Solution Manual for Introduction to Analysis Classic 4th Edition Wade 9780134707624

Full link download Solution Manual:

[https://testbankpack.com/p/solution-manual-for-introduction-to-analysis-classic-](https://testbankpack.com/p/solution-manual-for-introduction-to-analysis-classic-4th-edition-wade-9780134707624/)[4th-edition-wade-9780134707624/](https://testbankpack.com/p/solution-manual-for-introduction-to-analysis-classic-4th-edition-wade-9780134707624/)

CHAPTER 2

2.1 Limits of Sequences.

2.1.0. a) True. If x_n converges, then there is an $M > 0$ such that $|x_n| \le M$. Choose by Archimedes an $N \in \mathbb{N}$ such that $N > M/\varepsilon$. Then $n \geq N$ implies $|x_n/n| \leq M/n \leq M/N < \varepsilon$.

b) False. $x_n = \sqrt{\frac{n}{n}}$ does not converge, but $x_n/n = \sqrt{2n}$ $\to 0$ as $n \to \infty$.

c) False. $x_n = 1$ converges and $y_n = (-1)^n$ is bounded, but $x_n y_n = (-1)^n$ does not converge.

d) False. $x_n = 1/n$ converges to 0 and $y_n = n^2 > 0$, but $x_n y_n = n$ does not converge.

2.1.1. a) By the Archimedean Principle, given $\varepsilon > 0$ there is an $N \in \mathbb{N}$ such that $N > 1/\varepsilon$. Thus $n \ge N$ implies

$$
|(2-1/n)-2|\equiv |1/n|\leq 1/N<\varepsilon.
$$

b) By the Archimedean Principle, given $\varepsilon > 0$ there is an $N \in \mathbb{N}$ such that $N > \pi^2/\varepsilon^2$. Thus $n \ge N$ implies

$$
|1+\pi \sqrt[n]{n}-1| \equiv |\pi \sqrt[n]{n}| \leq \pi \sqrt[n]{N} < \varepsilon.
$$

c) By the Archimedean Principle, given $\varepsilon > 0$ there is an $N \in \mathbb{N}$ such that $N > 3/\varepsilon$. Thus $n \ge N$ implies

$$
|3(1+1/n)-3|\equiv |3/n|\leq 3/N<\varepsilon.
$$

d) By the Archimedean Principle, given
$$
\varepsilon > 0
$$
 there is an $N \in \mathbb{N}$ such that $N > 1$ and $N \in \mathbb{N}$. Thus $n \geq N$ implies

√

$$
|(2n^2+1)/(3n^2)-2/3|\equiv |1/(3n^2)|\leq 1/(3N^2)<\varepsilon.
$$

2.1.2. a) By hypothesis, given $\varepsilon > 0$ there is an $N \in \mathbb{N}$ such that $n \geq N$ implies $|x_n - 1| < \varepsilon/2$. Thus $n \geq N$ implies

$$
|1+2x_n-3|\equiv 2|x_n-1|<\varepsilon.
$$

b) By hypothesis, given $\varepsilon > 0$ there is an $N \in \mathbb{N}$ such that $n \geq N$ implies $x_n > 1/2$ and $|x_n - 1| < \varepsilon/4$. In particular, $1/x_n < 2$. Thus $n \geq N$ implies

$$
|(\pi x_n - 2)/x_n - (\pi - 2)| \equiv 2 |(x_n - 1)/x_n| < 4 |x_n - 1| < \varepsilon.
$$

c) By hypothesis, given $\varepsilon > 0$ there is an $N \in \mathbb{N}$ such that $n \ge N$ implies $x_n > 1/2$ and $|x_n - 1| < \varepsilon/(1 + 2e)$. Thus $n \geq N$ and the triangle inequality imply

$$
|(x^{2} - e)/x_{n} - (1 - e)| \equiv |x_{n} - 1| \left(\frac{\mu}{1 + e^{2}} \right) \le |x_{n} - 1| \left(\frac{\mu}{1 + e^{2}} \right) < \frac{\mu}{|x_{n}|}
$$

as $n \to \infty$. 2.1.3. a) If $n_k = 2k$, then $3 - (-1)^{n_k} = 2$ converges to 2; if $n_k = 2k + 1$, then $3 - (-1)^{n_k} = 4$ converges to 4. b) If $n_k = 2k$, then $(-1)^{3n_k} + 2 \equiv (-1)^{6k} + 2 = 1 + 2 = 3$ converges to 3; if $n_k = 2k + 1$, then $(-1)^{3n_k} + 2 \equiv$

(*−*1)⁶*k*+3 + ² = *−*¹ + ² = ¹ converges to 1.

c) If $n_k = 2k$, then $(n_k - (-1)^{n_k} n_k - 1)/n_k \equiv -1/(2k)$ converges to 0; if $n_k = 2k+1$, then $(n_k - (-1)^{n_k} n_k - 1)/n_k \equiv$ (2*nk−* 1)*/n^k* ⁼ (4*^k* + 1)*/*(2*^k* + 1) converges to 2.

2.1.4. Suppose x_n is bounded. By Definition 2.7, there are numbers *M* and *m* such that $m \le x_n \le M$ for all $n \in \mathbb{N}$. Set $C := \max\{1, |M|, |m|\}$. Then $C > 0$, $M \le C$, and $m \ge -C$. Therefore, $-C \le x_n \le C$, i.e., $|x_n| < C$ for all $n \in \mathbb{N}$.

Conversely, if $|x_n| < C$ for all $n \in \mathbb{N}$, then x_n is bounded above by C and below by $-C$.

2.1.5. If *^C* = 0, there is nothing to prove. Otherwise, given *^ε >* ⁰ use Definition 2.1 to choose an *^N*[∈] N such that $n \geq N$ implies $|b_n| \equiv b_n < \varepsilon / |C|$. Hence by hypothesis, $n \geq N$ implies

$$
|x_n - a| \le |C|b_n < \varepsilon.
$$

By definition, $x_n \to a$ as $n \to \infty$.

2.1.6. If $x_n = a$ for all n, then $|x_n - a| = 0$ is less than any positive ε for all $n \in \mathbb{N}$. Thus, by definition, $x_n \to a$

2.1.7. a) Let *a* be the common limit point. Given $\varepsilon > 0$, choose $N \in \mathbb{N}$ such that $n \geq N$ implies $|x_n - a|$ and $|y_n - a|$ are both $\lt \varepsilon$ /2. By the Triangle Inequality, *n* ≥ *N* implies

$$
|x_n - y_n| \le |x_n - a| + |y_n - a| < \varepsilon.
$$

By definition, $x_n - y_n \to 0$ as $n \to \infty$.

b) If *n* converges to some *a*, then given $\varepsilon = 1/2$, $1 = |(n+1) - n| < |(n+1) - a| + |n - a| < 1$ for *n* sufficiently large, a contradiction.

c) Let $x_n = n$ and $y_n = n + 1/n$. Then $|x_n - y_n| = 1/n \to 0$ as $n \to \infty$, but neither x_n nor y_n converges.

2.1.8. By Theorem 2.6, if $x_n \to a$ then $x_{n_k} \to a$. Conversely, if $x_{n_k} \to a$ for every subsequence, then it converges for the "subsequence" *xn*.

2.2 Limit Theorems.

2.2.0. a) False. Let $x_n = n^2$ and $y_n = -n$ and note by Exercise 2.2.2a that $x_n + y_n \to \infty$ as $n \to \infty$.

b) True. Let $\varepsilon > 0$. If $x_n \to -\infty$ as $n \to \infty$, then choose $N \in \mathbb{N}$ such that $n \ge N$ implies $x_n < -1/\varepsilon$. Then $x_n < 0$ so $|x_n| = -x_n > 0$. Multiply $x_n < -1/\varepsilon$ by $\varepsilon/(-x_n)$ which is positive. We obtain $-\varepsilon < 1/x_n$, i.e., *|*1⁄*x*^{*n*}| = −1/*x*^{*n*} < ε.

c) False. Let $x_n = (-1)^n/n$. Then $1/x_n = (-1)^n n$ has no limit as $n \to \infty$.

d) True. Since $(2^x - x)^0 = 2^x \log 2 - 1 > 1$ for all $x ≥ 2$, i.e., $2^x - x$ is increasing on $[2, ∞)$. In particular, $2^x - x \ge 2^2 - 2 > 0$, i.e., $2^x > x$ for $x \ge 2$. Thus, since $x_n \to \infty$ as $n \to \infty$, we have $2^{x_n} > x_n$ for *n* large, hence

$$
2^{-x_n} < \frac{1}{x_n} \to 0
$$

as $n \to \infty$.

2.2.1. a) $|x_n| \leq 1/n \to 0$ as $n \to \infty$ and we can apply the Squeeze Theorem. b) $2n\underline{\mathcal{A}}n^2 + \pi$ = $(2\nu\underline{n} \mathcal{A} (1 + \pi \underline{\mathcal{A}} n^2) \rightarrow 0 \mathcal{A} (1 + 0) = 0$ by Theorem 2.12. c) ($\sqrt{2n+1}/(n+\sqrt{2})$ = (($\sqrt{2}$ / \sqrt{n}) + (1/*n*))/(1 + ($\sqrt{2}$ /*n*)) → 0/(1 + 0) = 0 by Exercise 2.2.5 and Theorem 2.12.

d) An easy induction argument shows that $2n + 1 < 2^n$ for $n = 3, 4, \ldots$. We will use this to prove that $n^2 \leq 2^n$ for $n = 4, 5, \ldots$ it's surely true for $n = 4$. If it's true for some $n \ge 4$, then the inductive hypothesis and the fact that $2n + 1 < 2ⁿ$ imply

$$
(n+1)^2 = n^2 + 2n + 1 \le 2^n + 2n + 1 < 2^n + 2^n = 2^{n+1}
$$

so the second inequality has been proved.

Now the second inequality implies $n/2^n < 1/n$ for $n \ge 4$. Hence by the Squeeze Theorem, $n/2^n \to 0$ as $n \to \infty$.

2.2.2. a) Let $M \in \mathbb{R}$ and choose by Archimedes an $N \in \mathbb{N}$ such that $N > \max\{M, 2\}$. Then $n \geq N$ implies *n* ²*− ⁿ* = *n*(*n−* 1) *≥ N*(*N−* 1) *> ^M*(2 *−* 1) = *M*.

b) Let *M* [∈] R and choose by Archimedes an *^N*[∈] N such that *N > −M/*2. Notice that *ⁿ ≥* ¹ implies *−*3*ⁿ ≤ −*³ so $1 - 3n \le -2$. Thus $n \ge N$ implies $n - 3n^2 = n(1 - 3n) \le -2n \le -2N < M$.

c) Let $M \in \mathbb{R}$ and choose by Archimedes an $N \in \mathbb{N}$ such that $N > M$. Then $n \geq N$ implies $(n^2 + 1)/n =$ $n + 1/n > N + 0 > M$.

all $m \in \mathbb{N}$. On the other hand, if $M > 0$, then choose by Archimedes an $N \in \mathbb{N}$ such that $N > \frac{\sqrt{M}}{M}$. Then $n \geq N$ d) Let $M \in \mathbb{R}$ satisfy $M \le 0$. Then $2 + \sin \theta \ge 2 - 1 = 1$ implies $n^2(2 + \sin(n^3 + n + 1)) \ge n^2 - 1 > 0 \ge M$ for $\lim_{n \to \infty} \frac{n^2(2 + \sin(n^3 + n + 1)) \geq n^2 \cdot 1 \geq N^2 > M.$

2.2.3. a) Following Example 2.13,

$$
\frac{2+3n-4n^2}{1-2n+3n^2} = \frac{(2/n^2)+(3/n)-4}{(1/n^2)-(2/n)+3} \to \frac{-4}{3}
$$

as $n \to \infty$.

b) Following Example 2.13,

$$
\frac{n^3 + n - 2}{2n^3 + n - 2} = \frac{1 + (1/n^2) - (2/n^3)}{1 + (1/n^2) - (2/n^3)} \to 2 + (1/n^2) - (2/n^3)
$$

as $n \to \infty$.

c) Rationalizing the expression, we obtain

$$
\sqrt{\frac{3n+2}{3n+2} - \frac{\sqrt{3n+2} + \sqrt{3n+2}}{n}}
$$
\n
$$
\sqrt{\frac{2n+2}{3n+2} - \frac{\sqrt{3n+2}}{n}}
$$
\n
$$
= \sqrt{\frac{2n+2}{3n+2} - \frac{\sqrt{3n+2}}{n}}
$$
\n
$$
= \sqrt{\frac{2n+2}{3n+2} - \frac{\sqrt{3n+2}}{n}}
$$

as $n \to \infty$ by the method of Example <u>2</u>.13. (Multiply top and bottom by $\sqrt[p]{\overline{n}}$.) d) Multiply top and bottom by ¹*/ √ n* to obtain

$$
\frac{\sqrt{\frac{4n+1}{4n+1}}}{\sqrt{\frac{4n+1}{9n+1}}}\frac{\frac{1}{4} + \frac{1}{10} - \frac{1}{1}}{\frac{1}{10}} = \frac{2-1}{2} = \frac{1}{4}
$$

$$
\frac{\sqrt{9n+1}}{9n+1} - \frac{1}{10} = \frac{1}{10}
$$

2.2.4. a) Clearly,

 $\frac{x_n}{x_n}$ $\frac{x_n}{x_n} = \frac{x_n y - x y_n}{x_n} = \frac{x_n y - x y + x y - x y_n}{x_n}$ *.* $y_n - y$ *yy_n yy_n yy_n* -
<u>- 1</u> $\frac{x_n}{x_n}$ $\frac{x}{+}$ *[|] x[|] [|]yⁿ − y|.*

Thus

$$
y_n - y - \le |y_n| = |y_n|
$$

Since $y = 0$, $|y_n| \ge |y|/2$ for large *n*. Thus

$$
\begin{array}{ccc}\n\frac{x_n}{y_n} & \frac{x}{y_n} & \frac{2}{x_n} & \frac{2|x|}{y_n - y| \to 0} \\
\frac{x_n}{y_n} & \frac{2}{y_n} & \frac{2}{x_n} & \frac{2}{x_n} & \frac{2}{x_n} \\
\frac{2}{x_n} & \frac{2}{x_n} & \frac{2}{x_n} & \frac{2}{x_n} & \frac{2}{x_n} \\
\frac{2}{x_n} & \frac{2}{x_n} & \frac{2}{x_n} & \frac{2}{x_n} & \frac{2}{x_n} \\
\frac{2}{x_n} & \frac{2}{x_n} & \frac{2}{x_n} & \frac{2}{x_n} & \frac{2}{x_n} \\
\frac{2}{x_n} & \frac{2}{x_n} & \frac{2}{x_n} & \frac{2}{x_n} & \frac{2}{x_n} & \frac{2}{x_n} \\
\frac{2}{x_n} & \frac{2}{x_n} \\
\frac{2}{x_n} & \frac{2}{x
$$

as $n \to \infty$ by Theorem 2.12i and ii. Hence by the Squeeze Theorem, $x_n/y_n \to x/y$ as $n \to \infty$.

b) By symmetry, we may suppose that $x = y = ∞$. Since $y_n \to ∞$ implies $y_n > 0$ for *n* large, we can apply Theorem 2.15 directly to obtain the conclusions when $\alpha > 0$. For the case $\alpha < 0$, $x_n > M$ implies $\alpha x_n < \alpha M$. Since any $M_0 \in \mathbb{R}$ can be written as αM for some $M \in \mathbb{R}$, we see by definition that $x_n \to -\infty$ as $n \to \infty$.

2.2.5. Case 1. $x = 0$. Let $2 > 0$ and choose N so large that $n \ge N$ implies $|x_n| < 2^2$. By (8) in 1.1, $\sqrt{\frac{1}{x_n}} < 2$ for $n \geq N$, i.e., $\sqrt{x_n} \to 0$ as $n \to \infty$.

Case 2. x > 0. Then

$$
- + \mu \underbrace{\downarrow}_{x_n +} \underbrace{\downarrow}_{x} - \underbrace{x_n - x}_{x_n}
$$

$$
\sqrt{\frac{1}{x_n}} - \sqrt{\frac{1}{x_n}} \left(\sqrt{\frac{1}{x_n} - \sqrt{\frac{1}{x_n}}} \right) \sqrt{\frac{1}{x_n} + \sqrt{\frac{1}{x_n}}} = \sqrt{\frac{1}{x_n} + \sqrt{\frac{1}{x_n}}}.
$$

Since $\sqrt{\frac{x_n}{x_n}} \geq 0$, it follows that

√ √ [|] xⁿ − x[|] [|]xn− x[|] ≤ √ x .

This last quotient converges to 0 by Theorem 2.12. Hence it follows from the Squeeze Theorem that $\sqrt{\frac{1}{X_n}} \rightarrow \sqrt{\frac{1}{X_n}}$ as $n \to \infty$.

2.2.6. By the Density of Rationals, there is an r_n between $x + \sqrt{n}$ and x for each $n \in \mathbb{N}$. Since $|x - r_n| < \sqrt{n}$, it follows from the Squeeze Theorem that $r_n \to x$ as $n \to \infty$.

2.2.7. a) By Theorem 2.9 we may suppose that $|x| = \infty$. By symmetry, we may suppose that $x = \infty$. By definition, given $M \in \mathbb{R}$, there is an $N \in \mathbb{N}$ such that $n \geq N$ implies $x_n > M$. Since $w_n \geq x_n$, it follows that $w_n > M$ for all $n \geq N$. By definition, then, $w_n \to \infty$ as $n \to \infty$.

b) If *x* and *y* are finite, then the result follows from Theorem 2.17. If $x = y = \pm \infty$ or $-x = y = \infty$, there is nothing to prove. It remains to consider the case $x = \infty$ and $y = -\infty$. But by Definition 2.14 (with $M = 0$), $x_n > 0 > y_n$ for *n* sufficiently large, which contradicts the hypothesis $x_n \leq y_n$.

2.2.8. a) Take the limit of $x_{n+1} = 1 - \sqrt{\frac{1 - x_n}{1 - x_n}}$ as $n \to \infty$. We obtain $x = 1 - \sqrt{\frac{1 - x_n}{1 - x_n}}$ i.e., $x^2 - x = 0$. Therefore, $x = 0, 1$.

b) Take the limit of $x_{n+1} = 2 + \sqrt{\frac{x_n - 2}{x_n - 2}}$ as $n \to \infty$. We ob<u>tain $x = 2 + \sqrt{\frac{x - 2}{x - 2}}$ </u> i.e., $x^2 - 5x + 6 = 0$. Therefore, *x* = 2, 3. But *x*₁ > 3 and induction shows that $x_{n+1} = 2 + \sqrt{x_n - 2} > 2 + \sqrt{3 - 2} = 3$, so the limit must be *x* = 3. c) Take the limit of $x_{n+1} = \sqrt{2 + x_n}$ as $n \to \infty$. We obtain $x = \sqrt{2 + x_n}$ i.e., $x^2 - x - 2 = 0$. Therefore, *x* = 2, −1. But $x_{n+1} = \sqrt{2 + x_n} \ge 0$ by definition (all square roots are nonnegative), so the limit must be $x = 2$. This proof doesn't change if $x_1 > -2$, so the limit is again $x = 2$.

2.2.9. a) Let $E = \{k \in \mathbb{Z} : k \ge 0 \text{ and } k \le 10^{n+1}y\}$. Since $10^{n+1}y < 10$, $E \subseteq \{0, 1, ..., 9\}$. Hence $w := \sup E \in$ *E*. It follows that $w \le 10^{n+1}y$, i.e., $w/10^{n+1} \le y$. On the other hand, since $w + 1$ is not the supremum of *E*, $w + 1 > 10^{n+1}y$. Therefore, $y < w/10^{n+1} + 1/10^{n+1}$.

b) Apply a) for $n = 0$ to choose $x_1 = w$ such that $x_1/10 \le x < x_1/10 + 1/10$. Suppose

$$
s_n := \frac{\sum_{k=1}^{n} x}{10^k} \leq x < \frac{\sum_{k=1}^{n} x}{10^k} + \frac{1}{10^n}.
$$

Then $0 < x - s_n < 1/10^n$, so by a) choose x_{n+1} such that $x_{n+1}/10^{n+1} \le x - s_n < x_{n+1}/10^{n+1} + 1/10^{n+1}$, i.e.,

$$
\sum_{k=1}^{n+1} \frac{x}{2^k} \sum_{k=1}^{n+1} \frac{x}{2^k} \frac{1}{2^k}
$$

where $k \ge 1$ and $k \ge 10^{k+1}$ is the result of the equation x and x is the result of x and x

c) Combine b) with the Squeeze Theorem.

d) Since an easy induction proves that 9 *ⁿ > n* for all *n* [∈] N, we have 9 *−n <* ¹*/n*. Hence the Squeeze Theorem implies that 9 *−ⁿ [→]* ⁰ as *ⁿ [→] [∞]*. Hence, it follows from Exercise 1.4.4c and definition that

¹⁰ = ⁴*n* 9 4 ¹ µ 1 ¶ 4 1 *.*4999 *· · ·* = + lim X *k* + lim ¹ *− n* = + = ⁰*.*5*. n→∞ k*=2 10 10 *n→∞* 10 9 10 10

Similarly,

$$
\begin{array}{cccc}\n & n & 9 & \mu & 1 \\
\hline\n\text{399} \cdots & \text{lim} & \text{X} & \text{lim} & 1 - \frac{1}{n} & = 1. \\
\text{lim} & & \text{lim} & & \text{lim} & 1 - \frac{1}{n} & = 1. \\
\text{lim} & & & \text{lim} & & \text{lim} & & \text{lim} & \\
\hline\n\end{array}
$$

2.3 The Bolzano–Weierstrass Theorem.

2.3.0. a) False. $x_n = \frac{1}{4} + \frac{1}{n+4}$ is strictly decreasing and $|x_n| \leq \frac{1}{4} + \frac{1}{5} < \frac{1}{2}$, but $x_n \to \frac{1}{4}$ as *n → ∞*.

b) True. Since (*n[−]* 1)*/*(2*ⁿ −*1) *[→]* ¹*/*² as *ⁿ [→] [∞]*, this factor is bounded. Since *[|]* cos(*ⁿ* 2 + *ⁿ* + 1)*[|] ≤* 1, it follows that ${x_n}$ is bounded. Hence it has a convergent subsequence by the Bolzano–Weierstrass Theorem.

c) False. $x_n = 1/2 - 1/n$ is strictly increasing and $|x_n| \le 1/2 < 1 + 1/n$, but $x_n \to 1/2$ as $n \to \infty$.

d) False. $x_n = (1 + (-1)^n)n$ satisfies $x_n = 0$ for n odd and $x_n = 2n$ for n even. Thus $x_{2k+1} \to 0$ as $k \to \infty$, but x_n is NOT bounded.

2.3.1. Suppose that $-1 < x_{n-1} < 0$ for some $n \ge 0$. Then $0 < x_{n-1} + 1 < 1$ so $0 < x_{n-1} + 1 < \sqrt{x_{n-1} + 1}$ and it follows that $x_{n-1} < \sqrt{x_{n-1} + 1} - 1 = x_n$. Moreover, $\sqrt{x_{n-1} + 1} - 1 \leq 1 - 1 = 0$. Hence by induction, x_n is increasing and bounded above by 0. It follows from the Monotone Convergence Theorem that $x_n \to a$ as $n \to \infty$. Taking the limit of $\sqrt{\frac{x}{x}}$ 1 + 1 − 1 = x we see that $a^2 + a = 0$, i.e., $a = -1$, 0. Since x increases from $x > -1$,

− n n 0 the limit is 0. If $x_0 = -1$, then $x_n = -1$ for all *n*. If $x_0 = 0$, then $x_n = 0$ for all *n*. Finally, it is easy to verify that if $x_0 = \dot{ }$ for $\dot{ } = -1$ or 0, then $x_n = \dot{ }$ for all *n*, hence $x_n \to \dot{ }$ as $n \to \infty$.

2.3.2. If $x_1 = 0$ then $x_n = 0$ for all *n*, hence converges to 0. If $0 < x_1 < 1$, then by 1.4.1c, x_n is decreasing and bounded below. Thus the limit, *^a*, exists by the Monotone Convergence Theorem. Taking the limit of $x_{n+1} = 1 - \sqrt{1-x_n}$, as $n \to \infty$, we have $a = 1 - \sqrt{1-a}$, i.e., $a = 0, 1$. Since $x_1 < 1$, the limit must be zero. Finally,

$$
\frac{x_{n+1}}{1} = \frac{1 - \frac{1}{2} - \frac{1}{2}}{1 - \frac{1}{2}} = \frac{1 - (1 - x_n)}{1} = \frac{1}{2}.
$$

$$
x_n \t x_n \t x_n (1 + \sqrt{1 - x_n}) \to 1 + 1 \t 2
$$

2.3.3. *Case 1.* $x_0 = 2$. Then $x_n = 2$ for all *n*, so the limit is 2.

Case 2. 2 < x_0 < 3. Suppose that 2 < $x_{n-1} \le 3$ for some $n \ge 1$. Then 0 < $x_{n-1}-2 \le 1$ so $\sqrt{x_{n-1}-2} \ge x_{n-1}-2$, i.e., $x_n = 2 + \sqrt{\frac{1}{x_n-1} - 2} \ge x_{n-1}$. Moreover, $x_n = 2 + \sqrt{\frac{1}{x_{n-1}} - 2} \le 2 + 1 = 3$. Hence by induction, x_n is increasing

the limit of $2 + \sqrt{\frac{1}{x_n-1}-2} = x_n$ we see that $a^2 - 5a + 6 = 0$, i.e., $a = 2, 3$. Since x_n increases from $x_0 > 2$, the and bounded above by 3. It follows from the Monotone Convergence Theorem that $x_n \to a$ as $n \to \infty$. Taking

limit is 3.

Case 3. $x_0 \ge 3$. Suppose that $x_{n-1} \ge 3$ for some $n \ge 1$. Then $x_{n-1} - 2 \ge 1$ so $\sqrt{x_{n-1} - 2} \le x_{n-1} - 2$, i.e., $x_n = 2 + \sqrt{\frac{1}{x_{n-1} - 2}}$ ≤ *x* . Moreover, *x* = 2 + $\sqrt{\frac{1}{x_{n-1} - 2}}$ = 2 + 1 = 3. Hence by induction, *x* is decreasing

$$
- \qquad n-1 \qquad n \qquad n-1 \qquad n
$$

and bounded above by 3. By repeating the steps in Case 2, we conclude that x_n decreases from $x_0 \ge 3$ to the limit 3.

2.3.4. *Case 1. x*⁰ *<* 1. Suppose *xn−*¹ *<* 1. Then

$$
\frac{2x_{n-1}}{x_{n-1}} = \frac{1 + x_{n-1}}{2} = x_n < = 1.
$$

Thus $\{x_n\}$ is increasing and bounded above, so $x_n \to x$. Taking the limit of $x_n = (1 + x_{n-1})/2$ as $n \to \infty$, we see that $x = (1 + x)/2$, i.e., $x = 1$.

Case 2. x_0 ≥ 1. If x_{n-1} ≥ 1 then

$$
1 = \frac{2}{2} \le \frac{1 + x_{n-1}}{2} = x_n \le \frac{2x_{n-1}}{2} = x_{n-1}.
$$

Thus $\{x_n\}$ is decreasing and bounded below. Repeating the argument in Case 1, we conclude that $x_n \to 1$ as *n → ∞*.

2.3.5. The result is obvious when $x = 0$. If $x > 0$ then by Example 2.2 and Theorem 2.6,

$$
\lim x^{1/(2n-1)} = \lim x^{1/m} = 1.
$$

$$
n\!\to\!\infty\qquad m\!\to\!\infty
$$

If $x < 0$ then since $2n - 1$ is odd, we have by the previous case that $x^{1/(2n-1)} = -(-x)^{1/(2n-1)} \rightarrow -1$ as $n \rightarrow \infty$.

2.3.6. a) Suppose that $\{x_n\}$ is increasing. If $\{x_n\}$ is bounded above, then there is an $x \in \mathbb{R}$ such that $x_n \to x$ (by the Monotone Convergence Theorem). Otherwise, given any $M > 0$ there is an $N \in \mathbb{N}$ such that $x_N > M$. Since $\{x_n\}$ is increasing, $n \geq N$ implies $x_n \geq x_N > M$. Hence $x_n \to \infty$ as $n \to \infty$.

b) If $\{x_n\}$ is decreasing, then $-x_n$ is increasing, so part a) applies.

2.3.7. Choose by the Approximation Property an $x_1 \in E$ such that $\sup E - 1 < x_1 \leq \sup E$. Since $\sup E \not\in E$, we also have $x_1 < \sup E$. Suppose $x_1 < x_2 < \cdots < x_n$ in E have been chosen so that $\sup E - 1/n < x_n < \sup E$. Choose by the Approximation Property an $x_{n+1} \in E$ such that $\max\{x_n, \sup E - \frac{1}{n+1}\} < x_{n+1} \leq \sup E$. Then sup $E - 1/(n + 1) < x_{n+1} <$ sup E and $x_n < x_{n+1}$. Thus by induction, $x_1 < x_2 < \dots$ and by the Squeeze Theorem, $x_n \to \text{sup } E$ as $n \to \infty$.

2.3.8. a) This follows immediately from Exercise 1.2.6.

b) By a), $x_{n+1} = (x_n + y_n)/2 < 2x_n/2 = x_n$. Thus $y_{n+1} < x_{n+1} < \cdots < x_1$. Similarly, $y_n = \mathbf{P}_y$? \mathbf{p}_{y^2} $\sqrt{\frac{1}{x_n y_n}} =$ *y*_{*n*+1} implies $y \rightarrow y \rightarrow y \rightarrow y$. Thus $\{x \}$ is decreasing and bounded below by *y* and $\{y \}$ is increasing

$$
x_{n+1} \qquad n+1 \qquad n \qquad 1 \qquad n \qquad 1 \qquad n
$$

and bounded above by x_1 .

c) By b),

$$
x_{n+1} - y_{n+1} = \frac{x_n + y_n}{2} - \frac{\sqrt{x_n + y_n}}{2} - \frac{x_n - y_n}{2} - y_n = \frac{x_n - y_n}{2}.
$$

Hence by induction and a), $0 < x_{n+1} - y_{n+1} < (x_1 - y_1) \times 2^n$.

d) By b), there exist x, $y \in \mathbb{R}$ such that $x_n \downarrow x$ and $y_n \uparrow y$ as $n \to \infty$. By c), $|x - y| \le (x_1 - y_1) \cdot 0 = 0$. Hence *x* = *y*.

2.3.9. Since $x_0 = 1$ and $y_0 = 0$,

$$
x^{2} = 2
$$

\n
$$
x^{2} = 2
$$

\n
$$
x^{2} = 2y_{n+1} = (x_{n} + 2y_{n}) - 2(x_{n} + y_{n})
$$

\n
$$
= -x^{2} + 2y^{2} = \dots = (-1)^{n}(x_{0} - 2y_{0}) = (-1)^{n}.
$$

Notice that $x_1 = 1 = y_1$. If $y_{n-1} \ge n - 1$ and $x_{n-1} \ge 1$ then $y_n = x_{n-1} + y_{n-1} \ge 1 + (n-1) = n$ and *x*^{*n*} = *x*_{*n*}-1</sub> + 2*y*_{*n*}-1 ≥ 1. Thus $1/y_n$ → 0 as $n \to \infty$ and x_n ≥ 1 for all $n \in \mathbb{N}$. Since

$$
x^{2} \t x^{2} \t 1
$$

\n
$$
x^{2} \t 1
$$

\n
$$
y^{n}
$$

\n
$$
-2 = -2x_{n}
$$

\n
$$
y^{2}
$$

\n
$$
y^{2
$$

as $n \to \infty$, it follows that $x_n/y_n \to \pm \sqrt{\frac{1}{2}}$ as $n \to \infty$. Since $x_n, y_n > 0$, the limit must be $\sqrt{\frac{1}{2}}$.

2.3.10. a) Notice $x_0 > y_0 > 1$. If $x_{n-1} > y_{n-1} > 1$ then $y_{n-1}^2 - x_{n-1}y_{n-1} = y_{n-1}(y_{n-1} - x_{n-1}) > 0$ so *y*^{*n*}−1(*y*^{*n*}−1+ *x*^{*n*}−1) < 2*x*_{*n*−1}*y*_{*n*−1}. In particular,

$$
x_n = \frac{2x_{n-1}y_{n-1}}{x_{n-1} + y_{n-1}} > y_{n-1}.
$$

It follows that $\sqrt{\frac{1}{x_n}} > \sqrt{\frac{1}{y_{n-1}}} > 1$, so $x_n > \sqrt{\frac{1}{x_n y_{n-1}}} = y_n > 1 \cdot 1 = 1$. Hence by induction, $x_n > y_n > 1$ for all *n* ∈ N.

Now $y_n < x_n$ implies $2y_n < x_n + y_n$. Thus

$$
x_{n+1} = \frac{2x_n y_n}{x_n + y_n} < x_n.
$$

Hence, ${x_n}$ is decreasing and bounded below (by 1). Thus by the Monotone Convergence Theorem, $x_n \to x$ for some $x \in \mathbb{R}$.

On the other hand, y_{n+1} is the geometric mean of x_{n+1} and y_n , so by Exercise 1.2.6, $y_{n+1} \ge y_n$. Since y_n is bounded above (by x_0), we conclude that $y_n \to y$ as $n \to \infty$ for some $y \in \mathbb{R}$.

b) Let $n \to \infty$ in the identity $y_{n+1} = \sqrt{x_{n+1}y_n}$. We obtain, from part a), $y = \sqrt{x_y}$, i.e., $x = y$. A direct calculation yields $y_6 > 3.141557494$ and $x_7 < 3.14161012$.

2.4 Cauchy sequences.

2.4.0. a) False. $a_n = 1$ is Cauchy and $b_n = (-1)^n$ is bounded, but $a_n b_n = (-1)^n$ does not converge, hence cannot be Cauchy by Theorem 2.29.

b) False. $a_n = 1$ and $b_n = 1/n$ are Cauchy, but $a_n/b_n = n$ does not converge, hence cannot be Cauchy by Theorem 2.29.

c) True. If $(a_n + b_n)^{-1}$ converged to 0, then given any $M \in \mathbb{R}$, $M = 0$, there is an $N \in \mathbb{N}$ such that $n \ge N$ implies $|a_n + b_n|^{-1} < 1/M$. It follows that $n \ge N$ implies $|a_n + b_n| > |M| > 0 > M$. In particular, $|a_n + b_n|$ diverges to ∞ . But if a_n and b_n are Cauchy, then by Theorem 2.29, $a_n + b_n \to x$ where $x \in \mathbb{R}$. Thus $|a_n + b_n| \to |x|$, NOT *∞*.

d) False. If $x_{2^k} = \log k$ and $x_n = 0$ for $n = 2^k$, then $x_{2^k} - x_{2^{k-1}} = \log(k/(k-1)) \to 0$ as $k \to \infty$, but x_k does not converge, hence cannot be Cauchy by Theorem 2.29.

2.4.1. Since $(2n^2 + 3)/(n^3 + 5n^2 + 3n + 1) \rightarrow 0$ as $n \rightarrow \infty$, it follows from the Squeeze Theorem that $x_n \rightarrow 0$ as $n \to ∞$. Hence by Theorem 2.29, x_n is Cauchy.

2.4.2. If x_n is Cauchy, then there is an $N \in \mathbb{N}$ such that $n \ge N$ implies $|x_n - x_N| < 1$. Since $x_n - x_N \in \mathbb{Z}$, it follows that $x_n = x_N$ for all $n \geq N$. Thus set $a := x_N$.

2.4.3. Suppose x_n and y_n are Cauchy and let $\varepsilon > 0$.

a) If $\alpha = 0$, then $\alpha x_n = 0$ for all $n \in \mathbb{N}$, hence is Cauchy. If $\alpha = 0$, then there is an $N \in \mathbb{N}$ such that $n, m \ge N$ $|\text{implies } |x_n - x_m| < \varepsilon / |\alpha|$. Hence

$$
|\alpha x_n - \alpha x_m| \le |a| |x_n - x_m| < \varepsilon
$$

for *n*, $m \geq N$.

b) There is an N E N such that n, $m \ge N$ implies $|x_n - x_m|$ and $|y_n - y_m|$ are $\lt \varepsilon/2$. Hence

$$
|x_n + y_n - (x_m + y_m)| \le |x_n - x_m| + |y_n - y_m| < \varepsilon
$$

for *n*, $m \geq N$.

c) By repeating the proof of Theorem 2.8, we can show that every Cauchy sequence is bounded. Thus choose *M* > 0 such that $|x_n|$ and $|y_n|$ are both ≤ *M* for all $n \in \mathbb{N}$. There is an $N \in \mathbb{N}$ such that $n, m \ge N$ implies $|x_n - x_m|$ and $|y_n - y_m|$ are both $\lt \varepsilon$ /(2*M*). Hence

$$
|x_n y_n - (x_m y_m)| \le |x_n - x_m| |y_m| + |x_n| |y_n - y_m| < \varepsilon
$$

for *n*, $m \geq N$.

2.4.4. Let $s_n = \mathbf{P}_{n-1} x_k$ for $n = 2, 3, ...$ If $m > n$ then $s_{m+1} - s_n = \mathbf{P}_m$ *xk* . Therefore, *sⁿ* is Cauchy by

k=*n*

k=1 hypothesis. Hence *sⁿ* converges by Theorem 2.29. 2.4.5. Let $x_n = \mathbf{P}_n (^{-1})^k / k$ for $n \in \mathbb{N}$. Suppose *n* and *m* are even and $m > n$. Then

Each term in parentheses is positive, so the absolute value of *S* is dominated by $1/n$. Similar arguments prevail for all integers *n* and *m*. Since $1/n \to 0$ as $n \to \infty$, it follows that x_n satisfies the hypotheses of Exercise 2.4.4. Hence x_n must converge to a finite real number.

2.4.6. By Exercise 1.4.4c, if $m \ge n$ then

$$
\binom{m}{k_{m+1}-x_n} = \binom{m}{k_{k+1}-x_k} \leq \frac{m}{a^k} = \frac{1-\frac{m}{a^m} - (1-\frac{m}{a^n})}{a-1}.
$$

Thus $|x_{m+1}-x_n| \leq (1/a^n - 1/a^m)/(a-1) \to 0$ as $n, m \to \infty$ since $a > 1$. Hence $\{x_n\}$ is Cauchy and must converge by Theorem 2.29.

2.4.7. a) Suppose *a* is a cluster point for some set *E* and let $r > 0$. Since $E \cap (a - r, a + r)$ contains infinitely many points, so does $E \cap (a-r, a+r) \setminus \{a\}$. Hence this set is nonempty. Conversely, if $E \cap (a-s, a+s) \setminus \{a\}$ is always nonempty for all $s > 0$ and $r > 0$ is given, choose $x_1 \in E \cap (a - r, a + r)$. If distinct points x_1, \ldots, x_k have been chosen so that $x_k \in E \cap (a-r, a+r)$ and $s := \min\{|x_1 - a|, \ldots, |x_k - a|\}$, then by hypothesis there is an $x_{k+1} \in E \cap (a-s, a+s)$. By construction, x_{k+1} does not equal any x_j for $1 \le j \le k$. Hence x_1, \ldots, x_{k+1} are distinct points in $E \cap (a - r, a + r)$. By induction, there are infinitely many points in $E \cap (a - r, a + r)$.

b) If *E* is a bounded infinite set, then it contains distinct points x_1, x_2, \ldots Since $\{x_n\} \subseteq E$, it is bounded. It follows from the Bolzano–Weierstrass Theorem that x_n contains a convergent subsequence, i.e., there is an $a \in \mathbb{R}$ such that given $r > 0$ there is an $N \in \mathbb{N}$ such that $k \geq N$ implies $|x_{n_k} - a| < r$. Since there are infinitely many x_{n_k} 's and they all belong to E , a is by definition a cluster point of E .

2.4.8. a) To show $E := [a, b]$ is sequentially compact, let $x_n \in E$. By the Bolzano–Weierstrass Theorem, x_n has a convergent subsequence, i.e., there is an $x_0 \in \mathbb{R}$ and integers n_k such that $x_{n_k} \to x_0$ as $k \to \infty$. Moreover, by the Comparison Theorem, $x_n \in E$ implies $x_0 \in E$. Thus *E* is sequentially compact by definition.

b) (0, 1) is bounded and $1/n \in (0, 1)$ has no convergent subsequence with limit in (0, 1).

c) $[0, ∞)$ is closed and *n* ∈ $[0, ∞)$ is a sequence which has no convergent subsequence.

2.5 Limits supremum and infimum.

2.5.1. a) Since 3 − $(-1)^n$ = 2 when *n* is even and 4 when *n* is odd, lim sup_{*n*→∞} x_n = 4 and lim inf_{*n*→∞} x_n = 2.

b) Since cos($n\pi/2$) = 0 if *n* is odd, 1 if $n = 4m$ and -1 if $n = 4m + 2$, lim sup $_{n \to \infty} x_n = 1$ and lim inf $_{n \to \infty} x_n =$ *−*1.

c) Since $(-1)^{n+1}$ + $(-1)^n/n = -1 + 1/n$ when *n* is even and $1 - 1/n$ when *n* is odd, lim sup_{*n*→∞} $x_n = 1$ and

lim inf $_{n\rightarrow\infty}$ *x*_n = −1.

d) Since x_n → 1⁄2 as $n \to \infty$, lim sup_{$n\to\infty$} x_n = lim inf $n\to\infty$ x_n = 1⁄2 by Theorem 2.36.

e) Since $|y_n| \le M$, $|y_n/n| \le M/n \to 0$ as $n \to \infty$. Therefore, $\limsup_{n \to \infty} x_n = \liminf_{n \to \infty} x_n = 0$ by Theorem 2.36.

f) Since $n(1 + (-1)^n) + n^{-1}((-1)^n - 1) = 2n$ when n is even and $-2/n$ when n is odd, lim sup $_{n \to \infty} x_n = \infty$ and lim inf $_{n\rightarrow\infty}$ *x*_{*n*} = 0.

g) Clearly $x_n \to \infty$ as $n \to \infty$. Therefore, lim sup $_{n\to\infty} x_n = \liminf_{n\to\infty} x_n = \infty$ by Theorem 2.36.

2.5.2. By Theorem 1.20,

lim inf(*−x_n*):= lim (inf (*−x_k*))= *−* lim (sup *x_k*)= *−* lim sup *x_n*.
 $n\rightarrow\infty$ $n\rightarrow\infty$ $k\geq n$ $n\rightarrow\infty$ *n*→∞ *n*→∞ *k≥n n*→∞ *k≥n n*→∞

A similar argument establishes the second identity.

2.5.3. a) Since $\lim_{n\to\infty}(\sup_{k\geq n}x_k)< r$, there is an $N\in\mathbb{N}$ such that $\sup_{k\geq N}x_k< r$, i.e., $x_k< r$ for all $k\geq N$. b) Since $\lim_{n\to\infty}(\sup_{k\geq n}x_k)>r$, there is an $N\in\mathbb{N}$ such that $\sup_{k\geq N}x_k>r$, i.e., there is a $k_1\in\mathbb{N}$ such that $x_{k_1} > r$. Suppose $k_v \in \mathbb{N}$ have been chosen so that $k_1 < k_2 < \cdots < k_j$ and $x_{k_v} > r$ for $v = 1, 2, \ldots, j$. Choose $N > k_j$ such that $\sup_{k \ge N} x_k > r$. Then there is a $k_{j+1} > N > k_j$ such that $x_{k_{j+1}} > r$. Hence by induction, there are distinct natural numbers k_1, k_2, \ldots such that $x_{k_j} > r$ for all $j \in \mathbb{N}$.

2.5.4. a) Since $\inf_{k\geq n} x_k + \inf_{k\geq n} y_k$ is a lower bound of $x_j + y_j$ for any $j \geq n$, we have $\inf_{k\geq n} x_k + \inf_{k\geq n} y_k \leq$ inf*j≥n*(*xj* + *yj*). Taking the limit of this inequality as *ⁿ [→] [∞]*, we obtain

> lim inf x_n + lim inf $y_n \leq \liminf_{n \to \infty} (x_n + y_n)$.
 $n \to \infty$ $n \to \infty$ *n→∞ n→∞ n→∞*

Note, we used Corollary 1.16 and the fact that the sum on the left is not of the form *[∞] − [∞]*. Similarly, for each *j ≥ n*,

> inf (*x^k* + *yk*)*≤ x^j* + *yj ≤* sup *x^k* + *yj . k≥n k≥n*

Taking the infimum of this inequality over all $j \ge n$, we obtain $\inf_{k \ge n} (x_k + y_k) \le \sup_{k \ge n} x_k + \inf_{j \ge n} y_j$. Therefore,

lim $\inf(x_n + y_n) \leq \limsup x_n + \liminf y_n$. *n→∞ n→∞ n→∞*

The remaining two inequalities follow from Exercise 2.5.2. For example,

lim sup *xⁿ* + lim inf *yⁿ* = *−* lim inf(*−xn*) *−* lim sup(*−yn*) *n→∞ n→∞ n→∞ n→∞*

$$
\leq -\liminf_{n\to\infty} (-x_n - y_n) = \limsup_{n\to\infty} (x_n + y_n).
$$

b) It suffices to prove the first identity. By Theorem 2.36 and a),

$$
\lim_{n \to \infty} x_n + \liminf_{n \to \infty} y_n \le \liminf_{n \to \infty} (x_n + y_n).
$$

To obtain the reverse inequality, notice by the Approximation Property that for each $n \in \mathbb{N}$ there is a $j_n > n$ such that $inf_{k \ge n} (x_k + y_k) > x_{j_n} - \frac{1}{n} + y_{j_n}$. Hence

$$
\lim_{k \to \infty} \frac{1}{n} \ln f'(x_k + y_k) > x_{j_n} - \frac{1}{n} + \inf_{k \ge n} y_k
$$

for all $n \in \mathbb{N}$. Taking the limit of this inequality as $n \to \infty$, we obtain

$$
\liminf_{n \to \infty} (x_n + y_n) \ge \lim_{n \to \infty} x_n + \liminf_{n \to \infty} y_n.
$$

c) Let $x_n = (-1)^n$ and $y_n = (-1)^{n+1}$. Then the limits infimum are both -1 , the limits supremum are both 1, but $x_n + y_n = 0 \rightarrow 0$ as $n \rightarrow \infty$. If $x_n = (-1)^n$ and $y_n = 0$ then

> lim inf(*x_n*+ *y_n*) = −1 < 1 = lim sup *x_n* + lim inf *y_nn*→∞ *n→∞ n→∞ n→∞*

2.5.5. a) For any $j \ge n$, $x_j \le \sup_{k \ge n} x_k$ and $y_j \le \sup_{k \ge n} y_k$. Multiplying these inequalities, we have *xjyj ≤* (sup*k≥ⁿ xk*)(sup*k≥n yk*), i.e.,

$$
\sup_{j\geq n} x_j y_j \leq (\sup_{k\geq n} x_k)(\sup_{k\geq n} y_k).
$$

Taking the limit of this inequality as $n \to \infty$ establishes a). The inequality can be strict because if

 $\frac{1}{2}$ 0 *n* even $x_n = 1 - y_n =$
1 *n* odd

then $\limsup_{n\to\infty}$ $(x_ny_n) = 0 < 1 = (\limsup_{n\to\infty} x_n)(\limsup_{n\to\infty} y_n)$.

b) By a),

 $\liminf_{n \to \infty} (x_n y_n) = -\limsup_{n \to \infty} (-x_n y_n) \ge -\limsup_{n \to \infty} (-x_n) \limsup_{n \to \infty} y_n = \liminf_{n \to \infty} x_n \limsup_{n \to \infty} y_n$ *n→∞ n→∞ n→∞ n→∞ n→∞ n→∞*

2.5.6. *Case 1.* $x = ∞$. By hypothesis, $C := \limsup_{n \to \infty} y_n > 0$. Let $M > 0$ and choose $N ∈ N$ such that $n \ge N$ implies $x_n \ge 2M/C$ and $\sup_{n \ge N} y_n > C/2$. Then $\sup_{k \ge N} (x_k y_k) \ge x_n y_n \ge (2M/C)y_n$ for any $n \ge N$ and $\sup_{k \geq N} (x_k y_k) \geq (2M/C) \sup_{n \geq N} y_n > M$. Therefore, $\limsup_{n \to \infty} (x_n y_n) = \infty$.

Case 2. 0 ≤ x < ∞. By Exercise 2.5.6a and Theorem 2.36,

lim sup($x_n y_n$)≤ (lim sup x_n)(lim sup y_n) = x lim sup y_n . *n→∞ n→∞ n→∞ n→∞*

On the other hand, given ² > 0 choose $n \in \mathbb{N}$ so that $x_k > x - 2$ for $k \ge n$. Then $x_k y_k \ge (x - 2)y_k$ for each $k \ge n$, i.e., $\sup_{k\geq n}(x_ky_k)\geq (x-2)\sup_{k\geq n}y_k$. Taking the limit of this inequality as $n\to\infty$ and as $2\to 0$, we obtain

> lim $\sup(x_n y_n) \geq x \lim \sup y_n$. *n→∞ n→∞*

2.5.7. It suffices to prove the first identity. Let $s = \inf_{n \in \mathbb{N}} (\sup_{k \ge n} x_k)$. *Case* 1. *s* = ∞. Then $\sup_{k \ge n} x_k = ∞$ for all *n* ∈ N so by definition,

> $\limsup x_n = \lim \left(\sup x_k \right) = \infty = s.$ *n→∞ n→∞ k≥n*

Case 2. $s = -\infty$. Let $M > 0$ and choose $N \in \mathbb{N}$ such that $\sup_{k \ge N} x_k \le -M$. Then $\sup_{k \ge n} x_k \le \sup_{k \ge N} x_k \le$ *−M* for all *ⁿ ≥ ^N*, i.e., lim sup*ⁿ→∞ xⁿ* = *−∞*.

Case 3. −∞ < s < −∞. Let *² >* 0 and use the Approximation Property to choose *N* [∈] N such that $\sup_{k\geq N} x_k < s+2$. Since $\sup_{k\geq n} x_k \leq \sup_{k\geq N} x_k < s+2$ for all $n\geq N$, it follows that

$$
s-< s \le \sup_{k \ge n} x_k < s+2
$$

for *n* $\geq N$, i.e., lim $\sup_{n\to\infty}x_n = s$.

2.5.8. It suffices to establish the first identity. Let $s = \liminf_{n \to \infty} x_n$.

Case 1. $s = 0$. Then by Theorem 2.35 there is a subsequence k_j such that $x_{k_j} \to 0$, i.e., $1/x_{k_j} \to \infty$ as $j \to \infty$. In particular, $sup_{k \ge n} (1/x_k) = ∞$ for all *n* ∈ N, i.e., lim $sup_{n \to \infty} (1/x_n) = ∞ = 1/s$.

Case 2. $s = \infty$. Then $x_k \to \infty$, i.e., $1/x_k \to 0$, as $k \to \infty$. Thus by Theorem 2.36, lim sup_{n→ ∞}($1/x_n$) = 0 = $1/s$. Case 3. 0 < s < ∞ . Fix $j \ge n$. Since $1/\inf_{k \ge n} x_k \ge 1/x_j$ implies $1/\inf_{k \ge n} x_k \ge \sup_{j \ge n} (1/x_j)$, it is clear that $1/s \ge \limsup_{n\to\infty} (1/x_n)$. On the other hand, given $2>0$ and $n \in \mathbb{N}$, choose $j>N$ such that $\inf_{k\ge n} x_k + 2 > x_j$, i.e., $1/\left(\inf_{k \geq n} x_k + 2\right) < 1/x_j \leq \sup_{k \geq n} (1/x_k)$. Taking the limit of this inequality as $n \to \infty$ and as $2 \to 0$, we conclude that $1/s \leq \limsup_{n \to \infty} (1/x_n)$.

2.5.9. If $x_n \to 0$, then $|x_n| \to 0$. Thus by Theorem 2.36, lim sup $_{n\to\infty} |x_n| = 0$. Conversely, if lim sup $_{n\to\infty} |x_n| \le$ 0, then

$$
0 \le \liminf_{n \to \infty} |x_n| \le \limsup_{n \to \infty} |x_n| \le 0,
$$

implies that the limits supremum and infimum of *[|]xn[|]* are equal (to zero). Hence by Theorem 2.36, the limit exists and equals zero.