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CHAPTER 2

2.1 Limits of Sequences.

2.1.0. a) True. If X, converges, then there is an M > 0 such that [X,/ = M. Choose by Archimedes an N €N
such that N > M\/)e. Then n =N implies [X,/n| = M/\r}r; M/N < e.

b) False. X, = "N does not converge, but Xx,/Nn=1/"n—- 0asn — oo.

c) False. X, = 1 converges and y, = (—1)" is bounded, but X,y, = (—1)" does not converge.

d) False. X = 1/n converges to 0 and y, = n?> > 0, but X,y = n does not converge.

2.1.1. a) By the Archimedean Principle, given ¢ > 0 there is an N &€ N such that N > 1/&. Thus n = N
implies

/(2—-1/n) —=2/=[1/n| = 1/N < &

b) By the Archimedean Principle, given & > 0 there is an N &€ N such that N > 72/?. Thusn = N implies
1+ n/\/ﬁ -1/= /ﬂ/\/ﬁ/ = n/\/ﬁ <e
c) By the Archimedean Principle, given ¢ > 0 there is an N € N such that N > 3/&. Thus n = N implies
3(1+1/n)-3/=/3/n|<3/N <e.
d) By the Archimedean Principle, given ¢ > 0 there is an N € N such that N > 1/ "3z. Thus n = N implies

/(2n? +1)/(3n?) —2/3] = [1/(3n?)] = 1/(3N?) < &.

2.1.2. a) By hypothesis, given ¢ > 0 there is an N € N such that n = N implies [Xy —1/< &2. Thusn = N

implies
J1+2X, —3[/=2[Xy — 1/ < e

b) By hypothesis, given ¢ > 0 there is an N &€ N such that n = N implies X, > 1/2 and [X, — 1/ < ¢/4. In
particular, 1/X, < 2. Thus n = N implies

[(mXn = 2)/%n = (r = 2)] = 2/(Xn = 1)/Xn[ < 4[Xn =1/ < &

c) By hypothesis, given & > 0 there is an N € N such that n =N implies X, > 1/2 and [X, — 1/ < &/(1 + 2e).

Thus n = N and the triangle inequality imply

Z - K 1
62 —e)fxn—(1—@)=[xn—1 1+  <[Xn—1/ 1+ & <[x,—1/1+2€)<e
R

" Xn /Xn/

2.1.3. a) If ng = 2k, then 3 — (—1)"k = 2 converges to 2; if Ny = 2k + 1, then 3 — (—1)"< = 4 converges to 4. b)
If Nk = 2K, then (=1)®™ +2 = (-1)%+ 2 = 1+ 2 = 3 converges to 3; if Nx = 2k + 1, then (=1)%"« +2 =

(—1)5%*3+ 2 = =1+ 2 =1 converges to 1.
c) If ng = 2k, then (nk—(—1)"<nk—1)/nx = —1/(2k) converges to 0; if N, = 2k+1, then (nk—(—1)"xNK-1)/ny =

(2ng— 1)/ng = (4k + 1)/(2k + 1) converges to 2.

2.1.4. Suppose Xp is bounded. By Definition 2.7, there are numbers M and m such that m < X, =M for all
n €N. Set C := max{1,/M/,/m/}. Then C >0, M =C, and m = —C. Therefore, -C = x, = C, i.e., [Xn/ < C

for all n €N.
Conversely, if [Xn/ < C for all n €N, then X, is bounded above by C and below by —C.

2.1.5. If C =0, there is nothing to prove. Otherwise, given & > 0 use Definition 2.1 to choose an N & N such
that n =N implies [bn/ = b, < &//C|. Hence by hypothesis, n = N implies

Xn —a/ = [Clb, < &
as N — o0,
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By definition, X, - aas n — oo.

2.1.6. If X, = a for all n, then [X, —a/ = 0 is less than any positive ¢ for all n € N. Thus, by definition, X, = a

asn — oo,
11
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2.1.7. a) Let a be the common limit point. Given ¢ > 0, choose N € N such that n = N implies /X, —a/ and
|yn — a/ are both < &/2. By the Triangle Inequality, n = N implies

[Xn = Yn| = [Xn —a] +[yn —a[ < e&.

By definition, X, —Yh—= 0as n - oo.

b) If n converges to some a, then given ¢ =1/2, 1 =[(n+1) —n/ < [(n+1) —a/+ /n —a/ < 1 for n sufficiently
large, a contradiction.

c) Let Xn=n and Yy =n+1/n. Then [Xn —Ya/ =1/Nn - 0as n — oo, but neither X, nor y, converges.

2.1.8. By Theorem 2.6, if X, — a then X, — a. Conversely, if X,  — a for every subsequence, then it
converges for the “subsequence” Xp.

2.2 Limit Theorems.

2.2.0. a) False. Let X, = n? and Yn = —N and note by Exercise 2.2.2a that X, + Y, — 00 as n — o0.

b) True. Let ¢ > 0. If X, » —o0 as h — o0, then choose N &€ N such that n = N implies X, < —1/&. Then
Xn < 050 [Xn] = —Xp > 0. MultiplyX, < —1/& by &/—Xn) which is positive. We obtain —& < 1/X,, i.e.,
[1/Xn| = —1/Xn < &.

c) False. Let X, = (—=1)"/n. Then 1/X, = (—1)"n has no limit as n —» oo.

d) True. Since (2X —x)? = 2¥Xlog2 —1 > 1 for all X = 2, i.e.,, 2X — X is increasing on [2,00). In particular,
X —x=222-2>0,ie, 2*>xfor x = 2. Thus, since X, = 00 as N — 0, we have 2X» > X,, for n large, hence

1
27 < T =0
n

as n — 0.

2.2.1. a) [Xp/ =1/n > 0asn — oo and we can apply the Squeeze Theorem.

b) 2\7/ n? + )= (2\@)/(1 +\7t[n\2/)_—> 0/(1+0)=0 ky_Theorem 2.12.

o ( 2n+1)/(n+ 2) =(( 2/ n)+(1/n))/(1+( 2/n)) - 0/(1+0) =0 by Exercise 2.2.5 and Theorem
2.12.

d) An easy induction argument shows that 2n +1 < 2" for n = 3,4, .... We will use this to prove that n?> < 2"
forn =4,5,.... It's surely true for n = 4. If it's true for some n = 4, then the inductive hypothesis and the fact
that 2n +1 < 2" imply

(n+12=n>+2n+1<2"+2n+1<2"+2"=2""1

so the second inequality has been proved.
Now the second inequality implies Nn/2" < 1/n for n = 4. Hence by the Squeeze Theorem, N/2" - 0asn — oo.

2.2.2. a) Let M € R and choose by Archimedes an N & N such that N > max{M, 2}. Then n = N implies
N —n=n(n-1=N(N-1)>M(@2 —1) =M.

b) Let M € R and choose by Archimedes an N &€ N such that N > —M/2. Notice that n = 1 implies —3n <= -3
s01—3n < -2. Thusn =N implies n —3n®> =n(1 - 3n) s —2n <= —2N < M.

¢) Let M € R and choose by Archimedes an N € N such that N > M. Then n = N implies (n?+ 1)/n =
n+1/n>N +0> M.

d) Let M €R satisfy M < 0. Then 2+sinf=>2—1=1implies n?(2 +sin(N®*+n+1)) =n7-1>0=M for

all n €N. On the other hand, if M > 0, then choose by Archimedes an N &€ N such that N > M. Then n =N
implies n?(2 +sin(n® +n +1)) =n? -1>N?2 > M.

2.2.3. a) Following Example 2.13,
2+3n—4n®> (2/n?)+ (3/n) - 4_ -4
1-2n+3n2 (1/n2)- (2/n)+ 3 3

as n — oo,
b) Following Example 2.13,
n+n-—2 1+ (1/n%) - (2/n®)
28 +n—2 2+ (1/n2)- (2/n3)

1
=
2

as n — oo.
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¢) Rationalizing the expression, we obtain
(" 3n+2-— 3/__)_( 3n+2+3‘[ 2n +2
n) v

3n+2— n= o — -
\/3n+2+\/n 3n+2+vn

as n - o0 by the method of Example 2.13. (Multiply top and bottom by 1/\/ﬁ.)
d) Multiply top and bottom by 1/ " n to obtain

A b P
in+1—"n 4+1/n— " 1-— 2-1 1
i/n B
= bd .
\/9n+1—\/n+2 p9+1/n—pl+2/n 3—-1 2

2.2.4. a) Clearly,
Xn X _ XpY = XYn  XpY = XYy +Xy — XYj

Yn Y Y¥Yn Y¥Yn
Thus - -
Xn o x- 1 Xn x|+ #L/Vn*— yl.
- - -< | -
Yn Y I¥n/ IyYn/

a X020 X/+g%l/yn—y/—>0
o vy Sl T

as N — oo by Theorem 2.12i and ii. Hence by the Squeeze Theorem, X,/y, —» X/y as n - co.

b) By symmetry, we may suppose that X =y = 0. Since y, = o implies y, > 0 for n large, we can apply
Theorem 2.15 directly to obtain the conclusions when o > 0. For the case a < 0, X5 > M implies ax, < aM.
Since any Mg € R can be written as aM for some M € R, we see by definition that X, - —co as n —» oo.

2.2.5. Case 1./x = 0. Let 2> 0 and choose N so large that n = N implies [Xn/ < 2?. By (8) in 1.1, \/ﬁ< 2
forn =N, ie., YX,—> 0asn — oo,

Case 2. X > 0. Then ual_ AL
- Xn*+ X _Xp=X
Vie V. (J Yy VoV =2 Yy

V-

Since Y X,= 0, it follows that

Vo

This last quotient converges to 0 by Theorem 2.12. Hence it follows from the Squeeze Theorem that ‘X, —
as h — oo.

2.2.6. By the Density of Rationals, there is an r, between X+ 1/n and X for each n € N. Since [X —r,/ < 1/n,
it follows from the Squeeze Theorem that r, = Xas n — oo.

2.2.7. a) By Theorem 2.9 we may suppose that [X/ = co. By symmetry, we may suppose that X = . By
definition, given M € R, there is an N & N such that n = N implies X, > M. Since w, = X,, it follows that
W, > M for all n = N. By definition, then, w, - 0 as n — oo.

12
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b) If X and y are finite, then the result follows from Theorem 2.17. If X =y = #o0or —X =Yy = 00, there is
nothing to prove. It remains to consider the case X = 00 and y = —oo. But by Definition 2.14 (with M = 0),
Xn > 0> Yy for n sufficiently large, which contradicts the hypothesis Xn < yn.

2.2.8. a) Take the limit of Xp41 = 1 — "I =X, as N — 00. We obtain X =1— 1I-X,ie, X2—X= 0.
Therefore, X =0, 1.

b) Take the limit of Xp+1 =2+ ~X,— 2asn — 00. We obfain X =2+ \/x— 2, i.e.,, X>—5x+6 = 0. Therefore,
X = 2,3. But X; > 3 and inducti??—shews that Xp+1 =2+ \/Xn— 2> 24—3—2 =3, so the limit must be X = 3.

c) Take the limit of Xf41 = 2+ X, as N — 0. We obtain X = 2+ X, i.e, X2 — X —2 = 0. Therefore,
X=2,-1. But Xp+1= 2 + Xn = 0 by definition (all square roots are nonnegative), so the limit must be X = 2.
This proof doesn’t change if X; > -2, so the limit is again X = 2.

13
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2.29. a) let E={k€eZ:k =0and k =10""1y}. Since 10™'y < 10, E £{0,1,...,9}. Hence w :=supE €
E. It follows that w < 10"y, i.e,, w/10"*1 < y. On the other hand, since w + 1 is not the supremum of E,
w + 1> 10"y, Therefore, y < w/10"*1 +1/10"*1.

b) Apply a) for n = 0 to choose X1 = W such that X;/10 = X < X;/10 + 1/10. Suppose

> X
Sp = Kk =X< Xk 1

+
k k '
ooy 10 Loy 10K 7100

Then 0< X — s, < 1/10", so by a) choose Xn+1 such that Xp+1/10"! < X — 5 < Xpe1 /10" + 1/10", e,
Xk P xe 1

=x< + .
10K e 10 ~ 107+1

¢) Combine b) with the Squeeze Theorem.
d) Since an easy induction proves that 9" > n for all n € N, we have 97" < 1/n. Hence the Squeeze Theorem
implies that 97" — 0 as n - 00. Hence, it follows from Exercise 1.4.4c and definition that

n H il
4 x5 4 oo o+
4999 - = + lim = + lim — 1-— = + = 0.5.
10 k n
noeo 10 10 n—eo 10 9 10 10
Similarly,
X 91 T
999 = lim =lim 1-— =1
n—oo 10 n—oo 9
k=1

2.3 The Bolzano—Weierstrass Theorem.

2.3.0. a) False. X, = 1/4 + 1/(n + 4) is strictly decreasing and [Xn/ = 1/4 +1/5 < 1/2, but X, = 1/4 as
n — oo.

b) True. Since (n—1)/(2n —1) - 1/2 as n - oo, this factor is bounded. Since [cos(n? +n + 1)/ < 1, it follows
that {Xn} is bounded. Hence it has a convergent subsequence by the Bolzano—Weierstrass Theorem.

c) False. X, = 1/2 — 1/n is strictly increasing and [Xn/ < 1/2 < 1+1/n, but X, - 1/2 as n - co.

d) False. Xn = (1 + (—1)")nsatisfies X, = 0 for n odd and X, = 2n for n even. Thus Xok+1 — 0 as k = 00, but
Xn is NOT bounded.

2.3.1. Suppose that —1 < X1 < 0 forsomen =0. Then 0< Xp_1+1<1s00< X3 +1< \/xn_l + 1 and
it follows that Xn_1 < "Xn_1+1—1= X,. Moreover, "X,_1+1—1=<1—-1=0. Hence by induction, X, is
increasing and bounded above by 0. It follows from the Monotone Convergence Theorem that X, = aasn — oo.

Taking the limit of "X, 1 +1—1=X weseethat a2 +a =0, i.e, a = —1,0. Since X increases from x > —1,
- n n 0]

the limit is 0. If Xo= —1, then X, = —1 for all n. If Xg= 0, then X, = 0 for all n.
Finally, it is easy to verify that if Xo= " for * = —1 or 0, then X, = " for all n, hence X, - ~ asn — co.

2.3.2. If X4 = 0 then X, = 0 for all n, hence converges to 0. If 0 < X; < 1, then by 1.4.1c, X, is decreasing
and boundeg}/ below. Thus the limit, a, exists k{Y the Monotone Convergence Theorem. Taking the limit of

Xn+1=1— "1—-Xy,asn - o0, wehavea=1— 1—a,ie, a=0,1. Since X; < 1, the limit must be zero.
Finally, \/
Xn+1 _1—""1—Xn 1—(1- Xn) 1 _1
J =
Xn Xn Xn(1+ "1 —Xpu) 1+1 2

2.3.3. Case 1. Xg= 2. Then X, = 2 for all n, so the limit is 2.
14
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Case 2. 2 <\f(° < 3. Suppose that 2 < X,_; < 3 for s\?'men = 1. Then 0< Xp_1—2 <150 \/Xn_l —2=Xp-1—2,
i.e.,, Xn =2+ Xp_1 —2 = Xp_1. Moreover, X, =2+ X, 1 —2 < 2+1 = 3. Hence by induction, X, is increasing

and bounded abgfle by 3. It follows from the Monotone Convergence Theorem that X, — a as n = 0. Taking
the limit of 2+ "Xp_1 —2 = X, we see that a> —5a+6 =0, i.e., a = 2, 3. Since X,, increases from Xg > 2, the

limit is 3.

Case 3. )Xo = 3. Suppose that Xp—; = 3 for somgn = 1. Then Xp—1 —2 =150 Xpu—1 —2 < Xp—1 — 2, i.e,,
Xn=2+ Xn 1 —2=<X . Moreover, X =2+ "X —2 =2+ 1 = 3. Hence by induction, X is decreasing
- n—1 n n—1 n

15
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and bounded above by 3. By repeating the steps in Case 2, we conclude that X, decreases from Xg = 3 to the
limit 3.

2.3.4. Case 1. Xg < 1. Suppose Xp—1 < 1. Then
2Xn—1 1+ Xnp_1 2

Xp_1 = < =Xpn< _, =1
n1= 2 Xn< =1

Thus {X,} is increasing and bounded above, so X, = X. Taking the limit of X, = (1 +Xn_1)/2 as n - co, we see
that x = (1 +x)/2, i.e.,, X = 1.
Case 2. Xg= 1. If Xp_1 = 1 then

14+ Xn_1 < 2Xn—1 _

Thus {X,} is decreasing and bounded below. Repeating the argument in Case 1, we conclude that X, = 1 as
n - oo.

2.3.5. The result is obvious when X = 0. If X > 0 then by Example 2.2 and Theorem 2.6,

lim x¥C"D = jim x¥Y™M =1,
n—soo m—oo
If X < 0 then since 2n — 1 is odd, we have by the previous case that x/@"—1) = —(—x)/@—1) , _1 35 n - c0.

2.3.6. a) Suppose that {Xn} is increasing. If {X,} is bounded above, then there is an X € R such that X, = X
(by the Monotone Convergence Theorem). Otherwise, given any M > 0 there is an N & N such that Xy > M.
Since {Xp} is increasing, n = N implies X, = XN > M. Hence X, = 00 as n — o0.

b) If {Xn} is decreasing, then —Xp, is increasing, so part a) applies.

2.3.7. Choose by the Approximation Property an X; € E such that supE —1 < X; < supE. Since supE £E,
we also have X; < sup E. Suppose X; < X, < --- < X, in E have been chosen so that supE —1/n < X, < supE.
Choose by the Approximation Property an Xp+1 € E such that max{X,,supE — 1/(n+ 1)} < Xp+1 < supE.
Then supE —1/(n+1) < Xp+1 < supE and X, < Xp+1. Thus by induction, X; < X < ... and by the Squeeze
Theorem, X, = supE as n — oco.

2.3.8. a) This follows immediately from Exercise 1.2.6. p \/
b) By a), Xn+1= (Xn+ Yn)/2 < 2Xn/2 = Xn. Thusyni1 < Xns1 < *+- < Xq. Similarly,y, = yZ < nYn =
VYn+1 implies Xp+1 > Yne1 > Yo o7 ° > Y1. Thus {X,} is decreasing and bounded below by y; and {y,} is increasing

and bounded above by X;.
c) By b),

Xn+VYn \/ Xn+VYn _ Xn = ¥Yn

Xn+1 — Yn+1 = 2 — Tt < 2 Yn= """ .

Hence by induction and a), 0 < Xp+1 — Yn+1 < (X1 — y1)/2".
d) By b), there exist X, y € R such that X, ¢ Xand y, Ty asn — o. By c), [X—y/=< (Xp —Yy1)-0=0. Hence
X =Y.

2.3.9. Since Xg=1and yg =0,

X%1+1 - 2y?\+1 = (Xn+ 2yn)2 = 2(Xn+ )/n)2

X2+ 2y2 == (-1)"(Xo— 2yo) = (—1)".

Notice that X3 = 1 =vVy;. If yo_1 = n —1and X4—; = 1 then Yy, = Xp_1 +Yn—1 = 1+ (N—-1) =n and
Xpn = Xn—1 +2Yn—1 = 1. Thus 1/y, - O0_as n —»_o0 and X, = 1 for all n €N. Since

—y2 - o2 2 -
,)L - ,X_n_—ZYn‘ l
_ —_ 27 = = y -0
ya Ya .
16
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as n — oo, it follows that X,/y, = %= 2 as nh — 0. Since Xp,Yn > 0, the limit must be ~ 2.

17
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2.3.10. a) Notice Xg > Yo > 1. If Xpn—1 > Yyn—1 > 1 then yﬁ_l — Xp=-1¥Yn-1 = Yn-1(Yn-1 — Xn—1) > 0 so
Yn-1(Yn-1 + Xn-1) < 2Xn—-1Yn-1. In particular,

Vs

It follows that
n € N.
Now Y, < X implies 2y, < Xp + Yn. Thus

> YY1 > 1,50 Xn > YXpYn-1 = Yn > 1-1 = 1. Hence by induction, X, >y, > 1 for all

Hence, {Xn} is decreasing and bounded below (by 1). Thus by the Monotone Convergence Theorem, X, — X for
some X € R.
On the other hand, Yn+1 is the geometric mean of Xh+1 and Yn, so by Exercise 1.2.6, Yn+1 = Yn. Since Yy, is

bounded above (by Xp), we conclude that y,— Yy as n — oo for some y € R. \/ _
b) Let n - o in the identity Yn+1 = Y Xpn+1Yn- We obtain, from part a), y = “xy, i.e.,, X =y. A direct

calculation vyields yg > 3.141557494 and X7 < 3.14161012.
2.4 Cauchy sequences.

2.4.0. a) False. a, = 1 is Cauchy and b, = (—=1)" is bounded, but a,b, = (—1)" does not converge, hence
cannot be Cauchy by Theorem 2.29.

b) False. a5 = 1 and b, = 1/n are Cauchy, but a,/b, = n does not converge, hence cannot be Cauchy by
Theorem 2.29.

c) True. If (a,+ by)~! converged to 0, then given any M € R, M = 0, there is an N € N such that n = N
implies [an + b/~ < 1//M/. It follows that n = N implies [a, + b,/ > /M/ > 0> M. In particular, [a, + bn/
diverges to co. But if a, and by, are Cauchy, then by Theorem 2.29, a,+b, = X where X € R. Thus [a,+bn/ — [X/,
NOT oo.

d) False. If Xox = logk and X, = 0 for n = 2%, then X,x — X,k 1 = log(k/(k — 1)) —» 0 as k - o0, but X, does
not converge, hence cannot be Cauchy by Theorem 2.29.

2.4.1. Since (2n? +3)/(N® +5n%2 +3n+1) > O0as n — oo, it follows from the Squeeze Theorem that X, — 0
as N — 00. Hence by Theorem 2.29, X, is Cauchy.

2.4.2. If X, is Cauchy, then there is an N &€ N such that n = N implies [Xn, — Xn/ < 1. Since X, — XN €Z, it
follows that X, = Xy for all n = N. Thus set a := Xy.

2.4.3. Suppose Xp and Yy, are Cauchy and let ¢ > 0.
a) If a =0, then aX,= 0 for all n €N, hence is Cauchy. If « =0, then thereis an N € N such that n,m = N
implies [Xn — Xm/ < &/]a/. Hence
[oXn — oXm| = o] [Xn —Xm[ < &

forn,m = N.

b) There is an N € N such that n,m =N implies /X, — Xm/ and [yn —Ym/ are < &/2. Hence
Xn+ Yn— (Xm + Ym)/ = [Xn = Xm[+ [Yn —Ym/ < &

forn,m = N.

c) By repeating the proof of Theorem 2.8, we can show that every Cauchy sequence is bounded. Thus choose
M > 0 such that [Xn/ and |yn/ are both =< M for all n € N. There is an N & N such that n,m = N implies
[Xn — Xm/ and [Yn —Ym/ are both < ¢/(2M). Hence

Xn¥n = (Xm¥Ym)| = [Xn = Xm/ [Ym] + [Xn/[¥Yn —Ym[ < &
forn,m = N.

m

P, _
2.4.4. let sp= " 1Xk forn=2,3,.... If m > n then Sj+1 — Sn = Xk. Therefore, S, is Cauchy by

k=1
18
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hypothesis. Hence S, converges by Theorem 2.29. k=n

19
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P _1\k
2.45. Let X, = E:1( 1)¥/k for n € N. Suppose n and m are even and m > n. Then

Each term in parentheses is positive, so the absolute value of S is dominated by 1/n. Similar arguments prevail
for all integers n and m. Since 1/n - 0 as n — oo, it follows that X, satisfies the hypotheses of Exercise 2.4.4.
Hence X, must converge to a finite real number.

2.4.6. By Exercise 1.4.4c, if m =n then
m m H T

Kmsr =Xn/ =] (Ke1 =X )/ = = 1_a7m_(1_§) -

k=n k=n

Thus [Xm+1 — Xn/ = (/2" - 1/a™)/(a—1) - O as n,m — co since a > 1. Hence {X,} is Cauchy and must
converge by Theorem 2.29.

2.4.7. a) Suppose a is a cluster point for some set E and let r > 0. Since E N (a— r,a+ r) contains infinitely
many points, so does E Nn(a—r,a+ r)| {a}. Hence this set is nonempty. Conversely, if E N (a-s,a+ s)\ {a}
is always nonempty for all s > 0 and r > 0 is given, choose X; €E n(a— r,a+r). If distinct points Xg,..., Xk
have been chosen so that Xx EE Nn(a—-r,a+ r)and s := min{/X1— a/,..., [Xk — &/}, then by hypothesis there is
an X+1 EE N(a-s,a+s). By construction, Xx+1 does not equal any X for 1 < j < k. Hence Xi,...,Xk+1 are
distinct points in E n(a— r,a+r). By induction, there are infinitely many points in E n(a—-r,a+r).

b) If E is a bounded infinite set, then it contains distinct points X1, Xp,.... Since {X,} € E, it is bounded. It
follows from the Bolzano—Weierstrass Theorem that X, contains a convergent subsequence, i.e., there is an a € R
such that given r > 0 there is an N &€ N such that kK = N implies [X,, —a/ < r. Since there are infinitely many
Xn,’'s and they all belong to E, a is by definition a cluster point of E.

2.4.8. a) To show E := [a,b] is sequentially compact, let X, € E. By the Bolzano—Weierstrass Theorem, Xp
has a convergent subsequence, i.e., there is an Xg € R and integers ny such that X, — Xo as kK —» ©. Moreover,
by the Comparison Theorem, X, € E implies X €E. Thus E is sequentially compact by definition.

b) (0, 1) is bounded and 1/n € (0, 1) has no convergent subsequence with limit in (0, 1).

c) [0,00) is closed and n € [0, 00) is a sequence which has no convergent subsequence.

2.5 Limits supremum and infimum.
2.5.1. a) Since 3— (—=1)" = 2 when n is even and 4 when n is odd, lim sup,, o, Xn =4 and lim inf_ Xy = 2.

b) Since cos(nz/2) =0if nis odd, 1if n =4m and —1if n =4m +2, lim sup,_ Xy = 1 and lim inf,_ Xy =
—-1.
c) Since (-1)"1 + (-1)"/n = —1+ 1/n when n is even and 1 — 1/n when n is odd, lim sup,, ., Xn =1 and

liminfanoeXn = —1.

d) Since Xn, = 1/2 asn = oo, lim sup,_,Xn = lim inf,_.Xn = 1/2 by Theorem 2.36.

e) Since [yn/ =M, lyn/N| = M/n— 0asn — 0. Therefore, lim sup,_eXn = lim inf, X, = 0 by Theorem
2.36.

f) Since n(1 + (=1)™")+ n~1((—=1)" — 1) = 2n when n is even and —2/n when n is odd, lim sup,, ., Xn = % and
liminfan_oeoXn = 0.

g) Clearlyx, — 00 as n —» 0. Therefore, lim sup,_,Xn = lim inf Xy = 0 by Theorem 2.36.

2.5.2. By Theorem 1.20,

. ipfmxn) = Jim (f, (=xc)) = = Jim,(fup Xic) = = lim sup Xn.
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A similar argument establishes the second identity.

2.5.3. a) Since limp_oo(SUPKp Xk) < T, thereis an N € N such that sup, . Xk < I, i.e., Xk <t forall k = N.
b) Since liMp_oo(SUPK=py Xk) > T, there is an N € N such that sup, .y Xk > T, i.e., there is a k; € N such that
. > . Suppose k, € N have been chosen so that k; < k; < --- < kj and X, > r forv =1,2,...,j. Choose
N > Kkj such that sup,.n Xk > r. Then thereis a Kj+1 > N > K; such that Xy;,, > r. Hence by induction, there
are distinct natural numbers ki, k2, ... such that Xxx; > r for all j € N.

Xk
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2.5.4. a) Since infy=n Xk + infi=n Yk is a lower bound of X; +yj for any j =n, we have infi=n Xk + infy=nyx <
infj=n(Xj +Yj). Taking the limit of this inequality as n — o0, we obtain

Iirqn_)iorgf Xn + Iirm_)iorlf Yn < Iirr]n_)iolgf(xn+ Yn).
Note, we used Corollary 1.16 and the fact that the sum on the left is not of the form o0 — c0. Similarly, for each
j=n,
inf (Xk + Yk) = Xj +Yj < sup Xk +VYj.
k=n k=n
Taking the infimum of this inequality over all j = n, we obtain infy~n(Xk+Yk) < supy~, Xk +infj=n yj. Therefore,

- + < +lim i .
||rr1n_)|°|;1f(xn Yn) I|Ln_)so%pxn ||rr]n_)|or2’fyn

The remaining two inequalities follow from Exercise 2.5.2. For example,

|ILT]_)S°lép Xn + |Irt;nﬁlor3)f Yn= — |IrI;YLI°I'<;If(—Xn) - Iugq_)solép(—yn)

= - “rrq]LLgf(_Xn - VYn)= |i2"_)5°l;p(xn +Yn).

b) It suffices to prove the first identity. By Theorem 2.36 and a),
lim Xn+ lim inf yn < lim inf(Xn+ Yyn).
n—oo n—.oo n—.oo

To obtain the reverse inequality, notice by the Approximation Property that for each n € N there is a j, > n
such that infy=n(Xk + Yk)> Xj, —1/n +Yj, . Hence

1
inf (X + > X: — — + inf
an( K yk) In n kznyk

for all n € N. Taking the limit of this inequality as n = oo, we obtain

lim inf(Xn+ Yn) = lim Xn+ lim inf yn.
n—.oo n—.oo n—.oo

c) Let X, = (-=1)" and y, = (=1)"*1. Then the limits infimum are both -1, the limits supremum are both 1,
but X, +ya,=0—-0asn - . If X, =(-1)"and y, = 0 then

Iirr1n_)i°|;1f(xn+ VYn) = —1<1=Iim sup Xn+ Iirrp_)igof Yn.

n—o0

2.55. a) Forany j = n, Xj < supy-p Xk and Yj =< sup,.,Yk. Multiplying these inequalities, we have

XjYj < (SUpk=n Xk)(SUPk=n Yi), i.e.,

sup XjYj = (sup Xx)(sup Y).
j=n k=n =n

Taking the limit of this inequality as n — oo establishes a). The inequality can be strict because if

Ya
Xn=1—ypn= 0 n even
" " 1 nodd
then lim sup,,_,,(XnYn) = 0 < 1 = (lim sup,_. Xn)(limsup,_,o Yn).
b) By a),
lim inf(XnYn) = — lim sup(=XnYn) = — lim sup(—Xn) lim sup yn = lim inf Xn lim sup yn.
n—eo n—oco n—oco n—oo n—oeo n—oco
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2.5.6. Case 1. X = o0. By hypothesis, C := lim sup,_,,Yn > 0. Let M > 0 and choose N & N such that
n =N implies X, = 2M/C and sup,.n Yn > C/2. Then sup, . (XkYk) = Xn¥Yn = (2M/C)y,for any n = N and
SUpk N (XkYk) = (2M/C)sup,on Yn > M. Therefore, lim sup,_ . (XnYn) = 0.
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Case 2. 0 < X< 0. By Exercise 2.5.6a and Theorem 2.36,

lim sup(XnYn) < (lim sup Xn)(lim sup yn) = Xlim sup yn.
n—oco n—.oo n—.oo

n—oo

On the other hand, given 2> 0 choosen € N so that Xx > X—2for k = n. Then XkYk = (X —2)yk for each k = n,
i.e., SUPk=n (XkYK) = (X — 2)supy -, Yk. Taking the limit of this inequality as n = o0 and as 2 —» 0, we obtain

lim sup(Xnyn)= Xlim sup yn.

n—oo n—oco

2.5.7. It suffices to prove the first identity. Let s = infen(SUPK =y XK)-
Case 1. s = 0. Then supy=pn Xk = 0 for all N € N so by definition,

lim sup Xn = lim (sup Xkx)= o0 =s.
n—oo N—=00 k=n

Case 2. s = —00. Let M > 0 and choose N & N such that sup, .y Xk = —M. Then sup, ., Xk < sup, =N Xk =
—M for all n = N, i.e, lim sup,_ o Xn = —00.

Case 3. —00 < s < —o00. Let 2 > 0 and use the Approximation Property to choose N & N such that
SUPE =N Xk < S + 2. Since supy -, Xk = supy-n Xk < S+ 2for all n =N, it follows that

S—2<s<=supXx<Ss+?2
k=n

forn =N, ie, limsup,_Xn = S.

2.5.8. It suffices to establish the first identity. Let s = lim inf _« Xn.

Case 1. s = 0. Then by Theorem 2.35 there is a subsequence Kj such that Xi; = 0, e, 1/x|<j — 00 as ] - oo.
In particular, supy~,(1/Xg) = o0 for all n €N, i.e., lim sup,,_,(1/Xn) = © =1/s.

Case 2. s = 0. Then Xx = oo, i.e., 1/Xy = 0, as k = c0. Thus by Theorem 2.36, lim sup,,_,.(1/X,) = 0 = 1/s.

Case 3. 0<s < oo. Fixj =n. Since 1/infy=n Xk = 1/X; implies 1/infy=n Xk = sup;j~n(1/X;), it is clear that
1/s = lim sup,,_,.,(1/X,). On the other hand, given 2> 0 and n €N, choose j > N such that infy-n Xk + 2> X;,
i.e., 1/(infy=n Xk + 2) < 1/Xj =< supg=n(1/Xk). Taking the limit of this inequality as n — o and as 2 - 0, we
conclude that 1/s < lim sup_oo(1/Xn).

2.5.9. If X5 = 0, then [X,/ = 0. Thus by Theorem 2.36, lim sup,,_,., [Xn/ = 0. Conversely, if lim sup,_,. [Xn/ =
0, then
0 < lim inf [Xn/ < lim sup [Xn/ =< 0,
n—co n—o0

implies that the limits supremum and infimum of /X[ are equal (to zero). Hence by Theorem 2.36, the limit exists
and equals zero.
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