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Solutions for Chapter 2 Problems

1. Vectors in the Cartesian Coordinate System

P2.1: Given P(4,2,1) and Apg=2ay +4ay +6a,, find the point Q.

Apg=2ayt+4a,+6a,= (Qx-Pyax + (Qy'Py)ay+(Qz‘Pz)az

Qx-Px=Qx-4=2; Qx=6
Qy-Py=Qy-2=4; Qy=6
QP=Q-1=6; Q=7
Ans: Q(6,6,7)

P2.2: Given the points P(4,1,0)m and Q(1,3,0)m, fill in the table and make a sketch of
the vectors found in (a) through (f).

Vector Mag Unit Vector
a. Find the vector A Aop=4ax+1ay 4.12 Aop =0.97 ay + 0.24 ay
from the origin to P
b. Find the vector B Bog=1ax+3ay 3.16 aog =0.32ax+0.95 ay
from the origin to Q
c. Find the vector C Cro=-3ax+2ay 3.61 apg =-0.83 ax + 0.55 ay
fromPto Q
d.FindA+B A+B=5a,+4ay 6.4 a=0.78 ay + 0.62 ay
e. FindC-A C-A=-Tax+1lay 7.07 a=-0.99 a, +0.14 ay
f.FindB-A B-A=-83ay+2ay 3.6 a=-0.83 ay +0.55 ay
a. Aop = (4-0)a, + (1-0)a, + (0-0)a, =4 a, + 1 a,.
| Agh=4* +1° = \/Jl =4.12 — -
Q

aop 4 a, + L a,=0.97a, +0.24a

NN y
(see Figure P2.2ab) X
b. Bog =(1-0)ay + Céz)ay +(0-0)a, =1 a, + 3 a,.
‘ Bo$: 12+ = 10=3.16 Fig. P2.2ab
Aoo= = A+ = a,=0.32a, +0.95a

V10 V1o ’
(see Figure P2.2ab) — >y

Q
C. Cpg = (1-4)ax + (3-1)ay + (0-0)a, = -3 ax + 2 ay. C
| Cod=v3"+ =413=361 ih
P

-3 2
a.— ——a+ —<=—a,=-0.83a, +055
T 13 13 %

X

Fig. P2.2cd




(see Figure P2.2cd)
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d. A+ B = (4+1)a, + (1+3)a, + (0-0)a, =5a, + 4 a,.

|A+B|=+5"+4°= 41=64
I

a=—"a-+ iay: 0.78a, +0.62a,

Jar a1

(see Figure P2.2cd)

e.C-A=(-3-4)a, + (2-1)a, + (0-0)a, = -7 a, + 1 a.

IC-A|=N7*+1"= 50=7.07 It
\/_ 4

X
=L 1 FigP2.2ef
a=" 8+ ——a=-0.99%, +0.14
J50" /50 ""y
(see Figure P2.2ef)

f.B-A=(1-4)ax+ (3-1)a, + (0-0)a, =-3a, + 2 a,.

B-A|=y3+ = 13=36

\/_
a ia+ 2 0.83

= < —a,=-0.83a, + 0.55a

J13% 1377 Y

(see Figure P2.2ef)

P2.3: MATLAB: Write a program that will find the vector between a pair of arbitrary
points in the Cartesian Coordinate System.

A program or function for this task is really overkill, as it is so easy to perform the task.
Enter points P and Q (for example, P=[1 2 3]; Q=[6 5 4]). Then, the vector from P toQ is
simply given by Q-P.

As a function we could have:

function PQ=vector (P, Q)
% Given a pair of Cartesian points

P and Q, the program determines the
vector from P to Q.

PO=0Q-P;

Running this function we have:
>>P=[12 3];

>> Q=[6 5 4];

>> PQ=vector(P,Q)

PQ =
5 3 1

Alternatively, we could simply perform the math in the command line window:



>> PQ=Q-P
PQ =

5 3 1
>>

2. Coulomb’s Law, Electric Field Intensity, and Field Lines

P2.4: Suppose Q1(0.0, -3.0m, 0.0) = 4.0nC, Q2(0.0, 3.0m, 0.0) = 4.0nC, and Q3(4.0m,
0.0, 0.0) = 1.0nC. (a) Find the total force acting on the charge Qs. (b) Repeat the problem
after changing the charge of Q; to —4.0nC. (c) Find the electric field intensity for parts (a)
and (b).

(@)F =_Q.Q, a,where Riz=4ax+3ay=,Ri3=5m, a;3=08ay+0.6ay.
B 4me RE P
)

_ _(4x109c)(1x109(:)(4ax+3a% BV NM

137
47 (10°F/36nm)(sm)  C VC

=1.15x10"° g + 0.86x10° g N.

Similarly, F,, = 1.15x10%a, — , N, so [Fro=2.3a,nN
0.86x10°a

(b) with Q2 = -4 nC, F13 is unchanged but F,, = —1.15x10‘9aX + 0.86x10‘9ay N, so

Fror=1.7a,nN |

F  (23x10°aN)vc Vv
(c) E, =tor— ) _ =23a _. e
Q,  (1x10t) Nm “m

\
Likewise, E, = 1-7aym—-

Fig. P2.4

P2.5: Find the force exerted by Q1(3.0m, 3.0m, 3.0m) = 1.0 uC on Q(6.0m, 9.0m, 3.0m)
=10. nC.

__QQ, a, where
4ng R
R1, = (6-3)ax + (9-3)ay + (3-3)a, =3 a,+6a,m

NEE R

12



45m,a,, =

2-5
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1x10 €)(10x10 €) 3a+46a EV NM
FH:—( X )3agba BV M Fn=-089,+18a N |

4r (10_9 Ifé61tm)(45mz) Va5 cve

z=3

I s (U R S (1 |

U T W L

Fig. P2.5

P2.6: Suppose 10.0 nC point charges are located on the corners of a square of side 10.0 cm.
Locating the square in the x-y plane (at z = 0.00) with one corner at the origin and one
corner at P(10.0, 10.0, 0.00) cm, find the total force acting at pointP.

We arbitrarily label the charges as shown in Figure P2.6. Then
Rop=0.1a4,+0.1 ay

Rop=0.141m

aop = 0.707 ax + 0.707 ay.

- _ (10nC)(10nC)(0.707)(a, +a,) 0 s

T (an)(10°F 0.141m)” [

(4n)(10°°F 357y (0.242m)
Rop
:32(ax+ay)pN/ Ty p Fp
(10nC )(10nC )a, v S Fop
Frp = 5 =90a, uN X sp
(4r )(10 %&tm)(o-lm)z Fig. P2.6

o= (10nC)(10nC )ax =90a N

SP

(4m)(20°°F 35, (0.2’

and then the total (adjusting to 2 significant digits) is:
Fror =120(a, +a, ) pN.
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P2.7: 1.00 nC point charges are located at (0.00, -2.00, 0.00)m, (0.00, 2.00, 0.00)m, (0.00,
0.00, -2.00)m and (0.00, 0.00, +2.00)m. Find the total force acting on a 1.00 nC charge
located at (2.00, 0.00, 0.00)m.

Figure P2.7a shows the situation, but we need only find the x-directed force from one of
the charges on Q; (Figure P2.7b) and multiply this result by 4. Because of the problem’s
symmetry, the rest of the components cancel.

2a,+2a

F:QQt a,R=2a +2a,R=\/§m,a _fatca,

ut 4ne R i i \/§
9 9% 12a,+2a,
Q}xlo C)_(lxlO d 796x)/0/ #(a+ a) N
T [0 (6 ]

The force from all charges is then
Fror = (4)(796x10%2 )nN =3.23nN.

Z
A
4Q
Qi : —e >y
Q
Q" 1 !
1Q
.
Fig. P2.7a Fig. P2.7b

P2.8: A 20.0 nC point charge exists at P(0.00,0.00,-3.00m). Where must a 10.0 nC
charge be located such that the total field is zero at the origin?
For zero field at the origin, we must cancel the +a; directed field from Qp by placing Q at
the point Q(0,0,z) (see Figure P2. 8) Then we have Ey = Ep + Eqg = 0.

Q (20x10°CYa,  Fv v

So,E, =P 4 = =204,

4meg,R? R / 2 C




4 (10‘9

F36nm)(3m)
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and
Q
E,=——_-a
" 4ne R R
(lelO’QC)(—a ) -90 X
— z = a Q
2z
z ,
At (10_9 EéBTrm)(Z(m))z ‘
So then
90 -
20az _Z—z az = O, 1
% Pl Q
=", 7_212. X
20 Fig. P2.8

Thus, Q(0,0,2.12m).

3. The Spherical Coordinate System

P2.9: Convert the following points from Cartesian to Spherical coordinates:
a. P(6.0, 2.0, 6.0)
b. P(0.0, -4.0, 3.0)
c. P(-5.0,-1.0, -4.0)

a) r= _87.0=cos’ OV oar g=tant" 2 180
287F O

(b) r= =50=cos™ =53°,p=tan” =-90°

0P+ 474 32 Uel] 040
Y400 0 Hap
= =6.50=cos™ =130°,p =tan™ =190°

(C) r 1/524_124_ 42 D—&5—D (I) D:S-D

i 0 0 0

P2.10: Convert the following points from Spherical to Cartesian coordinates:
a. P(3.0, 30.°, 45.°)
b. P(5.0, n/4, 3n/2)
c. P(10., 135°, 180°)

a

(x): r sin® cos¢ = 3sin 30° cos 45° = 1.06
y =rsin0 sin ¢ = 3sin 30° sin 45° =1.06
z=rcosO = 3cos 30° =2.6

so P(1.1,1.1, 2.6).

(b)
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X = r sin0 cos¢ = 5sin 45° cos 270° =0

y =rsin0 sin ¢ = 5sin 45° sin 270° = -3.5
z=rc0s0 =5 cos 45° = 3.5

so P(0, 3.5, 3.5).

(©)
X = r sin0 cos¢ = 10 sin135° cos180° = 7.1

y =rsin0 sin ¢ = 10sin135° sin180° = 0
z=rc0s0 =10 cos135°=-7.1
so P(-7.1,0,-7.1).

P2.11: Given a volume defined by 1.0m <r <3.0m, 0 <6< 0° 90° < ¢ < 90° (a)

sketch the volume, (b) perform the integration to find the volume, and (c) perform the
necessary integrations to find the total surface area.

@)

X
Fig. P2.11

(b)
3 90° n/2 13n ,

V= ”_[rz sin@drddd¢ =Ir2dr J sin6do J dp="3"" 13.6m .

So volume V = 14 m®,

(c) There are 5 surfaces: an inner, an outer, and 3 identical sides.

2

3 Tl:ﬁ
Sside: IJ rdrd(l) = err J. d(l) =27 m2; Ssides =6mm

1 0
. 2 o ,
Saser = |[r25in0d0dY =37 [ sin0d0 [ dp="p m
- 0 0
S ="m%S  —1lxm?=34.6m’
Inner 2 TOT

S0 Sypta = 35 M.
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4. Line Charges and the Cylindrical Coordinate System

P2.12: Convert the following points from Cartesian to cylindrical coordinates:
a. P(0.0, 4.0, 3.0)
b. P(-2.0, 3.0, 2.0)
c. P(4.0,-3.0, -4.0)

4047 0 0
@) p=07+4 =4p=tan” =90°,z=3, s0 P(4.0, 90°, 3.0)

Jot
131
b = =3.6,p =tan™ =124°,z=2,s0 P(3.6,120°, 2.0
(b) p \/m ¢ S ( )
032l
©) p= =50 =tan =-37°,z2=-4, 50 P(5.0, -37°, —4.0)
J&+ 3 0,0
(] 4 [

P2.13: Convert the following points from cylindrical to Cartesian coordinates:
a. P(2.83, 45.0°, 2.00)
b. P(6.00, 120.°, -3.00)
c. P(10.0,-90.0°, 6.00)

(a)

X = p cosd = 2.83cos 45° = 2.00

y = p sin ¢ = 2.83sin 45° = 2.00
z=2=2.00

so P(2.00, 2.00, 2.00).

(b)

X = p cosd = 6.00 cos120° = -3.00
y = psin ¢ =6.00 sin120° = 5.20

z2=2=-3.00
so P(-3.00, 5.20, —3.00).
(©

X = p cosd = 10.0 cos(-90.0° ) =0

y = psin ¢ = 10.0 sin(-90.0° ) = -10.0
z=2=6.00

s0 P(0,~10.0,6.00).

P2.14: A 20.0 cm long section of copper pipe has a 1.00 cm thick wall and outer
diameter of 6.00 cm.
a. Sketch the pipe conveniently overlaying the cylindrical coordinate system, lining
up the length direction with the z-axis
b. Determine the total surface area (this could actually be useful if, say, you needed
to do an electroplating step on this piece of pipe)
c. Determine the weight of the pipe given the density of copper is 8.96 g/cm®



2-12

(a) See Figure P2.14

(b) The top area, Siop, is equal to the bottom area. We must also find the inner area, Sinner,

and the outer area, Souter.
3

2n
Sup=[[ pdpd = [ pdp [ dp=5m cm*
Suton =S

bottom — top *

2n 20
SOuter = II pdd)dZ = 3] d(l) I dz =12071t sz
0 0
27 20

Sinner == _U pd(I)dZ = ZJ. d(I)J. dZ = 807[ sz
0 0

The total area, then, is 210w cm?, or Syt = 660 cm?.

(c) Determining the weight of the pipe requires the volume:
V={[[ pdpdddz
3 20

2n

= _[ pd pé do l. dz =100% cm®, (é:g‘?zcmficm

q 3
M = 8965:1(100mem’)
U [
- 2815g.
S0 Myipe = 2820g.

Fig. P2.14

P2.15: A line charge with charge density 2.00 nC/m exists at y = -2.00 m, x = 0.00. (a) A
charge Q = 8.00 nC exists somewhere along the y-axis. Where must you locate Q so that
the total electric field is zero at the origin? (b) Suppose instead of the 8.00 nC charge of
part (a) that you locate a charge Q at (0.00, 6.00m, 0.00). What value of Q will result in a
total electric field intensity of zero at the origin?

(a) The contributions to E from the line and point charge must cancel, or E = E, + E,.
Forthe line: E =P —a= ___(2nC/m) a —18Y 4
L y— y

2 p _ m
g P o (10 9%6nm)(2m)
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and for the point charge, where the point is located a distance y along the y-axis, we

ave: E,= 2 ( By (8nC) (-2,
have: E, L(_ )= (-2,)

-9
i (10 F46mm

2
Ame,y )y2 ) yz( ay)

Therefore:
Z
%: 18, ory = 12 _om,
y 18 pL
S0|Q(0,2.0m,0) Q
= 5y
%(_J
(b) y
J— _ 18 X:
2 = 1
4ne, (6)
Q= £1—8)—($) =72nC.
9
Fig. P2.15

P2.16: You are given two z-directed line charges of charge density +1 nC/matx =0,y =
-1.0 m, and charge density —1.0 nC/m at x =0, y = 1.0 m. Find E at P(1.0m,0,0).

The situation is represented by Figure P2.16a. A better 2-dimensional view in Figure
P2.16b is useful for solving the problem.

P Hax+ay [
E, = a,,and pa,= {— O

2me V2
0 j j
(1x10_9C) (a +a )FV \Y \Y
E,= © O 9(pea LL,’E‘H%/EZFQ(_a +apu)'“‘““‘
X L1 i3 ¥
(10 gy J(am) 2 C ANy T

So ETOT =18 dy Vv/im.




Fig. P2.16a Fig. P2.16b
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P2.17: MATLAB: Suppose you have a segment of line charge of length 2L centered on
the z-axis and having a charge distribution p_. Compare the electric field intensity at a
point on the y-axis a distance d from the origin with the electric field at that point assuming
the line charge is of infinite length. The ratio of E for the segment to E for the infinite line
is to be plotted versus the ratio L/d using MATLAB.

This is similar to MATLAB 2.3. We have for the ideal case

P

= a. pL

B ~2mep P~ 2Zmed G-
0 [o]

For the actual 2L case, we have an integration to perform (Equation (2.35) with different
limits):

+L +L
QLQa : dz QdLa lyf z /
Eactual — I E——— R
Ame, —L(p2+22)3/2 e < A +d?f |
o
E _ pLay ] L U

actual

2need @N |_2 + d2 N
Now we manipulate these expressions to get the following ratio:
L
Ear - 7d
Eigea [ K/
1+ ( d

2
In the program, thg actual to ideal field ratio is termed “Eratio” and the charged line half-
length L ratioed to the distance d is termed “Lod”.

M-File: MLP0217

o\°

o

This program is similar to ML0203.

It compares the E-field from a finite length
segment of charge (from -L to +L on the z-axis)

to the E-field from an infinite length line

of charge. The ratio (E from segment to E from
infinite length line) is plotted versus the ratio
Lod=L/d, where d is the distance along the y axis.

o o\

o® o® o© o o oo

o°

Wentworth, 12/19/02

o\°

Variables:
Lod the ratio L/d
Eratio ratio of E from segment to E from line

o° o°

o\°

clc %$clears the command window
clear $clears variables
% Initialize Lod array and calculate Eratio

Lod=0.1:0.01:100;
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Eratio=Lod./ (sqgrt (1+Lod."2));
% Plot Eratio versus Lod
semilogx (Lod,Eratio)

grid on

xlabel ('Lod=L/4d")

ylabel ('E ratio: segment to line')

Executing the program gives Figure P2.17.

Lod=L/d

Fig. P2.17

So we see that the field from a line segment of charge appears equivalent to the field
from an infinite length line if the test point is close to the line.

P2.18: A segment of line charge p. =10 nC/m exists on the y-axis from the originto y =
+3.0 m. Determine E at the point (3.0, 0, 0)m.

It is clear from a sketch of the problem in Figure P2.18a that the resultant field will be
directed in the x-y plane. The situation is redrawn in a temporary coordinate system in
Figure P2.18b.

We have from Eqn (2.34) E= pdz pa,-78, —Ea+Ea.

4mte, (pz+zz)% PP
For E,, we have:
pp. ppl oz
— L = .

£ =]
4dTe, (p2+22)3/2 4n80'g5 ,/22+p2foo
0

With p = 3, we then have E, = 21.2 V/m.
For E;:



2-17

VA
Z
R
>y
E, p
X ;\ > P
E,
Fig. P2.18a Fig. P2.18b
—p zdz A iy,
e =Po_ " o] V-89
' 4me (p2+22)2 Ame - p?+ 72 - m

° 3/ ° : v szo

Thus we have Eror = 21 a,— 8.8 a, V/m.
Converting back to the original coordinates, we have Etor = 21 ax— 8.8 ay V/m.

5. Surface and Volume Charge
P2.19: In free space, there is a point charge Q = 8.0 nC at (-2.0,0,0)m, a line charge p_ =

10 nC/m at y = -9.0m, x = Om, and a sheet charge p; = 12. nC/m® at z = -2.0m.
Determine E at the origin.

The situation is represented by Figure P2.19, and the total field is Evor = Eq + E_ + Es.
8x10 €
-0, (et}

Q 2 R -9
47e,R 10°F 2
4 36mm)(2m)

:18aV_
A (10x10° G m)a )
EL:;p_L_apz Ak y="9 Q
o o | 5T
z7=-2
v
= Zan N L%ps
P (1210 Gm? ) X
E="a = a
© o2, " 2(109F ) Z
36mtm

Fig. P2.19
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\

=679
‘m
So: Eiot = 18 ay + 20 ay + 680 a, V/m.
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P2.20: An infinitely long line charge (p. = 21 nC/m) lies along the z-axis. An infinite
area sheet charge (ps = 3 nC/m?) lies in the x-z plane at y = 10 m. Find a point on the y-
axis where the electric field intensity is zero.

We have Etor = E_ + Es.

EL = pLap _ pLay
—ZTE P —Zme'y
) 0]

(21mx10°C/m) 378n

= 9 y y
21 (10 I:3675m)y y

- _pa,_ (80 Cm )(-3) ;
- - = S
10

S

2(10—9 F )
36mtm x
=-%4dra, )
o Fig. P2.20
m—547t:0, ory="7.
y

Therefore, P(0, 7m, 0).

P2.21: Sketch the following surfaces and find the total charge on each surface given a
surface charge density of ps = 1nC/m?. Units (other than degrees) are meters.

@ —3<x<3,0<y<4,z=0

(b) 1 <r<4,180°<¢<360° 0 = /2

() 1<p<4,180°<¢p<360°2z=0

Fig. P2.21a Fig. P2.21b&c

4

3
(@) Q=[pds=p,[ dx.[ dy = 24p, = 24nC
L]



2-20

4 27 157[:
(b) Q=p.[ rdr [dp=—2-p.=24nC
1 T

4 2n

(© Q=p,[pd p [ dp=24nC

P2.22: Consider a circular disk in the x-y plane of radius 5.0 cm. Suppose the charge
density is a function of radius such that p; = 12p nC/cm? (when p is in cm). Find the
electric field intensity a point 20.0 cm above the origin on the z-axis.

From section 4 for a ring of charge of radius a,E = “QL?ha .%\low we have
2, (a% h ?)?
A[)d QQhaZ 2

pL.=psdpand dE = , where p; = Ap nC/cm . Now the total field is given

3
2¢,(ph Z)A
by the integral:

= _Aha, i _pZdp
230 (pz_'_hz)%'

This can be solved using integration by parts, where u = p, du = dp,

V= -1 , anddv=—pip—.Th|s leadsto
\/m W
AhY _a Ha+t v
E—Qg_ + InN—YFwa,.
h 0
/ [
0 < 0

Plugging in the appropriate values we arrive at E = 6.7 kV/cm a..

P2.23: Suppose a ribbon of charge with density ps exists in the y-z plane of infinite
length in the z direction and extending from —a to +a in the y direction. Find a general
expression for the electric field intensity at a point d along the x-axis.

The problem is represented by Figure P2.23a. A better representation for solving the
problem is shown in Figure P2.23b.

We have dE = — P »» Where p; = pdy. Then, since

a
21E, p

da,—vya,

pa, = =

P Jd %+ y2
the integral becomes
= psd

E_ d_ax_jﬁl.



2-21

J2mc,0>yo|2+y2 JdZ+y?
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It may be noted that the ay component will cancel by symmetry. The ay integral is found
f h ix and we h
IEoLn & e aplpﬁr}g%( and we have

*tan jdjaxl.
e, oo
= p= P dy
-a + y
ps a
-a +a Pap
¥
d
d D
). o/
X
X
FigP2.23a FigP2.23b

P2.24: Sketch the following volumes and find the total charge for each given a volume

charge density of p, = 1nC/m?®. Units (other than degrees) are meters.
(@0<x<4,0<y<50<z<6
(b) 1<r<5,0<6<60°

(©)1<p<5,0°<¢p<90°,0<z<5
p

4 5 6
@Q= j p,dv = pVJ de dyJ dz =120nC
(b) y
Q = .[ pvdV
5 60° 2m

= p\,jrzdr J sin@ de‘[ d$ = 130nC

(C) Fig. P2.24a
Q :Jpvdv
5 n2 5 ’
:pVdede¢J.dz:94nC ;
0

Fig. P2.24b
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i
2

Fig. P2.24c

P2.25: You have a cylinder of 4.00 inch diameter and 5.00 inch length (imagine a can of
tomatoes) that has a charge distribution that varies with radius as p, = (6 p) nC/in® where
pis in inches. (It may help you with the units to think of this as p, (nC/in®)= 6 (nC/in%)
p(in)). Find the total charge contained in this cylinder.

Q= pdv=

\

(6p) pdpdddz=625 24 pen dg Jﬁz = 1607 nC = 503nC

0 0 0

P2.26: MATLAB: Consider a rectangular volume with 0.00 <x <4.00 m, 0.00 <y <

5.00 m and —6.00 m < z < 0.00 with charge density p, = 40.0 nC/m?®. Find the electric
field intensity at the point P(0.00,0.00,20.0m).

o

MLP0226
calculate E from a rectangular volume of charge

o

o°

variables

xstart, xstop
ystart,ystop
zstart, zstop

o°

limits on x for vol charge (m)

o°

o\°

% xt,yt,zt test point (m)

% rhov vol charge density, nC/m"3

% Nx, Ny, Nz discretization points

% dx,dy, dz differential lengths

% do differential charge, nC

% eo free space permittivity (F/m)
% dEi differential field wvector

o® o oo

o°

dEix,dEiy,dEiz
dEjx,dEjy,dEjz
dEkx,dEky,dEkz
Etot

X,y and z components of dEi
of dE]
of dEk

total field vector, V/m
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clc
clear
% initialize variables
xstart=0;xstop=4;
ystart=0;ystop=5;
zstart=-6;zstop=0;
xt=0;yt=0;2zt=20;
rhov=40e-9;
Nx=10;Ny=10;Nz=10;
eo=8.854e-12;

dx= (xstop-xstart) /Nx;
dy=(ystop-ystart) /Ny;
dz=(zstop-zstart) /Nz;
dQ=rhov*dx*dy*dz;

for k=1:Nz
for j=1:Ny
for i=1:Nx
xv=xstart+(1i-0.5) *dx;
yv=ystart+ (j-0.5) *dy;
zv=zstart+ (k-0.5) *dz;

yt-yv zt-zv];
magR=magvector (R) ;
uvR=unitvector (R);

R=[xt-xv

dEi=(dQ/ (4*pi*eo*magR”2)) *uvR;

dEix (1) =dEi (1) ;

dEiy (i)=dEi (2) ;

dEiz (1)=dE1 (3) ;
end

dEjx (J)=sum (dEix) ;

dEjy (J)=sum(dEiy) ;

dEjz (Jj)=sum(dEiz) ;
end

dEkx (k) =sum (dEjx) ;

dEky (k) =sum (dEjy) ;

dEkz (k)=sum(dEjz) ;
end

Etotx=sum (dEkx) ;
Etoty=sum (dEky) ;
Etotz=sum (dEkz) ;
Etot=[Etotx Etoty Etotz]

Now to run the program:

Etot =
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-6.9983 -8.7104 79.7668

>>

SoE=-7.0a,-8.7ay+80.a,V/m

P2.27: MATLAB: Consider a sphere with charge density p, = 120 nC/m® centered at the
origin with a radius of 2.00 m. Now, remove the top half of the sphere, leaving a hemisphere
below the x-y plane. Find the electric field intensity at the point P(8.00m,0.00,0.00). (Hint:
see MATLAB 2.4, and consider that your answer will now have two field components.)

o\°

M-File: MLPO0227

o°

o\°

This program modifies ML0204 to find the field
at point P(8m,0,0) from a hemispherical
distribution of charge given by

rhov=120 nC/m*3 from 0 < r < 2m and

pi/2 < theta < pi.

o\°

o° o

o° o°

o\°

Wentworth, 12/23/02

o°

% Variables:

% d y axis distance to test point (m)
% a sphere radius (m)

% dav differential charge volume where
% dV=delta r*delta theta*delta phi
% eo free space permittivity (F/m)

o°

r,theta,phi spherical coordinate location of
center of a differential charge element

o

% X,V,2Z cartesian coord location of charge %
element

% R vector from charge element to P

% Rmag magnitude of R

% aR unit vector of R

o\°

dr,dtheta,dphi differential spherical elements
dEi,dEj,dEk partial field wvalues

o o\

Etot total field at P resulting from charge
clc $clears the command window
clear %$clears variables
% Initialize wvariables

e0=8.854e-12;
d=8;a=2;
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delta r=40;delta theta=72;delta phi=144;

% Perform calculation
for k=(l:delta phi)
for j=(l:delta theta)

for i=(l:delta r)
r=i*a/delta r;
theta=(pi/2)+j*pi/ (2*delta theta);
phi=k*2*pi/delta phi;
x=r*sin (theta) *cos (phi) ;
y=r*sin (theta) *sin (phi) ;
z=r*cos (theta);
R=[d-x%x,-y,-2];
Rmag=magvector (R) ;
aR=R/Rmag;
dr=a/delta r;
dtheta=pi/delta theta;
dphi=2*pi/delta phi;
dv=r"2*sin (theta) *dr*dtheta*dphi;
dQ=120e-9*dV;
dEi=dQ*aR/ (4*pi*eo*Rmag”?2) ;
dEix (i) =dEi (1) ;
dEiy (i) =dEi (2) ;
dEiz (i) =dEi (3);

end

dEJjx (J)=sum(dEix) ;

dEjy (j)=sum(dEiy) ;

dEjz (j)=sum(dEiz) ;

end

dEkx (k) =sum (dEjx) ;

dEky (k) =sum (dEjy) ;

dEkz (k) =sum (dEjz) ;
end

Etotx=sum (dEkx) ;
Etoty=sum (dEky) ;
Etotz=sum (dEkz) ;
Etot=[Etotx Etoty Etotz]
Now to run the program:

Etot =

579.4623 0.0000 56.5317

So E =580 ay + 57 a, V/m.

6. Electric Flux Density
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P2.28: Use the definition of dot product to find the three interior angles for the triangle
bounded by the points P(-3.00, -4.00, 5.00), Q(2.00, 0.00, -4.00), and R(5.00, -1.00,
0.00).

Here we use AiB =|A ||B|cosO,s.
PR=(5--3)a, +(-1-—4)a, +(0-5)a, "“45)
PR =8a,+3a,-5a,,PR|= 9.
PQ =5a,+4a,~ 9a,, PQ |- 11.0 ™
PRIPQ = (8)(5)+(3)(4) + (-5)(-9) =97 Q(2.0,-4)
=0.9]11.0 cosO

P9t 15 O b
0 =cos =27 R(5,-1,0)

o Eam)

Fig. P2.28

RQ=-3a,+la,- 4a, |RQ[= 5.1
RP =-8a,—3a,+ 5a, |RP|=9.9
RQIRP = 1 = (5.1)(9.9)c0s6,,0 = 89°

0= 180° — 27° — 89° = 64°

P2.29: GivenD =2p a, +sin ¢ a, C/m?, find the electric flux passing through the surface
defined by 2.0 <p<4.0m, 90.°< ¢ < 180° and z = 4.0 m.

¥ = EidS, dS=pd p dja,

4 b

‘P:I(Zpap +sin(|)az)ip dp doa, =.[p dp '[ singpdp=6C

2 n/2

P2.30: Suppose the electric flux density is given by D = 3r a, —cos ¢ ag + sin’0 ay C/m?.
Find the electric flux through both surfaces of a hemisphere of radius 2.00 m and 0.00° <
0<90.0°.
‘Plzj DidS, dS =r sin 0 dO da
¥ = (3ra —cosa +sin®0a )i(r’sinddodoa )
1 r 0 I r
/2 2n

= 3r3T[ sind der[ ddp =481 C
dS, = rdrdoa,
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¥,=| — cosda,irdrdda,

21
— 1% Csing =0
7ol ¢
o] o

S W=48nC

T sin% d¢

Fig. P2.30

7. Gauss’s Law and Applications
P2.31: Given a 3.00 mm radius solid wire centered on the z-axis with an evenly
distributed 2.00 coulombs of charge per meter length of wire, plot the electric flux

density D, versus radial distance from the z-axis over the range 0 < p <9mm.

2(Cm C
Foralmlength,p = ‘(ﬁd =70.7x10%, (a=3mm=.003m)

% T a2 m3

Que=9DidS = [ D, a, ip ddza, = 2np LD,,, where L is the length of the Gaussian

surface. Note that this expression for Qe is valid for both Gaussian surfaces.
GS1 (p<a):

o} 2n L
Que =] pdv = pu[ pdp [ do [ dz = pup ?mL
0

2 0 0
SO Dp:p"p LR p forp<a
2mpL 2
GS2 (p>a): )
Q =pa’nlL,D P 1 forp>a.
enc \ p 2 p

This is plotted with the following Matlab routine:
M-File: MLP0231

oo oo

o\°

Gauss's Law Problem
solid cylinder with even charge

o\°

o\°

% Variables

% rhov charge density (C/m"3)

% a radius of cylinder (m)

% rho radial distance from z-axis
% rhomm rho in mm

o°

D electric flux density (C/m"3)
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o°

N number of data points
maxrad max radius for plot (m)

o°

clc;clear;
% initialize variables
rhov=70.7e3;

a=0.003;

maxrad=.009;

N=100;

bndy=round (N*a/maxrad) ;

for i=1:bndy
rho (1) =1i*maxrad/N;
rhomm (1)=rho (1) *1000;
D(1i)=rhov*rho(1)/2;
end

for i=bndy+1:N
rho (1)=1i*maxrad/N;
rhomm (1)=rho (1) *1000;
D(i)=(rhov*a~2)/(2*rho(i));
end
plot (rhomm, D)
xlabel ('radial distance (mm) ')
ylabel ('elect. flux density (C/m"2)")
grid on
P2.32: Given a 2.00 cm radius solid wire centered on the z-axis with a charge density p,
=6p Clcm?® (when p is in cm), plot the electric flux density D, versus radial distance
from the z-axis over the range 0 < p < 8cm.

120

100

2] [o+]
o =]

N
[=]

elect. flux density (Cfmz)

20

Fig. P2.31
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Choose Gaussian surface length L, and as usual we have
Qu= 9DidS = [ D, a, ipd¢dza,=2m Lp D, valid for both Gaussian surfaces.
In GS1 (p < @): Que = [p,dv = [6p *d pdddz =4nLp®,

3 2

4nlp
soD,= =2p forp<a.
2rnlp
3 28.3

For GS2 (p>a): Q.=4nla, D,= — forp=a.
p

This is plotted for the problem values in the following Matlab routine.

o\°

M-File: MLP0232

o\°

o\°

Gauss's Law Problem
solid cylinder with radially-dependent charge

o\°

o\°

% Variables

% a radius of cylinder (cm)

% rho radial distance from z-axis

% D electric flux density (C/cm”3)
% N number of data points

o\°

maxrad max radius for plot (cm)
clc;clear;

% initialize variables
a=2;

maxrad=8; N=100;
bndy=round (N*a/maxrad) ;

for i=1:bndy
rho (i)=i*maxrad/N;
D(i)=2*rho (i) "2;
end

for i=bndy+1:N
rho (i)=i*maxrad/N;
D(i)=(2*a”3)/rho (i) ;

end

plot (rho, D)

xlabel ('radial distance (cm) ')

ylabel ('elect. flux density (C/cm”2)"'")

grid on
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4]

elect. flux density (Clcmz)
w E-N [4) ] ()] =~

3¢

radial distance (cm)

Fig. P2.32

P2.33: A cylindrical pipe with a 1.00 cm wall thickness and an inner radius of 4.00 cm is
centered on the z-axis and has an evenly distributed 3.00 C of charge per meter length of

pipe. Plot D, as a function of radial distance from the z-axis over the range 0 < p < 10
cm.

Que= 9 DidS = [ D, a ipd¢dza,= 27 hp D, ; this is true for all the Gaussian surfaces.

GS1 (p < a): since Qenc = 0, D, = 0.
GS2(a< p<h):
3h

3
pv= = 2 .2
b% —
[[[pdpdpdz m(b*-a%) -
Que=[ putlv (=35
3 p 2n h
=—n(b2_a2)jpdpjd¢jdz
a 0 0 h-<
2 2
o (P72)
(b*-2?) \
SO, u
Fig. P2.33a
3h(p2—a2) 3 (pz—az)
D,= = fora<p<h.

2nhp (b -a2) ™ (b?-a?)
GS3(p > b):
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Qenc =30, D,= ﬁp forp>b.

A plot with the appropriate values is generated by the following Matlab routine:

o°

M-File: MLP0233
Gauss's Law Problem
cylindrical pipe with even charge distribution

o° o

o°

% Variables

% a inner radius of pipe (m)

% b outer radius of pipe (m)

% rho radial distance from z-axis (m)
% rhocm radial distance in cm

% D electric flux density (C/cm”3)
% N number of data points

maxrad max radius for plot (m)
clc;clear;

% initialize wvariables
a=.04;b=.05;maxrad=0.10;N=100;
bndya=round (N*a/maxrad) ;
bndyb=round (N*b/maxrad) ;

for i=1:bndya
rho (i) =i*maxrad/N;
rhocm (i) =rho (i) *100;
D(i)=0;

end

for i=bndya+l:bndyb

rho (i)=i*maxrad/N;

rhocm (i) =rho (i) *100;

D(i)=(3/(2*pi*rho(i)))* ((rho(i)"2-a"2)/(b"2-a"2));
end

for i=bndyb+1:N
rho (i1)=i*maxrad/N;
rhocm (i) =rho (i) *100;
D(i)=3/(2*pi*rho(i));
end

plot (rhocm, D)

xlabel ('radial distance (cm) ')

ylabel ('elect. flux density (C/m"2)"')
grid on
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-
o

elect. flux density (C.'r'r12)

o = N W A 0 ®» ~N © ©
T
i

o

radial distance {cm)

Fig. P2.33b

P2.34: An infinitesimally thin metallic cylindrical shell of radius 4.00 cm is centered on the
z-axis and has an evenly distributed charge of 100. nC per meter length of shell. (a)
Determine the value of the surface charge density on the conductive shell and (b) plot D,

as a function of radial distance from the z-axis over the range 0 < p < 12 cm.
p=9_ 100nC 100nC__ _g39gNC

S

S [ pdgdz " (oam)2n)(1m)  m?

For all Gaussian surfaces,
of height h and radius p, we have: i X
N

Qu= 9JDidS, where dS = pdédza,,
5. Qene=21phD,, .

GS1(p<a):Qenc=0s0D,=0 >100nC/m length
GS2 (p>a):

Que=[ p.dS = p, [ pddz = 2mahp,

D=p 2 for p>a. U
P S
P
% M-File: MLP0234 i
S Fig. P2.34a
% Gauss's Law Problem
% cylindrical shell of charge
% Variables
% a radius of cylinder (m)
% Qs surface charge density (nC/m"2)
% rho radial distance from z-axis (m)
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% rhocm radial distance in cm

% D electric flux density (nC/cm”3)
% N number of data points

3 maxrad max radius for plot (cm)

clc;clear;

% initialize variables
a=.04;0s=398;maxrad=0.12;N=100;
bndy=round (N*a/maxrad) ;

for i=1:bndy
rho (1)=1i*maxrad/N;
rhocm(i)=rho (i) *100;
D(1)=0;

end

for i=bndy+1:N
rho (i)=i*maxrad/N;
rhocm(i)=rho (i) *100;
D(1)=Qs*a/rho (1) ;
end

plot (rhocm, D)

xlabel ('radial distance (cm) ')

ylabel ('elect. flux density (nC/m"2)")
grid on

400

3O freememees B ERE ;

300 froeemeeneee e ;

)
o
=

)
=
=

________________________

;)
=

________________________

elect. flux density (nC/rd)

=
=

B0 freeeeees s S .

Fig. P2.34b
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P2.35: A spherical charge density is given by p, = p, r/afor0 <r<a,and p,=0forr >
a. Derive equations for the electric flux density for all r.

Q = DidS= pair2sinfdddpa =4nr2D. Thisisvalid for each Gaussian

enc ﬂ. J‘ r.r r r

surface. on .

P, Tpr

o]

GSL(r<a): Q,, :jpvdv=jfr d [sin0d0 [ dp="
0 0 0

SoD _ ﬁcpr 2 forr < a.
r a47tr 4a 3
3 pa
GS2(r>a):Q =mpa, p = o forr > a.
enc [o] r 4r

P2.36: A thick-walled spherical shell, with inner radius 2.00 cm and outer radius 4.00
cm, has an evenly distributed 12.0 nC charge. Plot D, as a function of radial distance
from the origin over the range 0 <r < 10cm.

Here we’ll let a = inner radius and b = outer radius. Then
= cj”DidS = j Drarir2 sinfdOdpa =4mr zq ; This is true for each Gaussian surface.

The volume contammg charge is

V= jrzdrjsmede I é(l)_ n(b3 -a )
3Q

Q:
v 4n(o®-a’ )
Now we can evaluate Q.. for each Gaussian surface.

GSl(r<a =0s0oD,=0.
882 (S Pg PP B Ak p "r2dresindde 7 dg = plan(rP-a*).

Sop, =

S ) N N

a 0 0

Inserting our value for p,, we find
3

Q (r*-2a°)
O e (52

GS3 (r>b): Que =Q, D,= —2 forr >b,
artr

fora<r <bh.

This is plotted for appropriate values using the following Matlab routine:

o\°

M-File: MLP0236
Gauss's Law Problem
thick spherical shell with even charge

o® o o°

o\°

Variables
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% a inner radius of sphere (m)

% b outer radius of sphere (m)

% r radial distance from origin (m)
% rcm radial distance in cm

% D electric flux density (nC/cm”"3)
% N number of data points

3 maxr max radius for plot (m)

% Q charge (nC)

clc;clear;

% initialize variables
a=.02;b=.04;
Q:12; 600
maxrad=0.10;
500
N=100; —
bndya=round (N*a/maxrad) ; §w0
bndyb=round (N*b/maxrad) ; Emo
for i=1:bndya imo
r(i)=1i*maxrad/N; s
rem(i)=r (i) *100; 100
D(1)=0; 0
end ° ? rad?al distance (2 m) ? s
Fig. P2.36
for i=bndya+l:bndyb

r(i)=i*maxrad/N;
rcm(i)=r (i) *100;

D(i)=(Q/ (4*pi*r(i)"2))*(r(i)"3-a"3)/ (b"3-a"3);
end

for i=bndyb+1:N
r(i)=i*maxrad/N;
rcm(i)=r (i) *100;
D(1)=0Q/ (4*pi*r(i)"2);
end

plot (rcm, D)

xlabel ('radial distance (cm) ')

ylabel ('elect. flux density (nC/m"2)")
grid on

P2.37: Given a coaxial cable with solid inner conductor of radius a, an outer conductor
that goes from radius b to ¢, (so ¢ > b > a), a charge +Q that is evenly distributed
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throughout a meter length of the inner conductor and a charge —Q that is evenly
distributed throughout a meter length of the outer conductor, derive equations for the

electric flux density for all p. You may orient the cable in any way you wish.

We conveniently center the cable on the z-axis. Then, for a Gaussian surface of length L,
Quc= <1.DidS =2np LD,,; valid for all Gaussian surfaces.

Q
GS1: P — .
(p<a): p, (im)(rat)
lejpvdepvjpded¢jdz:gzlip%
QLp2 OQ 0 0

Dp:a2 27tpL:27ta2p forp=<a

GS2(a<p<bh) Q,=QL; D,= zg:)_Lz%p fora<p <bh.

GS3(b<p<c)Q, = Q+Ipvodv, where p,, =

-Q
(Am)m (c®-b?)
-Q ° oL (Cz—pz)
Q; =Q+mipdpj;d¢_£dz =Q m

soD= ( forb<p<c.

2 2
p an (Cz_bz*}
GS4 (p>c¢): Qenc=0,D, = 0.

8. Divergence and the Point Form of Gauss’s Law
P2.38: Determine the charge density at the point P(3.0m,4.0m,0.0) if the electric flux
density is given as D = xyz a, C/m?.

vip - 0. _ 90%2)

0z 0z
pv(3,4,0)=(3)(4)=12 C/m°,

=xy=p.
Vv

P2.39: Given D = 3a, +2xyay +8x’y*a, C/m? (a) determine the charge density at the
point P(1,1,1). Find the total flux through the surface of a cube with 0.0 <x <2.0m, 0.0
<y <2.0m and 0.0 <z <2.0m by evaluating (b) the left side of the divergence theorem
and (c) the right side of the divergence theorem.
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. 0 C
oy m

(b) ﬂ.DIdS - IVIDdV :t?[p :(_)tf';m—:;fjri;ﬂ[o:t_b'!ck—i_ '[
2

2
I = J.8x2 y*a idxdya =8 xzde‘ y3dy = 85.3C
0

top

f = ISXZ y’a,i(—dxdya, ) =—85.3C

bottom

| =[2xy],,a,i(-dxdza, ) =0

left

_[ =[2xy|,., a,idxdza, =16C

right

[ = [ 3a,idydza, =12C

front

[ - [3a,i(~dydza, ) =-12C

back

».Que = 9YDIdS = 16C.

0 2 2 2

(c) ViD= ay{i—ZXY) =2 [viDdv = 21 xde dyJ dz = 16C.

P2.40: Suppose D = 6pcosd a, C/m?. (a) Determine the charge density at the point (3m,
90°, -2m). Find the total flux through the surface of a quartered-cylinder defined by 0 <
p<4m, 0 < <90° and -4m <z <0 by evaluating (b) the left side of the divergence
theorem and (c) the right side of the divergence theorem.

_ 1 6D¢ =l@£§m1 —= 6 sin ¢.
cylinder p ad) p ad)
C

(8) (ViD)

p, (390, :—6m_3.

0 ofpids= [ +] +[+ [+ [ |

$=0" $=90° top bottom outside
note that the top, bottom and outside integrals yield zero since there is no component of
D in the these dS directions.
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:I6pcos¢|¢203 i(~dpdza, ) =-192C

<

o=

.[ = IGP COS¢|¢: i i(d pdza¢) -0

$=90°

So, ojDidS — _192C.

(©)(c)
VIiD =-6sin¢, dv=pdpdddz

90° 4 0

[viDdv =—6[ sin q)dq)oj od 5] dz =-192C.

P2.41: Suppose D = r’sinf a, + sinBcosd ay C/m?. (a) Determine the charge density at
the point (1.0m, 45°, 90°). Find the total flux through the surface of a volume defined by
0.0<r<2.0m,0.0°< 6< 90.°,and 0.0 < ¢ < 180° by evaluating (b) the left side of
the divergence theorem and (c) the right side of the divergence theorem.

The volume is that of a quartered-sphere, as indicated in Figure P2.41.

@ 5 D

VlD-— (r’D )+A 4r sin@ — J-p,
r? or " rsin® o¢ r
(o] _ C

p, 45 ,903_1.83#

b) 9|DidS = d[ J , notethat | =0 since D,=0.
( )ﬁ I $=180° €'=00° F=2 '[ 0

0=90"

[ = [sin6 C°5¢|¢:os a,i(-rdrd0a, ) =-2C
b=

j = jsine COS | _,qy-8,irdrdd a,= —2C

$=180°

r 2 sina ir? sind do dga = r* fsinz 0 de:dd =8r Tv(l— cos 20 ) dO =4n “C

1 ey

0 0 0

Summing these terms we have Q = 4(n® — 1)C = 35.5C.

©)
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ViDdv = ¢ 4r sind — S 2 Gin drgo do
| | 0
U a

2 n/2 n 2 n/2 n

- 4t[ r3drl sin? 0 deo_[dd) —Ojrdroj sinf do [sin ¢do = 4n2 4= 35.5C.

X
Fig. P2.41

9. Electric Potential

P2.42: A sheet of charge density ps = 100 nC/m?® occupies the x-z plane at y = 0. (a)
Find the work required to move a 2.0 nC charge from P(-5.0m, 10.m, 2.0m) to M(2.0m,
3.0m, 0.0). (b)Find Vup.

M

@ Ww=-Q J: EidL; so we need E for the sheet charge.

100x107°C FV v
E:—Spa _ ( ) =5.65x10° a
2e, " 2(8.854x10?Fm) C ’ m’
—a
/

Notice that we are only concs/rnedmwith nDu?]vgment in the y-direction. We then have:

y=3
W=-2x10"°C [ E5.65x103_ a idya. =79
y
y-10L] m oCvn
o)V _W_(/Ou)CV  -395kV; soV =40kV.
" Q (2x0°c) Y e

P2.43: A surface is defined by the function 2x + 4y® —In z = 12. Use the gradient
equation to find a unit vector normal to the plane at the point (3.00m,2.00m,1.00m).
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Let F:2x+4y2— Inz =12, then

VF 1

*|VF| ” Yozt
At (3,2,1),

VF=2a,+16a,~a, VF £ V2’ +16°+1° = 16.16,

a,=0.124a,+ 0.990a ,— 0.062a,

P2.44: For the following potential distributions, use the gradient equation to find E.
(a) V = x+yz (V)
(b) V = p’sind(V)
(c) V =rsin@ cos¢ (V).

@E=-VW=-a-2yza-ya

0E=-wW-—Ya 1ov o “=—2psinéa - pcospa
Dﬁﬁ T pédd +‘(‘>TaZD o 0
0 U
(c)
E-w=—Ya 1ov 1 v "—_sindcosta —cosd cospa  sinda
g_a?p+ré@a9+r_smgé¢<amj o o+ b

P2.45: A 100 nC point charge is located at the origin. (a) Determine the potential difference
Vga between the point A(0.0,0.0,-6.0)m and point B(0.0,2.0,0.0)m. (b) How much work
would be done to move a 1.0 nC charge from point A to point B against the electric field
generated by the 100 nC point charge?

A
(8) Veu = [ EidL.
A

The potential difference is only a function of radial distance from the origin. Letting ry =

6m and 1, = 2m, we then have 10

V. = — idra. = - 300V .
o jmﬁ Tame g
: ] J
()W =QV =(10°C)(300v) " =300nJ
2 BA CV

P2.46: MATLAB: Suppose you have a pair of charges Q;(0.0, -5.0m, 0.0) = 1.0 nC and
Q2(0.0,5.0m, 0.0) = 2.0 nC. Write a MATLAB routine to calculate the potential Vro moving
from the origin to the point R(5.0m, 0.0, 0.0). Your numerical integration will involve
choosing a step size AL and finding the field at the center of the step. You should try several
different step sizes to see how much this affects the solution.
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M-File: MLPO0246

o° o© o°

Modify ML0207 to calculate the potential
difference going from the origin (O) to the point
R(5,0,0) given a pair of point charges
01(0,-5,0)=1InC and Q2(0,5,0)=2nC.

o°

o oo

o\°

The approach will be to break up the distance

from O to R into k sections. The total field E will
be found at the center of each section (located

at point P) and then dot (Ep,dLv) will give the
potential drop across the kth section. Total
potential is found by summing the potential drops.

o oo

o° o°

o® o0 oo

o°

Wentworth, 1/7/03

o\

% Variables:

% Q1,02 the point charges, in nC

% k number of numerical integration steps
% dL magnitude of one step

% dLv vector for a step

% X (n) x location at center of section at P

R1,R2 vector from Q1,02 to P
El,E2 electric fields from Q1 & Q2 at P

% Etot total electric field at P

% V(n) portion of dot (Etot,dL) at P
clc $clears the command window

clear %clears variables

% Initialize variables

k=64;

01=1;

02=2;

dL=5/k;

dLv=dL*[1 0 0];

o°

Perform calculation
for n=1:k

X (n)=(n-1) *dL+dL/2;
Rl=[x(n) 5 0];
R2=[x(n) -5 0];
Rmagl=magvector (R1
Rmag2=magvector (R2
E1=9*Q1*R1/Rmagl”3

) ;
) .

4

4
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E2=9*Q2*R2/Rmag2"3;

Etot=E1+E2;

V(n)=dot (Etot,dLv) ;
end

Vtot=sum (-V)

Now running the program:
Vtot =
-1.5817

SO0Vro=-16V.

P2.47: For an infinite length line of charge density p. = 20 nC/m on the z-axis, find the
potential difference Vga between point B(0, 2m, 0) and point A(0, 1m, 0).

B

VBA:_.[EidL; E:_pl‘—a p,dl_:d pap,

2me,p

A
B

S0 Vga = —I L a,id pa, =ipln (2) =-250v
A 2TEQP 27,

P2.48: Find the electric field at point P(0.0,0.0,8.0m) resulting from a surface charge
density ps = 5.0 nC/m? existing on the z = 0 plane from p = 2.0 m to p = 6.0 m. Assume
V =0 at a point an infinite distance from the origin.

(Method 1)
For a ring of charge it was previously found that
ha
E-—Pang
¥
280 (a2+ h 2) 2

We can then break up our disk into differential rings (see Figure P2.48), each
contributing dE as:

dE = @ﬂp_a ,  Where we'veused p=pd p.
280(pa—h2)% : - s
So we then have
£ _ Bsha, Llpdp
28, f
2 + h2 2
This is easy to integrate if we let u = p® + h? then du = 2 p dp, and we have
b

E= Qéh—az_ u73/du = Q§h_a;_2 = :Qgh—az,#

e, I 4y Ju 2¢, JpZJrhza1
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Solving, we arrive at

_-pshY 1 1/

280 <\Jp?+h? a?+nf

Upon inserting the appropriate values we find E = 48 V/m a,.

Z
b Ps
. pL
a‘ -= _::\N ‘;y
=5
X
Fig. P2.48

(method 2)
Find an expressmn for potential and then evaluate the gradient at the point.

— dpd
V= I » R=p? +h2,dQ:pspdpd¢,30V:I pspdpdd

4me, R Amn%
Ps "pdp P

b
V= j :288\/p2+h2‘ :S_Ygx/b2+h2—\/a2+h2/f.

280&1 lp2+h2 a 280

Now we Ie% B z and E = —%V
=P 19 (b2422)2 -2 (a2 42) 7 a
280@ . 0z
__Ps Tl(b2+z )/222—1(a2+22)/22ia Z_p_SYJaz—[—lZ—/
2% 2 2 - A

7 ! 0 ;
1> 2803\/b2+22 \/a2+22f

Plugging in the values we find E = 48 V/Im a,.

P2.49: Suppose a 6.0 m diameter ring with charge density 5.0 nC/m lies in the x-y plane
with the origin at its center. Determine the potential difference V), between the point
h(0.0,0.0,4.0)m and the origin. (Hint: first find an expression for E on the z-axis as a
general function of z.)

For the ring of charge, replacing h with z, we have
p_pPuad_ 7z

4
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2¢ (a2+z 2) 2
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Vo= -] EidL =— plar__uh

v
2¢, (2t + Zz)/z
Letting u = a* + z°, du = 2z dz, we have
a al

Vio == QE_J‘ szdU:’QL_T :Z

4g, 2g, u j"h

_ _ Vio
Replacing u and evaluating from 0 to h, a

pral 1 Vv
ho — — .00 - -
Vo= 2e Jai+h? & >y
0 < f
= —36mV =113V . 3
X
Fig. P2.49

10. Conductivity and Current

P2.50: A columnular beam of electrons from 0 < p <1 mm has a charge density p, =-0.1
cos(mp/2) nC/mm?® (where p is in mm) and a velocity of 6 x 10° m/sec in the +a,
direction. Find the current.

mp Ll
Let’sletp =p coS % where p =-0.1 nC/mm®. Thenwe’ll letu =u a , whereu =
m 0 0z 0

\ o FZ
g 0

6x10° mm/s. Notic%\qiegci)nvert the units to mm. Now,
v [oJ¢] - 2 [Z

and with dS = p dipid(l) a; we then.have
[ Jids = p,u jpcosmpD dp | do
I= = PoYo 0 '
0 DJ_Z_D 0

This becomes

mp Ll
I = AI pcos (1, 1 dp, where A = 2mp,Uo.
0 0c0

Now we can integrate by parts, or J udv = uv—fvdu, where u = Ap, du = Adp,
. [mp L am
v=sin and dv=cos . dp

.

0D°0 0D 0
We then have
|=2AasinEaji4AY _Omal /
ot g cosii 1 -

2 o0

0 0 < 0T o of
To evaluate, we first find A = 21(-0.1x10®)(6x10%=3.77, and then
| =2.40-1.53=0.87A.

T

| =0.87A.



2-47

P2.51: Two spherical conductive shells of radius a and b (b > a) are separated by a material
with conductivity c. Find an expression for the resistance between the two spheres.

First find E fora <r <b, assuming +Q at r = a and —Q at r = b. From Gauss’s law:

Ezj_a
4mg,r’
Now find Vap:
C °Q :
V,,=—|EidL =— a idra,
o 2
__-Q.dr _ @ Q (4 10
r __
4re 2 = 4ne 0
dmte, r
,Ja b

Now canfi dl: b Q 1air23in9d9d¢a
12V SR"0% Eids= o

—FZ r r
GQTE 21 GQ 0
s _([sme d9Jd¢:8—.

0

FinallyR = '®= 101 1

| 47cc55a b;

P2.52: The typical length of each piece of jumper wire on a student’s protoboard is 5.0
cm. Assuming AWG-20 (wire diameter 0.812 mm) copper wire, (a) determine the
resistance for this length of wire. (b) Determine the power dissipated in the wire for 10.
mA of current.

oma  5.8x107(S/m) x(0.406x10m)
SO R=1.7mQ

(b) P =17R=(10x107A) (1.7x207%Q2) =170nW/

P2.53: A densely wrapped coil of AWG-22 (0.644 mm diameter) copper magnet wire is
150 m long. The wire has a very thin insulative sheath. Determine the resistance for this
length of wire.

1L

R = 1 150m =7.94Q

ona’  58x107S/my (0.322x10°m)’
so R=7.9Q
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P2.54: Determine an expression for the power dissipated per unit length in coaxial cable
of inner radius a, outer radius b, and conductivity between the conductors o if a potential
difference Vg is applied.

From Eqn(2.84) we haveR= _1 | [ b

2no L _‘?a%
Now for a given potential dlfferenceV we have
9 gncs \F/)? P 2noV? @
p—=—ab —Lan — _ [ ab In

v

P2.55: Find the resistance per unit length of a stainless steel pipe of inner radius 2.5 cm
and outer radius 3.0 cm.

R 1 L 1
0 n(bz—az)
il []
sowe have R =1 21 z:DD . i L 0= 1.05mQ
GTC( ) 6 [ -
b -a” 01.1x10 S/HDDn(.O?,OZ—.OZSZ)mZD m
[ ]

so R/L=1.0 mQ/m

P2.56: A nickel wire of diameter 5.0 mm is surrounded by a 0.50 mm thick layer of
silver. What is the resistance per unit length for this wire? Assuming 1.0 m of this wire
carries 1.0 A of current, determine the power dissipated in the nickel portion and in the
silver portion of the wire.

We can treat this wire as two resistors in parallel. We have

Ry _ 1 1 _3.4x10°%2
L 154107 (2.5x10° ) m
R _ 6%1?9@ .1 , =187x10°
L X X —(2.5x10" m
<
Rtotal — M RA‘: 1.2 Q
L L|L m

To find the power dissipated, we first find the potential difference:
V=IRu,=1.2mV
then

V2 V 2
P =—=042mW,P =—=0.7/mW
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11. Dielectrics
P2.57: A material has 12.0 V/m ay field intensity with permittivity 194.5 pF/m.
Determine the electric flux density.

D=8E=(194.5x10’12 )(12 )—_23—
m gy m*

P2.58: MATLAB: A 20 nC point charge at the origin is embedded in Teflon (g, = 2.1). Find
and plot the magnitudes of the polarization vector, the electric field intensity and the electric
flux density at a radial distance from 0.1 cm out to 10 cm.

We use Ee following equations:
E= ,P=yecE D=¢c¢cE

4me g I’

o°

M-File: MLP0258

o°

o\°

Plot E, P and D vs distance r from a point
charge Q at the origin with a dielectric.

o°

o\°

% Variables

% 0 charge (C)

% eo free space permittivity (F/m)
% r radial distance (m)

% Chi electric susceptibility

% E electric field intensity(V/m)
% D electric flux density (C/m"2)
% P polarization vector (C/m"2)

o

initialize variables
0=20e-9;

er=2.1;

e0=8.854e-12;

Chi=er-1;

% perform calculations
r=0.001:.001:0.100;
rcm=r.*100;

E=Q./ (4*pi*r."2);
P=Chi*eo*E;

D=er*eo*E;

\O

s plot data
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subplot(2,1,1)
loglog(rcm, P, '--k',rcm,D, '-k")
legend('P','D")
ylabel ('C/m"2")
grid on
subplot(2,1,2)
loglog(rcm, E)
ylabel ('V/m")
xlabel ('radial
distance (cm) ')
grid on

B Pl

10" 10° 10
radial distance (cm)

Fig. P2.58

P2.59: Suppose the force is very carefully measured between a pair of point charges
separated by a dielectric material and is found to be 20 nN. The dielectric material is
removed without changing the position of the point charges, and the force has increased
to 100 nN. What is the relative permittivity of the dielectric?

Fo—QQ | F=_0Q0Q, Folg 100
'"4nee R 7 4neRPOF r=20=5

r o 1

P2.60: The potential field in a material with &, = 10.2 is V = 12 xy? (V). Find E, P and D.

a(12xy 012xy Vv
E_ wyo_ ] =—12y%a —24xya
y X y m
2 2
) (9
a, _
6X ay
D=¢ ¢E=-1.1y°’a —2.2xya nc
ro X y m2
Yo =6 —1=9.2 .
P=y & E=(9.2)(8.854x10 *)E=-9.8y’a —2.00xya =
e o X y 2

m

P2.61: In a mineral oil dielectric, with breakdown voltage of 15 MV/m, the potential
function is V = x® — 6x* —3.1x (MV). Is the dielectric likely to breakdown, and if so,

where?



2-52

MV

E=-VV = (—3x2 +12x+3.1)a )
] m

2
—= 6x+12, a*E =—6, so from 6x — 12 = 0 we find the maximum electric field

dx dx?
occurs at X = 2m.
At x =2m, we have E =-12+24+3.1 = 15.1 MV/m, exceeding the breakdown voltage.

12. Boundary Conditions
P2.62: Fory <0, g, = 4.0 and E; = 3a, + 6may + 4a, V/m. Aty = 0, ps = 0.25 nC/m?. If
€ = 5.0 for y >0, find E..

E; = 3ay + 6nay + 4a, V/m (9) E2 = 3ax + 20.7ay + 4a, V/m
(a) Ent = 6nay (f) Ene = DN2/580 = 20.7ay

(b) Eti = 3ay + 4a, (C) Et, = E11 = 3ay, + 4a,

(d) Dnt = 8,—180EN1 = 247'580 dy (E) Dn2 =0.92 dy

(e) agli(Dl - D2)= Ps, -ay i(DNl - DNZ)ay =  Dy,—Dy=ps

e
nC 110°F0 nC 2nC
Dy, =ps+Dy; =0.25 F24D§6n—mag mz_:O.9 —

P2.63: Forz<0, &4 =9.0and forz> 0, g, = 4.0. If E; makes a 30° angle with a normal
to the surface, what angle does E, make with a normal to the surface?

Refer to Figure P2.63.

E;,=E,;sin0;, E;,=E,sin0,,and E;,=E;,

also

Dy; = €n18oE,; 0080, Dy, =€r280E, c0s6,, and Dy, = Dy, (since ps=0)
Therefore

E E ] . R W
Ti_ =72 and after routine math we find ® =tan™* 8r2tane
b—bH ? 0 U

N1 N2 Dgrl ]

Using this formula we obtain for this problem 6, = 14°.

8,.] =9

E,

Fig. P2.63
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P2.64: A plane defined by 3x + 2y + z = 6 separates two dielectrics. The first dielectric,
on the side of the plane containing the origin, has g, = 3.0 and E; = 4.0a, V/m. The
other dielectric has €., = 6.0. Find E,.

We first use gradient to find a normal to the planar surface.
LetF=3x+2y+z-6=0.

VF=3a+2a,+a, and |VF|=.14,

soa = YF =0.802a+0.534a +0.267a.

N |VF| X y z
Now we can work the boundary condition problem.
Ei=4a,, Eni = (EliaN )aN =0.857a, + 0.570a y+ 0.285a;.
E;,=E,-E,,=-0.857a,—- 0.570a ,+ 3.715a,, E;,=E;,

D1 =€r1€0Ey; =€, {2.571a, +1.710a, +0.855az/f, and D, =D,
Dy,
6

By, =22 =115 04298 4 02850, +0.1433,

€

r2 o 0

\Y
Finallywe have E =E +E =-043a —0.2% +3.8a .
2 T2 N2 X y 2 m

P2.65: MATLAB: Consider a dielectric-dielectric charge free boundary at the plane z =

0. Construct a program that will allow the user to enter g, (for z < 0), €, and E;, and
will then calculate E,. (Just for fun, you may want to have the program calculate the
angles that E; and E; make with a normal to the surface).

% M-File: MLP0265

% Given El1 at boundary between a pair of

% dielectrics with no charge at boundary,
% calculate E2. Also calculates angles.

% clc

clear

% enter variables

disp('enter vector quantities in brackets,')
disp('for example: [1 2 3]"'")

erl=input('relative permittivity in material 1: '");
erZ2=input ('relative permittivity in material 2: '");
al2=input ('unit vector from mtrl 1 to mtrl 2: ");
El=input ('electric field intensity vector in mtrl 1: ");

% perform calculations
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Enl=dot (El,al2)*al2;

Etl=El1-Enl;

Et2=Et1l;

Dnl=erl*Enl; %ignores eo since it will factor out
Dn2=Dnl;

En2=Dn2/er2;

E2=Et2+En2

% calculate the angles

thl=atan (magvector (Etl) /magvector (Enl)) ;
th2=atan (magvector (Et2) /magvector (En2)) ;
thlr=thl1*180/pi

th2r=th2*180/pi

Now run the program:

enter vector quantities in brackets,

for example: [1 2 3]

relative permittivity in material 1: 2

relative permittivity in material 2: 5

unit vector from mtrl 1 to mtrl 2: [0 0 1]
electric field intensity vector in mtrl 1: [3 4 5]

E2 =

3 4 2
thlr =

45
th2r =
68.1986

P2.66: A 1.0 cm diameter conductor is sheathed with a 0.50 cm thickness of Teflon and
then a 2.0 cm (inner) diameter outer conductor. (a) Use Laplace’s equations to find an
expression for the potential as a function of p in the dielectric. (b) Find E as a function of

p. (c) What is the maximum potential difference that can be applied across this coaxial
cable without breaking down the dielectric?

(@) Since V is only a function of p,
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vV lel oV
*=5op P op =0
d

SOpa_VZA b

op Vi
orV=AInp+B
where A and B are constants. -
Now we apply boundary conditions.

BCL: Fig. P2.66
0=Alnb+B,B=—AlInb,

~V=Aln—£-
0,0
b

. nar mflbj
BCZ:V =AIn * A=—Y | vey,

/ ,
- In(ab) In (/)
4

or
V = —1.443V, In (100p ).

(b) E=—vv=-H o _1443V,

P

op ° p
(e)(
)C _ 1443V, —2885V=E =60x10°,
E
max a br
8o
soV,= —=208kV, ~(Vap)  =210kV

288.5

P2.67: A 1.0 m long carbon pipe of inner diameter 3.0 cm and outer diameter 5.0 cm is
cut in half lengthwise. Determine the resistance between the inner surface and the outer

surface of one of the half sections of pipe.

One approach is to consider the resistance for the half-section of pipe is twice the
resistance for a complete cylindrical section, given by Eqn. (2.84). But we’ll used the

LaPlace equation approach instead.

Laplace: V2V = 10 Eho N _ 0 ; here we see V only depends on p

ol POP — Op o
S P
0
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[
[
V=
Aln
B
op

where A and B are constants.
Now apply boundary conditions.
BC1.:
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V,=0=AInb+B; B=-Alnb;
V=Aln 2"

bt

J=GE Fig. P2.67

oV "1 L nLoV

1= Jidsz—%?y)ogpdq){dz :EZ%)
2 (%)

= =54pQ.
| no L H

P2.68: For a coaxial cable of inner conductor radius a and outer conductor radius b and a
dielectric €, in-between, assume a charge density  p,=p,/  is added in the dielectric
region. Use Poisson’s equation to derive an expression for V and E. Calculate ps on each
plate.

viv=_P__1 a0 v

U U=_.9
€ péﬁf’@e[—%ﬁ
S%D N po. dD— ovil podp; ﬂ:p°p+A,WhereAisaconstant.
e =y [l F p

op  0op € op € op ¢

0 0 0 0
ﬂ:MA_ dV:I podp——é dp; vPe p+Alnp+B, whereB is a constant.

op € p € p € Applying the second
Now apply boundary conditions: V=V, at p=a One gIves us.
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andV=0atp=Dhb

v :%(p—b)+Aln(%).

Applying the first one:
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V+Po(h-a)
V: (a b)+AIn(a) A=—=—¢

a In( )

8 b
Therefore,
v—+Pofha)
Ve = g In +‘Q8(p—b)
L]
a bt
in(3p)
E=-ww=-"a =% Kk P PP bDa
— -0 — O
»° b e L
0 0 U
0 K O]
E= ———Bjap
b7 p €
where
V+p°7(b—a)
K:aig_ |
In(%)g . ,
Y, += (b-a)
Y 0 poo
p
soE=' _ O °© U _opg
r' pln[EQbD] € oo
Tp S
I 0, +%*(b-a
y O
0 P,

D =p; D =8E| = ——0=p
N S Na p=a a|nﬂ£ € oo sa
Po” O

Yo, + b-a) _
"[Ja [] 0
€ P
D :8E| =’ . D—Loo:p
Nb p=b b| ﬂﬂ € o sb
b~ ¥

P2.69: For the parallel plate capacitor given in Figure 2.51, suppose a charge density
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- [IR2[]
p=p, N T

7207

is added between the plates. Use Poisson’s equation to derive a new expression for V and

E. Calculate ps on each plate.
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V@ _-p_ —posin(MZyy)
/
oz°

oV (z) sin )dz__cos(TEZ )+A
Vﬁ) -%Q@CJ;)S(( ;d)dz +Edz:%fgsﬁqrz )+AZ+B

e .[ 2d I e 2d

Now apply the boundary conditions:

2
2pd? 20d,
V =0=B; V—Dgsm( )+Ad; A= r%
: ¢ /d d
_299(ﬁ mZ Dyg 2 ng,
V(2) = Lo sm( /2d)+@d_ e 1z
-v =-%  Youzpd® 0, 0V _2pdi/
E V _a,=~ _Dggln(nzzd)@ _DDd_ ° NZ[wad,
0z ¢ 01 e o ord nlel] Of

E—:—Qogggc(ﬁz \_ d_‘__Qg_,

z

NJ
[@]
\.

o

[ Te d me

az=0,D=sEs0p | _ _pod SVd 2%5‘) i
Sp=0 T ’
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13. Capacitors

P2.70: A parallel plate capacitor is constructed such that the dielectric can be easily
removed. With the dielectric in place, the capacitance is 48 nF. With the dielectric removed,
the capacitance drops to 12 nF. Determine the relative permittivity of the dielectric.

C_ ko A, c=8A Gy J® 4
1 2 r
d d G 12

P2.71: A parallel plate capacitor with a 1.0 m? surface area for each plate, a 2.0 mm plate
separation, and a dielectric with relative permittivity of 1200 has a 12. V potential
difference across the plates. (a) What is the minimum allowed dielectric strength for this
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capacitor? Calculate (b) the capacitance, and (c) the magnitude of the charge density on
one of the plates.

12V kV
(@) E= =6 ; (a)E :6_kV

0.002m m brmin m
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1200)(8.854x10° 2 F / 1m?
by o= 82 (885 m)(am :)5.3;,LF
d

0.002m .
© c=2: Q=cv=(53x10°F )(12v)" =64uC
\ FV

P2.72: A conical section of material extends from 2.0 cm < r < 9.0 cm for 0 < 6 < 30°
with ¢, = 9.0 and ¢ = 0.020 S/m. Conductive plates are placed at each radial end of the
section. Determine the resistance and capacitance of the section.

VZV:l 0[] 0 O oV A V=—A+B,WhereAandBareconstants.
2YV =
r2er T =0 rige T F
U U
Boundary conditions: r=a,V=0andr=b,V =V,
1 l@
V:\/i
bH1 10
Ja br
E:—VV:—a—Va
or '
E= Via, =&,E,Vpd;
01 1%2’D=E;_;Drz
a b a b
V0
& =9
b
6=0.02 S/m
- a
Fig. P2.72
- €&V .
o Dl_];] 2 ’
Qa b

Q= pds; dS=r?sin6d6dp
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ceeV 30°

Qb_m%sz sind dej do

Ja bE°

=1.73x10712y
Q _& .

C:_b:17p|:, RC = ) R:ﬁ = 2.3kQ
Vb o Co

P2.73: An inhomogeneous dielectric fills a parallel plate capacitor of surface area 50.
cm? and thickness 1.0 cm. You are given g, = 3(1 + z), where z is measured from the
bottom plate in cm. Determine the capacitance.

Place+Qatz=dand -Qatz=
R YY 247Y

s, S DII
-Q QI dz

V., =—| EidL = - idza, = -
G _[ id Jggsazlzaz s e
0 ro 8o or

?V&Iuathg@e mtepral

In(1+ z)‘ Ln2em

o0& 3(1+z) 3 ° 3
c— Q 3eos_ 3(8854107Fm)(50em’ )y m g
Ve, In2 (In(2)cm) 71100cm [

P2.74: Given E = 5xyay + 3za, V/m, find the electrostatic potential energy stored in a
volume defined by 0 <x<2m,0<y<1m,and 0 <z <1 m. Assume € = g,

w=le EiEdv=lerose y’dxdydz + 9z°dxdydz’
E _éoj 2 °§I I f

We = %8) 'Y25 szdezdy d.[ +9 jdey zrzdzoo/? 125 pJ
<

0 0 0 0 0 0
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P2.75: Suppose a coaxial capacitor with inner radius 1.0 cm, outer radius 2.0 cm and length
1.0 m is constructed with 2 different dielectrics. When oriented along the z-axis,

g, for 0° < ¢ < 180° is 9.0, and for 180° < ¢ <360° is 4.0. (a) Calculate the capacitance.
(b) If 9.0 V is applied across the conductors, determine the electrostatic potential energy
stored in each dielectric for this capacitor.

(a) a coaxial line,



_ 2mlLeg,

" n(b

n(27)
But for only half the line,
_mlkeg,

C
C
So

So
Cior=C,+ C,=522 pF

1

(byW ==CV?%=14.6nJ;
El 1

2
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€n €n

Fig. P2.75

CV?=6.5nJ]




