Solution Manual for General Organic and Biological Chemistry 2nd Edition by Janice Gorzynski Smith ISBN 00734027889780073402789

Full link download
Solution Manual
https://testbankpack.com/p/solution-manual-for-general-organic-and-biological-chemistry-2nd-edition-by-janice-gorzynski-smith-isbn-0073402788-9780073402789/

Chapter 2 Atoms and the Periodic Table

Solutions to In-Chapter Problems

2.1 Each element is identified by a one- or two-letter symbol. Use the periodic table to find the symbol for each element.
a. Ca
b. Rn
c. N
d. Au
2.2 Use the periodic table to find the symbol for each element.
a. Cu and Zn
b. Cu and Sn
c. Sn, Sb, and Pb
2.3 Use the periodic table to find the element corresponding to each symbol.
a. neon
b. sulfur
c. iodine
d. silicon
e. boron
f. mercury
2.4 Metals are shiny materials that are good conductors of heat and electricity. Nonmetals do not have a shiny appearance, and they are generally poor conductors of heat and electricity. Metalloids have properties intermediate between metals and nonmetals.
a, d, f, h: metals
$\mathrm{b}, \mathrm{c}, \mathrm{g}$: nonmetals
e: metalloid
2.5 Use Figure 2.1 and the definitions in Answer 2.4 to determine if the micronutrients are metals, nonmetals, or metalloids.

As, B, Si: metalloids $\quad \mathrm{Cr}, \mathrm{Co}, \mathrm{Cu}, \mathrm{Fe}, \mathrm{Mn}, \mathrm{Mo}, \mathrm{Ni}, \mathrm{Zn}$: metals $\quad \mathrm{F}, \mathrm{I}, \mathrm{Se}:$ nonmetals
2.6 Use Figure 2.3 to determine which elements are represented in the molecular art.
a. 4 hydrogens, 1 carbon
b. 3 hydrogens, 1 nitrogen
c. 6 hydrogens, 2 carbons, 1 oxygen
2.7 The subscript tells how many atoms of a given element are in each chemical formula.
a. $\mathrm{NaCN}($ sodium cyanide $)=1$ sodium, 1
d. $\mathrm{SnF}_{2}($ stannous fluoride $)=1$ tin, 2 fluorines carbon, 1 nitrogen
b. $\mathrm{H}_{2} \mathrm{~S}($ hydrogen sulfide $)=2$ hydrogens, 1 sulfur
c. $\mathrm{C}_{2} \mathrm{H}_{6}$ (ethane) $=2$ carbons, 6 hydrogens
e. $\mathrm{CO}($ carbon monoxide $)=1$ carbon, 1 oxygen
f. $\mathrm{C}_{3} \mathrm{H}_{8} \mathrm{O}_{3}($ glycerol $)=3$ carbons, 8 hydrogens, 3 oxygens
2.8 Use Figure 2.3 to determine which elements are represented in the molecular art.

Halothane contains 2 carbons, 1 hydrogen, 3 fluorines, 1 bromine, and 1 chlorine atom.
2.9
a. In a neutral atom, the number of protons and electrons is equal; 9 protons $=9$ electrons.
b. The atomic number $=$ the number of protons $=9$.
c. This element is fluorine.
2.10 The atomic number is unique to an element and tells the number of protons in the nucleus and the number of electrons in the electron cloud.

Atomic Number		Element	Protons	Electrons
a.	2	Helium	2	2
b.	11	Sodium	11	11
c.	20	Calcium	20	20
d.	47	Silver	47	47
e.	78	Platinum	78	78

2.11 Answer the question as in Sample Problem 2.4.
a. There are 4 protons and 5 neutrons.
b. The atomic number $=$ the number of protons $=4$.

The mass number $=$ the number of protons + the number of neutrons $=4+5=9$.
c. The element is beryllium.
2.12 In a neutral atom, the atomic number $(Z)=$ the number of protons $=$ the number of electrons. The mass number $(A)=$ the number of protons + the number of neutrons.

	Protons	Neutrons $(A-Z)$	Electrons
a.	17	$18(35-17)$	17
b.	14	$14(28-14)$	14
c.	92	$146(238-92)$	92

2.13 The mass number $(A)=$ the number of protons + the number of neutrons.
a. 42 protons, 42 electrons, 53 neutrons
b. 24 protons, 24 electrons, 28 neutrons $42+53=95$
$24+28=52$
2.14 The superscript gives the mass number and the subscript gives the atomic number for each element.
The atomic number $=$ the number of protons $=$ the number of electrons in a neutral atom.
The mass number $=$ the number of protons + the number of neutrons.

	Atomic Number	Mass Number	Protons	Neutrons	Electrons
\boldsymbol{x}	6	13	6	7	6
	51	121	51	70	51
\boldsymbol{x}					

2.15 The identity of the element tells us the atomic number.

The mass number $=$ the number of protons + the number of neutrons.

| | | Protons | Electrons | Atomic Number | Mass Number |
| :--- | ---: | :---: | :---: | :---: | :---: | :---: |
| With 12 neutrons: | \boldsymbol{x} | 12 | 12 | 12 | $12+12=24$ |
| | | 12 | 12 | 12 | $12+13=25$ |
| With 13 neutrons: | \boldsymbol{x} | 12 | 12 | 12 | $12+14=26$ |

2.16 Multiply the isotopic abundance by the mass of each isotope, and add up the products to give the atomic weight for the element.
a. Magnesium

Mass due to Mg-24: $\quad 0.7899023 .99 \mathrm{amu} \quad=18.9497 \mathrm{amu}$
Mass due to Mg-25: $0.1000024 .99 \mathrm{amu}=2.499 \mathrm{amu}$
Mass due to Mg-26: $0.1101025 .98 \mathrm{amu}=2.8604 \mathrm{amu}$
Atomic weight $=24.3091 \mathrm{amu}$ rounded to 24.31 amu
Answer
b. Vanadium

Mass due to V-50: $\quad 0.00250049 .95 \mathrm{amu}=0.12488 \mathrm{amu}$
Mass due to V-51: $\quad 0.99750050 .94 \mathrm{amu}=50.8127 \mathrm{amu}$
Atomic weight $=50.93758 \mathrm{amu}$ rounded to 50.94 amu
Answer
2.17 Use the element symbol to locate an element in the periodic table. Count down the rows of elements to determine the period. The group number is located at the top of each column.

Element	Period	Group
a. Oxygen	2	6A (or 16)
b. Calcium	4	2A (or 2)
c. Phosphorus	3	5A (or 15)
d. Platinum	6	8B (or 10)
e. Iodine	5	7A (or 17)

2.18 Use the definitions from Section 2.4 to identify the element fitting each description.
a. K
c. Ar
e. Zn
b. F
d. Sr
f. Nb
2.19
a. titanium, Ti, group 4B (or 4), period 4, transition metal
b. phosphorus, P, group 5A (or 15), period 3, main group element
c. dysprosium, Dy, no group number, period 6, inner transition element
2.20 Use Table 2.4 to tell how many electrons are present in each shell, subshell, or orbital.
a. a $2 p$ orbital $=2$ electrons
c. a $3 d$ orbital $=2$ electrons
b. the $3 d$ subshell $=10$ electrons
d. the third shell $=18$ electrons
2.21 The electronic configuration of an individual atom is how the electrons are arranged in an atom's orbitals.
a. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{2}=$ silicon
b. $[\mathrm{Ne}] 3 s^{2} 3 p^{4}=$ sulfur
c. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{1}=$ scandium
d. $[\mathrm{Ar}] 4 s^{2} 3 d^{10}=$ zinc
2.22 The electronic configuration of an individual atom shows how the electrons are arranged in an atom's orbitals.
a. lithium
c. fluorine
b. beryllium, boron, carbon, nitrogen, oxygen, fluorine, neon
d. oxygen
2.23 Use Example 2.5 to help draw the orbital diagram for each element.
[1] Use the atomic number to determine the number of electrons.
[2] Place electrons two at a time into the lowest energy orbitals, using Figure 2.8. When orbitals have the same energy, place electrons one at a time in the orbitals until they are half-filled.

x

2.24 To convert the electronic configuration to noble gas notation, replace the electronic configuration corresponding to the noble gas in the preceding row by the element symbol for the noble gas in brackets.
a. sodium: $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{1}$
c. iodine: $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{6} 5 s^{2} 4 d^{10} 5 p^{5}$
$[\mathrm{Ne}] 3 s^{1}$
$[\mathrm{Kr}] 5 s^{2} 4 d^{10} 5 p^{5}$
b. silicon: $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{2}$
$[\mathrm{Ne}] 3 s^{2} 3 p^{2}$
2.25 To obtain the total number of electrons, add up the superscripts. This gives the atomic number and identifies the element. To determine the number of valence electrons, add up the number of electrons in the shell with the highest number.
a. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2}$
c. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{6} 5 s^{2} 4 d^{2}$

12 electrons, 2 valence electrons in the $3 s$ orbital, magnesium
b. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{3}$

40 electrons, 2 valence electrons in the $5 s$
orbital, zirconium
d. $[\mathrm{Ar}] 4 s^{2} 3 d^{6}$

15 electrons, 5 valence electrons in the $3 s$ and $3 p$ orbitals, phosphorus

26 electrons, 2 valence electrons in the $4 s$ orbital, iron
2.26 The group number of a main group element = the number of valence electrons. Use the general electronic configurations in Table 2.6 to write the configuration of the valence electrons.
a. fluorine $=7$ valence electrons: $2 s^{2} 2 p^{5}$
c. magnesium $=2$ valence electrons: $3 s^{2}$
b. krypton $=8$ valence electrons: $4 s^{2} 4 p^{6}$
d. germanium $=4$ valence electrons: $4 s^{2} 4 p^{2}$
2.27

Se, selenium: $4 s^{2} 4 p^{4}$
Te, tellurium: $5 s^{2} 5 p^{4}$
Po, polonium: $6 s^{2} 6 p^{4}$
2.28 Write the symbol for each element and use the group number to determine the number of valence electrons for a main group element. Represent each valence electron with a dot.
x
2.29 The size of atoms increases down a column of the periodic table because the valence electrons are farther from the nucleus. The size of atoms decreases across a row of the periodic table because the number of protons in the nucleus increases.
a. neon, carbon, boron
d. neon, krypton, xenon
b. beryllium, magnesium, calcium
e. oxygen, sulfur, silicon
c. sulfur, silicon, magnesium
f. fluorine, sulfur, aluminum
2.30 Ionization energies decrease down a column of the periodic table because the valence electrons move farther from the positively charged nucleus. Ionization energies generally increase across a row of the periodic table because the number of protons in the nucleus increases.
a. silicon, phosphorus, sulfur
d. krypton, argon, neon
b. calcium, magnesium, beryllium
e. tin, silicon, sulfur
c. beryllium, carbon, fluorine
f. calcium, aluminum, nitrogen

Solutions to End-of-Chapter Problems

2.31 Use Figure 2.3 to determine which elements are represented in the molecular art.
a. carbon (black) and oxygen (red)
b. carbon (black), hydrogen (gray), and chlorine (green)
2.32 Use Figure 2.3 to determine which elements are represented in the molecular art.
a. Cl_{2}
b. $\mathrm{CH}_{3} \mathrm{Br}$
c. $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}_{2}$
2.33 Use the periodic table to find the element corresponding to each symbol.
a. $\mathrm{Au}=$ gold, $\mathrm{At}=$ astatine, $\mathrm{Ag}=$ silver
b. $\mathrm{N}=$ nitrogen, $\mathrm{Na}=$ sodium, $\mathrm{Ni}=$ nickel
c. $\mathrm{S}=$ sulfur, $\mathrm{Si}=$ silicon, $\mathrm{Sn}=$ tin
d. $\mathrm{Ca}=$ calcium, $\mathrm{Cr}=$ chromium, $\mathrm{Cl}=$ chlorine
e. $\mathrm{P}=$ phosphorus, $\mathrm{Pb}=$ lead, $\mathrm{Pt}=$ platinum
f. $\mathrm{Ti}=$ titanium, $\mathrm{Ta}=$ tantalum, $\mathrm{Tl}=$ thallium
2.34 Use the periodic table to find the element corresponding to each symbol.
a. CU is made of C (carbon) and U (uranium); $\mathrm{Cu}=$ copper.
b. Os = osmium; OS is made of O (oxygen) and S (sulfur).
c. $\mathrm{Ni}=$ nickel; NI is made of N (nitrogen) and I (iodine).
d. BIN is made of B (boron), I (iodine) and N (nitrogen); BiN is made of Bi (bismuth). and N (nitrogen); BIn is made of B (boron) and In (indium).
2.35 An element is a pure substance that cannot be broken down into simpler substances by a chemical reaction. A compound is a pure substance formed by combining two or more elements together.
a. $\mathrm{H}_{2}=$ element
b. $\mathrm{H}_{2} \mathrm{O}_{2}=$ compound
c. $\mathrm{S}_{8}=$ element
d. $\mathrm{Na}_{2} \mathrm{CO}_{3}=$ compound
e. $\mathrm{C}_{60}=$ element
2.36 Use the periodic table to find the element corresponding to each symbol.
a. $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ is made up of 2 atoms of K (potassium), 2 atoms of Cr (chromium) and 7 atoms of O (oxygen).
b. $\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{NNaO}_{4}$ is made up of 5 atoms of C (carbon), 8 atoms of H (hydrogen), 1 atom of N (nitrogen), 1 atom of Na (sodium) and 4 atoms of O (oxygen).
c. $\mathrm{C}_{10} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{O}_{3} \mathrm{~S}$ is made up of 10 atoms of C (carbon), 16 atoms of H (hydrogen), 2 atoms of N (nitrogen), 3 atoms of O (oxygen) and 1 atom of S (sulfur).
2.37
a. cesium
d. beryllium
b. ruthenium
e. fluorine
c. chlorine
f. cerium
2.38
a. sodium
d. copper
b. radon
e. lawrencium
c. phosphorus
f. platinum
2.39
a. sodium: metal, alkali metal, main group element
b. silver: metal, transition metal
c. xenon: nonmetal, noble gas, main group element
d. platinum: metal, transition metal
e. uranium: metal, inner transition metal
f. tellurium: metalloid, main group element
2.40
a. bromine: nonmetal, halogen, main group element
b. silicon: nonmetal, main group element
c. cesium: metal, alkali metal, main group element
d. gold: metal, transition metal
e. calcium: metal, alkaline earth metal, main group element
f. chromium: metal, transition metal
a. 5 protons and 6 neutrons
b. The atomic number $=$ the number of protons $=5$.
c. The mass number $=$ the number of protons + the number of neutrons $=5+6=11$.
d. The number of electrons $=$ the number of protons $=5$.
e. element symbol: B
2.42
a. 7 protons and 7 neutrons
b. The atomic number $=$ the number of protons $=7$.
c. The mass number $=$ the number of protons + the number of neutrons $=7+7=14$.
d. The number of electrons $=$ the number of protons $=7$.
e. element symbol: N
2.43

Element	Atomic	Mass	Number of	Number of	Number of
Symbol	Number	Number	Protons	Neutrons	Electrons

a.	C	6	12	6	6	6
b.	P	15	31	15	16	15
c.	Zn	30	65	30	35	30
d.	Mg	12	24	12	12	12
e.	I	53	127	53	74	53
f.	Be	4	9	4	5	4
g.	Zr	40	91	40	51	40
h.	S	16	32	16	16	16

2.44
a. neon, $\mathrm{Ne}, 10$ protons, 10 neutrons, 10 electrons
b. aluminum, $\mathrm{Al}, 13$ protons, 14 neutrons, 13 electrons
c. strontium, $\mathrm{Sr}, 38$ protons, 50 neutrons, 38 electrons
d. cesium, Cs, 55 protons, 78 neutrons, 55 electrons
e. nickel, Ni, 28 protons, 31 neutrons, 28 electrons
f. gold, $\mathrm{Au}, 79$ protons, 118 neutrons, 79 electrons
2.45

2.46
a. palladium, Pd , group number $=10$, period $=5$, transition metal
b. carbon, C, group number $=14$, period $=2$, main group element
c. protactinium, Pa , group number $=5$, period $=7$, inner transition metal
d. argon, Ar , group number $=18$, period $=3$, main group element
e. arsenic, As, group number $=15$, period $=4$, main group element
2.47 Hydrogen is located in group 1A but is not an alkali metal.
2.48 Helium is an s block element but is located in group 8 A instead of group 1 A or 2 A .
2.49 Use Figure 2.1 and the definitions in Answer 2.4 to classify each element in the fourth row of the periodic table as a metal, nonmetal, or metalloid.
$\mathrm{K}, \mathrm{Ca}, \mathrm{Sc}, \mathrm{Ti}, \mathrm{V}, \mathrm{Cr}, \mathrm{Mn}, \mathrm{Fe}, \mathrm{Co}, \mathrm{Ni}, \mathrm{Cu}, \mathrm{Zn}, \mathrm{Ga}$: metals
Ge, As: metalloids
$\mathrm{Se}, \mathrm{Br}, \mathrm{Kr}$: nonmetals
2.50 Rb is an alkali metal and main group element. Sr is an alkaline earth metal and main group element. Elements $\mathrm{Y}, \mathrm{Zr}, \mathrm{Nb}, \mathrm{Mo}, \mathrm{Tc}, \mathrm{Ru}, \mathrm{Rh}, \mathrm{Pd}, \mathrm{Ag}$, and Cd are transition metals. Elements $\mathrm{In}, \mathrm{Sn}, \mathrm{Sb}, \mathrm{Te}, \mathrm{I}$ and Xe are main group elements.
2.51 Group 8A in the periodic table contains only nonmetals.
2.52 Groups 4A, 5A and 6A contain nonmetals, metalloids and metals.
2.53 The atomic number $=$ the number of protons $=$ the number of electrons.

The mass number $=$ the number of protons + the number of neutrons.

Mass	Protons	Neutrons	Electrons	Group	Symbol
16	8	8	8	6 A	
17	8	9	8	6 A	$\|$$\mid$ 18
8	10	8	6 A	$\boxed{\boxed{x}} \mid$	

2.54 The atomic number $=$ the number of protons $=$ the number of electrons.

The mass number $=$ the number of protons + the number of neutrons.

Mass	Protons	Neutrons	Electrons	Group	Symbol
116	50	66	50	4 A	
118	50	68	50	4 A	\mid 冈
120	50	70	50	4 A	冈

2.55 The identity of the element tells us the atomic number.

The number of neutrons $=$ mass number - atomic number.

	Symbol	Protons	Neutrons	Electrons
a.	\boldsymbol{x}	13	$27-13=14$	13
b.	ख	17	$35-17=18$	17

2．56 The identity of the element tells us the atomic number．
The number of neutrons $=$ mass number - atomic number．

	Symbol	Protons	Neutrons	Electrons
a．	\times	47	$115-47=68$	47
b．	冈	79	$197-79=118$	79
c．	冈	86	$222-86=136$	86
d．	冈	76	$192-76=116$	76

2.57

2.58

区

2．59 Multiply the isotopic abundance by the mass of each isotope，and add up the products to give the atomic weight for the element．

Silver
Mass due to Ag－107：$\quad 0.51840106 .91 \mathrm{amu}=55.4221 \mathrm{amu}$
Mass due to Ag－109： $0.48160108 .90 \mathrm{amu}=52.4462 \mathrm{amu}$
Atomic weight $=107.8683 \mathrm{amu}$ rounded to 107.9 amu
Answer
2．60 Multiply the isotopic abundance by the mass of each isotope，and add up the products to give the atomic weight for the element．

Antimony
Mass due to Sb－121：$\quad 0.57210120 .90 \mathrm{amu}=69.1669 \mathrm{amu}$
Mass due to Sb－123： $0.42790122 .90 \mathrm{amu}=52.5889 \mathrm{amu}$
Atomic weight $=121.7558 \mathrm{amu}$ rounded to 121.8 amu
Answer
2．61 No，the neutral atoms of two different elements cannot have the same number of electrons．Two different elements must have a different number of protons，so in the neutral atoms，they must have a different number of electrons．
2.62 Yes, the neutral atoms of two different elements can have the same number of neutrons. For example $\mathrm{O}-18$ has 8 protons, 8 electrons, and 10 neutrons. $\mathrm{F}-19$ has 9 protons, 9 electrons and 10 neutrons. The number of neutrons are the same, but the number of protons and electrons are different.
2.63
a. first shell $(n=1)=1$ orbital $(1 s)$
c. third shell $(n=3)=9$ orbitals $(3 s$, three $3 p$, five 3d)
b. second shell $(n=2)=4$ orbitals $(2 s$, three $2 p$)
d. fourth shell $(n=4)=16$ orbitals $(4 s$, three $4 p$, five $4 d$, seven $4 f$)
2.64
a. second shell $(n=2)=8$ electrons
d. $4 f$ orbital: 2 electrons
b. $3 s$ orbital: 2 electrons
e. fourth shell $(n=4)=32$ electrons
c. $3 p$ subshell: 6 electrons
f. $5 p$ orbital: 2 electrons
2.65 Use Example 2.5 to help draw the orbital diagram for each element.
\square
冈

ㅈ

2.66 Use Example 2.5 to help draw the orbital diagram for each element.
\square

x

区

x

x

2.67 To convert the electronic configuration to noble gas notation, replace the electronic configuration corresponding to the noble gas in the preceding row by the symbol for the noble gas in brackets, as in Answer 2.24.
a. B: $1 s^{2} 2 s^{2} 2 p^{1}$ or $[\mathrm{He}] 2 s^{2} 2 p^{1}$
d. Ar: $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}$ or [Ar]
b. K: $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{1}$ or $[\mathrm{Ar}] 4 s^{1}$
e. $\mathrm{Zn}: 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10}$ or $[\mathrm{Ar}] 4 s^{2} 3 d^{10}$
c. Se: $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{4}$ or $[\mathrm{Ar}] 4 s^{2} 3 d^{10} 4 p^{4}$
2.68 To convert the electronic configuration to noble gas notation, replace the electronic configuration corresponding to the noble gas in the preceding row by the symbol for the noble gas in brackets, as in Answer 2.24.
a. $\mathrm{N}: 1 s^{2} 2 s^{2} 2 p^{3}$ or $[\mathrm{He}] 2 s^{2} 2 p^{3}$
d. Ti: $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{2}$ or $[\mathrm{Ar}] 4 s^{2} 3 d^{2}$
b. I: $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{6} 5 s^{2} 4 d^{10} 5 p^{5}$ or
e. $\mathrm{Mn}: 1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{5}$ or $[\mathrm{Ar}] 4 s^{2} 3 d^{5}$ $[\mathrm{Kr}] 5 s^{2} 4 d^{10} 5 p^{5}$
c. Ga: $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{1}$ or $[\mathrm{Ar}] 4 s^{2} 3 d^{10} 4 p^{1}$
2.69 To find the number of unpaired electrons, draw the orbital diagram for each element.

区

®

2.70 To find the number of unpaired electrons, draw the orbital diagram for each element.
x
\times

区

a. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{6} 5 s^{2}=38$ electrons, 2 valence electrons in the $5 s$ orbital, strontium
c. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{1}=11$ electrons, 1 valence electron in the $3 s$ orbital, sodium
b. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{4}=16$ electrons, 6 valence electrons in the $3 s$ and the $3 p$ orbitals, sulfur
d. $[\mathrm{Ne}] 3 s^{2} 3 p^{5}=17$ electrons, 7 valence electrons in the $3 s$ and $3 p$ orbitals, chlorine
2.72
a. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6}=18$ electrons, 8 valence electrons in the $3 s$ and $3 p$ orbitals, argon
c. $1 s^{2} 2 s^{2} 2 p^{3}=7$ electrons, 5 valence electrons in the $2 s$ and $2 p$ orbitals, nitrogen
b. $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{7}=27$ electrons, 2 valence electrons in the $4 s$ orbital, cobalt
d. $[\mathrm{Kr}] 5 s^{2} 4 d^{10} 5 p^{2}=50$ electrons, 4 valence electrons in the $5 s$ and $5 p$ orbitals, tin
2.73 An alkali metal has one valence electron and an alkaline earth element has two valence electrons.
2.74 A halogen has seven valence electrons and a noble gas has eight valence electrons.
2.75

	Electrons	Group Number	Valence Electrons	Period	Valence Shell
a. Carbon	6	4 A	4	2	2
b. Calcium	20	2 A	2	4	4
c. Krypton	36	8 A	8	4	4

2.76

	Electrons	Group Number	Valence Electrons	Period	Valence Shell
a. Oxygen	8	6 A	6	2	2
b. Sodium	11	1 A	1	3	3
c. Phosphorus	15	5 A	5	3	3

2.77
a. carbon: $1 s^{2} 2 s^{2} 2 p^{2}$; valence electrons $2 s^{2} 2 p^{2}$
b. calcium: $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2}$; valence electrons $4 s^{2}$
c. krypton: $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{2} 3 d^{10} 4 p^{6}$; valence electrons $4 s^{2} 4 p^{6}$
2.78
a. oxygen: $1 s^{2} 2 s^{2} 2 p^{4}$; valence electrons $2 s^{2} 2 p^{4}$
b. sodium: $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{1}$; valence electrons $3 s^{1}$
c. phosphorus: $1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{3}$; valence electrons $3 s^{2} 3 p^{3}$
2.79 The group number of a main group element $=$ the number of valence electrons.
a. $2 \mathrm{~A}=2$ valence electrons
b. $4 \mathrm{~A}=4$ valence electrons
c. $7 \mathrm{~A}=7$ valence electrons
2.80
a. shell $=2$
b. shell $=3$
c. shell $=4$
d. shell $=5$
2.81
a. sulfur: $6,3 s^{2} 3 p^{4}$
c. barium: $2,6 s^{2}$
e. tin: $4,5 s^{2} 5 p^{2}$
b. chlorine: $7,3 s^{2} 3 p^{5}$
d. titanium: $2,4 s^{2}$
2.82
a. neon: $8,2 s^{2} 2 p^{6}$
c. aluminum: $3,3 s^{2} 3 p^{1}$
e. zirconium: $2,5 s^{2}$
b. rubidium: $1,5 s^{1}$
d. manganese: $2,4 s^{2}$
2.83 Write the element symbol for each element and use the group number to determine the number of valence electrons for a main group element. Represent each valence electron with a dot.

x

2.84 Write the element symbol for each element and use the group number to determine the number of valence electrons for a main group element. Represent each valence electron with a dot.

区

2.85 Use the size rules from Answer 2.29.
a. iodine
b. carbon
c. potassium
d. selenium
2.86 Use the size rules from Answer 2.29.
a. sodium
b. carbon
c. krypton
d. bromine
2.87 Use the rules from Answer 2.30 to decide which has the higher ionization energy.
a. bromine
b. nitrogen
c. silicon
d. chlorine
2.88 Use the rules from Answer 2.30 to decide which has the lower ionization energy.
a. sodium
b. carbon
c. krypton
d. bromine
2.89 Use the size rules from Answer 2.29.
fluorine, oxygen, sulfur, silicon, magnesium
2.90 Use the size rules from Answer 2.29.
oxygen, nitrogen, phosphorus, aluminum potassium
2.91 Use the rules from Answer 2.30 to rank the elements in order of increasing ionization energy. sodium, magnesium, phosphorus, nitrogen, fluorine
2.92 Use the rules from Answer 2.30 to rank the elements in order of decreasing ionization energy.

Oxygen, carbon, silicon, magnesium, calcium
2.93

	a. Type	b. Block	c,d: Radius	e,f: Ionization Energy	g. Valence Electrons
Sodium	Metal	s			1
Potassium	Metal	s	Largest	Lowest	1
Chlorine	Nonmetal	p	Smallest	Highest	7

2.94
a. Pt
d. transition metal
b. group number $=10$; period $=6$
e. d
c. 78
f. all of the valence shells are partially filled
2.95

ㅈ
2.96
a. Type b. Block c,d: Radius e,f: Ionization g. Valence Electrons

Calcium	Metal	s	Largest	Lowest	2
Magnesium	Metal	s			2
Sulfur	Nonmetal	p	Smallest	Highest	6

2.97 The electron configuration of copper $\left(1 s^{2} 2 s^{2} 2 p^{6} 3 s^{2} 3 p^{6} 4 s^{1} 3 d^{10}\right)$ is unusual because electrons have been added to higher-energy $3 d$ orbitals even though there is only one $4 s$ electron.
2.98 Strontium is an alkaline earth metal and thus has similar chemical properties as calcium. Therefore it can be incorporated into bones, just like calcium. Radioactive isotopes emit particles or energy as some form of radiation. Depending on the level of radiation emitted, illnesses such as cancer and leukemia can occur.

