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e 
¯ ¯ 

 

 

2.1  Limits of  Sequences. 

CHAPTER  2

 

2.1.0. a) True.  If xn converges, then there is an M  > 0 such that  |xn| ≤ M .  Choose by Archimedes  an N  ∈ N 

such that  N  > M/ε. Then  n ≥ N  implies  |xn/n| ≤ M/n  ≤ M/N  < ε. 

b) False.  xn = 
√

n does not converge, but xn/n = 1/
√

n → 0 as n → ∞. 

c) False.  xn = 1 converges and yn = (−1)n is bounded, but xnyn = (−1)n does not converge. 

d) False.  xn = 1/n converges to 0 and yn = n2  > 0, but xnyn = n does not converge. 

2.1.1.  a)  By  the Archimedean  Principle, given  ε >  0 there is an N  ∈ N such  that  N  > 1/ε.   Thus n ≥ N 

implies 

|(2 − 1/n) − 2| ≡ |1/n| ≤ 1/N  < ε. 
 

b) By  the Archimedean  Principle, given ε > 0 there is an N  ∈ N such that  N  > π2/ε2.  Thus n ≥ N  implies 

|1 + π/
√

n − 1| ≡ |π/
√

n| ≤ π/
√

N  < ε. 

 

c) By  the Archimedean  Principle, given ε > 0 there is an N  ∈ N such that  N  > 3/ε.  Thus n ≥ N  implies 

 

|3(1 + 1/n) − 3| ≡ |3/n| ≤ 3/N  < ε. 

√  

d) By  the Archimedean  Principle, given ε > 0 there is an N  ∈ N such that  N  > 1/ 

 

|(2n2  + 1)/(3n2) − 2/3| ≡ |1/(3n2)| ≤ 1/(3N 2) < ε. 

3ε.  Thus n ≥ N  implies

 

2.1.2. a) By  hypothesis,  given  ε > 0 there is an N  ∈ N such that  n ≥ N  implies  |xn  − 1| < ε/2.  Thus n ≥ N 

implies 

|1 + 2xn  − 3| ≡ 2 |xn  − 1| < ε. 
 

b)  By  hypothesis,  given  ε > 0 there is an N  ∈ N such that  n ≥ N  implies  xn > 1/2  and  |xn  − 1| < ε/4.  In 

particular, 1/xn  < 2.  Thus n ≥ N  implies 

 

|(πxn  − 2)/xn − (π − 2)| ≡ 2 |(xn  − 1)/xn| < 4 |xn  − 1| < ε. 

 

c) By  hypothesis,  given  ε > 0 there is an N  ∈ N such that  n ≥ N  implies  xn > 1/2  and |xn  − 1| < ε/(1 + 2e). 

Thus n ≥ N  and the triangle  inequality imply

¯ 

|(x2  − e)/xn  − (1 − e)| ≡ |xn  − 1| 
¯
1 +

 

¯                             µ 

¯ 
≤ |xn  − 1|   1 +

 
e  

¶ 

< |xn  − 1|(1 + 2e) < ε.

n                                                     
¯           

xn 

¯
 

|xn|

 

2.1.3. a) If nk = 2k, then 3 − (−1)nk   ≡ 2 converges to 2; if nk = 2k + 1, then 3 − (−1)nk   ≡ 4 converges to 4. b)  

If  nk = 2k,  then (−1)3nk   + 2 ≡ (−1)6k + 2 = 1 + 2 = 3 converges to 3; if nk = 2k + 1, then (−1)3nk   + 2 ≡ 



as n → ∞. 
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(−1)6k+3 + 2 = −1 + 2 = 1 converges to 1. 

c) If nk = 2k, then (nk−(−1)nk nk−1)/nk ≡ −1/(2k) converges to 0; if nk = 2k+1, then (nk−(−1)nk nk−1)/nk ≡ 

(2nk − 1)/nk = (4k + 1)/(2k + 1) converges to 2. 
 

2.1.4. Suppose xn is bounded.  By  Definition 2.7, there are numbers M  and m  such that  m ≤ xn ≤ M  for all 

n ∈ N. Set C :=  max{1, |M |, |m|}.   Then  C > 0, M  ≤ C, and m ≥ −C. Therefore,  −C ≤ xn ≤ C, i.e., |xn| < C 

for all n ∈ N. 

Conversely, if |xn| < C for all n ∈ N, then xn is bounded above by C and below by −C . 
 

2.1.5. If C = 0, there is nothing  to prove.  Otherwise,  given  ε > 0 use Definition 2.1 to choose an N  ∈ N such 

that  n ≥ N  implies  |bn| ≡ bn  < ε/|C|.  Hence by hypothesis,  n ≥ N  implies 

 

|xn  − a| ≤ |C|bn  < ε. 

 

By  definition,  xn → a as n → ∞. 

2.1.6. If xn = a for all n, then |xn − a| = 0 is less than any positive ε for all n ∈ N. Thus, by definition,  xn → a



as n → ∞. 
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2.1.7. a) Let  a be the common limit  point.  Given  ε > 0, choose N  ∈ N such that  n ≥ N  implies  |xn  − a| and 

|yn  − a| are both < ε/2. By  the Triangle Inequality, n ≥ N  implies 

 

|xn  − yn| ≤ |xn  − a| + |yn  − a| < ε. 

 

By  definition,  xn − yn → 0 as n → ∞. 

b) If n converges to some a, then given ε = 1/2, 1 = |(n + 1) − n| < |(n + 1) − a| + |n − a| < 1 for n sufficiently 

large, a contradiction. 

c) Let  xn = n and yn = n + 1/n.  Then  |xn  − yn| = 1/n → 0 as n → ∞,  but neither xn nor yn converges. 
 

2.1.8.  By  Theorem  2.6,  if  xn  →  a then  xnk     
→  a.   Conversely, if  xnk     

→  a for  every  subsequence,  then  it 

converges for the “subsequence”  xn. 
 

2.2  Limit Theorems. 
 

2.2.0. a) False.  Let  xn = n2   and yn = −n and note by Exercise  2.2.2a that  xn + yn → ∞  as n → ∞. 

b)  True.  Let  ε > 0.  If  xn →  −∞ as n →  ∞,  then choose N  ∈ N such that  n ≥ N  implies  xn < −1/ε.  Then 

xn  <  0 so |xn|  = −xn >  0.   Multiply xn   <  −1/ε  by  ε/(−xn) which  is  positive.    We  obtain  −ε <  1/xn,  i.e., 

|1/xn| = −1/xn  < ε. 

c) False.  Let  xn = (−1)n/n. Then  1/xn  = (−1)nn has no limit  as n → ∞. 

d)  True.   Since  (2x  − x)0   = 2x log 2 − 1 >  1 for all  x ≥ 2, i.e.,  2x  − x is increasing  on [2, ∞).    In  particular, 

2x  − x ≥ 22 − 2 > 0, i.e., 2x  > x for x ≥ 2.  Thus, since xn → ∞  as n → ∞,  we have 2xn   > xn for n large, hence 

 

 

 

as n → ∞. 

2−xn   <  
 1        

0 

xn  

→

 

2.2.1. a) |xn| ≤ 1/n → 0 as n → ∞  and we can apply  the Squeeze Theorem. 

b) 2n/(n2  + π) = (2/n)/(1 + π/n2) → 0/(1 + 0) = 0 by  Theorem  2.12. 

c)  (
√

2n + 1)/(n + 
√

2)  = ((
√

2/
√

n) + (1/n))/(1 + (
√

2/n))  →  0/(1 + 0) = 0 by  Exercise  2.2.5 and  Theorem 

2.12. 

d) An  easy induction  argument  shows that  2n + 1 < 2n for n = 3, 4, . . . .  We will  use this to prove that  n2  ≤ 2n
 

for n = 4, 5, . . . .  It’s  surely  true for n = 4.  If it’s  true for some n ≥ 4, then the inductive  hypothesis  and the fact 

that  2n + 1 < 2n  imply 

(n + 1)2  = n2  + 2n + 1 ≤ 2n + 2n + 1 < 2n + 2n = 2n+1
 

 

so the second inequality has been proved. 

Now the second inequality implies n/2n  < 1/n for n ≥ 4. Hence by the Squeeze Theorem,  n/2n  → 0 as n → ∞. 
 

2.2.2.  a)  Let  M  ∈ R and choose by  Archimedes  an N  ∈ N such that  N  > max{M, 2}.  Then  n ≥ N  implies 

n2  − n = n(n − 1) ≥ N (N − 1) > M (2 − 1) = M . 

b) Let  M  ∈ R and choose by Archimedes  an N  ∈ N such that N  > −M/2.  Notice that n ≥ 1 implies −3n ≤ −3 

so 1 − 3n ≤ −2. Thus n ≥ N  implies  n − 3n2  = n(1 − 3n) ≤ −2n ≤ −2N  < M . 

c)  Let  M  ∈ R and  choose by  Archimedes  an N  ∈ N such  that  N  > M .   Then  n ≥ N  implies  (n2 + 1)/n = 

n + 1/n > N + 0 > M . 
 

d) Let  M  ∈ R satisfy  M  ≤ 0.  Then  2 + sin θ ≥ 2 − 1 = 1 implies  n2(2 + sin(n3 + n + 1)) ≥ n2  · 1 > 0 ≥ M  for 

all n ∈ N. On the other hand, if M  > 0, then choose by Archimedes  an N  ∈ N such that  N  > 
√

M .  Then  n ≥ N 



as n → ∞. 
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= 

= 

implies  n2(2 + sin(n3 + n + 1)) ≥ n2  · 1 ≥ N 2  > M . 
 

2.2.3. a) Following Example  2.13, 

 

 

 
as n → ∞. 

b) Following Example  2.13, 

2 + 3n − 4n2
 

1 − 2n + 3n2 

 

 

 

 n3  + n − 2 

2n3  + n − 2 

 

(2/n2) + (3/n) − 4 

(1/n2) − (2/n) + 3 
→

 

 

 

 

1 + (1/n2) − (2/n3) 

2 + (1/n2) − (2/n3) 
→

 

 −4 

3 

 

 

 

1 

2
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− 

¯ x 

¯ x 

√ 

√ → ∞ 

= 

¯ 

¯ 

c) Rationalizing the expression, we obtain 

(
√ 

3n + 2 − 
√ 

n)(
√ 

3n + 2 + 
√ 

n)
 

 

 

 

       2n + 2       

√
3n + 2 − 

√
n = 

√
3n + 2 + 

√
n 

= 

3n + 2 +   n

as n → ∞  by the method of Example 2.13.  (Multiply top and bottom by 1/
√

n.) 

d) Multiply top and bottom by 1/
√

n to obtain 

     √ 
4n + 1 −  

√ 
n 

  

p
4 + 1/n − 

p
1 −  

1/n 

 

2 − 1      1

√
9n + 1 − 

√
n + 2 

= p
9 + 1/n 

p
1 + 2/n 

→  
3 − 1      2 

.

 

2.2.4. a) Clearly,  

xn      x 
= 

xn y − xyn 
= 

xn y − xy + xy − xyn 
.

 

 

Thus 

yn 

− 
y 

 

¯ 
xn

 

¯ 

yyn 

 

¯      
  1   

¯                    xn
 

 

 

 
x| +

 

yyn 

 
   | x|   

|yn  − y|.

¯ yn 

− 
y ¯ ≤ 

|yn| 
|     −

 
 

Since  y = 0, |yn| ≥ |y|/2 for large n.  Thus 

|yyn|

¯ 
xn 

¯ 

¯          
 2 

¯                 xn
 

 

x| +
 2|x|  

2 
|yn  − y| → 0

¯ yn 

− 
y ¯ ≤ 

|y| 
|     −

 
|y|

 

as n → ∞  by Theorem  2.12i and ii.  Hence by the Squeeze Theorem,  xn/yn → x/y as n → ∞. 

b)  By  symmetry,  we may  suppose that  x = y = ∞.   Since  yn →  ∞  implies  yn > 0 for n large,  we can apply 

Theorem  2.15 directly  to obtain  the conclusions  when α > 0.  For the case α < 0, xn > M  implies  αxn < αM . 

Since  any M0  ∈ R can be written  as αM  for some M  ∈ R, we see by definition  that  xn → −∞ as n → ∞. 

2.2.5. Case  1.  x = 0.  Let  ² > 0 and choose N  so large that  n ≥ N  implies  |xn| < ²2. By  (8)  in 1.1, 
√

xn < ² 

for n ≥ N ,  i.e., 
√

xn → 0 as n → ∞. 

Case  2.  x > 0.  Then

                µ  √ 
xn + 

√ 
x 

¶ 

   xn −  x   
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√ √
xn − 

√
x = (

√
xn − 

√
x) 

 

Since  
√

xn ≥ 0, it follows that 

√
xn + 

√
x 

= 

xn + 

√
x 

.

√            √    | xn −    x| 

|   xn − x| ≤ √
x    

.

This last  quotient  converges to 0 by Theorem  2.12.  Hence it follows from the Squeeze Theorem  that  
√

xn →  
√

x 

as n → ∞. 
 

2.2.6. By  the Density of Rationals, there is an rn between x + 1/n and x for each n ∈ N. Since |x − rn| < 1/n, 

it follows from the Squeeze Theorem  that  rn → x as n → ∞. 
 

2.2.7.  a)  By  Theorem  2.9 we may  suppose that  |x| = ∞.   By  symmetry,   we may  suppose that  x = ∞.   By 

definition,  given  M  ∈ R,  there is an N  ∈ N such that  n ≥ N  implies  xn > M .   Since  wn ≥ xn, it  follows  that 

wn > M  for all n ≥ N .  By  definition,  then, wn → ∞  as n → ∞. 

b)  If  x and y are finite,  then the result  follows from Theorem  2.17.  If  x = y = ±∞ or −x = y = ∞,  there is 

nothing  to prove.   It remains  to consider  the case x = ∞  and  y = −∞. But  by  Definition 2.14 (with  M  = 0), 

xn > 0 > yn for n sufficiently  large, which  contradicts  the hypothesis  xn ≤ yn. 

2.2.8.  a)  Take  the limit  of xn+1 = 1 − 
√

1 − xn, as n  →  ∞.   We  obtain  x = 1 − 
√

1 − x, i.e.,  x2 − x = 0. 

Therefore,  x = 0, 1. 

b) Take the limit  of xn+1 = 2 + 
√

xn − 2 as n → ∞.  We obtain x = 2 + 
√

x −  2, i.e., x2 − 5x + 6 = 0. Therefore, 

x = 2, 3. But  x1 > 3 and induction  shows that  xn+1 = 2 + 
√

xn − 2 > 2 + 
√

3 − 2 = 3, so the limit  must be x = 3. 

c)  Take  the  limit  of xn+1 = 
√

2 + xn as n  →  ∞.   We  obtain  x = 
√

2 + x, i.e.,  x2 − x − 2 = 0.   Therefore, 

x = 2, −1. But  xn+1 = 
√

2 + xn ≥ 0 by definition  (all  square roots are nonnegative),  so the limit  must be x = 2. 

This proof doesn’t change if x1 > −2, so the limit  is again  x = 2.
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 x  x 

10 = 

k 
− 

2.2.9. a) Let  E = {k ∈ Z : k ≥ 0 and k ≤ 10n+1y}.  Since  10n+1y < 10, E ⊆  {0, 1, . . . , 9}. Hence w := sup E ∈ 

E.   It follows that  w ≤  10n+1y, i.e.,  w/10n+1  ≤ y.  On  the other hand,  since w + 1 is not the supremum  of  E, 

w + 1 > 10n+1y. Therefore,  y < w/10n+1  + 1/10n+1. 

b) Apply a) for n = 0 to choose x1 = w such that  x1/10 ≤ x < x1/10 + 1/10.  Suppose 

 

n    
x             

n    
x       1

 

sn := 
X 

  k  
≤ x < 

X 
  k  

+      .
 

k=1 
10k

 
 

k=1 
10k

 10n

 

Then  0 < x − sn < 1/10n, so by a) choose xn+1 such that  xn+1/10n+1  ≤ x − sn < xn+1/10n+1  + 1/10n+1, i.e., 

n+1 

X    
k 

 

n+1 

X    
k 

 
    1  

 
k=1 

10k   
≤ x <

  
k=1 

+          . 

10k         10n+1

 

c) Combine  b) with  the Squeeze Theorem. 

d) Since  an easy induction  proves that  9n > n for all  n ∈ N, we have 9−n  < 1/n.  Hence the Squeeze Theorem 

implies  that  9−n  → 0 as n → ∞.  Hence, it follows from Exercise  1.4.4c and definition  that 

4                   
n     

9          4
 

1  
µ      

1 
¶    

4        1

.4999 · · · = 
    

+  lim X                

k
 

+  lim 1 −  
n    

= +    = 0.5.

n→∞ 
k=2 

10 10     n→∞ 10 9            10      10

Similarly,  

n     
9                  

µ      
1 

¶

.999 · · · = lim  
X     

= lim 1        
n    

= 1.

n→∞ 
k=1 

10 

2.3  The Bolzano–Weierstrass Theorem. 

n→∞             9

 

2.3.0.  a)  False.   xn = 1/4 + 1/(n + 4)  is  strictly decreasing  and  |xn|  ≤ 1/4 + 1/5  <  1/2,  but  xn →  1/4  as 

n → ∞. 

b) True.  Since (n − 1)/(2n − 1) → 1/2 as n → ∞,  this factor is bounded.  Since | cos(n2 + n + 1)| ≤ 1, it follows 

that  {xn} is bounded.  Hence it has a convergent subsequence by the Bolzano–Weierstrass Theorem. 

c) False.  xn = 1/2 − 1/n is strictly increasing  and |xn| ≤ 1/2 < 1 + 1/n, but xn → 1/2 as n → ∞. 

d) False.  xn = (1 + (−1)n)n satisfies xn = 0 for n odd and xn = 2n for n even. Thus x2k+1  → 0 as k → ∞,  but 

xn is NOT bounded. 
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=     
      −   n   

= 

− 

− 

2.3.1. Suppose that  −1 < xn− 1  < 0 for some n ≥ 0. Then  0 < xn−1 + 1 < 1 so 0 < xn−1 + 1 < 
√

xn−1  + 1 and 

it  follows that  xn−1  < 
√

xn−1  + 1 − 1 = xn. Moreover, 
√

xn−1  + 1 − 1 ≤ 1 − 1 = 0.  Hence by  induction,  xn  is 

increasing  and bounded above by 0. It follows from the Monotone Convergence  Theorem  that  xn → a as n → ∞.

Taking the limit  of 
√

xn
 1 + 1 − 1 = x 

we see that  a2  + a = 0, i.e., a = −1, 0.  Since  x
 

increases from x 
> −1,

−                            n                                                                                       n                               0 

the limit  is 0.  If x0 = −1, then xn = −1 for all n.  If x0 = 0, then xn = 0 for all n. 

Finally, it is easy to verify  that  if x0 = ` for ` = −1 or 0, then xn = ` for all n,  hence xn → ` as n → ∞. 
 

2.3.2.  If  x1 = 0 then xn = 0 for all  n,  hence converges to 0.  If  0 < x1 < 1, then by  1.4.1c, xn is decreasing 

and  bounded  below.   Thus the  limit,   a,  exists  by  the  Monotone  Convergence  Theorem.    Taking  the  limit   of 

xn+1 = 1 − 
√

1 − xn, as n → ∞,  we have a = 1 − 
√

1 − a, i.e., a = 0, 1.  Since  x1 < 1, the limit  must be zero. 

Finally,

xn+1         1 − 
√ 

1     x            1 −  (1 −  xn ) 

  

   1          1 

=   .

xn                  xn 
xn(1 + 

√
1 − xn) 

→  
1 + 1      2

 

2.3.3. Case  1.  x0 = 2.  Then  xn = 2 for all n,  so the limit  is 2. 

Case 2.  2 < x0 < 3. Suppose that 2 < xn−1  ≤ 3 for some n ≥ 1. Then 0 < xn−1−2 ≤ 1 so 
√

xn−1  − 2 ≥ xn−1−2,

i.e., xn = 2 + 
√

xn 
−1  − 2 ≥ x 

 

n−1 
. Moreover, xn 

= 2 + 
√

xn   1 
− 2 ≤ 2 +1 = 3. Hence by induction,  xn is increasing

and bounded above by  3.  It follows from the Monotone Convergence  Theorem  that  xn →  a as n →  ∞.   Taking

the limit  of 2 + 
√

xn 
1 − 2 = xn we see that  a2  − 5a + 6 = 0, i.e., a = 2, 3.  Since  xn increases from x0 > 2, the

limit  is 3. 

Case  3.  x0 ≥ 3.  Suppose that  xn−1  ≥ 3 for some n ≥ 1.   Then  xn−1  − 2 ≥ 1 so 
√

xn−1  − 2 ≤ xn−1  − 2, i.e.,

xn = 2 + 
√

xn
 1 − 2 ≤ x .  Moreover, x 

= 2 + 
√

x
 − 2 ≥ 2 + 1 = 3.  Hence by induction,  x is decreasing

−               n−1 n                  n−1                                                                                                        n
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n 

n  n 

and  bounded above by  3.  By  repeating  the steps in  Case  2, we conclude  that  xn decreases from x0 ≥ 3 to the 

limit  3. 
 

2.3.4. Case  1.  x0 < 1.  Suppose xn−1  < 1.  Then 

2xn− 1
 1 + xn− 1                        2

xn−1  =    
2      

<
 

= xn <     = 1. 

2                         2

 

Thus {xn} is increasing  and bounded above, so xn → x. Taking the limit  of xn = (1 + xn−1)/2 as n → ∞,  we see 

that  x = (1 + x)/2, i.e., x = 1. 

Case  2.  x0 ≥ 1.  If xn−1  ≥ 1 then 

2 

1 = 
2 

≤
 

1 + xn−1 

2 

 

= xn ≤ 
2xn−1 

2 

 

= xn−1.

 

Thus {xn}  is decreasing  and  bounded  below.  Repeating  the argument  in  Case  1, we conclude  that  xn →  1 as 

n → ∞. 
 

2.3.5. The  result is obvious when x = 0.  If x > 0 then by Example 2.2 and Theorem  2.6, 

lim  x1/(2n−1)  =  lim x1/m  = 1.

n→∞ m→∞

 

If x < 0 then since 2n − 1 is odd, we have by the previous  case that  x1/(2n−1)  = −(−x)1/(2n−1)  → −1 as n → ∞. 
 

2.3.6. a) Suppose that  {xn} is increasing.  If {xn} is bounded above, then there is an x ∈ R such that  xn → x 

(by  the Monotone Convergence  Theorem).  Otherwise,  given  any  M  > 0 there is an N  ∈ N such that  xN  > M . 

Since  {xn} is increasing,  n ≥ N  implies  xn ≥ xN > M .  Hence xn → ∞  as n → ∞. 

b) If {xn} is decreasing, then −xn is increasing,  so part  a) applies. 
 

2.3.7. Choose by the Approximation Property an x1 ∈ E  such that  sup E − 1 < x1 ≤ sup E.  Since  sup E ∈/ E, 

we also have x1 < sup E.  Suppose x1 < x2 < · · · < xn in E  have been chosen so that  sup E − 1/n < xn < sup E. 

Choose  by  the Approximation Property an xn+1 ∈ E  such  that  max{xn, sup E − 1/(n + 1)} <  xn+1 ≤  sup E. 

Then  sup E − 1/(n + 1) < xn+1 < sup E  and xn < xn+1.  Thus by induction,  x1 < x2 < . . .  and by the  Squeeze 

Theorem,  xn → sup E  as n → ∞. 
 

2.3.8. a) This follows immediately  from Exercise  1.2.6. 

b)  By  a),  xn+1 = (xn + yn)/2 < 2xn/2 = xn. Thus yn+1  < xn+1 < · · · < x1. Similarly, yn = 
p

y2  < 
√

xnyn =

yn+1 implies
 

> y       > y
 

· · · > y .  Thus {x
 
} is decreasing and bounded below by y

 
and {y

 
} is increasing

xn+1 n+1       n             1                         n                                                                      1                   n

and bounded above by 

c) By  b), 

x1. 
 

 

xn+1 − yn+1 = 

 

 

xn + yn 

2       
−

 

 

 

√ 
x y   < 

 

 

xn + yn 

2       
− yn = 

 

 

xn − yn 

2      
.
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n y 

y 

n 

¯ 
n 

Hence by induction  and a),  0 < xn+1 − yn+1 < (x1 − y1)/2n. 

d) By  b),  there exist  x, y ∈ R such that  xn ↓ x and yn ↑ y as n → ∞.  By  c),  |x − y| ≤ (x1 − y1) · 0 = 0.  Hence 

x = y. 
 

2.3.9. Since  x0 = 1 and y0  = 0, 

 

x2                2                                         2                                  2

n+1 − 2yn+1  = (xn + 2yn) − 2(xn + yn)

= −x2 + 2y2  = · · · = (−1)n(x0 − 2y0) = (−1)n. 

n         n 

 

Notice  that  x1 = 1  = y1.    If  yn−1   ≥ n − 1 and  xn−1   ≥ 1 then  yn  =  xn−1  + yn−1   ≥ 1 + (n − 1)  = n  and 

xn = xn−1  + 2yn−1  ≥ 1.  Thus 1/yn  → 0 as n → ∞  and xn ≥ 1 for all n ∈ N.  Since 

¯ 
x2

 ¯        ¯ 
x2

 
2 

¯          
1

¯  
   n

 ¯     ¯ 
   n −  2yn 

¯        

¯         − 2¯ = ̄  ¯ =     → 0

¯ y2 
¯        ¯            2                       2

 

as n → ∞,  it follows that  xn/yn → ±
√

2 as n → ∞.  Since  xn, yn > 0, the limit  must be 
√

2.
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−          n−1                                n−1              −   n−1             n−1     n−1            n−1 

x 

x 

2.3.10.  a)  Notice  x0  >  y0   >  1.   If  xn  1   >  y        >  1 then  y2        − xn  1y        = y      (y     − x    ) >  0 so 

yn−1(yn−1  + xn−1) < 2xn−1yn−1.  In  particular, 
 

 2xn− 1yn− 1  

xn = 
n−1 

+ yn−1 
> yn−1.

It follows that  
√

xn > 
√

yn−1  > 1, so xn > 
√

xnyn−1  = yn > 1 · 1 = 1.  Hence by  induction,  xn > yn > 1 for all 

n ∈ N. 

Now yn < xn implies  2yn  < xn + yn. Thus 
 

 2xn yn  

xn+1 = 
n 

+ yn 
< xn.

 

Hence, {xn} is decreasing and bounded below (by  1).  Thus by the Monotone Convergence  Theorem,  xn →  x for 

some x ∈ R. 

On  the other hand,  yn+1 is the geometric  mean of xn+1 and yn, so by  Exercise  1.2.6, yn+1 ≥ yn. Since  yn  is 

bounded above (by x0), we conclude that yn  →  y as n → ∞  for some y ∈ R.                        

b)  Let  n  →  ∞  in  the identity   yn+1  = 
√

xn+1yn. We  obtain,  from  part  a),  y  = 
√

xy,   i.e.,  x = y.   A direct 

calculation  yields  y6  > 3.141557494 and x7 < 3.14161012. 
 

2.4  Cauchy  sequences. 
 

2.4.0.  a)  False.   an = 1 is Cauchy and  bn   = (−1)n is bounded,  but  anbn   = (−1)n does not converge,  hence 

cannot be Cauchy by Theorem  2.29. 

b)  False.   an = 1 and  bn   = 1/n  are Cauchy, but  an/bn = n  does not converge,  hence cannot  be Cauchy by 

Theorem  2.29. 

c)  True.  If  (an + bn)−1  converged to 0, then given  any  M  ∈ R,  M  = 0, there is an N  ∈ N such that  n ≥  N 

implies  |an  + bn|−1  < 1/|M |.   It follows that  n ≥ N  implies  |an  + bn|  > |M | > 0 > M .   In  particular, |an  + bn| 

diverges to ∞.  But  if an and bn  are Cauchy, then by Theorem 2.29, an +bn  → x where x ∈ R.  Thus |an +bn| → |x|, 

NOT ∞. 

d)  False.  If  x2k   = log k and xn = 0 for n = 2k , then x2k   − x2k−1    = log(k/(k − 1))  →  0 as k →  ∞,  but  xk does 

not converge, hence cannot be Cauchy by Theorem  2.29. 
 

2.4.1. Since  (2n2 + 3)/(n3  + 5n2  + 3n + 1) →  0 as n →  ∞,  it follows from the Squeeze Theorem  that  xn →  0 

as n → ∞.  Hence by Theorem  2.29, xn is Cauchy. 
 

2.4.2. If xn is Cauchy, then there is an N  ∈ N such that  n ≥ N  implies  |xn  − xN | < 1.  Since  xn − xN ∈ Z,  it 

follows that  xn = xN for all n ≥ N .  Thus set a := xN . 
 

2.4.3. Suppose xn and yn are Cauchy and let ε > 0. 

a) If α = 0, then αxn = 0 for all n ∈ N, hence is Cauchy. If α = 0, then there is an N  ∈ N such that  n, m ≥ N 

implies  |xn  − xm| < ε/|α|.  Hence
 

 

for n, m ≥ N . 

|αxn  − αxm| ≤ |α| |xn  − xm| < ε

b) There  is an N  ∈ N such that  n, m ≥ N  implies  |xn  − xm|  and |yn  − ym|  are < ε/2.  Hence 
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|xn  + yn − (xm + ym)| ≤ |xn  − xm| + |yn  − ym| < ε 

 

for n, m ≥ N . 

c)  By  repeating  the proof of Theorem  2.8, we can show that  every Cauchy sequence is bounded.  Thus choose 

M  > 0 such  that  |xn|  and  |yn|  are both  ≤ M  for all  n ∈ N.  There  is an N  ∈ N such  that  n, m  ≥ N  implies 

|xn  − xm|  and |yn  − ym|  are both < ε/(2M ).  Hence 

 

|xnyn  − (xmym)| ≤ |xn  − xm| |ym| + |xn| |yn  − ym| < ε 

for n, m ≥ N . 

2.4.4. Let  sn = 
Pn−1 

xk for n = 2, 3, . . . .  If  m > n then sm+1 − sn = 
Pm 

 

 

xk . Therefore,  sn is Cauchy by

k=1 

hypothesis.  Hence sn converges by Theorem  2.29. 

k=n
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k=1 

ak 

→∞ 

→∞ 

− 

2.4.5. Let  xn = 
Pn

 
(−1)k/k for n ∈ N. Suppose n and m are even and m > n.  Then

 

m           k

S := 
X (− 1)   1      

µ 
    1       1     

¶
 

µ 
    1    1 

¶
 

.

 
k=n 

k     
≡ 

n 
−

 n + 1 
− 

n + 2 
− · · · − 

m − 1 
− 

m

 

Each  term in parentheses is positive,  so the absolute value  of S  is dominated  by  1/n.  Similar arguments  prevail 

for all  integers n and m.   Since  1/n →  0 as n →  ∞,  it  follows that  xn satisfies the hypotheses of Exercise  2.4.4. 

Hence xn must converge to a finite real number. 
 

2.4.6. By  Exercise  1.4.4c, if m ≥ n then

m                              m   
1       

µ       
1

 
1   

¶  
1

|xm+1  − xn| = | 
X

(xk+1  − xk)| ≤ 
X    

= 
1     

am 
− (1 − 

an 
) 

 

. 

a − 1

k=n k=n

 

Thus |xm+1  − xn|  ≤ (1/an − 1/am)/(a − 1)  →  0 as n, m  →  ∞  since a >  1.   Hence  {xn} is  Cauchy and  must 

converge by Theorem  2.29. 
 

2.4.7. a) Suppose a is a cluster  point  for some set E  and let r > 0.  Since  E ∩ (a − r, a + r) contains  infinitely 

many  points,  so does E ∩ (a − r, a + r) \ {a}. Hence this  set is nonempty.  Conversely, if E ∩ (a − s, a + s) \ {a} 

is always  nonempty  for all  s > 0 and r > 0 is given,  choose x1 ∈ E ∩ (a − r, a + r).   If  distinct  points  x1, . . . , xk 

have been chosen so that  xk ∈ E ∩ (a − r, a + r) and s := min{|x1 − a|, . . . , |xk  − a|},  then by hypothesis  there is 

an xk+1 ∈ E ∩ (a − s, a + s).  By  construction,  xk+1 does not equal any xj for 1 ≤ j ≤ k.  Hence x1, . . . , xk+1 are 

distinct  points in E ∩ (a − r, a + r).  By  induction,  there are infinitely many  points in E ∩ (a − r, a + r). 

b)  If  E  is a bounded infinite  set, then it contains  distinct  points  x1, x2, . . . .  Since  {xn} ⊆  E,  it is bounded.  It 

follows from the Bolzano–Weierstrass Theorem  that  xn contains  a convergent subsequence, i.e., there is an a ∈ R 

such that  given  r > 0 there is an N  ∈ N such that  k ≥ N  implies  |xnk   
− a| < r.  Since  there are infinitely  many 

xnk 
’s and they all belong to E,  a is by definition  a cluster  point of E. 

 

2.4.8.  a)  To  show E  := [a, b] is sequentially  compact,  let xn ∈ E.   By  the Bolzano–Weierstrass Theorem,  xn 

has a convergent  subsequence, i.e., there is an x0 ∈ R and integers nk such that  xnk   
→  x0 as k →  ∞.  Moreover, 

by the Comparison Theorem,  xn ∈ E  implies  x0 ∈ E.  Thus E  is sequentially  compact  by definition. 

b) (0, 1) is bounded and 1/n ∈ (0, 1) has no convergent subsequence with  limit  in (0, 1). 

c) [0, ∞) is closed and n ∈ [0, ∞) is a sequence which  has no convergent subsequence. 
 

2.5  Limits  supremum and infimum.
 

2.5.1. a) Since 3 − (−1)n = 2 when n is even and 4 when n is odd, lim supn 

 

xn = 4 and lim infn→∞ xn 

 

= 2.

b) Since cos(nπ/2) = 0 if n is odd, 1 if n = 4m and −1 if n = 4m + 2, lim supn→∞ xn = 1 and lim infn→∞ xn = 

−1.

c)  Since  (−1)n+1 + (−1)n/n = −1 + 1/n when n is even and 1 − 1/n when n is odd, lim supn xn = 1 and
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→∞ 

lim infn→∞ xn = −1. 

d) Since  xn → 1/2 as n → ∞,  lim supn→∞ xn = lim infn→∞ xn = 1/2 by Theorem  2.36. 

e) Since  |yn| ≤ M ,  |yn/n| ≤ M/n →  0 as n →  ∞.  Therefore,  lim supn→∞ xn = lim infn→∞ xn = 0 by Theorem 

2.36.

f) Since n(1 + (−1)n) + n−1((−1)n − 1) = 2n when n is even and −2/n when n is odd, lim supn 

lim infn→∞ xn = 0. 

xn = ∞  and

g) Clearly xn  → ∞  as n → ∞.  Therefore,  lim supn→∞ xn = lim infn→∞ xn = ∞  by Theorem  2.36. 

2.5.2. By  Theorem  1.20, 

 

lim inf(−xn) :=  lim  ( inf (−xk)) = − lim  (sup xk) = − lim sup xn.
n→∞ n→∞ k≥n n→∞ k≥n n→∞

 

A similar  argument  establishes the second identity. 
 

2.5.3. a) Since limn→∞(supk≥n xk) < r, there is an N  ∈ N such that supk≥N  xk < r, i.e., xk < r for all k ≥ N . 

b) Since  limn→∞(supk≥n xk) > r, there is an N  ∈ N such that  supk≥N  xk > r, i.e., there is a k1  ∈ N such that 

xk1   
> r.  Suppose kν  ∈ N have been chosen so that  k1  < k2  < · · · < kj   and xkν  

> r for ν = 1, 2, . . . , j. Choose 

N  > kj  such that  supk≥N  xk > r.  Then  there is a kj+1  > N  > kj  such that  xkj+1    
> r.  Hence by induction,  there 

are distinct  natural  numbers k1, k2, . . .  such that  xkj   > r for all j ∈ N.
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k  n                                   n 

2.5.4. a) Since infk≥n xk + infk≥n yk is a lower bound of xj + yj  for any j ≥ n, we have infk≥n xk + infk≥n yk ≤ 

infj≥n(xj  + yj ).  Taking the limit  of this inequality as n → ∞,  we obtain 

 

lim inf xn + lim inf yn ≤ lim inf(xn + yn).
n→∞ n→∞ n→∞

 

Note, we used Corollary 1.16 and the fact that  the sum on the left is not of the form ∞ − ∞.  Similarly, for each 

j ≥ n, 

inf (xk + yk) ≤ xj + yj  ≤ sup xk + yj .
k≥n k≥n

 

Taking the infimum of this inequality over all j ≥ n, we obtain infk≥n(xk +yk) ≤ supk≥n xk +infj≥n yj . Therefore, 

 

lim inf(xn + yn) ≤ lim sup xn + lim inf yn.
n→∞ n→∞ n→∞

 

The  remaining  two inequalities  follow from Exercise  2.5.2.  For example, 

 

lim sup xn + lim inf yn = − lim inf(−xn) − lim sup(−yn)
n→∞ n→∞ n→∞ n→∞

≤ − lim inf(−xn − yn) = lim sup(xn + yn).
n→∞ 

 

b) It suffices to prove the first identity. By  Theorem  2.36 and a), 

n→∞

 

lim  xn + lim inf yn ≤ lim inf(xn + yn).
n→∞ n→∞ n→∞

 

To  obtain  the reverse inequality, notice by  the Approximation Property that  for each n ∈ N there is a jn > n 

such that  infk≥n(xk  + yk) > xjn  
− 1/n + yjn 

.  Hence

 

1 

inf (xk + yk) > xjn  
− 

≥ 

 

 

+ inf  yk 

k≥n

 

for all n ∈ N. Taking the limit  of this inequality as n → ∞,  we obtain 

 

lim inf(xn + yn) ≥  lim  xn + lim inf yn.
n→∞ n→∞ n→∞

 

c) Let  xn = (−1)n and yn = (−1)n+1. Then  the limits  infimum  are both −1, the limits  supremum  are both 1, 

but xn + yn = 0 → 0 as n → ∞.  If xn = (−1)n and yn = 0 then 

 

lim inf(xn + yn) = −1 < 1 = lim sup xn + lim inf yn.
n→∞ n→∞ n→∞



23 

Copyright © 2010 Pearson Education, Inc.  Publishing as Prentice Hall.  

 

2.5.5.   a)  For any  j ≥ n,  xj  ≤ supk≥n xk  and  yj    ≤ supk≥n yk .   Multiplying these inequalities,   we have 

xj yj  ≤ (supk≥n xk)(supk≥n yk), i.e., 

sup xj yj  ≤ (sup xk)(sup yk).
j≥n k≥n k≥n

 

Taking the limit  of this inequality as n → ∞  establishes a).  The  inequality can be strict  because if 

½ 
0        n even

xn = 1 − yn = 
 

1        n odd

 

then lim supn→∞(xnyn) = 0 < 1 = (lim supn→∞ xn)(lim supn→∞ yn). 

b) By  a), 

 

lim inf(xnyn) = − lim sup(−xnyn) ≥ − lim sup(−xn) lim sup yn = lim inf xn lim sup yn.
n→∞ n→∞ n→∞ n→∞ n→∞ n→∞

 

2.5.6.  Case  1.  x = ∞.   By  hypothesis,  C := lim supn→∞ yn  > 0.  Let  M  > 0 and  choose N  ∈ N such  that 

n ≥ N  implies  xn  ≥ 2M/C and supn≥N  yn > C/2.  Then  supk≥N (xkyk) ≥ xnyn ≥ (2M/C)yn for any n ≥ N  and 

supk≥N (xkyk) ≥ (2M/C) supn≥N  yn > M .  Therefore,  lim supn→∞(xnyn) = ∞.
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Case  2.  0 ≤ x < ∞.  By  Exercise  2.5.6a and Theorem  2.36, 

 

lim sup(xnyn) ≤ (lim sup xn)(lim sup yn) = x lim sup yn.
n→∞ n→∞ n→∞ n→∞

 

On the other hand, given ² > 0 choose n ∈ N so that  xk > x − ² for k ≥ n.  Then  xkyk ≥ (x − ²)yk for each k ≥ n, 

i.e., supk≥n(xkyk) ≥ (x − ²) supk≥n yk. Taking the limit  of this inequality as n → ∞  and as ² → 0, we obtain 

 

lim sup(xnyn) ≥ x lim sup yn.
n→∞ n→∞

 

2.5.7. It suffices to prove the first identity. Let  s = infn∈N(supk≥n xk). 

Case  1.  s = ∞.  Then  supk≥n xk = ∞  for all n ∈ N so by definition, 

 

lim sup xn =  lim  (sup xk) = ∞ = s.

n→∞ n→∞ k≥n

 

Case  2.  s = −∞. Let  M  > 0 and choose N  ∈ N such that  supk≥N  xk ≤ −M . Then  supk≥n xk ≤ supk≥N  xk ≤ 

−M for all n ≥ N ,  i.e., lim supn→∞ xn = −∞. 

Case  3.    −∞ <  s  <  −∞.   Let   ² >  0  and  use the  Approximation  Property  to  choose N   ∈  N such  that 

supk≥N  xk < s + ². Since  supk≥n xk ≤ supk≥N  xk < s + ² for all n ≥ N ,  it follows that 

 

s − ² < s ≤ sup xk < s + ² 

k≥n 

 

for n ≥ N ,  i.e., lim supn→∞ xn = s. 

2.5.8. It suffices to establish  the first identity. Let  s = lim infn→∞ xn. 

Case  1.  s = 0. Then  by Theorem  2.35 there is a subsequence kj  such that  xkj   
→ 0, i.e., 1/xkj   

→ ∞  as j → ∞. 

In  particular, supk≥n(1/xk) = ∞  for all n ∈ N, i.e., lim supn→∞(1/xn) = ∞ = 1/s. 

Case 2.  s = ∞.  Then  xk → ∞, i.e., 1/xk  → 0, as k → ∞.  Thus by Theorem 2.36, lim supn→∞(1/xn) = 0 = 1/s. 

Case  3.  0 < s < ∞.  Fix j ≥ n.  Since  1/ infk≥n xk ≥ 1/xj   implies  1/ infk≥n xk ≥ supj≥n(1/xj ),  it is clear that 

1/s ≥ lim supn→∞(1/xn). On the other hand, given ² > 0 and n ∈ N, choose j > N  such that  infk≥n xk + ² > xj , 

i.e.,  1/(infk≥n xk + ²) < 1/xj   ≤ supk≥n(1/xk).   Taking  the limit  of this  inequality as n →  ∞  and  as ² →  0, we 

conclude that  1/s ≤ lim supn→∞(1/xn). 

2.5.9. If xn → 0, then |xn| → 0. Thus by Theorem 2.36, lim supn→∞ |xn| = 0. Conversely, if lim supn→∞ |xn| ≤ 

0, then 

0 ≤ lim inf |xn| ≤ lim sup |xn| ≤ 0,
n→∞ n→∞

 

implies that the limits  supremum and infimum  of |xn| are equal (to zero).  Hence by Theorem  2.36, the limit  exists 

and equals zero. 


