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Solutions for Chapter 2 Problems 

 
1. Vectors in the Cartesian Coordinate System 

P2.1: Given P(4,2,1) and APQ=2ax +4ay +6az, find the point Q. 

 
APQ = 2 ax + 4 ay + 6 az = (Qx-Px)ax + (Qy-Py)ay+(Qz-Pz)az 

Qx-Px=Qx-4=2; Qx=6 
Qy-Py=Qy-2=4; Qy=6 
Qz-Pz=Qz-1=6; Qz=7 
Ans: Q(6,6,7) 

 

 
 

P2.2: Given the points P(4,1,0)m and Q(1,3,0)m, fill in the table and make a sketch of 

the vectors found in (a) through (f). 
 Vector Mag Unit Vector 

a. Find the vector A 
from the origin to P 

AOP = 4 ax + 1 ay 4.12 AOP = 0.97 ax + 0.24 ay 

b. Find the vector B 
from the origin to Q 

BOQ = 1 ax + 3 ay 3.16 aOQ = 0.32 ax + 0.95 ay 

c. Find the vector C 
from P to Q 

CPQ = -3 ax + 2 ay 3.61 aPQ = -0.83 ax + 0.55 ay 

d. Find A + B A + B = 5 ax + 4 ay 6.4 a = 0.78 ax + 0.62 ay 

e. Find C – A C - A = -7 ax + 1 ay 7.07 a = -0.99 ax + 0.14 ay 

f. Find B - A B - A = -3 ax + 2 ay 3.6 a = -0.83 ax + 0.55 ay 

 

a. AOP = (4-0)ax + (1-0)ay + (0-0)az = 4 ax + 1 ay.

AOP  4
2 
 1

2 
 17  4.12

 

aOP 
  4    

a 
17   

x
 

 
  1    

a 
17 

 

 0.97ax 

 

 0.24ay

(see Figure P2.2ab) 

 
b. BOQ =(1-0)ax + (3-0)ay + (0-0)az = 1 ax + 3 ay.

BOQ  1
2 
    10  3.16 Fig. P2.2ab

 

aOQ 


  1    
a 

10   
x
 

 
  3  

a 
10 

 

 0.32ax 

 

 0.95ay

(see Figure P2.2ab) 

 
c. CPQ = (1-4)ax + (3-1)ay + (0-0)az = -3 ax + 2 ay. 

2CPQ   3      13  3.61

 

aPQ 
3 

a 


13 
x

 

  2   
a  0.83a 

13 

 

 0.55ay 

 

 
 

Fig. P2.2cd
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(see Figure P2.2cd)
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d. A + B = (4+1)ax + (1+3)ay + (0-0)az = 5 ax + 4 ay.

A  B  5
2 
 4

2  
 41  6.4

a  
  5 

a 

41 
x
 

 

   4   
y 

41 

 

 0.78ax 

 

 0.62ay

(see Figure P2.2cd) 

 
e. C - A = (-3-4)ax + (2-1)ay + (0-0)az = -7 ax + 1 ay.

C  A  7
2 
 1

2 
 50  7.07

a  
7 

a 

50 
x
 

 

   1   
y 

50 

 

 0.99ax 

 

 0.14ay 

 

FigP2.2ef

(see Figure P2.2ef) 

 
f. B - A = (1-4)ax + (3-1)ay + (0-0)az = -3 ax + 2 ay.

B  A  3
2 
    13  3.6

a  
3 

a 

13 
x

 

 

   2   
y 

13 

 

 0.83ax 

 

 0.55ay

(see Figure P2.2ef) 
 

 
 

P2.3: MATLAB: Write a program that will find the vector between a pair of arbitrary 
points in the Cartesian Coordinate System. 

 
A program or function for this task is really overkill, as it is so easy to perform the task. 

Enter points P and Q (for example, P=[1 2 3]; Q=[6 5 4]). Then, the vector from P toQ is 

simply given by Q-P. 

 
As a function we could have: 

 
function PQ=vector(P,Q) 

%   Given a pair of Cartesian points 

%   P and Q, the program determines the 
%   vector from P to Q. 

PQ=Q-P; 

 
Running this function we have: 

>> P=[1 2 3]; 
>> Q=[6 5 4]; 
>> PQ=vector(P,Q) 

 
PQ = 

5     3     1 
 
Alternatively, we could simply perform the math in the command line window:
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o    13 

                                                     5    FV NM 

o    12 

9 

9 9 

3 

 
 

>> PQ=Q-P 
PQ = 

5     3     1 
>> 

 

 
 

2. Coulomb’s Law, Electric Field Intensity, and Field Lines 

P2.4: Suppose Q1(0.0, -3.0m, 0.0) = 4.0nC, Q2(0.0, 3.0m, 0.0) = 4.0nC, and Q3(4.0m, 
0.0, 0.0) = 1.0nC. (a) Find the total force acting on the charge Q3. (b) Repeat the problem 
after changing the charge of Q2 to –4.0nC. (c) Find the electric field intensity for parts (a) 
and (b). 

 

 

(a) F   Q1Q2      a , where R13 = 4 ax + 3 ay =, R13 = 5m, a13 = 0.8 ax + 0.6 ay. 
13       

4 R2      13

so 
 

 

F13 


 

4x10
9 

C  1x10
9 

C  
4ax   3ay 

2

                                                         4 10
9 

F 36 m 5m C   VC

 1.15x10
9

 a
x 
 0.86x10 a

y 
N.

9
Similarly, F23   1.15x10 a 

x 
0.86x10

9
a 

y  
N , so FTOT  2.3ax nN

 

(b) with Q2 = -4 nC, F13 is unchanged but F23   1.15x10 ax  0.86x10 ay  N , so

 

FTOT  1.7ay nN  . 
 

F         2.3x10
9 

a N VC             V 
x

(c) Ea      TOT 
                              2.3a      .

Q           1x10
-9

 C   Nm           
x 

m

V 
Likewise, Eb   

 1.7a    . 
y 
m 

 
 
 

Fig. P2.4 
 

 

P2.5: Find the force exerted by Q1(3.0m, 3.0m, 3.0m) = 1.0 C on Q2(6.0m, 9.0m, 3.0m) 

= 10. nC. 

 

F    
  Q1Q2     a , where 

12        
4 R2      12

 

R12 = (6-3)ax + (9-3)ay + (3-3)az = 3 ax + 6 ay m
 

R12 
 

3
2 
 6

2
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   45m,a12  
 3ax 

6ay  
, 

and 
4
5
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x              y 

  

2 

 

 

1x10   C10x10   C  3a 6a    FV  NM 
6                        9 

F12 


 

, so 
 

F12  0.89ax  1.8ay  N .

4 10
9 

F36m 45m
2 

45      C VC

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. P2.5 
 

 
 
 

P2.6: Suppose 10.0 nC point charges are located on the corners of a square of side 10.0 cm. 

Locating the square in the x-y plane (at z = 0.00) with one corner at the origin and one 

corner at P(10.0, 10.0, 0.00) cm, find the total force acting at point P. 

 
We arbitrarily label the charges as shown in Figure P2.6. Then 

ROP = 0.1 ax + 0.1 ay 

ROP = 0.141 m 
aOP = 0.707 ax + 0.707 ay. 

 

10nC 10nC  0.707 ax  a y 
FOP 

 4  109 F 36m 0.141m

 32 ax   ay   N 

10nC 10nC ay 

FTP                                                 90ay N
4  10

9 
F 36m0.1m

2

 

 
Fig. P2.6

F           
10nC 10nC ax               90a  N

SP        

4  10
9 

F
 
 

36m 0.1m
2                   x

and then the total (adjusting to 2 significant digits) is: 

FTOT   120 ax   ay   N .
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P2.7: 1.00 nC point charges are located at (0.00, -2.00, 0.00)m, (0.00, 2.00, 0.00)m, (0.00, 
0.00, -2.00)m and (0.00, 0.00, +2.00)m. Find the total force acting on a 1.00 nC charge 
located at (2.00, 0.00, 0.00)m. 

 
Figure P2.7a shows the situation, but we need only find the x-directed force from one of 
the charges on Qt (Figure P2.7b) and multiply this result by 4. Because of the problem’s 
symmetry, the rest of the components cancel.

F  
QQt          a  , R  2a   2a , R  8 

m, a   
2ax 2ay 

 ,

1t      
4 R   

R                      x              y                                    R                     
8 

1x10
9 

C 1x10
9 

C  2ax 2ay      


so F                                796x10 
8a  a  N

1t                         

4 10
9 

F
 36m 8m  

The force from all charges is then
 

FTOT  4796x10 12 
x nN  3.2ax nN.

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. P2.7a                                                          Fig. P2.7b 
 

 
 
 

P2.8: A 20.0 nC point charge exists at P(0.00,0.00,-3.00m). Where must a 10.0 nC 

charge be located such that the total field is zero at the origin? 

 
For zero field at the origin, we must cancel the +az directed field from QP by placing Q at 
the point Q(0,0,z) (see Figure P2.8). Then we have Etot = EP + EQ = 0.

Q                     20x10
9 

C  a FV             V

So, EP
 
P     a

                                               20az

4o R 
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4 10
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 3                          4 

 

and   
Q 

EQ              a
R

4oR
2
 

10x10
9

C(a ) 

 

 

90
                                                      z                     a 

2        z
 

4 10
9 

F36m z(m)
2            z

 
So then 

90
20az  

z2 

z
2 
 

90 
, 

20 

az   0, 
 

 

z  2.12. 

 
 
 

 
Fig. P2.8

Thus, Q(0,0,2.12m). 
 

 
 

3. The Spherical Coordinate System 
P2.9: Convert the following points from Cartesian to Spherical coordinates: 

a. P(6.0, 2.0, 6.0) 

b. P(0.0, -4.0, 3.0) 

c. P(-5.0,-1.0, -4.0) 

(a) r                       8.7,  cos
1  6  

 47
o 
,  tan

1  2  
 18

o

6
2 
 2

2 
 6

2
 

 

(b)    r 
0

2 
 4

2 
 3

2
 

                                         
 8.7                                   6 

 5,  cos
1                   

 53
o 
,  tan

1                       
 90

o
 

 
5 
                         

0 


                                                       
(c) r 

 
 



 

5
2 
1

2 
 4

2
 

 6.5,  cos
1  4.0  

 130
o 
,  tan

1  1  
 190

o 
 

6.5                            
5 


                                                 

P2.10: Convert the following points from Spherical to Cartesian coordinates: 

a. P(3.0, 30., 45.) 

b.   P(5.0, /4, 3/2) 

c. P(10., 135, 180) 

 
(a) 

x  r sin cos  3sin 30
o 

cos 45
o  
 1.06 

y  r sin sin   3sin 30
o 

sin 45
o  
 1.06 

z  r cos  3cos 30
o 
 2.6 

so P(1.1,1.1, 2.6). 

(b)
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S       6m 



3 

2 

 
 

x  r sin cos  5sin 45
o 

cos 270
o 
 0 

y  r sin sin   5sin 45
o 

sin 270
o 
 3.5 

z  r cos  5 cos 45
o 
 3.5 

so P(0, 3.5, 3.5). 

(c) 

x  r sin cos  10 sin135
o 

cos180
o 
 7.1 

y  r sin sin   10sin135
o 

sin180
o 
 0 

z  r cos  10 cos135
o 
 7.1 

so P(7.1, 0, 7.1). 
 

 

P2.11: Given a volume defined by 1.0m ≤ r ≤ 3.0m, 0 ≤  ≤  0, 90 ≤   ≤  90, (a) 

sketch the volume, (b) perform the integration to find the volume, and (c) perform the 

necessary integrations to find the total surface area. 

 
(a) 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) 

Fig. P2.11  
 

 
3             90o

 

 

 
 
 2            

13
3

V   r
2 

sin drd d   r
2
dr  sin d  d 

1               0                         0 

 13.6m .

So volume V = 14 m
3
. 

 
(c) There are 5 surfaces: an inner, an outer, and 3 identical sides. 

3           2

Sside  rdrd rdr d  2 m2
; 

2 

sides

1            0 

90o                                  2               
9


Souter    r sin d d  3
2  

sin d 
2

d   2  m

0                         0 

S       
 

m
2
; S      11 m

2 
 34.6m

2
 

inner        
2         

TOT
 

So Stotal = 35 m
2
.
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4. Line Charges and the Cylindrical Coordinate System 
P2.12: Convert the following points from Cartesian to cylindrical coordinates: 

a. P(0.0, 4.0, 3.0) 

b. P(-2.0, 3.0, 2.0) 

c. P(4.0, -3.0, -4.0) 

1  4         o                                                          o

(a)   0
2 
 4

2
  4,  tan 

  
   


 90 , z  3, so P(4.0, 90 , 3.0)

(b)                 3.6,  tan
1  3  

 124
o 
, z  2, so P(3.6,120

o 
, 2.0)

 

 

(c)  

2
2 
 3

2
  

2 


 5,  tan
1  3  

 37
o 
, z  4, so P(5.0, 37

o 
, 4.0)

4
2 
 3

2
 

 



 
4 


      

P2.13: Convert the following points from cylindrical to Cartesian coordinates: 

a. P(2.83, 45.0, 2.00) 

b.   P(6.00, 120., -3.00) 

c.   P(10.0, -90.0, 6.00) 

 
(a) 

x   cos  2.83cos 45
o 
 2.00 

y   sin   2.83sin 45
o 
 2.00 

z  z  2.00 

so P(2.00, 2.00, 2.00). 

(b) 

x   cos  6.00 cos120
o 
 3.00 

y   sin   6.00 sin120
o 
 5.20 

z  z  3.00 

so P(3.00, 5.20, 3.00). 

(c) 

x   cos  10.0 cos(90.0
o 

)  0 

y   sin   10.0 sin(90.0
o 

)  10.0 

z  z  6.00 

so P(0, 10.0, 6.00). 
 

 

P2.14:   A 20.0 cm long section of copper pipe has a 1.00 cm thick wall and outer 

diameter of 6.00 cm. 

a.   Sketch the pipe conveniently overlaying the cylindrical coordinate system, lining 

up the length direction with the z-axis 

b.   Determine the total surface area (this could actually be useful if, say, you needed 

to do an electroplating step on this piece of pipe) 
c.   Determine the weight of the pipe given the density of copper is 8.96 g/cm

3
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2 

M       
 

8.96
 g 100 cm  

3 

o 

 
 

(a) See Figure P2.14 
(b) The top area, Stop, is equal to the bottom area. We must also find the inner area, Sinner, 
and the outer area, Souter. 

3              2

Stop   d d   d   d  5 cm .
 

2                0

Sbottom  Stop . 
 
 
2        20 

2
Souter   ddz  3  d  dz  120 cm

 
0           0 

2        20 

2
 

Sinner   ddz  2  d  dz  80 cm
 

0           0 

The total area, then, is 210 cm
2
, or Stot = 660 cm

2
. 

 
(c) Determining the weight of the pipe requires the volume: 

V   d ddz 

3              2        20 

  d   d  dz  100 cm .
 

2                0           0 
3 

pipe              cm
3 



                  

 2815g. 

So Mpipe = 2820g. 
 
 
 
 
 
 
 

Fig. P2.14 
 

 
P2.15: A line charge with charge density 2.00 nC/m exists at y = -2.00 m, x = 0.00. (a) A 

charge Q = 8.00 nC exists somewhere along the y-axis. Where must you locate Q so that 

the total electric field is zero at the origin? (b) Suppose instead of the 8.00 nC charge of 

part (a) that you locate a charge Q at (0.00, 6.00m, 0.00). What value of Q will result in a 

total electric field intensity of zero at the origin? 

 
(a) The contributions to E from the line and point charge must cancel, or E  EL  EQ .

For the line:  E  
 L      a 

L      
2  

      2nC / m  
a 

2 10
9 

F36m2m

 

 18
V  

a 
y               

m    
y
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9 

o 



 

 

and for the point charge, where the point is located a distance y along the y-axis, we 

8nCa y 


have: EQ   
   Q  

2        
a y                                                                       72           

 


Therefore: 

 

4o y 
    

4 10   F 36 m y2

 

2 ay
y

72 
 18, ory 

y2
 

72  2m. 
18

 

So 
 
 

(b) 

Q0,2.0m,0
 



      Q       
 18, 

4 6
2

 

1836
Q                   72nC. 

9 

 

 
Fig. P2.15

 
 
 

P2.16: You are given two z-directed line charges of charge density +1 nC/m at x = 0, y = 

-1.0 m, and charge density –1.0 nC/m at x = 0, y = 1.0 m. Find E at P(1.0m,0,0). 

 
The situation is represented by Figure P2.16a. A better 2-dimensional view in Figure 

P2.16b is useful for solving the problem.

L1
 ax ay 

E1 

2

a , and a  2     . 
2

o                                                                
    

1x10
9 

C       a a    FV                     V                                     V

E1 


x         y              
 9a   a  


, and E2    9-a  a    .

2 10
9 

F 
36 m 2m   2

 
C            

x           y    
m


 
x           y     

m

So ETOT = 18 ay V/m. 
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Fig. P2.16a                                                           
Fig. P2.16b



2-15 
 

L 

4                    L 

E 



 
 

P2.17: MATLAB: Suppose you have a segment of line charge of length 2L centered on 

the z-axis and having a charge distribution L. Compare the electric field intensity at a 

point on the y-axis a distance d from the origin with the electric field at that point assuming 
the line charge is of infinite length. The ratio of E for the segment to E for the infinite line 
is to be plotted versus the ratio L/d using MATLAB. 

 
This is similar to MATLAB 2.3. We have for the ideal case 


L                            



E
ideal   

 
2  

a  2 d a . 
o                                 o 

For the actual 2L case, we have an integration to perform (Equation (2.35) with different 

limits):

a  
L           

dz 
L        


da            z 

L       y
 

 L 

 

Eactual             3 2  


o    L     2 
 z

2
 

 

4
 

o
 

                    
d2         

z
2 
 d 

2 


La y         L      
E                                . 

actual

2 od 
 L

2 
 d

2  

Now we manipulate these expressions to get the following ratio: 

L 
actual            d        . 

Eideal

 

1 L 
d  2 

In the program, the actual to ideal field ratio is termed “Eratio” and the charged line half- 

length L ratioed to the distance d is termed “Lod”. 

 
%  M-File: MLP0217 

% 

%  This program is similar to ML0203. 
%  It compares the E-field from a finite length 

%  segment of charge (from -L to +L on the z-axis) 

%  to the E-field from an infinite length line 

%  of charge.  The ratio (E from segment to E from 

%  infinite length line) is plotted versus the ratio 

%  Lod=L/d, where d is the distance along the y axis. 

% 
%  Wentworth, 12/19/02 

% 

%  Variables: 

%      Lod     the ratio L/d 

%      Eratio  ratio of E from segment to E from line 

 
clc    %clears the command window 

clear  %clears variables 

 
%  Initialize Lod array and calculate Eratio 

Lod=0.1:0.01:100;
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o       z  

L 

3 

 
 

Eratio=Lod./(sqrt(1+Lod.^2)); 

 
%  Plot Eratio versus Lod 

semilogx(Lod,Eratio) 

grid on 
xlabel('Lod=L/d') 

ylabel('E ratio: segment to line') 

 
Executing the program gives Figure P2.17. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. P2.17 
 

 
So we see that the field from a line segment of charge appears equivalent to the field 

from an infinite length line if the test point is close to the line. 
 

P2.18: A segment of line charge L =10 nC/m exists on the y-axis from the origin to y = 
+3.0 m. Determine E at the point (3.0, 0, 0)m. 

 
It is clear from a sketch of the problem in Figure P2.18a that the resultant field will be 

directed in the x-y plane. The situation is redrawn in a temporary coordinate system in 

Figure P2.18b. 
 

We have from Eqn (2.34) E    Ldz  a  zaz        E a  E a .
 
 

 
For E we have: 

 4      2           2    
3 

2 

 

               z    z

           dz                       z          3

E  
       L      


                   



                  

4o  2 
 z

2  2 4o 
2          z

2 
  2

0 

With  = 3, we then have E = 21.2 V/m. 
For Ez:
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3 

9 

o 



2 



o 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. P2.18a Fig. P2.18b

 

 

           zdz                     1       
3
V

E  L 

 

                                 



L    


              


 8.79 

z        
4

  
 2 z

  

2  2

  

4 


  

2 
 z

2 
 
                 m

o                                               o 
                 

z0

Thus we have ETOT = 21 a – 8.8 az V/m. 
Converting back to the original coordinates, we have ETOT = 21 ax – 8.8 ay V/m. 

 

 
 

5. Surface and Volume Charge 

P2.19: In free space, there is a point charge Q = 8.0 nC at (-2.0,0,0)m, a line charge L = 

10 nC/m at y = -9.0m, x = 0m, and a sheet charge  s  = 12. nC/m
2  

at z = -2.0m. 
Determine E at the origin. 

 

The situation is represented by Figure P2.19, and the total field is ETOT = EQ + EL + ES.
 

     Q   
E              a  

   8x10   C ax  

Q      
4 R2

 
R    
 4 10

9 
F

 36m 2m

 18a 
V

 
x 
m 

               10x10
9 

C ma 
L      

a                                                       y  
EL 

 


 

2o

 

2 10
9

 F36m9m

 20a  
 V

 
y  

m 


 

 

12x10
9 

C m
2 

E  
       s   

a                            a
s        

2    
N 

210
9 

F
 

z 

36m 

 
 

Fig. P2.19
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 679a 
V

 
z 
m 

So: Etot = 18 ax + 20 ay + 680 az V/m.
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EL   

10    F          y
 

o                       o 

                                   y                           y 

o 

 
 

P2.20: An infinitely long line charge (L  = 21 nC/m) lies along the z-axis. An infinite 

area sheet charge (s = 3 nC/m
2
) lies in the x-z plane at y = 10 m. Find a point on the y- 

axis where the electric field intensity is zero. 

 
We have ETOT = EL + ES.

La

2 
La y 

2 y

21x10
9

C / m          378
a           a 

9                                            y 
2           36 m

 

E  
saN 

3x10   C m  ay 
s         

2
 9 

210
9 

F 

2 

36m

 54 a y 

so 
378 

 54  0, or y  7. 

y 

Therefore, P(0, 7m, 0). 

 
Fig. P2.20

 

 
 

P2.21: Sketch the following surfaces and find the total charge on each surface given a 

surface charge density of s = 1nC/m
2
. Units (other than degrees) are meters. 

(a)       –3 ≤ x ≤ 3, 0 ≤ y ≤ 4, z = 0 

(b)       1 ≤ r ≤ 4, 180 ≤  ≤ 360,  = /2 

(c)       1 ≤  ≤ 4, 180 ≤  ≤ 360, z = 0 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. P2.21a                                                        Fig. P2.21b&c 
 

 
 

3          4 

(a) Q   sdS  s  dx dy  24s  24nC 
3         0
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3 



 

4           2

(b) Q  s  rdr d 
1            

4                2

15
2  s  24nC

(c) Q  s d   d  24nC 
1                 



P2.22: Consider a circular disk in the x-y plane of radius 5.0 cm. Suppose the charge 

density is a function of radius such that s  = 12 nC/cm
2  

(when  is in cm). Find the 

electric field intensity a point 20.0 cm above the origin on the z-axis. 
 

From section 4 for a ring of charge of radius a, E 
 L aha        

. Now we have
 

z                       3 
 

  Ad haz  
 

2
o
 a2 h 2  2

 

 
2

L=sd and  dE 
 

 

by the integral: 

 

2o 

 

 2h 

 

2  2 

, where s = A nC/cm . Now the total field is given

E  
Ahaz  

2o 

  2 
d 

          3    
. 

 2   h2  2

This can be solved using integration by parts, where u = , du = d, 

v  
   1     

,  and dv  
 d    

. This leadsto 

 2 
 h

2                                        2 
 h

2
 

Ah     a            a   a
2 
 h

2 
E  

2
              ln     az . 

h         

o                           
                            



a
2 
 h

2
                             

Plugging in the appropriate values we arrive at E = 6.7 kV/cm az. 
 

 
 

P2.23: Suppose a ribbon of charge with density s  exists in the y-z plane of infinite 
length in the z direction and extending from –a to +a in the y direction. Find a general 
expression for the electric field intensity at a point d along the x-axis. 

 
The problem is represented by Figure P2.23a. A better representation for solving the 

problem is shown in Figure P2.23b.

We have dE  
 L        

a 
2o 

dax  ya y
 

 

, where L 

 

= sdy. Then, since

a 
 , 

d 
2 
 y

2

the integral becomes 

E   
    s d           dax ya y  

.
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o 

 
2 y 

d 
2 

 

 y
2

 

 

d 
2 
 y

2
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          a 

 
 

It may be noted that the ay component will cancel by symmetry. The ax integral is found 
from the appendix and we have 
E    s tan

1                
a .  

o 




















 

FigP2.23a 




   x 

 d 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FigP2.23b 


P2.24: Sketch the following volumes and find the total charge for each given a volume 

charge density of v = 1nC/m
3
. Units (other than degrees) are meters. 

(a) 0 ≤ x ≤ 4, 0 ≤ y ≤ 5, 0 ≤ z ≤  6 

(b) 1 ≤ r ≤ 5, 0 ≤  ≤ 60

(c) 1 ≤  ≤ 5, 0 ≤  ≤ 90, 0 ≤ z ≤ 5 

 
4         5         6 

(a) Q   vdv  v  dx dy dz  120nC 
0         0         0

(b) 

Q   vdv 

5             60
○

 








2

 v  r
2
dr  sin d  d  130nC 

1               0                          0 

(c) 

Q   vdv 

5                 2         5 

 v   d   d  dz  94nC 
1                  0           0 

 

 
Fig. P2.24a

 

 
 
 
 
 
 
 
 
 

Fig. P2.24b
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  v       
  0 0           0 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. P2.24c 
 
 

P2.25: You have a cylinder of 4.00 inch diameter and 5.00 inch length (imagine a can of 

tomatoes) that has a charge distribution that varies with radius as v = (6  nC/in
3  

where 

 is in inches.  (It may help you with the units to think of this as v (nC/in
3
)= 6 (nC/in

4
) 

in Find the total charge contained in this cylinder. 
 

Q     dv      6  d ddz  6 2 2 
d 2 d 5dz  160 nC  503nC 

 
 
 
 
 

P2.26: MATLAB: Consider a rectangular volume with 0.00 ≤ x ≤ 4.00 m, 0.00 ≤ y ≤ 

5.00 m and –6.00 m ≤ z ≤ 0.00 with charge density v = 40.0 nC/m
3
. Find the electric 

field intensity at the point P(0.00,0.00,20.0m). 
 

 

%  MLP0226 

%  calculate E from a rectangular volume of charge 

 
% variables  

% xstart,xstop limits on x for vol charge (m) 

% ystart,ystop  

% zstart,zstop  

% xt,yt,zt test point (m) 

% rhov vol charge density, nC/m^3 

% Nx,Ny,Nz discretization points 

% dx,dy,dz differential lengths 

% dQ differential charge, nC 

% eo free space permittivity (F/m) 

% dEi differential field vector 

% dEix,dEiy,dEiz x,y and z components of dEi 

% dEjx,dEjy,dEjz of dEj 

% dEkx,dEky,dEkz of dEk 

% Etot total field vector, V/m 
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clc 

clear 

 
%  initialize variables 

xstart=0;xstop=4; 

ystart=0;ystop=5; 

zstart=-6;zstop=0; 

xt=0;yt=0;zt=20; 

rhov=40e-9; 

Nx=10;Ny=10;Nz=10; 

eo=8.854e-12; 

 
dx=(xstop-xstart)/Nx; 

dy=(ystop-ystart)/Ny; 

dz=(zstop-zstart)/Nz; 

dQ=rhov*dx*dy*dz; 

 
for k=1:Nz 

for j=1:Ny 
for i=1:Nx 

xv=xstart+(i-0.5)*dx; 

yv=ystart+(j-0.5)*dy; 

zv=zstart+(k-0.5)*dz; R=[xt-xv 

yt-yv zt-zv]; 

magR=magvector(R); 

uvR=unitvector(R); 

dEi=(dQ/(4*pi*eo*magR^2))*uvR; 

dEix(i)=dEi(1); 

dEiy(i)=dEi(2); 

dEiz(i)=dEi(3);
 
 
 
 

 
end 

end 
dEjx(j)=sum(dEix); 

dEjy(j)=sum(dEiy); 

dEjz(j)=sum(dEiz);

 
 
 
 
end 

dEkx(k)=sum(dEjx); 

dEky(k)=sum(dEjy); 

dEkz(k)=sum(dEjz);

Etotx=sum(dEkx); 

Etoty=sum(dEky); 

Etotz=sum(dEkz); 

Etot=[Etotx Etoty Etotz] 

 
Now to run the program: 

 
Etot =
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-6.9983  -8.7104   79.7668 
 
>> 

 
So E = -7.0 ax -8.7 ay + 80. az V/m 

 

 
 

P2.27: MATLAB: Consider a sphere with charge density v = 120 nC/m
3 

centered at the 
origin with a radius of 2.00 m. Now, remove the top half of the sphere, leaving a hemisphere 
below the x-y plane. Find the electric field intensity at the point P(8.00m,0.00,0.00). (Hint: 
see MATLAB 2.4, and consider that your answer will now have two field components.) 

 

 

%  M-File: MLP0227 

% 

%  This program modifies ML0204 to find the field 
%  at point P(8m,0,0) from a hemispherical 

%  distribution of charge given by 

%  rhov=120 nC/m^3 from 0 < r < 2m and 

%  pi/2 < theta < pi. 

% 

%  Wentworth, 12/23/02 

% 
%  Variables: 
%      d           y axis distance to test point (m) 

%      a           sphere radius (m) 

%      dV          differential charge volume where 

%                  dV=delta_r*delta_theta*delta_phi 

%      eo          free space permittivity (F/m) 

%      r,theta,phi spherical coordinate location of 

%                  center of a differential charge element 

%      x,y,z      cartesian coord location of charge % 

element 
%      R           vector from charge element to P 

%      Rmag        magnitude of R 

%      aR          unit vector of R 

%      dr,dtheta,dphi differential spherical elements 

%      dEi,dEj,dEk partial field values 

%      Etot        total field at P resulting from charge 

 
clc    %clears the command window 

clear  %clears variables 

 
%  Initialize variables 

eo=8.854e-12; 

d=8;a=2;
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delta_r=40;delta_theta=72;delta_phi=144; 

 
%  Perform calculation 

for k=(1:delta_phi) 

for j=(1:delta_theta) 
for i=(1:delta_r) 

r=i*a/delta_r; 

theta=(pi/2)+j*pi/(2*delta_theta); 

phi=k*2*pi/delta_phi; 

x=r*sin(theta)*cos(phi); 

y=r*sin(theta)*sin(phi); 

z=r*cos(theta); 

R=[d-x,-y,-z]; 

Rmag=magvector(R); 

aR=R/Rmag; 

dr=a/delta_r; 

dtheta=pi/delta_theta; 

dphi=2*pi/delta_phi; 

dV=r^2*sin(theta)*dr*dtheta*dphi; 

dQ=120e-9*dV; 

dEi=dQ*aR/(4*pi*eo*Rmag^2); 

dEix(i)=dEi(1); 

dEiy(i)=dEi(2); 

dEiz(i)=dEi(3);
 

 
 
 
 
 

end 

end 

dEjx(j)=sum(dEix); 

dEjy(j)=sum(dEiy); 

dEjz(j)=sum(dEiz);

 
 
 
 

end 

dEkx(k)=sum(dEjx); 
dEky(k)=sum(dEjy); 

dEkz(k)=sum(dEjz);

Etotx=sum(dEkx); 

Etoty=sum(dEky); 

Etotz=sum(dEkz); 

 
Etot=[Etotx Etoty Etotz] 

 
Now to run the program: 

Etot = 
579.4623    0.0000  56.5317 

 
So E = 580 ax + 57 az V/m. 

 

 
 

6. Electric Flux Density
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○ 

○ 

 
 

P2.28: Use the definition of dot product to find the three interior angles for the triangle 
bounded by the points P(-3.00, -4.00, 5.00), Q(2.00, 0.00, -4.00), and R(5.00, -1.00, 
0.00). 

 

Here we use AiB  A  B cosAB.                     

PR  5  3a x   1 4a y   0  5a z                 



PR  8ax  3a y  5az , PR  9.9                        


PQ  5ax  4ay  9az , PQ  11.0                      
PRiPQ  85  34  59  97 

 9.9 11.0 cosP                                                                        


     97                                            
  cos

1 
 27

○

 

p                    9.911 
RQ  3ax 1a y  4az , RQ  5.1 

RP  8ax  3a y  5az , RP  9.9 

RQiRP = 1 = 5.19.9cosR, R 89 


Fig. P2.28

Q 180  27
○

  89
○

  64
○

 

P2.29: Given D = 2 a + sin  az C/m
2
, find the electric flux passing through the surface 

defined by 2.0 ≤  ≤  m, 90. ≤  ≤ 180, and z = 4.0 m. 
 

   EidS, dS   d  daz  
4                  

   2a   sinaz i d  da z     d   sind  6C 
2                 2 

 
 
 

P2.30: Suppose the electric flux density is given by D = 3r ar –cos  a + sin
2 a C/m

2
. 

Find the electric flux through both surfaces of a hemisphere of radius 2.00 m and 0.00 ≤ 

 ≤ 90.0˚. 
 

1   DidS, dS  r sin
2 
 d da 

     3ra   cos1a   sin2 a ir2 sin d da 
1            r                                                                                          r 

 2                     2

 3r
3 

 sin d  d  48 C 
0                         0 

dS2  rdrda
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2    cosa irdrda

2

 
 r 2  2  

sin     0 
 2   


    0        0 

  48 C 
 
 
 
 
 
 

 

Fig. P2.30 
 
 

7. Gauss’s Law and Applications 
P2.31:  Given  a  3.00  mm  radius  solid  wire  centered  on  the  z-axis  with  an  evenly 
distributed 2.00 coulombs of charge per meter length of wire, plot the electric flux 

density D versus radial distance from the z-axis over the range 0 ≤  ≤ 9 mm.

 

For a 1 m length,  
2C m

 

 70.7x10
3 C

 

 

,   a  3mm  .003m

v            a2                                  
m

3
 

Qenc  °DidS   D a i ddza  2 LD , where L is the length of the Gaussian 

surface. Note that this expression for Qenc is valid for both Gaussian surfaces. 

GS1 ( < a): 
             2         L 

Q        dv     d    d  dz    2 L
 

enc         v                  v                v 

0               0          0 

  2 L    v                      v
 

so  D                    for   a. 
2L       2 

GS2 ( > a): 
 a2   

1 
Q      a2 L, D   

   v                
for   a. 

enc           v                                
2    

This is plotted with the following Matlab routine: 

%  M-File: MLP0231 

% 

%  Gauss's Law Problem 

%      solid cylinder with even charge 

% 

%  Variables 
%  rhov    charge density (C/m^3) 

%  a       radius of cylinder (m) 

%  rho     radial distance from z-axis 
%  rhomm   rho in mm 

%  D       electric flux density (C/m^3)
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% N number of data points 

% maxrad max radius for plot (m) 

 

clc;clear; 

 
%  initialize variables 

rhov=70.7e3; 

a=0.003; 

maxrad=.009; 

N=100; 

bndy=round(N*a/maxrad); 

 
for i=1:bndy 

rho(i)=i*maxrad/N; 

rhomm(i)=rho(i)*1000; 

D(i)=rhov*rho(i)/2; 

end 

 
for i=bndy+1:N 

rho(i)=i*maxrad/N; 

rhomm(i)=rho(i)*1000; 

D(i)=(rhov*a^2)/(2*rho(i)); 

end 

plot(rhomm,D) 

xlabel('radial distance (mm)') 

ylabel('elect. flux density (C/m^2)') 

grid on 

P2.32: Given a 2.00 cm radius solid wire centered on the z-axis with a charge density v 

= 6 C/cm
3 

(when  is in cm), plot the electric flux density D versus radial distance 

from the z-axis over the range 0 ≤  ≤ 8 cm. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

Fig. P2.31
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Choose Gaussian surface length L, and as usual we have 

Qenc  °DidS =  D a iddza  2 L D , valid for both Gaussian surfaces.

In GS1 ( < a): Qenc    vdv  6
3            2 

2 
d ddz  4 L 3 

,

so D 

4 L

 2 for   a.
2 L  

3                   2a
3

 

    for   a.For GS2 ( > a): Qenc  4 La ,   D  


This is plotted for the problem values in the following Matlab routine. 

 
%  M-File: MLP0232 

% 

%  Gauss's Law Problem 

%      solid cylinder with radially-dependent charge 

% 

%  Variables 

%  a       radius of cylinder (cm) 
%  rho     radial distance from z-axis 

%  D       electric flux density (C/cm^3) 

%  N       number of data points 
%  maxrad  max radius for plot (cm) 

 
clc;clear; 

 
%  initialize variables 

a=2; 

maxrad=8; N=100; 

bndy=round(N*a/maxrad); 

 
for i=1:bndy 

rho(i)=i*maxrad/N; 

D(i)=2*rho(i)^2; 

end 

 
for i=bndy+1:N 

rho(i)=i*maxrad/N; 

D(i)=(2*a^3)/rho(i); 

end 
plot(rho,D) 

xlabel('radial distance (cm)') 

ylabel('elect. flux density (C/cm^2)') 

grid on
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Fig. P2.32 
 
 

 

P2.33: A cylindrical pipe with a 1.00 cm wall thickness and an inner radius of 4.00 cm is 
centered on the z-axis and has an evenly distributed 3.00 C of charge per meter length of 

pipe. Plot D as a function of radial distance from the z-axis over the range 0 ≤  ≤ 10 

cm. 
 

Qenc  °DidS   D a iddza  2 h D ; this is true for all the Gaussian surfaces. 

GS1 ( < a): since Qenc = 0, D = 0. 

GS2(a <  < b): 

  
         3h          

 
        3  

v 

 d ddz  b
2 
 a

2 

Qenc  vdv 

3        
             2         h

 
 b2  

 a
2  

d  d  dz

 

 
 3h 

 

 

So, 
 
 
 
 

D 


a                0          0 

 2 
 a

2 
b

2 
a

2 
 
 

 

3h 2 
 a

2      3  2 
 a

2 


2

 

 
 
 
 
 

Fig. P2.33a 

for a    b.

2h b2  a2 
GS3( > b): 

b2  a2 
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Qenc = 3h, D  23

 

for   b.

A plot with the appropriate values is generated by the following Matlab routine: 

 
%  M-File: MLP0233 

%  Gauss's Law Problem 

%      cylindrical pipe with even charge distribution 

% 

%  Variables 

%  a       inner radius of pipe (m) 

%  b       outer radius of pipe (m) 

%  rho     radial distance from z-axis (m) 
%  rhocm   radial distance in cm 

%  D       electric flux density (C/cm^3) 

%  N       number of data points 
%  maxrad  max radius for plot (m) 
clc;clear; 

 
%  initialize variables 

a=.04;b=.05;maxrad=0.10;N=100; 

bndya=round(N*a/maxrad); 

bndyb=round(N*b/maxrad); 

 
for i=1:bndya 

rho(i)=i*maxrad/N; 

rhocm(i)=rho(i)*100; 

D(i)=0; 

end 

 
for i=bndya+1:bndyb 

rho(i)=i*maxrad/N; 

rhocm(i)=rho(i)*100; 

D(i)=(3/(2*pi*rho(i)))*((rho(i)^2-a^2)/(b^2-a^2)); 

end 

 
for i=bndyb+1:N 

rho(i)=i*maxrad/N; 

rhocm(i)=rho(i)*100; 

D(i)=3/(2*pi*rho(i)); 

end 

 
plot(rhocm,D) 
xlabel('radial distance (cm)') 
ylabel('elect. flux density (C/m^2)') 
grid on
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S 



 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. P2.33b 
 

 
 

P2.34: An infinitesimally thin metallic cylindrical shell of radius 4.00 cm is centered on the 
z-axis and has an evenly distributed charge of 100. nC per meter length of shell. (a) 

Determine the value of the surface charge density on the conductive shell and (b) plot D 

as a function of radial distance from the z-axis over the range 0 ≤  ≤ 12 cm. 

  
Q 
  100nC              100nC           398

 nC 
.

s 

 ddz .04m2 1m       m2

For all Gaussian surfaces, 

of height h and radius , we have: 

Qenc  °DidS, where dS  ddza , 

Qenc  2hD . 

GS1 ( < a): Qenc = 0 so D = 0 

GS2 ( > a): 

Qenc   sdS  s  ddz  2 ahs ,

D    
 a 

 

for   a.
         s 


 

%  M-File: MLP0234 

% 

%  Gauss's Law Problem 

%      cylindrical shell of 
% 

%  Variables 

 
Fig. P2.34a 

 

 

charge

%  a       radius of cylinder (m) 

%  Qs      surface charge density (nC/m^2) 

%  rho     radial distance from z-axis (m)
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% rhocm radial distance in cm 

% D electric flux density (nC/cm^3) 

% N number of data points 

% maxrad max radius for plot (cm) 

 

clc;clear; 

 
%  initialize variables 

a=.04;Qs=398;maxrad=0.12;N=100; 

bndy=round(N*a/maxrad); 

 
for i=1:bndy 

rho(i)=i*maxrad/N; 

rhocm(i)=rho(i)*100; 

D(i)=0; 

end 

 
for i=bndy+1:N 

rho(i)=i*maxrad/N; 

rhocm(i)=rho(i)*100; 

D(i)=Qs*a/rho(i); 

end 

 
plot(rhocm,D) 

xlabel('radial distance (cm)') 

ylabel('elect. flux density (nC/m^2)') 

grid on 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. P2.34b
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o          3                                                       o 

4 

3 

3 

 

 
 

P2.35: A spherical charge density is given by v = o r/a for 0 ≤ r ≤ a, and v = 0 for r > 

a. Derive equations for the electric flux density for all r. 
 

Q        DidS 
 

D a ir 2 sin d da    4 r 2D .
 

 

This is valid for each Gaussian

enc        °        
surface. 

 
r    r                                             r                            r 

 
2

  r              

 

 
 r 4

GS1 (r < a): Q 
enc  

  v
dv   

a   r d  sin d  d      
a    

. 
0               0                         0

 r4            2 

So D  o   o r              for r   a. 
r       

a4r
2       

4a 

3                        a 
GS2 (r > a): Q      a ,    D        o            for r   a. 

enc              o                   r          
4r

2
 

 

 
 

P2.36: A thick-walled spherical shell, with inner radius 2.00 cm and outer radius 4.00 
cm, has an evenly distributed 12.0 nC charge. Plot Dr  as a function of radial distance 
from the origin over the range 0 ≤ r ≤ 10 cm. 

 
Here we’ll let a = inner radius and b = outer radius. Then

Q        DidS 


D a ir 2 sin dda    4 r 2D ; This is true for each Gaussian surface.
enc        °        

 
r    r                                             r                            r

The volume containing charge is 
b                                    2

v   r
2dr  sin d  d     b3  a3 . 

a               0                         0                  
3 

Q            3Q 

So v   
    

 

v     4 b3  a3 
.
 

Now we can evaluate Qenc for each Gaussian surface. 
 

GS1 (r < a): Qenc = 0 so Dr = 0. 
GS2 (a < r < b): Q         dv  r  r 2dr sin d 2 d  

v 
4r3  a3 .

enc          v                   v               
a               0                         0 

Inserting our value for v, we find 

Q   r3  a3 
Dr  

4r
2 b

3 
 a

3  
for a  r     b.

 

Q
GS3 (r >b): Qenc = Q, Dr 

 

4 r2
 
,   for r   b.

This is plotted for appropriate values using the following Matlab routine: 
 

 

%  M-File: MLP0236 

%  Gauss's Law Problem 
%      thick spherical shell with even charge 

% 

%  Variables
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% a inner radius of sphere (m) 

% b outer radius of sphere (m) 

% r radial distance from origin (m) 

% rcm radial distance in cm 

% D electric flux density (nC/cm^3) 

% N number of data points 

% maxr max radius for plot (m) 

% Q charge (nC) 

 

clc;clear; 

 
%  initialize variables 

a=.02;b=.04; 

Q=12; 

maxrad=0.10; 

N=100; 

bndya=round(N*a/maxrad); 

bndyb=round(N*b/maxrad); 

 
for i=1:bndya 

r(i)=i*maxrad/N; 

rcm(i)=r(i)*100; 

D(i)=0;

end 

 
for i=bndya+1:bndyb 

r(i)=i*maxrad/N; 

rcm(i)=r(i)*100; 

 
Fig. P2.36

 
end 

D(i)=(Q/(4*pi*r(i)^2))*(r(i)^3-a^3)/(b^3-a^3);

 

for i=bndyb+1:N 

r(i)=i*maxrad/N; 

rcm(i)=r(i)*100; 

D(i)=Q/(4*pi*r(i)^2); 

end 

 
plot(rcm,D) 

xlabel('radial distance (cm)') 

ylabel('elect. flux density (nC/m^2)') 

grid on 
 
 
 
 

 
P2.37: Given a coaxial cable with solid inner conductor of radius a, an outer conductor 

that goes from radius b to c, (so c > b > a), a charge +Q that is evenly distributed
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2 

 

 
 

throughout  a  meter  length  of  the  inner  conductor  and  a  charge  –Q  that  is  evenly 
distributed throughout a meter length of the outer conductor, derive equations for the 

electric flux density for all . You may orient the cable in any way you wish. 
 
We conveniently center the cable on the z-axis. Then, for a Gaussian surface of length L, 

Qenc  °DidS  2 LD ; valid for all Gaussian surfaces. 
Q

GS1: ( < a):  v 
1m a2  

;

             2         L              
QL 

Q1   vdv  v  d   d  dz  
a2    ; 

0                0          0 

QL2             
Q

D 
 

a
2 

2 L 
          

2 a2    
for   a

 

 

GS2 (a <  < b):  Q2  QL;  D 
QL 

2L 
 

Q 
2

 

for a      b.

 

GS3 (b <  < c): Q3    Q  vodv, where vo 

Q 

1m c2  b2 

Q      
       2         L                    c

2 
  2 

Q3   Q  
 c2  

 b
2   

d   d  dz  Q 
c2  

 b
2 


b 

so D  
Q        c   

 0          0 

 
for b    c.

2        2 
      

2c
2 
b

2 

 

GS4 ( > c): Qenc = 0, D = 0. 
 

 
 

8. Divergence and the Point Form of Gauss’s Law 
P2.38: Determine the charge density at the point P(3.0m,4.0m,0.0) if the electric flux 

density is given as D = xyz az C/m
2
. 

iD  
Dz   

xyz  
 xy   . 

z         z                  
v
 

v(3,4,0)=(3)(4)=12 C/m
3
. 

 

 
P2.39: Given D = 3ax +2xyay +8x

2
y

3
az C/m

2
, (a) determine the charge density at the 

point P(1,1,1). Find the total flux through the surface of a cube with 0.0 ≤ x ≤ 2.0m, 0.0 
≤ y ≤ 2.0m and 0.0 ≤ z ≤ 2.0m by evaluating (b) the left side of the divergence theorem 

and (c) the right side of the divergence theorem.
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                                             C 

v 3, 90  , 2  6    . 

z 

 

 
 

(a) iD =     2xy  2x,    1,1,1  2      . 

y                         
v                              

m3
 

 

(b) °DidS  iDdv            
top bottom left right front back 

2              2

  8x
2  

y
3
a

 
idxdya  8

 
x

2
dx

 
y

3
dy  85.3C 

top 
z                    z              

0              0

    8x2 y3a 
bottom 

idxdya z    85.3C

 


left 

 


right 

 


front 

 


back 

 

  2x y 
y=0 

a y idxdza y  0 
 

 

  2x y 
y=2 

a y idxdza y  16C 
 

 

 3ax idydzax  12C 

 

  3ax idydza x   12C 
 



Qenc  °DidS  16C. 
 








2             2         2

(c) iD= 2xy   2x; 
y iDdv  2 xdx dy dz  16C. 

0             0         0

 

 
 

P2.40: Suppose D = 6cos a C/m
2
. (a) Determine the charge density at the point (3m, 

90, -2m). Find the total flux through the surface of a quartered-cylinder defined by 0 ≤ 

 ≤ 4m, 0 ≤  ≤ 90, and -4m ≤ z ≤ 0 by evaluating (b) the left side of the divergence 
theorem and (c) the right side of the divergence theorem. 

 1 6cos 
(a) iD     

 1 D  
cylinder                      

C 

 6 sin .

         ○
 

m3
 

 
 

(b) °DidS                  , 
 0

○ 
 90

○       top bottom outside 

note that the top, bottom and outside integrals yield zero since there is no component of 

D in the these dS directions.
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v 1, 45   , 90  1.83   



 
 


 0

○
 

 


 90

○
 

 6 cos 
 0○ 

a id dza   192C 

 

  6 cos 
 90○ 

a id dza   0

So, °DidS  192C. 

(c)(c) 

iD  6sin , 

90
○
 

 
dv  d ddz 
 

4               0

iDdv  6  sin d  d   dz  192C. 
0                       0              4 

 

 
 

P2.41: Suppose D = r
2
sin ar + sincos a C/m

2
.  (a) Determine the charge density at 

the point (1.0m, 45, 90). Find the total flux through the surface of a volume defined by 

0.0 ≤ r ≤ 2.0 m, 0.0 ≤   ≤  90., and 0.0 ≤   ≤  180 by evaluating (b) the left side of 
the divergence theorem and (c) the right side of the divergence theorem. 

The volume is that of a quartered-sphere, as indicated in Figure P2.41. 

(a) 

iD = 
 1   r

2 
D     1    D  

= 4r sin  
sin 

= , 

r
2  
r        

r        
r sin                        r        

v
 

C
 

        ○         ○
 

m3
 

 

(b) °DidS               ;   note that     0 since D  0. 
 0

○ 
 180

○       
 90

○ r 2                                         90
○

 


0

○
 

  sin cos 
 0○  a irdrda   2C

 


 180

○
 



 sin cos 
 180○ a irdrd a  2C           





   r 
2 

sina ir2 
sin d da  r

4 2 sin
2  dd  8 90

○ 1 cos 2  d 4 2C 

             r                                         r                                  
r 2                                                                                                   0                           0                         0 

Summing these terms we have Q = 4(
2 

– 1)C = 35.5C. 

(c)
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P 

     a 

 

iDdv  
 

4r sin  
 sin  

r
2 

sin drd d

                            
r   


                             

2              2                                      2           2                     

 4 r
3
dr  sin

2  d  d   rdr  sin d sin d  4 2 
 4  35.5C. 

0               0                           0               0            0                        0 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. P2.41 
 
 
 

9. Electric Potential 

P2.42: A sheet of charge density s  = 100 nC/m
2  

occupies the x-z plane at y = 0.  (a) 
Find the work required to move a 2.0 nC charge from P(-5.0m, 10.m, 2.0m) to M(2.0m, 
3.0m, 0.0). (b)Find VMP. 

 
M 

(a) W  Q  EidL; so we need E for the sheet charge. 

                100x10
9

C    FV                       V
E 

 s 
a 

2o 
N   

2 8.854x10
12 

F m C    
y
 

 5.65x10
3 

a 
m 

y

Notice that we are only concerned with movement in the y-direction. We then have:

9     
y 3 


 V              J 

3W  2x10 C   
5.65x10     a

y
 idya              79J 

y         

y10              m              CV 
                             (b) V     

 W 
 
79J CV      39.5kV ;   so V     40kV . 

MP        Q    2x109C  J                            
MP

 
 

 
 

P2.43:   A surface is defined by the function 2x + 4y
2  

–ln z = 12.   Use the gradient 

equation to find a unit vector normal to the plane at the point (3.00m,2.00m,1.00m).
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y 

a 
z 

a 

 

 
 

Let F  2x  4 y
2 
 ln z  12, then 

a  
F 

;      F  2a   8 ya  
1 

a , 
x       

F                    
x                 y       

z 
z

At (3,2,1), 

F  2ax 16a y  az , F 


2

2 
16

2
 

 
 

1
2

 

 
 

 16.16,

aN  0.124ax  0.990a y  0.062az 

 
 
 

P2.44: For the following potential distributions, use the gradient equation to find E. 
(a) V = x+y

2
z (V) 

(b) V = 2
sin(V) 

(c) V = r sin cos (V). 

(a) E  V  a x
 2 yza  y

2
a

(b) E  V  
 V 

a
 

 

1 V V     
 
 2sina     cosa

 
   

   a  
z   

z                                                

 
(c)

 
                                                   

E  V  
 V 

a
  

1 V
 

 

1     V
  

 sin cosa     cos cosa
  

sina

 
r   

 
  r  a   r sin  a


                                                                        

                                                               



P2.45: A 100 nC point charge is located at the origin. (a) Determine the potential difference 
VBA  between the point A(0.0,0.0,-6.0)m and point B(0.0,2.0,0.0)m. (b) How much work 
would be done to move a 1.0 nC charge from point A to point B against the electric field 
generated by the 100 nC point charge? 

 
A 

(a) VBA   EidL. 
A 

The potential difference is only a function of radial distance from the origin. Letting ra = 
6m and rrb = 2m, we then have 

b            
Q                       Q   1    1 

VBA   
4 r

2 ar idrar  
4 

 
r 
 

r 
 300V . 

r             o                                              o  b         a 

(b) W  Q V     109 C300V  
J  

 300nJ 
2    BA                                                       

CV 
 

 
 

P2.46: MATLAB: Suppose you have a pair of charges Q1(0.0, -5.0m, 0.0) = 1.0 nC and 

Q2(0.0, 5.0m, 0.0) = 2.0 nC. Write a MATLAB routine to calculate the potential VRO moving 

from the origin to the point R(5.0m, 0.0, 0.0). Your numerical integration will involve 

choosing a step size L and finding the field at the center of the step. You should try several 
different step sizes to see how much this affects the solution.



2-42 
 

 
 
 

 

%  M-File: MLP0246 

% 

%  Modify ML0207 to calculate the potential 

%  difference going from the origin (O) to the point 

%  R(5,0,0) given a pair of point charges 

%  Q1(0,-5,0)=1nC and Q2(0,5,0)=2nC. 
% 

%  The approach will be to break up the distance 

%  from O to R into k sections.  The total field E will 
%  be found at the center of each section (located 

%  at point P) and then dot(Ep,dLv) will give the 

%  potential drop across the kth section.  Total 

%  potential is found by summing the potential drops. 

% 

%  Wentworth, 1/7/03 

% 
%  Variables: 

%      Q1,Q2   the point charges, in nC 

%      k       number of numerical integration steps 

%      dL      magnitude of one step

%      dLv 

%      x(n) 

vector for a step 

x location at center of section at P

%      R1,R2   vector from Q1,Q2 to P 

%      E1,E2   electric fields from Q1 & Q2 at P 

%      Etot    total electric field at P 
%      V(n)    portion of dot(Etot,dL) at P 

 
clc    %clears the command window 

clear  %clears variables 

 
%  Initialize variables 

k=64; 

Q1=1; 

Q2=2; 

dL=5/k; 

dLv=dL*[1 0 0]; 
 

 
 

%  Perform calculation 

for n=1:k 

x(n)=(n-1)*dL+dL/2; 

R1=[x(n) 5 0]; 

R2=[x(n) -5 0]; 

Rmag1=magvector(R1); 

Rmag2=magvector(R2); 

E1=9*Q1*R1/Rmag1^3;
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2      2          2   
3 

2 

3 

3 

 
 
 
 
 

 
end 

E2=9*Q2*R2/Rmag2^3; 

Etot=E1+E2; 

V(n)=dot(Etot,dLv);

 

Vtot=sum(-V) 

 
Now running the program: 

Vtot = 

-1.5817 

 
So VRO = -1.6 V. 

 

 
 

P2.47: For an infinite length line of charge density L = 20 nC/m on the z-axis, find the 
potential difference VBA between point B(0, 2m, 0) and point A(0, 1m, 0). 

B 

VBA  EidL;
 E   

L 

 

a 

, dL  d a


,

A                                   
2o                      

B                           
so VBA   

L      a id a  



L 
ln 2  250V 

A 2o                 2o 

 

 
 

P2.48: Find the electric field at point P(0.0,0.0,8.0m) resulting from a surface charge 

density s = 5.0 nC/m
2 

existing on the z = 0 plane from  = 2.0 m to  = 6.0 m. Assume 

V = 0 at a point an infinite distance from the origin. 

 
(Method 1) 
For a ring of charge it was previously found that 

E  
   Lahaz            . 

3

2o a2 h 2  2

We can then break up our disk into differential rings (see Figure P2.48), each 

contributing dE as: 

dE  
S h  d     

a ,   where we've used    d .

o     h   
So we then have 

z                                                              L           S

E  
Shaz   d  

2o      . 

 2  h2  2

This is easy to integrate if we let u = 2 
+ h

2
, then du = 2  d, and we have 

b

E  
S haz     u

 
2 du  S haz  2 

 S haz   
       1  

4o      


 

4o         u 
 

2o 

 

2 
 h

2
 

a
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                                  z 



z 

S    1                 1
2              1                 1

2       

2

3 

 

 
 

Solving, we arrive at 

E  
S h       1       

 
      1        

a .
2o    b

2 
 h

2          
a

2 
 h

2 

Upon inserting the appropriate values we find E = 48 V/m az. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. P2.48 
 

 

(method 2) 
Find an expression for potential and then evaluate the gradient at the point.

 

V  


dQ   
,   R 

 

 2 
 h2 , dQ  Sd d, so V=

 S d d

4o R 
S   

b d       


 

 

b            


4o      
2 
 h

2

V=      




     S  

2
2 

 h
2

  
   S 


b

2  
 h

2 
 a

2 
 h

2 
 . 


2o a 2 
 h

2
 a        2o

Now we let h = z and E  V ; 

E  
S        b2  

 z
2 

1
2    

 a2  
 z

2 
1

2  a 

2o  

z                         z                  

           b2  
 z

2 
       

2z    a2  
 z

2 
       

2z
 

 

 
 
 
 

S             

2 2                            2
 a        z 


z 

a

 z                                                              z 

                      b
2 
 z

2           
a

2 
 z

2 

o                                                                                                                                  o                                 
Plugging in the values we find E = 48 V/m az. 

 

 
 

P2.49: Suppose a 6.0 m diameter ring with charge density 5.0 nC/m lies in the x-y plane 
with the origin at its center. Determine the potential difference Vho  between the point 
h(0.0,0.0,4.0)m and the origin. (Hint: first find an expression for E on the z-axis as a 
general function of z.) 

 
For the ring of charge, replacing h with z, we have 

E  
Laaz          z   
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2    a2 z 2  2
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h 

3 

a                                       2

  

2 



. 

 
 
 

Vho 
  EidL  La 

0                          2o 

       zdz   


a2  

 z
2  2

Letting u = a
2 

+ z
2
, du = 2z dz, we have

 

V
ho  
  

La 
 

 u
3

2 

 

du 


L
a 1 

.

4o 2o        u

Replacing u and evaluating from 0 to h,
La       1  

 
1

Vho    2


a
2 
 h

2   a


o                       

 36V  113V . 
 

 

Fig. P2.49 
 

 

10. Conductivity and Current 

P2.50: A columnular beam of electrons from 0 ≤  ≤ 1 mm has a charge density v =-0.1 

cos(/2) nC/mm
3  

(where  is in mm) and a velocity of 6 x 10
6  

m/sec in the +az 

direction. Find the current.

Let’s let     cos
  

 

where 
  

= -0.1 nC/mm
3
. Then we’ll let u = u a , where u  =

, 
v            o             

2 
                 o 

        

o   z                      o

6x10
9 

mm/s. Notice we convert the units to mm. Now, 

J   u   u   cos             a , 
v                o    o             

2 
 z

 

      

and with dS =  d d az we then have 
         

I   JidS  ouo   cos  
2 
 d   d.

 

0 

This b
a
ecomes 

          0

  
I  A  cos      d , where A = 2ouo. 

0                    

Now we can integrate by parts, or 

v  
2 

sin 
  

, and dv  cos
   

d. 

     
 

2 
                         

2 


                                                 
We then have 

 

udv  uv  vdu,   where u = A, du = Ad,

I  
2 Aa 

sin 
 a  

 
 4 A      a      

                                                                                                      

        
2 
      2 

 cos      1  . 
2         

                                       

To evaluate, we first find A = 2(-0.1x10
-9

)(6x10
9
)=3.77, and then 

I = 2.40-1.53=0.87A. 

 
I = 0.87A.
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dr 

 r 

 

 
 

P2.51: Two spherical conductive shells of radius a and b (b > a) are separated by a material 

with conductivity . Find an expression for the resistance between the two spheres. 

 
First find E for a < r < b, assuming +Q at r = a and –Q at r = b. From Gauss’s law: 

E  
    Q      

a 
2      r

 

4o r 
Now find Vab: 

a                           a        
Q 

Vab  EidL   4
 

r
2 
ar idrar

b                           b            o 

a                               a 

 
Q          


  Q    1

 
 

   Q    1   1 



4 2                                 4

4o  r 

            .

o  b                                    b 

Now can find I: 
I    JidS =   EidS= 

o  a   b 
Q    1 

a ir
2 

sin d da

                     
4 r 

2    r                                   r 

o 

 Q 
           2             Q 

 
 

4 sin d d   
   

. 
o  0                       0                      o

Finally,R  
V

ab 


 

1  1 
 

1 
 

                                                                                                                                                                  
   

                                                                                                                                          

   
                                                                   




I      4  a    b  




P2.52: The typical length of each piece of jumper wire on a student’s protoboard is 5.0 

cm. Assuming AWG-20 (wire diameter 0.812 mm) copper wire, (a) determine the 

resistance for this length of wire. (b) Determine the power dissipated in the wire for 10. 

mA of current. 
 

(a) R   
1   L   

           1                   0.05m           1.67m


  a2
 

 

so R = 1.7 m


5.8x10
7 S  m  0.406x10

3 
m

2

 

(b) P  I 
2 
R  10x10

3 
A

2 

1.7x10
3 
  170nW 

 
 
 

P2.53: A densely wrapped coil of AWG-22 (0.644 mm diameter) copper magnet wire is 

150 m long. The wire has a very thin insulative sheath. Determine the resistance for this 

length of wire.
 

R  
1   L   



  a
2

 

 

so R = 7.9

 
1                   150m 

5.8x10
7 

S m  0.322x10
3 

m
2

 

 
 7.94
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P2.54: Determine an expression for the power dissipated per unit length in coaxial cable 

of inner radius a, outer radius b, and conductivity between the conductors  if a potential 
difference Vab is applied. 

 

From Eqn(2.84) we have R     1    
ln 
 b

2 L 
                                     

  
 a  

Now for a given potential difference Vab we have 
V 

2          
2 LV 

2                     
P    2V 

2

P      ab   ab  ,     so
 

ab . ln

R       
lnb

a 
L    b     

a

 

 
 

P2.55: Find the resistance per unit length of a stainless steel pipe of inner radius 2.5 cm 

and outer radius 3.0 cm. 

R  
1         L        

, 

  b2  
 a

2 
 

so we have
 R     1         1 

2          2 
  

        1                          1                 

 m
1.05

                                                                                                                                                                                                                             

L 
                                                                                                                                                          

b   a 
                  6              
1.1x10 S m  .0302 .025 2m 2             m

 

so R/L = 1.0 m/m 

                                        

 

 
 

P2.56: A nickel wire of diameter 5.0 mm is surrounded by a 0.50 mm thick layer of 

silver. What is the resistance per unit length for this wire? Assuming 1.0 m of this wire 

carries 1.0 A of current, determine the power dissipated in the nickel portion and in the 

silver portion of the wire. 

 
We can treat this wire as two resistors in parallel. We have 

 R
Ni   

     1               1            3.4x10
3 


L    1.5x10

7  

 2.5x10
3 

2                                    m 

 RAg  
  6.2 

1  
0

7  
             

2  
1 

2   1.87x103      

L          
x1

    3x10
3

  2.5x10
3                       m

                                                       

Rtotal   
 RNi    

RAg  
 1.2

m

L        L     L            m 

To find the power dissipated, we first find the potential difference: 

V  IRtotal  1.2mV 

then 
2            V                        2

P    
V   

0.42mW , P   
  0.77mW
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Ni      
R Ag      

R
Ni                                                           Ag
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2 

 
 
 

 

11. Dielectrics 
P2.57:    A material has 12.0 V/m ax field intensity with permittivity 194.5 pF/m. 
Determine the electric flux density. 

D   E  194.5x10
12  F    12V    C 

 2.3 
nC 

a 
m          m  FV          m

2      x
 

 

 
 

P2.58: MATLAB: A 20 nC point charge at the origin is embedded in Teflon (r = 2.1). Find 

and plot the magnitudes of the polarization vector, the electric field intensity and the electric 
flux density at a radial distance from 0.1 cm out to 10 cm. 

 
We use the following equations: 

E  
     Q       

, P    E, D    E
4 ror 

e   o                         r  o

 

%  M-File: MLP0258 

% 

%  Plot E, P and D vs distance r from a point 

%  charge Q at the origin with a dielectric. 

% 

%  Variables 

%  Q       charge (C) 

%  eo      free space permittivity (F/m) 

%  r       radial distance (m) 

%  Chi     electric susceptibility 

%  E       electric field intensity(V/m) 

%  D       electric flux density (C/m^2) 
%  P       polarization vector (C/m^2) 

 
%  initialize variables 

Q=20e-9; 

er=2.1; 

eo=8.854e-12; 

Chi=er-1; 

 
%  perform calculations 

r=0.001:.001:0.100; 

rcm=r.*100; 

E=Q./(4*pi*r.^2); 

P=Chi*eo*E; 

D=er*eo*E; 
 

 
 

%  plot data
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subplot(2,1,1) 

loglog(rcm,P,'--k',rcm,D,'-k') 
legend('P','D') 

ylabel('C/m^2') 

grid on 

subplot(2,1,2) 

loglog(rcm,E) 

ylabel('V/m') 

xlabel('radial 

distance (cm)') 

grid on 
 

 
 
 
 
 
 
 
 
 

Fig. P2.58 
 
 

 

P2.59: Suppose the force is very carefully measured between a pair of point charges 

separated by a dielectric material and is found to be 20 nN. The dielectric material is 

removed without changing the position of the point charges, and the force has increased 

to 100 nN. What is the relative permittivity of the dielectric? 
 

F
2

F  
   Q

1
Q

2        ,   F    Q1Q2  ,
 

 
 100

1        
4  R

2              2        
4 R

2             
F 





r    o                                            o                        1 

 5 
r          

20

 

 
 

P2.60: The potential field in a material with r = 10.2 is V = 12 xy
2 

(V). Find E, P and D.
 

12xy    
E  V  

 

12xy    
  

 

 12 y
2
a   24xya    

 V

2 

x      
ax  

    2 
 

y 

a y                            x                        y 
m

D    E  -1.1y
2
a   2.2xya    

 nC
 

r    o                                  x                            y     
m2

 

e  r 1 9.2 

P    E  9.2 8.854x10
12 E = -9.8 y

2
a   2.00xya    

nC
 

e   o                                                                                                        x                               y     
m2

 

 

 
 

P2.61: In a mineral oil dielectric, with breakdown voltage of 15 MV/m, the potential 
function is V = x

3  
– 6x

2  
–3.1x (MV). Is the dielectric likely to breakdown, and if so, 

where?
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d  E 


D D 

 
 
 

 

E  V  3x
2  
12x  3.1a    

MV 
x        

m
dE 

 
 

6x 
     2   

12,             
 

6,    so from 6x – 12 = 0 we find the maximum electric field

dx                        dx
2

 

occurs at x = 2m. 
At x = 2m, we have E = -12+24+3.1 = 15.1 MV/m, exceeding the breakdown voltage. 

 

 
 

12. Boundary Conditions 

P2.62: For y < 0, r1 = 4.0 and E1 = 3ax + 6ay + 4az V/m. At y = 0, s = 0.25 nC/m
2
. If 

r2 = 5.0 for y > 0, find E2. 
 

E1 = 3ax + 6ay + 4az V/m (g) E2 = 3ax + 20.7ay + 4az V/m 

(a) EN1 = 6ay (f) EN2 = DN2/5o = 20.7ay 

(b) ET1 = 3ax + 4az (c) ET2 = ET1 = 3ax + 4az 

(d) DN1 = r1oEN1 = 24o ay (e) DN2 = 0.92 ay 

(e) a21iD1  D2   s ,  -ay iDN1  DN 2 ay  

s, 

DN 2  DN1  s

nC        10
9 

F    nC            nC
DN 2  s  DN1  0.25    24 

36m 
 

m
  0.92 

mm
2                 

                   
2                              2

 
 

 
 

P2.63: For z ≤ 0, r1 = 9.0 and for z > 0, r2 = 4.0. If E1 makes a 30 angle with a normal 
to the surface, what angle does E2 make with a normal to the surface? 

Refer to Figure P2.63. 

ET 1  E1 sin1, ET 2  E2 sin2, and 

also 

 

 

ET 1  ET 2

DN1  r1oE1 cos1, 

Therefore 

DN 2   r2oE2  cos2,  and DN1  DN2    since s  0

E
T 1  

E
T 2 , and after routine math we find   tan

1  r 2 tan 


                                                                                                                                                                                                                      2                                       

                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               
         

1
 

N1              N 2                                                                                                                                 r1                 

Using this formula we obtain for this problem 2 = 14°. 
 

 
 
 
 
 
 
 
 
 

Fig. P2.63
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P2.64: A plane defined by 3x + 2y + z = 6 separates two dielectrics. The first dielectric, 

on the side of the plane containing the origin, has r1  = 3.0 and E1  = 4.0az  V/m. The 

other dielectric has r2 = 6.0. Find E2. 

 
We first use gradient to find a normal to the planar surface. 
Let F = 3x + 2y + z – 6 = 0.

F  3ax  2a y  az ,   and  F 


14,

so a    F   0.802a  0.534a  0.267a .

N         
F 

x                          y                          z

Now we can work the boundary condition problem. 

E1  4az , EN1  E1iaN aN  0.857ax  0.570a y  0.285az. 

ET 1  E1  EN1  0.857ax  0.570a y  3.715az ,    ET 2  ET 1 

DN 1   r1oEN1   o 2.571ax  1.710a y  0.855az  ,   and DN 2   DN 1 

 DN 2   
DN 2   0.429aEN 2      6x                         0.285a y  0.143az

r 2   o                o 

Finally we have  E   E     E     0.43a   0.29a   3.8a    
V 

. 
2            T 2           N 2                          x                      y                  z 

m 
 

 
 

P2.65: MATLAB: Consider a dielectric-dielectric charge free boundary at the plane z = 

0. Construct a program that will allow the user to enter r1  (for z < 0), r2, and E1, and 

will then calculate E2. (Just for fun, you may want to have the program calculate the 
angles that E1 and E2 make with a normal to the surface). 

 
%  M-File: MLP0265 

% 

%  Given E1 at boundary between a pair of 

%  dielectrics with no charge at boundary, 

%  calculate E2.  Also calculates angles. 

% clc 

clear 

%  enter variables 

disp('enter vector quantities in brackets,') 

disp('for example: [1 2 3]') 
er1=input('relative permittivity in material 1: '); 

er2=input('relative permittivity in material 2: '); 

a12=input('unit vector from mtrl 1 to mtrl 2: '); 

E1=input('electric field intensity vector in mtrl 1: '); 

 
%  perform calculations
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En1=dot(E1,a12)*a12; 

Et1=E1-En1; 

Et2=Et1; 

Dn1=er1*En1;   %ignores eo since it will factor out 

Dn2=Dn1; 

En2=Dn2/er2; 

E2=Et2+En2 

 
%  calculate the angles 

th1=atan(magvector(Et1)/magvector(En1)); 

th2=atan(magvector(Et2)/magvector(En2)); 

th1r=th1*180/pi 

th2r=th2*180/pi 

 
Now run the program: 

 
enter vector quantities in brackets, 
for example: [1 2 3] 
relative permittivity in material 1: 2 
relative permittivity in material 2: 5 
unit vector from mtrl 1 to mtrl 2: [0 0 1] 
electric field intensity vector in mtrl 1: [3 4 5] 

E2 = 

3     4     2 
 

 
 

th1r = 
 

45 
 

 
 

th2r = 
 

68.1986 
 

 
 

P2.66: A 1.0 cm diameter conductor is sheathed with a 0.50 cm thickness of Teflon and 
then a 2.0 cm (inner) diameter outer conductor. (a) Use Laplace’s equations to find an 

expression for the potential as a function of  in the dielectric. (b) Find E as a function of 

. (c) What is the maximum potential difference that can be applied across this coaxial 
cable without breaking down the dielectric? 

 
(a) Since V is only a function of ,
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cyl        
  

   
 




b 

b 

             

 

 
 


2
V    

1  
 
V  

 0
 

           

so  
V  

 A 



or V  A ln   B 

where A and B are constants. 

Now we apply boundary conditions. 

BC1: 

0  A ln b  B, B   A ln b, 

V  Aln
  


   
    




 
 
 
 
 
 
 

 
Fig. P2.66

 
BC2: V  Aln 

a 

 

 a 


b 

, 

 

A 
    Va 

 

 

,   V  Va

 
ln   

    
lna

b  ln  b 

a 
 

or 

V  1.443Va ln 100 .

(b) E  V   
V 

a 

   
 

1.443Va a 
       



(c)( 
c 
) 

 

 

 
1.443Va    288.5V  E     60x10

6
,

E            
max           

.005 
6 0x10 

 

 
a           br 
 

 


so Va 
      208kV ,         Vab   210kV

288.5 max

 

 
 

P2.67: A 1.0 m long carbon pipe of inner diameter 3.0 cm and outer diameter 5.0 cm is 

cut in half lengthwise. Determine the resistance between the inner surface and the outer 

surface of one of the half sections of pipe. 

 
One approach  is  to  consider the resistance for  the half-section  of pipe is  twice the 

resistance for a complete cylindrical section, given by Eqn. (2.84). But we’ll used the 

LaPlace equation approach instead. 

Laplace: 
2
V     

1   
 
V  

 0 ; here we see V only depends on 

cyl                                                                                 

 S
o

:   
V 
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 A; 

           



 

V  
A ln 
  
B;


where A and B are constants. 

Now apply boundary conditions. 

BC1:
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b 

                                         









a 

a 



 
 

Vb  0  A ln b  B; 

V  A ln 
  


  
     

B   A ln b;

BC2: 
 

V  Aln 

 

 a
;    A  

   Va        ; 


b 
a                

  


ln   

lna
b 



V  Va        

 
b 

ln    
b 

E  V    
V 

a       
Va         1 

a 

           lna
b 

 

J=E 


Fig. P2.67 

 

V    
  

1        
L             LV

I   JidS  



a 

 
d 


dz 




a 

 
 

 

R  
Va

 

ln 
ln b 

a 
b 0                    0 lnb

a 


I        L 

 5.4.

 

 
 

P2.68: For a coaxial cable of inner conductor radius a and outer conductor radius b and a 

dielectric r in-between, assume a charge density      v  o     is added in the dielectric 

region. Use Poisson’s equation to derive an expression for V and E. Calculate s on each 

plate.


2
V   

v     
1  

 


 

V     

         
   

 
o
 

         
so                                                                           
  

 
V  

 
o ;      d

 
 
V  



 o d ;
 

V  
 o   A , where A is a constant.

                                                     
 

                                   

                                                                                                                                                                                    

                                             
o            A                 oV 

 
o 

 A 
;    

dV =  d   


d ;   V       A ln   B , where B is a constant.

                                                     

Now apply boundary conditions: V  Va at   a 

Applying the second 
one gives us: 
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 and V  0 at   b
o                                          


V       b  Aln  b . 
Applying the first one:
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b 





b 

  V 

b 

  



o 


b





 





















 

 
 

o                                                                        
V 

o b  a

V      a  b  Aln a  ; 
 

A     a         
  

ln a
b 

a         
                         b 

 

Therefore, 

V   


o  b a

V       
a        

           ln   

 
 
 
 

 


 o   b .

lna 
b 

  
     

E  V   
V 

a    
  

K ln 
   

 
o   

o         

          


  

b 
       b 



a



  K     
E           o 

 a
 

                               

                     


where 

V  
o b  a

    a                
 

 

K                          ,
 

ln a  
                    

  
   a 


   
o
 

b  a

 

 

 

so E                           o  a .

          ln
 a 
   

                       

 
                       

 
 


V  

   o  b  a        
   a            

     

D     ;   D      E        
                         


 o    

N            s             Na                   a 

 



 

 aln

 a 
b
 

      
sa

 







V  
    b  a

                    


   a              
     

D    =  E        
                        


 o    

Nb                   b 

 

 



 


bln
 a 

   

      
sb

 





P2.69: For the parallel plate capacitor given in Figure 2.51, suppose a charge density 
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2d 
sin

z 
v  o    

      

is added between the plates. Use Poisson’s equation to derive a new expression for V and 

E. Calculate s on each plate.
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z         

Vd  
o

 

2 





                  a 

o 1   





 A 

r 

 

 
 


2
V (z) 



 

 
v
 o sin z 

2d 

z
2                              

 

2od

V (z) 
 
o 

sin  z     dz           cosz      A

V      
2o d

 
2d           


2o d 

22d
(z)    cos        dz  A dz  

z
 

sin z            Az  B

    2d                  2             2d

Now apply the boundary conditions: 

2 d 
2                                               2 d 

2
 

V   0  B;   V  



o  
sin  d           Ad;  A        2

a                                  d           
 2             2d                             d 

V (z)  
 2

o
d   

sin  z      
 V

d   
 2

o
d 

 2


2d      d      

2
 


 

z

      
V             2 d 

2                                V 
 

2 d  

E         V             az               


                         z  a 
z

   o sin  z 
2d                          

d              o 

z           z   2                        z d           2  


E  
 
 
od 

cos  z 
2d 
 Vd       2o d 

2        z

      


d                


at z = 0, D   E, so            
od 

 
Vd  

2od 
  . N                                 s z 0                        d         2             s

 

at z = d,  D     E, so          
Vd   

2od 
  . 

N                                  s z d                 d         2               s
 

 

 
 

13. Capacitors 
P2.70: A parallel plate capacitor is constructed such that the dielectric can be easily 
removed. With the dielectric in place, the capacitance is 48 nF. With the dielectric removed, 

the capacitance drops to 12 nF. Determine the relative permittivity of the dielectric.
 

C  
ro  A 

;  C         ; 

 

C 
      

 

 
48 

 4.0

1             
d           

2
 



d        C2                    12

 
 

P2.71: A parallel plate capacitor with a 1.0 m
2 

surface area for each plate, a 2.0 mm plate 

separation,  and  a dielectric with  relative permittivity of 1200  has  a 12.  V potential 

difference across the plates. (a) What is the minimum allowed dielectric strength for this 
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capacitor? Calculate (b) the capacitance, and (c) the magnitude of the charge density on 

one of the plates.
 

 

(a) E 

 

  12V     
 6 

kV 
;   (a)E

 
 

 6  
kV

0.002m        m             
br min              

m
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r 


        

a   b 

       r                        r 
2

 

a   b 
     b 

 
 

  A    12008.854x10
12 

F / m1m
2 

(b) C  
  r  o     

                                                    5.3F 
d                           0.002m 

(c) C  
Q 

;   Q  CV  5.3x10
6 

F 12V 
C 
64C 

V                                                    FV 
 

 
 

P2.72: A conical section of material extends from 2.0 cm ≤ r ≤ 9.0 cm for 0 ≤  ≤ 30 

with r = 9.0 and  = 0.020 S/m. Conductive plates are placed at each radial end of the 

section. Determine the resistance and capacitance of the section.


2
V  

1   
          


V            V   

A 
 B , where A and B are constants.

r 
2  
r 


r

2  V  
  0;     r 

2  

r  
 A;              

r  
             

Boundary conditions: r = a, V = 0 and r = b, V = Vb 

 1   1 


 a  r


V  V               


b 
 1

 1 

    
           

E  V   
V 

a 

r   
r
 

E  
  Vbar  

 

 
 
 
 

 
roVbar  

 1    1   2  
, D  1     1 

                                      
 a    b                   a    b 
























 

Fig. P2.72 


roVbsb 
= ; 
 1  1 2 

        
           

2
Q   sdS;   dS  r sin d d



2-64 
 

b       1   1 







C      



o   
                                                                 19 

pF 





 



  V         30o                                  2

Q         r    o   b       b
2 


2

sin d d

     b      0                         0 

 a   b 
12 1.73x10 V

b 
.

C  
 Qb  

 1.7 pF;   RC  
 

; R  
 1  

 2.3k

Vb                                                 






C 

 

P2.73: An inhomogeneous dielectric fills a parallel plate capacitor of surface area 50. 

cm
2  

and thickness 1.0 cm. You are given r  = 3(1 + z), where z is measured from the 

bottom plate in cm. Determine the capacitance. 

 
Place +Q at z = d and –Q at z = 0. 

  
 Q 

,   D   
Q 

a ,   E   
  Q    

a 
s        

S                S   
z                         

  S 
z

d                       d     
-Q r    o 

Q 
d  

dz

Vdo   EidL   
az idzaz    S  

S

0                           0     r   o                                     o      0 r 

evaluating the integral:


d  dz 


d
 
dz        1               1       1 

   ln 1 z     ln 2 cm

0 
r       0 31 z  3              

0      
3 

Q     3 S    38.854x10
12 

F m50cm
2     m    

2
 

                                                                                                                                                                                                                                                                                                                                                                                                                    
          

Vdo          ln 2                   ln 2 cm          100cm 




P2.74: Given E = 5xyax + 3zaz V/m, find the electrostatic potential energy stored in a 

volume defined by 0 ≤ x ≤ 2 m, 0 ≤ y ≤ 1 m, and 0 ≤ z ≤ 1 m. Assume  = o.

W  
1 


                                                                    


EiEdv  
1 
  25x

2 
y

2
dxdydz  9z

2
dxdydz

E        
2 

o  2  
o                             

    
2              1               1                 2        1        1              




W   
 1 
  25   x

2
dx y

2
dy dz  9     dx dy z

2
dz  125 pJ

 
E        

2 
          o

 






                      
0              0               0                 0        0        0             
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P2.75: Suppose a coaxial capacitor with inner radius 1.0 cm, outer radius 2.0 cm and length 

1.0 m is constructed with 2 different dielectrics. When oriented along the z-axis, 

r for 0 ≤  ≤ 180 is 9.0, and for 180 ≤  ≤ 360 is 4.0.  (a)  Calculate  the capacitance. 

(b) If 9.0 V is applied across the conductors, determine the electrostatic potential energy 
stored in each dielectric for this capacitor. 

 
(a) a coaxial line,
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C  
2Lro   

lnb
a 

But for only half the line, 

C  
Lro  

lnb
a 

So 

C  
 Lr1o    361pF 

lnb
a 

1 

and 

C  
 Lr 2o     161pF 

ln b
a 

2

So 

CTOT  C1  C2  522 pF 
Fig. P2.75

(b) W    
 1 

C V 
2  
 14.6nJ ;   W     

1 
C V 

2 
 6.5nJ 

E1       
2   

1                                              E 2        
2   

2
 


