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CHAPTER 2

2.1 Limits of Sequences.

2.1.0. a) True. If X, converges, then there is an M > 0 such that [X,/ = M. Choose by Archimedes an N €N
such that N > M/e. Then n =N implies [X,/n/ <= M/n <= M/N < .

b) False. X, = 'n does not converge, but xX,/n= 1/\/
c) False. Xn = 1 converges and y, = (—1)" is bounded, but X,y, = (—1)" does not converge.
d) False. Xn = 1/n converges to 0 and y, = nZ > 0, but XnYn = N does not converge.

Nn—- 0asnh - oo.

2.1.1. a) By the Archimedean Principle, given ¢ > 0 there is an N &€ N such that N > 1/&. Thus n = N
implies
/(2—-1/n) =2/=/1/n| < 1/N < ¢

b) By the Archimedean Principle, given & > 0 there is an N € N such that N > 7z%/¢2. Thusn = N implies

J J

l+x/ ' n—=1/=[x/ ' nf<=/ N<e
c) By the Archimedean Principle, given ¢ > 0 there is an N € N such that N > 3/&. Thus n = N implies

[3(1+1/n) —3/=[3/n| <3/N < &.

v_

d) By the Archimedean Principle, given ¢ > 0 there is an N € N such that N > 1/ 3¢. Thus n =N implies

/(2n? +1)/(3n?) —2/3]| = [1/(3n?)] = 1/(3N?) < .

2.1.2. a) By hypothesis, given ¢ > 0 there is an N € N such that n = N implies [X, —1/< &2. Thusn = N
implies
J1+2X, —3[/=2 /X, —1/< e
b) By hypothesis, given ¢ > 0 there is an N € N such that n = N implies X, > 1/2 and [X, — 1/ < &/4. In
particular, 1/X, < 2. Thus n =N implies

[(wXn — 2)/Xn — (T — 2)] = 2[(Xn — 1)/ Xn] < 4[Xn — 1] < &

c) By hypothesis, given & > 0 there is an N € N such that n = N implies X, > 1/2 and [X, — 1/ < &/1 + 2e).
Thus n = N and the triangle inequality imply

) M T

- - e
[(X? —e)/Xn — (1 —€)) = [xn—1] 1+ </Xn—1] 1+ < [Xp —1j(1+2e)< &

[Xn/

2.1.3. a) If ng= 2k, then 3 — (—1)"« = 2 converges to 2; if N = 2k + 1, then 3 — (—1)"< = 4 converges to 4. b)
If Nk = 2K, then (—1)°™ +2 = (-1)%+ 2 = 1+ 2 = 3 converges to 3; if Nx = 2k + 1, then (=1)%"« +2 =
as n — oo,
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(-1)%k*3+ 2 = —1+2 =1 converges to 1.
c) If ng = 2k, then (nk—(—1)"<nk—1)/nx = —1/(2K) converges to 0; if N, = 2k+1, then (Nx—(—1)"<NK-1)/ny =
(2ng— 1)/ny = (4k + 1)/(2k + 1) converges to 2.

2.1.4. Suppose X is bounded. By Definition 2.7, there are numbers M and m such that m = x, <M for all
n € N. Set C := max{1,/M/,/m/}. Then C >0, M =<C, and m = —C. Therefore, -C = X, = C, i.e, [Xp/<C
for all n € N.

Conversely, if [Xn/ < C for all n €N, then X, is bounded above by C and below by —C.

2.1.5. If C =0, there is nothing to prove. Otherwise, given & > 0 use Definition 2.1 to choose an N € N such
that n =N implies [bn/ = b, < &//C/. Hence by hypothesis, n = N implies

Xn —a/ = [Clb, < &

By definition, X, = a as n - co.

2.1.6. If X, = a for all n, then [X, —a/ = 0is less than any positive ¢ for all n € N. Thus, by definition, X, = a

as n — oo.
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Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall.



2.1.7. a) Let a be the common limit point. Given & > 0, choose N € N such that n = N implies /X, —a/ and
|yn — a/ are both < &/2. By the Triangle Inequality, n = N implies

[Xn —Ynl = [Xn —a/ +[yn —a/ < &.

By definition, Xy —Yn— 0as n — oo.

b) If n converges to some @, then given ¢ =1/2, 1 =[(n+1) —n/ < [(n+1) —a/+ [n —a/ < 1 for n sufficiently
large, a contradiction.

c) Let Xn=n and Yy =n+1/n. Then [Xn —Ya/ =1/Nn - 0as n — oo, but neither X, nor y, converges.

2.1.8. By Theorem 2.6, if X, = a then X,, — a. Conversely, if X,, — a for every subsequence, then it
converges for the “subsequence” Xg,.

2.2 Limit Theorem:s.

2.2.0. a) False. Let X, = n? and Yn = —N and note by Exercise 2.2.2a that X, + Y, = 00 as n — o0.
b) True. Let ¢ > 0. If X, » —00 as N — 00, then choose N &€ N such that n = N implies X, < —1/£. Then
Xn < 050 [Xn/ = —Xp > 0. MultiplyXx, < —1/& by &/—Xn) which is positive. We obtain —& < 1/Xx,, i.e.,

[1/Xn| = —1/Xn < &.

¢) False. Let X, = (-1)"/n. Then 1/X, = (—=1)"n has no limit as n - oo.

d) True. Since (2* —x)? = 2Xlog2 —1 > 1 for all X = 2, i.e,, 2X — X is increasing on [2,00). In particular,
X —x=222-2>0,ie, 2*>xfor x = 2. Thus, since X, = 00 as n — 0, we have 2X» > X, for n large, hence

27 < 1 0

—
Xn

as n — 0.

2.2.1. a) [Xp/ =1/Nn > 0asn — oo and we can apply the Squeeze Theorem.
b) 2n/(n? + 7)= (2/n)/(1 + x/n?) - 0/(1 +0) = 0 by_Theorem 2.12.

v v, A

c) (\/Zn +1)/(n+ 2) =(( 2/"n)+(1/n))/(1+ (\/2/n)) — 0/(1 +0) = 0 by Exercise 2.2.5 and Theorem
2.12.

d) An easy induction argument shows that 2n +1 < 2" for n = 3,4, .... We will use this to prove that n?> < 2"
forn =4,5,.... It's surely true for n = 4. If it's true for some n = 4, then the inductive hypothesis and the fact
that 2n +1 < 2" imply

N+12=n +2n+1<2"+2n+1<2"+2" ="+

so the second inequality has been proved.
Now the second inequality implies Nn/2" < 1/n for n = 4. Hence by the Squeeze Theorem, N/2" - 0 asn — oco.

2.2.2. a) Let M € R and choose by Archimedes an N & N such that N > max{M, 2}. Then n = N implies
n -n=n(n-1 =N(N-1)>M(@2 —1) =M.

b) Let M € R and choose by Archimedes an N &€ N such that N > —M/2. Notice that n = 1 implies —3n = —3
so1—3n =< -2. Thusn =N implies n —3n? =n(1 - 3n)s —2n < —2N < M.

c) Let M € R and choose by Archimedes an N € N such that N > M. Then n = N implies (n?+ 1)/n =
n+1/n>N +0> M.

d) Let M €R satisfy M < 0. Then 2+sinf=2—1=1implies n?(2 +sin(n®+n+1)) =n°~1>0=M for
all m - Q. On the other hand, if M > 0, then choose by Archimedes an N &€ N such that N > M. Then n =N
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implies n?(2 +sin(n®+n +1)) =n? -1=N2 > M.

2.2.3. a) Following Example 2.13,

2+ = A (2/n?)+ (3/n)- 4 —2
1—2n +3n2 5
(1/n2)- (2/n)+ 3
as N — o0,
b) Following Example 2.13,
n+n—-2

N

3 +n—2 L1+ (1/n?)- (2/nd)

2+ (1/n2) = (2/n3)

as n — oo.

13
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c) Rationalizing the expression, we obtain

YAV A

(3n+2—"n)( 3n+2+
n) vy

\/ \/-7 \/7\/ = v - w

3n+2—-'n= 3n+2+ 'n

as N — o0 by the method of Example 2.13. (Multiply top and bottom by 1/\/ﬁ.)

d) Multiply top and bottom by 1/\/n to obtain

Mﬁéﬂ Q4+1/n—Q1_— 2-1_ 1
i/n
\/9n +1—\/n +2 - ID9+1/n—pl+2/n - 3—-1 2°

2.2.4. a) Clearly,

Xn X _ XpY = XYn  XpY — Xy +XY — Xyp

Yn - y Y¥n YYn
Thus - B 1
Xn X_ X
- Xn X+ fyn -yl
Yoy Tl T
Since y =0, [yn/ = |y|/2 for large n. Thus
xn X 2 2/x|
H = X
RV Y R TR
SV B

as N — oo by Theorem 2.12i and ii. Hence by the Squeeze Theorem, X,/y, = X/y as n - 0.

b) By symmetry, we may suppose that X =y = . Since Yy, = o implies y, > 0 for n large, we can apply
Theorem 2.15 directly to obtain the conclusions when a > 0. For the case a« < 0, X, > M implies aXn, < aM.
Since any Mg € R can be written as aM for some M € R, we see by definition that X, - —co as n —» oo.

2.2.5. Case 1. X = 0. Let 2> 0 and choose N so large that n = N implies [Xn/ < 2?. By (8) in 1.1, ' Xn < 2

forn =N, i.e,, "X5 > 0asn — oo.
Case 2. x> 0. Then

12

Copyright © 2010 Pearson Education, Inc. Publishing as Prentice Hall.



J;—J;=(JXH—JX) \/xn+\/x Y Yy

X
Xn +

N

Since Y X,= 0, it follows that

Vv VL Ixn=x
[ xn= X<
\/i

.

Vs

This last quotient converges to 0 by Theorem 2.12. Hence it follows from the Squeeze Theorem that

as n — oo.

2.2.6. By the Density of Rationals, there is an r, between X+ 1/n and x for each n € N. Since X —r,/ < 1/n,
it follows from the Squeeze Theorem that r, = X as n — ©0.

2.2.7. a) By Theorem 2.9 we may suppose that [X/ = co. By symmetry, we may suppose that X = 0. By
definition, given M € R, there is an N & N such that n = N implies X, > M. Since w, = X,, it follows that
W, > M for all n = N. By definition, then, w, = 0 as n — co.

b) If X and y are finite, then the result follows from Theorem 2.17. If X =y = #c00or —X =Yy = o0, there is
nothing to prove. It remains to consider the case X = © and y = —oco. But by Definition 2.14 (with M = 0),
Xn > 0> yy for n sufficiently large, which contradicts the hypothesis X, < yn.

2.2.8. a) Take the limit of Xp41 = 1 — '1—X,, as N — 0. We obtain Xx = 1— '1-X, i.e., X2— X = 0.
Therefore, X =0, 1.

b) Take the limit of Xh41 =2+ @ Xp— 2asn — 0. We obtain X =2+  x— 2, i.e.,, X2>—5x+6 = 0. Therefore,

#’7

X = 2,3. But X7 > 3 and induction shows that Xp+1 =2+  X,— 2> 2+ 3 —2 = 3, so the limit must be x = 3.

c) Take the limit of Xp+1 = 2+ X, as N — 0. We obtain X = 2+ X, i.e, X2 — X —2 = 0. Therefore,

X =2,-1. But Xp+1 = 2+ Xp = 0 by definition (all square roots are nonnegative), so the limit must be X = 2.
This proof doesn’t change if X; > -2, so the limit is again X = 2.

13
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2.29.a) let E={k€eZ:k =0and k =101y}, Since 10"y < 10, E £{0,1,...,9}. Hence W :=supE €

E. It follows that w < 10"y, i.e., w/10"*1 <y. On the other hand, since w + 1 is not the supremum of E,
w + 1> 10"y, Therefore, y < w/10"*1 + 1/10"*2,

b) Apply a) for n = 0 to choose X1 = W such that X;/10 = X < X;/10 + 1/10. Suppose

k=1 k=1 10k 10n*+1

¢) Combine b) with the Squeeze Theorem.

d) Since an easy induction proves that 9" > n for all n € N, we have 9~ " < 1/n. Hence the Squeeze Theorem
implies that 97" — 0 as n - 00. Hence, it follows from Exercise 1.4.4c and definition that

4 "9 4 1 M 1 Ll 4 1
4999---= _+ Iim>2<__  _ + lim 1-— = + =05
10 — n
K
n—oo Ko 10 10 n—eo 10 9 10 10
Similarly,
nog K 1 1T
1-— =1
999 = lim K = |im n
n—oo o1 10 n—oco 9

2.3 The Bolzano—Weierstrass Theorem.

2.3.0. a) False. X = 1/4 + 1/(n + 4) is strictly decreasing and [Xn/ = 1/4 +1/5 < 1/2, but X, = 1/4 as
n — oo.

b) True. Since (N— 1)/(2n —1) - 1/2 as n — oo, this factor is bounded. Since [cos(n® +n + 1)/ < 1, it follows
that {X,} is bounded. Hence it has a convergent subsequence by the Bolzano—Weierstrass Theorem.
c) False. X, = 1/2 — 1/n is strictly increasing and [Xn/ = 1/2 < 1+ 1/n, but X, - 1/2 as n - co.

d) False. Xn = (1 + (—1)")nsatisfies X, = 0 for n odd and X, = 2n for n even. Thus Xok+1 — 0 as k = 00, but
Xn is NOT bounded.

14
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2.3.1. Suppose that =1 < X1 < O for somen =0. Then 0< Xp_1+1<1s00< Xp_1+1< "Xy_1+1and

it follows that Xn_1 < "Xp_1+1—1= X,. Moreover, "Xn_1+1—1<1-—1=0. Hence by induction, X, is

increasing and bounded above by 0. It follows from the Monotone Convergence Theorem that X, = aasn — oo.
_ - 2 — . - _ . . _

Taking the limit of \/Xn 1+1—-—1=X weseethat ac+a =0, ie, a 1,0. Since X increases from X > —1,

- n n [0}
the limit is 0. If Xo= —1, then X, = —1 for all n. If Xg= 0, then X, =0 for all n.

Finally, it is easy to verify that if Xxg= " for * = —1 or 0, then X, =" for all n, hence x, - ~ asn - oo.

2.3.2. If X1 = 0 then X, = 0 for all n, hence converges to 0. If 0 < X; < 1, then by 1.4.1c, X, is decreasing
and bounded below. Thus the limit, a, exists by the Monotone Convergence Theorem. Taking the limit of

Xn+1=1— 1—-Xy,asn - o0, wehavea=1— 1—a,ie, a=0,1. Since X; < 1, the limit must be zero.

Xn+1 = 1_—i1_%_(ﬂ _1-(1-Xn)

Finally,

Xn Xn v

-
Xn(1+ "1 —Xpu) 1+1 2

2.3.3. Case 1. Xg= 2. Then X, = 2 for all n, so the limit is 2.
Case 2. 2 < Xg < 3. Suppose that 2 < Xp,_; = 3forsomen = 1. Then 0< Xp_1—2 <150  Xp—1 —2 = Xp_1—2,

. \/ 1—2=X . Moreover, X \/ — 2 =< 2+1 = 3. Hence by induction, Xp is increasin
e, Xnp=2+ X5 ! n-1 =2+ "x, 1 y n g

and bounded above by 3. It follows from the Monotone Convergence Theorem that X, — a as n — . Taking

— 2 . . .
. 11— 2= - = .e. = . >
the limit of 2 + \/Xn 1 — 2 = X we see that a 5a+6 =0, i.e., a =2,3. Since X, increases from Xy > 2, the

limit is 3.
Case 3. Xg = 3. Suppose that Xnp_; = 3 for somen = 1. Then Xn—1 —2 =150 Xpn_1 —2 < Xpn_1 — 2, i.e,

X = 2 + \/Xn 1 —2=<X . Moreover, X _ 24 \/X —2 =2+ 1= 3. Hence by induction, X is decreasing

15
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and bounded above by 3. By repeating the steps in Case 2, we conclude that X, decreases from Xg = 3 to the
limit 3.

2.3.4. Case 1. Xg < 1. Suppose Xp—1 < 1. Then

2Xn—1 1+Xn

IN

Xn—1 = < = Xn < =1.

Thus {X,} is increasing and bounded above, so X, = X. Taking the limit of X, = (1 + Xn-1)/2 as n - co, we see
that X = (1 + x)/2, i.e, X= 1.
Case 2. Xg= 1. If Xyp_1 = 1 then

Thus {X,} is decreasing and bounded below. Repeating the argument in Case 1, we conclude that X, = 1 as
n — oo.

2.3.5. The result is obvious when X = 0. If X > 0 then by Example 2.2 and Theorem 2.6,

lim x¥@=D = |im x¥™ =1,
n—oo m—oco
If X < 0 then since 2n — 1 is odd, we have by the previous case that x}/@"—1) = —(—x)/Cn—1) 5, —1 as n - oo.

2.3.6. a) Suppose that {Xu} is increasing. If {X,} is bounded above, then there is an X € R such that X, = X
(by the Monotone Convergence Theorem). Otherwise, given any M > 0 there is an N & N such that Xy > M.
Since {Xp} is increasing, n = N implies X, = XN > M. Hence X, = 00 as n — o0.

b) If {Xn} is decreasing, then —Xp, is increasing, so part a) applies.

2.3.7. Choose by the Approximation Property an X; € E such that supE —1 < X; = supE. Since supE £E,
we also have X; < sup E. Suppose X; < X, < --- < X, in E have been chosen so that supE —1/n < X,, < supE.
Choose by the Approximation Property an Xp+1 € E such that max{X,,supE — 1/(n+ 1)} < Xp+1 < supE.
Then supE —1/(n + 1) < Xp+1 < supE and X, < Xp+1. Thus by induction, X; < X, < ... and by the Squeeze
Theorem, X, = supE as n — oco.

2.3.8. a) This follows immediately from Exercise 1.2.6.

b) By a), Xn+1= (Xn+Yn)/2 < 2Xn/2 = Xn. Thusyn+1 < Xp+1 < -+- < Xp. Similarly,y, = py21 < \/XnYn =
Yn+1 implies >y >y --->y . Thus {X }is decreasing and bounded below by y and {y }is increasing

Xn+1 n+1 n 1 n 1 n

and bounded above by X;.

c) By b),
Xn + _ Xn + Xn —
X1 = Yees = Xn+ Yn _\/Xﬂ‘1 < ntYn o n=Yn
2 2 Yn 2
16
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Hence by induction and a), 0 < Xp+1 — Yn+1 < (X1 —y1)/72".

d) By b), there exist X, y € R such that X, { X and y, Ty asn — o. By c), [X—Yy/=< (X —Yy1)-0=0. Hence
X=Y.

2.3.9. Since Xg=1and yg =0,

2 2 2 2

n+1 = 2Yn+1 = (Xn+2¥Yn) — 2(Xn+ Yn)

X2+ 2y == (-1)"(Xo~ 2¥0) = (-1)".

n n

Notice that X3 = 1 =vVy;. If yo_1 = n —1and X4—; = 1 then Yy, = Xp_1 +Yn—1 =1+ (N—-1) =n and
Xn = Xn—1 +2Yn-1 = 1. Thus 1/y, - 0asn - o and X, = 1 for all n €N. Since

X2 x2 2 1

yn

T A
- —2_=_ _= -0

ya Ya 2

as n — oo, it follows that X,/y, = #+ 2asn — o0, Since Xn, ¥Yn > 0, the limit must be ~ 2.

17
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2.3.10. a) Notice Xg > Yo > 1. If Xpn—1 > Yyn—1 > 1 then yﬁ_l — Xp=-1¥Yn-1 = Yn-1(Yn-1 — Xn—1) > 0 so

Yn-1(Yn-1 + Xn-1) < 2Xn-1Yn-1. In particular,

2Xn—1Yn—1

+VYnh—
Xn—l Yn-1

Xn = = Yn-1.

It follows that "X, > Yyn—1 > 1, s0 Xy > YXpYn—_1 = ¥Yn > 1-1 = 1. Hence by induction, X, >y, > 1 for all
n € N.
Now Y, < X, implies 2y, < Xp + Y. Thus

2Xn¥Yn

Xn+1 =
™+ Yn

Hence, {Xn} is decreasing and bounded below (by 1). Thus by the Monotone Convergence Theorem, X, — X for
some X € R.
On the other hand, Yyn+1 is the geometric mean of Xh+1 and Yyn, so by Exercise 1.2.6, Yn+1 = Yn. Since y, is
bounded above (by Xp), we conclude that y,_— Yy as n — oo for some y € R.
\/

Xy, i.e., X =Y. A direct

b) Let n = o0 in the identity Yn+1 = \/xnﬂyn. We obtain, from part a), y =
calculation vyields yg > 3.141557494 and X7 < 3.14161012.

2.4 Cauchy sequences.

2.4.0. a) False. a, = 1 is Cauchy and b, = (—-1)" is bounded, but anb, = (—1)" does not converge, hence
cannot be Cauchy by Theorem 2.29.

b) False. a5 = 1 and b, = 1/n are Cauchy, but a,/b, = n does not converge, hence cannot be Cauchy by
Theorem 2.29.

c) True. If (a,+ by)~! converged to 0, then given any M € R, M = 0, there is an N € N such that n = N
implies [an + bn/™t < 1//M/. It follows that n = N implies /a, + b,/ > /M/ > 0> M. In particular, [an + bn/
diverges to co. But if a, and by, are Cauchy, then by Theorem 2.29, a,+b, = X where X € R. Thus [a,+bn/ = [X/,
NOT oo.

d) False. If Xox = logk and X, = 0 for n = 2X, then Xox — X2 = log(k/(k — 1)) = 0 as k —» o0, but Xy does

not converge, hence cannot be Cauchy by Theorem 2.29.

2.4.1. Since (2n? +3)/(N® +5n%2 +3n+1) > O0asn — oo, it follows from the Squeeze Theorem that X, — 0
as N — 00. Hence by Theorem 2.29, X, is Cauchy.

2.4.2. If X, is Cauchy, then there is an N &€ N such that n = N implies [X, — Xn/ < 1. Since X, — XN €Z, it
follows that X, = Xn for all n = N. Thus set a := Xy .

2.4.3. Suppose Xn and Yy, are Cauchy and let ¢ > 0.
a) If a =0, then aX,= 0 for all n €N, hence is Cauchy. If « =0, then thereis an N € N such that n,m = N
implies [Xn — Xm/ < &/]a/. Hence
[aXn — aXm[ < [of [Xn — Xm[ < &

forn,m = N.
b) There is an N € N such that n,m =N implies [Xn — Xm/ and [Yn —Ym/ are < &/2. Hence
18
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Xn + Yn = (Xm + Ym) = Xn = Xm[+ [¥Yn —Ym/ < &

forn,m = N.

c) By repeating the proof of Theorem 2.8, we can show that every Cauchy sequence is bounded. Thus choose
M > 0 such that [Xn/ and [yn/ are both < M for all n € N. There is an N € N such that n,m = N implies
[Xn = Xm/ and [yn —Ym/ are both < &/(2M). Hence

XnYn = (Xm¥Ym)| = [Xn = Xm/ [Ym] + [Xn/[¥Yn —Ym[ < &
forn,m = N.
n Pm

P -1
2.4.4. let s = Xk forn =2,3,.... If m > n then Sj+1 —Sn = Xx. Therefore, s, is Cauchy by

k=1 k=n
hypothesis. Hence S, converges by Theorem 2.29.

19
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P _1\k >
2.4.5. Let x, = E:l( 1)%/k for n € N. Suppose n and m are even and m > n. Then

Each term in parentheses is positive, so the absolute value of S is dominated by 1/n. Similar arguments prevail
for all integers n and m. Since 1/n - 0 as n — oo, it follows that X, satisfies the hypotheses of Exercise 2.4.4.
Hence X, must converge to a finite real number.

2.4.6. By Exercise 1.4.4c, if m =n then

=< - = -
[Xm+1 = Xn/ =] (Xk+1 — Xk)/ = ak = ! am (1 an)

k=n k=n

Thus [Xm+1 — Xn/ = (1/@a" - 1/a™)/(a—1) - 0 asn,m — o since a > 1. Hence {X,} is Cauchy and must
converge by Theorem 2.29.

2.4.7. a) Suppose a is a cluster point for some set E and let r > 0. Since E n(a—- r,a+ r) contains infinitely
many points, so does E Nn(a—r,a+ r)\ {a}. Hence this set is nonempty. Conversely, if E n(a-s,a+ S)\| {a}

is always nonempty for all s > 0 and r > 0 is given, choose X; €EE Nn(a— r,a+r). If distinct points Xg,..., Xk
have been chosen so that Xxx €EE Nn(a—-r,a+ r)and s := min{/Xy— a/,...,[Xx —af}, then by hypothesis there is
an X+1 EE N(a-s,a+s). By construction, Xg+1 does not equal any X for 1 < j < k. Hence Xi,...,Xk+1 are

distinct points in E n(a— r,a+r). By induction, there are infinitely many points in E n(a—-r,a+r).

b) If E is a bounded infinite set, then it contains distinct points X1, Xz,.... Since {Xp} € E, it is bounded. It
follows from the Bolzano—Weierstrass Theorem that X, contains a convergent subsequence, i.e., there is an a € R
such that given r > 0 there is an N € N such that kK = N implies [X,, —a/ < r. Since there are infinitely many
Xn,'s and they all belong to E, a is by definition a cluster point of E.

2.4.8. a) To show E := [a,b] is sequentially compact, let X, € E. By the Bolzano—Weierstrass Theorem, Xp
has a convergent subsequence, i.e., there is an Xg € R and integers ny such that X, — Xo as kK —» ©. Moreover,
by the Comparison Theorem, X, € E implies Xg €E. Thus E is sequentially compact by definition.

b) (0, 1) is bounded and 1/n € (0, 1) has no convergent subsequence with limit in (0, 1).

c) [0,00) is closed and n &[0, 00) is a sequence which has no convergent subsequence.

2.5 Limits supremum and infimum.
2.5.1. a) Since 3— (—1)" = 2 when n is even and 4 when n is odd, lim sup, o, Xn = 4 and lim inf,_ e Xn = 2.
b) Since cos(nz/2) =0if nis odd, 1if n =4m and —1if n =4m +2, lim sup,_ Xy = 1 and lim inf Xy =

—-1.
c) Since (-1)™1 + (-1)"/n = —1+ 1/n when n is even and 1 — 1/n when n is odd, lim sup,, ., Xn = 1 and
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liminfaoeoXn = —1.

d) Since Xn = 1/2 asn = oo, lim sup,_,Xn = lim inf_.Xn = 1/2 by Theorem 2.36.
e) Since [yn/ =M, lyn/Nn/ = M/n—- 0asn — . Therefore, lim sup,_,Xn = lim inf,_ . X, = 0 by Theorem
2.36.

f) Since n(1 + (=1)™)+ n~1((—=1)" — 1) = 2n when n is even and —2/n when n is odd, lim sup,, ., Xn = % and
liminfa_oeoXn = 0.

g) Clearlyx, — 00 as n - o0. Therefore, lim sup,_,Xn = liminf,_,Xy = 00 by Theorem 2.36
2.5.2. By Theorem 1.20,

lim inf(—Xn) := lim (inf (=Xk))= — lim (sup Xk) = —lim sup Xn.

n—oco n—oco k=>n N—00 | =n n—oo

A similar argument establishes the second identity.

2.5.3. a) Since limp_oo(supg~n, Xk) < I, thereis an N € N such that sup, . Xk < T, i.e.,, Xk < r forall k = N.
b) Since liMp_oo(SUPL~pn Xk) > T, there is an N € N such that sup, .y Xk > T, i.e., there is a k; € N such that
Xk, > I. Suppose k, € N have been chosen so that k; < k; < --- < kj and X, > r forv =1,2,...,j. Choose

N > Kkj such that sup,.n Xk > r. Then thereis a Kj+1 > N > K; such that X,,, > r. Hence by induction, there
are distinct natural numbers K1, k2, ... such that xx; > r forall j € N.
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2.5.4. a) Since infy=n Xk + infi=n Yk is a lower bound of Xj +yj for any j =n, we have infy=n Xk + infy=nyx <
infj=n(Xj +Yj). Taking the limit of this inequality as n - o0, we obtain

lim inf Xp + lim inf yn < lim inf(Xn+ yn).

n—oo n—oo n—o0

Note, we used Corollary 1.16 and the fact that the sum on the left is not of the form o0 — c0. Similarly, for each
j=n,

inf (Xk + yk)SXj +Yj = sup Xk +Yj.
k=n k=n

Taking the infimum of this inequality over all j = n, we obtain infy~n(Xk+Yk) = supy~, Xk +infj=n yj. Therefore,

lim inf(Xn+ Yn) < lim sup Xn + lim inf yn.

n—oo n—oo n—oo

The remaining two inequalities follow from Exercise 2.5.2. For example,

lim sup Xn + lim inf yq = — lim inf(=Xn) — lim sup(—yn)

n—oo n—oo n—oo n—oo

< —Ilim inf(=Xn — Yn) = lim sup(Xn + yn).
n—oo n—oo

b) It suffices to prove the first identity. By Theorem 2.36 and a),

lim Xn+ lim inf yn < lim inf(Xn+ Yyn).

n—oo n—oo n—oo

To obtain the reverse inequality, notice by the Approximation Property that for each n € N there is a j, > n
such that infy=n(Xk + Yk)> Xj, —1/n +Yj, . Hence

1 .
n + inf yg

K
inf' (X + Yi) > X;,, — k=n

>

for all n € N. Taking the limit of this inequality as n — 0, we obtain

liminf(Xn+ Yn) = lim Xn+ lim inf yn.

n—.oo n—.oco n—.oo

c) Let Xp = (=1)" and y,, = (=1)"*1. Then the limits infimum are both -1, the limits supremum are both 1,

but Xp + Yya=0-> 0asn — . If X, = (-1)" and y, = 0 then

lim inf(Xn+ Yn) = —1 < 1 = lim sup Xn + lim inf yn.

n—oo n—oo n—.oo
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2.55. a) Forany j = n, Xj < supg-p Xk and Yj < sup,-,Yk. Multiplying these inequalities, we have
XjYj =< (supk=n Xk)(sUpy=n Yk), i.e.,
sup XjYj =< (sup Xg)(sup Yk).

j=n k=n k=n

Taking the limit of this inequality as n — oo establishes a). The inequality can be strict because if

Y
0 n even

=1 = odd

then lim sup,,_,,(XnYn) = 0 < 1 = (lim sup,_,. Xa)(limsup,_,, Yn)-
b) By a),

lim inf(XnYn) = — lim sup(=XnYn) = — lim sup(—Xn) lim sup yn = lim inf Xn lim sup yn.

n—oo n—.oo n—.oo n—.oo n—oo n—.oo

2.5.6. Case 1. X = . By hypothesis, C := lim sup,_,Yn > 0. Let M > 0 and choose N & N such that
n =N implies X, = 2M/C and sup,,-n Yn > C/2. Then supy-n (XkYk) = Xn¥Yn = (2M/C)y,for any n = N and
sup, -y (XkYk) = (2M/C)sup,,~n Yn = M. Therefore, lim sup,_ . (XnYn) = 0.
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Case 2. 0 = X< 0. By Exercise 2.5.6a and Theorem 2.36,

lim sup(Xnyn) < (lim sup Xn)(lim sup yn) = Xlim sup yn.

n—.oco n—oo n—oo n—oco

On the other hand, given 2> 0 choosen &€ N so that X, > Xx—2for k =n. Then Xgyk = (X — 2)yi for each k = n,

i.e., sUpy~n(XkYk) = (X = 2)sup, -, Yk. Taking the limit of this inequality as n - o0 and as 2 —» 0, we obtain

lim sup(Xnyn)= Xlim sup yn.

n—oo n—oco

2.5.7. It suffices to prove the first identity. Let s = infren(SUP =y Xk)-

Case 1. s = 00. Then supk=n Xk = o for all n € N so by definition,

lim sup Xn = lim (sup Xk)= 00 =S5s.
n—oo N—o k=n
Case 2. s = —00. Let M > 0 and choose N & N such that sup, .y Xk = —M. Then sup, ., Xk < sup, =N Xk =
—M for all n = N, i.e, lim sup,_ o Xn = —00.

Case 3. —00 < s < —o00. Let 2 > 0 and use the Approximation Property to choose N & N such that
SUPE =N Xk < S + 2. Since supy -, Xk = supy-n Xk < S+ 2for all n =N, it follows that

S—2<s<supXx<S+?2
k=n

forn =N, i.e, limsup,_Xn = S.

2.5.8. It suffices to establish the first identity. Let s = lim inf 00 Xn.

Case 1. s = 0. Then by Theorem 2.35 there is a subsequence Kj such that Xi; = 0, e, 1/ij — 00 as j - oo.
In particular, supy.,(1/Xg) = o0 for all n €N, i.e., lim sup,,(1/Xn) = © =1/s.

Case 2. s = 0. Then Xx = oo, i.e., 1/Xyx = 0, as k = c0. Thus by Theorem 2.36, lim sup,,_,.(1/X,) = 0 = 1/s.

Case 3. 0<s < oo. Fixj =n. Since 1/infy=n Xk = 1/X; implies 1/infy=n Xk = sup;j-n(1/X;), it is clear that
1/s = lim sup,,_,.,(1/X,). On the other hand, given 2> 0 and n €N, choose j > N such that infx-n Xk + 2> X;,
i.e., 1/(infy=n Xk + 2) < 1/Xj =< supg=n(1/Xk). Taking the limit of this inequality as n — o and as 2 » 0, we
conclude that 1/s < lim sup,_o0(1/Xp).

2.5.9. If X4 = 0, then [Xy/ = 0. Thus by Theorem 2.36, lim sup,,_,, [Xn/ = 0. Conversely, if lim sup,_, [Xn/ =
0, then

0 < lim inf [Xn/ < lim sup [Xn/ = 0,

n—oo n—oo

implies that the limits supremum and infimum of /X[ are equal (to zero). Hence by Theorem 2.36, the limit exists
and equals zero.
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