Solution Manual for Introduction to Flight 8th Edition

 Anderson 00780276759780078027673Full link download
Solution Manual
https://testbankpack.com/p/solution-manual-for-introduction-to-flight-8th-edition-

anderson-0078027675-9780078027673/

SOLUTIONS MANUAL TO ACCOMPANY INTRODUCTION TO FLIGHT
 $8^{\text {th }}$ Edition
 By
 John D. Anderson, Jr.

Chapter 2

$2.1=p / R T=(1.2)\left(1.01 \quad 10^{5}\right) /(287)(300)$
$1.41 \mathrm{~kg} / \mathrm{m}^{2}$
$v=1 /=1 / 1.41=0.71 \mathrm{~m}^{3} / \mathrm{kg}$
2.2 Mean kinetic energy of each atom $3 \mathrm{Z} \pi={ }^{3} \overline{2}\left(1.3810^{23}\right)(500)=1.03510^{20} \mathrm{~J}$

One kg-mole, which has a mass of 4 kg , has 6.02×10^{26} atoms. Hence 1 kg has
$\underline{1}_{4}\left(6.02100^{26}\right)=1.50510^{26}$ atoms.
Total internal energy $=($ energy per atom $)($ number of atoms $)$

$$
=\left(1.035^{\prime} 10^{-20}\right)\left(1.505^{\prime} 10^{26}\right)=1.558^{\prime} 10^{6} \mathrm{~J}
$$

$2.3 \quad-\frac{p}{R T}-\frac{2116}{(1716)(46059)} 0.00237 \frac{\text { slug }}{\mathrm{ft}^{3}}$
Volume of the room $=(20)(15)(8)=2400 \mathrm{ft}^{3}$
Total mass in the room $=(2400)(0.00237)=5.688$ slug

$$
\text { Weight }=(5.688)(32.2)=183 \mathrm{lb}
$$

$2.4=\frac{p}{R T}=\frac{2116}{(1716)(460-10)}=0.00274 \frac{\mathrm{slug}}{\mathrm{ft}^{3}}$
Since the volume of the room is the same, we can simply compare densities between the two problems.
$=0.00274-\quad 0.00237=0.00037$
\%change $=\quad=\begin{aligned} & 0 . \quad 00037, \quad \mathrm{ft}^{3} \\ & (100)=15.6 \% \text { increase }\end{aligned}$
2.5 First, calculate the density from the known mass and volume, $=1500 / 900=1.67 \mathrm{lb}_{\mathrm{m}} / \mathrm{ft}^{3}$

In consistent units, $=1.67 / 32.2=0.052$ slug $^{\prime 2}{ }^{3}$. Also, $T=70 F=70+460=530 R$. Hence,

$$
\begin{aligned}
& p=\quad R T=(0.52)(1716)(530) \\
& p=47,290 \mathrm{lb} / \mathrm{ft}^{2} \\
\text { or } \quad & p=47,290 / 2116=22.3 \mathrm{~atm}
\end{aligned}
$$

$2.6 p=R T$
〔np $\ell n p$ enR $n T$
Differentiating with respect to time,

$1 d p$	$1 d$
$p d t$	$d t$

or, $\quad \begin{array}{llll}\underline{d p} & \underline{p} \underline{d} & \underline{p} \\ d t & \frac{d T}{d t} & \mathrm{~T}\end{array}$
or, $\quad \frac{d p}{d t} R T \quad \frac{d}{d t} R \quad \frac{d T}{d t}$
At the instant there is 1000 lbm of air in the tank, the density is

$$
1000 / 900 \quad 1.11 \mathrm{lb}_{\mathrm{m}} / \mathrm{ft}^{3}
$$

$$
1.11 / 32.2 \quad 0.0345 \mathrm{slug} / \mathrm{ft}^{3}
$$

Also, in consistent units, is given that

$$
T=50+460=510 R
$$

and that

$$
\frac{d T}{d t} \quad 1 F / \mathrm{min} \quad 1 R / \mathrm{min} \quad 0.016 R / \mathrm{sec}
$$

From the given pumping rate, and the fact that the volume of the tank is $900 \mathrm{ft}^{3}$, we also have

Thus, from equation (1) above,
$\frac{d}{d t}(1716)(510)\left(1.73 \quad 10^{5}\right) \quad(0.0345)(1716)(0.0167)$
$15.1 \quad 0.99 \quad 16.1 \mathrm{lb} /\left(\mathrm{ft}^{2}\right)(\mathrm{sec}) \frac{16.1}{2116}$ $0.0076 \mathrm{~atm} / \mathrm{sec}$
2.7 In consistent units,

$$
T 10273 \quad 263 \mathrm{~K}
$$

Thus,

$$
\begin{aligned}
& p / R T\left(1.710^{4}\right) /(287)(263) \\
& 0.225 \mathrm{~kg} / \mathrm{m}^{3}
\end{aligned}
$$

$2.8 \quad p / R T \quad 0.5 \quad 10^{5} /(287)(240) \quad 0.726 \mathrm{~kg} / \mathrm{m}^{3}$

$$
\begin{array}{lll}
v & 1 / & 1 / 0.726 \quad 1.38 \mathrm{~m}^{3} / \mathrm{kg}
\end{array}
$$

$$
\begin{aligned}
& d \\
& \begin{array}{llll}
d & 0.000556 & & \\
& & 1.73 & 10 \\
5 \text { slug } /\left(\mathrm{ft}_{3}\right)(\mathrm{sec})
\end{array} \\
& \overline{d t} \quad 32.2
\end{aligned}
$$

F
$p=$ Force due to pressure $=\quad p d x=(2116-10 x) d x$ $=\left[2116 x-5 x^{2}\right]^{3} 0=6303 \mathrm{lb}$ perpendicular to wall.
$F_{\tau}=$ Force due to shear stress $={ }^{i_{0}}{ }^{3} \tau d x={\stackrel{i_{0}}{ }{ }^{3} \frac{90}{(x+9)^{2}}}_{1} d x$

$$
=\left[180(x+9) \frac{1}{2}\right]_{0}^{3}=623.5-540=83.5 \mathrm{lb} \text { tangential to wall. }
$$

Magnitude of the resultant aerodynamic force $=$

$$
\begin{aligned}
& R=\sqrt{\sqrt{6303)^{2}+(835)^{2}}}=6303.6 \mathrm{lb} \\
& {\text { æ } 83.5}^{\circ}=0.76^{\circ}
\end{aligned}
$$

$2.10 V=\stackrel{3}{-2} V \sin$

Minimum velocity occurs when $\sin =0$, i.e., when $=0^{\circ}$ and 180°.
$V_{\text {min }}=0$ at $=0^{\circ}$ and 180°, i.e., at its most forward and rearward points.
Maximum velocity occurs when $\sin =1$, i.e., when $=90^{\circ}$. Hence,

$$
V_{\max }=\frac{3}{-2}(85)(1)=127.5 \mathrm{mph} \text { at }=90
$$

i.e., the entire rim of the sphere in a plane perpendicular to the freestream direction.
2.11 The mass of air displaced is

$$
M=(2.2)(0.002377)=5.23^{\prime} 10^{-3} \text { slug }
$$

The weight of this air is

$$
W_{\text {air }}=\left(5.23^{\prime} 10^{-3}\right)(32.2)=0.168 \mathrm{lb}
$$

This is the lifting force on the balloon due to the outside air. However, the helium inside the balloon has weight, acting in the downward direction. The weight of the helium is less than that of air by the ratio of the molecular weights

$$
W_{H_{C}}=(0.168) \frac{4}{28.8}=0.0233 \mathrm{lb}
$$

Hence, the maximum weight that can be lifted by the balloon is

$$
0.168 \quad 0.0233=0.145 \mathrm{lb} .
$$

2.12 Let $p_{3,3}$, and T_{3} denote the conditions at the beginning of combustion, and $p_{4}, 4$, and T_{4} denote conditions at the end of combustion. Since the volume is constant, and the mass of the gas is constant, then $p_{4}=3=11.3$ $\mathrm{kg} / \mathrm{m}^{3}$. Thus, from the equation of state,

$$
p_{4}=4 R T_{4}=(11.3)(287)(4000)=1.3^{\prime} 10^{7} \mathrm{~N} / \mathrm{m}^{2}
$$

or,
$1.3^{\prime} 10^{7}$

$$
p_{4}=\frac{}{1.01^{\prime} 10^{5}}=129 \mathrm{~atm}
$$

2.13 The area of the piston face, where the diameter is $9 \mathrm{~cm}=0.09 \mathrm{~m}$, is

$$
A=\frac{(0.09)^{2}}{4}=6.36^{\prime} 10^{-3} \mathrm{~m}^{2}
$$

(a) The pressure of the gas mixture at the beginning of combustion is

$$
p_{3}=R T_{3}=11.3(287)(625)=2.02{ }^{\prime} 10{ }^{6} \mathrm{~N} / \mathrm{m}^{2}
$$

The force on the piston is
$F_{3}=p 3 A=\left(2.02^{\prime} 10^{6}\right)\left(6.36^{\prime} 10^{-3}\right)=1.28^{\prime} 10^{4} \mathrm{~N}$
Since $4.45 \mathrm{~N}=\mathrm{l} \mathrm{lbf}$,
4
$F_{3}=\frac{1.28^{\prime} . \frac{10}{4.45}}{4}=2876 \mathrm{lb}$
(b) $\quad p_{4}=4 R T_{4}=(11.3)(287)(4000)=1.3,10^{7} \mathrm{~N} / \mathrm{m}^{2}$

The force on the piston is

$$
\begin{aligned}
& F_{4}=p_{8.2} A=\left(1 / 3^{\prime} 10^{7}\right)\left(6.36^{\prime} 10^{-3}\right)=8.27^{\prime} 10^{4} \mathrm{~N} \\
& F 4= \\
& =18,579 \mathrm{lb}
\end{aligned}
$$

2.14 Let p_{3} and T_{3} denote conditions at the inlet to the combustor, and T_{4} denote the temperature at the exit.

Note: $p_{3}=p_{4}=4^{\prime} 10^{6} \mathrm{~N} / \mathrm{m}^{2}$

(b) $4=\underline{p 4}=-4 \frac{\overline{10}^{6}}{-}=\overline{9.29} \mathrm{~kg} / \mathrm{m}^{3}$

$$
R T_{4} \quad(287)(1500)
$$

2.151 mile $=5280 \mathrm{ft}$, and 1 hour $=3600 \mathrm{sec}$. So:

A very useful conversion to remember is that

$$
60 \mathrm{mph}=88 \mathrm{ft} / \mathrm{sec}
$$

also, $\quad 1 \mathrm{ft}=0.3048 \mathrm{~m}$

Thus

$$
\begin{aligned}
& 88 \frac{\mathrm{ft}}{\mathrm{sec}}=26.82 \mathrm{~m} . \\
& -\quad . \quad . \quad . \quad .
\end{aligned}
$$

2.17 On the front face

$$
F_{f} \quad p_{f} A \quad\left(1.0715 \quad 10^{5}\right)(2) \quad 2.143 \quad 10^{5} \mathrm{~N}
$$

On the back face

$$
F_{b} \quad p_{b} A \quad\left(\begin{array}{llll}
1.01 & 10^{5}
\end{array}\right)(2) \quad 2.02 \quad 10^{5} \mathrm{~N}
$$

The net force on the plate is

$$
\left.F \underset{f}{F} F_{b}^{(2.143} 2.02\right) 10^{5} \quad 0.123 \quad 10^{5} \quad \mathrm{~N}
$$

From Appendix C,

$$
1 l b_{f} \quad 4.448 \mathrm{~N} .
$$

So,

$$
\left.F \frac{0.12310^{5}}{4.448} \quad \underline{[2765 \mathrm{lb}} \right\rvert\,
$$

This force acts in the same direction as the flow (i.e., it is aerodynamic drag.)
2.18 Wing loading $\stackrel{W}{-10,100} \xlongequal{233} \quad 43.35 \mathrm{lb} / \mathrm{ft}^{2}$

In SI units:

In terms of kilogram force,

$$
\begin{array}{lll}
\frac{W}{s} & 2075.5 & \frac{\mathrm{~N} 1 \mathrm{k}_{f}}{\mathrm{~m}^{2}} \\
9.8 \mathrm{~N} & 211.8 \frac{\mathrm{~kg}_{f}}{\mathrm{~m}_{-}^{2}}
\end{array}
$$

2.21 From Fig. 2.16,
length of fuselage $=33 \mathrm{ft}, 4.125$ inches $=33.34 \mathrm{ft}$
0.3048 m

wing span $=40 \mathrm{ft}, 11.726$ inches $=40.98 \mathrm{ft}$
0.3048 m

$$
40.98 \mathrm{ft} \mathrm{ft}^{12.49 \mathrm{~m}}
$$

2.22 (a) From App. C 1 ft. 0.3048 m .

Thus,
$354,200 \mathrm{ft} \quad(354,000)(0.3048) \quad 107,960 \mathrm{~m} \quad 107.96 \mathrm{~km}$
(b) From Example 2.6: $60 \mathrm{mph} 26.82 \mathrm{~m} / \mathrm{sec}$

Thus,

2.23

$$
\begin{aligned}
& \qquad \begin{array}{l}
m \frac{34,000 \mathrm{lb}}{32.2 \mathrm{lb} / \mathrm{slug}} .1055 .9 \mathrm{slug} \\
\text { From Newton's } 2^{\text {nd }} \text { Law } \\
F
\end{array} \begin{array}{l}
\text { } m a \\
a \quad \frac{F}{M}
\end{array} \frac{\underline{57.000} 53.98 \mathrm{ft} / \mathrm{sec}^{2}}{1055.9}
\end{aligned}
$$

2.24

$$
\text { \# of g's } \frac{53.98}{32.2} 1.68
$$

2.25 From Appendix C, one pound of force equals 4.448 N . Thus, the thrust of the Rolls-Royce Trent engine in pounds is

$$
T \frac{373.710^{3} \mathrm{~N}}{4.448 \mathrm{~N} / \mathrm{lb}} 84,015 \mathrm{lb}
$$

2.26

(a) $F(690,000)(9.8) \quad 6.762 \quad 10^{6} \mathrm{~N}$
(b) $F \quad \begin{array}{lllll}6.762 & 10^{6} / 4.448 & 1.5 \quad 10^{6} \mathrm{lb}\end{array}$

