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Chapter 2
Problem 2.1
1L.TMERt+5)=T11 2 . s This indicates first we have to plot TT(2¢) and then shift it to left
t
2
by 57 A plot is shown below:
\vﬂ 2t +5)
_____ 1
b d t
11
T4 T4

POO
2. n=0/\(t— n) is a sum of shifted triangular pulses. Note that the sum of the left and right

side of triangular pulses that are displaced by one unit of time is equal to 1, The plot is given
below
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3. It is obvious from the definition of sgn () that sgn(2t) = sgn (t). Therefore x3(t) = O.
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4. Xy (t) is sinc(t) contracted by a factor of 10.
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Problem 2.2

1. x/n]=sinc@Bn/) = sinc(n/3).
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2. x[n]=TI A= |f—l§S T < % ie, —2=< n< 10, we have x/nj = 1.
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3. x/n]j="u n/Aa)- ("-Du (n/A-1).Forn <0, x[n]=0,for0< n=<3, x/n]= " and
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forn=4, x[nj="47— T+ 1= 1
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Problem 2.3
x1/n] = 1and x2[n]= cos@mn) = 1, for all n. This shows that two signals can be different but

their sampled versions be the same.

Problem 2.4
Let x3/nJ and x»/[n] be two periodic signals with periods A and As, respectively, and let N =
LCM (N1, N»), and define x[nn]= xy [n]+ x> [n]. Then obviously x; fn+ NJ]= x1/njand x> [n+ N] =
Xz [n], and hence x/n] = x[n+ N], ie., x[n]is periodic with period N.
For continuous-time signals x1 (t) and x> (t) with periods 7; and 7; respectively, in general we cannot find a 7

such that 7 = k1 71 = k» 7, for integers k1 and k». This is obvious for instance if 71 = 1and 7, = 7. The necessary

and sufficient condition for the sum to be periodic is that n

rational number.

be a 7

Problem 2.5
Using the result of problem 2.4 we have:

1. The frequencies are 2000 and 5500, their ratio (and therefore the ratio of the periods) is rational, hence the
sum is periodic.

5500

2. The frequencies are 2000 and . Thejr-ratio is not rational, hence the sum is not periodic.

3. The sum of two periodic discrete-time signal is periodic.



4. The fist signal is periodic but cos/11000/2/ is not periodic, since there is no N such that cos/11000 (17 +
N )] = cos(11000r1) for all n. Therefore the sum cannot be periodic.

Problem 2.6
1)
et t>0 —et t>0
x1(t)= _g .o TXACED= o0 40 =—x1(D
0 t=0 0 =0

Thus, x1 (t) is an odd signal
2) x2(t)=cos 207t + " isneither even norodd. We have cos 12077z + " =cos. " cos(12077t)—
3 3 3

sin % sin(12077¢t). Therefore x2e(t) = cog " cos(12077t) and x20(t) = zsin T sin(1207rL).
(Note: This part can also be considered as a special case of part 7 of this problem)
3)

x3(t)= et = x3(—t) = e~ |0 = ot = x3(t)

Hence, the signal x3 (%) is even.

4)

t t=0 — Xa(—1) = 0 t=0
0 t<0 -t t<0

X4 (t) =

The signal x4 (%) is neither even nor odd. The even part of the signal is

P ICEE TGl 7 t=0 _|q
Xge(D)=—""" —= ° =5
¢ 2 Fr<o 2
The odd part is
{
xa®-xa(-0) _ F t=0 ¢
Xio(t)= L= 2 5=
Lt<o

5)

X5(t)= X1(t)— x2(t) = X5(—t) = x1(—1) — X2(—=t) = X1 (t)+ x2(t)

Clearly x5(=t) # Xxs5(t) since otherwise x2(t) = 0 Vt. Similarly x5(—t) = — x5 (t) since otherwise
X1 (t)= 0 WVt The even and the odd parts of x5 (t) are given by

X5 (t)+2X5 -t) X1 (t)

X5.0(8) X5 (t)—ZX5 - t)_ (0

7
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Problem 2.7 R
For the first two questions we will need the integral /= €3 cos? xdx.

4 1 Z
/ = = cos? ax ==X cos? X+ =  paxg;
2 X de a g € sin2x dx
1 Z
ax 2 .
= € 005 X+ 5 sin2x dedX
Z

1 2
ax — X g —
e3X cos? x + aze"‘ Sin2x — —5— e cos2x dx
ax 2 1 ax 2 ax 2

= e cos X+ e sin2x — e cos x-1)dx
a a a2 @ )

Z
L oax 2 Lax _2 ax i
= ae cos x+aze sin2)(—a2 e dX_azl
Thus,
_ 1 n2ode ax
/= (acds x +sin2x)+ & e
44 4
1)
Z?r Z_g
_ ; 2 — Ii
Ex = Tﬂ)rgo X (t)dx_r“_r,?o . 2t 002 tdt
2
1h i 7

= lim = (=2cos? t+sin2t)— 1 et

T—)OOE - 0
TR > T
= lim 3 (-2cos 5

T—o0

+ sin T—l)e‘T+3 = 3;3—

Thus X1 (t) is an energy-type signal and the energy content is 3,/8

2)
277 277
. 2 .
= x5((t)dx = lim —2t o2
Ex TI—'IPO_—Q 5 (1) T oo I € °TCOS tdt
Z, Z%
= _lim" e 2tcos? tdt e 2t cos? tdt
T—oo __;_— 0
But,
Z -
0 1 h i 0
lim 2t g2 = lim _ (=2cos®t+sin2t)-1 e 2t
Ay e “tcos” tdt IT'TOO 8 G- ) 7



1 7
— lim- -3+ Qcos® —+1+sinT)e’ = oo

T—o 8 2

since 2+ cos @ +sin @ > 0. Thus, £x = oo since as we have seen from the first question the second integral is bounded.
Hence, the signal x» (t) is not an energy-type signal. To test if xo (t) is a power-type signal we find Py.

Z Zr
I e P . 12 5 2
Py = lim = e “lcosc dt + lim — e “tcos® dt
Tooo [ _T T T ¢

2



RT
2 e=2tcos? gt is zero and

Butlimr
Zy
. 1 7
lim 1 e 2leosdt = lim — 2cos’> —+1+sin7T e’
Tooo T T T—o0 87T 2
1 , 1
- p— - —_ 2 . _
> rL"Q 7_e > |TILT'IOO 7_(1+ T+7°)> I7|_n_1)ooT_ oo
Thus the signal x> (t) is not a power-type signal.
3)
Z% Z% Z%
Ex = _lim X2(t)dx = lim sgn?(t)dt = lim = i =
=LA 3(0dx = lim 7% (2 jm, _ydt=Jim 7=c
z” z”
Py = lim L sgn® (t)dt = lim Lo g = lim lT=1
T—ooo T _ZI T—ooo T _ZT T—oo T
The signal x3 (%) is of the power-type and the power content is 1.
4)
First note that
) Z% X Zk+%r
Mim  Acosemfe)dt = A i cosRmft)dt=0
-7 K=—oo 2f
so that
Zr Zr
: N . 12 o
lim Accosc@mft)dt = lim = (A“+ A cos2m2ft))dt
T —oco _TT T2 _7
Z T
1 . 1
= lim= ° Adt = lim “ AT = o
7o 2 I T—o 2

Z T
2 2 . 2 B cos>
A cos“ R t)dt + |I7m , B cos Crhtdt+
—>00 —7

e

2
AB Tlinoo Aeos? Qm(f+ )+ cos? Qm(fi — £)]dt
-7

= ow+4+0+0=oco

(A2cos2 QL)+ B cos? Qmfit)+ 2AB cosRmfit)cosQRm i t))dt



Thus the signal is not of the energy-type. To test if the signal is of the power-type we consider two cases 1 = £ and

fi = F. In the first case
141
Px = lim — (A+ BPcos?@mfi)dt
T-wo T _%
4

. 1 1
= Jm oA BS L a= A 8P

ol



If 4 + > then
123
P = lim= (A2cos2 @t)+ B cos? Qiat)+ 2AB cosR T fit)cos R t))dt

T—oo Tn _77—

#
1 AT BT A2 B2
= lim=>- 7 +2 - =2 4+

T—oo T 2 2 2 2

Thus the signal is of the power-type and if fi = £> the power content is (A + B)?/2 whereas if
f1 # 1> the power content is 1(A2§+ B2)

Problem 2.8

P
1. Let x(t)= 2A [_ — A\, then x1(t) = . «© X (t - 4n). First we plot x (t) then by shifting
2 = —00

it by multiples of 4 we can plot x3 (¢). x(t) is a triangular pulse of width 4 and height 2
from which a standard triangular pulse of width 1 and height 1 is subtracted. The result is a trapezoidal pulse,
which when replicated at intervals of 4 gives the plot of x1 ().

aX1 (t)
¥
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2. This is the sum of two periodic signals with periods 277 and 1. Since the ratio of the two periods is not
rational the sum is not periodic (by the result of problem 2.4)

3. sin/n]is not periodic. There is no integer NV such that sinfrn+ NJ= sin/n/forall n.

Problem 2.9
1)
1 Z% 2 1 z 1
Py = lim — A2 JCQThHt+0) " gr = |im = Adr = lim = A2T = A?
T—oo [ _TT T—oo [ 2T T—oo [

ol

Thus x (t)= A&/ @Thit+6) js 4 power-type signal and its power content is AZ2.

2)
Z Z
1 > 2 _ A? 1 A2
Py = lim — AccoscQmfyt+ @) dt = lim —dt+ lim = —cos@mht+260)dt
Tooo T _TT T-oo T ? 2 Toowo T ? 2
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As 7 — oo, the there will be no contribution by the second integral. Thus the signal is a power-type

. . . A 2
signal and its power content is = . —



3)

Zr Z7
.1 2 . 1 = 17T 1
Px = lim A a)dt = lim — dat = lim — _ —
- 5 -1
Tooo T 5 T-oo T 0 Too T2 2
Thus the unit step signal is a power-type signal and its power content is 1,/2
4)
21 Z, T, L TP
Ex = lim X2 (t)dt= lim K2t 2dt = lim 2Kt
Tooo ST T—o 0 Too 0
- 1
= lim 2Kk?T2= oo
T—oo
Thus the signal is not an energy-type signal.
. lzg > i 12% 5 1
Py = Ilim— x“(t)dt= lim — Kot zdt
T T %T T-oo T o
1 1 772 1 1~ v - 1 _
= im — 2 = I 2 — i 21—, _
L N R R

Since Py is not bounded away from zero it follows by definition that the signal is not of the power- type (recall that
power-type signals should satisfy 0 < Py < oo).

Problem 2.10 .
t+1, -1=t=<0 . 1 t>0
A=  —t+1, 0<t<1 U= 102 t=0

Thus, the signal x ()= A\ (t)u—1 (t) is given by

0 t <0 0 t=-1

—-t+1 0=st=<1 12 t=0
0 t=1 0 t>0

The even and the odd part of x (%) are given by
x(t)+ x-t) 1
- 10 —



2
0 t<-1
) %‘1 —1=t<0
x(t)- x(—t) _
Pl gcr<a
0 1=t

11



Problem 2.11
1) Suppose that

X(t) = XF(O)+ x5(0)= X%(t)+ X°4t)

with xXdt), x? ét) even signals and x* (2), &x* (¢) edd signals. Then, x(-2) = x*(t)— x5(t) so that

o x(t)+ x(—t)
e(t) 5
_ X% () + %, () ¥ x, (—t}+ x, (—t)
2
2 2 2
_ 2xe@+ X;(l‘)— XAt) Xo ®

Thus x14t)= x?gt)and x1 (p)= x(t) - xL ()= x(t) - x?(t)= X*(t},

2) Let xX4t), x?£t) be two even signals and x* (2), X (t) bejwo odd signals. Then,

y©) = xHOXP@) : yO= X EOXCED = XX )= y()
e e e e e e

z(t)= x'O)x2@) - zCO= X COX D= EXOIEER) = 2()

Thus the product of two even or odd signals is an even signal. For v(t) = x* (t)x* (t)wehave ,
V(D)= Xe(—DXo(—1) = XD X)) = -x )X §t) = —v (@)
Thus the product of an even and an odd signal is an odd signal.

2
3) One trivial example is £ + Land © . 1

Problem 2.12
1) x1(t)= TI1(t)+ TT(—t). The signal TT(t) is even so that x1 (t) = 2TT(t)
2
! 1 !
+ .................. b
1 1
1 1
1 1

- 2 -

12



2)

0, t<-1/2
1/4, t=-1,2
xo(t)= N\() -TI(t) = t+1, -12<t=<O0
. —t+1, O0=st<1p
14, t=1/2
0, 12 <t
1
. 1
R 7. . e
T T
=2 s
POO
3 X3(t)= = A(t-2n)
1
-3 -1 1 3

4) x4 (t)=sgn(t)+sgn@ - t). Note that x4(0)= 1, x41)=1
2

5) x5 (t) = sinc(t)sgn (t). Note that x5 ()= 0.

13
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Problem 2.13
1) The value of the expression sinc(t)&(t) can be found by examining its effect on a function ¢ ()

through the integral z. z.

@ (t)sinc(t)d(t)= ¢ ()sinc(0) = sinc(©) _PDSM®)

— 00

Thus sinc (t)S(t) has the same effect as the function sinc (0)&(t) and we conclude that

Xx1(t) = sinc(t)d(t) = sinc(0)5(t) = &(t)

2) sinc(t)5(t- 3) = sinc(3)d(t—- 3)= 0.

3)
X
x3(t) = NA() * S5(t-2n)
n=-—oo
o Lo
= B N(t—- T)O(T- 2n)dT
n—l;‘oo Zoo
= N(T—- )O(T- 2n)dT
N=—oco T
X
= N(t-2n)
n=—oo

14



4)
z

(oo}

xa(t) = A 8 (D)= _Do/\(t— T)5’(T)-dT

0 t<-1
1
7 t=-1
1 -1<t<0
d
= CD——At-T) =N(@®= 0 t=0
ar =0 :
-1 0<t<1
1
—2 t=1
0 1<t

5) X5 (t)=cos ot+ 5@ = Yeos t+ 7 &)= Lcos ™ &) Hence xs () = Lo,

3 3 3
6)
X6 (t)= 561)  54t)= 8 ' S50)=" -8(0)

7) Z.,

sinc(t)d(t)dt= sinc@©) =1
8) Z.,

sinc(t+ 1)o(t)dt = sinc(1) =0

Problem 2.14
The impulse signal can be defined in terms of the limit

S@)=lim L ¢4

-0 2T

is an even function for every 7 so that &(t) is even. Since &(t) is even, we obtain

S)=6C-t) = §@t)=-86 (1)

Thus, the function & (t) is odd. For the function 8 (t) we have
4 VA

T 8™ vdi= " O™ dt

15



where we have used the differentiation chain rule

) d g
6(/( 1)(_ t)= mé(k l)(_ t)E'(_t)= (—1)5(k)(_t)

a
dt

16



Thus, if = 2/(even) Z zZ

H)E™ —t)dt = ” PSS (t)dt

—00 — 00

[ee]

and the function 8@ (t) is even. If n = 2/+ 1 (odd), then (=1)" = —1 and
Z VA

(oo}

_PWETVEndt =~ 45 gy

from which we conclude that 8@ (t) is odd.

Problem 2.15 7

x(@®) + 8™ () = jo x(T)&M (t- 1) dt

The signal 87 (t) is even if n iszeven and odd if 12 is odd. Consider first the case that 2= 2/. Then,

” /
xW)«8Pw=_, x(M&®P (T v dr = (—1)2/72752 X = c?l—;x(t)

If s odd then,

z
* ” " /+1
x(0) 82V = XMEDSCEY (- dr = D1 jﬁmx(r) .
dl’l
= @

In both cases

x(t) + 8™ (t) = 5—;)((1‘)

The convolution of x (t) with v_1 (t) is
Z (oo}
x(t) xu_1 (= xX(Mu-_1(t- T)dT

But u_1(t— T)=0for 7 > t so that
Z;
X(t) + u_1(t) = x(T)dt

Problem 2.16
1) Nonlinear, since the response to x (t) = 0 is not y (t) = 0 (this is a necessary condition for

linearity of a system, see also problem 2.21).
17



2) Nonlinear, if we multiply the input by constant —1, the output does not change. In a linear system the output should be
scaled by —1.

18



3) Linear, the output to any input zero, therefore for the input orxy (t)+ Bx2(t) the output is zero which can be

considered as oxy1 (t)+ By»>(t) = o« <x 0+ < 0 = 0. This is a linear combination of the corresponding outputs to
X1 (t) and x5 (t).
4) Nonlinear, the output to x (z)= 0 is not zero.

5) Nonlinear. The system is not homogeneous for if o <0 and x(t) > 0then y(t)= T/xxx(t)] = 0
whereas z(t)= oT [x(t)]= o.

6) Linear. For if x(t) = arx1 (t)+ Bx2(t) then
Tlax (W) + Bxa(t)] = (axi(t)+ Bxa(D))e™ !
= axy(e '+ Bxo (et = aT [x1 ()] + BT [x2 (D]
7) Linear. For if x(t) = aexy (t)+ Bx>(t) then
Tlax1(t)+ Bx2(t)] = (axy(t)+ Bxo(t))u(t)
= ax1(Dut)+ Bxa(Qu(t) = «T [x1 (D] + BT [x2(t)]

8) Linear. We can write the output of this feedback system as

X
y) = x(®)+ yt-1)= OX(t— n)
n=
Then for x(t) = aexy(t)+ Bx2 (1)
X
y(@) = (axxy(t= n)+ Bxz(t— n))
n=0
X x
= o xi1(t-n)+ B  x2(t-n))
n=0 n=0

= ayi1(t)+ By ()

9) Linear. Assuming that only a finite number of jumps occur in the interval (—oo, ] and that the magnitude of these
jumps is finite so that the algebraic sum is well defined, we obtain

X . ¢
y(t)= Tloax(t)] = odx(tn) =  Ix(tn)=oT[x(@)]

where N is the number of jumps in (—oo, t] and _fx (t;) is the value of the jump at time instant ¢4, that is
Ix(tn) = LL”S(X(t”+ 0)— xX(th— 0))
For x (t)= x1(t)+ X2 (t)we can assume that x1 (t), x2 (t) and x(t) have the same number of jumps and at the same

positions. This is true since we can always add new jumps of magnitude zero to the already existing ones. Then for
each tp, Jx(tn) =_Jx (tn)"'_/xz(tn) and

X X X
y(t)= Ix(tn) = Ix (tn)+ Ix (tn)

so that the system is additive.

19



n=1 n= n=1
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Problem 2.17
Oonlyif (- =

WT is linear then
T [ax1 (D) + Bx2(t)] = &T [x1 (D] + BT [x2 (D]
for all o, S and x(t)’s. If we set B = 0, then
T [ax1 (t)] = &T [x1 (D]
so that the system is homogeneous. If we let & = 8 = 1, we obtain
T Da(®+ x(D] =T Da ]+ T [x2 (D]

and thus the system is additive. If ( =)
Suppose that both conditions 1) and 2) hold. Thus the system is homogeneous and additive. Then

T [ax1 (D) + Bxa (D]
T [oexy (t)]+ T [Bxo (t)] (additive system)
T [x1 (] + BT [x,(t)] (homogeneous system)

Thus the system is linear.

Problem 2.18

1. Neither homogeneous nor additive.
2. Neither homogeneous nor additive.
3. Homogeneous and additive.

4. Neither homogeneous nor additive.
5. Neither homogeneous nor additive.
6. Homogeneous but not additive.

7. Neither homogeneous nor additive.
8. Homogeneous and additive.

9. Homogeneous and additive.
21



10. Homogeneous and additive.
11. Homogeneous and additive.
12. Homogeneous and additive.
13. Homogeneous and additive.

14. Homogeneous and additive.

Problem 2.19
We first prove that

T [nx(t)]= nT [x ()]

for n € N . The proof is by induction on n. For rn = 2 the previous equation holds since the system is additive. Let us
assume that it is true for /7 and prove that it holds for n + 1.

T [(n+ Dx ()]
= T /nx@®)+ x()]
= T [nx()]+ T [x(t)] (additive property of the system)
= nT [x(@)]+ T [x(t)] (hypothesis, equation holds for 1)
= (n+ VT [x@®]

Thus T [nx (t)]= nT [x(t)]for every n. Now, let

x(t)= my(0)
This implies that

x(t)
T — =T[y®]

and since T /x ()] =T [my (t)] = mT [y (t)] we obtain

T XO_ 11w
m
Thus, for an arbitrary rational o = k we have
k x(t) x(t) k
_ = - =kr T ="
1 Ax(t) T k 3 a /\T Ix@®]

Problem 2.20
Clearly, for any o

’ 2 ,
G X0 Tl o
0o xX@®=0 , = alx®J
= 0 X (@=0

22

y ()= T[ax ()] =



Thus the system is homogeneous and if it is additive then it is linear. However, if x(t) = x1 (t) +
x2(B)then x' (1) = x )+ x At) and

(X1 (D) + X2 ()P ixm) X2 (t)

4 J 4 + 14
Xl(t)"'Xz(t) Xl(l') Xz(l‘)
for some x1 (t), x2 (t). To see this let x» ()= ¢ (a constant signal). Then

Ca®+ P _ xPM)+ 200 @)+ E
X, (t) X1 (0

TIx1()+ x2 ()] =
and
Xz ()
x1 (1)

Thus 7/x1 (t) + x> ()] = T[x1(t)]+ T[x,(t)] unless ¢ = 0. Hence the system is nonlinear since the additive
property has to hold for every x1 (t) and x> (t).
As another example of a system that is homogeneous but non linear is the system described by

T[x1 (O] + ThHa (0] =

xX(t)+ x(t-1) x®)xt-1)>0
TIx(@)] =

0 otherwise

Clearly T/oxx (t)]= T [x(t)]but T[x1(t)+ x2(t)] + T[x1 ()] + T[x>(t)]

Problem 2.21
Any zero input signal can be written as 0 - x (t)with x(t) an arbitrary signal. Then, the response

of the linear system is y ()= L /[0 - x (t)]and since the system is homogeneous (linear system) we
obtain
y(@®)=L[0- x@®)]=0-L[x()]=0

Thus the response of the linear system is identically zero.

Problem 2.22
For the system to be linear we must have

T [ax1(t) + Bx2 (D] = &T [x1 (D] + BT [x2 (D]
for every o, B and x(t)’s.
T [aex1 (D) + Bx2(t)] = (axx1(t)+ Bxa(t))cosRriot)
axy(t)cosQRmfyt) + Bxo(t)cosmfyt)
= T [x1(®]+ BT [x2 (V)]

Thus the system is linear. In order for the system to be time-invariant the response to x (t— ) should be y(t —
tp) where y (t) is the response of the system to x (t). Clearly y'(t — tp) = x(t — ty)cosQm fy(t - tp)) and the

23



response of the system to X (t — to)is y (t) = x(t— ty)cosRmfyt). Since cosR T fH(t — to)) is not equal to
cosRmfpt) for all ¢, & we conclude that ' (£) # y (t — tp) and thus the system is time-variant.

21



Problem 2.23
1) False. For if 7i/x(t)] = x3(t) and To[x(t)] = x1/3(t)then the cascade of the two systems is

the identity system 7/x (t)]= X (t)which is known to be linear. However, both 71/-Jand 7, /-] are
nonlinear.
2) False. For if

1
tx@t) t+0 To[x ()] = tx(t) t+0

0 t=0 0 t=20

nix@Jj=

Then 7o /[T1/x(t)]] = x(t) and the system which is the cascade of 71 /-] followed by 7, /-] is time- invariant ,
whereas both 71 /-] and 7, /-] are time variant.

3) False. Consider the system

y(t)=T[x®)]= x(t) t=0
1 t<0

Then the output of the system /() depends only on the input x (7) for 7 < ¢ This means that the system is causal.

However the response to a causal signal, x (t)= 0 for ¢ < 0, is nonzero for negative values of ¢ and thus it is not
causal.

Problem 2.24

1) Time invariant: The response to x (t — tg)is 2x(t— tp)+ 3 which is y (t — ty).

2) Time varying the response to x(t — tp)is (t + 2)x(t - ty)but y(t — to)= (t- th + 2)x(t - ty),
obviously the two are not equal.

3) Time-varying system. The response y(t — fp)isequal to x(—(t — fp)) = x(-t + lp). However the response of
the system to x (t — tp)is z(t) = x(-t — tp)which is not equal to y'(t — &p)

4) Time-varying system. Clearly
y ()= x@u-1(t) = y(t - to)= x(t- to)u-1(t - o)

However, the response of the system to x(t — &p)is z(t) = x(t— ty)u—1(t) which is not equal to
y(t- ty)

5) Time-invariant system. Clearly
Z, Ly

y= _ XMdT =yt -w)= _ xdr

The response of the system to x (t — &p) is
Z, Z

20

t—0



z(t) = xX(T- to)dT= x()dv= y(t- ty)

— 0o
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where we have used the change of variable v = 7 — f.

POO
6) Time-invariant system. Writing y/(t) as n=—o X(t— 1) we get

X
y(-to)= X(t-1t—nm)=T[x({- )]

N=—oo

Problem 2.25
The differentiator is a LTI system (see examples 2.19 and 2.1.21 in book). It is true that the output of a system which is

the cascade of two LTI systems does not depend on the order of the systems. This can be easily seen by the commutative
property of the convolution

hy(t) + ho(t) = ha(t) * h (D)
Let A4 (t) be the impulse response of a differentiator, and let y/ () be the output of the system A, (t)
with input x (). Then,

ha(t) + X () = ha(t) + (A (D) + X(t))
ha(t) * hy () * X (1) = h1(t) * ho (t) + X (1)
hi(t) + y()=y ()

z(t)

Problem 2.26
The integrator is is a LTI system (why?). It is true that the output of a system which is the cascade of two LTI systems
does not depend on the order of the systems. This can be easily seen by the commutative property of the convolution

hi(t) + ha ()= ha(t) x by (1)

Let A4 (t) be the impulse response of an integrator, and let y (t) be the output of the system A, (t)
with input x (t). Then,

Z
ha(t) + X(D)AT = ha(8) * (A (D) * X(©)

z(t)

ha(t)  hy(t) *ZX(t) = h1(t) + ha(t) + x(t)
t
hi(t) » y(t) = y(T)dTt

Problem 2.27
The output of a LTI system is the convolution of the input with the impulse response of the system.
Thus,

22



Zo z,
o(t) = e *Duy ¢~ rygr= h(r)e *t=Tdr

—00

23



Differentiating both sides with respect to ¢ we obtain

z, g L #

5 @) —oe t  h(Tm)eXTdr + e—“f;t A(T)e*TdT

o))+ e ¥ h@®e*t = —a0)d(t)+ h(t)

Thus
At) = xS+ & ()

The response of the system to the inpuEx(t) is

y() = x(T) «xd(t- 1)+ 5’(1-_ ) dt
Z Z.,
= o X(T)a(t— T)dT+ X(T)él (t— T)dT
d
= ax(t)+ EX(Z‘)

Problem 2.28
For the system to be causal the output at the time instant #& should depend only on x (t) for ¢t < ty.
(to) 1 Zto+T 1 Zl’o 1 Zr0+T
yto) == x(T)dt = 7= x(T)dT + - x(T)dT
2T ,_; (T) 2T ot (T) 2T & (T)

We observe that the second integral on the right side of the equation depends on values of x (1) for
T greater than f. Thus the system is non causal.

Problem 2.29
Consider the system

x(t) x(t)+0
1 Xx(@)=0

y(®)=T[x@@)]=

This system is causal since the output at the time instant ¢ depends only on values of x(7) for 7 < ¢ (actually it
depends only on the value of x (7)) for 7 = ¢, a stronger condition.) However, the response of the system to the impulse
signal &(t) is one for t < 0 so that the impulse response of the system is nonzero for t < 0.

Problem 2.30

24



1. Noncausal: Since for ¢ < 0 we do not have sinc(t) = 0.
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2. This is a rectangular signal of width 6 centered at £ = 3, for negative ¢’s it is zero, therefore the system is
causal.

3. The system is causal since for negative £’s A(t) = 0.

Problem 2.31
The output y () of a LTI system with impulse response A(t) and input signal u—1 () is
Z., Z, Z,
y(t)= h(mMu_1(t- T)dT= h(T)u_1(t- T)dT+ . h(Du—_1(t— T)dT

But w_1(t— T)= 1for 7 < t so that
Z, Z;

h(r)u_,(t- T)dT= h(T)dTt

Similarly, since &_1 (t— T)= 0 for 7 < t we obtain

. h(Mu-1(t- T)dT=0

Combining the previous integrals we have
VA Z

[oe]

y(t)= A(Mu_1(t- T)dT=

t
h(T)dT

Problem 2.32
Let A(t) denote the the impulse response of a differentiator. Then for every input signal

d
t ht)= —x(t
x(t) + h(t) cﬁx()
If x(t)= &(t)then the output of the differentiator is its impulse response. Thus,
() h(t)= h(t)= & (t)

The output of the system to an arbitrary input x (z) cap Qoe found by convolving X(Z') with & (t). In this case
yt) = x(@) 8 @)= __X(ME (t- T)dT= FZx(1)

Assume that the impulse response of a system which delays its input by & is A(t). Then the response to the
input &(¢) is
S(t) » h(t)= &(t- ty)
However, for every x (t)
S(t) » x(t)= x(t)
so that A(t) = &(t — tp). The output of the system to an arbitrary input x () is
26



Z,
y(t) = x(t) » &(t- tp)= X(T)O(t- th — T)dT= x(t- tp)

27



Problem 2.33
The response of the system to the signal oexq (t)+ Bxa2 (t) is

Z t Z t Z t
yi(t) = (aex1(T)+ Bx2(T))dT = o x(T)dT+ B x2(T)dT
t-T t—T t-T

Thus the system is linear. The response to x (t — &) is

Z,; Zi g
yi(t) = X(T - to)dT= x(v)dv = y(t - ty)
t—T t—t—T

where we have used the change of variables v = 7 — #. Thus the system is time invariant. The impulse response

is obtained by applying an impulse at the infut.
V4 t t V4 -7

hw)= __ smdr= _, S()dT - S(T)dT= u_1(t) - u_1(t—T)

Problem 2.34
1
) Zoo Zt
_ —r
elui@) retui@) = € Tume T uie- T)dT= € 9T
te ! t>0
0 t <0
2)
Z Z% Zt+32
X (t) =TI() » \(t) = TT(GIN\(t- 6)dé = N(t—- 6)do = . A(v)dv
e -
3
fs_g = x()=0
Z, ! P
3 1 2 l 2 E 2 3 9
Tct=s-_ -7 x@)= v+Ddv=( v = ¢t + t+
2 2 -1 2 8
51 +V) . -
1 1 ZO Zt+2
——<t=s — > x(t)= (v+ 1)dv + (-v+1dv
2 2 tr 0
1
_ — 3
1, _(ZV7 0 = 1,



-V
+(2

t+ - 3
_ +V z
o =€+ ) 4
Z
1 3 L 1 L 1 3.9
E<ts5 = x(t)= t_%(—v+1)dv= (—§V2+V) t—71=§t2_§t+8_
3
) <t = x(t)=0

29



Thus,

Problem 2.35
The output of a LTI system with impulse response A(t) is
Z (o) Z [e'e)

y()=  X(t-Th(mdr=  x(T)h(t- 1)dt

Using the first formula for the convolution and observing that A(T)= 0, 7 <0 we obtain
Z, z., Z.,
y(t) = x(t—- T)h(T)dT+ . x(t- T)h(T)dT=

Using the second formula for the convolution and writing
z t
y(t) = x(T)h(t- T)dT+

g,
‘ x(T)h(t- T)dT
we obtain Z,

y(t) = x(T)h(t- T)dT

ROO
The last is true since A(t— T)= 0for t < T so that xX(T)h(t - T)dT=0

. x(t- T)h(T)dT

Problem 2.36

In order for the signals ,, (t) to constitute an orthonormal set of signals in [ex, o+ Tp ] the following
condition should be satisfied

z

a+To - 1 =
@), Ym(Di=  WnOWnOdt= pmp= = =1
o 0 m=+n
But
Z
OH—RL(:/.Z"LZ‘L g™t
hpn (), Ym (i = P "P_e  Nodt
o To To

30



If n= m then e

J2m

(n—m)
To

1 Z 0(+76 (n-m)

To

= 1 so that

hewn (0, Wn(ti = 7i0

e,-zn—fc—’dt
o
ZD(+76 1 o+ Ty
dt = =—¢
o To" «

31



When rnn = m then,

1 x J2m(n—m)(o+Ty)/To

hn (O, Ym(h = —————¢ =0
B m Jem(n—m)"  jerin-mo/To

Thus, hwn (), Yr (t)i = & mmpwhich proves that ¢, (t) constitute an orthonormal set of signals.

Problem 2.37
1) Since (@a— b)? = 0 we have that
a’ b
abs 5 " 5
with equality if @ = b. Let . . .
n 2 n 2
X X
A= ’ ) B=" ﬁzl.
i=1 =1

Then substituting «j/A for a and B;/B for b in the previous inequality we obtain
aiBi 1 0’21 18

<
AB 24 2B

with equality if i 5 A = k or ovj = kB for all 7. Summing both sides from 7= 1to 77 we obtain

g 1}ap %G
= +
. AB _ R 2 B
=1 2 -
=1n 1 " 1 1 5
n = el _
X X
_ ol - 2 — 2 _
Y.Y: i I 2B i ﬁ'z ZAZA + 2323 s
Thus,
1 1
1 n n n 2 ) n 2
X X X X
ﬁ a’,-,B,-sl=> O(iBiS 0(21. ﬁzl
i=1 i=1 i=1 =1
Equality holds if ovj = kBj, fori=1,..., n.
2) The second equation is trivial since |x;y™| = |x;||y™|. To;see this write x; and y; in polar
JOx; Jby,; * J(6x,=6y,)
coordinates as xj = px;€ and y; = py,e . Then, |X;y; | = |px;Py,€ | = px;Py; =

[xillyil= 1xilly;"|. We turn now to prove the first inequality. Let z; be any complex with real and
32



imaginary components z; g and z; s respectively. Then,

X X X X
4 = zig+ Gl =
=1 = i=1 i=1
n n
X X

= (ZiRZm,R+ Zi1Zm,1)
=1 m=1

33



since (zjRZm,1 — Zm,RZi,1)* = 0 we obtain
(ZiRZm,R + Zij1Zm,1 P < (Z,%R + 3,-,/)32,77,/3 2 Zm, 1)

Using this inequality in the previous equation we get

X XX
zj = (ZiRZm,R + Zj,1Zm,1)
i=1 i=1m=1
X X 1 1
= Z + 2 )i(A + 22 )7
iR il mR  m,l
i=1m=1
- - = n 2
n 1 n
X (z i X 1 X 1
= 7 R+ 2 )t (220 R+ 2oy )?" =" (Zip+ 25 )"
i=1 m=1 i=1
Thus .
n 2 n . 2 n n
X X i X X
zi ='  (@Gr+Z )" o zi = |zl
=1 =1 i=1 =1
ZiR  ZmR
The inequality now follows if we substitute z; = x;)™. Equality is obtained if Zis = Zms
1

3) From 2) we obtain

2
X . X
XY = Xl
=1 i=1
But | x|, | yi| are real positive numbers so from 1)
. - _—
x X 2 X 2
2 2
Ixillyil =" Ixil = il
i=1 i=1 i=1
Combining the two inequalities we get
. ! 1_
e Pk Tk e
xiy* <7 Ixi T | il
=1 =1 i=1

From part 1) equality holds if oc; = kBjor | x| = k|yj| and frompart2) x;y™ = | x;y;" | e/l Therefore,
the two conditions are .
34



|Xi|=k|yi| " LX,‘—Ly,'=9
which imply that for all 7, x; = Ky for some complex constant K.

4) The same procedure can be used to prove the Cauchy-Schwartz inequality for integrals. An easier approach is obtained
if one considers the inequality

| x()+ oxy(t)| =0, for all ¢

35



Then

Z [ee] Z (o]
0 <  Ix@+ay@iPgr = (X@®+ ay@)x" @O+ oy @)dt
Zy Zo Zo Zo

_Ix@Fdt+ & x"@y@dt+ o x@y*@dt+ia’ o ly )’ dt

Reo Reo
The inequality is true for _oo ~ X™ (DY ()dt 0. Suppose that _c, x> (£)y/ (t)dt + 0 and set

Roo
s Ix®)?dt

=R
L X* (Dy (Ddt
Then,
Z, , [Roo x(t)| dt] ly ()| dt
0<— |Xx ()| dt + ,
—o IR 2 Rf 2
oo | oo X(DY™* (1’
and
z Z, FRARS L
oo 2 2 2 2

x@®y™ (dt = | x(t)| dt ly )| dt

Equality holds if x(t)= —ay (t) a.e. for some complex o.

Problem 2.38
1)
Z D 2
¢ = xX(- o) dt
_°° i=1
= " x(t)- xipi(t)" " xT (t) — a” ¢ ) de
—e i=1 J=1
Z, X Lo D¢ 7
2
= | x ()| dt — o di(O)x™ (t)dt — aj"-‘ qS;‘ tx)dt
'°° =1 % J=1 —
N N
X X Zo )
+ 6\’/0’7 ¢1(t)¢j dt
i=1j=1 -
N N

36 N



zZ,, X . Ly 5% Z,
— 2 . * Sk
= | x (R dt + loil” = & @i (X™ (dt — o & (x@dt
i=1 =1 J=1
Completing the square in terms of or; we obtain
Z, X Z, 2 M Z, 2
= Ix@\Pdr- ST (Oxdt +  a- " (Dxdt
- = ! i=1 —o

The first two terms are independent of «’s and the last term is always positive. Therefore the minimum is

achieved for Z.
o= @7 (Dx(Ddt
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which causes the last term to vanish.

2) With this choice of oj’s

zZ, A oo 2
P = I x (D) dt — ¢ (Hxdt
—oo
—© i=1
Z. 2 X
= x| dt — |«
- i=1

Problem 2.39
1) Using Euler’s relation we have

X1(t)= cos@rmrt)+ cos@rmrt)

1 - f4TTt ;
:_2 ei2rrt+ e—_/2rrt+ Y + e—_/4rrt
Therefore for = +1,+2, x1,, = ! ar@ for all other values of 1, x1,, = O.

2) Using Euler’s relation we have

X2 (t)= cosQmt)— cos@rmrt + 1m/3)

1 Rt —j2mt J@mt+m/3) —j@mt+1m/3)

=— € +e —-e —-e
2
1ei277t+1e j21Tt + 1e j217 /3 '4th+le'2 /3 —jarmrt
=— —e—j2m —e—j2m —ej2m/3 —jamr
2 2 2 ¢ 2 €
; Land x5 = x* = Leuen/s3
from this we conclude that xp,+1 = 2 2,2 -2~ 3 , and for all other values of n,
X2’n = O

3) We have x3(t)= 2cos@mt)— sin(Amrt)= 2cos2mt)+ cos(@mrt + 1/2). Using Euler’s relation as
in parts 1 and 2 we see that x3+1 =1and x32 = X 3,—2 =/, and for all other values of 17, x3,, = O.

4) The signal x4 (t) is periodic with period 7o = 2. Thus

VA A
1t , 191 .
X4,n = A(De S2ritde = = Ae Tt g
2
-1 2 _1
120 ) 121 _
= —2 _1(t+ ]_)e_J7Tntdt + E 0 —t+ 1)e—_/7Tl7tdz.
. 0 ] 0
_l J jmnt _1_—_/'7Tnt —— _jmnt
= te” + e + e
2 1mnNn 72 12 . 2mn .
1 1
38 —

0 0




When r7 = 0 then

E L Jmnt 1 —jmnt J —jmnt
- te ——€ e
2 1mn Y Y omn
1 1 Jmn —jmn 1
22 222 (e +e )= 772n2(1_ cos(mn))
1Zl

N|

y

X40 = — A®)dt =
2 -1
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Thus

—— (1 - cos(mrn))cos(mrnt)

5) The signal x5 (t) is periodic with period ZTO =1.Forn=0

1 1 ) 1 1
X50 = O(—l’+ 1)dt= (—Ef + l')O— 5~
Forn+0
Zy
x5, = (~t+Ded?gr
’ 0
] 1 j " 1
= - _J — —j2mnt —Jerrm
= te j2mnt + e + —¢€
21N 4172 P 0 2mn 0
J
- T 2mn
Thus,
1 X 1
Xs5(t)= -+ ——sin2mnt
2 mn
n=1
6) The signal xg (t) is real even and periodic with period 7 = 1 5% - Hence, Xe,n = as,n/2 or
VAR
f
Xs,n = 20 1 cos@mfyt)cosmm2fyt)de
—af
1 ’ 1
Z4f YA
= f | cosQmf+2mudt+ fy . cosQmfyl—2n)t)dt
T TR
1 i 1 i
- —— sin@mfi@d+2mMt) |, 4 sin@mrfod—-2n)t)
2+ 2n) afg  2m(1-2n) af
_ —1)" 1 N 1
m  (1+2n) (1-2n)
Problem 2.40

It follows directly from the uniqueness of the decomposition of a real signal in an even and odd
part. Nevertheless for a real periodic signal
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ancos@rmr ,lt)+ bnsin@m r%t)
0 0
7
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The even part of x(¢t) is

xX(t)+ x(-t)
Xe(t) = 2

-2 “ap + x ﬂt) -2 n
=, n_lan(cos(277 7o + cos(=2r1r 70t))

. n
+bnGINRT—— )+ sinc=2m 2 )
To 7o
ao e

= — + ancos@m t)
2 0
n=1

The last is true since cos (@) is even so that cos(6) + cos(-6) = 2cos 8 whereas the oddness of sin(8) provides
sin(@) + sin(-6)= sin(8) —sin(6) = 0.
The odd part of x(¢) is

Xo(t) X(l'z—zX(—tz

x n
— bnSin(ZTI' 7—t)
0

n=1

Problem 2.41
1) The signal y(t) = x(t— tp)is periodic with period 7 = 7.
z o+ T
1 0

= 3 —jZW%tdt
Yn = T 4 X(t- fe o

= — X(v)e_ﬂ"?o v+ fp)dv

n

—j2
x(v)e LY dv

where we used the change of variables v =t — §

2) For y(t) to be periodic there must exist 7 such that y/(t+ mT) = y(t). But y(t+ T) = x(t+ 7)ef21h

taf2mhT o that y (t) is periodic if 7= To (the period of x (t)) and 57 = k for some & in Z. In this case
1 a+75 ;s

L -2yt
yn = T, X(e 0 2 ht ot
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1 ZO(+76
o

x(t)e

33
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(nfk)t
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3) The signal y (t) is periodic with period 7 = Tp/cx.

= y(t)e ji2mitdr = - x(at)e 7T Ut
0

T
B
1 Zgﬁa’+ To n

= — x(v)e_thTovdv= X
To Po

Yn

where we used the change of variables v = «t.

Problem 2.42
1 Za'+7b 1sz+76 X 2y X ﬂ’;mldt
= x(y* @®)dt = — Xpe ° me  °
To o y™ @) oo " mz_mym o
A AR < 1 ZO("'F) Jem(n-m) ,
= XnYm— e nh dt
T
N=—co [M=—co 0 o
X X . X
= Xn¥Ym Omn = Xn¥n
nN=—oo
N=—co M=—0o0
Problem 2.43
a) The signal is periodic with period 7. Thus .
AT 147
— T —
—t,—j2mr"t —g2m?+1)t
= e ‘e = e at
Xn T 0 dt T o
T h i
1 G2+t 1 —G2mn+T)
= —————¢€ T =_T e _ 1
T jom7+1 J T
1 0 *
- T
T j2mn+ 7'[1 e ] T—j2mn
2+ 4m?n? [l-e 7]
If we write x,, = ‘”"ij’we obtain the trigonometric Fourier series expansion coefficients as

27 _ 7 Amrn _
an= T2+4772,72[1_e 7 bn="  amm1- ¢ 7

b) The signal is periodic with period 2 7. Since the signal is odd we obtain xo = 0. For 7+ 0

A7 1 47 g
X(t)e_jZTr#td[ =57 — 2T T tyy

Xn = -7 T

27T -7
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The trigonometric Fourier series expansion coefficients are:

2
an=0, bp= V"™

¢) The signal is periodic with period 7. For n = 0

Zr
X = = x@®dt="
0= = T >
If n =+ 0then
Zr
1 = .
Xn = - rx(t)e J2rr‘7tdt
Z_? Y4
T I
1= —jemrlt _1 el
= 7'_16 T dt + e T dt
2 4
7
T . T
J Jemr"t, J —jemt
= - A T _— T
2mn® -I% omn® -7
: h . o i
— J e JTN— TNy JT] _o—jTr
21mTn

1 . . n. 1. n
—nnsm(ﬂ_z)_ 2smc(2 )

Note that x, = 0 for n even and xo /.1 = ﬂerﬁéla . Thé trigonometric Fourier series expansion
coefficients are:

ap=3, ,azy=0, ,a -2 /
0= 9, yaz/= U, yad2/+1 = 7_’_(2/_'_1)(—1), ,bn=0, vn

d) The signal is periodic with period 7. For 7= 0
A7 2

== x(t)dt = =

0= ®) 3

If n # 0then



Thé trigonometric Fourier series expansion coefficients are:

2 .

T g2t = — te- T +——€ 7
72 2mn 412 2
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The trigonometric Fourier series expansion coefficients are:

4 3 217N
an= an= 2 2[’&037 )_ 1]1 bI7= 01 vn
3 men 3

e) The signal is periodic with period 7. Since the signal isodd xop = ag= 0. For n# 0

Zr1 Zr
1 = 1 = 1
Xp = =  x@dt=— -/ dt
- T
2 r - 2
I Zr1
+—l "8 teemttdr + L7 jeny tdt
T T 7 €
,
— T - .
S
4 JT pa, T ot
_ 4
= — te” — T
= 72 o2mn arr? 2 -7
4 H
_1 JT Jemr"t « + JT Jer"t
— B T + B T
T 2mn -7 T 2mn r
" 7TI7)#
J 2sin( 2 J ;
= =< , ayn_ = ~ 1)1 —sinc
o (L= SRS = —sine()
For r even, sinc(”’ )= 0and x, = J — The trigonometric Fourier series expansion coefficients are:
2 mn
1
_ _ — 77 n=2/
an=0,vn, bp= 5 2¢-1)

rerpllt rerp/ n=2/+1

f) The signal is periodic with period 7. For n =0

123
X0 = T TX(t)dt =1
-3
Forn+0
Z, Z7
1 3 —Jjemfedt ! 3( 3t 2)e j2mdt
Xn = 7 T(—Tt+2)eJ 7 t7 o, Ot € 27t g
_— K
. 2 -
3 JT Jemlt r J2mt
= — _ T + - T
72 27'rnte 4112 2 -7
B T
I
3 JT Jemrt T? g2t 0
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The trigonometric Fourier series ex&gnsiwgefﬁﬁents@ret e T

47172 n?
I
3
. 0 -
2 JT  jopne 2 JT  jom"t o0
+ e T + e T
T2mn -7 T2mn
3 1 2mn 1 21mTn

= ——— ——CO0S + sin
mn? 2 ¢ 3 ) mn ¢ 3 )

The trigonometric Fourier series expansion coefficients are:

3 1 217N 1 217N

ap=2, ap=2 —cosC . ) +  sin( _ )
mn 3

, bpr=0,VvVn
w2 2 3 7
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Problem 2.44
1) H(f) = 10]'[(2). The system is bandlimited with bandwidth W = 2. Thus at the output of the

system only the frequencies in the band /—2, 2/ will be present. The gain of the filter is 10 for all #
in (=2, 2)and 5 at the edges = 2.

a) Since the period of the signal is 7 = 1 we obtain
y() = 10#'5120 +a1c0s@mt)+ f sin@mt)]

+5/a,cos@m2t)+ bsinm2t)]
With

2 + amrn
=——f1-¢€ L L L S R}
an= T am Al 5L bn=Tigmep -]
we obtain
1 _ 20 _40m
yt) = (1-elt) 20+ L+ am? COSRTE)+ T4 472 SNQTL)
10 40717
+—————C0S 2t sin 2t
L+ 1672 (G20 1+ 16772 n@mt

b) Since the period of the signal is27 = 2 and a, = 0, for all 17, we have

X ] n
x(t) = b,7S|n(27'r2 —t)
n=1
The frequencies 7 should satisfy | ”’| < 2or n< 4. With b,= (-1)"*1 2 — we obtain
2 2 mn
20 . 2Tt 20 .
y(t) = FSm(T) 27T—sm(277t)
20 . 2m3t 10 .
n B — _———
ESI (2 5 ) AT sin@m2t)

c) The period of the signal is 7 = 1 and

2
a0= 31 Ia2/= 01 Ia2/+l = m(_ljr rbI7= 07 vn
Hence,
3 X
XO)==+  apicosQm@l+ 1))
/=0
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At the output of the channel only the frequencies for which 2/+ 1 < 2 will be present so that

y(t)= 10—2 + 10%0030771‘)
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d) Since b, = 0 for all n, and the period of the signal is 7 = 1, we have

0
x(t) = Py *

With ag = 4_and an =
3 2 3

y(t)

e) With a,, = 0forall n, 7 = 1 and

bn=

we obtain

a

20 30
—+

>

n=1

[cos 37) — 1 ]we obtain

21T

ancos@mnt)

w2 (cos(4—7T)— 1)cosm2t)
47172 3

20

1

ml
2

n=2/

2-1)!

—2(003( —)—1cos@rmrt)
T 3

4 4
—— —2%05(2771“)— 5—2608(27721')
3 T 81

merp1+ sern! n=2/+1

y(t) = 10bsin@mt)+ 5bsin@mt2t)

f) Similarly with the other cases we obtain

y(t) 10+10-2

2) In general

31

2 (2 —cos( ?)-rﬂ sin(

|
$#

21 1
47 1
)—l—

21T

cosrmt)+ 10

21

3 7

A

T3

47T

2

10 ~(%+ 3sin(277t)— 5 1s{tn(2771‘21‘)
T T T

cos@rrt)

J #
[ #

sin(3 ) cos@m2t)

cos(2m2t)

n=—oo



xXnH( -
)ej2777—

t
T

The DC component of the input signal and all frequencies higher than 4 will be cut off.
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a) For this signal 7 =1 and xp, = 1_jl+4 el ). Thus,

1—j2m 1 Jere  1—Jj2m2 1 J2m2t
= 1— e_ —J -e —J
y () 1 am"© e e, A€ D) )e
1 —J2773 (1 e_l)( j)ej277-3t 1 _J27T4 a e—l)( j)ejZ7T4t
+— — - + — -
1+ 47129 1+ 471216
1+ j2m ) 1+ 212 ]
TTramz G- e T g AT ehje st
1+j2m3 a —1y:;,—j213t + rJem A— o1yj.—J2mit
1+am2g F—e )e 1+ 477216 e )je
4 2
= A-et) n=1m(sin(2ﬂnt)_ 2mrncos@mrnt))

b) With 7T =2and x,= jﬁrl)” we obtain

j ot X )
_(_1)n(_j)e/77nt+ _(_1)nje/rrnt

y(t)

n=1 mn n=-8 mn

8 -1

X n jmnt x 1 n jmnt
= e + _rrn(_l) Je

n=1 71 n=-8

c) In this case

-1

1
X2/=0, X =—
2/ 2/+1 mel~1)

Hence

y ()

1 1

— (—j)eiemt + — (—1)(—j)ej2m3t

77(_])6177"‘377_( )(—jlejz2m
1 1

+ (_1)je—j27Tl'+ —Jj21mr3t
—1T

—3nJe

= —lsin(ert) - l—sin(277’3>z‘)
21T 6717

d) xo = 2and xp= ,—€coél"——) — 1). Thus

4
37 y(t)



3 2(cos( 217N —

DG
£,
_.2mn 3
n=1
x 3 217N Jjomnt
P (cos( 3 )—1)je
n=—4
e) With xp = 7%((—1)” — sinc(,2) we obtain
X x
y()= L((—l)” —sinc( ,—7))+ —l((—l)” —sinc( 2))
_, n 2 . mn 2
n=1 n=—4
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f) Working similarly with the other cases we obtain

y@ = 'f 232 £—cos( 277—”) +Lsin(2"—n) (—j)el2mnt
ey TN 2 3 mh 3
Lt —3 E PP 1 Zﬂ J—
+n=_4 2 2 Z_COS( 3 )+ ﬂnsin( 3 ) je

Problem 2.45
wing Parseval’s relation (Equation 2.2.38), we see that the power in the periodic signal is given by
o oo | Xn[?. Since the signal has finite power

g FanTs

|x(t)|2dt =K <o

To o

P
Thus,  “—co |x,7|2 = K < oo. The last implies that | x| — 0 as /27— oo. To see this write

X >4 X X
2 — 2 4 2 4 2
[Xnl [Xnl [Xnl [ Xnl
n=-—co n=—oo n=—mM n=m
Each of the previous terms is positive and bounded by K. Assume that | x| 2 does not converge to

zero as 1 goes to infinity and choose ¢ = 1. Then there exists a subsequence of xp, xp,, such that
I Xn | >0=1, forng>N=M

Then
X X P

IXnl° = IxalPZ Ixn %= oo
n=mM n=N ng
- - . POO 2
This contradicts our assumption that = o | x| is finite. Thus | x|, and consequently x, should

converge to zero as /7 — oo,

Problem 2.46
1) Using the Fourier transform pair

2o _ 2x 1
o2+ QR 412 ;*_2+f'2
1T

—oft] E

e
2

and the duality property of the Fourier transform: X' () = F [x (t)]= x(—f) = F [X (t)]we obtain
38



wm ¥ 5 — e
ame * T
With o¢ = 277 we get the desired result
1i 2 - e 2]

39



2)

F [x@®)] F/M-3)+ T+ 3)]
sinc(F)eJ2T 3 4 sinc(F)ef2Tr3

= 2sinc(f)cos@m3f)

3) F/TI(t/4)] = 4sinc(@f), hence F [AT1(t/4)] = 16sinc (@ f). Using modulation property of FT we have
F [AT1(t/4)cosRmfyt)] = 8sinc@(f — fy)) + 8sinc@(F + f)).

2) _
F [rinc()] = <F fin(rt)] =2 — S(F+ —)— StF— -
T 21T 2 2

The same result is obtain if we recognize that multiplication by ¢ results in differentiation in the frequency domain.
Thus

F [tsinc] = —Fl(f)— # S(f+ %)—50‘—1 2)

m df
5)
_ _J d _
F [tcosQmfot)] = T OF 2]5(f ﬁ))+ S(f+ 1)
= L s sF )
4 S(F—-Tw)+6(F+ 1
Problem 2.47

x1(t)= —x(t)+x(t) cos0007rt)+x(t) (1+ cos(600077t))or x1 (t)= x(t)cos 2000 r7t)+ x (t)cos (6000 7Tt).
Using modulation property, we have X; (F) = * X (F—1000)+ > X (f#1000)+ 1 X ¢F-3000)+ 1 X (F+ -

3000). The plot is given below:




1000 3000
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Problem 2.48

z
1 1 1 © 1 1 1 jonfe

FL(8(t+ D+ 8(t- ] = (5 ;)+ 5t- ze  dt
—oo 2

1, .
= S EJnf, ¢Jf) = cos(mrF)

Using the duality property of the Fourier transform:

X(f) =F [x(@)] -7 x(F)=F [X(-0]

we obtain
1 1

1
F [cos(—mt)]= F [cos(mTt)] = 2\(5(f+ 2)+ O(f - 2))

Note that sin(77t) = cos(7rt + " )7Thus

11 1 1 jnr
F fsin(rt)] = F [cos(mm(t+ 27l)]: 2(5(f+ 2)+ S(f - 2))6’
1_/771 1 1 it 1 -
= Ee TO(f + 2—)+ 2—e_ 28(f - 2)
_ Isp Yy ST 1
B é(f 2) 2 5(f2 )

Problem 2.49
a) We can write x(t) as x(t)= 2TT(* ) —2A(" ) Then

F [x(t)]= F[?l'l(4—t)]— F[QA(25]= 8sinc@f) — asinc  2QF)

b) 2
()= zn(4—t)— AT - = F [x(t)] = 8sinc (4 F) — sinc (F)

c)
Zoo ) Z0 ; Zl ;
x()e 2Tty = 1(t+ Ve L2mftgr o (r—1)eS2T gy
0

—00 —

I
- : 0 . 0
= J 1 s 4 jonfr

X()



27Tft+4rrzf2

J 1

+

r+
2mf A2 f?
J

nf(l —sin(mrf))
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d) We can write x(t)as x(t) = A(t + 1)— A\(t - 1). Thus

X(F) = sinc? (F)e27F —sinc? (Fe 27T = 2sinc? (F)sin@F)

e) We can write x(t) as x(t) = AN(t + 1)+ A\(t) + A(t — 1). Hence,

X(F) = sinc2 (F)A + &27F + e 27F ) — sinc (F)(L + 2cos R T F)

f) We can write x(t) as

" 1 V#
1 1
x(t)= T 2fh(t- m) -TT 2fa(t- m) sin@Rmfit)
Then
" 1 1 _#
1 —jom-L 1 o L
X(f) = Esinc % e J2M g, f_ Esinc %) 61277”0 f
J
*5(5(f+ fo)— &(f+ 1))
1 L 1 1
= isinc f+f sin 17 f+ 1o — isinc ﬂ sin f-f
2fh 2h 2h 21 2h 2h
Problem 2.50

(Convolution theorem:)

F[x(t) » y(t)]=F [x(OIF [y (€)]= X(O)Y ()

Thus
sinc(t) #sinc(t) = F L[F finc(t) # sinc(t)]]
= FY/F finc(t)]- F Linc()]]
= FYMENA)]=F M)
= sinc(t)
Problem 2.51
Z )
Fix(®y®] = _ XOy®e?Tdt
7.2 7,
j2 176 )
= X(0)e?9 g8 V(eI gy
Z o p
= X (@) y (e 2Tty gg
Z:)OOO —oo
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X@@)Y(f—-8)dé= X(f) Y ()
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Problem 2.52

1) Clearly
X X
x1(t+ kTp) = X(t+ kTo — nTy) = x(t- (n- k)Ty)

n=—oo n=—oo

X
= x(t— mTy) = x1(t)
m=—oo
where we used the change of variable m = n—- k.
2)
X
Xx1(t)= x(t) * &(t- nTy)
n=—o
This is because
Z > w Ly X
x(T) S(t—- 7 - nTy)dT= x(T)5(t- 7 - nTy)dT= x(t- nTy)
- n=—oo N=—co ~® Nn=—oo
3)
X x0
F/xi(t)] = F/[x()~* o(t- nTo)]=F [x(OJF [ &(t— nTy)]
n=—oo n=—oo
1 X n 11X n 7
= X()— — = -
( )TO oS(f 7 ) 76,7=_00X(To)6(f O)
nN=—oo
Problem 2.53
1) By Parseval’s theoret? 7 7

(o]

sinc® () dt = sinc (tsinc? (t)dt = NPT (F)drF

where

7(f) = F [sinc3 (t)] = F [sinc? (t)sinc(t)] = TI(F)  \(F)

But Z TI(F) xN\(F) =

42



@)
N(F Zt

— A(f- 6)d6 =
0)do
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3
For fs—2- = T7(F)=0

3 1 ‘r 1, 5 1, 3 9
For - <f=- = T(F) = v+ Ldv= (2_\/ = F + fr,
1 +V)
-1
1 1 ZO Zf+2
For — <f= = =T({)= (v +1)dv+ —v+ 1Ddv
2 2 —3 0
z
1, 0 1 f 3
=(EV +v)f_71+(_5V2+V)o =_f.-2_|_Z
1 3 21 1 L 1 3.9
For 5<fS2— = T(F)= .t (-v +1)dv= (—§V2+ v) f_71=§f2_ iy
3
- =
For ) <f: T(F)=0
Thus,
0 f=- 35
12 38 9 3 1
i +2_f'+8 2_<fs—2
T(F)= —F2+°2 L erdo
4 2 2
1 39 1 — 3  _
S =, f+y ,<F=,
. s -
0 , < F
Hence,
Zeo ‘1 3,9 Zo 3
NPT (F)f = (E 2+ Ef+ g)(f+ Ddf+ -+ Z)(f+ df
—00 _1 -3
1
Z, 3 21 3 9
v L ER DDA 1(%fz_?h D F+1)df
0 7
- A
© 64
2
. e “Usinc(t)dt = e~ *u_, (txsinc(t)dt
Z Z1
1 2 1
(f)dr —df
T _ewa+j2mf T _ia+j2mf
1 1/2 1 o+ J1r 1 1 I
= jz—rrln(cv+_/2rrf) _1ﬂ=jﬁln(af —_j7T)= ntan o
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3)

z

[ee]

, € “eos(Brdt

z

(o]

—oo e“’“u_l (t)cos (BO)dt
zZ

1 *® 1 B B

2 PR _ )+ scF+ £ ))dt
2 —o 0(+j277f(5(f 21 27T
11 1 o

dav gt BT e p
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Problem 2.54
Using the convolution theorem we obtain

1 1
X(OHE) = (5 jrmf’ oo’

Y

T T 1 I
B-x)oa+jj2rf (B- x)B+j2if

Thus
1 -1

[e ¥t — e Bty ()

y(®)=FL[yY(f)]=
B- )

If a = Bthen X(F) =H(F) = gz Inthis case

y@)=F1[yY()]= F_l[(i)z]z te”*u_1 ()
o+ j2mirf

The signal is of the energy-tyge with energy content 7
,
2

Ey, = _li 2dt = !
v AR ly@rat= i T e - e P ar
T T, T
= lim — _1_e_2°” S e 2Bt 2 L2 e—(a+ﬁ)t/2
0 2B
Toowo (B— P 2 o (x+pB) 0
111 2 1

S B-apbhat T av T 20B(cx + B)

Problem 2.55
X(t) ast<oa+ T
X(t) = 0
0 otherwise
Thus Z. Z por
Xo((f) = Xg((t)e_jzrrftdt - X(t)e—jZWftdt
—oo o
Evaluating X (f) for £ = "7 ; We obtain
n  Learn —jemr e
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7o X(x(7 O)= x(t)e dt = Toxn

24

where X, are the coefficients in the Fourier series expansion of x (t). Thus Xa(”) is indepengent
of the choice of «.
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Problem 2.56

X X 1 X a
x(t— nT;) = Xx(t) * S5(t— nTg) = ?X(t) * 2t
n=—oo Ri=—0o0 s # n=—o
1 . . x n
= —F ' X O(f -
T ( ),7 (i 75)
1 . I 4
C R S x D oseo
Ts _ Ts Ts
n=—oo
1 X n n
= —_ X —_— 21T €
T, r, &

If we set £ = 0 in the previous relation we obtain Poisson’s sum formula

X 1 R n
n=—oo MmM=—oo 7-5 n=—oo 7-5
Problem 2.57
1) We know that
F 20
e_al tl - - @
T2 A P
Applying Poisson’s sum formula with 75 = 1 we obtain
e—alnl — X 2c
2 2 2
& +4mT n

Nn=—oco n=-—oo

2) Use the Fourier transform pair TT(t) — sinc(F) in the Poisson’s sum formula with 75 = K. Then
X n
TT(nkK) = — sinc(—)

X

n=—oo n=-oo

K

But TT(nK)= 1for n=0and TT(nK)= 0 for |[n| = 1and K € {1,2,...}. Thus the left side of the previous
relation reduces to 1 and
X n
K= sinex’ —
"R
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3) Use the Fourier transform pair A (t) — sinc? (£) in the Poisson’s sum formula with 75 = K. Then
1 X n
A(nK) = — sinc? (")

i K pe—on K

P
Reasoning as before we see that =—ow A(nK)= 1since for K € {1,2,...}

1 n=0

N(nK) =
(nk) 0 otherwise

P
Thus, K = “n=—csinc? ("R
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Problem 2.58
Let H (f) be the Fourier transform of A(t). Then

1
H(F)F [e %t u-1(t)] = F [6(t)] = H(f)m =1:= H(F)= o+ jj2F

The response of the system to e~ %% cos (Bt)u -1(t) is
h i
y(@©=F"" HFF [e ¥ cos(Bou-1(t)]

But
—at Ee“” u i Bt Ee““ u —jBt
F [e"*cos(B)u-1(t)] = F[3 1Pt + 35 “Le ]
1. 1 1 .
= = +
2w+ jom(f— éﬁ) o+ j2m(f+ éﬁ)
so that .
o+ 21 f. 1 1
Y(F)=F [y (t)]="2 +

2 « jem(F F . 4
+ —57)  a+j2m(f+,)

Using the linearity property of the Fourier transform, the Convolution theorem and the fact that
8 () B j2mf we obtain

y(t) = wae *cos(Bu-1(t)+ (e~ ¥ cos(B)u—1(t)) 5
= e Xcos(Bt)d(t)- Be *sin(Bt)u -1(t)
= &(t)- Be *Lsin(Bt)u-1(t)
Problem 2.59
1) Using the result of Problem 2.50 we have sinc(t) # sinc(t) = sinc(t).
2)

X(t) + h(t)= x(t) + (5(t)+ & (t)
d
x(t)+ Ex(t)

y(t)

With x ()= e~ ¥l we obtain y ()= e~ ¥l — qe=¥sgn (2).
3)
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h(T)x(t- T)dT

t e—are—ﬁ(t—r)d.’_ —

47
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t
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If  a=B=y@)=te “u-1(t)
1 t 1 h i
a*f=>yt)=e bt e @-Bro (t) = et _ e Bt i (v
B—« ! B—« -1

Problem 2.60
Let the response of the LTI system be A(t) with Fourier transform H (). Then, from the convolution
theorem we obtain

Y(F) = HOXF) = N(F) =TI(FIH ()

However, this relation cannot hold since TT(£) = 0 for * < | ] vehereas A(f) + 0forl < |f] < 1/2.

Problem 2.61
1) No. The input TT(z) has a spectrum with zeros at frequencies ¥ = k, (kK + 0, kK € Z) and the
information about the spectrum of the system at those frequencies will not be present at the output. The spectrum of the

signal cos 2 77t) consists of two impulses at £ = +1 but we do not know the response of the system at these frequencies.
2)

hi(t) #TI() = TI@)+TI()= A
h2(t) *TI(t) = @1(t)+ cos@rme)) +TI(t)

L i
= A+ ZF" 5F_1)xinc? (F)+ &(F+ Lsinc? (F)

h i
= A+ %F_l S(F - 1sin? (1) + S(F+ 1)Rinc (1)
= A®)
Thus both signals are candidates for the impulse response of the system.

A Flu_1()]= Zlé(f) + J.lz?. Thus the system has a nonzero spectrum for every f and all the fre-
quencies of the system will be excited by this input. F fe~ 3ty 1] = aw%f' Again the spectrum

is nonzero for all £ and the response to this signal uniquely determines the system. In general the
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spectrum of the input must not vanish at any frequency. In this case the influence of the system will be present at the
output for every frequency.

49



Problem 2.62

#
- 1 i f_g 1 2T 8
FlAsn 2>+ O)] = —sin(DA g0 5. i s fpe” | T
2J 2j
( mht A ) mr
= 3 sgn(— o )o(f + fo)e 2 — sgn(— fo)o(f — e 2fo

A 21,6 _jom sl
= 58+ )T+ (F - fi)e 2T

= —AF [cosQmfit+ 6)]

Thus, ASin(Zeratw 8)= —Acos@mfyt+ 6)

Problem 2.63

Taking the Fourier transform of \ej277fol we obtain

F [&2761 [ = — jsgn (F)S(F— ) = —json (Fo)S(F — £5)
Thus,
&SIt = F -1 jsan (R )S(F — F3)] = —jsgn (fo)e J2hit
Problem 2.64
N ,
F* a%x(t)' = F/[x(@) *\Si(t)]= —Jsgn(F)F [x(t) & (t)]
= —jsgn(f)j2mFX(F) = 2mfsgn(FIX(F)
= 2| FIX(F)
Problem 2.65

We need to prove that x lee) = (x(t))'.

FIA@] = F x5 @1=—json (FF [x(t) 8 ] = —json (OIX(Fj2mf

= FOl2mf =F[Oq) ]
48



Taking the inverse Fourier transform of both sides of the previous relation we obtain, X’IZt) =

()
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Problem 2.66
1) The spectrum of the output signal y/(t) is the product of X' (¥) and H(f). Thus,

Y(F) = H(F)X(F) = X(f)A(fd)ei(g(ﬁJ)+(f_ﬁ))9,(f)lf:fb)

y (t) is a narrowband signal centered at frequencies £ = +#3. To obtain the lowpass equivalent signal we have to
shift the spectrum (positive band) of y/(t) to the right by . Hence,

Y)(F) = u(f+ f)X(F+ fb)A(fb)ei(G(ﬁ))+f9'(f)lf:fo) =XI(f)A(ﬁ))ei(g(ﬁ))_'_fg,(f)lf:fb)

2) Taking the inverse Fourier transform of theHorevious relation, we obtain |
yit) = F! S (DA )i 0(F) O (Dl =1,
/ 0

A(Fo)x(t + %9’ (Ol = £)

With y (2) = Re[y (&2 Hht Jand x(t)= Vi (£)e/Ox @ we get
y() = Rely;()ef?hi]
j@(fé)e_/?ﬂﬁ;t

l,
= Re A(fo)x;(t+ ;9 (A r=F)€

1 J21rfit JOx(t+ * 8 (Flf ¢ )
= Re A(fo)Vx(t+ 27749 ()l r=r)€ e am =

= APVt — tg)cosQrT ot + O(Fo)+ Ox(t+ 2;19'(f)| g

o)
7Tf()

= A(RIV(t— ty)eos@mfy e+ 222+ Ox(t+ %9’(& )

1,
= A(f)Vx(t—tg)cosQmfy(t— tp)+ Ox(t+ 2;6’ N f=1))

where

1 1 8(fy) 1 6(f)

tg=——6 (Fler, t, = — I
g 21 =1, P 2 £y 2T F  fof

3) ty can be considered as a time lag of the envelope of the signal, whereas t, is the time
1 e(f)

corresponding to a phase delay of CT

Problem 2.67
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1) We can write Hg () as follows

cos@—jsing >0
Hgo (F)= f=0 =cosd— jsgn(f)sinb
cos@+jsingd <0

50



Thus,

1
he(t)= FY[Hg(f)] = cos 85(t) + ;tsme

2)
xo(t) = x(t)* hg(t)= x(t) * (€os O8(t)+ %sin 6)

= cos Ox(t) » &(t)+ sin bl m*i* x(t)

= cos @x(t)+ sin Ox(t)
3)

ZOO Z (oo}
I xo()2dt = | cos Ox(t)+ sin OX)| dt
Z (o] Z [ee]
2 2 2
= cos® @ |x(t)| dt+sin 6 |x(t)| dt
+ cos dsin @ X ()X (t)dt + cos Gsin 8 X ()xt)dt

2

Roo " oo Roo
But Zoo IX()| 8t = () 1 dt= A& and o x()x* (t)dt = Osince x(t)and X(t) are orthogonal.
Thus,
2 2
Ex,= Ex(os @+ sin 8)= Ex

Computer
Problems

Computer Problem 2.1
1) To derive the Fourier series coefficients in the ezxpansionof x (t), we have

X = e—j?_nnt/4 dt
1 2.1)
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e—jz mn/4_ elj2 mn/A

—2jmn

1 .
= 2.2
, sinc (2.2)

where sinc (x) is defined as
sin(1rx)
sinc(x)= —Fx (2.3)
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Figure 2.1: Various Fourier series approximations for the rectangular pulse

2) Obviously, all the xp,’s are real (since x (t)is real and even), so

g =sinc
2
) bn: 0
(2.4)
- Cp= .sinc n
- n - 2
6,7: 0, T
Note that for even 17’s, x, = 0 (with the exception of 7= 0, where ag= ¢ = 1and xg = 1). Using 3
these coefficients, we have
X 1 i
X (t)= Zsinc 2 ef2mnt/A
He—co 2 2
x n n
== sinc cos — 2.5
2" 2 2mey (25)
n=1
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A plot of the Fourier series approximations to this signal over one period for 7 = 0,1,3,5,7,9 is shown in Figure
2.1

3) Note that x, is always real. Therefore, depending on its sign, the phase is either zero or 77. The magnitude of the
Xp’s is Lsine 7 . The disgrete and ghase spectrum are shown in Figure 2.2.
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Figure 2.2: The discrete and phase spectrum of the signal
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Computer Problem 2.2

1) We have
1 ‘ for2 j2 /T
= — ~J2mnt/To gy 2.6
Xn To —70 x(t)e (2.6)
1Zl
= 5 _ A@edTdt 2.7)
lZ+DO
= 3 __ A®eITdr (2.8)
1
= SFMN@DIrny (2.9)
1.
= - sint g) (2.10)
(2.11)

where we have used the facts that A (%) vanishes outside the /~1, 1/ interval and that the Fourier transform of A(t)
is sinc® (F). This result can also be obtained by using the expression for A (%) and integrating by parts. Obviously,
we have xp = 0 for all even values of 17 except for n = 0.

2) A plot of the discrete spectrum of x(t) is presented in Figure 2.3

3) A plot of the discrete spectrum {y/,;} is presented in Figure 2.4

The MATLAB script for this problem is given next.

% MATLAB script for Computer Problem 2.2.

echo on

n=[-20.7:20];

% Fourier series coefficients of x(t) vector

x=.5*(sinc(n/ 2))." 2,

% sampling interval

ts=17/40,

% time vector

t=[—.5its: 7. 5];

% impulse response 10
fs=7lts;

h=[zeros(7,20)t(21:61),zeros(71,20)];

% transfer function

H=fft(h)/fs;

% frequency resolution

df=fs/ 80, f=[ 0.df:fs]—fs/ 2,

% rearrange H

H1=fftshift(H);

y=x.*H1(217:61); 20
% Plotting commands follow.
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Figure 2.3: The discrete spectrum of the signal
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Figure 2.4: The discrete spectrum of the signal
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Figure 2.5: The common magnitude spectrum of the signals x; (t) and x> (t)

Computer Problem 2.3
The common magnitude spectrum is presented in Figure 2.5. The two phase spectrum of the two signals plotted on

the same axes are given in Figure 2.6.
The MATLAB script for this problem follows.

% MATLAB script for Computer Problem 2.3.
df=0.017,

fs=70;

ts= 7/fs;

t=[— 5its: 5];

x1=zeros(size(t));

XU(41:5N=t(41:5N)+1;
x1(52:67)=ones(size(x1(52:61)));
x2=zeros(size(t));

X2(51:71)=x1(41:61),
[X1,x11,df1]=fftseq(x1,ts,df);
[X2,x21,df2]=fftseq(x2,ts,df);

X11=X1/fs;

X21=X2/fs;

f=[ 0.df1:df1*(length(x11)— 7)]—fs/2;
plot(f,fftshift(abs(X11)))

figure

plot(f(500: 525) fftshift(angle(X11(500. 52 5))),f(500: 52 5),fitshift(angle(X21(500: 525))),” --)
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Computer Problem 2.4
The Fourier transform of the signal x(t) is

_

1+ j2mf
Figures 2.7 and 2.8 present the magnitude and phase spectrum of the input signal x ().
2) The fourier transform of the output signal y(z) is

1
y(f) = 1+j2mf |1l <15
0 otherwise

The magnitude and phase spectrum of )/ (%) is given in Figures 2.9 and 2.10, respectively.
3) The inverse Fourier transform of the output signal is parented in Figure 2.11

The MATLAB script for this problem is given next

% MATLAB script for Computer Problem 2.4.
df= 0.01;

f = —4df4;

x f = 1./(1+27%i % *),

plotf, abs&T),

figure,

plotf, anglek T));

indH = find@bsf) <= 1.5),

H f = zeros(/, lengthk ©));

H fdndH) = cos (pi *fdindH)./3); 10
yf=xfHfF
figure,

plotf,abs® f));
axis(/~1.5 1.5 0 16));
figure,

plotd, angle® 1)),

yf(401) = 70"30;

yt = ifft¢y f, >symmetric’);

figure; 20
plot§ t)

Computer Problem 2.5
Choosing the sampling interval to be s = 0.001 s, we have a sampling frequency of £; = 1/ts = 1000

Hz. Choosing a desired frequency resolution of df = 0.5 Hz, we have the following.
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1) Plots of the signal and its magnitude spectrum are given in Figures 2.12 and 2.13, respectively. Plots are generated
by Matlab.
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Figure 2.7: Magnitude spectrum of x (t)
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2) Choosing fy = 200 Hz, we find the lowpass equivalent to x (t) by using the loweg.m function. Then using
fftseq.m, we obtain its spectrum; we plot its magnitude spectrum in Figure 2.14. The
MATLADb functions loweg.m and fftseq.m are given next.

function M, m,df/=fftseqm,ts,df)

% [M,m,df]=fftseq(m,ts,df)
% [M,m,df]=fftseq(m,ts)
%FFTSEQ generates M, the FFT of the sequence m.
% The sequence is zero-padded to meet the required frequency resolution df.
% ts is the sampling interval. The output df is the final frequency resolution.
% Output m is the zero-padded version of input m. M is the FFT.
fs=Tlts;
if nargin ==
nl=0, 10

else n1=fs/df;

end n2=length(m);
n=2"(max(nextpow2(nl),nextpow2(n2)));
M=fft(m,n);

m=[m,zeros( 7,n—n2)];
df=fs/n;

function xl=loweq,ts,f0)

% xl=loweq(x,ts,f0)

%LOWEQ returns the lowpass equivalent of the signal x
% f0 is the center frequency.

% ts is the sampling interval.

% t=[ Oits:ts*(length(x)— 7)];

z=hilbert(x);

xl=z.*exp(—j* 2*pi*f0*t);

It is seen that the magnitude spectrum is an even function in this case because we can write

X (t)= Refsinc(100t)e/ 407t | (2.12)
Comparing this to
x ()= Re[x;(©)eS2m Nt} (2.13)
we conclude that
x/(t)= sinc@00t) (2.14)

which means that the lowpass equivalent signal is a real signal in this case. This, in turn, means that x. (t) = x;(t)

and xs (t) = 0. Also, we conclude that

LV = L X @)

o - 0, xc(t)=0 (2.15)

T, Xc(t) <0
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Figure 2.14: The magnitude spectrum of xy(t)
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Figure 2.15: The signal x¢ (t)

Plots of x(t) and V/(t) are given in Figures 2.15 and 2.16, respectively. Note that choosing #; to be the frequency
with respect to which X' () is symmetric result in these figures.

Computer Problem 2.6

The Remez algorithm requires that we specify the length of the FIR filter M, the passband edge

frequency 7, the stopband edge frequency 7, and the ratio &, /61. Here, 61 and & denote passband and stopband
ripples, respectively. The filter length M can be approximated using

pP_——
M= — 20logyg nd —13

+ 1
14.6A F

where A fis the transition bandwidth AF = fs — fp

1) Figure 2.17 shows the impulse response coefficients of the FIR filter.

2) Figures 2.18 and 2.19 show the magnitude and phase of the frequency response of the filter, respectively.
The MATLAB script for this problem is given next

% MATLAB script for Computer Problem 2.6.
fp = 0.4/
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Figure 2.16: The signal V(t)
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Figure 2.17: Impulse response coefficients of the FIR filter

fs = 0.5;
df = fs—fp,
Rp = 0.5;
As = 40;

5 10 15

deltal =(70"Rp/20)—1)/(10™Rp/20)+1),
delta2 =(7 +deltal)*(1 O™ (—As/20)),
%Calculate approximate filter length
Mhat=ceil ((—20#*10g10(qrt(eltal “delta2))— 73)/(14.67df)+1);

f=/0 fp fs 1],

m=/7 1 0 0],

w=/delta2 /deltal 7/
h=remezMhat +20,f,m,w);
MH,W/=freqzh,/1],3000);
db = 2010g10@bsH));
% plot results

stem¢),

figure,

plot(W pi, db)

figure,

plot@W /pi, angle™));
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Figure 2.18: Magnitude of the frequency response of the FIR filter
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Figure 2.19: Phase of the frequency response of the FIR filter
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Figure 2.20: The impulse response coefficients of the filter

Computer Problem 2.7
1) The impulse response coefficients of the filter is presented in Figure 2.20.

2) The magnitude of the frequency response of the filter is given in Figure 2.21. The MATLAB
script for this problem is given next

% MATLAB script for Computer Problem 2.7.

f=/0 0.01 0.1 0.5 0.6 1],

m=/0 01 1 0 0] deltal

=0.01;

delta2 = 0.017,

df = 0.7 — 0.01,

Mhat=ceil ((— 2040910 (qgrt@eltal “delta2))— 73)/(14.67df)+1);
w=/7 delta2 /deltal 7/,
h=remezMhat+20,f,m,w,”hilbert>),

M,W/=freqzh,/1],3000);
db = 2040g10(@bs™)),
% plot results

stem(),;
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Figure 2.21: The magnitude of the frequency response of the filter
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Figure 2.22: Impulse response of the filter

figure,

plotW pi, db)
figure,

plotW/pi, angle®));

Computer Problem 2.8
1) The impulse response of the filter is given in Figure 2.22.

2) The magnitude of the frequency response of the filter is presented in Figure 2.23.
3) The filter output y/(r1) and x (r1) are presented in Figure 2.24. It should be noted that y/(r7) is the derivative of
x(n).
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Figure 2.23: Magnitude of the frequency response of the filter

76




100

an
oU

Al
OU

Al
40U

oln
ZU

Figure 2.24: Signals x () and y (n)
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