
3  

2 

+ 

2. 

 

 

Solution Manual for Fundamentals of Communication Systems 2nd Edition by 

Proakis Salehi ISBN 0133354857 9780133354850 
 

Full link download 

Solution Manual 

https://testbankpack.com/p/solution-manual-for-fundamentals-of-

communication-systems-2nd-edition-by-proakis-salehi-isbn-

0133354857-9780133354850/ 

 

 

Chapter 2 
 
 

 
 

 

Problem 2.1 
 
 

1.  Π (2t + 5) =  Π 
 

2 

  
5 
  

 
+ 

 

This indicates first we have to plot Π(2t) and then shift it to left
t    

2     
.

by 
5 
. A plot is shown below:  

 
Π (2t   5) 
✻

 

1 

 

✲ t 
11        9

 
P∞ 

n=0 

− 
4     

− 
4 

 

Λ(t − n) is a sum of shifted triangular pulses.  Note that the sum of the left and right

side of triangular pulses that are displaced by one unit of time is equal to 1, The plot is given 

below 

x2(t) ✻ 
 

 

1 
✲ t 

−1 
 

 

3. It is obvious from the definition of sgn(t) that sgn(2t) = sgn(t). Therefore x3(t) = 0. 
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4. x4(t) is sinc(t) contracted by a factor of 10. 
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Problem 2.2 
 

 
 

1. x[n] = sinc(3n/9) = sinc(n/3). 
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2. x[n] = Π 

n 
4 
−    

. If − 
1 

≤ 
n −1 

3 

 

≤ 
2 
, i.e., −2 ≤ n ≤ 10, we have x[n] = 1.
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3. x[n] = n u
 

(n/4) − ( n − 1)u
 

(n/4 − 1). For n < 0, x[n] = 0, for 0 ≤ n ≤ 3, x[n] =  n 
and

4    −1 4              −1                                                                                                                 4

for n ≥ 4, x[n] = n − n + 1 = 1. 4      4
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Problem 2.3 
x1[n] = 1 and x2[n] = cos(2π n) = 1, for all n. This shows that two signals can be different but 

their sampled versions be the same. 
 
 

 
 

 

Problem 2.4 

Let x1[n] and x2[n] be two periodic signals with periods N1  and N2, respectively, and let N  = 

LCM(N1, N2), and define x[n] = x1[n]+x2[n]. Then obviously x1[n+N] = x1[n] and x2[n+N] = 

x2[n], and hence x[n] = x[n + N], i.e., x[n] is periodic with period N . 

For continuous-time signals x1(t) and x2(t) with periods T1 and T2 respectively, in general we cannot find a T 

such that T = k1T1  = k2T2  for integers k1  and k2.  This is obvious for instance if T1 = 1 and T2 = π . The necessary 

and sufficient condition for the sum to be periodic is that 
T1  be a 

rational number. 
 
 

 
 

 

Problem 2.5 
Using the result of problem 2.4 we have: 

 
1. The frequencies are 2000 and 5500, their ratio (and therefore the ratio of the periods) is rational, hence the 

sum is periodic. 

 

2. The frequencies are 2000 and 
5500 

. Their ratio is not rational, hence the sum is not periodic. 

 
3. The sum of two periodic discrete-time signal is periodic.
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⇒ 

t 

−t 

t 

t 

⇒ 

⇒ 

⇒ 

 

 
= 

4. The fist signal is periodic but cos[11000n]  is not periodic, since there is no N  such that cos[11000(n + 

N)] = cos(11000n) for all n. Therefore the sum cannot be periodic. 

 
 

 
 

Problem 2.6 
1) 

 

 

 

 
x1(t) = 

 

 
 
 

e−t     t > 0 

−et     t < 0 

0     t = 0 

 

 

 

 
=            x1(−t) = 

 
 

 
 
 

−e−t     t > 0 

et       t < 0 

0      t = 0 

 

 
 
 
 

= −x1(t)

 

Thus, x1(t) is an odd signal

2) x2(t) = cos 
  

20π t + 
π 

  
is neither even nor odd. We have cos 

 
120π t + 

π 
  

= cos 

 
π 

  
cos(120π t)−1             

3                                                                                                     3                    3 

sin 
 

π 
  

sin(120π t).  Therefore x2e(t) =  cos 
 

π 
  

cos(120π t) and x2o(t) =  − sin 
 

π 
  

sin(120π t).
 

3                                                                                      3                                                                           3 

(Note: This part can also be considered as a special case of part 7 of this problem) 

3)

x3(t) = e−|t|   = x3(−t) = e−|(−t)|  = e−|t|  = x3(t)

 

Hence, the signal x3(t) is even. 

4) 
 

 
x4(t) = 

 

 

 
 
 

t   t ≥ 0 

0   t < 0 

 

 
 

 
=            x4(−t) = 

 

 

 
 
 

0    t ≥ 0 

−t  t < 0

 

The signal x4(t) is neither even nor odd. The even part of the signal is
 

 
x4,e(t) = 

 

x4(t) + x4(−t)      

2            
=

 
 

 

2      
t ≥ 0 

2      
t < 0 

 

 

|t| 
=   

2

The odd part is 
 

 
 
 
 

5) 

 

 
 

x4,o(t) = 

 

x4(t) − x4(−t)      

2            
=

 
 

 

 

2    
t ≥ 0       t 

2    
t < 0       2

x5(t) = x1(t) − x2(t) = x5(−t) = x1(−t) − x2(−t) = x1(t) + x2(t)

 

Clearly x5(−t) ≠ x5(t) since otherwise x2(t) = 0 ∀t.  Similarly x5(−t) ≠ −x5(t) since otherwise 

x1(t) = 0 ∀t. The even and the odd parts of x5(t) are given by 
 

x5(t) + x5(−t)
x5,e(t)   = 

 

x5,o(t)   = 

2            
= x1(t) 

x5(t) − x5(−t) 

2            
= −x2(t)
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1                  
T 

1 

= 

2                  
T 

=   
2 

= 

= 

= 

= 

= 

1 

  

2 8 

= 

2 

Problem 2.7 

For the first two questions we will need the integral I = 
R 
eax cos2 xdx.

I       
1 

Z 

cos2 

a 

 

x deax
 

 

1  ax 
= 

a 
e
 

 

cos2
 

1 
Z 

x + 
a 

 

eax 

 

sin 2x dx

1 
eax 

a 

 

cos2
 

1  
Z
 

x + 
a2 sin 2x deax

1 
eax 

a 
1  ax

 

 

cos2
 

 
2

 

1   ax 
x + 

a2 
e
 

1   ax
 

2  
Z
 

sin 2x − 
a2 

2  
Z 

eax 

ax 

 

cos 2x dx 
 

2

e 
a 
1  ax

 

cos 

 
2

 

x + 
a2 

e
 

1   ax
 

sin 2x − 
a2

 

2  
Z 

e   (2 cos 
 
ax

 

x − 1) dx 
 

4

 

 
Thus, 

e    cos 
a 

x + 
a2 

e
 

sin 2x − 
a2    

e
 

dx − 
a2 

I

1                 2                              2 
   

axI = 
4 + a2 

(a cos x + sin 2x) + 
a  

e

 
1)

 
T Z 
2 

Ex     =   lim     
T 

T →∞  − 
2 

 
T Z 
2 

x2(t)dx =  lim 
→∞     0 

 

 

e−2t cos2 tdt 
 

T
 

=   lim
 h

(−2 cos2 t + sin 2t) −   
i 

  
2 

e−2t
 

 

T →∞ 8                                               
  

0 

1 
                

T                                      3
lim 

T →∞  8 
(−2 cos2

 + sin T − 1)e−T  + 3   =

 

Thus x1(t) is an energy-type signal and the energy content is 3/8 

 
2)

 

 

Ex     =   lim 
T →∞ 

 
T Z 
2 

 

T − 
2 

Z 0 

 
T Z 
2 

x2(t)dx    lim 
T →∞  − 
2 

T Z 
2

 

 

 

e−2t cos2 tdt 

=   lim  
T →∞ 

e−2t cos2 tdt 
T − 
2 

e−2t cos2 tdt  
0

But, 

Z 0 

 

 

1 h                                   i    0

lim 
T →∞ 

e−2t 
cos

2 tdt          lim 
− T                                                    T →∞  8 

(−2 cos
2 t + sin 2t) − 1 e−2t

 
  
− 

T



1
0 

 

+ 

T 

2 

 

=   lim 
1 
  

−3 + (2 cos
2 

 

+ 1 + sin T )eT    = ∞

T →∞ 8                        2 
 

since 2 + cos θ + sin θ > 0. Thus, Ex  = ∞ since as we have seen from the first question the second integral is bounded.   

Hence, the signal x2(t) is not an energy-type signal.   To test if x2(t) is a power-type signal we find Px.
 

 

Px  = lim 1 
Z 0 

 

 

e−2t cos2 dt +  lim 

 
T 

1 
Z 

2 

 

 

e−2t cos2 dt

T →∞ T   − 
T

 T →∞ T   0



1
1 

 

→∞  T 

3                  
T 

1 

k− 

T 

2 

= 
2 

2 

2 

2 

2 
2 

1 

2 

T 

2 

T 

2 

T 

But limT        
1 

R 
2 

 

e−2t 
 

cos2 
 

dt is zero and

0 
 

 
lim 

 

1 
Z 0 

 
 

e−2t cos2 dt   =     lim 

 

 
1  
  

2 cos
2 

 
 

+ 1 + sin T  eT

T →∞ T   − T T →∞ 8T              2 

1                 1

>    lim 
T →∞  T 

Thus the signal x2(t) is not a power-type signal. 

 
3) 

eT > lim 
T →∞  T 

(1 + T + T 2) > lim T = ∞ 
T →∞

 
T Z 
2 

Ex     =   lim     
T 

T →∞  − 
2 

 
T Z 
2 

x2(t)dx    lim 
T →∞  − 
2 

T 

 
T Z 
2 

sgn2(t)dt =  lim 
T →∞  − T 

T 

 

 

dt = lim T = ∞ 
T →∞

 

Px     =     lim 1 
Z 

2 
 

sgn2(t)dt =  lim 
1 

Z 
2 

 

dt =  lim 1 
T = 1

T →∞ T   − T T →∞ T   − T T →∞  T

 

The signal x3(t) is of the power-type and the power content is 1. 

 
4) 

First note that
 

 
 
 
 

so that 

 

T Z 
2 

lim 
T →∞  − T 

 

 

A cos(2π f t)dt = 

 
∞ X 

 

k=−∞ 

Z k+ 
2f 

A 
1 

2f 

 

 

cos(2π f t)dt = 0

 

T Z 
2 

lim 

 

 

A2 cos2(2π f t)dt  =     lim 

 

T 

1 
Z 

2 

 

 

(A2 + A2 cos(2π 2f t))dt

T →∞  − T T →∞ 2  − T 

T

 

=   lim 1 
Z 

2 
 

A2dt =  lim 
 

A2T = ∞

T →∞ 2  − T T →∞  2

 

 

Ex     =   lim 
T →∞ 

T Z 
2 

(A2 cos2(2π f1t) + B2 cos2(2π f2t) + 2AB cos(2π f1t) cos(2π f2t))dt 
− 

2 

T                                                                             T Z 
2                                                                           

Z 
2

=   lim 
T →∞ 

A2 cos2(2π f1t)dt +  lim 
− T                                                          T →∞ 

T 

B2 cos2(2π f2t)dt + 
− 

2

Z 
2 

AB lim 
T →∞  − T 

 

[cos2(2π (f1 + f2) + cos2(2π (f1 − f2)]dt

=   ∞ + ∞ + 0 = ∞ 
 



1
2 

 

= + 
1 

+ 

Thus the signal is not of the energy-type. To test if the signal is of the power-type we consider two cases f1 = f2  and 

f1 ≠ f2. In the first case

 
Px     =   lim 

T 

1 
Z 

2 
 
(A + B)2 cos2(2π f1)dt

T →∞  T 
 

1 
lim 
T →∞ 2T 

T − 
2 

T Z 
2 

(A   B)2
 

T − 
2 

 

 

dt = 

 

 
(A   B)2 

2



1
3 

 

2 

2 

2 

1 

2 
2 

2 

If f1 ≠ f2  then
 

 

Px     =     lim 

 
T 

1 
Z 

2 

 

 

(A2 cos2(2π f1t) + B2 cos2(2π f2t) + 2AB cos(2π f1t) cos(2π f2t))dt

T →∞ T   − 
T

 
=     lim 1 

" 
A2T 

+ B
2T 

#
 
= 

A2       B2
 

+

T →∞ T      2         2           2       2 
 

Thus the signal is of the power-type and if f1  = f2  the power content is (A + B)2/2 whereas if 

f1 ≠ f2  the power content is 
1 (A2 + B2) 

 
 
 

 

 

Problem 2.8 
 

1. Let x(t) = 2Λ 
  

t 
  

− Λ(t), then x1(t) = 
P∞ 

 

x(t − 4n). First we plot x(t) then by shifting
2                                                    n=−∞ 

it by multiples of 4 we can plot x1(t).  x(t) is a triangular pulse of width 4 and height 2 

from which a standard triangular pulse of width 1 and height 1 is subtracted. The result is a trapezoidal pulse, 

which when replicated at intervals of 4 gives the plot of x1(t). 

x1(t) ✻ 

 
1 

✲ t 
−6               −2                2                 6 

 

 

2. This is the sum of two periodic signals with periods 2π and 1.  Since the ratio of the two periods is not 

rational the sum is not periodic (by the result of problem 2.4) 
 

3. sin[n] is not periodic. There is no integer N such that sin[n + N] = sin[n] for all n. 
 
 
 

 

Problem 2.9 
1) 

 

 
 
 

Px  =  lim 

 

 
 

T 

1 
Z 

2 

 
 

 
A2 

 
ej(2π f0 t+θ)

 
 

 

 
 
 

dt =  lim 

 

 
 

T 

1 
Z 

2 

 

 
 
 

A2dt =  lim 

 

 
 
 

A2T = A2

T →∞ T   −T
 T →∞ T   −T

 T →∞  T

Thus x(t) = Aej(2π f0 t+θ) is a power-type signal and its power content is A2. 

 
2)

 

 

Px  =  lim 

 
T 

1 
Z 

2 

 

 

A2 cos2(2π f0t + θ) dt =  lim 

 
T 

1 
Z 

2 

 
A2 

dt +  lim 

 
T 

1 
Z 

2 

 
A2 

cos(4π f0t + 2θ) dt

T →∞ T   −T
 T →∞  T 

−T     2 
2 

T →∞  T 
−T     2 

2



1
1 

 

2 

2 

 

As T → ∞, the there will be no contribution by the second integral. Thus the signal is a power-type 

signal and its power content is 
A  

.
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1 

=   = 

2 

2 

 

⇒ 

3) 
 

Px  = lim
 

 
T 

1 
Z 

2 

u2 

 

 
(t)dt =  lim 

 
T 

1 
Z 

2 

 

 
dt =  lim 

 

 

1 T     1 

=

T →∞ T   −T       −1
 T →∞ T   0 T →∞ T 2     2

Thus the unit step signal is a power-type signal and its power content is 1/2 

 
4)

T                                                  T Z 
2                                              

Z 
2                 1

 

 

1 
 T /2

Ex     =     lim
 

x2(t)dt =  lim
 

K2t− 
2 dt =  lim 2K2t 2 

 

T →∞    −T 

√             1
 

T →∞    0 

  
T →∞           

 
0

=   lim 
T →∞ 

2K2T 2  = ∞

Thus the signal is not an energy-type signal. 
 

 
Px     =     lim 

T 

1 
Z 

2 
 

x2(t)dt =  lim 

T 

1 
Z 

2 
 

K2t− 
2 dt

T →∞  T 

1
 

−T 
2 

1 
 T /2 

T →∞ T   0 

1                 1                     √                1

lim 
T →∞  T 

2K2t 2 

 
  

0 
lim 
T →∞  T 

2K2(T /2) 2  = lim 
T →∞ 

2K2T − 
2  = 0

Since Px  is not bounded away from zero it follows by definition that the signal is not of the power- type (recall that 

power-type signals should satisfy 0 < Px  < ∞). 
 

 
 

 

 

Problem 2.10 
 
   t + 1,    −1 ≤ t ≤ 0  

   

1     t > 0 

Λ(t) = 
 

−t + 1,   0 ≤ t ≤ 1 
 

 
u−1(t) = 

 
1/2   t = 0

     
0,       o.w. 

   
0     t < 0

Thus, the signal x(t) = Λ(t)u−1(t) is given by 
                                                   
 
 

 
x(t) = 

 
 

 

0       t < 0 

1/2     t = 0 

−t + 1   0 ≤ t ≤ 1 

0       t ≥ 1 

 
 

 
=            x(−t) = 

 
 

 

0      t ≤ −1 

t + 1   −1 ≤ t < 0 

1/2    t = 0 

0      t > 0

 

The even and the odd part of x(t) are given by 

x(t) + x(−t)    1
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−t−1 

−t+1 

xe(t)   = 
2           

= 
2 
Λ(t)

 

 
 

 
xo(t)  = 

 
 
 
 

x(t) − x(−t)      

2           
=

 
 
 
 
 

 

0      t ≤ −1 

2        
−1 ≤ t < 0 

0      t = 0 

2        
0 < t ≤ 1 

0      1 ≤ t
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2 

 
 

 

 

Problem 2.11 
1) Suppose that 

 
 

 
x(t) = x1(t) + x1(t) = x2(t) + x2(t)e              o              e              o 

 

with x1(t), x2(t) even signals and x1(t), x1(t) odd signals. Then, x(−t) = x1(t) − x1(t) so thate           e                                            o 
 

 

x1
 

o                                                                 e              o 

 
x(t) + x(−t)

e (t)   =               
2 

x2               2              2                  2
 

e (t) + xo (t) + xe (−t) + xo (−t) 
=                            

2 

2x2(t) + x2(t) − x2(t)
 

e              o              o               2
 

=                    
2                   

= xe (t) 

 

Thus x1(t) = x2(t) and x1(t) = x(t) − x1(t) = x(t) − x2(t) = x2(t) e              e                   o                            e                            e              o 

 

2) Let x1(t), x2(t) be two even signals and x1(t), x2(t) be two odd signals. Then,
 

e           e                                                           o           o 

y(t) = x1(t)x2(t)  =
 

y(−t) = x1(−t)x2(−t) = x1(t)x2(t) = y(t)
e         e            ⇒ e            e                  e         e

z(t) = x1(t)x2(t)  =
 

z(−t) = x1(−t)x2(−t) = (−x1(t))(−x2(t)) = z(t)
o         o            ⇒ o            o                       o                o

 

Thus the product of two even or odd signals is an even signal. For v(t) = x1(t)x1(t) we have
 

e         o 

 

v(−t) = x1(−t)x1(−t) = x1(t)(−x1(t)) = −x1(t)x1(t) = −v(t)
 

e            o                 e              o                   e         o 

 
Thus the product of an even and an odd signal is an odd signal. 

 

3) One trivial example is t + 1 and  
t   

.
 

t+1 
 

 
 
 

 

 
 

Problem 2.12 

1) x1(t) = Π(t) + Π(−t). The signal Π(t) is even so that x1(t) = 2Π(t) 
 

2 
 

. . . . . . . . . .1. . . . . . . . 

 
 

1                                            1 

2                                            2
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n=−∞ 

1 

2) 
 
 
 

 
 
 
 
 
 
 

 
x2(t) = Λ(t) · Π(t) = 

 
 
 
 
 
 

 

 

0,       t < −1/2 

1/4,     t = −1/2 

t + 1,    −1/2 < t ≤ 0 

−t + 1,   0 ≤ t < 1/2 

1/4,     t = 1/2 

0,       1/2 < t
 

 
 
 
 
 
 

1 

 
.                 . 
.         1        . 
. . . . .4. . . . 
.                 . 
.                 . 
1                   1 

− 
2                   2 

 

 
 

3) x3(t) = 
P∞

 Λ(t − 2n)

 
1 

...                                                                                 ... 
 

 

−3              −1               1                3 
 

 
 
 

4) x4(t) = sgn(t) + sgn(1 − t). Note that x4(0) = 1, x4(1) = 1 
 

2     . 
. 
. 
. 
. 
. 
. 
. 
. 

0 
 

 
 
 

5) x5(t) = sinc(t)sgn(t). Note that x5(0) = 0.
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X 

X 

 
1 

 

0.8 
 

0.6 
 

0.4 
 

0.2 
 

0 
 

-0.2 
 

-0.4 
 

-0.6 
 

-0.8 
 

-1 
-4             -3             -2             -1              0               1               2               3               4 

 
 
 
 
 
 

 

 

 

Problem 2.13 

1) The value of the expression sinc(t)δ(t) can be found by examining its effect on a function φ(t) 
through the integral 

Z ∞                                                                                                                         Z ∞ 

φ(t)sinc(t)δ(t) = φ(0)sinc(0) = sinc(0) 
−∞                                                                                               −∞ 

 

φ(t)δ(t)

 

Thus sinc(t)δ(t) has the same effect as the function sinc(0)δ(t) and we conclude that 

 
x1(t) = sinc(t)δ(t) = sinc(0)δ(t) = δ(t) 

 

 
 

2) sinc(t)δ(t − 3) = sinc(3)δ(t − 3) = 0. 
 

 
3) 

 

x3(t)  =    Λ(t) ⋆ 

∞ X 
 

n=−∞ 

 

δ(t − 2n)

∞      Z ∞ 

= 
n=−∞   −∞ 

∞      Z ∞ 

= 
n=−∞   −∞ 

∞ X 

 

Λ(t − τ)δ(τ − 2n)dτ 
 

 

Λ(τ − t)δ(τ − 2n)dτ

= 

n=−∞ 

Λ(t − 2n)
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1 

 
τ=0 

1 

⇒ 

 

| 

d 

4) 

 
x4(t)  =    Λ(t) ⋆ δ′(t) = 

 

 
 
 
 
 

d 

 
Z ∞ 

Λ(t − τ)δ′(τ)dτ 
−∞ 

 
 
 
 
 
 
 
 
                         

  

 
 
 
 

 

0      t < −1 

2         
t = −1 

1   −1 < t < 0

=     (−1) 
dτ 

Λ(t − τ) 
 

= Λ′(t) = 
 
 
 
 
 
 
 

 

0        t = 0 

−1     0 < t < 1 

− 
2          

t = 1 

0        1 < t

 
 

5) x5(t) = cos 
  

t +  
π 
  

δ(3t) =  
1 

cos 

  
t + 

π 
  
δ(t) = 

1 
cos 

 
π 

  
δ(t). Hence x5(t) = 

1 
δ(t).2      

3                     3           
2      

3                   3            3                                               6 

 

6) 
1            1             1 

x6(t) = δ(5t) ⋆ δ(4t) = 
5 
δ(t) ⋆ 

4 
δ(t) = 

20 
δ(t)

 

 
7) Z ∞ 

sinc(t)δ(t)dt = sinc(0) = 1 
−∞ 

 
8) Z ∞ 

sinc(t + 1)δ(t)dt = sinc(1) = 0 
−∞ 

 
 
 
 

 

 

Problem 2.14 
The impulse signal can be defined in terms of the limit

 

1 
δ(t) = lim 

 
|t| 
 

 
e−  τ

 

 
t| 

But e− 

τ→0  2τ 
 

is an even function for every τ so that δ(t) is even. Since δ(t) is even, we obtain

τ 

 

δ(t) = δ(−t) = 

 

 

δ′(t) = −δ′(−t)

 

Thus, the function δ′(t) is odd. For the function δ(n)(t) we have

Z ∞ 

φ(t)δ(n)(−t)dt = (−1)n 
−∞ 

Z ∞ 

φ(t)δ(n)(t)dt 
−∞



16 

 

d 
−   = − 

 

where we have used the differentiation chain rule
 

δ(k−1)(   t) 
dt 

d 

d(−t) 

 

δ(k−1)(   t) 
dt 

 

(−t) = (−1)δ(k)(−t)
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Thus, if n = 2l (even) 
 

Z ∞ 

φ(t)δ(n)(−t)dt = 
−∞ 

 

Z ∞ 

φ(t)δ(n)(t)dt 
−∞

and the function δ(n)(t) is even. If n = 2l + 1 (odd), then (−1)n = −1 and

Z ∞                                                               Z ∞ 

φ(t)δ(n)(−t)dt = − 
−∞                                                 −∞ 

 

φ(t)δ(n)(t)dt

 

from which we conclude that δ(n)(t) is odd. 
 
 

 
 

 
Problem 2.15 

 

x(t) ⋆ δ(n)(t) = 

Z ∞ 

x(τ)δ(n)(t − τ) dτ 
−∞

The signal δ(n)(t) is even if n is even and odd if n is odd. Consider first the case that n = 2l. Then, 
 

x(t) ⋆ δ(2l)(t) = 

 
If n is odd then, 

Z ∞ 

x(τ)δ(2l)(τ − t) dτ = (−1)2l
 

−∞ 

d2l 

dτ2l
 

  

x(τ)
      

=  
τ=t 

dn 

dtn 

 

x(t)

 

x(t) ⋆ δ(2l+1)(t)   = 

Z ∞ 

x(τ)(−1)δ(2l+1)(τ − t) dτ = (−1)(−1)2l+1
 

−∞ 

dn 

d2l+1 

dτ2l+1
 

  

x(τ)
 
  
τ=t

=    
dtn 

x(t)
 

In both cases 
 

 

x(t) ⋆ δ(n)(t) = 

 

dn 

dtn 

 

 

x(t)

The convolution of x(t) with u−1(t) is 

 
x(t) ⋆ u−1(t) = 

 
But u−1(t − τ) = 0 for τ > t so that 

 

 

Z ∞ 

x(τ)u−1(t − τ)dτ 
−∞ 

 

 
Z t

x(t) ⋆ u−1(t) = x(τ)dτ 
−∞

 

 
 

 

 

Problem 2.16 
1) Nonlinear, since the response to x(t) = 0 is not y(t) = 0 (this is a necessary condition for 

linearity of a system, see also problem 2.21). 
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2) Nonlinear, if we multiply the input by constant −1, the output does not change. In a linear system the output should be 

scaled by −1.
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3) Linear, the output to any input zero, therefore for the input αx1(t) + βx2(t) the output is zero which can be 

considered as αy1(t) + βy2(t) = α × 0 + β × 0 = 0. This is a linear combination of the corresponding outputs to 

x1(t) and x2(t). 

4) Nonlinear, the output to x(t) = 0 is not zero. 

5) Nonlinear. The system is not homogeneous for if α < 0 and x(t) > 0 then y(t) = T [αx(t)] = 0 

whereas z(t) = αT [x(t)] = α. 
 

6) Linear. For if x(t) = αx1(t) + βx2(t) then 
 

T [αx1(t) + βx2(t)]  =    (αx1(t) + βx2(t))e
−t

 

=   αx1(t)e
−t + βx2(t)e

−t  = αT [x1(t)] + βT [x2(t)] 
 

 

7) Linear. For if x(t) = αx1(t) + βx2(t) then 
 

T [αx1(t) + βx2(t)]  =    (αx1(t) + βx2(t))u(t) 

=    αx1(t)u(t) + βx2(t)u(t) = αT [x1(t)] + βT [x2(t)] 
 

 
8) Linear. We can write the output of this feedback system as

 

 

y(t) = x(t) + y(t − 1) = 

 
Then for x(t) = αx1(t) + βx2(t) 

 

∞ X 
x(t − n) 

n=0

 

y(t)  = 

∞ X 
(αx1(t − n) + βx2(t − n)) 

n=0

∞                                              ∞ 

=   α 
X 

x1(t − n) + β 
X 

x2(t − n))
n=0 

=    αy1(t) + βy2(t) 

n=0

 
9) Linear.  Assuming that only a finite number of jumps occur in the interval (−∞, t] and that the magnitude of these 

jumps is finite so that the algebraic sum is well defined, we obtain 
 

N                              N

y(t) = T [αx(t)] = 

X 
αJx(tn) = α 

X 
Jx(tn) = αT [x(t)]

n=1 n=1

where N is the number of jumps in (−∞, t] and Jx(tn) is the value of the jump at time instant tn, that is 

Jx (tn) = lim(x(tn + ǫ) − x(tn − ǫ)) 
ǫ→0 

For x(t) = x1(t) + x2(t) we can assume that x1(t), x2(t) and x(t) have the same number of jumps and at the same 

positions.  This is true since we can always add new jumps of magnitude zero to the already existing ones. Then for 

each tn, Jx(tn) = Jx1 
(tn) + Jx2 

(tn) and 

N                       N                        N

y(t) = 
X 

Jx(tn) = 
X 

Jx (tn) + 
X 

Jx (tn)

  so that the system is additive. 
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n=1 

1 

n=
1 

2 

n=1
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⇐ 

 
 

 

 
Problem 2.17 

Only if ( =         )
 

⇒ 

 

If the system T is linear then 

 

T [αx1(t) + βx2(t)] = αT [x1(t)] + βT [x2(t)] 
 

for all α, β and x(t)’s. If we set β = 0, then 

 

T [αx1(t)] = αT [x1(t)] 
 

so that the system is homogeneous. If we let α = β = 1, we obtain 

 

T [x1(t) + x2(t)] = T [x1(t)] + T [x2(t)] 

 

and thus the system is additive. If (   =  ) 

Suppose that both conditions 1) and 2) hold. Thus the system is homogeneous and additive. Then 

 
T [αx1(t) + βx2(t)] 

=    T [αx1(t)] + T [βx2(t)] (additive system) 

=    αT [x1(t)] + βT [x2(t)] (homogeneous system) 

 
Thus the system is linear. 

 
 

 
 

 

Problem 2.18 
 

 
1. Neither homogeneous nor additive. 

 
2. Neither homogeneous nor additive. 

 
3. Homogeneous and additive. 

 
4. Neither homogeneous nor additive. 

 
5. Neither homogeneous nor additive. 

 
6. Homogeneous but not additive. 

 
7. Neither homogeneous nor additive. 

 
8. Homogeneous and additive. 

 
9. Homogeneous and additive.
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λ 

α x  (t) αx  (t) 

T 
λ 

10. Homogeneous and additive. 

 
11. Homogeneous and additive. 

 
12. Homogeneous and additive. 

 
13. Homogeneous and additive. 

 
14. Homogeneous and additive. 

 
 

 

 

Problem 2.19 
We first prove that 

 

 
 

T [nx(t)] = nT [x(t)]

for n ∈ N . The proof is by induction on n. For n = 2 the previous equation holds since the system is additive. Let us 

assume that it is true for n and prove that it holds for n + 1. 

 

T [(n + 1)x(t)] 

=    T [nx(t) + x(t)] 

=   T [nx(t)] + T [x(t)] (additive property of the system) 

=   nT [x(t)] + T [x(t)] (hypothesis, equation holds for n) 

=   (n + 1)T [x(t)] 
 

Thus T [nx(t)] = nT [x(t)] for every n. Now, let 
 

x(t) = my(t) 

This implies that  
  

x(t)
 
 

T      
m 

 

 

= T [y(t)]

and since T [x(t)] = T [my(t)] = mT [y(t)] we obtain
   

x(t) 
 

 
T      

m 

 

1 
= 

m 
T [x(t)]

 

Thus, for an arbitrary rational α = 
k  

we have
 

  
k                      

  
x(t)

   
 
  

x(t)
      

k
x(t) = T   k     

λ 
= kT 

λ     
= 

λ 
T [x(t)]

 

 
 

 

Problem 2.20 

Clearly, for any α 

 

 
 

    
2   2                                                  

     
2 

y(t) = T [αx(t)] = 
αx′(t)      x

′(t) ≠ 0 
= 

0        x′(t) = 0 

x ′(t)    x′(t) ≠ 0 

0       x′(t) = 0 

 

= αT [x(t)]



23  

≠   1 2 

x′
 

1 

1 

1 
′ 

Thus the system is homogeneous and if it is additive then it is linear.  However, if x(t) = x1(t) + 

x2(t) then x′(t) = x′ (t) + x′ (t) and1              2 

(x1(t) + x2(t))2     x2(t) 
 

x2(t)

1(t) + x2(t)
 

x1(t) 
+ 

x2(t)x′                     ′                ′             ′
 

for some x1(t), x2(t). To see this let x2(t) = c (a constant signal). Then
 

 
 
 

and 

 

T [x1(t) + x2(t)] = 
(x1(t) + c)2

 

1(t)     
=

 

x2(t) + 2cx1(t) + c2
 

x′ (t)

 

T [x1(t)] + T [x2(t)] = 
x2(t) 

x1(t)

Thus T [x1(t) + x2(t)] ≠ T [x1(t)] + T [x2(t)] unless c = 0. Hence the system is nonlinear since the additive 

property has to hold for every x1(t) and x2(t). 

As another example of a system that is homogeneous but non linear is the system described by 

 

T [x(t)] = 
x(t) + x(t − 1)  x(t)x(t − 1) > 0 

0                    otherwise

 

Clearly T [αx(t)] = αT [x(t)] but T [x1(t) + x2(t)] ≠ T [x1(t)] + T [x2(t)] 
 

 
 

 

 

Problem 2.21 

Any zero input signal can be written as 0 · x(t) with x(t) an arbitrary signal.  Then, the response 

of the linear system is y(t) = L[0 · x(t)] and since the system is homogeneous (linear system) we 

obtain 

y(t) = L[0 · x(t)] = 0 · L[x(t)] = 0 

Thus the response of the linear system is identically zero. 
 
 
 

 

 

Problem 2.22 
For the system to be linear we must have 

 

T [αx1(t) + βx2(t)] = αT [x1(t)] + βT [x2(t)] 
 

for every α, β and x(t)’s. 
 

T [αx1(t) + βx2(t)]  =    (αx1(t) + βx2(t)) cos(2π f0t) 

=   αx1(t) cos(2π f0t) + βx2(t) cos(2π f0t) 

=    αT [x1(t)] + βT [x2(t)] 
 

Thus the system is linear.  In order for the system to be time-invariant the response to x(t − t0) should be y(t − 

t0) where y(t) is the response of the system to x(t).  Clearly y(t − t0) = x(t − t0) cos(2π f0(t − t0)) and the 
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response of the system to x(t − t0) is y ′(t) = x(t − t0) cos(2π f0t). Since cos(2π f0(t − t0)) is not equal to 

cos(2π f0t) for all t, t0  we conclude that y ′(t) ≠ y(t − t0) and thus the system is time-variant.
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t 

⇒ 

⇒ 

 
 

 

 

Problem 2.23 
1) False.  For if T1[x(t)] =  x3(t) and T2[x(t)] =  x1/3(t) then the cascade of the two systems is 

the identity system T [x(t)] = x(t) which is known to be linear. However, both T1[·] and T2[·] are 

nonlinear. 

2) False. For if 
 

 
T1[x(t)] = 

 

 

 

tx(t)  t ≠ 0 

0      t = 0 

 
 

T2[x(t)] = 
 

 
1 
x(t)  t ≠ 0 

0       t = 0

Then T2[T1[x(t)]] = x(t) and the system which is the cascade of T1[·] followed by T2[·] is time- invariant , 

whereas both T1[·] and T2[·] are time variant. 

 
3) False. Consider the system

 
 

y(t) = T [x(t)] = 
 

 

x(t)  t ≥ 0 

1      t < 0

 

Then the output of the system y(t) depends only on the input x(τ) for τ  ≤ t This means that the system is causal.  

However the response to a causal signal, x(t) = 0 for t ≤ 0, is nonzero for negative values of t and thus it is not 
causal. 

 
 
 

 

 

Problem 2.24 
1) Time invariant: The response to x(t − t0) is 2x(t − t0) + 3 which is y(t − t0). 

2) Time varying the response to x(t − t0) is (t + 2)x(t − t0) but y(t − t0) = (t − t0 + 2)x(t − t0), 

obviously the two are not equal. 

3) Time-varying system. The response y(t − t0) is equal to x(−(t − t0)) = x(−t + t0). However the response of 

the system to x(t − t0) is z(t) = x(−t − t0) which is not equal to y(t − t0) 
 

4) Time-varying system. Clearly 

y(t) = x(t)u−1(t)  = y(t − t0) = x(t − t0)u−1(t − t0)

 

However, the response of the system to x(t − t0) is z(t) = x(t − t0)u−1(t) which is not equal to 

y(t − t0) 
 

5) Time-invariant system. Clearly 
 

y(t) = 

Z t 
x(τ)dτ = 

−∞ 

 

y(t − t0) = 

Z t−t0 

 
−∞ 

 

x(τ)dτ

 

The response of the system to x(t − t0) is 

Z t 

 
 

Z t−t0
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z(t) = x(τ − t0)dτ = 
−∞ 

x(v)dv = y(t − t0) 
−∞



22  

n 

where we have used the change of variable v = τ − t0.

6) Time-invariant system. Writing y(t) as 
P∞ 

=−∞ 

 

x(t − n) we get

 

 

y(t − t0) = 

 

∞ X 
 

n=−∞ 

 

 

x(t − t0 − n) = T [x(t − t0)]

 

 

 

 

Problem 2.25 
The differentiator is a LTI system (see examples 2.19 and 2.1.21 in book). It is true that the output of a system which is 

the cascade of two LTI systems does not depend on the order of the systems. This can be easily seen by the commutative 

property of the convolution 

 

h1(t) ⋆ h2(t) = h2(t) ⋆ h1(t) 
 

Let h1(t) be the impulse response of a differentiator, and let y(t) be the output of the system h2(t) 

with input x(t). Then, 
 

z(t)  =    h2(t) ⋆ x′(t) = h2(t) ⋆ (h1(t) ⋆ x(t)) 

=    h2(t) ⋆ h1(t) ⋆ x(t) = h1(t) ⋆ h2(t) ⋆ x(t) 

=    h1(t) ⋆ y(t) = y′(t) 
 
 
 

 

 

Problem 2.26 
The integrator is is a LTI system (why?). It is true that the output of a system which is the cascade of two LTI systems 

does not depend on the order of the systems.  This can be easily seen by the commutative property of the convolution 

 

h1(t) ⋆ h2(t) = h2(t) ⋆ h1(t) 
 

Let h1(t) be the impulse response of an integrator, and let y(t) be the output of the system h2(t) 

with input x(t). Then,
 

 

z(t)  =    h2(t) ⋆ 

Z t 
x(τ) dτ = h2(t) ⋆ (h1(t) ⋆ x(t)) 

−∞

=    h2(t) ⋆ h1(t) ⋆ x(t) = h1(t) ⋆ h2(t) ⋆ x(t) 
Z t

=    h1(t) ⋆ y(t) = y(τ) dτ 
−∞

 

 
 

 

 

Problem 2.27 
The output of a LTI system is the convolution of the input with the impulse response of the system. 

Thus,
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−1 
δ(t) = 

Z ∞ 

h(τ)e−α(t−τ)u 
−∞ 

 

(t − τ)dτ = 

Z t 
h(τ)e−α(t−τ)dτ 

−∞
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Differentiating both sides with respect to t we obtain 

Z t 

 

 

d 
"Z t                          

#

δ′(t)   =   (−α)e−αt
 h(τ)eατ dτ + e−αt 

−∞                                          dt 
h(τ)eατ dτ 

−∞

=   (−α)δ(t) + e−αt h(t)eαt = (−α)δ(t) + h(t) 

Thus  
h(t) = αδ(t) + δ′(t)

 

The response of the system to the input x(t) is 
 

y(t)  = 

Z ∞ 

x(τ) 
 
αδ(t − τ) + δ′(t − τ)

 
dτ 

−∞
Z ∞ 

=   α       x(τ)δ(t − τ)dτ + 
−∞ 

d 

Z ∞ 

x(τ)δ′(t − τ)dτ 
−∞

=    αx(t) + 
dt 

x(t)
 

 

 
 

 

 

Problem 2.28 

For the system to be causal the output at the time instant t0 should depend only on x(t) for t ≤ t0.

 
1 

y(t0) = 
2T 

Z t0 +T 
 

t0 −T 

 

 

x(τ)dτ = 
1  

Z t0
 

2T   t0 −T 

 

 

x(τ)dτ + 
1  

Z t0 +T 

2T   t0 

 

 

x(τ)dτ

 

We observe that the second integral on the right side of the equation depends on values of x(τ) for 

τ greater than t0. Thus the system is non causal. 
 
 

 

 

Problem 2.29 
Consider the system 

 

 

 
 

y(t) = T [x(t)] = 
 

 
 
 

x(t)  x(t) ≠ 0 

1      x(t) = 0

 

This system is causal since the output at the time instant t depends only on values of x(τ) for τ ≤ t (actually it 

depends only on the value of x(τ) for τ = t, a stronger condition.) However, the response of the system to the impulse 

signal δ(t) is one for t < 0 so that the impulse response of the system is nonzero for t < 0. 
 
 
 

 

 

Problem 2.30 
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1. Noncausal: Since for t < 0 we do not have sinc(t) = 0.
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2. This is a rectangular signal of width 6 centered at t0 = 3, for negative t’s it is zero, therefore the system is 

causal. 
 

3. The system is causal since for negative t’s h(t) = 0. 
 

 
 

 

 

Problem 2.31 
The output y(t) of a LTI system with impulse response h(t) and input signal u−1(t) is

 

y(t) = 

Z ∞ 

h(τ)u−1(t − τ)dτ = 
−∞ 

Z t 
h(τ)u−1(t − τ)dτ + 

−∞ 

Z ∞ 

h(τ)u−1(t − τ)dτ 
t

But u−1(t − τ) = 1 for τ < t so that 
Z t 

h(τ)u−1(t − τ)dτ = 
−∞ 

Similarly, since u−1(t − τ) = 0 for τ < t we obtain 
Z ∞ 

 
Z t 

h(τ)dτ 
−∞

h(τ)u−1(t − τ)dτ = 0 
t 

Combining the previous integrals we have 

Z ∞                                                                 Z t
y(t) = h(τ)u−1(t − τ)dτ = 

−∞ 
h(τ)dτ 

−∞

 

 
 

 

Problem 2.32 
Let h(t) denote the the impulse response of a differentiator. Then for every input signal 

d 
x(t) ⋆ h(t) = 

dt 
x(t)

 

If x(t) = δ(t) then the output of the differentiator is its impulse response. Thus, 
 

δ(t) ⋆ h(t) = h(t) = δ′(t) 
 

The output of the system to an arbitrary input x(t) can be found by convolving x(t) with δ′(t). In this case

y(t) = x(t) ⋆ δ′(t) = 

Z ∞ 

x(τ)δ′(t − τ)dτ = 
−∞ 

d 
x(t) 

dt

 
Assume that the impulse response of a system which delays its input by t0  is h(t).  Then the response to the 

input δ(t) is
 

 

However, for every x(t) 

δ(t) ⋆ h(t) = δ(t − t0) 
 

 

δ(t) ⋆ x(t) = x(t)

so that h(t) = δ(t − t0). The output of the system to an arbitrary input x(t) is 
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Z ∞
y(t) = x(t) ⋆ δ(t − t0) = x(τ)δ(t − t0 − τ)dτ = x(t − t0) 

−∞
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−1 −1 −1 −1 

1 

1 

⇒ 

⇒ 
2 

  
2 

1                  2 

2 

2 

 
 

 

 

Problem 2.33 
The response of the system to the signal αx1(t) + βx2(t) is

 

 

y1(t) = 

Z t 
 

t−T 

 

 

(αx1(τ) + βx2(τ))dτ = α 

Z t 
 

t−T 

 

 

x1(τ)dτ + β 

Z t 
 

t−T 

 

 

x2(τ)dτ

 

Thus the system is linear. The response to x(t − t0) is
 

 

y1(t) = 

Z t 
 

t−T 

 

 

x(τ − t0)dτ = 

Z t−t0 

 

t−t0−T 

 

 

x(v)dv = y(t − t0)

 

where we have used the change of variables v = τ − t0.  Thus the system is time invariant.  The impulse response 

is obtained by applying an impulse at the input. 
 

h(t) = 

Z t 
 

t−T 

 

δ(τ)dτ = 

Z t 
δ(τ)dτ − 

−∞ 

Z t−T 
 
−∞ 

 

δ(τ)dτ = u−1(t) − u−1(t − T )

 

 
 

 

 

Problem 2.34 
1) 

 

e−tu 
 

(t) ⋆ e−t u 

 

(t)  = 

Z ∞ 

e−τ u 
−∞ 
 

 

(τ)e−(t−τ)u 
 

(t − τ)dτ = 

Z t 
e−tdτ 

0

te−t     t > 0 
=       

0        t < 0 

2) 
Z ∞ 

x(t) = Π(t) ⋆ Λ(t) = 

 

 
Π(θ)Λ(t − θ)dθ = 

 
1 Z 
2 

Λ(t − θ)dθ = 

 

Z t+ 
2

 

 
1

 

 

 
Λ(v)dv

−∞                                               − 
2 t− 

2

3 
t ≤ − 

2    
=
 

 

x(t) = 0 
 

1                                                                             1

3              1                       
Z t+ 

2 

⇒ 

 t+ 
2           

  1  2      3      9

− 
2 

< t ≤ − 
2    

=
 

x(t) = (v + 1)dv = (  v 
−1 

1
 + v)   

−1 

= 
2 
t
 

+ 
2 
t + 

8

1           1                       
Z 0 Z t+ 

2

− 
2 

< t ≤ 
2    

=
 

x(t) = (v + 1)dv + 
t− 

1                                        
0 

(−v + 1)dv 
 

1

1   2 
= ( 

2 
v

 
 0 

+ v)
 
 

 
t− 

1
 1   2 
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+ v) 

1 

  
2 

⇒ 

3 

4 

⇒ 
1 

2 

+ (− 
2 
v

 
 t+      

0
 

 

= −t2 +

1           3 

2 
< t ≤ 

2 

3 

 

=                    x(t) = 

Z 1 

 
t− 

2
 

1 
(−v + 1)dv = (− 

2 

 1 

v2 + v)
 
  
t− 

1
 

 

=   t2 − 
3      9 

2 
t + 

8

< t    = 
2 

x(t) = 0
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1              1 

0                      
3

 

t 

m 

2 

e 

Thus, 
 

                                 
3

 
 0                     t ≤ − 
  

1  2      3        9        3                  1 

 
2 
t  + 

2 
t + 

8     
− 

2 
< t ≤ − 

2 

x(t) = −t2 + 3 −   < t ≤
4                  2              2   

1          3        9     1               3 

  
2 
t2 − 

2 
t + 

8  

 

2 
< t ≤ 

2

2 
< t 

 
 

 

 

Problem 2.35 
The output of a LTI system with impulse response h(t) is

 

y(t) = 

Z ∞ 

x(t − τ)h(τ)dτ = 
−∞ 

Z ∞ 

x(τ)h(t − τ)dτ 
−∞

 

Using the first formula for the convolution and observing that h(τ) = 0, τ < 0 we obtain

 

y(t) = 

Z 0 

x(t − τ)h(τ)dτ + 
−∞ 

Z ∞ 

x(t − τ)h(τ)dτ = 
0 

Z ∞ 

x(t − τ)h(τ)dτ 
0

 

Using the second formula for the convolution and writing
 
 
 
 

we obtain 

 

 

y(t) = 

Z t                                         Z ∞ 

x(τ)h(t − τ)dτ + 
−∞                                               t 

 

Z t 

 

 

x(τ)h(t − τ)dτ

y(t) = x(τ)h(t − τ)dτ 
−∞

The last is true since h(t − τ) = 0 for t < τ so that 
R ∞ 

x(τ)h(t − τ)dτ = 0 
 
 
 

 

 

Problem 2.36 

In order for the signals ψn(t) to constitute an orthonormal set of signals in [α, α+T0] the following 

condition should be satisfied
 
 
 
 

 
But 

 

 

hψn(t), ψm(t)i = 

 

Z α+T0 

 

α 

 
 

ψn(t)ψ∗  (t)dt = δmn = 
 

 

1   m = n 

0   m ≠ n

Z α+T0      1
 

 

j2π 
n 

t   1 
 

j2π m t

hψn(t), ψm(t)i     = 
α 

p
T0 

T0               e
−

 p
T0 

T0   dt
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t 

T T 
t             1 

 
 
 
 

If n = m then e 

 

 
 
 

j2π (n−m) t T0 

 
 
 

 
= 1 so that 

1 
=   

T0 

Z α+T0 

 

α 

 

e
j2π 

(n−m) 
T0       dt

 

1 
hψn(t), ψn(t)i = 

0 

Z α+T0 

 

α 

 

1 
dt = 

0 

 α+T0   
 

α       
=
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x 

i i 

i 
i 

+ = 

i 
     β2

 

i 

− 

  
e                                  0 

2 

AB i 

When n ≠ m then, 
 
 
 

1 
hψn(t), ψm(t)i = 

j2π (n 

 

 
 

 j2π (n−m)(α+T0)/T0 

m)    j2π (n−m)α/T0            

=

 

Thus, hψn(t), ψn(t)i = δmn which proves that ψn(t) constitute an orthonormal set of signals. 

 
 

 

 

Problem 2.37 

1) Since (a − b)2 ≥ 0 we have that 
 

 
 

with equality if a = b. Let 

 
 

 

ab ≤ 
 

 
1  

n     
 
2 

 

 
 

a2     b2
 

2  
+  

2 
 

 
1  

n     
 
2

A =  
X 

α2
 

i=1 

,      B =  
X 

β2
 

i=1

Then substituting αi/A for a and βi/B for b in the previous inequality we obtain 

αi βi 1 α
2

 1 β
2

A  B  
≤ 

2 A2  
+ 

2 B2 
 

with equality if 
αi   = 

A  
= k or αi = kβi for all i. Summing both sides from i = 1 to n we obtain

 
βi       B 

 

n                      n    2            n     2X αiβi 1 X αi 1 X βi

 

i=1 
AB     

≤
 

 

2 
i=1 

1
 

A2  
+ 

2 

n 

B2 
i=1 

1    
n            

1             1

 

 
 
 

Thus, 

=   
2A2 

X 
 

i=1 

α2 
i    2B2

 

X 
 

i=1 

β2               A2 
i    2A2

 

 

 
1 

+ 
2B2 

B  = 1 

 

 
1

1   
n                    n 

 
n     

 
2  

 
n     

 
2

X 
αiβi ≤ 1 ⇒  

X 
αiβi ≤  

X 
α2      

X

i=1 

Equality holds if αi = kβi, for i = 1, . . . , n. 

i=1 i=1 i=1

 
2) The second equation is trivial since |xiy

∗|  = |xi||y
∗|.   To see this write xi and yi in polar

jθxi

 i              i 
jθyi                                      

∗
 

j(θxi 
−θyi 

)

coordinates as xi = ρxi 
e and yi  =  ρyi 

e .  Then, |xiyi |  = |ρxi 
ρyi 

e |  = ρxi 
ρyi  

=

|xi||yi| = |xi||y
∗|.  We turn now to prove the first inequality. Let zi  be any complex with real and 
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  = 

imaginary components zi,R  and zi,I  respectively. Then, 
  

n   X      
i=1 

 2   
zi

 
     

  
n   X      
i=1 
n 

 
zi,R + j 
 
n 

 

n X 
 

i=1 

 2   
zi,I 

 
     

 
n X 

=  

i=1 

2 

zi,R  

 
n X 

+  

i=1 

2 

zi,I 

=  
X X 

(zi,Rzm,R + zi,I zm,I ) 
i=1 m=1
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1 

(z i,I 

(z + z (z i,I 

    

(z 

i,I 

≤ 

i 

  

i  
 
 

  

i 

n   
  = 

1 

n   

n   

Since (zi,Rzm,I − zm,Rzi,I )
2 ≥ 0 we obtain 

 

(zi,Rzm,R + zi,I zm,I )
2 ≤ (z2           2        2             2

 

i,R + zi,I )(zm,R + zm,I ) 
 

Using this inequality in the previous equation we get 
          2 

  X 
zi

 
 

           

 

n   n X X 
(zi,Rzm,R + zi,I zm,I )

 
i=1 i=1 m=1

n   n 

≤  
X X 

(z2 
 

+ z2  ) 2 (z2 
 

+ z2    ) 2
 

i=1 m=1 
 
n 

X 

i,R i,I 

  
1

 

m,R 

 
n 

X 

m,I  
     

n                    2 

1                  X         1

2 =            
i,R + z2  ) 2   

2 
m,R 

2 
m,I ) 2  =  

2 
i,R + z2  ) 2 

 
 

Thus 

i=1 

 
          2       

n 

  X       X 

m=1 

 

2 

1
 

i=1 

 
   

n            n 

  X     X

     
i=1 

zi
      

2 ≤        
i,R 

i=1 

+ z2  ) 2  or         
i=1 

zi
      

 
i=1 

|zi| 
 

 
 
zi,R

 

 

 
 
zm,R

The inequality now follows if we substitute zi  = xiy
∗.  Equality is obtained if zi,I

 = zm,I
 = k1  or

∠zi = ∠zm  = θ. 
 

3) From 2) we obtain 

 

 
 
   

n   X      
i=1 

 
 

 
 2   

xiy
∗
 
     

 

 
 
 

n X 
≤ 

i=1 

 

 
 
 
 

|xi||yi|

But |xi|, |yi| are real positive numbers so from 1)

n                    
 
n X          X 

 
1                                 1  

2  
 
n         

 
2 

2          
X   

2

 
i=1 

|xi||yi| ≤   
i=1 

|xi|    

i=1 

|yi| 

 

Combining the two inequalities we get 
               2       

n   X         X 
1                                 1  

2  
 
n         

 
2 

2          
X   

2
     
i=1 

xiy
∗      

≤  

i=1 

|xi|    

i=1 

|yi| 

 

From part 1) equality holds if αi = kβi or |xi| = k|yi| and from part 2) xiy
∗ = |xiy

∗|ejθ . Therefore, 

the two conditions are 

i          i 
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|xi| = k|yi|  ∠xi − ∠yi = θ

 

which imply that for all i, xi = Kyi for some complex constant K. 
 

4) The same procedure can be used to prove the Cauchy-Schwartz inequality for integrals. An easier approach is obtained 

if one considers the inequality 

 

|x(t) + αy(t)| ≥ 0,      for all α
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2 

2 + |   | 2 

= 

2 

| 

≤ 

  

α j 

j j 

| 

2   

N N 

Then 

 
0   ≤ 

 
Z ∞ 

|x(t) + αy(t)| 
−∞ 

 

 
 

dt = 

 
Z ∞ 

(x(t) + αy(t))(x∗(t) + α∗y∗(t))dt 
−∞

Z ∞                                            Z ∞ 

=          |x(t)| dt + α 
−∞                                  −∞ 

Z ∞ 

x∗(t)y(t)dt + α∗
 

−∞ 
x(t)y∗(t)dt     a 2 

Z ∞
 

−∞ 

 

|y(t)| dt

The inequality is true for 
R ∞ 
−∞ x∗(t)y(t)dt     0. Suppose that 

R ∞ 
−∞ 

 

x∗(t)y(t)dt ≠ 0 and set

R ∞      
x(t)| dt

α = − −∞ |

 

 
Then, 

R ∞    
x∗(t)y(t)dt −∞

Z ∞                     
2

 

[
R ∞ x(t)| dt] |y(t)| dt

0 ≤ − |x(t)| dt + 
2 

−∞ | R ∞ 2 
R ∞                      2 
−∞ 

2
 

 
and 

−∞ 

 
 Z ∞   

 
 

 Z ∞ 

x(t)y∗(t)dt −∞ 

 
1 

2   

  
2 
 Z ∞ 

 

 
1 

2   

  
2

x(t)y∗(t)dt  
−∞                                      

 
 

|x(t)| dt 
−∞ 

|y(t)| dt 
−∞

Equality holds if x(t) = −αy(t) a.e. for some complex α. 
 
 
 

 

 

Problem 2.38 
1) 

 

Z ∞                             N                  
 

ǫ2    =
  

x(t) − 
X 

αiφi(t)
   

dt  
−∞ 

 
 

 

i=1

Z ∞    
            

N                  
               

N                     

=            x(t) − 
X 

αiφi(t)  x∗(t) − 
X 

α∗φ∗(t)  dt
−∞ 

Z ∞                     
2

 

 

i=1 

X  Z ∞ 

j  j 
j=1 

X   Z ∞

=          |x(t)| dt − 
−∞ 

 

N    N
 

αi 
i=1 

φi(t)x
∗(t)dt − 

−∞ 

∗ 
j 

j=1 

φ∗(t)x(t)dt 
−∞

X X 
+ 

i=1 j=1 

 

αiα
∗

 

Z ∞ 

φi(t)φ
∗dt 

−∞ 
 

N                   N                                                  N
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2 2 α j 

2 
  

X 

i 

X 
Z ∞ 

=          |x(t)| dt + 
−∞ 

X 
 

i=1 

 

|αi| 

 

−  αi 

i=1 

Z ∞ 

φi(t)x
∗(t)dt − 

−∞ 

X  
∗ 

Z ∞
 

j 
j=1          

−∞
 

 

φ∗(t)x(t)dt

 

Completing the square in terms of αi we obtain 
 

N                                         2       N                 ∞                                            2Z ∞ 

ǫ2 =
 

 

|x(t)| dt −
 X  Z ∞ 

  
φ∗(t)x(t)dt

  
         Z 

+   
 
αi −

 
  

φ∗(t)x(t)dt
 

           
i 

−∞                           i=1 

   
−∞

 

                  
i 

i=1 

           
−∞

 

The first two terms are independent of α’s and the last term is always positive.   Therefore the minimum is 

achieved for

αi = 

Z ∞ 

φ∗(t)x(t)dt 
−∞
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2 
X  Z ∞ 

2 

2  
and x2,2  = x∗

 

3,−2 

2 

2 

      

    

e 

e 

= 

 
0 

 
0 

which causes the last term to vanish. 
 

 

2) With this choice of αi’s 

 

ǫ2    =
 

Z ∞                                        N 

|x(t)|  dt −        
  

 2 

φ∗(t)x(t)dt
 

 

−∞ 

Z ∞                     
2
 

           
i 

i=1 

   
−∞

 

N X   
2

=          |x(t)| dt − 
−∞ 

 
i=1 

|αi|

 

 

 

 

Problem 2.39 
1) Using Euler’s relation we have 

 

x1(t) = cos(2π t) + cos(4π t)

1   
= 

2  
e
 

 

i2π t 

 

+ e−j2π t 

 

j4π t + 

 

+ e−j4π t
 

 

Therefore for n = ±1, ±2, x1,n = 
1 

and for all other values of n, x1,n = 0. 

2) Using Euler’s relation we have 

 

x2(t) = cos(2π t) − cos(4π t + π /3)

1    i2π t
  

−j2π t
 

 

j(4π t+π /3)
 

 

−j(4π t+π /3)
 

= 
2 

1 
= 

2 
e
 

e 
 

i2π t 

+ e 

1 
+ 

2 
e
 

 
 

−j2π t 

− e 

1 
+ 

2 
e
 

 
 

−j2π /3 

− e 
 

ej4π t 

 

 
1 

+ 
2 
e
 

 
 

j2π /3 

 
 

e−j4π t

 

from this we conclude that x2,±1  = 

x2,n = 0. 

 
1 

2,−2  = 

 
1  −j2π /3 
2 

 

, and for all other values of n,

3) We have x3(t) = 2 cos(2π t) − sin(4π t) = 2 cos(2π t) + cos(4π t + π /2). Using Euler’s relation as

in parts 1 and 2 we see that x3,±1 = 1 and x3,2 = x∗
 = j, and for all other values of n, x3,n = 0.

4) The signal x4(t) is periodic with period T0 = 2. Thus
 

 

x4,n   = 1 
Z 1 

 

2
 

 

 

Λ(t)e− 

 
j2π n t 

 

 

dt = 1 
Z 1 

 

 

Λ(t)e− 

 
jπ ntdt

−1                                      2  −1

1 
Z 0

 
=   

2  −1 

 

(t + 1)e−
 

 

jπ nt 
1 

Z 1 

dt + 
0 

 

(−t + 1)e−
 

 

0
 

 

jπ nt dt 
 

0

1 
    

j jπ nt
 1      −jπ nt

    j     −jπ nt

 

te−
 

2   π n 
+ 

π 2n2 
e
 

 
−1 

+
 

1
 

e 
2π n 

   
−1 

1
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− 

2 

1 
    

j jπ nt
 

1      −jπ nt
    j     −jπ nt

 

te−
 

2   π n 
+ 

π 2n2 
e
 

   +  
2π n 

e          

1             1        jπ n
 

−jπ n          1

 

 
When n = 0 then 

π 2n2 
− 

2π 2n2 
(e      + e

 
 

1 
Z 1 

) = 
π 2n2 

(1 − cos(π n))
 

 

 
1

x4,0 = 
2 

Λ(t)dt = 
−1
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t  + t) 

  
  −j2π nt 

2f0 

    

1 
  

1 

=   − 
j 

e  
0 

Thus 
 
 

1 
x4(t) = 

2 
+ 2

 

 

 
∞ X 

 

n=1 

 
 

1 

π 2n2 
(1 − cos(π n)) cos(π nt)

 

 

5) The signal x5(t) is periodic with period T0 = 1. For n = 0 
 

x5,0  = 

Z 1 

(−t + 1)dt = (− 
0 

 1 
2          

  
2          

 
0 

=  
2

 

For n ≠ 0 
 

x5,n   = 

Z 1 

(−t + 1)e−j2π nt dt 
0 

1                                  1    
j 

te−
 

2π n 
j 

j2π nt 
1 

+ 
4π 2n2 

e
 
−j2π nt 

   
 

 
0 

+
 

    

2π n            
 

=   − 
2π n 

Thus,  

 
1 

x5(t) = 
2 

+
 

 

 
∞ X 

 

n=1 

 

 
1 

sin 2π nt 
π n

 

6) The signal x6(t) is real even and periodic with period T0 =   
1

 . Hence, x6,n = a8,n/2 or

 

x6,n   =   2f0 

1 Z 
4f0 

1 
− 4f0 

1
 

 

cos(2π f0t) cos(2π n2f0t)dt 

 
1

 

=   f0 

Z 
4f0 

1 − 4f0 

1
 

 

cos(2π f0(1 + 2n)t)dt + f0 

 
1 

4f0

 

Z 
4f0 

1 − 4f0 

 

cos(2π f0(1 − 2n)t)dt 

 
1

 

 
 
 

1 

4f0

=   
2π (1 + 2n) 

sin(2π f0(1 + 2n)t)
   

1 

4f0 

+ 
2π (1 − 2n) 

sin(2π f0(1 − 2n)t)
   

1 

4f0

(−1)n        
1                1 

=      
π       (1 + 2n) 

+ 
(1 − 2n) 

 
 
 

 

 
 

Problem 2.40 
It follows directly from the uniqueness of the decomposition of a real signal in an even and odd 

part. Nevertheless for a real periodic signal 
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∞ 

+ 
T 

T 

a0      
X              n                n

x(t) = 
 

2     
n=1 

an cos(2π 
0 
t) + bn sin(2π     t) 

0
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T T 

T T 

− 

n 

n 

n 

0 

− 

∞ 

T 

∞ 

T 

1 
= 

The even part of x(t) is 
 

xe(t)   = 
x(t) + x(−t) 

2

1  
=   

2 
a0 + 

∞ X 
 

n=1 

 
n 

an(cos(2π 
0 

 
n 

t) + cos(−2π 
0 

 

t))

n 
+bn(sin(2π 

0 

a0      
X 

n 
t) + sin(−2π 

0 

n 

  
t))

=    
2  

+
  
n=1 

an cos(2π     t) 
0

 

The last is true since cos(θ) is even so that cos(θ) + cos(−θ) =  2 cos θ whereas the oddness of sin(θ) provides 

sin(θ) + sin(−θ) = sin(θ) − sin(θ) = 0. 

The odd part of x(t) is 
 

xo(t)  = 
x(t) − x(−t) 

2 
X            n

− 

n=1 

bn sin(2π     t) 
0

 

 
 

 

 
 

Problem 2.41 

1) The signal y(t) = x(t − t0) is periodic with period T = T0. 
 

yn  = 
1 

Z α+T0 

T0   α 

 

x(t − t0)e 
j2π n t T0   dt

1 
=   

T0 

Z α−t0+T0 

 

α−t0 

 

x(v)e
−j2π 

T0 (v + t0)dv

e
−j2π T0 

t0
 

T0 

Z α−t0+T0 

 

α−t0 
x(v)e

−j2π 
T0 

v 
dv

=   xne
−j

 
2π 

n 
t T0

 
where we used the change of variables v = t − t0 

 

 

2) For y(t) to be periodic there must exist T such that y(t + mT ) = y(t).  But y(t + T ) = x(t + T )ej2π f0 

tej2π f0 T so that y(t) is periodic if T = T0 (the period of x(t)) and f0T = k for some k in Z. In this case 
 

yn  = 
1 

Z α+T0 

T0   α 

 

x(t)e 
j2π 

n 
t T0 

 

ej2π f0 tdt
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t 1 
=   

T0 

Z α+T0 

 

α 

 

x(t)e
−j2π

 

(n−k) 
T0      dt = x 

 
n−k
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T 
− 

t 
m 

t 

m 
t 

m n 

T 

T 

  −          + 

T 

an−jbn 

2T 

2T 

n 

X  X 

− 

T 

2T 

3) The signal y(t) is periodic with period T = T0/α. 

T0 

yn  = 
1 

Z β+T 

T
 

 

y(t)e− j2π n t 
α 

Z β+ 
α 

dt =  
T

 
 

x(αt)e 
j2π 

nα 
t T0    dt

β                                             0   β 

1 
Z βα+T0                                 n

=   
T0   βα 

x(v)e
−j2π T0 

v 
dv = x

where we used the change of variables v = αt. 
 

 
 

 

 

Problem 2.42 
 

1 
Z α+T0 

T0   α 

 

x(t)y∗(t)dt   = 
1 

Z α+T0 

T0   α 

∞ X 
 

n=−∞ 

 

xne 
j2π n 

T0 

∞ X 
 

m=−∞ 

 

y∗ e
−

 

j2π m 
T0      dt

∞            ∞                           
1 

=                    xny∗  

T
 

Z α+T0 j2π (n−m) 

e    T0           dt

n=−∞ m=−∞                 0    α

∞            ∞ 

=    
X   X 

xny∗ δmn = 

∞ X 
 
n=−∞

 

 

xny∗

n=−∞ m=−∞ 
 

 

 

Problem 2.43 

a) The signal is periodic with period T . Thus 

1 
Z T 

 

 

1 
Z T

xn   = e−t 
T   0 

e−j2π n t
 dt =  

T
 e−(j2π n +1)tdt 

0 
T                               h                      i

1 
=     − 

T 
  (j2π n    

1)t
 
 

  e        T             
1 

= − 
j2π n

 e−(j2π n+T )    1 

Tj2π 
n 

+ 1 

1 
=                       [1 − e−T ] = 

j2π n + T 

 
0

 

 

T − j2π n 
T 2 + 4π 2n2

 

+ 
 

[1 − e−T ]

If we write xn = 

 

2       
we obtain the trigonometric Fourier series expansion coefficients as

 

an = 
T 2

 
2T 

+ 4π 

 

2n2 
[1 − e−

 

 

],       bn = 
4π n 

T 2 + 4π 2n2
 

 

[1 − e−T ]

 

b) The signal is periodic with period 2T . Since the signal is odd we obtain x0 = 0. For n ≠ 0
 

xn   = 
1  

Z T 

2T   −T 

 

x(t)e−
 

 

j2π  n t 
1  

Z T 
dt = 

−T 

t 
e−j2π  n tdt 

T
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T 

  

− 

2T 

= 

1   
Z T 

=         
2 

−T 

 

te−
 
jπ n t dt

1  
   

jT 
jπ 

n 
t
 T 2        

jπ 
n 
t

!  T

=   
2T 2 

te−
 

π n 
T    + 

π 2n2 
e−       T

 

   
−T

1 
=   

2T 2 

j 

" 
jT 2 

e−
 

π n 
 

n
 

 

jπ n 
T 2 

+ 
π 2n2 

e−

 

 

jπ n 
jT 2 

+ 
π n 

e
 

 

jπ n 
T 2 

− 
π 2n2 

e
 

# 
jπ n

( 1) 
π n



36 

The trigonometric Fourier series expansion coefficients are:  

 

= 
2 

T 

2 4 

2        e 
2 

= 

+ 1) 

T 

−     + 

2 

π n 

T T 

T 

= 

e e 

= 

=  
T 

 

an = 0,      bn = (−1)n+1
 

 

 

c) The signal is periodic with period T . For n = 0 
 

T 

1 
Z 

2                                3
 

 
If n ≠ 0 then 

x0 =  
T 

x(t)dt 
T − 
2

 

 

xn   = 

 

T 

1 
Z 

2 

T 

 

 

x(t)e− 
T 

 

j2π n tdt

− 
2 

T 

1 
Z 

2 

 

 
−j2π 

n 
t
 

 
T 

1 
Z 

4 

 

 
−j2π 

n 
t

=             e 
T   − 

2 

T   dt +           e 
− 

4 

T   dt

T 

j       j2π n t
  T 

j     −j2π n t
 

e− 
2π n 

  2 
T       

− 
T

 
+ 

2π n 
e
 

  4 
T       

− 
T

j 
=   

2π n 

h
e−jπ n 

 

jπ n − −jπ n +          − −jπ n 
i

1            n     1         n 
sin(π    )    sinc(   ) 

π n        2       2         2 
 

1                l
 

Note that xn = 0 for n even and x2l+1 =  π (2l+1) (−1) . The trigonometric Fourier series expansion 
coefficients are:

2 
a0 = 3,   , a2l = 0,   , a2l+1 = 

π (2l 

 

(−1)l,    , bn = 0, ∀n

 

d) The signal is periodic with period T . For n = 0 

1 
Z T 

x0 = 
0 

 

 
2 

x(t)dt =  
3

If n ≠ 0 then

1 
Z T 

 
−j2π 

n 
t
 

 

T 

1 
Z 

3   3 
 
−j2π 

n 
t

xn   = x(t)e 
T   0 

2T
 

T   dt                 te 
0   T 

T   dt

1 
Z 

3 
j2π n t

 1 
Z T       3 

j2π n t

+ 
T   T     

e−
 

T   dt + 
T (    t    3)e−

 
2T         T 

T   dt

3 

3 
    

jT
  j2π n t
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The trigonometric Fourier series expansion coefficients are: 

 

 

  
  
  

  3 

    

  

  

− 

T 
  
 

0 

2T 
3 

T 
3 

T 

3 

T 2          
j2π n t

!  

=   
T 2 

te− 
2π n 

3 

T     +  
4π 2n2 

e−          
T         

3 
    

jT 
 

j2π 
n 
t
 T 2          

j2π 
n 
t

!  T

− 
T 2 

te−          
T 

2π n 
2T

 

+ 
4π 2n2 

e−          T

j       j2π 
n 
t

  3  jT 
j2π 

n 
t

  T

+ 
2π n 

e−

 
T              + 

T 2π n 
e−

    
2T 
3

3 
=   

2π 2n2 
[cos(

 

2π n 
)  1] 

3
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The trigonometric Fourier series expansion coefficients are:  

 

3 

= T 

T T 

4 

  
  2 

2 

  
  

1 

= 

+ T 
T 

T 

  

3 

  3 

T 

T 

−       + 
4 

 
0 

 

4                  3            2π n
a0 = 

3 
,   an = 

π 2n2 
[cos(

 
) − 1],    bn = 0, ∀n

 

 

e) The signal is periodic with period T . Since the signal is odd x0 = a0 = 0. For n ≠ 0
 

 

xn   = 

 

T 

1 
Z 

2 

T
 

 

 

x(t)dt 
T 

 

T 

1 
Z 

4 

 

 

T  
−e− 

 
j2π n tdt

− 
2 

T 

1 
Z 

4 

+ 
T     T

 

 
4 

te− 

T 
 

j2π n t 

− 
2 

 
dt + 

 

T 

1 
Z 

2 

 

T
 

 

e−j2π n tdt

− 
4   

T 

4 
    

jT
 

 
 

j2π n t
 

 
4 

T 2          
j2π n t

!  

=   
T 2

 te− 
2π n 

T    + 
4π 2n2 

e−

 

T 

  4 
T           

− T 

T

1 
    

jT 
j2π 

n 
t
    − 

4 1 
    

jT 
j2π 

n 
t
   

e−
 

T   2π n 
T  

− 
T         T 

π n
 

e−          
T 

2π n                 T
 

 

j 
=   

π n 

" 

(−1)n − 
2 sin( 

π n 
2  
) 
#

 j 
= 

π n 

 

(−1)n 

n 
− sinc( 

2 
)

For n even, sinc( 
n 
) = 0 and xn =  

j . The trigonometric Fourier series expansion coefficients are:
2                                 π n  

 
 
− π l                          n = 2l

an = 0, ∀n,    bn =            
2

 
2(−1)l

π (2l+1) [1 + π (2l+1) ]   n = 2l + 1 

 
 

f) The signal is periodic with period T . For n = 0
 

T 

1 
Z 

3 

x0 = 
T 

 

 

x(t)dt    1 
T

− 
3 

 

For n ≠ 0
 

 

xn   = 
1 

Z 0 

T 

 
3 

(  t    2)e−
 

T    T 

 
j2π n t 

 

T 

1 
Z 

3 

dt + 
0

 

 
3 

(− 
T 

t + 2)e−
 

 

j2π n tdt

− 
3 

3 
    

jT 
 
j2π 

n 
t
 T 2          

j2π n t

!  0

=   
T 2 

te−
 

2π n 
T    + 

4π 2n2 
e−

 
T           

− 
T

 

T

3 
    

jT 
j2π 

n 
t
 T 2          

j2π n t

!  
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The trigonometric Fourier series expansion coefficients are: 

 

 

  

  3 

3 

 
0 

− 
T 2 

te−
 

2π n 
T     +  

4π 2n2 
e−          T          

 
T

2  jT 
j2π n t

  0 2  jT 
j2π 

n 
t

 

+ 
T 2π n 

e−

 
T       

− T 

+  
T 2π n 

e−          T     

3   
  

1 2π n 1         2π n

=   
π 2n2 2 

− cos(   
3   

)
 

+ 
π n 

sin(   
3   

)

 

The trigonometric Fourier series expansion coefficients are:
      

3   
  

1 
 

2π n 
 

1         2π n

a0 = 2,   an = 2 
π 2n2 2 

− cos(   
3   

)
 

+ 
π n 

sin(   
3   

)
 

,   bn = 0, ∀n
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4 

− 

− 

1) 

1 

n 

+ 

 
 

 

 
Problem 2.44 

1) H(f ) = 10Π( f ).  The system is bandlimited with bandwidth W = 2.  Thus at the output of the 

system only the frequencies in the band [−2, 2] will be present. The gain of the filter is 10 for all f 

in (−2, 2) and 5 at the edges f = ±2. 

a) Since the period of the signal is T = 1 we obtain 
 

y(t)      10[ 
a0    

a cos(2π t)   b  sin(2π t)] =         
2  

+  1                     +  1
 

+5[a2 cos(2π 2t) + b2 sin(2π 2t)] 

With 
 

 
 

we obtain 

 

 

an = 
+ 

 
2                   1 

4π 2n2 
[1 − e−

 

 

 

],       bn = 

 

4π n 
1 + 4π 2n2

 

 

 

[1 − e−1]

 

y(t)   =    (1 − e−1) 

  
20 + 

 

10 

 

20 

1 + 4π 2 

 
cos(2π t) + 

40π 

 

40π 
1 + 4π 2 

 
sin(2π t) 

 

+ 
1 + 16π 2 

cos(2π 2t) + 
1 + 16π 2 

sin(2π 2t)

 
 

b) Since the period of the signal is 2T = 2 and an = 0, for all n, we have 
 

x(t) = 

∞ X 
bn sin(2π    t) 

n=1                      
2

The frequencies 
n 

should satisfy | 
n 

| ≤ 2 or n ≤ 4. With bn = (−1)n+1  2 we obtain
2                                  2                                                                        π n 

 

20       2π t       20
y(t)  = sin( 

π 
)       sin(2π t) 

2        2π

20        2π 3t       10
+ 

3π 
sin(

 
)       sin(2π 2t) 

2         4π

 

 

c) The period of the signal is T = 1 and 
 

2               l 

 
 

Hence, 

a0 = 3,   , a2l = 0,   , a2l+1 = 
π (2l 

(−1) ,   , bn = 0, ∀n

3 
x(t) = 

2 
+

 

∞ X 
 

l=0 

 

a2l+1 cos(2π (2l + 1)t)
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At the output of the channel only the frequencies for which 2l + 1 ≤ 2 will be present so that 
 

3         2 
y(t) = 10 

2 
+ 10 

π 
cos(2π t)
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− 

− 

1 

+ 

+ 

∞ 

+ 

d) Since bn = 0 for all n, and the period of the signal is T = 1, we have 
 

x(t) = 
a0      

X 

2     
n=1 

 

an cos(2π nt)

With a0 = 4 
and an =    3 [cos( 

2π n 
) − 1] we obtain

3                      π 2 n2                  3 

 
20     30         2π

y(t)  = 
3  

+ 
π 2 

(cos(
 

)  1) cos(2π t) 
3

15 
+ 

4π 2 
(cos(

 

4π 
)  1) cos(2π 2t) 

3

20     45                      45 
=    

3  
− 

π 2 
cos(2π t) − 

8π 2 
cos(2π 2t)

 
 
 
 

e) With an = 0 for all n, T = 1 and 
 

 
 
− π l                          n = 2l

bn =           
2

 
2(−1)l

π (2l+1) [1 + π (2l+1) ]   n = 2l + 1 

 
we obtain 

 

 

y(t)  =   10b1 sin(2π t) + 5b2 sin(2π t2t) 
2         2                        1 

=   10 
π 

(1 + 
π 

) sin(2π t) − 5 
π 

sin(2π t2t)
 

 

 
 

f) Similarly with the other cases we obtain 
   

3   1 2π       1        2π

y(t)  =   10 + 10 · 2 π 2 
( 

2 
− cos(

 
)     sin(      ) 

3        π         3 
cos(2π t)

    
3    1 4π        1         4π

+5 · 2 
4π 2 

( 
2 

− cos(
 

)       sin(      ) 
3        2π         3 

cos(2π 2t)

" 
3      

√
3 

#
 

" 
3       

√
3 

#

=   10 + 20 
π 2 

+ 
2π 

cos(2π t) + 10 
4π 2 

− 
4π 

cos(2π 2t)

 

 
 
 

2) In general 
 

 
 

y(t) 
= 

 

 
∞ X 

 

n=−∞ 
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n 

 

 
 

xnH( 

 
 

n 

)ej2π T 

t 
T

 

The DC component of the input signal and all frequencies higher than 4 will be cut off.
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1+4π 2n2
 

π n 

+ 
− 

− 

− 

+ 

j j 

= 

a) For this signal T = 1 and xn =  
1−j2π n 

(1 − e−1
 

 

). Thus,

 

1 − j2π  
1              j2π t

 

 

1 − j2π 2  
1              j2π 2t

y(t)  = 
1    4π 2 

(1 − e−

 
)(−j)e + 

1 + 4π 24 
(1 − e−   )(−j)e

1 − j2π 3 
(1

 
e−1)(

 
j)ej2π 3t 1 − j2π 4 

(1
 

e−1)(
 
j)ej2π 4t

+ 
1 + 4π 29    

−        −
 

+ 
1 + 4π 216    

−        −

1 + j2π 
(1 + 

1 + 4π 2 
− e−1)je−j2π t 

1 + j2π 2 
(1 + 

1 + 4π 24    
−

 e−1)je−j2π 2t

1 + j2π 3 
(1 + 

1 + 4π 29 
4 

− e−1)je−j2π 3t 

 

2
 

1 + j2π 4 
(1 + 

1 + 4π 216    
−

 
e−1)je−j2π 4t

=    (1 − e−1) 
X

 
n=1 

1 + 4π
 

 

2n2 
(sin(2π nt) − 2π n cos(2π nt))

 
 

b) With T = 2 and xn =  
j 

(−1)n we obtain 

 
y(t)  = 

8                                                    −1 X    
(−1)n(−j)ejπ nt +  

X
 

 

(−1)njejπ nt

n=1 
π n 

8
 

n=−8 
π n 

−1

X (−1)n 
jπ nt      

X   1 
n   jπ nt

=           
π n 

e
 

n=1 

+ 

n=−8 

− 
π n 

(−1)  je

 

c) In this case 
 

 
 

Hence 

 
1 

x2l = 0,      x2l+1 = 
π (2l 

 

 

( 1)l 
1)

 

y(t)  = 

 

1 
( j)e 

π 
1

 

 

j2π t 

 

1 
+ 

3π 
(−1)(−j)e

 
1 

 

j2π 3t

+ 
−π 

(−1)je−j2π t + 
 

−3π 
je−j2π 3t

1                       1 
sin(2π t)       sin(2π 3t) 

2π                   6π 
 
 

2                          3               2π nd) x0 = 
3 

and xn = 
2π n2 (cos( 3   

) − 1). Thus

 4 
y(t)  =    

X
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− 

3 

n 1 n 

 
3 

2 
(cos( 

 

2π n 

 

 

) − 
1)(−
j)ej
2π nt

n=1 
2π n 

−1 X 

3 
 

2π n 

 

 
j2π nt

+ 

n=−4 
2π n2 

(cos(
 

)  1)je 
3

 
 

j                     n
 

e) With xn = π n ((−1)n − sinc( 
2 
)) we obtain

 
4 

y(t) = 
X

 

 
1 

((−1)n − sinc( 

 
−1 

)) +  
X

 

 
−  

((−1)n − sinc(   ))

n=1 
π n 2       

n=−4 
π n                     2
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| 

n 
2 

2 2 2 2 

2 2 2 

n  M 

2 

α 

X 

X 

| 

X 

f) Working similarly with the other cases we obtain 

 
y(t)  = 

4       
3
 

2
 

   
1 

2        
− cos( 

2π n  
 

 
) + 

 

1 
sin( 

2π n  
 

 
) 

 

(−j)ej2π nt

n=1    
π  n    2

 3           π n         3

−1        
3   

  
1 2π n 1         2π n  

j2π nt

+ 

n=−4 
π 2n2 2 

− cos(   
3   

)
 

+ 
π n 

sin(   
3   

) je

 
 

 

 

Problem 2.45 
Using Parseval’s relation (Equation 2.2.38), we see that the power in the periodic signal is given by 
P∞                        2

n=−∞ |xn| . Since the signal has finite power

1 
Z α+T0 

 
x(t) 2dt = K < ∞

T0   α

Thus, 
P∞ 

=−∞ 

 

|xn| 

 

= K < ∞. The last implies that |xn| → 0 as n → ∞. To see this write

 
∞ X 

 

n=−∞ 

 

 

|xn| 

 

−M X 
= 

n=−∞ 

 

 

|xn| 

 

M X 
+ 

n=−M 

 

 

|xn| 

 
∞ X 

+ 

n=M 

 

 

|xn| 
 

 
2Each of the previous terms is positive and bounded by K. Assume that |xn| does not converge to

zero as n goes to infinity and choose ǫ = 1. Then there exists a subsequence of xn, xnk 
, such that 

 

|xnk 
| > ǫ = 1,      for nk > N ≥ M

 

Then 

 

 
∞ X 

 

n=M 

 

 
 

|xn| 

 

 
∞ X 

≥ 

n=N 

 

 
 

|xn| 

 

 
 

≥      |xnk 
|   = ∞ 

nk

This contradicts our assumption that 
P∞ 

= |xn| is finite. Thus |xn|, and consequently xn, should

converge to zero as n → ∞. 
 
 
 

 

 

Problem 2.46 
1) Using the Fourier transform pair 

 

e−α|t|   -
F                   2α              2α       1
→  

α2 + (2π f )2 
= 

4π 2 
2 

4π 2  + f 2

 

and the duality property of the Fourier transform: X(f ) = F [x(t)] ⇒ x(−f ) = F [X(t)] we obtain
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2α 
  

4π 2
 

     

1 
F  

α2 

 

2 

 = e 

 

 

−α|f |

 

 

With α = 2π we get the desired result 

4π 2  + t 
 

 
     

1    
  

π e−2π |f |F  
1 + t2    

=
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2                    2 

2) 

 

F [x(t)]  =   F[Π(t − 3) + Π(t + 3)] 

=   sinc(f )e−j2π f 3 + sinc(f )ej2π f 3
 

=   2sinc(f ) cos(2π 3f ) 
 

 
 

3) F[Π(t/4)] = 4 sinc(4f ), hence F[4Π(t/4)] = 16 sinc(4f ).  Using modulation property of FT we have 

F[4Π(t/4) cos(2π f0t)] = 8 sinc(4(f − f0)) + 8 sinc(4(f + f0)). 

 
 

4) 
1                          j        1                1

F[tsinc(t)] = 
π 

F[sin(π t)] = 
2π 

δ(f + 
2 
) − δ(f − 

2 
)

The same result is obtain if we recognize that multiplication by t results in differentiation in the frequency domain. 

Thus 
 

j  d                j        1                1
F[tsinc] = 

2π df 
Π(f ) = 

2π 
δ(f + 

2 
) − δ(f − 

2 
)

 

 
 

5) 
 

j  d  
  

1                    1
F [t cos(2π f0t)]   = 

2π df 
δ(f − f0) +   δ(f + f0)

j 
=   

4π 

 
 
δ′(f 

 

− f0) 

 

+ δ′(f 

 

+ f0)
 

 

 
 

 

 

Problem 2.47 
x1(t) = −x(t)+x(t) cos(2000π t)+x(t) (1 + cos(6000π t)) or x1(t) = x(t) cos(2000π t)+x(t) cos(6000π t). 

Using modulation property, we have X1(f ) = 1 X(f −1000)+ 1 X(f +1000)+ 1 X(f −3000)+ 1 X(f + 

3000). The plot is given below: 

2                              2                              2                              2

 

 
 
 
 
 
 
 
 

  
 

 

2 
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 1000                   3000 
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⇒ 

2 

+     −          − 

x(t) = 2  ( 
4 
) −   (t) =

 

2 

    

= 

= 

= 

= 

 
 

 

 

Problem 2.48 
 

1           1                1 Z ∞     1           1 1       j2π f t

F[ 
2 
(δ(t + 

2 
) + δ(t − 

2 
))]  =

 
 

−∞  2 

(δ(t + 
2 
) + δ(t −

 
))e−               dt 

2

1 
(e−

 
2 

jπ f + e−jπ f 

 

) = cos(π f )

 

Using the duality property of the Fourier transform: 

X(f ) = F [x(t)] = x(f ) = F[X(−t)]

we obtain  

1            1                1

F[cos(−π t)] = F[cos(π t)] = 
2 
(δ(f + 

2 
) + δ(f − 

2 
))

 

Note that sin(π t) = cos(π t + 
π 
). Thus

 

1          1            1 
 

1     jπ f

F[sin(π t)]  =   F[cos(π (t + 
2 
))] = 

2 
(δ(f + 

2 
) + δ(f − 

2 
))e

1  jπ 
1 1      1    jπ 

1                   1

2 
e   2 δ(f + 

2 
) + 

2 
e−

 
2 δ(f − 

2 
)

j      1      j      1 
δ(f     )     δ(f     ) 
2           2      2           2 

 

 
 

 

 

Problem 2.49 

a) We can write x(t) as x(t) = 2Π( t ) − 2Λ( t ). Then 
4                2 

 

t                   t                                    2F [x(t)] = F[2Π( 
4 
)] − F[2Λ( 

2 
)] = 8sinc(4f ) − 4sinc

 
(2f )

 
 

b) 
t 

Π         Λ       ⇒ F [x(t)] = 8sinc(4f ) − sinc (f ) 
 

c) 
 

 

X(f )  = 

 

 

Z ∞ 

x(t)e−j2π f tdt = 
−∞ 

 

 

Z 0 

(t + 1)e−j2π f t dt + 
−1 

 

 

Z 1 

(t − 1)e−j2π f tdt 
0

    
j        1    

!
 

j2π f t 
 0 j    j2π f t 

 0
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+   

  

  

+   

− 

+   

= 

t                  e− 
2π f    4π 2f 2 

 
−1 

+
 

e−
 

2π f 

   
−1

    
j        1    

!
 

j2π f t
  1 j    j2π f t 

 1

t                  e− 
2π f    4π 2f 2 

j 

 
0 

−
 

e−
 

2π f        
0

(1   sin(π f )) 
π f
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− 

0 0 

π π 

d) We can write x(t) as x(t) = Λ(t + 1) − Λ(t − 1). Thus 
 

X(f ) = sinc2(f )ej2π f − sinc2(f )e−j2π f = 2jsinc2(f ) sin(2π f ) 
 
 

e) We can write x(t) as x(t) = Λ(t + 1) + Λ(t) + Λ(t − 1). Hence, 
 

X(f ) = sinc2(f )(1 + ej2π f + e−j2π f ) = sinc2(f )(1 + 2 cos(2π f ) 
 

f) We can write x(t) as 
" 

x(t) =   Π 

 
Then 

 

1   
!

 
2f0(t − 

4f  
)  − Π

 

 

1   
!#

 
2f0(t − 

4f  
)
 

 

 
 

sin(2π f0t)

 

X(f )  = 

" 
1 

2f0 

j 

 
sinc 

    
f
 

2f0 

! 
j2π  

1   
f 

e       4f0
 

 

1 
− 

2f0 

 
sinc 

    
f
 

2f0 

! 
j2π  

1  
f 

#
 

)  e     4f0

⋆ 
2 
(δ(f + f0) − δ(f + f0))

1 
=   

2f0 

 

sinc 

  
f + f0 

!
 

2f0 

 

sin 
f + f0 

!
 

2f0        
−

 

1 

2f0 

 

sinc 

  
f − f0 

!
 

2f0 

 

sin 
f − f0 

!
 

2f0

 

 
 

Problem 2.50 
(Convolution theorem:) 

Thus 

 

 
 
 

F [x(t) ⋆ y(t)] = F [x(t)]F [y(t)] = X(f )Y (f ) 
 

 
 

sinc(t) ⋆ sinc(t)   =   F−1[F[sinc(t) ⋆ sinc(t)]] 

=   F−1[F[sinc(t)] · F[sinc(t)]] 

=   F−1[Π(f )Π(f )] = F−1[Π(f )] 

=   sinc(t)
 
 
 

 

 

Problem 2.51 
 

 

F [x(t)y(t)]  = 

 
= 

Z ∞ 

x(t)y(t)e−j2π f tdt 
−∞ Z ∞    Z ∞ 

X(θ)ej2π θt dθ 
−∞      −∞ Z ∞            Z ∞ 

 
 

 

y(t)e−j2π f t dt 
 

=         X(θ) 
−∞ Z ∞ 

y(t)e−j2π (f −θ)t dt   dθ 
−∞
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=         X(θ)Y (f − θ)dθ = X(f ) ⋆ Y (f ) 
−∞
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X 

∞ ∞ 

T 

T 

 
 

 

 
 

Problem 2.52 
1) Clearly 

 

x1(t + kT0)   = 

∞ X 
 

n=−∞ 
∞ X 

 

x(t + kT0 − nT0) = 

∞ X 
 

n=−∞ 

 

x(t − (n − k)T0)

= 

m=−∞ 

x(t − mT0) = x1(t)

 

where we used the change of variable m = n − k. 

2) 
 
 
 

 
This is because 

 

 
x1(t) = x(t) ⋆ 

 

 
∞ X 

 

n=−∞ 

 

 
δ(t − nT0)

Z ∞ 

x(τ) 
−∞ 

∞ X 
 

n=−∞ 

 

δ(t − τ − nT0)dτ = 

∞      Z ∞ 

 

n=−∞   −∞ 

 

x(τ)δ(t − τ − nT0)dτ = 

∞ X 
 

n=−∞ 

 

x(t − nT0)

 
 

3) 
 

F[x1(t)]   =   F [x(t) ⋆ 

∞                                                                                     ∞ X 
δ(t − nT0)] = F [x(t)]F [ 

X
 

 

δ(t − nT0)]

n=−∞ 

1    X 
 

n      1    X 
n=−∞ 

n          n

=   X(f ) 
T 

 

0 n=−∞ 

δ(f − 
0 
) =  

T 
X( 

0 n=−∞       T0 

)δ(f −     ) 
0

 
 
 

 

 
 

Problem 2.53 
1) By Parseval’s theorem 

Z ∞ 

sinc5(t)dt = 
−∞ 

Z ∞ 

sinc3(t)sinc2(t)dt = 
−∞ 

Z ∞ 

Λ(f )T (f )df 
−∞

where  

 

T (f ) = F[sinc3(t)] = F[sinc2(t)sinc(t)] = Π(f ) ⋆ Λ(f )

But  Z ∞ Π(f ) ⋆ Λ(f ) =   
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1 
1 

Π(θ)
Λ(f 
− 

θ)dθ 
= 

 
1 Z 
2 

Λ(f − θ)dθ = 

 

Z f + 
2

 

 
1

 

 

 
Λ(v)dv

−∞                                                 − 
2 f − 

2
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⇒ 

1 1 

⇒ 
2 

  
2 

+ v) 

1 

  
2 

⇒ 

1               1 

0                        
3

 

− 

2 

j2π                         −1/2       j2π      α 
= 

1                   2 

2 

3 

4 

⇒ 
1 

2 

2 

1 
+ 

1 

3 
For      f ≤ − 

2  
=
 

3 

 

T (f ) = 0 
 
1 

⇒ 

 

 
 

Z f + 
2

 

 
 
 

 f + 
2           

  

 
 

 
1  2      3       9

For      − 
2 

< f ≤ − 
2  

=
 

T (f ) = 
−1 

(v + 1)dv = ( 
2 
v

 
1

 + v)   
−1 

= 
2 
f
 

+ 
2 
f + 

8

1            1                   
Z 0 Z f + 

2

For      − 
2 

< f ≤ 
2  

=
 

T (f ) =  

f − 1 

(v + 1)dv + 
0 

(−v + 1)dv 
 

1

1   2 
= ( 

2 
v

 

 0 

+ v)
 
  
f − 

1
 

1   2 
+ (− 

2 
v

 

 f +      
0

 

 

= −f 2 +

 
For 

1            3 

2 
< f ≤ 

2 

3 

 

=            T (f ) = 

Z 1 

 
f − 

2
 

1 
(−v + 1)dv = (− 

2 

 1 

v2 + v)
 
  
f − 

1
 

 

=   f 2 − 
3       9 

2 
f + 

8

 
 

Thus, 

For < f = 
2 

T (f ) = 0  

 
                                    

3
 

 0                       f ≤ − 
  

1   2      3         9        3                   1 

 
2 
f + 

2 
f + 

8    
− 

2 
< f ≤ − 

2 

T (f ) = −f 2 + 3 −   < f ≤
4                   2               2   

1           3         9     1               3 

  
2 
f 2 − 

2 
f + 

8  

 

2 
< f ≤ 

2

 
Hence, 

2 
< f 

 
 
1Z ∞ 

Λ(f )T (f )df  = 
−∞ 

Z − 
2 

( f 2 
−1    2 

1
 

3 

2 
f +

 

9 

8 
)(f + 1)df +

 

Z 0 

(−f 2 + 
− 

2 

3 

4 
)(f + 1)df

Z 
2 

+     (−f 2 + 
0 

3 

4 
)(−f + 1)df +

 

Z 1  1 
( 

1    2 
2 

 

f 2 − 
3 

2 
f +

 

9 

8 
)(−f + 1)df

41 
=    

64 
 

2) 
Z ∞ 

e−αt sinc(t)dt   = 
0 

 

Z ∞ 

e−αtu 
−∞ 

Z ∞                 1 

 

 

1(t)sinc(t)dt 
 

1 Z 
2                 1 

Π(f )df                    df
=     

−∞ α + j2π f 
=  

− 1  α + j2π f

1                          1/2
 1        α + jπ       1        1 π

=           ln(α + j2π f )      =        ln( ) 
− jπ 

tan− 
π           α
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− 

= = 

3) 
Z ∞ 

e−αt cos(βt)dt   = 
0 

 

Z ∞ 

e−αtu 
−∞ 

 

 

1(t) cos(βt)dt

1 
Z ∞ 

=   
2  −∞ 

1 

α + j2π f 

 

(δ(f − 
β 

2π 
) + δ(f +

 

β 
))dt 

2π

1      1 
[ 

2  α + 

 

jβ 
+ 

α 

1 
] 

− jβ       α2
 

α 
+ β2
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−1 

=                    =         = 

−1 

2 

       + 

T0 

− 

2β 
 

0 
  

[ 

 
 

 

 

Problem 2.54 
Using the convolution theorem we obtain 

 

Y (f )  =   X(f )H(f ) = ( 
α

 
1 

)( 
+ j2π f 

1 
) 

β + j2π f

1            1                 1            1
 

 
Thus 

=    
(β − α) α + j2π f 

− 
(β − α) β + j2π f 

 

 
1

y(t) = F−1[Y (f )] = 
 

(β − α) 
[e−αt − e−βt ]u (t)

If α    β then X(f )   H(f )       1 
α+j2π f 

 

. In this case 

 
1

y(t) = F−1[Y (f )] = F−1[( 
 

α + j2π f 
)2] = te−αtu (t)

 

The signal is of the energy-type with energy content 
T Z 
2 

Ey   =    lim     
T 

T →∞  − 
2 

 

|y(t)| 

T Z 
2 

dt =  lim 
T →∞     0 

 

1 

(β − α)2 

 

(e−αt − e−βt )2dt

 
=   lim

 1      
"  

1 

− 

 T /2 

e−2αt 
       

−
 1         

  T /2 

e−2βt 
  2                  

 T /2
#

 
e−(α+β)t

 

T →∞ (β − α)2        2α 

                       
 

0          (α + β)          
 

0

1         1 
=    

(β − α)2   2α 
+

 

1 

2β 
−

 

2 
] = 

α + β 

1 

2αβ(α + β)

 

 
 

 

 
Problem 2.55 

 

 
 
 
 

Thus 

 
 

xα(t) = 
 

 
Z ∞ 

 

x(t)  α ≤ t < α + T0 

0        otherwise 

 
Z α+T0

Xα(f ) = xα(t)e−j2π f tdt = 
−∞                                            α 

x(t)e−j2π f tdt

Evaluating Xα(f ) for f = 
n

 we obtain 

 
n 

 

 

Z α+T0 

 
 
 

j2π n t 
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T0 

T 
T0 Xα(   ) = 

0          α 
x(t)e dt = T0xn

 

where xn are the coefficients in the Fourier series expansion of x(t).  Thus Xα( 
n 

) is independent 

of the choice of α. 
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n 

T 

n 

T 

1 

1 

1 X 

1 

∞ 

∞ 

Problem 2.56 
 

∞ X 
 

n=−∞ 

 

x(t − nTs )  =    x(t) ⋆ 

 
1

 

∞ X 
 

n=−∞ 
" 

 

δ(t − nTs ) = 
 

∞ 

1 
x(t) ⋆ 

Ts 

n  
# 

∞ X 
 

n=−∞ 

 

e
j2π Ts 

t

−1 =   
Ts 

F
 

X(f ) 
X

 
n

 
δ(f −    ) 

s

 
−1 

=   
Ts 

F
 

" ∞ X 
 

n=−∞ 

=−∞ 
  

n 
X 

Ts 

n  
#

 
δ(f −    ) 

s

∞ X 
=   

Ts n
 

  
n 
 

 
X 

Ts 

 

e
j2π Ts 

t

=−∞ 

If we set t = 0 in the previous relation we obtain Poisson’s sum formula

∞ X 
x(−nTs ) = 

∞ X 
x(mTs ) = 

∞              
n 
 

 
X

n=−∞ m=−∞ 
Ts n=−∞        Ts

 
 

 

Problem 2.57 
1) We know that 

 

 

e−α|t|   -
F                  2α
→  

α2 + 4π 2f 2 

Applying Poisson’s sum formula with Ts = 1 we obtain

∞                                     ∞ X 
e−α|n|  =   

X
 2α 

2           2   2

n=−∞ n=−∞  α + 4π  n

 

 

2) Use the Fourier transform pair Π(t) → sinc(f ) in the Poisson’s sum formula with Ts = K. Then

∞ X 
Π(nK) = 

X 
sinc( 

n 
)

n=−∞ 
K n=−∞             K

But Π(nK) = 1 for n = 0 and Π(nK) = 0 for |n| ≥ 1 and K ∈ {1, 2, . . .}.  Thus the left side of the previous 

relation reduces to 1 and
∞ 

K =   
X

 
n=−∞ 

n 
sinc(   ) 

K
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n 

n=−∞ K 

1 

3) Use the Fourier transform pair Λ(t) → sinc2(f ) in the Poisson’s sum formula with Ts = K. Then

∞ X 
Λ(nK) = 

X 
sinc2( 

n 
)

n=−∞ 
K n=−∞               K

Reasoning as before we see that 
P∞ 

=−∞ Λ(nK) = 1 since for K ∈ {1, 2, . . .} 

 
 
 

Thus, K = 
P∞

 

 

 
 
 

sinc2( 
n 
) 

 

Λ(nK) = 
1   n = 0 

0   otherwise
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−1 ⇒ ⇒ 

−1 

H −1 

−1 −1 −1 

→ 

−1 −1 

−1 

−1 

 
 

 

 

Problem 2.58 
Let H(f ) be the Fourier transform of h(t). Then 

 

H(f )F[e−αt u 

 

(t)] = F [δ(t)] = 

 

H(f ) 
1 

α + j2π f 

 

= 1 = 

 

H(f ) = α + j2π f

 

The response of the system to e−αt cos(βt)u 

 

(t) is 

i
y(t) = F−1 

h
 (f )F[e−αt cos(βt)u (t)]

But  

 

F[e−αt cos(βt)u 

 

 
(t)]  =   F[ 

 
 
1 
e−αt u 

2 

 

 

(t)ejβt + 

 
 
1 
e−αtu 

2 

 

 

(t)e−jβt ]

1 

            

1                              1              
=   

2 
 

α + j2π (f − 
β  

) 
+ 

α + j2π (f + 
β  

)  

 
so that 

 
 

 
Y (f ) = F [y(t)] = 

 

 

 
α + j2π f 

2        
 

α
 

2π                                    2π 
 

1                              1              

j2π (f   
β     

+                       
β    

+           − 
2π ) α + j2π (f + 

2π )

Using the linearity property of the Fourier transform, the Convolution theorem and the fact that

δ′(t)  -
F

 j2π f we obtain 
 

y(t)  =   αe−αt cos(βt)u 

 

 
 

(t) + (e−αt cos(βt)u 

 

 
 

(t)) ⋆ δ′(t)

=   e−αt cos(βt)δ(t) − βe−αt sin(βt)u (t)

=    δ(t) − βe−αt sin(βt)u (t)

 
 

 

 

 

Problem 2.59 
1) Using the result of Problem 2.50 we have sinc(t) ⋆ sinc(t) = sinc(t). 

2) 

 

y(t)  =    x(t) ⋆ h(t) = x(t) ⋆ (δ(t) + δ′(t) 
d 

=    x(t) + 
dt 

x(t)
 

 

With x(t) = e−α|t|  we obtain y(t) = e−α|t|  − αe−α|t|sgn(t). 

3)  
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y(t)  =  
Z ∞ 

h(τ)x(t − τ)dτ 
−∞ 

Z t                                               Z t
=       e−ατ e−β(t−τ)dτ = 

e−βt
 
0 

e−(α−β)τ dτ 
0
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−1 

⇒ 

2 

) 

−1 
1 

−  
0 

1 
h
 

 

If       α = β ⇒ y(t) = te−αtu 

1
 
(t) 

 t                        
1    h                 i

α ≠ β ⇒ y(t) = e−βt e−(α−β)t 
   

u
 

(t) =
 

e−αt − e−βt   u
 

(t)

β − α 
       

1            
β − α                         

−1

 
 
 

 

 

 

Problem 2.60 

Let the response of the LTI system be h(t) with Fourier transform H(f ). Then, from the convolution 

theorem we obtain

Y (f ) = H(f )X(f ) = Λ(f ) = Π(f )H(f )

 

However, this relation cannot hold since Π(f ) = 0 for 
1 

< |f | whereas Λ(f ) ≠ 0 for 1 < |f | ≤ 1/2. 
 
 

 
 

 

 

Problem 2.61 

1) No.  The input Π(t) has a spectrum with zeros at frequencies f = k, (k ≠ 0, k ∈ Z) and the 

information about the spectrum of the system at those frequencies will not be present at the output. The spectrum of the 

signal cos(2π t) consists of two impulses at f = ±1 but we do not know the response of the system at these frequencies. 
 

 
2) 

 

 

h1(t) ⋆ Π(t)  =    Π(t) ⋆ Π(t) = Λ(t) 

h2(t) ⋆ Π(t)  =    (Π(t) + cos(2π t)) ⋆ Π(t)
1 

=   Λ(t) + 
2 
F−

 δ(f − 1)sinc2
 (f ) + δ(f + 1)sinc2

 (f 
i

1     1 
h                   

2                                      2          
i

=   Λ(t) + 
2 
F−

 

=   Λ(t) 

δ(f − 1)sinc (1) + δ(f + 1)sinc  (−1)

 
Thus both signals are candidates for the impulse response of the system. 

 
1                   1

 
3) F[u−1(t)] = 

2 
δ(f ) + j2π f . Thus the system has a nonzero spectrum for every f and all the fre-

quencies of the system will be excited by this input. F[e−at u (t)] = a+j2π f . Again the spectrum

is nonzero for all f and the response to this signal uniquely determines the system. In general the 



49 

 

 

spectrum of the input must not vanish at any frequency.  In this case the influence of the system will be present at the 

output for every frequency. 
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− 

− 

ej2π f0t 

\ 

′ 

" 

Problem 2.62 
 

F[A sin \2
  

+ θ)]  =    −jsgn(f )A
 

 

1                  j 

−     δ(f + f0)e 

 

2π f 
θ 

2f0   + 

 

1 

δ(f − f0)e 
j2π f θ   

#
 

2f0

( π f0t 
2j                                 2j 

A 
                                 

j2π f 
θ 

 

−j2π f θ

=   
2   

sgn(−f0)δ(f + f0)e 
2f0 − sgn(−f0)δ(f − f0)e 

2f0

A 
 

 
=   − 

2 

 

δ(f + f0)e 
j2π f θ 

2f0 

 

+ δ(f − f0)e 
j2π f θ 

2f0

 

 

Thus, A sin(\2 

 

 
 

π f0t 

=   −AF[cos(2π f0t + θ)] 

 

+ θ) = −A cos(2π f0t + θ)

 
 
 

 

Problem 2.63 
 

Taking the Fourier transform of  \ 

 
 
 
we obtain

 

\ 
F[ej2π f0 t] = −jsgn(f )δ(f − f0) = −jsgn(f0)δ(f − f0) 

Thus,  

\ 
ej2π f0 t = F 

 

 
−1[−jsgn(f0)δ(f − f0)] = −jsgn(f0)e 

 
j2π f0 t

 
 
 

 

 
Problem 2.64 

 
 

            
d                             \

 
F  

dt 
x(t)   =   F [x(t) ⋆ δ′(t)] = −jsgn(f )F [x(t) ⋆ δ′(t)]

 

=   −jsgn(f )j2π f X(f ) = 2π f sgn(f )X(f ) 

=   2π |f |X(f ) 
 
 

 
 

 
Problem 2.65 

We need to prove that x[(t) = (x̂(t))′. 

F[x[′(t)]   =   F[x(t\) ⋆ δ′(t)] = −jsgn(f )F [x(t) ⋆ δ′(t)] = −jsgn(f )X(f )j2π f 

=   F[x̂(t)]j2π f = F[(x̂(t))′] 
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Taking the inverse Fourier transform of both sides of the previous relation we obtain, x[′(t)  = 

(x̂(t))′



49 

 

 

0 

  

2π 
. 

0 

  

 
 

 

 

Problem 2.66 
1) The spectrum of the output signal y(t) is the product of X(f ) and H(f ). Thus, 

 

Y (f ) = H(f )X(f ) = X(f )A(f0)e
j(θ(f0 )+(f −f0)θ

′(f )|f =f0 
)
 

 

y(t) is a narrowband signal centered at frequencies f = ±f0.  To obtain the lowpass equivalent signal we have to 

shift the spectrum (positive band) of y(t) to the right by f0. Hence, 
 

Yl(f ) = u(f + f0)X(f + f0)A(f0)e
j(θ(f0 )+f θ (f )|f =f0 

) = Xl(f )A(f0)e
j(θ(f0 )+f θ (f )|f =f0 

)
 ′                                                                             ′ 

 
 

2) Taking the inverse Fourier transform of the previous relation, we obtain 

yl(t)  =   F−1 
h 

(f )A(f )ejθ(f0 )ejf θ′(f )|f =f0 

i

Xl           0 

1 
=   A(f0)xl(t + 

2π 
θ′(f )|f =f0 

)
 

 

With y(t) = Re[yl(t)e
j2π f0t ] and xl(t) = Vx(t)ejΘx (t) we get 

 

y(t)  =   Re[yl(t)e
j2π f0 t]

1                      jθ(f0 )
 
j2π f0 t

 

=   Re A(f0)xl(t + 
2π 

θ′(f )|f =f0 
)e        e

1                      j2π f0 t
 
jΘx (t+ 

1  
θ′(f )|f

 
f   )

 

=   Re A(f0)Vx (t + 
2π 

θ′(f )|f =f0 
)e         e

 
2π                =  0

1 
=   A(f0)Vx(t − tg ) cos(2π f0t + θ(f0) + Θx(t + 

2π 
θ′(f )|f =f0 

))

θ(f0) 
=   A(f0)Vx(t − tg ) cos(2π f0(t + 

2π f 

1 
) + Θx(t + 

2π 
θ′(f )|f =f0 

))
 

1
 

 
 

where 

=   A(f0)Vx(t − tg ) cos(2π f0(t − tp) + Θx(t + 
2π 

θ′(f )|f =f0 
))

1                                        1  θ(f0) 1  θ(f ) 
 

tg  = − 
2π 

θ′(f )|f =f0 
,      tp  = − 

2π   f 
= − 

2π f 
 
f =f0

3) tg  can be considered as a time lag of the envelope of the signal, whereas tp  is the time

corresponding to a phase delay of  
1

 
θ(f0) 
f0

 
 
 

 

 

Problem 2.67 
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1) We can write Hθ (f ) as follows 

 
Hθ (f ) = 

 

cos θ − j sin θ   f > 0 

0  f = 0 

cos θ + j sin θ   f < 0 

 

 

= cos θ − jsgn(f ) sin θ
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2 2 

|x(t)| dt = 
R ∞

 

2 

=   x |          | 

Thus,  
 

hθ(t) = F−1[Hθ (f )] = cos θδ(t) + 

 

 
1 

sin θ 
π t

 
 

2) 
 

1 
xθ(t)  =    x(t) ⋆ hθ(t) = x(t) ⋆ (cos θδ(t) + 

π t 
sin θ)

 
1 

=   cos θx(t) ⋆ δ(t) + sin θ 
π t 

⋆ x(t)
 

=   cos θx(t) + sin θx̂(t) 
 

 

3) 

Z ∞ 

|xθ(t)| dt   = 
−∞ 

 

 

Z ∞ 

| cos θx(t) + sin θx̂(t)| dt 
−∞

Z ∞                     
2
 

2    

Z ∞                     
2

=   cos2 θ |x(t)| dt + sin  θ 
−∞ Z ∞ 

|x̂(t)|  dt 
−∞ Z ∞

+ cos θ sin θ x(t)x̂∗(t)dt + cos θ sin θ 
−∞ 

x∗(t)x̂(t)dt 
−∞

But 
R ∞ 
−∞ 

Thus, 

2                    x̂(t) −∞ dt     E   and 
R ∞

 −∞ x(t)x̂ 
 

 
2

 

∗(t)dt = 0 since x(t) and x̂(t) are orthogonal. 
 

 
2

Exθ 
= Ex(cos θ + sin θ) = Ex

 

 

 

 
 
 
 
 

Computer 

Problems 
 

 

 

 

Computer Problem 2.1 

1) To derive the Fourier series coefficients in the expansion of x(t), we have 
 

xn   = 
1 

Z 1 

 

4  −1 

1
 

 

e−j2π nt/4 dt 

h 

 

 
i                     

(2.1)
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= 

=   
−2jπ n 

e−j2π n/4 − ej2π n/4

1 
sinc 

2 

  
n 
 

 
2 

 

(2.2)

where sinc(x) is defined as 
 
 

sinc(x) = 

 
sin(π x) 

(2.3) 
π x
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2 

n 

n 

∞ 

 

1.2 

 

 
 

1 

 
 
 
n=7 

 
n=1 

 
 
 
 

 
n=5 

 
 
n=3 

 

 
n=9 
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0.8 

 

 
 

0.6

 
x(t) 
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n=0

 

 
 

0.2 
 

 
 

0 
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-2                   -1.5                    -1                   -0.5                      0                    0.5                      1                    1.5                     2

 

t 
 
 

 
Figure 2.1: Various Fourier series approximations for the rectangular pulse 

 
 
 

2) Obviously, all the xn’s are real (since x(t) is real and even), so

 
 a  = sinc

 
  
n 
 

                  2 
  bn = 0 

          
           

 

 
 
(2.4)

 cn =  sinc   
2

 
           

 
θn = 0, π 

 

Note that for even n’s, xn = 0 (with the exception of n = 0, where a0 = c0 = 1 and x0  = 
1 
).  Using

these coefficients, we have  

 
∞ 

x(t) =   
X

 

 
 
1 

sinc 

 
 
  
n 
  

 

 
 

ej2π nt/4

n=−∞ 2           2 

1     X          
n 
                

n 
 

= 
2 

+
  
n=1 

sinc cos 
2 

2π t 
4 

(2.5)
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2 2 

A plot of the Fourier series approximations to this signal over one period for n = 0, 1, 3, 5, 7, 9 is shown in Figure 

2.1. 

3) Note that xn is always real. Therefore, depending on its sign, the phase is either zero or π . The magnitude of the 

xn’s is 
1 
  

sinc 
 
n 
  

. The discrete and phase spectrum are shown in Figure 2.2. 
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Figure 2.2: The discrete and phase spectrum of the signal
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Computer Problem 2.2 
1) We have 

 
 
 

 
xn   = 

 
 
 

1 
Z T0 /2 

T0   −T0/2 

 
 
 

 

x(t)e−
 

 
 
 

 
j2π nt/T0 

 
 
 

 
dt                                           (2.6)

1 
Z 1

 
=   

2  −1 

 

Λ(t)e−
 

 

jπ nt 

 

dt                                                       (2.7)

1 
Z +∞ 

=   
2  −∞ 

 

Λ(t)e−
 

 

jπ nt 
 

dt                                                     (2.8)

1 
=   

2 
F[Λ(t)]f =n/2                                                                   (2.9)

 

1        2  n
 

sinc (  )                                             (2.10) 
2            2 

(2.11) 

 

where we have used the facts that Λ(t) vanishes outside the [−1, 1] interval and that the Fourier transform of Λ(t) 

is  sinc2(f ).  This result can also be obtained by using the expression for Λ(t) and integrating by parts. Obviously, 

we have xn = 0 for all even values of n except for n = 0. 

2) A plot of the discrete spectrum of x(t) is presented in Figure 2.3 

3) A plot of the discrete spectrum {yn} is presented in Figure 2.4 

The MATLAB script for this problem is given next. 
 

 

 
% MATLAB script for Computer Problem 2.2. 

echo on 

n=[−20:1:20]; 

% Fourier series coefficients of x(t) vector 

x=.5*(sinc(n/2)).^2; 

% sampling interval 

ts=1/40; 

% time vector 

t=[−.5:ts:1.5]; 

% impulse response                                                                                                                                                                 10 

fs=1/ts; 

h=[zeros(1,20),t(21:61),zeros(1,20)]; 

% transfer function 

H=fft(h)/fs; 

% frequency resolution 

df=fs/80; f=[0:df:fs]−fs/2; 

% rearrange H 

H1=fftshift(H); 

y=x.*H1(21:61);                                                                                                                                                                         20 

% Plotting commands follow. 
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Figure 2.3: The discrete spectrum of the signal



55 

 

 

y
 n
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
0.5 

 
0.45 

 
0.4 

 
0.35 

 
0.3 

 
0.25 

 
0.2 

 
0.15 

 
0.1 

 
0.05 

 

0 
−20        −15        −10         −5            0            5           10          15          20 

n 
 
 

Figure 2.4: The discrete spectrum of the signal



56 

 

 

m
a

g
n
it
u
d
e

 

 
1.6 

 

 

1.4 
 

 

1.2 
 

 

1 
 

 

0.8 
 

 

0.6 
 

 

0.4 
 

 

0.2 
 

 

0 
−5                                                        0                                                        5 

f 
 

 

Figure 2.5: The common magnitude spectrum of the signals x1(t) and x2(t) 
 

 

Computer Problem 2.3 
The common magnitude spectrum is presented in Figure 2.5. The two phase spectrum of the two signals plotted on 

the same axes are given in Figure 2.6. 

The MATLAB script for this problem follows. 
 

 

 

% MATLAB script for Computer Problem 2.3. 

df=0.01; 

fs=10; 

ts=1/fs; 

t=[−5:ts:5]; 

 

x1=zeros(size(t)); 

x1(41:51)=t(41:51)+1; 

x1(52:61)=ones(size(x1(52:61))); 

x2=zeros(size(t)); 

x2(51:71)=x1(41:61); 10 

[X1,x11,df1]=fftseq(x1,ts,df);  
[X2,x21,df2]=fftseq(x2,ts,df);  
X11=X1/fs;  
X21=X2/fs;  
f=[0:df1:df1*(length(x11)−1)]−fs/2;  
plot(f,fftshift(abs(X11)))  
figure  
plot(f(500:525),fftshift(angle(X11(500:525))),f(500:525),fftshift(angle(X21(500:525))),’--’)  
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Figure 2.6: The phase spectrum of the signals ∆x1(t) and ∆x2(t)
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Computer Problem 2.4 
The Fourier transform of the signal x(t) is 

 

1 

1 + j2π f 

Figures 2.7 and 2.8 present the magnitude and phase spectrum of the input signal x(t). 

2) The fourier transform of the output signal y(t) is 
 

 
y(f ) = 

 

 

1+j2π f   |f | ≤ 1.5 

0        otherwise

 

The magnitude and phase spectrum of y(t) is given in Figures 2.9 and 2.10, respectively. 

3) The inverse Fourier transform of the output signal is parented in Figure 2.11 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

The MATLAB script for this problem is given next 

 

% MATLAB script for Computer Problem 2.4. 

df= 0.01; 
f = −4:df:4; 
x f = 1./(1+2*pi*i*f); 

plot(f,  abs(x f)); 
figure; 
plot(f,  angle(x f)); 
indH = find(abs(f)  <= 1.5); 
H f = zeros(1,  length(x  f)); 
H f(indH) = cos(pi*f(indH)./3); 10 

y f = x f.*H f;  
figure;  
plot(f,abs(y  f));  
axis([−1.5  1.5 0 16]); 
figure; 

 

plot(f,  angle(y f));  

 

y f(401) = 10^30; 
 

y t = ifft(y f, ’symmetric’);  
figure; 20 

plot(y t)  
 

 

 

 

 
 

 

 

Computer Problem 2.5 
Choosing the sampling interval to be ts = 0.001 s, we have a sampling frequency of fs  = 1/ts = 1000 

Hz. Choosing a desired frequency resolution of df = 0.5 Hz, we have the following. 
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1) Plots of the signal and its magnitude spectrum are given in Figures 2.12 and  2.13, respectively. Plots are generated 

by Matlab.
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Figure 2.7: Magnitude spectrum of x(t)
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Figure 2.8: Phase spectrum of x(t)
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Figure 2.9: Magnitude spectrum of y(t)
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Figure 2.10: Phase spectrum of y(t)
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Figure 2.11: Inverse Fourier transform
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Figure 2.12: The signal x(t)
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Figure 2.13: The magnitude spectrum of x(t)
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2) Choosing f0  = 200 Hz, we find the lowpass equivalent to x(t) by using the loweq.m function. Then using 

fftseq.m, we obtain its spectrum; we plot its magnitude spectrum in Figure  2.14. The 

MATLAb functions loweq.m and fftseq.m are given next. 
 

 

 

function [M,m,df]=fftseq(m,ts,df) 
%                       [M,m,df]=fftseq(m,ts,df) 

%                       [M,m,df]=fftseq(m,ts) 

%FFTSEQ           generates M, the FFT of the sequence m. 

%                       The sequence is zero-padded to meet the required frequency resolution df. 

%                       ts is the sampling interval. The output df is the final frequency resolution. 

%                       Output m is the zero-padded version of input m. M is the FFT. 

fs=1/ts; 

if nargin == 2 

n1=0;                                                                                                                                                                                     10 

else n1=fs/df; 

end n2=length(m); 

n=2^(max(nextpow2(n1),nextpow2(n2))); 

M=fft(m,n); 

m=[m,zeros(1,n−n2)]; 

df=fs/n; 
 

 

 
 

 

function xl=loweq(x,ts,f0) 
%                       xl=loweq(x,ts,f0) 

%LOWEQ           returns the lowpass equivalent of the signal x 

%                       f0 is the center frequency. 

%                       ts is the sampling interval. 

% t=[0:ts:ts*(length(x)−1)]; 

z=hilbert(x); 

xl=z.*exp(−j*2*pi*f0*t); 
 

 

 

It is seen that the magnitude spectrum is an even function in this case because we can write 

 

x(t) = Re[sinc(100t)ej×400π t ]                                     (2.12) 

Comparing this to 
 

 
we conclude that 

 

x(t) = Re[xl(t)e
j2π ×f0 t]                                          (2.13) 

 
 

xl(t) = sinc(100t)                                                      (2.14)
 

which means that the lowpass equivalent signal is a real signal in this case.  This, in turn, means that xc (t) = xl(t) 

and xs (t) = 0. Also, we conclude that 

 
 V (t)  =            |xc (t)|                   

 

    Θ     = 
 

0,   xc (t) ≥ 0 

π ,   xc (t) < 0 

(2.15)
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Figure 2.14: The magnitude spectrum of xl(t)
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Figure 2.15: The signal xC (t) 
 

 

Plots of xc(t) and V (t) are given in Figures 2.15 and 2.16, respectively. Note that choosing f0 to be the frequency 

with respect to which X(f ) is symmetric result in these figures. 

 
 

 

 

 

Computer Problem 2.6 

The Remez algorithm requires that we specify the length of the FIR filter M , the passband edge 

frequency fp , the stopband edge frequency fs , and the ratio δ2/δ1. Here, δ1 and δ2 denote passband and stopband 

ripples, respectively. The filter length M can be approximated using 

20 log10 

p
δ1δ2  − 13

M̂ = 
−

 
14.6∆f            

+ 1

 

where ∆f is the transition bandwidth ∆f = fs − fp 

1) Figure 2.17 shows the impulse response coefficients of the FIR filter. 

2) Figures 2.18 and 2.19 show the magnitude and phase of the frequency response of the filter, respectively. 

The MATLAB script for this problem is given next 
 

 

 

% MATLAB script for Computer Problem 2.6. 

fp = 0.4;
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Figure 2.16: The signal V (t)
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Figure 2.17: Impulse response coefficients of the FIR filter 
 
 

 

fs = 0.5; 
df = fs−fp; 

 

Rp = 0.5; 
As = 40; 

delta1=(10^(Rp/20)−1)/(10^(Rp/20)+1); 
delta2=(1+delta1)*(10^(−As/20)); 

%Calculate approximate filter length 

Mhat=ceil((−20*log10(sqrt(delta1*delta2))−13)/(14.6*df)+1); 
f=[0 fp fs 1]; 

10 

m=[1 1 0 0];  
w=[delta2/delta1  1];  
h=remez(Mhat+20,f,m,w);  
[H,W]=freqz(h,[1],3000);  
db = 20*log10(abs(H));  
% plot results  
stem(h);  
figure;  
plot(W/pi,  db) 20 

figure;  
plot(W/pi,   angle(H));  
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Figure 2.18: Magnitude of the frequency response of the FIR filter
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Figure 2.19: Phase of the frequency response of the FIR filter
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Figure 2.20: The impulse response coefficients of the filter 
 

 
 
 
 
 

 

 

Computer Problem 2.7 
1) The impulse response coefficients of the filter is presented in Figure 2.20. 

2) The magnitude of the frequency response of the filter is given in Figure 2.21. The MATLAB 

script for this problem is given next 
 

 

 

% MATLAB script for Computer Problem 2.7. 

f=[0 0.01 0.1 0.5 0.6 1]; 

m=[0 0 1 1    0  0]; delta1 

= 0.01; 

delta2 = 0.01; 
df = 0.1 − 0.01; 
Mhat=ceil((−20*log10(sqrt(delta1*delta2))−13)/(14.6*df)+1); 
w=[1 delta2/delta1 1]; 
h=remez(Mhat+20,f,m,w,’hilbert’); 

10 

[H,W]=freqz(h,[1],3000); 
db = 20*log10(abs(H)); 
% plot results 

stem(h);
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Figure 2.21: The magnitude of the frequency response of the filter
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Figure 2.22: Impulse response of the filter 
 
 

 
figure; 

plot(W/pi,  db) 

figure; 

plot(W/pi,   angle(H)); 

 
20 

 

 

 

 
 

 

 

Computer Problem 2.8 
1) The impulse response of the filter is given in Figure 2.22. 

2) The magnitude of the frequency response of the filter is presented in Figure 2.23. 

3) The filter output y(n) and x(n) are presented in Figure 2.24. It should be noted that y(n) is the derivative of 

x(n).
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Figure 2.23: Magnitude of the frequency response of the filter
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Figure 2.24: Signals x(n) and y(n) 


