIP (SLIP_ID, MARINA_NUM, SLIP_NUM, LENGTH, RENTAL_FEE,

BOAT_NAME, BOAT_TYPE, OWNER_NUM)

SERVICE_CATEGORY (CATEGORY_NUM, CATEGORY_DESCRIPTION)

SERVICE_REQUEST (SERVICE_ID, SLIP_ID, CATEGORY_NUM, DESCRIPTION,

STATUS, EST_HOURS, SPENT_HOURS, NEXT_SERVICE_DATE)

Option 2 (Without SlipID):

MARINA (MARINA_NUM, NAME, ADDRESS, CITY, STATE, ZIP)

OWNER (OWNER_NUM, LAST_NAME, FIRST_NAME, ADDRESS, CITY, STATE, ZIP)

MARINA_SLIP (MARINA_NUM, SLIP_NUM, LENGTH, RENTAL_FEE, BOAT_NAME,

BOAT_TYPE, OWNER_NUM)
SERVICE_CATEGORY (CATEGORY_NUM, CATEGORY_DESCRIPTION)

SERVICE_REQUEST (SERVICE_ID, MARINA_NUM, SLIP_NUM,

CATEGORY_NUM, DESCRIPTION, STATUS, EST_HOURS,

SPENT_HOURS, NEXT_SERVICE_DATE)

Relationships: There are one-to-many relationships from MARINA
to MARINA_SLIP, OWNER to MARINA_SLIP, SERVICE_CATEGORY
to SERVICE_REQUEST, and MARINA_SLIP to SERVICE_REQUEST.

Entity-Relationship diagram: (NOTE: Your rectangles may be in different
positions as long as they are connected by the same arrows.)

MARINA OWNER

MARINA_SLIP SERVICE_CATEGORY

SERVICE_REQUEST

2. Functional Dependencies:

MARINA_NUM NAME

MARINA_NUM, SLIP_NUM LENGTH, RENTAL_FEE, BOAT_NAME

Tables (Relations):

MARINA (MARINA_NUM, NAME)

MARINA_SLIP (MARINA_NUM, SLIP_NUM, LENGTH, RENTAL_FEE, BOAT_NAME)

3. Functional Dependencies:

ID MARINA_NUM, SLIP_NUM, LENGTH, RENTAL_FEE, BOATNAME,
BOAT_TYPE, OWNER_NUM, LAST_NAME, FIRST_NAME

OWNER_NUM LAST_NAME, FIRST_NAME

Tables (Relations):

MARINA_SLIP (ID, MARINA_NUM, SLIP_NUM, LENGTH,

RENTAL_FEE, BOAT_NAME, BOAT_TYPE, OWNER_NUM)

OWNER (OWNER_NUM, LAST_NAME, FIRST_NAME)

2-1

Chapter 2

Database Design Fundamentals

 At a Glance

Table of Contents

 Overview

 Objectives

 Teaching Tips

 Instructor Notes

 Quick Quizzes

 Classroom Activities

 Discussion Questions

 Projects to Assign

 Key Terms

2-2

 Lecture Notes

Overview
In this chapter, students learn about database design. Students examine the important concepts
related to databases. They learn how to identify tables and columns and how to identify the
relationships between the tables. Students learn how to produce an appropriate database
design for a given set of requirements. They examine the process of normalization, a process
that identifies and fixes potential problems in a database design. Finally, students learn how to
represent a database design in a visual manner.

Chapter Objectives
 Understand the terms entity, attribute, and relationship

 Understand the terms relation and relational database

 Understand functional dependencies and be able to identify when one column

is functionally dependent of another

 Understand the term primary key and identify primary keys in tables

 Design a database to satisfy a set of requirements

 Convert an unnormalized relation to first normal form

 Convert tables from first normal form to second normal form

 Convert tables from second normal form to third normal form

 Create an entity-relationship diagram to represent the design of a database

2-3

 This chapter does not need to be covered in sequence. It can be covered
later in the course. If you are using a textbook such as Pratt and Adamski’s

 Concepts of Database Management, Fifth Edition, you may want to skip this
 chapter entirely.

Teaching
Tips

 Be prepared to spend considerable class time on this chapter. The material
is complex and it is important that students understand all the concepts
presented. The best way for students to learn the material is to work through

 lots of examples. Use the embedded questions that are included throughout
 the chapter to test students’ understanding.

 Encourage students to bring their texts with them to class so they can
 review the examples.

 Use the review questions and exercises at the end of the chapter as in-class
 exercises. Work through some of the assignments with the class and assign
 groups of students to work on others. Students really benefit from working
 through the exercises in a group.

 Point out that normalization is a technique that allows us to analyze the
 design of a relational database to see whether it is bad. It alerts us to update
 anomalies and provides a method for correcting those problems. The goal of
 normalization is to start with a table or collection of tables and produce a
 new collection of tables that is equivalent (represents the same information)
 but is free of problems.

 For more information on the database concepts presented in this chapter,
 see http://www.service-architecture.com/database/articles/. In addition, the
 Pratt and Adamski’s text published by Course Technology is an excellent
 textbook to use with this textbook for a course requiring that students learn
 both concepts and MySQL.

Instructor Notes

Introduction
The process of determining the particular tables and columns that will comprise a database is
known as database design. This chapter identifies the concepts and techniques that students
need to design databases that are free of potential problems.

Database Concepts
Before learning how to design a database, you need to be familiar with some
important database concepts. This section explains these concepts.

http://www.service-architecture.com/database/articles/

2-4

Relational Databases
A relational database is a collection of tables. Formally, tables are called relations. Use Figure
2-1 to emphasize that the Premiere Products database is a collection of tables. Review the Note
on page 28.

Entities, Attributes, and Relationships
Define and discuss the database terms: entity, attribute, and relationship. An entity is a
person, place, object, event, or idea for which you want to store and process data. The entities
of interest to Premiere Products are customers, orders, parts, and sales reps.

An attribute is a characteristic or property of an entity. The terms column and field are used as
synonyms in many database systems. For Premiere Products, the attributes of interest for the
entity “customer” are such things as customer name, street, city, and so on.

Define relationship and one-to-many relationship. A relationship is an association between
entities. There is a one-to-many relationship between sales reps and customers in the Premiere

Products database. One sales rep represents many customers but each customer is associated
with only one sales rep.

In a relational database, each entity has its own tables and the attributes of the entity are
columns in the table. A one-to-many relationship is handled by using common columns in
the two tables.

A relation is a two-dimensional table with specific properties. These properties include:

 Entries in the table are single-valued.

 Each column has a distinct name.

 All values in a column are values of the same attribute.

 The order of the columns is immaterial.

 Each row is distinct.

 The order of the rows is immaterial.

If a structure contains entries that are not single-valued (repeating groups occur), then the
structure is called an unnormalized relation. Use Figure 2-2 to discuss repeating groups. Use
Figure 2-3 to discuss the six properties of a relation. See the Note on page 31. Mention that the
formal term for a table is relation, and the formal term for a row is tuple. A row also is called a
record. Columns in a table are also called fields or attributes.

DBDL (Database Definition Language) is a commonly accepted shorthand notation for

showing the structure of a table. After the name of the table, all the columns in the table are

listed within a set of parentheses. While each column in a table has a distinct name, the same
column name can be used in more than one table within the same database. When two or more

tables in a database use the same column name, qualify the column name, that is, combine the
table name and the column name.

2-5

Quick Quizzes
1. A(n) is a person, place, object, event, or idea for which you want to store and process

data.

Answer: entity

2. A(n) is a characteristic or property of an entity.

Answer: attribute

3. A(n) is the association between entities.

Answer: relationship

Functional Dependence
Functional dependence is a formal name for what is a simple idea. In a relational database,
column B, is functionally dependent on another column A (or possibly a collection of

columns), if a value for A determines a single value for B at any one time. Another way of

defining functional dependence is to say that A functionally determines B. Use Figure 2-4 to
explain functional dependence. Make sure that students understand what functional

dependence is before proceeding, or they will be lost for the remainder of the chapter. Review
the embedded Questions and Answers on pages 32 and 33.

Use Figures 2-5 and 2-6 to point out that you cannot determine functional dependencies by
looking at sample data. You must understand the users’ policies.

Primary Keys
To make each row distinct, one or more columns must uniquely identify a given row in a table.
This column or collection of columns is called the primary key.

A more precise definition for a primary key is the following:

Column (attribute) A (or a collection of columns) is the primary key for a table (relation),
R, if:

Property 1: All columns in R are functionally dependent on A.

Property 2: No subcollection of the columns in A (assuming that A is a collection
of columns and not just a single column) also has Property 1.

Review the embedded Questions and Answers on pages 34 and 35 to make sure students
understand the concept of a primary key. Explain that when using the shorthand
representation of a database, the primary key is underlined.

Discuss the three Notes on page 36. Point out that a candidate key is a column or collection
of columns on which all columns in the table are functionally dependent. The definition for a
primary key really defines a candidate key as well. If two or more columns in a table are
identified as candidate keys, choose one to be the primary key. The decision is usually base on
the specific application for which the database will be used.

2-6

Quick Quizzes
1. A(n) is a two-dimensional table.

Answer: relation

2. In the simplest terms, a(n) is the unique identifier for a table.

Answer: primary key

3. occur when there are multiple entries in an individual location in a
table. Answer: Repeating groups

Database Design
This section presents a specific method for designing a database, given a set of requirements
that the database must support. The determination of the requirements is part of the process
known as systems analysis. For more information on how to elicit database requirements,
see Pratt and Adamski’s Concepts of Database Management, Fifth Edition.

Design Method
Review the design steps given in this section. Use Figure 2-1 as a visual aid as you explain
each of these steps and ask the students to identify the items listed in the steps.

To design a database for a set of requirements:

1. Read the requirements, identify the entities (objects) involved, and name the entities.

2. Identify the unique identifiers for the entities identified in step 1.

3. Identify the attributes for all the entities.
4. Identify the functional dependencies that exist among the attributes.
5. Use the functional dependencies to identify the tables by placing each attribute with the

attribute or minimum combination of attributes on which it is functionally dependent.

6. Identify any relationships between tables.

Database Design Requirements
This section reviews the requirements that the database for Premiere Products must support.
The database must store specific data about sales reps, customers, parts, orders, and order
lines. Additionally, there are certain constraints, such as, “there is only one customer per
order” that the database must enforce. Again, use Figure 2-1 to illustrate the requirements. You
also can refer to Figure 1-1, which shows a sample order for Premiere Products.

Database Design Process Example
Once the requirements for a database are known, you can apply the six steps given in the
Design Method section on pages 36 and 37 to produce the appropriate database design: This
section gives an example of using the six steps to create a database design for Premiere
Products. Be sure to point out the functional dependencies discussed in step 4. It is in this step
that students often have trouble. Review the embedded Questions and Answers on pages 41
and 42.

2-7

Normalization
Stress that database design is an iterative process. Once you create an initial database design,
you must analyze it for potential problems. Normalization is process in which you identify the

existence of potential problems such as data duplication and redundancy, and implement ways

to correct these problems. The goal of normalization is to convert unnormalized relations into

various types of normal forms. An unnormalized relation is a relation (table) that contains a

repeating group. A table in a particular normal form possesses a certain desirable collections

of properties. Normalization is a process in which a table that is in first normal form is better

than a table that is not in first normal form, a table in second normal form is better than a table

in first normal form and so on. The goal of normalization is to take an initial collection of

tables and produce a new collection of tables that represents the same information but is free

of problems.

First Normal Form
An unnormalized relation is a relation (table) that contains a repeating group. A table
(relation) is in first normal form (1NF) if it does not contain repeating groups. Use Figures 2-
7 and 2-8 to explain converting an unnormalized table to 1NF. In general, when converting a
non-first normal form table to first normal form, the primary key usually will include the
original primary key concatenated with the key to the repeating group.

Second Normal Form
Use Figure 2-9 to illustrate a relation that is in first normal form but not in second normal form.
Point out the redundancy, that is, duplication of data in Figure 2-9. This duplication can cause
update anomalies. Update anomalies fall into four categories:

Update Instead of changing one row, it is necessary to update multiple rows.

Inconsistent
data

If the same value appears in more than one row, for example, part
description, an update could change one row without changing the other
rows.

Additions Cannot add a record correctly.

Deletions Cannot delete a record correctly.

These anomalies occur when a column is dependent on only a portion of the primary key.
Emphasize the fact that much real-world data (including relational data) are not well
structured and have update anomalies.

Second normal form eliminates update anomalies caused by partial dependencies. A table

(relation) is in second normal form (2NF) if it is in first normal form and no nonkey column is

dependent on only a portion of the primary key. A column is a nonkey column if it is not a
part of the primary key. Point out again that you cannot determine functional dependence by

looking at sample data. Use Figure 2-10 to explain converting to 2NF. Mention the Note on
page 47. If a relation has a single-column primary key , it automatically is in 2NF.

2-8

Third Normal Form
Relations that are in 2NF can still cause potential problems. Use Figure 2-11 to illustrate update
anomalies with a table in 2NF. Any column or collection of columns that determines another

column is called a determinant. A candidate key is a column or collection of columns that
could function as the primary key. Update anomalies also can occur when one nonkey column

determines another nonkey column. A table (relation) is in third normal form (3NF) if it is in
second normal form and the only determinants it contains are candidate keys. Use Figure 5.11
to review the dependencies in the Customer table. Use Figure 2-12 to explain converting to
3NF. Show students how each progressive normal form solves update problems of the previous
normal form. Mention the Note on page 50. The definition used in this text for 3NF is really the
definition for Boyce-Codd normal form (BCNF). Review the embedded Question and
Answer on page 53.

Quick Quizzes
1. A relation is in normal form if no repeating groups exist.

Answer: first

2. If the primary key of a relation contains only a single column, then the relation is

automatically in normal form.
Answer: second

3. Any column (or collection of columns) that determines another column is called a(n)

 .

Answer: determinant

Diagrams for Database Design
There is an old adage that “a picture is worth a thousand words.” For many people, a database

design is easier to understand if it is depicted in graphical form. One graphical model for

representing a database design is the entity-relationship (E-R) diagram. In and E-R diagram, a

rectangle represents an entity or table. One-to-many relationships between entities are drawn as

lines between the corresponding rectangles. There are several different styles of E-R diagrams.

Use Figures 2-13 through 2-15 to illustrate the different styles of E-R diagrams.

Classroom Activities
Ask students for other examples of relations (tables) that could have more than one candidate
key. Some examples are: state data that contain both state abbreviation and state name; and
inventory data that contain both a tag number and a serial number.

Discussion Questions
Have students read the second Note on page 36. Ask them how they feel about using social
security number as a primary key? Also, ask them for additional databases where social
security number is being used as a primary key other than banks and places of employment.
Some examples are: insurance company, doctor’s office, dentist’s office.

2-9

Projects to Assign
Place students in teams. Have them design a database to meet the requirements for a student
activity database. The database must keep track of information about the student as well as
the student's participation in campus activities Attributes such as number of years in activity
as well as any office held are important. A student may engage in more than one activity.

Key Terms
attribute : A characteristic or property of an entity

Boyce-Codd normal form (BCNF): A relation is in Boyce-Codd normal form if it is in
second normal form and the only determinants it contains are candidate keys; also
called third normal form
candidate key: A minimal collection of columns in a table

concatenation: A combination of columns

database design: Process of determining the particular tables and columns that will comprise a
database

determinant: A column in a table that determines at least one other column

entity : A person, place, object, event, or idea for which you want to store and process data

entity-relationship (E-R) diagram: A graphical illustration for database design that uses rectangles
for entities and arrows for relationships

field : An attribute

first normal form (1NF): A table that does not contain any repeating groups

functionally dependent: Column B is functionally dependent on column A (or on a collection of
columns) if a value for A determines a single values for B at any one time

functionally determines: Column A functionally determines column B if B is functionally
dependent on A

nonkey column: A column that is not part of the primary key

normal form: A progression that proceeds from first normal form to second normal form
to third normal form. A table in a particular normal form possesses a certain desirable
collection of properties.

normalization: A process that analyzes a database design to identify the existence of
potential problems and implements ways to correct these problems

one-to-many relationship: A relationship in which one entity is associated with many other
entities

primary key : The column or collection of columns that uniquely identifies a given row in a table

qualify: To combine a column name with a table name

record : A row in a table

redundancy: Duplication of data

relation : A two dimensional table in which the entries are single valued; each column has
a distinct name (or attribute name); all values in a column are values of the same attribute;
the order of the rows and columns is immaterial; and each row contains unique values
relational database : A collection of relations

relationship : The association between entities

repeating group : Multiple entries in an individual location in a table

second normal form (2NF): A table that is in first normal form and where no nonkey column is
dependent on only a portion of the primary key

2-10

third normal form (3NF): A table that is in second normal form and the only determinants are
candidate keys
tuple : A row in a table

unnormalized relation: A table that satisfies the definition of a relation except that they might
contain repeating groups

update anomaly: An update problem that can occur in a database as a result of a faulty design

