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2.TREES AND  DISTANCE 
 
 
 

2.1.  BASIC PROPERTIES 
 

 
2.1.1.   Trees  with at  most  6 vertices  having specified maximum degree  or 

diameter. For  maximum degree k, we start with the  star K1,k and  append 

leaves to obtain the  desired number of vertices without creating a vertex 

of larger degree. For  diameter k, we start with the  path Pk+1  and  append 

leaves to obtain the  desired number of vertices without creating a longer 

path. Below we list  all the  resulting isomorphism classes. 

For k = 0, the  only tree is K1, and  for k = 1, the  only tree is K2 (diame- 

ter or maximum degree k). For larger k, we list  the  trees in the  tables. Let 

Ti, j  denote the  tree with i + j vertices obtained by starting with one edge 

and  appending i − 1 leaves to one endpoint and   j − 1 leaves at the  other 

endpoint (note  that T1,k =  K1,k for k ≥ 1).  Let  Q be the  6-vertex tree with 

diameter 4 obtained by growing a leaf from  a neighbor of a leaf in  P5.  Let 

n denote the  number of vertices. 
 

maximum degree k                                           diameter k 

containing the  new (copy of) edge uv equals the  number of u, v-paths in G, 

and  a graph is a tree if and  only  if for each  pair u, v there is exactly one 

u, v-path.  Note  that the  specified condition must also  hold  for addition of 

extra copies  of edges  already present; this excludes cliques. 
 

2.1.3.   A graph is  a tree  if  and  only  if  it  is  loopless  and  has  exactly  one 

spanning tree.  If G is a tree, then G is loopless, since  G is acyclic.  Also, G is 

a spanning tree of G. If G contains another spanning tree, then G contains 

another edge not in G, which  is impossible. 

Let  G be loopless and  have exactly one  spanning tree T .  If G has  a 

edge e not  in T , then T + e contains exactly one cycle, because T is a tree. 

Let  f be another edge in this cycle.  Then T + e − f contains no cycle.  Also 

T +e − f is connected, because deleting an edge of a cycle cannot disconnect 

a graph.  Hence T + e − f  is a tree different from  T .  Since  G contains no 

such  tree, G cannot contain an edge not in T , and  G is the  tree T . 
 

2.1.4.   Every  graph with fewer edges than vertices  has  a component that is 

a tree—TRUE. Since  the  number of vertices or edges  in a graph is the  sum 

of the  number in each  component, a graph with fewer  edges  than vertices 

must have a component with fewer  edges  than vertices. By the  properties 

of trees, such  a component must be a tree. 
 

2.1.5.   A maximal acyclic subgraph of a graph G consists of a spanning tree 

from  each  component of G.  We show  that if H is a component of G and 

F is a maximal forest in G, then F ∩ H is a spanning tree of H .  We may 

assume that F contains all vertices of G; if not,  throw the  missing ones  in 

as isolated points to enlarge the  forest. Note that F ∩ H contains no cycles, 

since  F contains no cycles and  F ∩ H is a subgraph of F .
 

k 

n 

2 3 4 5  k 

n 

2 3 4 5 We need  only  show  that F ∩ H is a connected subgraph of H .  If not, 

then it has  more  than one component. Since  F is spanning and  H is con- 

3 P3     3 P3    nected, H contains an  edge  between two  of these components.  Add  this 

4 P4 K1,3    4 K1,3 P4   
edge  to F and  F ∩ H .  It cannot create a cycle, since  F previously did  not 

5 P5 T2,3 K1,4   5 K1,4 T2,3 P5  
contain a path between its  endpoints.  We have made F into  a larger for- 

6 P6 T3,3, Q T2,4 K1,5  6 K1,5 T2,4, T3,3 Q P6 
est  (more  edges), which  contradicts the  assumption that it was  maximal. 
(Note:  the  subgraph consisting of all vertices and  no edges  of G is a span- 

 
2.1.2.   Characterization of trees. 

a) A graph is tree if and  only  if it is connected and  every edge is a cut- 

edge.  An edge  e is a cut-edge if and  only  if e belongs to no cycle, so there 

are  no cycles if and  only if every  edge is a cut-edge. (To review, edge e = uv 

ning  subgraph of G; spanning means only that all the  vertices appear, and 

says  nothing about connectedness. 
 

2.1.6.   Every  tree with average  degree a has  2/(2 − a) vertices. Let the  tree 

have n vertices and  m edges.  The average degree is the  degree sum  divided P

is a cut edge if and  only if G − e has  no u, v-path, which  is true if and  only 

if G has  no cycle containing e.) 

by  n,  the  degree sum  is  twice  m,  and  m is  n − 1.   Thus a  = 
2(n − 1)/n. Solving for n yields  n = 2/(2 − a). 

di /n  =
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b) A graph is a tree if and  only  if for all  x , y ∈  V (G),  adding a copy 

of xy as an edge creates  exactly  one cycle.  The  number of cycles  in G + uv 

2.1.7.   Every  n-vertex graph with m edges has at least m − n + 1 cycles.  Let k 

be the  number of components in such  a graph G. Choosing a spanning tree
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from  each  component uses  n − k edges.   Each of the  remaining m − n + k 

edges  completes a cycle with edges  in this spanning forest. Each such  cycle 

has  one edge not in the  forest, so these cycles are  distinct. Since  k ≥ 1, we 

have found  at least m − n + 1 cycles. 
 

2.1.8.   Characterization of simple graphs that are forests. 

a) A simple graph is a forest if and  only if every induced subgraph has 

a vertex of degree at most  1. If G is a forest and  H is an induced subgraph of 

G, then H is also a forest, since  cycles cannot be created by deleting edges. 

Every component of H is a tree, which  is an isolated vertex or has  a leaf (a 

vertex of degree 1). If G is not a forest, then G contains a cycle.  A shortest 

cycle in G has  no chord, since  that would  yield a shorter cycle, and  hence a 

shortest cycle is an induced subgraph. This  induced subgraph is 2-regular 

and  has  no vertex of degree at most  1. 

b) A simple graph is a forest  if and  only  if every  connected subgraph 

is an  induced subgraph. If G has  a connected subgraph H that is not  an 

induced subgraph, then G has  an edge xy not in H with endpoints in V (H ). 

Since  H contains an x , y-path, H +xy contains a cycle, and  G is not a forest. 

Conversely, if G is not  a forest, then G has  a cycle C , and  every  subgraph 

of G obtained by deleting one edge from C is connected but  not induced. 

c) The number of components is the number of vertices  minus the num- 

ber of edges.  In a forest, each component is a tree and has one less edge than 

vertex. Hence a forest with n vertices and  k components has  n − k edges. 

Conversely, every  component with n i  vertices has  at least ni − 1 edges, 

since  it is connected. Hence the  number of edges  in an n-vertex is n minus 

the  number of components only  if every  component with n i  vertices has 

ni − 1 edges.  Hence every  component is a tree, and  the  graph is a forest. 
 

2.1.9.   For 2 ≤ k ≤ n − 1, the  n-vertex  graph formed by adding one vertex 

adjacent to every  vertex  of Pn−1  has  a spanning tree with diameter k.  Let 

2.1.11.   If  x  and   y  are  adjacent  vertices   in  a  graph  G,  then   always 

|dG (x , z) − dG (y, z)| ≤ 1. A z, y-path can be extended (or trimmed) to reach 

x , and  hence d(z, x) ≤ d(z, y) + 1. Similarly, d(z, y) ≤ d(z, x) + 1. Together, 

these yield |d(z, x) − d (z, y)| ≤ 1. 
 

2.1.12.  Diameter and  radius of Km,n .  Every vertex has  eccentricity 2 in 

Km,n  if m, n ≥ 2, which  yields  radius and  diameter 2.  For  K1,n , the  radius 

is 1 and  diameter is 2 if n > 1. The radius and  diameter of K1,1 are  1. The 

radius and  diameter of K0,n  are  infinite if n > 1, and  both  are  0 for K0,1. 
 

2.1.13. Every  graph with diameter d has an independent set of size at least 

d(1 + d)/2e.   Let  x , y be vertices with d(x , y) = d .  Vertices that are  non- 

consecutive on a shortest x , y-path P are  nonadjacent. Taking x and  every 

second vertex along  P produces an independent set  of size d(1 + d)/2e. 
 

2.1.14. Starting a shortest path in  the  hypercube.  The  distance between 

vertices in  a hypercube is the  number of positions in  which  their names 

differ.  From u, a  shortest  u, v-path starts  along  any  edge  to  a  neighbor 

whose  name differ  from u in a coordinate where v also differs from u. 
 

2.1.15.  The  complement of a simple graph with diameter at  least  4 has 

diameter at most  2.  The  contrapositive of the  statement is that if G has 

diameter at least 3, then G has  diameter at most  3.   Since  G  = G, this 

statement has  been  proved in the  text. 
 

2.1.16.  The  “square” of a connected graph G has  diameter ddiam (G)/2e. 

The square is the  simple graph G 0  with x ↔  y in G 0  if and  only if dG (x , y) ≤ 
2. We prove the stronger result that dG 0 (x , y) = ddG (x , y)/2e for every  x , y ∈ 
V (G).  Given  an  x , y-path P of length k, we can skip  the  odd vertices along 

P to obtain an  x , y-path of length dk/2e in G 0. 

On  the  other hand, every   x , y-path of length l  in  G 0   arises from  a 

path of length at most  2l in G.  Hence the  shortest x , y-path in G 0   comes

v1, . . . , vn−1  be the  vertices of the  path in order, and  let  x be the  vertex ad- 
jacent to all of them. The  spanning tree consisting of the  path v1, . . . , vk−1

 from  the  shortest x , y-path in G by the  method described, and  dG 0 (x , y) =

and  the  edges  xvk−1, . . . , xvn−1  has  diameter k. 
ddG (x , y)/2e.  Hence  

l 
dG (x ,y) 

m       l 

 

dG (x ,y) 
m 

 

l
diam (G ) 

m

2.1.10.  If u and  v are vertices  in  a connected n-vertex  simple graph, and 

d(u, v) > 2, then  d(u) + d(v) ≤ n + 1 − d(u, v).  Since  d(u, v) > 2, we have 

diam (G 0) = minx ,y dG 0 (x , y) = minx ,y        2 =   minx ,y     2           
=      

2           
.

N (u) ∩ N (v) = ∅,  and  hence d(u) + d(v) = |N (u) ∪ N (v)|.  Let  k = d(u , v). 

Between u and  v on a shortest u, v-path are  vertices x1, . . . , xk−1. Since  this 

is a shortest u, v-path, vertices u, v and  x2, . . . , xk−2 are  forbidden from the 

neighborhoods of both  u and  v. Hence |N (u) ∪ N (v)| ≤ n + 1 − k. 

The inequality fails  when d(u, v) ≤ 2, because in this case u and  v can 

have many common neighbors. When  d(u, v) = 2, the  sum  d(u) + d(v) can 

be as high  as 2n − 4. 
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2.1.17.  If  an  n-vertex  graph G has  n − 1 edges  and  no  cycles,  then  it  is 

connected.  Let  k be the  number of components of G.   If k  > 1, then we 

adding an  edge  with endpoints in  two  components creates no cycles  and 

reduces the  number of components by 1.  Doing  this k − 1 times creates a 

graph with (n −1) + (k − 1) edges  that is connected and  has  no cycles.  Such 

a graph is a tree and  has  n − 1 edges.   Therefore, k = 1, and  the  original 

graph G was  connected.
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2 

i   1 

2 

2.1.18. If G is a tree, then  G has at least  1(G) leaves.  Let k = 1(G). Given 

n > k ≥ 2, we cannot guarantee more  leaves, as shown by growing a path 

of length n − k − 1 from a leaf of K1,k . 

Proof 1a (maximal paths). Deleting a vertex x of degree k produces a 

forest of k subtrees, and  x has  one neighbor wi  in the  i th subtree G i .  Let 

Pi  be a maximal path starting at x along  the  edge  xwi . The other end  of Pi 

must be a leaf of G and  must belong  to G i , so these k leaves are  distinct. 

Proof 1b (leaves in subtrees). Deleting a vertex x of degree k produces 

a forest of k subtrees.  Each subtree is a single vertex, in which  case  the 

vertex is a leaf  of G, or it has  at least two leaves, of which  at least one is 

not  a neighbor of x .  In either case  we obtain a leaf  of the  original tree in 

each  subtree. 

Proof 2 (counting two ways).   Count the  degree sum  by edges  and  by 

vertices.  By edges,  it is 2n − 2.  Let  k be the  maximum degree and  l the 

number of leaves.  The  remaining vertices must have degree at least two 

each,  so the  degree sum  when counted by vertices is at least k + 2(n − l − 

ing  x and  these three H s by a single H yields  a molecule with one less  C 

that also satisfies the  conditions. Applying the  induction hypothesis yields 

l = [2(k − 1) + 2] − 1 + 3 = 2k + 2. 
 

2.1.21.  If a simple n-vertex  graph G has  a decomposition into  k spanning 

trees, and  1(G) = δ(G) + 1, then  2k < n, and  G has n − 2k vertices  of degree 
2k and  2k vertices  of degree 2k − 1. Since  every  spanning tree of G has  n −1 

edges,  we have e(G) = k(n − 1).  Since  e(G) ≤ n(n − 1)/2 edges,  this yields 

k ≤ n/2.  Equality requires G = Kn , but  1(Kn ) = δ(Kn ). Thus 2k < n. 

To determine the  degree sequence, let  l be the  number of vertices of 

degree δ(G). By the  degree-sum formula, n1(G) − l = 2kn − 2k. Both  sides 

are  between two multiples of n. Since  0 < 2k < n and  0 < l < n, the  higher 

multiple of n is n1(G) = 2kn, so 1(G) = 2k. It then also follows that l = 2k. 

Hence there are n −2k vertices of degree 2k and  2k vertices of degree 2k −1. 

2.1.22. A tree with degree list k, k − 1, . . . , 2, 1, 1, . . . , 1 has 2 + 
 

k
  

vertices. 

Since  the  tree has  n vertices and  k − 1 non-leaves, it has  n − k + 1 leaves.

1) + l. The inequality 2n − 2 ≥ k + 2(n − l − 1) + 1 simplifies to l ≥ k. (Note: Since 
Pk

 
= i = k(k + 1)/2, the degrees of the vertices sum  to k(k +1)/2+n −

Similarly, degree 2(n − 1) − k remains for the  vertices other than a vertex 

of maximum degree. Since  all degrees are  1 or at least 2, there must be at 

least k vertices of degree 1.) 

Proof 3: Induction on the  number of vertices. For  n ≤ 3, this follows 

by inspecting the  unique tree on n vertices.  For  n > 3, delete a leaf  u.  If 
1(T  − u) = 1(T ), then by the  induction hypothesis T − u has  at least k 

leaves.  Replacing u adds a leaf  while  losing  at most  one leaf  from  T − u. 

Otherwise 1(T  − u) = 1(T ) − 1, which  happens only  if the  neighbor of u 

is the  only vertex of maximum degree in T . Now the  induction hypothesis 

yields  at least k − 1 leaves in T − u.  Replacing u adds another, since  the 

vertex of maximum degree in T cannot be a leaf in T − u (this is the  reason 

for putting n = 3 in the  basis step). 

k. The  degree-sum is twice  the  number of edges,  and  the  number of edges 

is n − 1. Thus k(k + 1)/2 + n − k = 2n − 2. Solving for n yields  n = 2 + 
 

k
 
. 

 

2.1.23. For a tree T with vertex degrees in {1, k}, the possible values of n(T ) 

are the positive integers that are 2 more than a multiple of k − 1. 

Proof 1 (degree-sum formula).  Let  m be  the  number of vertices of 

degree k. By the  degree-sum formula, mk + (n(T ) − m) = 2n(T ) − 2, since  T 

has  n(T ) − 1 edges.  The  equation simplifies to n(T ) = m(k − 1) + 2.  Since 

m is a nonnegative integer, n(T ) must be two more  than a multiple of k − 1. 

Whenever n = m(k − 1) + 2, there is such  a tree (not unique for m ≥ 4). 

Such  a tree is constructed by adjoining k − 2 leaves to each  internal vertex 

of a path of length m + 1, as illustrated below for m = 4 and  k = 5.

2.1.19. If ni denotes the number of vertices  of degree i in a tree T , then  
P 

ini 

depends only  on the  number of vertices  in  T .  Since  each  vertex of degree 

i contributes i to the  sum, the  sum  is the  degree-sum, which  equals twice 

•         • 

 
• • • 

• 

 
• • • 

• 

 
• • • 

•         • 

 
• • •

the  number of edges:  2n(T ) − 2. 
 

2.1.20.  Hydrocarbon formulas Ck Hl .   The  global  method is  the  simplest 

one.  With  cycles forbidden, there are  k + l − 1 “bonds” - i.e., edges.   Twice 

this must equal the  degree sum. Hence 2(k + l − 1) = 4k + l, or l = 2k + 2. 

Alternatively, (sigh),  proof  by induction. Basis step (k = 1):  The  for- 

mula holds  for the  only  example. Induction step (k > 1):  In  the  graph of 

the  molecule, each  H has  degree 1. Deleting these vertices destroys no cy- 

cles,  so the  subgraph induced by the  C-vertices is also  a tree. Pick  a leaf 

x in this tree. In  the  molecule it neighbors one C and  three H s.  Replac- 
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Proof 2 (induction on m, the  number of vertices of degree k). We proof 

that if T has  m vertices of degree k, then n(T ) = m(k − 1) + 2 If m = 0, then 

the  tree must have two vertices. 

For  the  induction step, suppose that m > 0.  For  a tree T with m ver- 

tices  of degree k and  the  rest of degree 1, let  T 0     be the  tree obtained by 

deleting all  the  leaves.  The  tree T 0     is a tree whose  vertices all  have de- 

gree  k in T . Let  x be a leaf of T 0.  In T , x is adjacent to one non-leaf and  to 

k − 1 leaves. Deleting the  leaf  neighbors of x leaves a tree T 00     with m − 1 

vertices of degree k and  the  rest of degree 1.  By the  induction hypothesis,
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i =1 

n(T 00) = (m − 1)(k − 1) + 2. Since  we deleted k − 1 vertices from T to obtain 
T 00, we obtain n(T ) = m(k − 1) + 2. This  completes the  induction step. 

To prove  inductively that all  such  values arise as  the  number of ver- 

tices  in such  a tree, we start with K2  and  iteratively expand a leaf  into  a 

vertex of degree k to add  k − 1 vertices. 
 

2.1.24.  Every  nontrivial tree  has  at  least  two  maximal independent sets, 

with equality only  for stars.  A nontrivial tree has  an  edge.   Each vertex 

of an  edge  can  be  augmented to  a  maximal independent set,  and  these 

must be different, since  each  contains only one vertex of the  edge.  A star 

has  exactly two maximal independent sets; the  set  containing the  center 

cannot be enlarged, and  the  only maximal independent set  not  containing 

the  center contains all  the  other vertices.  If a tree is not  a star, then it 

contains a path a, b, c, d . No two of the  three independent sets  {a, c}, {b, d}, 
{a, d} can appear in a single independent set,  so maximal independent sets 

containing these three must be distinct. 
 

2.1.25. Among trees with n vertices, the star  has the most  independent sets 

(and  is the only tree with this  many). 

Proof 1 (induction on n).  For  n = 1, there is only  one  tree, the  star. 

For n > 1, consider a tree T . Let  x be a leaf,  and  let  y be its  neighbor. The 

independent sets  in T consist of the  independent sets  in T − x and  all sets 

formed by adding x to an  independent set  in T − x − y.  By the  induction 

hypothesis, the  first  type  is maximized (only)  when T − x is a star.  The 

second type  contributes at most  2n−2 sets, and  this is achieved only when 

T − x − y has  no edges,  which  requires that T − x is a star with center at y. 

Thus both  contributions are  maximized when (and  only when)  T is a star 

with center y. 

has  no cycle, every  cycle in G must contain vi .  Since  this is true for all i , 

every  cycle in G must contain every  vertex. Thus G has  a spanning cycle, 

and  since  G has  n edges  it has  no additional edges,  so G = Cn . 

 
2.1.27.  If n ≥ 2 and  d1, . . . , dn  are positive integers, then  there  exists  a tree 

with these  as its  vertex  degrees  if and  only  if dn  = 1 and  
P 

di  = 2(n − 1). 

(Some  graphs with such  degree lists are  not  trees.)  Necessity: Every n- 

vertex tree is connected and  has  n − 1 edges,  so every  vertex has  degree at 

least 1 (when  n ≥ 2) and  the  total degree sum  is 2(n − 1).  Sufficiency: We 

give several proofs. 

Proof 1 (induction on n).   Basis step (n = 2):  The  only  such  list  is 
 
(1, 1), which  is the  degree list  of the  only  tree on two vertices. Induction 

step (n > 2): Consider d1, . . . , dn  satisfying the  conditions. Since  
P 

di  > n, 
some  element exceeds 1.   Since  

P 
di   < 2n,  some  element is  at most  1. 

Let  d 0   be  the  list  obtain by subtracting 1 from  the  largest element of d 

and  deleting an  element that equals 1.  The  total is now 2(n − 2), and  all 

elements are positive, so by the induction hypothesis there is a tree on n −1 

vertices with d 0  as  its  vertex degrees.  Adding  a new  vertex and  an  edge 

from it to the  vertex whose  degree is the  value that was reduced by 1 yields 

a tree with the  desired vertex degrees. 
Proof 2 (explicit construction). Let k be the  number of 1s in the  list  d. 

Since  the  total degree is 2n − 2 and  all elements are  positive, k ≥ 2. Create 
a path x , u1, . . . , un−k , y. For 1 ≤ i ≤ n − k, attach di − 2 vertices of degree 1 
to ui . The resulting graph is a tree (not the  only one with this degree list), 
and  it gives  the  proper degree to u i . We need  only check  that we have the 
desired number of leaves. Counting x and  y and  indexing the  list  so that 
d1, . . . , dn  ≥, we compute the  number of leaves as

Proof 2 (counting). If an n-vertex tree T is not a star, then it contains 

a copy  H of P4.   Of the  16 vertex subsets of V (H ), half  are  independent 

and  half  are  not.   If S is an  independent set  in  T , then S ∩ V (H ) is also 

n−k 

2 + 
X

 

i =1 

 
(di  − 2) = 2 − 2(n − k) + 

n X 

 
i =1 

 
di  − 

n X 

 
i =n−k+1 

 
di  = 2 − 2(n − k) + 2(n − 1) − k = k.

independent.  When  we  group the  subsets of V (T ) by their intersection 

with V (T ) − V (H ), we thus find  that at most  half  the  sets  in each  group 

are  independent.  Summing over  all  groups, we find  that at most  half  of 

Proof 3 (extremality). Because 
P 

di  = 2(n − 1), which  is even,  there 

is a graph with n vertices and  n − 1 edges  that realizes d .  Among  such 
graphs, let G (having k components) be one with the  fewest components. If

all subsets of V (T ), or 2n−1, are  independent. However, the  star K1,n 

2n−1 + 1 independent sets. 
−1 has k = 1, then G is a connected graph with n 

If k > 1 and  G is a forest, then G
 − 1 edges  and  is the  desired tree. 

k edges.  Therefore, G has  a

 

2.1.26. For n ≥ 3, if G is an n-vertex  graph such  that every graph obtained 

by deleting one vertex  of G is  a tree,  then  G  = Cn .   Let  G i  be the  graph 

obtained by deleting vertex vi .  Since  G i  has  n − 1 vertices and  is a tree, 

has  n − 
cycle.  Let  H be a component of G having a cycle, and  let  uv be an  edge  of 

the  cycle.  Let  H 0    be another component of G.  Because each  di  is positive, 

H 0     has  an  edge,  xy.  Replace the  edges  uv and  xy by ux and  vy (either uv

e(G i ) = n − 2.  Thus 
Pn

 e(G i ) = n(n − 2).  Since  each  edge  has  two end- or xy could be a loop.)  Because uv was  in a cycle, the  subgraph induced by
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points, each  edge of G appears in n − 2 of these graphs and  thus is counted 

n − 2 times in the  sum. Thus e(G) = n. 

Since  G has  n vertices and  n edges,  G must contain a cycle.  Since  G i 

V (H ) is still  connected. The  deletion of vy might disconnect H 0, but  each 

piece is now connected to V (H ), so the  new graph G 0  realizes d with fewer 

components than G, contradicting the  choice of G.



91 Chapter 2: Trees and  Distance Section 2.1:  Basic  Properties 92  

i 

 
2.1.28.  The  nonnegative integers d1  ≥ · · · ≥ dn  are the  degree  sequence  of 

some connected graph if and  only if 
P 

di  is even, dn  ≥ 1, and  
P 

di  ≥ 2n − 2. 

This  claim  does  not  hold  for  simple graphs because the  conditions 
P 

di 

even,  dn  ≥ 1, and  
P 

di  ≥ 2n − 2 do not prevent d1  ≥ n, which  is impossible 
for a simple graph. Hence we allow loops and  multiple edges.  Necessity fol- 

lows because every  graph has  even  degree sum  and  every  connected graph 

has a spanning tree with n −1 edges.  For sufficiency, we give several proofs. 

Proof 1 (extremality).  Since  
P 

di  is even,  there is a graph with de- 
grees d1, . . . , dn .   Consider a  realization G  with the  fewest components; 
since  

P 
di  ≥ 2n − 2, G has  at least n − 1 edges.   If G has  more  than one 

component, then some  component as many edges  as vertices and  thus has 

a  cycle.   A 2-switch involving an  edge  on  this cycle  and  an  edge  in  an- 

other component reduces the  number of components without changing the 

degrees. The choice of G thus implies that G has  only one component. 

Proof 2 (induction on n). For n = 1, we use loops.  For n = 2, if d1  = d2, 

then we use  d1  parallel edges.  Otherwise, we have n > 2 or d1  > d2.  Form 

Proof 1 (extremality).  Let  P  a  longest path in  T , with endpoint v 

adjacent to u.  Since  v is a leaf  and  u has  only one other neighbor on  P , u 

must have a neighbor w off P .  If w has  a neighbor z 6= u, then replacing 

(u, v) by (u, w, z) yields  a longer path.  Hence w is a leaf,  and  v, w are  two 

leaves with a common neighbor. 

Proof 2 (contradiction). Suppose all leaves of T have different neigh- 

bors.   Deleting all  leaves (and  their incident edges)  reduces the  degree of 

each  neighbor by 1.  Since  the  neighbors all  had  degree at least 3, every 

vertex now has  degree at least 2, which  is impossible in an acyclic graph. 

Proof 3 (counting argument). Suppose all k leaves of T have different 

neighbors. The n − 2k vertices other than leaves and  their neighbors have 

degree at least 2, so the  total degree is at least k + 3k + 2(n − 2k) = 2n, 
contradicting 

P 
d(v) = 2e(T ) = 2n − 2. 

Proof 4 (induction on n(T )).   For  n  = 4,  the  only  such  tree is  K1,3, 

which  satisfies the  claim.   For  n > 4, let  v be a leaf  of T , and  let  w be its 

neighbor.  If w has  no other leaf  as  neighbor, but  has  degree at least 3,

a new  list  d 0 , . . . , d 0 by deleting dn  and  subtracting dn  units from  other then T − v is a smaller tree satisfying the  hypotheses.  By the  induction
1                n−1

values. If n ≥ 3 and  dn  = 1, we subtract 1 from d1, noting that 
P 

di  ≥ 2n −2 
implies d1  > 1.  If n ≥ 3 and  dn  > 1, we make the  subtractions from  any 
two of the  other numbers. In  each  case,  the  resulting sequence has  even 

sum  and  all entries at least 1. 

Letting D = 
P 

di , we have 
P 

d 0  = D − 2dn . If dn  = 1, then D − 2dn  ≥ 

hypothesis, T − v has  a pair of leaves with a common neighbor, and  these 

form such  a pair in T . 
 

2.1.31.  A simple connected graph G with exactly  two non-cut-vertices is a 

path. Proof 1 (properties of trees). Every connected graph has  a spanning

2n − 2−2 = 2(n −1)−2. If dn  > 1, then D ≥ ndn , and so D −2dn  ≥ (n −2)dn  ≥ tree.  Every leaf  of a  spanning tree is  not  a  cut-vertex, since  deleting it

2n − 4 = 2(n − 1) − 2.  Hence the  new  values satisfy the  condition stated leaves a tree on the  remaining vertices.  Hence every  spanning tree of G

for a set  of n − 1 values. By the  induction hypothesis, there is a connected has  only two leaves and  is a path. Consider a spanning path with vertices

G 0                                                                  0                                          0
 v1, . . . , vn

 in order. If G has  an edge vi vj
 with i < j − 1, then adding vi vj  to

graph with vertex degrees d1, . . . , dn−1.  

the  path creates a cycle, and  deleting v
 

 

v  from  the  cycle yields  another

To obtain the  desired graph G, add a vertex vn with di − d 0  edges  to the j −1  j

i 

vertex with degree di , for 1 ≤ i ≤ n − 1. This  graph G is connected, because 
a path from vn to any  other vertex v can be construct by starting from vn to 

a neighbor and  continuing with a path to v in G 0. 

Proof 3 (induction on 
P 

di  and  prior result).  If 
P 

di  = 2n − 2, then 

Exercise 2.1.27  applies. Otherwise, 
P 

d1  ≥ 2n. If n = 1, then we use loops. 
If n > 1, then we can  delete 2 from  d1  or delete 1 from  d1  and  d2  without 
introducing a 0.  After  applying the  induction hypothesis, adding one loop 

at v1  or one edge from v1  to v2  restores the  desired degrees. 
 

2.1.29.  Every  tree has  a leaf  in  its  larger  partite set (in  both  if they  have 

equal  size).  Let  X and  Y be the  partite sets  of a tree T , with |X | ≥ |Y |.  If 

there is no leaf in X , then e(T ) ≥ 2 |X | = |X | + |X | ≥ |X | + |Y | = n(T ). This 

contradicts e(T ) < n(T ). 
 

2.1.30.  If T is a tree in which the neighbor of every leaf has  degree at least 

3, then  some pair  of leaves  have  a common neighbor. 
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spanning tree with three leaves. Hence G has  no edge off the  path. 

Proof 2 (properties of paths and  distance). Let x and  y be the non-cut- 

vertices, and  let  P be a shortest x , y-path. If V (P) 6= V (G), then let w be 

a vertex with maximum distance from V (P). By the choice of w, every vertex 

of V (G) − V (P) − {w} is as close to V (P) as w and  hence reaches V (P) by a 

path that does not use w. Hence w is a non-cut-vertex. Thus V (P) = V (G). 

Now there is no other edge,  because P was  a shortest x , y-path. 
 

2.1.32. Characterization of cut-edges and  loops. 

An  edge of a connected graph is a cut-edge if and  only  if it belongs  to 

every spanning tree.  If G has  a spanning tree T omitting e, then e belongs 

to a cycle in T + e and  hence is not  a cut-edge in G.  If e is not  a cut-edge 

in G, then G − e is connected and  contains a spanning tree T that is also a 

spanning tree of G; thus some  spanning tree omits e. 

An  edge of a connected graph is a loop if and  only  if it belongs  to no 

spanning tree.  If e is a loop, then e is a cycle and  belongs to no spanning
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2 

2 

tree. If e is not a loop, and  T is a spanning tree not containing e, then T + e 

contains exactly one cycle, which  contains another edge  f . Now T + e −  f 
is a spanning tree containing e, since  it has  no cycle, and  since  deleting an 

edge from a cycle of the  connected graph T + e cannot disconnect it. 
 

2.1.33. A connected graph with n vertices  has exactly  one cycle if and  only if 

it has exactly  n edges.  Let G be a connected graph with n vertices. If G has 

exactly one cycle, then deleting an  edge  of the  cycle produces a connected 

graph with no cycle.  Such  a graph is a tree and  therefore has  n − 1 edges, 

which  means that G has  n edges. 

For  the  converse, suppose that G has  exactly n edges.   Since  G is con- 

nected, G has  a spanning tree, which  has  n − 1 edges.  Thus G is obtained 

by adding one edge to a tree, which  creates a graph with exactly one cycle. 

Alternatively, we can use induction. If G has  exactly n edges,  then the 

degree sum  is 2n, and  the average degree is 2. When  n = 1, the graph must 

be a loop, which  is a cycle.  When  n > 2, if G is 2-regular, then G is a cycle, 

since  G is connected. If G is not  2-regular, then it has  a vertex v of degree 
1.  Let  G 0   = G − v.  The  graph G 0  is connected and  has  n − 1 vertices and 

n − 1 edges.  By the  induction hypothesis, G 0  has  exactly one cycle.  Since  a 

vertex of degree 1 belongs to no cycle, G also has  exactly one cycle. 
 

2.1.34. A simple n-vertex  graph G with n > k and  e(G) > n(G)(k − 1) − 
 

k
 

contains a copy of each  tree with k edges.   We use  induction on n.  For  the 

basis step, let  G be a graph with k + 1 vertices.  The  minimum allowed 

number of edges  is (k + 1)(k − 1) − 
 

k
  

+ 1, which  simplifies to 
  

k
 
.  Hence 

contain all  of V (T ) − {v}.  Under the  given  hypothesis, they  all  have odd 

order. Together with v, they  produce an  even  total, n(T ).  Hence the  num- 

ber of these subgraphs is odd, which  means that the  number of edges  in T 

incident to v is odd. 

Proof 2 (contradiction). Suppose that such  a tree T0 has  a vertex v1 of 

even degree. Let e1 be the  last edge on a path from a leaf to x . Let T1 be the 

component of T0 − e1 containing v1. By hypothesis, T1 has  odd order, and  v1 

is a vertex of odd degree in T1. Since  the  number of odd-degree vertices in 

T1  must be even,  there is a vertex v2  of T1  (different from  v1) having even 

degree (in both  T1  and  T ). 

Repeating the  argument, given  vi  of even  degree in Ti −1, let  ei  be the 

last edge on the  vi −1, vi -path in Ti −1, and  let Ti  be the  component of Ti −1 − ei 

containing vi . Also Ti  is the  component of T0 − ei  that contains vi , so Ti  has 

odd order. Since  vi  has  odd degree in Ti , there must be another vertex vi +1 

with even  degree in Ti . 

In this way we generate an  infinite sequence v1, v2, . . . of distinct ver- 

tices  in T0. This  contradicts the  finiteness of the  vertex set,  so the  assump- 

tion  that T0  has  a vertex of even  degree cannot hold. 
 

2.1.36. Every  tree T of even order has  exactly  one subgraph in which every 

vertex  has odd degree. 

Proof 1 (Induction). For  n(T ) = 2, the  only such  subgraph is T itself. 

Suppose n(T ) > 2.  Observe that every  pendant edge  must appear in the 

subgraph to give the  leaves odd degree. Let  x be an  endpoint of a longest

2 
G = Kk+1, and  T ⊆ G. 

2 

path P , with neighbor u. If u has  another leaf neighbor y, add ux and  uy to

For the induction step, consider n > k +1. If every  vertex has degree at 

least k, then containment of T follows from  Proposition 2.1.8.  Otherwise, 

deleting a vertex of minimum degree (at  most  k − 1) yields  a subgraph G 0 

on n − 1 vertices with more  than (n − 1)(k − 1) − 
 

k
  

edges.  By the  induction 

hypothesis, G 0  contains T , and  hence T ⊆ G. 
 

2.1.35.  The  vertices  of a tree  T  all  have  odd  degree  if and  only  if for all 

e ∈ E(T ), both  components of T − e have  odd order. 

Necessity. If all vertices have odd degree, then deleting e creates two 

of even  degree. By the  Degree-sum Formula, each  component of T − e has 

an  even  number of odd-degree vertices. Together with the  vertex incident 

to e, which  has  even degree in T − e, each component of T − e has  odd order. 

Sufficiency. 

Proof 1 (parity). Given  that both  components of T − e have odd order, 

n(T ) is even.  Now consider v ∈ V (T ). Deleting an edge incident to v yields 

a component containing v and  a component not  containing v, each  of odd 

order. Together, the  components not containing v when we delete the  vari- 

ous edges  incident to v are  d(v) pairwise disjoint subgraphs that together 

the  unique such  subgraph found  in T − {x, y}. Otherwise, d(u) = 2, since  P 

is a longest path. In this case,  add  the  isolated edge ux to the  unique such 

subgraph found  in T − {u, x}. 

Proof 2 (Explicit construction).   Every edge  deletion breaks T  into 

two components. Since  the  total number of vertices is even,  the  two com- 

ponents of T − e both  have odd order or both  have even  order.  We claim 

that the  desired subgraph G consists of all edges  whose  deletion leaves two 

components of odd order. 

First, every  vertex has  odd degree in this subgraph. Consider deleting 

the  edges  incident to a vertex u.  Since  the  total number of vertices in  T 

is even,  the  number of resulting components other than u itself  that have 

odd order must be odd.  Hence u has  odd order in G. 

Furthermore, G is the  only such  subgraph. If e is a cut-edge of G, then 

in G − e the  two pieces  must each  have even  degree sum. Given  that G is 

a subgraph of T with odd degree at each  vertex, parity of the  degree sum 

forces  G to e if T − e has  components of odd order and  omit  e if T − e has 

components of even  order.
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Comment: Uniqueness also  follows easily from  symmetric difference. 

Given  two such  subgraphs  G1, G2  , the  degree of each  vertex in the  sym- 

metric difference is even,  since  its  degree is odd in each  G i .  This  yields  a 

 

•         •         • 
 

•         •         •

cycle in G1 ∪ G2  ⊆ T , which  is impossible. 

2.1.37.  If  T  and  T 0     are  two  spanning trees  of a connected graph G, and 

e ∈  E(T ) − E(T 0), then  there  is an  edge e0   ∈  E(T 0) − E(T ) such  that both 

•         •                     •         •         • 
P 

•                                •         •         •

T − e + e0  and  T 0   − e0  + e are spanning trees of G. Deleting e from  T leaves 

a  graph having two  components; let  U, U 0      be  their vertex sets.  Let  the 

endpoints of e be u ∈ U and  u 0   ∈ U 0.   Being  a tree, T 0     contains a unique 

u, u 0-path.  This  path must have an edge from U to U 0; choose such  an edge 

to be e0, and  then T − e + e0  is a spanning tree. Since  e is the  only edge of T 

between U and  U 0, we have e0  ∈ E(T 0) − E(T ).  Furthermore, since  e0  is on 

the  u, u 0-path in T 0, e0  is on the  unique cycle formed by adding e to T 0, and 

thus T 0   − e0  + e is a spanning tree. Hence e0  has  all the  desired properties. 

2.1.38.  If T and  T 0     are two trees on the same  vertex  set such  that dT (v) = 

 

Proof 2 (extremality).  Since  there are  2k vertices of odd  degree, at 

least k paths are  needed.   If  two  endpoints of paths occur  at the  same 

vertex of the  tree, then those paths can be combined to reduce the  number 

of paths.  Hence a decomposition using the  fewest paths has  at most  one 

endpoint at each  vertex.  Under this condition, endpoints occur  only  at 

vertices of odd degree. There are  2k of these. Hence there are  at most  2k 

endpoints of paths and  at most  k paths. 

Proof 3 (applying previous result).  A nontrivial tree has  leaves, so 

k  > 0.   By Theorem 1.2.33,  G decomposes into  k trails.  Since  G has  no

dT (v) for each  vertex  v, then  T 0
 can  be obtained from  T 0

 using 2-switches cycles, all these trails are  paths.

(Definition 1.3.32) with every intermediate graph being a tree.  Using induc- 

tion on the  number n of vertices, it suffices  to show when n ≥ 4 that we can 

apply (at  most)  one 2-switch to T to make a given  leaf  x be adjacent to its 

neighbor w in T 0.  We can  then delete x from  both  trees and  apply the  in- 

duction hypothesis. Since  the  degrees specify  the  tree when n is at most  3, 

this argument also shows  that at most  n − 3 2-switches are  needed. 

Let  y be the  neighbor of x in T .  Note  that w is not  a leaf  in T , since 

dT 0 (w) = dT (w) and  xw ∈ E(T ) and  n ≥ 4.  Hence we can  choose  a vertex z 

in T that is a neighbor of w not  on the  x , w-path in T .  Cutting xy and  wz 

creates three components: x alone, one  containing z, and  one  containing 

y, w.   Adding  the  edges  zy and  xw to  complete the  2-switch gives  x  its 

desired neighbor and  reconnects the  graph to form a new tree. 
 

2.1.39.  If G is a nontrivial tree with 2k vertices  of odd  degree,  then  G de- 

composes into  k paths. 

Proof 1 (induction and  stronger result). We prove  the  claim  for every 

forest G, using induction on k. Basis step (k = 0): If k = 0, then G has  no 

leaf and  hence no edge. 
Induction step (k > 0):  Suppose that each  forest with 2k − 2 vertices 

of odd  degree has  a  decomposition into  k − 1 paths.  Since  k  > 0,  some 

component of G is a tree with at least two vertices.  This  component has 

at least two leaves; let  P be a path connecting two leaves. Deleting E(P) 

changes the parity of the vertex degree only for the endpoints of P ; it makes 

them even.  Hence G − E(P) is a forest with 2k − 2 vertices of odd degree. 

By the  induction hypothesis, G − E(P) is the  union of k − 1 pairwise edge- 

disjoint paths; together with P , these paths partition E(G). 

 

2.1.40.  If G is a tree with k leaves,  then  G is the  union of dk/2e pairwise 

intersecting paths. We prove that we can express G in this way using paths 

that end  at leaves. First consider any  way of pairing the  leaves as ends  of 

dk/2e  paths (one leaf  used  twice  when k is odd).  Suppose that two of the 

paths are  disjoint; let these be a u, v-path P and  an  x , y-path Q. Let  R be 

the  path connecting P and  Q in G. Replace P and  Q by the  u, x-path and 

the  v, y-path in G.  These paths contain the  same edges  as  P and  Q, plus 

they  cover  R twice  (and  intersect). Hence the  total length of the  new set of 

paths is larger than before. 

Continue this process; whenever two of the  paths are  disjoint, make a 

switch between them that increases the  total length of the  paths. This  pro- 

cess cannot continue forever, since  the  total length of the  paths is bounded 

by the  number of paths (dk/2e) times the  maximum path length (at  most 

n − 1).  The  process terminates only  when the  set  of paths is pairwise in- 

tersecting. (We have not proved that some vertex belongs to all the  paths.) 

Finally, we show  that a pairwise intersecting set  of paths containing 

all the  leaves must have union G. If any  edge e of G is missing, then G − e 

has  two  components  H, H 0,  each  of which  contains a  leaf  of G.   Since  e 

belongs to none  of the  paths, the  paths using leaves in  H do not  intersect 

the  paths using leaves in  H 0.  This  cannot happen, because the  paths are 

pairwise intersecting. 

(Comment:  We can  phrase the  proof  using extremality.  The  pairing 

with maximum total length has the desired properties; otherwise, we make 

a switch as above  to increase the  total length.)
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•                  • 
 

v •                                      •  y 
 
 

2.1.41.  For n ≥ 4, a simple n-vertex  graph with at least  2n − 3 edges must 

have  two  cycles of equal  length. For  such  a graph, some  component must 

have size at least twice its order minus 3. Hence we may  assume that G is 

connected. A spanning tree T has  n − 1 edges  and  diameter at most  n − 1. 

Each remaining edge  completes a  cycle  with edges  of T .  The  lengths of 

these cycles belong  to {3, . . . , n}. 

Since  there are  at least n − 2 remaining edges,  there are  two  cycles 

of the  same length unless there are  exactly n − 2 remaining cycles  and 

they  create cycles  of distinct lengths with the  edge  of T .  This  forces  T to 

be a path. Now,  after adding the  edge  e between the  endpoints of T that 

produces a cycle of length n, the  other remaining edges  each  produce two 

additional shorter cycles  when added.  These 2n − 6 additional cycles  fall 

into  the  n − 3 lengths {3, . . . , n − 1}. Since  2n − 6 > n − 3 when n ≥ 4, the 

pigeonhole principle yields  two cycles of equal length. 
 

2.1.42.  Extendible vertices. In  a nontrivial Eulerian graph G, a vertex is 

extendible if every  trail beginning at v extends to an Eulerian circuit. 

a) v is extendible if and  only if G − v is a forest. 

Necessity.  We prove  the  contrapositive.  If G − v is not  a forest, then 

G − v has  a cycle C .  In  G − E(C),  every  vertex has  even  degree, so the 

component of G − E(C) containing v has  an  Eulerian circuit. This  circuit 

starts and  ends  at v and  exhausts all edges  of G incident to v, so it cannot 

be extended to reach C and  complete an Eulerian circuit of G. 

Sufficiency. If G −v is a forest, then every cycle of G contains v. Given a 

trail T starting at v, extend it arbitarily at the  end until it can be extended 

no farther.  Because every  vertex has  even degree, the  process can end only 

2m.  By part (a) each  cycle contains v, and  thus d(v) ≥ 2m.  Hence v has 

maximum degree. 

Alternatively, since  each  cycle  contains v, an  Eulerian circuit must 

visit  v between any  two visits to another vertex u. Hence d(v) ≥ d(u). 

c) For n(G) > 2, all vertices  are extendible if and  only if G is a cycle.  If 

G is a cycle, then every  trail from a vertex extends to become  the  complete 

cycle.   Conversely, suppose that all  vertices are  extendible.  By part (a), 

every  vertex lies on every  cycle.  Let  C be a cycle in G; it must contain all 

vertices. If G has  any  additional edge e, then following  the  shorter part of 

C between the  endpoints of e completes a cycle with e that does not contain 

all the  vertices. Hence there cannot be an additional edge and  G = C . 

d) If G is not a cycle, then  G has  at most  two extendible vertices. From 

part (c), we  may  assume that G is  Eulerian but  not  a  cycle.   If v is  ex- 

tendible, then G − v is a forest. This  forest cannot be a path, since  then G 

is a cycle or has  a vertex of odd degree.  Since  G − v is a forest and  not  a 

path, G − v has  more than 1(G − v) leaves unless G − v is a tree with ex- 

actly  one vertex of degree greater than two.  If G −v has more than 1(G −v) 

leaves, all in  N (v), then no vertex of G − v has  degree as  large as  v in G, 

and  by part (b) no other vertex is extendible.  In  the  latter case,  the  one 

other vertex of degree d(v) may  also  be extendible, but  all vertices except 

those two have degree 2. 
 

2.1.43. Given  a vertex  u in a connected graph G, there is a spanning tree of 

G that is the union of shortest paths from  u to the other  vertices. 

Proof 1 (induction on n(G)). When  n(G) = 1, the  vertex u is the  entire 

tree. For  n(G) > 1, let  v be a vertex at maximum distance from  u.  Apply 

the  induction hypothesis to  G − v to obtain a tree T  in  G − v.  Shortest 

paths in G from  u to vertices other than v do not  use  v, since  v is farthest 

from  u. Therefore, T consists of shortest paths in G from  u to the  vertices 

other than v. A shortest u, v-path in G arrives at v from some  vertex of T . 

Adding  the  final  edge of that path to T completes the  desired tree in G. 

Proof 2 (explicit construction). For each vertex other than u, choose an 

incident edge that starts a shortest path to u. No cycle is created, since  as 

we follow any  path of chosen edges,  the  distance from u strictly decreases.

at v. The resulting closed trail T 0    must use every  edge incident to v, else it 
could extend farther. Since  T 0    is closed,  every  vertex in G − E(T 0) has  even Also n(G) − 

edges  is a
 1 edges  are  chosen, and  an  acyclic  subgraph with n(G) − 1 

tree. Since  distance from  u decreases with each         ,
degree. If G − E(T 0) has  any edges,  then minimum degree at least two in a 

spanning 
the  v, u-path in the  chosen tree is a shortest v, u-path. 

step

component of G − E(T 0) yields  a cycle in G − E(T 0); this cycle avoids v, since 

T 0     exhausted the  edges  incident to v.  Since  we have assumed that G − v 

has  no cycles, we conclude that G − E(T 0) has  no edges,  so T 0   is an Eulerian 

circuit that extends T . (Sufficiency can also be proved by contrapositive.) 

b) If v is extendible, then  d(v) = 1(G). An Eulerian graph decomposes 

into  cycles.    If this uses  m cycles,  then each  vertex has  degree at most 

Comment: The  claim  can  also  be proved using BFS  to grow  the  tree. 

Proof 1 is a short inductive proof that the  BFS  algorithm works. Proof 2 is 

an explicit description of the  edge set  produced by Proof 1. 
 

2.1.44.  If a simple graph with diameter 2 has  a cut-vertex, then  its  com- 

plement has  an  isolated vertex—TRUE. Let  v be a cut-vertex of a simple
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graph G with diameter 2.  In order to have distance at most  2 to each  ver- 

tex in the  other component(s) of G − v, a vertex of G − v  must be adjacent 

to v. Hence v has  degree n(G) − 1 in G and  is isolated in G. 
 

2.1.45. If a graph G has spanning trees with diameters 2 and  l, then  G has 

spanning trees with all diameters between 2 and  l. 

Proof 1 (local change). The only trees with diameter 2 are  stars, so G 

has  a vertex v adjacent to all others. Given  a spanning tree T with leaf u, 

d , and  this is the  maximum distance between vertices. Every vertex of H 

has  distance at least r from  z, and  every  vertex of the  cycle has  distance r 

from the  vertex opposite it on the  cycle.  Hence the  radius is at least r . The 

eccentricity of x equals r , so the  radius equals r , and  x is in the  center. 

 

z •                
x

replacing the  edge  incident to u with uv yields  another spanning tree T 0. 

For  every  destroyed path, a path shorter by 1 remains. For  every  created 

 

2.1.48. For n 
 

≥ 4, the minimum number of edges in an n-vertex  graph with

path, a path shorter by 1 was  already present. Hence diam T 0    differs from 

diam T by at most  1. Continuing this procedure reaches a spanning tree of 

diameter 2 without skipping any  values along  the  way,  so all  the  desired 

values are  obtained. 

Proof 2 (explicit construction). Since  G has  a tree with diameter 2, it 

has  a vertex v adjacent to all others. Every path in G that does not contain 

v extends to v and  to an additional vertex if it does not already contain all 

vertices. Hence for k < l there is a path P of length k in G that contains v as 

an  internal vertex. Adding  edges  from  v to all vertices not  in  P completes 

a spanning tree of diameter k. 
 

2.1.46. For n ≥ 2, the number of isomorphism classes  of n-vertex  trees with 

diameter at most 3 is bn/2c. If n ≤ 3, there is only one tree, and  its diameter 

is n − 1.  If n ≥ 4, every  tree has  diameter at least 2.  There is one having 

diameter 2,  the  star.   Every tree with diameter 3 has  two  centers,  x , y, 

and  every  non-central vertex is adjacent to exactly one  of x , y, so d(x) + 
d(y) = n. By symmetry, we may  assume d(x) ≤ d(y).  The unlabeled tree is 

now completely specified by d(x), which  can take any value from 2 through 

bn/2c.  Together with the  star, the  number of trees is bn/2c. 
 

2.1.47.  Diameter and  radius. 

a)  The   distance   function   d(u , v)  satisfies  the   triangle  inequality: 

d(u, v) + d(v, w) ≥ d(u, w).   A u, v-path of length  d (u, v) and  a v, w-path 

of length d(v, w) together form  a u, w-walk  of length l = d(u , v) + d(v, w). 

Every u, w-walk  contains a u, w-path among its  edges,  so there is a u, w- 

path of length at most l. Hence the  shortest u, w-path has  length at most l. 

b) d ≤ 2r, where  d is the  diameter of G and  r is the  radius of G.  Let 
u, v be two vertices such  that  d(u , v) = d .  Let  w be a vertex in the  center 

of G; it has  eccentricity r .  Thus d(u, w) ≤ r and  d(w, v) ≤ r .  By part (a), 

d = d(u, v) ≤ d(u , w) + d(w, v) ≤ 2r . 

c) Given  integers r, d with 0 < r ≤ d ≤ 2r, there  is a simple graph with 

radius r and  diameter d.   Let  G  = C2r  ∪ H , where H  ∼=  Pd−r +1  and  the 
cycle shares with H  exactly one  vertex x that is an  endpoint of H .  The 

distance from  the  other end  of H to the  vertex z opposite x on the  cycle is 

diameter 2 and  maximum degree n − 2 is 2n − 4.  The  graph K2,n−2  shows 
that 2n − 4 edges  are  enough. We show that at least 2n − 4 are  needed. Let 

G be an n-vertex graph with diameter 2 and  maximum degree n − 2. Let  x 

be a vertex of degree n − 2, and  let  y be the  vertex not adjacent to x . 

Proof 1. Every path from  y through x to another vertex has  length at 

least 3, so diameter 2 requires paths from  y to all of V (G) − {x, y} in G − x . 

Hence G − x is connected and  therefore has  at least n − 2 edges.  With  the 

n − 2 edges  incident to x , this yields  at least 2n − 4 edges  in G. 

Proof 2.  Let  A = N (y).  Each vertex of N (x) − A must have an  edge 

to a vertex of A in order to reach y in two  steps.  These are  distinct and 

distinct from  the  edges  incident to y, so we have at least | A| + |N (x) − A| 
edges  in addition to those incident to x . The total is again at least 2n − 4. 

(Comment:  The  answer remains the  same whenever (2n − 2)/3 ≤ 
1(G) ≤ n − 5 but  is 2n − 5 when n − 4 ≤ 1(G) ≤ n − 3.) 
 

2.1.49.  If G is a simple graph with rad G ≥ 3, then  rad G ≤ 2.  The  radius 

is the  minimum eccentricity. For  x ∈ V (G), there is a vertex y such  that 

dG (x , y) ≥ 3.  Let  w be the  third vertex from  x  along  a shortest x , y-path 

(possibly w = y).  For  v ∈ V (G) − {x}, if xv ∈/  E(G), then xv ∈ E(G).  Now 

vw ∈/  E(G), since  otherwise there is a shorter x , y-path. Thus x , w, v is an 

x , v-path of length 2 in G. Hence for all v ∈ V (G)− {x}, there is an x , v-path 

of length at most  2 in G, and  we have ε
G 

(x) ≤ 2 and  rad (G) ≤ 2. 

2.1.50. Radius and  eccentricity. 

a) The  eccentricities of adjacent vertices  differ by at most  1.  Suppose 

that x ↔  y. For each  vertex z, d(x , z) and  d(y, z) differ  by at most  1 (Exer- 

cise 2.1.11).  Hence 

ε(y) = maxz d(y, z) ≤ maxz (d(x , z) + 1) = (maxz d(x , z)) + 1 = ε(x) + 1. 

Similarly, ε(x)  ≤ ε(y) + 1.    The  statement can  be  made more  general: 

|ε(x) − ε(y)| ≤ d(x , y) for all x , y ∈ V (G). 

b) In  a graph with radius r, the  maximum  possible distance from  a 

vertex  of eccentricity r + 1 to the  center  of G is r .  The  distance is at most 

r , since  every  vertex is  within distance at most  r  of every  vertex in  the
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•            • 

center, by the  definitions of center and  radius. The  graph consisting of a 

cycle  of length 2r  plus  a  pendant edge  at all  but  one  vertex of the  cycle 

achieves equality. All vertices of the  cycle have eccentricity r + 1 except the 

 
k •       •       •       •       •       •       •       •

vertex opposite the  one with no leaf  neighbor, which  is the  unique vertex 

with eccentricity r .  The  leaves have eccentricity r + 2, except for the  one 

adjacent to the  center. 

k •                      r •       •       •       •       • 
 

k •       •       •       •       •       •       •       •

 

•              • 
•        • 

 

•                   •   • 
 

•        • 
•              • 

 
2.1.51.  If  x  and   y are  distinct neighbors of a vertex  v in  a tree  G, then 

2ε(v)  ≤ ε(x ) + ε(y).   Let  w be a vertex at distance ε(v) from  v.  The  ver- 

tex  w cannot be both  in the  component of G − xv containing x and  in the 

component of G − yv containing y, since  this would  create a cycle.  Hence 

 

2.1.53. The center of a graph can be disconnected and  can have components 

arbitrarily far apart. We construct graphs center consists of two (marked) 

vertices separated by distance k. There are  various natural constructions. 

The graph G consists of a cycle of length 2k plus  a pendant edge at all 

but  two opposite vertices.  These two are  the  center; other vertices of the 

cycle have eccentricity k + 1, and  the  leaves have eccentricity k + 2. 

For  even  k, the  graph H  below  consists of a  cycle  of length 2k  plus 

pendant paths of length k/2 at two opposite vertices. For odd k, the  graph 

H 0     consists of a cycle of length 2k plus  paths of length bk/2c  attached at 

one end  to two opposite pairs of consecutive vertices.

we may  assume that w is in the  component of G − xv containing v. Hence 

ε(x)  ≥ d(x , w) = ε(v) + 1.  Also ε(y)  ≥ d(y, w) ≥ d(v, w) − 1 = ε(v) − 1. 

• 
•     

•     
• 

•
 

•                                                • 
•               • 

0

Summing these inequalities yields  ε(x) + ε(y) ≥ ε(v) + ε(v). 

The smallest graph where  this  inequality can fail is the kite  K4 − e. Let 

v be a vertex of degree 2; it has  eccentricity 2.  Its  neighbors x and  y has 

•  •       G      •  • 

• 
•     

•     
• 

•
 

•  •   •       H 

•     
•

 

•  •  • 

• 

•  •        H        •  • 
•               • 

•

degree 3 and  hence eccentricity 1. 
 

2.1.52.  Eccentricity of vertices  outside the center. 

a) If G is a tree, then every vertex x outside the center of G has a neighbor 

with eccentricity ε(x) − 1.  Let  y be a vertex in the  center, and  let  w be a 

vertex with distance at least ε(x) − 1 from  x .  Let  v be the  vertex where 

the  unique x , w- and  y, w-paths meet; note  that v is on the  x , y-path in G. 

Since  d(y, w) ≤ ε(y) ≤ ε(x) − 1 ≤ d(x , w), we have d (y, v) ≤ d(x , v).  This 

 

2.1.54.  Centers in trees. 

a) A tree has exactly  one center or has two adjacent centers. 

Proof 1 (direct properties of trees). We prove  that in a tree T any  two 

centers are  adjacent; since  T  has  no triangles, this means it has  at most 

two  centers.  Suppose u and  v are  distinct nonadjacent centers, with ec- 

centricity k.  There is a unique path R between them containing a vertex 

x  ∈/  {u, v}.  Given  z ∈  V (T ), let  P, Q be the  unique u, z-path and  unique

implies that v 6= x . Hence x has  a neighbor z on the  x , v-path in G. 

This  argument holds  for every  such  w, and  the  x , v-path in G is always 

part of the  x , y-path in G. Hence the  same neighbor of x is always chosen 

as z. We have proved that d(z, w) = d(x , w)−1 whenever d(x , w) ≥ ε(x)−1. 

On the other hand, since z is a neighbor of x , we have d (z, w) ≤ d(x , w)+1 ≤ 
ε(x) − 1 for every  vertex w with d(x , w) < ε(x) − 1. Hence ε(z) = ε(x) − 1. 

b) For all r and  k with 2 ≤ r ≤ k < 2r, there is a graph with radius r in 

which some vertex and  its neighbors all have eccentricity k. Let G consist of 

a 2r -cycle C and paths of length k −r appended to three consecutive vertices 

on C . Below is an example with r = 5 and  k = 9. The desired vertex is the 

one opposite the  middle vertex of degree 3; vertices are  labeled with their 

eccentricities. 
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v, z-path,  respectively.   At  least one  of  P, Q  contains x  else  P ∪ Q  is  a 

u, v-walk  and  contains a (u, v)-path other than  R.  If P passes through x , 

we  have d(x , z)  < d(u, z);  if  Q, we  have d(x , z)  < d(v, z).   Hence d(x , z) 

< max{d(u, z), d(v, z)}  ≤ k.   Since  z is  arbitrary, we  conclude that  x  has 

smaller eccentricity than u and  v. The contradiction implies u ↔ v. 

Proof 2 (construction of the  center).  Let  P = x1, . . . , x2  be a longest 

path in T , so that D = diam T  = d(x1, x2).  Let  r = dD/2e.  Let  {u1, u2} be 

the  middle of P , with u1  = u2  if D is even.   Label  u1, u2  along  P so that 

d(xi , ui ) = r . Note  that d(v, u i ) ≤ r for all v ∈ T , else the  (v, u i )-path can be 

combined with the  (u i , xi )-path or the  (u i , x3−i )-path to form  a path longer 

than P .  To show  that no vertex outside {u1, u2} can  be a center, it suffices 

to show that every  other vertex v has  distance greater than r from x1 or x2.
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The  unique path from  v to either x1  or x2  meets P at some  point w (which 

may  equal v). If w is in the  u1, x2-portion of P , then d(v, x1) > r . If w is in 

the  u2, x1-portion of P , then d(v, x2) > r . 

b) A tree has  exactly  one center  if and  only  if its  diameter is twice  its 

radius.  Proof  3 above  observes that the  center or  pair of centers is  the 

vertices altogether.  We obtain the  smallest tree achieving the  bound by 

merging an endpoint of Pd  with the  center of the  star K1,d−1.  In the  result- 

ing  tree, the  barycenter u is the  vertex of degree d − 1, and  the  distance 

between it and  the  center is bd/2c − 1.

middle of a longest path. The diameter of a tree is the  length of its longest 

path. The  radius is the  eccentricity of any  center. If the  diameter is even, 

then there is one center, and  its eccentricity is half the length of the longest 

path. If the  diameter is odd,  say  2k − 1, then there are  two centers, and 

 

 
 

•         •         • 

•         • 

 

v
•         •u

the  eccentricity of each  is k, which  exceeds (2k − 1)/2. 

c) Every automorphism of a tree with an odd number of vertices maps at 

least one vertex to itself.  The maximum distance from a vertex must be pre- 

served under any automorphism, so any automorphism of any graph maps 

the  center into  itself. A central tree has  only one vertex in the  center, so it 

is fixed by any  automorphism. A bicentral tree has  two such  vertices; they 

are  fixed or exchange. If they  exchange, then the  two subtrees obtained by 

deleting the edge between the centers are exchanged by the automorphism. 

However, if the  total number of vertices is odd, then the  parity of the  num- 

ber  of vertices in  the  two  branches is different, so no automorphism can 

exchange the  centers. 
 

2.1.55.  Given  x ∈ V (G), let  s(x) = 
P

v∈V (G) d(x , v).  The  barycenter of G is 

the  subgraph induced by the  set  of vertices minimizing s(x). 

a) The  barycenter of a tree  is  a single  vertex  or an  edge.   Let  uv be 

an  edge  in  a tree G, and  let  T (u) and  T (v) be the  components of G − uv 

containing u and  v, respectively.  Note  that  d(u, x) − d(v, x)  = 1 if x  ∈ 
V (T (v)) and  d(u, x) − d(v, x) = −1 if x ∈ V (T (u)).  Summing the  difference 

over x ∈ V (G) yields  s(u) − s(v) = n(T (v)) − n(T (u)). 

As a result, s(u i ) − s(ui +1) strictly decreases along  any  path u1, u2, . . .; 

each  step leaves more  vertices behind. Considering two consecutive steps 

on  a  path  x , y, z yields  s(x) − s(y)  < s(y) − s(z),  or  2s(y)  < s(x) + s(z) 

whenever x , z ∈ N (y).  Thus the  minimum of s cannot be achieved at two 

nonadjacent vertices, because it would be smaller at a vertex between them. 

b) The  maximum distance between the  center  and  the  barycenter in a 

tree of diameter d is bd/2c − 1.  By part (a),  s is not  minimized at a leaf 

when n ≥ 2.  Since  every  vertex is distance at most  bd/2c from  the  center, 

we obtain an upper bound of bd/2c − 1. 

Part (a) implies that to achieve the  bound of bd/2c − 1 we need  a tree 

having adjacent vertices u, v such  that u is the  neighbor of a leaf  with ec- 

centricity d , and  the  number of leaves adjacent to u is at least as large as 

n(T (v)).  Since  uv lies along  a path of length d , we have at least d − 1 ver- 

tices  in T (v).  Thus we need  at least d vertices in T (u) and  at least 2d − 1 

•         • 
 
 

2.1.56. Every tree T has a vertex v such that for all e ∈ E(T ), the component 

of T − e containing v has at least  dn(T )/2e vertices. 

Proof 1 (orientations). For each  edge xy ∈ E(T ), we orient it from x to 

y if in T −x y the component containing y contains at least dn(T )/2e vertices 

(there might be an  edge  which  could  be oriented either way).   Denote the 

resulting digraph by D(T ). 

If D(T ) has  a vertex x with outdegree at least 2, then T − x has  two 

disjoint subtrees each  having at least dn(T )/2e vertices, which  is impossi- 

ble.  Now, since  T does not contain a cycle, D(T ) does not contain a directed 

cycle.   Hence D(T ) has  a vertex v with outdegree 0.   Since  D(T ) has  no 

vertex with outdegree at least two,  every  path in T with endpoint v is an 

oriented path to v in D(T ). Thus every  edge  xy points towards v, meaning 

that v is in a component of T − xy with at least dn(T )/2e vertices. 

The  only  flexibility in  the  choice  of v is that an  edge  whose  deletion 

leaves two  components of equal order can  be oriented either way,  which 

yields  two adjacent choices  for v. 

Proof 2 (algorithm). Instead of the  existence proof  using digraphs, 

one can march to the  desired vertex. For each  v ∈ V (T ), let  f (v) denote the 

minimum over e ∈ E(T ) of the  order of the  component of T − e containing 

v. Note  that f (v) is achieved at some  edge e incident to v. 

Select a vertex v. If  f (v) < dn(T )/2e, then consider an edge e incident 

to v such  that the  order of the  component of T − e containing v is  f (v). Let 

u be the  other endpoint of e. The component of T − e containing u has  more 

than half the  vertices. For any other edge e0  incident to u, the  component of 

T − e0  containing u is strictly larger than the  component of T − e containing 

v. Hence f (u) > f (v). 

If  f (u)  < dn(T )/2e,  then we  repeat the  argument.  Since   f  cannot 

increase indefinitely, we reach a vertex w with f (v) ≥ dn(T )/2e. 

Uniqueness is as before; if two nonadjacent vertices have this property, 

then deleting edges  on the  path joining them yields  a contradiction.
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i =1 
≤ 

2 

2 

2 

k 

v 

k 

2.1.57. a) If n1, . . . , nk are positive integers with sum n − 1, then  
Pk

 
 

ni 
  

2 For  arbitrary xi  and  x j , this formula gives  the  distance in  S from  xk

 
n−1

 
.   The  graph having pairwise disjoint cliques of sizes  n1, . . . , nk  has to the  junction with the  xi , x j -path. If w is not  on the  xi , x j -path, then the 

0

Pk      
 

ni 
  

edges  and  is a subgraph of Kn   1.
 value of the formula exceeds t , since w is the closest vertex of S to xk . Hence

i =1   2                                              
n                                  

− 
t = mini, j <k (dS (xi , xk ) + dS (x j , xk ) − dS (xi , x j ))/2. For  any  i, j that achieves

b) 
P

v∈V (T ) d(u, v) ≤ 
     

when u is a vertex  of a tree T . We use induction  

the  minimum,  d
  

(x , w)
  

d (x , x )
 

 

t , which  identifies the  vertex w in S 0.

on n; the result holds  trivially for n = 2. Consider n > 2. The graph T −u is S0        i =  S     i      k   −

a forest with components T1, . . . , Tk , where k ≥ 1.  Because T is connected, 

u has  a  neighbor in  each  Ti ; because T  has  no cycles,  u has  exactly one 

neighbor vi  in each  Ti .  If v ∈ V (Ti ), then the  unique u, v-path in T passes 

through vi , and  we have dT (u, v) = 1 + dTi 
(vi , v).   Letting ni   = n(Ti ), we 

obtain 
P

v∈V (Ti ) 
dT (u, v) = n i  + 

P
v∈V (Ti ) 

dTi 
(vi , v). 

Thus there is only one w where the  path can be attached and  only one 

length of path that can be put  there to form a tree realizing D. 

Proof 2 (induction on n(S)). When  n(S) = 2, there is no other tree with 

adjacent leaves. For n(S) > 2, let xk  be a leaf of maximum eccentricity; the 

eccentricity of a leaf is the  maximum among its distances to other leaves.

 
ni 
  

If some leaf x j  has  distance 2 from xk , then they  have a common neigh-
By the  induction hypothesis, 

P
v∈V (Ti ) 

dTi 
(vi , v) ≤ 

2   
.  If we sum  the

formula for distances from  u over  all  the  components of T − u, we obtain bor. Deleting xk yields  a smaller tree S 0  with k −1 leaves, since the neighbor

P                                             P   ni 
  P  n i 

   
m
  of xk  is not  a leaf  in  S.  The  deletion does not  change the  distances among

v∈V (T ) dT (u, v) ≤ (n −1)+ 
i    2   

. Now observe that 
2    

≤   
2

 whenever

P 
ni  = m, because the  right side  counts the  edges  in  Km  and  the  left  side 

 
counts the  edges  in a subgraph of Km  (a disjoint union of cliques). Hence 

we have 
P     

dT (u, v) ≤ (n − 1) + 
 

n−1
  

= 
 

n
 
. v∈V (T )                                                          2 

other leaves. By the  induction hypothesis, there is only one way to assem- 

ble S0  from the distance information, and  to form S we must add xk adjacent 

to the  neighbor of x j . 

If no leaf  has  distance 2 from  xk , then the  neighbor of xk  in  S must

•      • 
u 

T3                 v3 •               • 

•      • 
 

•v1                 T1 

have degree 2, because having two non-leaf neighbors would contradict the 

choice  of xk  as  a leaf  of maximum eccentricity.  Now  S − xk  has  the  same 

number of leaves but  fewer  vertices. The  leaf  xk  is replaced by x 0  , and  the 

distances from  the  kth leaf  to other leaves are  all  reduced by 1.   By the•      •                        •                        •      • 
2 

•      •     
T2       

•      •
 

•               • 

 
2.1.58.  If  S and  T  are trees  with leaf  sets  {x1, . . . , xk } and  {y1, . . . , yk }, re- 

spectively, then  dS (xi , x j ) = dT (yi , yj ) for all  1 ≤ i  ≤ j  ≤ k implies that S 

and  T are isomorphic. It suffices  to show that the  numbers dS (xi , x j ) deter- 

mine  S uniquely. That is, if S is a tree, then no other tree has  the  same leaf 

distances. 

Proof 1 (induction on k). If k = 2, then S is a path of length d(x1, x2). If 

k > 2, then a tree S with leaf distance set  D has a shortest path P from xk to 

a junction w. Since  P has no internal vertices on paths joining other leaves, 

deleting V (P) − {w} leaves a subtree with leaf  set  {x1, . . . , xk−1}  realizing 

the  distances not  involving xk .  By the  induction hypothesis, this distance 

set  is uniquely realizable; call  that tree S 0.  It remains only  to show  that 

the  vertex w in V (S0) and  dS (xk , w) are  uniquely determined. 

Let  t  = dS (xk , w).   The  vertex w must belong  to  the  path Q joining 

some  leaves xi  and  x j  in  S0.  The  paths from  xi  and  x j  to xk  in  S together 

use  the  edges  of Q, and  each  uses  the  path P  from  w to  xk .   Thus t  = 
(dS (xi , xk ) + dS (x j , xk ) − dS (xi , x j ))/2. 
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induction hypothesis, there is only  one  way  to assemble S − xk  from  the 

distance information, and  to form  S we must add  xk  adjacent to x 0  . 
 
 
2.1.59. If G is a tree with n vertices, k leaves,  and  maximum degree k, then 

2 d(n − 1)/ke ≤ diam G ≤ n − k + 1, and  the bounds are achievable, except 

that the  lower  bound is 2 d(n − 1)/ke − 1 when n ≡ 2 (mod k).  Let  x be a 

vertex of degree k.  Consider k maximal paths that start at x ; these end 

at distinct leaves. If G has  any  other edge,  it creates a cycle or leads to 

an  additional leaf.   Hence G is the  union of k edge-disjoint paths with a 

common endpoint.   The  diameter of G is  the  sum  of the  lengths of two 

longest such  paths. 

Upper bound: Since  the  paths other than the  two  longest absorb at 

least k − 2 edges,  at most  n − k + 1 edges  remain for the  two longest paths; 

this is achieved by giving  one path length n − k and  the  others length 1. 

Lower bound: If the  longest and  shortest of the  k paths differ  in length 

by more than 1, then shortening the longest while  lengthening the shortest 

does not  increase the  sum  of the  two longest lengths. Hence the  diameter 

is minimized by the  tree G in which  the  lengths of any  pair of the  k paths 

differ by at most 1, meaning they all equal b(n − 1)/kc or d(n − 1)/ke. There 

must be two of length d(n − 1)/ke unless n ≡ 2 (mod k).
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i =1 
−         =   +                                     5 

2.1.60. If G has  diameter d and  maximum degree k, then  n(G) ≤ 1 + [(k − 
1)d  − 1]k/(k − 2).  A single vertex x has  at most  k neighbors. Each of these 

has  at most  k other incident edges,  and  hence there are  at most  k(k − 1) 

vertices at distance 2 from  x . Assuming that new  vertices always get gen- 

erated, the  tree of paths from  x has  at most  k(k     1)i −1 vertices at distance 
d
 

graph with at least n edges has a cycle C . Choose e ∈ E(C). The graph G −e 

is connected, and  by the  induction hypothesis (G − e)0  is connected. Every 

spanning tree of G − e is a spanning tree of G, so (G − e)0   is the  induced 

subgraph of T (G) whose  vertices are  the  spanning trees of G that omit  e. 
Since  (G − e)0  is connected, it suffices  to show that every  spanning tree

i from x . Hence n(G) ≤ 1 + 
Pd

 k(k     1)i −1      1    k 
(k −1) −1 

. (Comment:  C 
k−1−1 of G containing e is adjacent in G 0  to a spanning tree not  containing e.  If

and  the  Petersen graph are  among the  very  few that achieve equality.) 
 

2.1.61.  Every  (k, g)-cage has  diameter at most  g.  (A (k, g)-cage is a graph 

with smallest order among k-regular graphs with girth at least g; Exercise 

1.3.16  establishes the  existence of such  graphs). 

T contains e and  T 0    does not,  then there exists e0  ∈ E(T 0) − E(T ) such  that 

T − e + e0  is a spanning tree of G omitting e. Thus T − e + e0  is the  desired 

tree in G − e adjacent to T in G 0. 
b) The  diameter of G 0  is at most  n − 1, with equality when G has  two 

spanning trees  that share  no edges.   It suffices  to show  that dG 0 (T , T 0)  =

Let G be a (k, g)-cage  having two vertices x and  y such  that dG (x , y) >                           0   
                                                                                                                                          

0                                 0 

g.  We modify  G to obtain a k-regular graph with girth at least g that has 

fewer  vertices. This  contradicts the  choice of G, so there is no such  pair of 

 E (T ) − E(T ) .  Each edge  on a path from  T  to T 

one  edge  of  T ,  so  the  distance  is  at  least  
  in  G discards at most  

vertices in a cage G. 

The modification is to delete x and  y and  add  a matching from  N (x) to 

N (y). Since d(x , y) > g ≥ 3, the resulting smaller graph G 0  is simple. Since
 

 E(T ) − E(T 0) .  Since  for each 

e ∈ E(T ) − E(T 0) there exists e0  ∈ E(T 0)− E(T ) such  that T − e + e0  ∈ V (G 0), 

the  path built in Proof 1 of part (a) has  precisely this length. 

Since   trees in  n-vertex graphs have at  most   n − 1  edges,   always 
0   

                                                                          
0 

we have “replaced” edges  to deleted vertices, G 0  is k-regular. It suffices  to
  E (T ) − E(T )  ≤ n − 1, so diam G ≤ n − 1 when G has  n vertices. When  G

 

show that cycles in G 0  have length at least g. We need  only consider cycles 

using at least one new edge. 

Since  dG (x , y) > g, every  path from  N (x) to  N (y) has  length at least 

g − 1. Also every  path whose  endpoints are  within N (x) has  length at least 

g − 2; otherwise, G has  a short cycle through x . Every cycle through a new 

edge  uses  one new  edge  and  a path from  N (x) to N (y) or at least two new 

edges  and  at least two paths of length at least g − 2. Hence every  new cycle 

has  length at least g. 
 

2.1.62.  Connectedness and  diameter of the  2-switch graph on  spanning 

has  two edge-disjoint spanning trees, the  diameter of G 0  equals n − 1. 
 

2.1.63. Every  n-vertex  graph with n + 1 edges has  a cycle of length at most 

b(2n + 2)/3c. The  bound is best  possible, as  seen  by the  example of three 

paths with common endpoints that have total length n +1 and  nearly-equal 

lengths. Note  that b(2n + 2)/3c = d2n/3e. 

Proof 1.  Since  an  n-vertex forest with k components has  only  n − k 

edges,  an n-vertex graph with n + 1 edges  has  at least two cycles.  Let C be 

a shortest cycle.  Suppose that e(C) > d2n/3e.  If G − E(C) contains a path 

connecting two vertices of C , then it forms  a cycle with the  shorter path on 

C connecting these two vertices. The length of this cycle is at most

trees of G.  Let  G be a connected graph with n vertices. The  graph G 0  has                         
1                                                                               1

one vertex for each  spanning tree of G, with vertices adjacent in G 0  when 

the  corresponding trees have exactly n(G) − 2 common edges. 

a) G 0  is connected. 

Proof 1 (construction of path). For  distinct spanning trees T and  T 0 

in  G,  choose  e  ∈  E(T ) − E(T 0).   By  Proposition 2.1.6,  there exists e0    ∈ 
E(T 0)− E(T ) such  that T − e + e0  is a spanning tree of G. Let T1  = T − e + e0. 

The  trees T  and  T1  are  adjacent in  G 0.   The  trees T1  and  T 0     share more 

edges  than T and  T 0    share. Repeating the  argument produces a T , T 0-path 

in G 0  via vertices T , T1, T2, . . . , Tk , T 0. 

Formally, this uses induction on the number m of edges in E(T )− E(T 0). 

When  m = 0, there is a T , T 0-path of length 0.  When  m > 0, we generate 

T1  as above  and  apply the  induction hypothesis to the  pair T1, T 0. 
Proof 2 (induction on e(G)). If e(G) = n − 1, then G is a tree, and  G 0  = 

K1.  For  the  induction step, consider e(G) > n − 1.  A connected n-vertex 
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2 
e(C) + (e(G) − e(C) = e(G) − 

2 
e(C) < n + 1 − n/3 = (2n + 3)/3. 

If the length of this cycle is less than (2n +3)/3, then it is at most (2n +2)/3, 

and  since  it is an integer it is at most  b(2n + 2)/3c. 

If there is no such  path, then no cycle shares an  edge  with C .  Hence 

the  additional cycle is restricted to a set of fewer than n + 1 − d2n/3e edges, 

and  again its length is less than (2n + 3)/3. 

Proof 2. We may assume that the  graph is connected, since  otherwise 

we apply the  same argument to some  component in which  the  number of 

edges  exceeds the  number of vertices by at least two.  Consider a spanning 

tree T , using n − 1 of the  edges.   Each of the  two remaining edges  forms 

a cycle when added to T . If these cycles share no edges,  then the  shortest 

has  length at most  (n + 1)/2. 

Hence we may  assume that the  two resulting cycles have at least one 

common edge; let x , y be the endpoints of their common path in T . Deleting
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the  x , y-path in T from the union of the two cycles yields  a third cycle.  (The 

uniqueness of cycles  formed when an  edge  is added to a tree implies that 

this edge set  is in fact a single cycle.)  Thus we have three cycles, and  each 

edge in the  union of the  three cycles appears in exactly two of them. Thus 

the  shortest of the  three lengths is at most  2(n + 1)/3. 
 

2.1.64.  If G is a connected graph that is not  a tree,  then  G has  a cycle of 

length at most  2diam G + 1, and  this  is best possible. We use  extremality 

For 1 ≤ i ≤ m − 1, add  the  edge  yi xi +1. The  resulting graph has  minimum 

degree k and  diameter 3m −1. The figure  below illustrates the construction 

when m  = 3;  the  i th ellipse represents Qm  − {xi , yi }.   (There also  exist 

regular graphs attaining the  bound.)

for the  upper bound; let  C be a shortest cycle in  G.  If its  length exceeds 

2diam G + 1, then there are  vertices x , y on C that have no path of length 

at most  diam G connecting them along  C . Following a shortest  x , y-path P 

from its first  edge off C until its return to C completes a shorter cycle.  This 

•           k          •           • k −1     •           •           k • 
 
 
 

l 
 e( H )   

m

holds  because P has  length at most  k, and  we use  a portion of P in place 2.1.66. If F1, . . . , Fm are forests whose union is G, then m ≥ maxH ⊆G n(H )−1   
.

of a path along  C that has  length more  than k. We have proved that every 

shortest cycle in G has  length at most  2diam G + 1. 

The  odd cycle C2k+1  shows  that the  bound is best  possible. It is con- 

nected, is not  a tree, and  has  diameter k. Its  only cycle has  length 2k + 1, 

so we cannot guarantee girth less than 2k + 1. 
 

2.1.65.  If G is a connected simple graph of order  n and  minimum  degree 

k, with n − 3 ≥ k ≥ 2, then  diam G ≤ 3(n − 2)/(k + 1) − 1, with equality 

when n − 2 is a multiple of k + 1.  To interpret the  desired inequality on 

diam G, we let  d = diam G and  solve  for n.  Thus it suffices  to prove  that 

n ≥ (1 + bd/3c)(k + 1) + j , where j is the  remainder of d upon  division by 3. 

Note  that the  inequality n − 3 ≥ k is equivalent to 3(n − 2)/(k + 1) − 1 ≥ 2. 

Under this constraint, the  result is  immediate when d  ≤ 2,  so we  may 

assume that d ≥ 3. 

Let  hv0, . . . , vd i be  a  path joining vertices at distance d .   For  a  ver- 

tex  x , let  N [x] = N (x) ∪ {x}.  Let  Si   = N [v3i ] for 0 ≤ i  < bd/3c,  and  let 

From a subgraph H , each  forest uses  at most  n(H ) − 1 edges.  Thus at least 

e(H )/(n(H ) − 1) forests are  needed just to cover  the  edges  of H , and  the 

choice of H that gives  the  largest value of this is a lower  bound on m. 
 

2.1.67. If a graph G has k pairwise edge-disjoint spanning trees in G, then 

for any  partition of V (G) into  r parts, there  are at least  k(r − 1) edges of G 

whose  endpoints are in  different parts.  Deleting the  edges  of a spanning 

tree T that have endpoints in different parts leaves a forest with at least r 

components and  hence at most  n(G) − r edges.  Since  T has  n(G) − 1 edges, 

T must have at least r − 1 edges  between the  parts. The  argument holds 

separately for each  spanning tree, yielding k(r − 1) distinct edges. 
 

2.1.68. A decomposition into two isomorphic spanning trees.  One tree turns 

into  the  other in the  decomposition below upon  rotation by 180 degrees. 

 
•

Sbd/3c  = N [vd ]. Since  d ≥ 3, there are  1 + bd/3c such  sets, pairwise disjoint 

(since  we have a shortest  v0, vd -path), and  each  has  at least k + 1 vertices. 

•                • 
•                •                •

Furthermore, vd−2  does  not  appear in any  of these sets  if  j = 1, and  both                                                                           
•       

•       
•

 
vd−2  and  vd−3  do not appear if j = 2. Hence n is as large as claimed.

To obtain an upper bound on d in terms of n, we write bd/3c as (d − j )/3.  

2.1.69.  An  instance of playing Bridg-it.  Indexing the  9 vertical edges  as
Solving for d in terms of n, we find in each  case that d ≤ 3(n − 2)/(k + 1) − 
1 − j [1 − 3/(k + 1)]. Since  k ≥ 2, the  bound d ≤ 3(n − 2)/(k + 1) − 1 is valid 

 

gi, j 

 

and  the  16 horizontal/slanted edges  as  h 
 
i, j 

 

, where i is the  “row” index

for every  congruence class  of d modulo 3. 

When  n − 2 is a multiple of k + 1, the  bound is sharp. If n − 2 = k + 1, 

then deleting two  edges  incident to one  vertex of  Kn  yields  a graph with 

the  desired diameter and  minimum degree (also  Cn  suffices).   For  larger 

multiples, let  m = (n − 2)/(k + 1);  note  that m ≥ 2.   Begin  with cliques 

Q1, . . . , Qm  such  that Q1  and   Qm  have order k + 2 and  the  others have 

order k + 1.  For  1 ≤ i  ≤ m, choose  xi , yi   ∈  Qi , and  delete the  edge  xi yi . 
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and  j is the  “column”  index, we are  given  these moves: 
 

Player 1:    h1,1     h2,3     h4,2 

Player 2:    g2,2     h3,2     g2,1 

 

After  the  third move of Player 1, the  situation is as shown below.  The 

bold edges  are  those seized by Player 1 and  belong  to both  spanning trees. 

The two moves  by Player 2 have cut the  two edges  that are  missing.



111 Chapter 2: Trees and  Distance Section 2.1:  Basic  Properties 112  

 

•         •         • 

 
•         •         • 

•                                            • 

•         •         • 

 
•         •         • 

Lemma: For vertices  u, v, w in a tree G, the u, v-path P, the v, w-path 

Q, and  the u, w-path R in G have  a common vertex.  Let z be the  last vertex 

shared by  P and  R.  They  share all  vertices up  to z, since  distinct paths 

cannot have the  same endpoints.  Therefore, the  z, v-portion of P and  the 

z, w-portion of R together form a v, w-path. Since  G has  only one v, w-path, 

this is Q. Hence z belongs to P , Q, and  R. 

Main result. 

Proof 1 (induction on  k).   For  k  = 2,  the  hypothesis is  the  conclu-

The  third move  by Player 2 cuts  the  marked vertical edge.   This  cuts 

off three vertices from  the  rest of the  solid  tree. Player 1 must respond by 

choosing a dotted edge that can reconnect it.  The choices are  h1,2, h2,1, h2,2, 

h3,1, and  h4,1. 
 

2.1.70. Bridg-it cannot end in a tie.  That is, when no further moves  can be 

made, one player must have a path connecting his/her goals. 

Consider the  graph for Player 1 formed in Theorem 2.1.17.  At the  end 

of the game, Player 1 has  bridges on some of these edges,  retaining them as 

a subgraph H , and  the  other edges  have been cut by Player 2’s bridges. Let 

sion.   For  larger k, apply the  inductive hypothesis to both  {G1, . . . , Gk−1} 
and  {G2, . . . , Gk }. This  yields  a vertex u in all of {G1, . . . , Gk−1} and  a ver- 

tex  v in all of {G2, . . . , Gk }.  Because G is a tree, it has  a unique u, v-path. 

This  path belongs to all of G2, . . . , Gk−1.  Let  w be a vertex in G1 ∩ Gk . By 

the  Lemma, the  paths in  G joining pairs in {u, v, w} have a common ver- 

tex.  Since  the  u, v-path is in G2, . . . , Gk−1, the  w, u-path is in G1, and  the 

w, v-path is in Gk , the  common vertex of these paths is in G 1, . . . , Gk . 

Proof 2 (induction on k). For k = 3, we let u, v, w be vertices of G1 ∩ G2, 

G2 ∩ G3, and  G3 ∩ G1, respectively. By the  Lemma, the  three paths joining 

these vertices have a common vertex, and  this vertex belongs to all three

C be the  component of H containing the  left  goal for Player 1.  The  edges 
subtrees. For  k > 3, define  the  k − 1 subtrees G1 ∩ Gk , . . . , Gk

 
1 ∩ G .  By

incident to V (C) that have been  cut correspond to a walk  built by Player 2                                                                                                                                  
−           k

 

that connects the  goals  for Player 2.  This  holds  because successive edges 

around the  outside of C are  incident to the  same “square” in the  graph for 

Player 1, which  corresponds to a vertex for Player 2. This  can be described 

more  precisely using the  language of duality in planar graphs (Chapter 6). 
 

2.1.71. Player 2 has a winning strategy in Reverse  Bridg-it. A player build- 

ing a path joining friendly ends  is the  loser, and  it is forbidden to stall by 

building a bridge joining posts on the  same end. 

We use  the  same graph as  in  Theorem 2.1.17,  keeping the  auxiliary 

edge  so that we start with two edge-disjoint spanning trees T and  T 0.  An 

edge  e that Player 1 can  use  belongs to only  one of the  trees, say  T .  The 

play  by Player 1 will add  e to T 0.  Since  e ∈ E(T ) − E(T 0), Proposition 2.1.7 

guarantees an edge e0  ∈ E(T 0)− E(T ) such that T 0 +e −e0  is a spanning tree. 

Player 2 makes a bridge to delete the  edge  e0, and  the  strategy continues 

with the  modified T 0    sharing the  edge e with T . If the  only edge of E(T 0) − 
E(T ) available to break the cycle in T 0  + e is the auxiliary edge, then Player 

1 has  already built a path joining the  goals  and  lost  the  game. The  game 

continues always with two spanning trees available for Player 1, and  it can 

only end  with Player 1 completing the  required path. 
 

2.1.72.  If G1, . . . , Gk  are pairwise intersecting subtrees of a tree G, then  G 

has  a vertex  in all of G1, . . . , Gk .  (A special case  is the  “Helly  property” of 

the  real  line:  pairwise intersecting intervals have a common point.) 

the  case  k = 3, these subtrees are  pairwise intersecting.  There are  k − 1 

of them, so by the  induction hypothesis they  have a common vertex. This 

vertex belongs to all of the  original k trees. 
 

2.1.73.  A simple graph G is  a forest  if  and  only  if  pairwise intersecting 

paths in G always have  a common vertex. 

Sufficiency.  We prove  by contradiction that G is acyclic.   If G has  a 

cycle, then choosing any  three vertices on the  cycle cuts  it into  three paths 

that pairwise intersect at their endpoints. However, the  three paths do not 

all have a common vertex. Hence G can have no cycle and  is a tree. 

Necessity.  Let  G be a forest. Pairwise intersecting paths lie in a sin- 

gle component of G, so we may  assume that G is a tree. We use  induction 

on the  number of paths. By definition, two intersecting paths have a com- 

mon  vertex. For  k > 2, let  P1, . . . , Pk  be pairwise intersecting paths.  Also 

P1, . . . , Pk−1   are  pairwise intersecting, as  are  P2, . . . , Pk ; each  consists of 

k − 1 paths. The  induction hypothesis guarantees a vertex u belonging to 

all of P1, . . . , Pk−1  and  a vertex v belonging to all of P2, . . . , Pk .  Since  each 

of P2, . . . , Pk−1  contains both  u and  v and  G has  exactly one  u, v-path Q, 

this path Q belongs to all of P2, . . . , Pk−1. 

By hypothesis, P1 and  Pk also have a common vertex z. The unique z, u- 

path R lies in  P1, and  the  unique z, v-path S lies in  Pk . Starting from  z, let 

w be the  last common vertex of R and  S. It suffices  to show that w ∈ V (Q). 

Otherwise, consider the  portion of R from  w until it first  reaches Q, the
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=     − 

portion of S from  w until it first  reaches Q, and  the  portion of Q between 

these two points. Together, these form a closed trail and contain a cycle, but 

this cannot exist in the  tree G.  The  contradiction implies that w belongs 

to Q and  is the  desired vertex. 
 

2.1.74. Every  simple n-vertex  graph G with n − 2 edges is a subgraph of its 

complement. (We need  e(G) < n − 1, since  K1,n−1  6⊆ K1,n−1.) 

We use  induction on n.  We will  delete two  vertices in  the  induction 

step, we so we must include n = 2 and  n = 3 in the  basis. When  n = 2, we 

have G = K 2  ⊆ K2  = G. When  n = 3, we have G = K2 + K1  ⊆ P3  = G. 

For  n > 3, let  G be an  n-vertex graph with n − 2 edges.   Suppose first 

that G  has  an  isolated vertex x .   Since  e(G)  = n − 2,  the  Degree-Sum 

In this case  the  non-leaves of T are  the  same as the  non-leaves of T 0, and 

the  loaded claim  holds  for T . 

If  y is  a  leaf  in  T , we  use  the  same argument unless  f (y)  =  g(y), 

where f, g are  the  mappings from V (T 0) to V (Kn−1) for the  two embeddings 

of T 0      guaranteed by the  induction hypothesis.  In  this case,  let  z be  the 

other neighbor of y; we have z as  a non-leaf of T 0, and  hence f (z) 6=  g(z). 

We cannot have both  g(z) = f (w) for some  w ∈  N (z) and   f (z) =  g(u) for 

some  u  ∈  N (z),  because then the  edge  between  f (z) and  g(z) is  used  in 

both  embeddings of T 0.  By symmetry, we may  assume f (z) 6=  g(w) for all 

w ∈  N (z).   For  T , we define   f 0, g0   :   V (T ) → V (Kn ) for the edge-disjoint 

embeddings of T as  follows:  If w ∈/  {x , y, z}, let  f 0(w) = f (w) and  g0(w) = 
g(w).   For  the  other vertices, let   f 0(z)  =  f (z),   f 0(y)  =  f (y),   f 0(x)  = vn ,

Formula yields  a vertex y of degree at least 2.  Let  G 0   = G − {x, y}; this 
is a graph with n − 2 vertices and  at most  n − 4 edges.   By the  induction g0(z) = vn , g

0(y) = g(z), g0(x) = g(y), as illustrated below.  By construction

 

hypotheses, every  graph with n − 2 vertices and  n − 4 edges  appears in its 

complement, so the same holds for smaller graphs (sinc  e they are contained 

in graphs with n − 4 edges). A copy of G 0  contained in G − {x, y} extends to 

a copy of G in G by letting x represent y and  letting y represent x . 

Hence we  may  assume that G has  no  isolated vertices.  Every non- 

tree component of G has  at least as many edges  as vertices, and  trees have 

one less.  Hence at least two components of G are  trees. We may  therefore 

choose vertices x and  y of degree 1 with distinct neighbors. Let  N (x) = {x 0} 

the  non-leaves of T have pairs of distinct images. The  edges  not  involving 

x , y, z are  mapped as before  and  hence become  edge-disjoint subgraphs of 

Kn − {vn , f (y),  f (z), g(z)}.  The  path x , y, z is explicitly given  edge-disjoint 

images under  f 0, g0.  This  leaves only  the  edges  involving z.  Those  under 

f  are  the  same as under f 0.  The  shift of z from  g(z) to g0(z) = vn  does not 

produce a common edge  because f 0(z) = f (z) is not  the  image under g of 

any  neighbor of z.

and  N (y)  = {y 0}  with x 0   6= y 0.   Let  G 0   = G − {x, y}; this graph has  n − 
2 

vertices and  n − 4 edges.  By the  induction hypothesis, G 0  ⊆ G 0  = G − x − y. 

Let  H be a copy of G 0  in G − x − y.  If x 0    or y 0  represents itself  in  H , then 

we let x and  y switch identities to add  their incident edges.  Otherwise, we 

let x and  y represent themselves to add  their incident edges. 
 

2.1.75. Every  non-star tree is (isomorphic to) a subgraph of its complement. 

 
 

vn• 

 
f (y) 

g(
•
y) 

f (z) 
• 

 
 

g(
•
z) 

 
f 0(x)     f 0(y) 

→     
g0•(z)     g0(

•
x) 

f 0(z) 
• 

 
 

g0(
•
y)

Proof 1 (loaded induction on n). We prove the stronger statement that, 

given  an  n-vertex tree T  other than K1,n−1, the  graph Kn  with vertex set 

{v1, . . . , vn } contains two edge-disjoint copies  of T in which  the  two copies 
of each  non-leaf vertex of T appear at distinct vertices. The  only non-star 

tree with at most  4 vertices is the  path P4, which  is self-complementary via 

Proof 2. (induction on n(T ) by deleting two leaves—proof due to Fred 

Galvin). To cover the  basis step, we prove  first  that the  claim  is true when 

T has  a path P of length at least 3 that includes a endpoint of every  edge 

(see  “caterpillars” in  Section 2.2).   First we  embed P in  its  complement 

so that every  vertex moves.   If n(P) is even,  say  n(P)  = 2k, then we ap- 

 
a map  that moves  each  vertex. ply the  vertex permutation 

1,2,...,k,k+1,...,2k 
 

.  When  n(P)      2k     1, we use 
2,4,...,2k,1,...,2k−1

Now consider n > 4. We show  first  that T has  a leaf x such  that T − x 

is not  a star. If T is a path, let  x be either leaf.  Otherwise, T has  at least 

three leaves; let  P be a longest path in T , and  let x be a leaf other than the 

endpoints of P . In either case,  T − x has  a path of length at least 3. 

Let  T 0     = T − x , and  let  y be the  neighbor of x in T .  If y is not  a leaf 

in  T 0,  then the  induction hypothesis yields  embeddings of T 0      in  Kn−1   in 

which  y occurs  at distinct vertices. We can  extend both  embeddings to K n 

by placing x at vn in each  and  adding the  distinct edges  to the  images of y. 
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1,2,...,k,k+1,...,2k−1 

 
. Now, since  every  vertex on P has  moved,  we can  place 

2k−1,2k−3,...,1,2k,...,2 
the  remaining leaves at their original positions and  add  incident edges 

from  T to make them adjacent to their desired neighbors. 

All non-star trees with at most six vertices have such a path P . For the 

induction step, consider a tree T with n(T ) > 6.  Let  u and  v be endpoints 

of a longest path in T , so d(u, v) = diam T , and  let  T 0     = T − u − v.  Let  x 

and  y be the  neighbors of u and  v, respectively. If T is not a star and  T 0    is a 

star, then T is embeddable in its complement using the  construction above.
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If T 0     is not  a star, then by the  induction hypothesis T 0     embeds in  T 0. 

If the  embedding puts x or  y at itself, then adding the  edges  xv and  yu 

yields  a copy of T in T . Otherwise, make u adjacent to the  image of x and 

v adjacent to the  image of y to complete the  copy of T in T . 

2.1.76.  If  A1, . . . , An  are  distinct subsets of [n], then  there  exists  x  ∈  [n] 

such  that A1 ∪ {x}, . . . , An ∪ {x} are distinct. We need  to find an  element  x 

such  that no pair of sets  differ  by x .  Consider the  graph G with V (G) = 

2.2.3.   Application of the  Matrix Tree  Theorem.  The  matrix Q  = D − A 

for this graph appears on the  right below.  All rows and  columns sum  to 0. 

If we delete any  row and  column and  take the  determinant, the  result is 

106, which  is the  number of spanning trees. Alternatively, we could apply 

the  recurrence.  The  number of trees not  containing the  diagonal edge  is 

2 · 3 · 4 + 3 · 4 · 2 + 4 · 2 · 2 + 2 · 2 · 3, which  is 76.   The  number of trees 

containing the  diagonal edge is 5 · 6, which  is 30.

{ A1, . . . , An } and   Ai   ↔   A j   if only  if  Ai   and   A j   differ  by  the  addition or  

v2                        v

deletion of a single element. Color (label)  an  edge  Ai A j  by the  element in 
which  the  endpoints differ.  Any  color  that appears in  a cycle of G must

 
1 •                •              

5 −2   −3    0  

 

appear an  even  number of times in that cycle, because as we traverse the 

cycle we return to the original set.  Hence a subgraph F formed by selecting 

one  edge  having each  edge-label that appears in  G will  contain no cycles 

and  must be a forest. Since  a forest has  at most  n − 1 edges,  there must be 

 

 

v3
• 

 

 
•
v4

 

 −2    5     −1   −2  
 
−3   −1    8     −1  

0     −2   −4    6

an element that does not appear on any  edge and  can serve as x . 2.2.4.   If a graph G with m edges has a graceful labeling, then  K2m +1 decom-

 

2.2.  SPANNING TREES & ENUMERATION 
 

 
2.2.1.   Description of trees by Prüfer codes.  We use  the  fact that the  degree 

of a vertex in the  tree is one more  than the  number of times it appears in 

the  corresponding code. 

a) The  trees  with constant Prüfer codes  are  the  stars.  The  n − 1 la- 

bels that don’t appear in the  code have degree 1 in the  tree; the  label  that 

appears n − 2 times has  degree n − 1. 

b) The trees whose  codes contain two values are the double-stars. Since 

n − 2 labels don’t appear in the  code, there are  n − 2 leaves in the  tree. 

c) The  trees whose  codes have  no repeated entries are the paths. Since 

n − 2 labels appear once and  two are  missing, n − 2 vertices have degree 2, 

and  two are  leaves. All trees with this degree sequence are  paths. 

2.2.2.   The  graph K1 ∨ C4  has  45 spanning trees.  For  each  graph G in the 

computation below, we mean τ (G). 

poses into  copies of G. As in the  proof of Theorem 2.2.16,  view the  vertices 

modulo 2m + 1. Let a1, . . . , an  be the  vertex labels on in a graceful labeling 

of G. By definition, 0 ≤ aj  ≤ m for each  j . For  0 ≤ i ≤ 2m, the  i th copy of 

G uses  vertices i + a1, . . . , i + an .  Each copy uses  one edge  from  each  dif- 

ference class, and  the  successive copies  use  distinct edges  from  a class, so 

each  edge of K2m+1  appears in exactly one of these copies  of G. 
 

2.2.5.   The graph below has 2000 spanning trees.  The graph has  16 vertices 

and  20  edges;   we  must delete five  edges  to  form  a  spanning tree.   The 

5-cycles  are  pairwise edge-disjoint; we group the  deleted edges  by the  5- 

cycles.  Each 5-cycle must lose an  edge;  one 5-cycle will lose two.  To avoid 

disconnecting the  graph, one edge lost from the  5-cycle that loses two must 

be on the  4-cycle, and  thus the  4-cycle is also broken. 

Every subgraph satisfying these rules is connected with 15 edges,  since 

every  vertex has  a path to the  central 4-cycle, and  there is a path from one 

vertex to the  next  on the  4-cycle via  the  5-cycles  that lose  just one edge). 

Hence these are  the  spanning trees. We can pick the  5-cycle that loses two 

edges  in 4 ways,  pick its  second lost  edge in 4 ways,  and  pick the  edge lost 

from  each  remaining 5-cycle in five ways,  yielding a total of 4 · 4 · 5 · 5 · 5•         •                    •         •              • 
•              =         •        +      • 

•         •              •              • 
=         •     + 2     •        +         • spanning trees. The product is 2000.

•         •                    •         •         •         • 

 
•                         

• 

•         •         •         •         • 
• 

•          • 
•                                                                                                                                              •                    •
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=   3     • 
•         • 

+  2                  + 
•         •              • 

•     +   •         • •     • 
•                            • 

•     
•     •     

•

=      3 · 8 + 2 · 5 + 3 · 2 + 5        =    45                                                                                                                       
•    

•    
•
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2 

2 

2 

2 

2 

2 

2 

2.2.6.   The 3-regular graph that is a ring of m kites  (shown below for m = 6) 

has  2m8m   spanning trees.    Call  the  edges  joining kites the  “link  edges”. 

Deleting two link edges  disconnects the graph, so each spanning tree omits 

at most  one link  edge. 

If a spanning tree uses  m − 1 link  edges,  then it also contains a span- 

ning  tree from  each  kite. By Example 2.2.6,  each  kite  has  eight spanning 

trees. (Each such  spanning tree has  three edges;  each  choice of three edges 

works except the  two forming triangles, and  8 = 
 

5
  

− 2.) 

Proof 2 (Prü fer  correspondence).  Given  vertex set  [n], we count the 

trees not  containing the  edge  between n − 1 and  n.  In  the  algorithm to 

generating the  Prü fer  code of a tree with vertex set  [n], we never delete 

vertex n. Also, we do not delete vertex n − 1 unless n − 1 and  n are  the  only 

leaves, in which  case the  remaining tree at that stage is a path (because it 

is a tree with only two leaves). 

If the  tree contains the  edge (n − 1, n), then (n − 1, n) will be the  final 

edge,  and  the  label  last written down  is n − 1 or n.  If not,  then the  path

To form a spanning tree of this type,  we pick one of the  m link  edges  to between n − 1 and  n has  at least two edges,  and  we will  peel off vertices

delete and  pick a spanning tree from  each  kite  in 8k  ways.  Thus there are 
m8k−1  spanning trees of this sort. 

The  other possibility is to use  all  m link  edges.    Now  we must have 

exactly one kite  where the  vertices of degree 2 in the  kite  are  not connected 

by a path within the  kite.  Since  we avoid  cycles  and  spanning trees but 

must connect the  two  3-valent vertices of the  kite  out  to the  rest of the 

graph, we retain exactly two edge  from  the  kite  that is cut.   Each way  of 

choosing two edges  to retain works exept the  two that form a path between 

the  2-valent vertex through one 3-valent vertex: 8 = 
 

5
  

− 2. 

from one end until only the  edge containing n remains. The label  n is never 

recorded during this process, and  neither is  n − 1.   Thus a  Prü fer  code 

corresponds to a tree not containing (n − 1, n) if and  only if the  last term of 

the  list  is not n − 1 or n, and  there are  (n − 2)nn−3  such  lists. 

Proof 3 (Matrix Tree  Theorem).  For  Kn  − e, the  matrix D − A has 

diagonal n − 1, . . . , n − 1, n − 2, n − 2, with positions n − 1, n and  n, n − 1 

equal to 0 and  all  else  −1.  Delete the  last row  and  column and  take the 

determinant to obtain the  number of spanning trees. To compute the  de- 

terminant, apply row and  column operations as  follows:  1) add  the  n − 2

Since  we pick  one  kite  to cut  in m ways,  pick  one  of 8 ways  to cut  it, 

and  pick one of 8 spanning trees in each other kite, there are m8m  spanning 

trees of this type,  for 2m8m  spannning trees altogether. 
 

•   •      •   • 
•   •          •   • 

•                             • 
•    •                      •    • 

•                            • 

•   •          •   • 

•   •      •   • 

 
2.2.7.   Kn − e has (n − 2)nn−3  spanning trees. 

Proof 1 (symmetry and  Cayley’s  Formula—easiest!). By Cayley’s  For- 

mula, there are  nn−2   spanning trees in  Kn .   Since  each  has  n − 1 edges, 

there are  (n − 1)nn−2  pairs (e, T ) such  that T is a spanning tree in Kn  and 

e ∈ E(T ).  When  we group these pairs according to the 
  

n
  

edges  in Kn , we 

divide  by 
  

n
  

to obtain 2nn−3  as  the  number of trees containing any  given 
edge,  since  by symmetry each  edge  of Kn  appears in the  same number of 

spanning trees. 

To count the  spanning trees in Kn − e, we subtract from the  total num- 

ber  of spanning trees in  Kn  the  number that contain the  particular edge 

e. Subtracting t = 2nn−3  from nn−2  leaves (n − 2)nn−3  spanning trees in Kn 

that do not contain e. 

other columns to the  first  so the  first  column becomes 1, . . . , 1, 0.  2) sub- 

tract the  first  row from all but  the  last, so the  first  row is 1, −1, . . . , −1, the 

last is 0, −1, . . . , −1, n − 2, and  the  others are  0 except for n on the  diago- 

nal.  The interior rows can then be used  to reduce this to a diagonal matrix 

with entries 1, n, . . . , n, n − 2, whose  determinant is (n − 2)nn−3. 
 

2.2.8.   With vertex  set [n], there are 
  

n
 
(2n−2 − 2) trees with n − 2 leaves  and 

n!/2 trees with 2 leaves.  Every tree with two leaves is a path (paths along 

distinct edges  incident to a vertex of degree k leads to k distinct leaves, so 

having only  two leaves in a tree implies maximum degree 2).  Every tree 

with n − 2 leaves has  exactly two non-leaves. Each leaf is adjacent to one 

of these two  vertices, with at least one  leaf  neighbor for each  of the  two 

vertices. These trees are  the  “double-stars”. 

To count paths directly, the  vertices of a path in order form  a permu- 

tation of the  vertex set.   Following the  path from  the  other end  produces 

another permutation. On the  other hand, every  permutation arises in this 

way.  Hence there are  two permutations for every  path, and  the  number of 

paths is n!/2. 

To count double-stars directly, we pick the  two central vertices in one 

of 
 

n
  

ways  and  then pick the  set  of leaves adjacent to the  lower  of the  two 

central vertices. This  set  is a subset of the  n − 2 remaining vertex labels, 

and  it can  be any  subset other than the  full  set  and  the  empty set.   The 

number of ways  to do this is the  same no matter how the  central vertices 

is chosen, so the  number of double-stars is 
  

n
 
(2n−2 − 2).
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2 

2 

2 

k 

To solve  this using the  Prü fer correspondence, we count Prü fer codes 

for paths and  for double-stars. In the  Prü fer code corresponding to a tree, 

the  labels of the  leaves are  the  labels that do not appear. 

For paths (two leaves), the  other n − 2 labels must each  appear in the 

Prü fer code, so they  must appear once each.  Having chosen the  leaf labels 

in 
  

n
  

ways,  there are  (n − 2)! ways  to form  a Prü fer code in which  all the 

other labels appear. The product is n!/2. 

For double-stars (n − 2 leaves), exactly two labels appear in the  Prü fer 

code.  We can choose these two labels in 
 

n
  

ways.  To form a Prü fer code (and 
thus a tree) with these two  labels as  non-leaves, we choose  an  arbitrary 

are  distributed as leaf neighbors arbitrarily to the  three vertices of X ; each 

has  a choice  among the  three vertices of X for its  neighbor.  Hence there 

are  m3m−1  spanning trees of the  first  type  and  [3m2(m − 1)/2]3m−2 trees of 

the  second type.  and  then the  remaining vertices in the  other 
 

2.2.12.  The  effect  of graph transformations on the  number τ  of spanning 

trees.  Let  G be a graph with n vertices and  m edges. 

a) If H is obtained from  G by replacing every edge with k parallel edges, 

then  τ (H ) = kn−1τ(G). 

Proof 1 (direct combinatorial argument). Each spanning tree T of G 
n−1

nonempty proper subset of the  positions 1, . . . , n − 2 for the  appearances yields  k distinct spanning trees of H by choosing any  one of the  k copies 
n−1

of the  first  label. There are  2n−2 − 2 ways  to do this step. Hence there are of each  edge in T . This  implies τ (H ) ≥ k τ (G).  Also, every  tree arises in

 
n
 
(2n−2 − 2) ways  to form the  Prü fer code. 

2.2.9.   There  are (n!/k!)S(n − 2, n − k) trees on a fixed vertex set of size n that 

have exactly  k leaves.  Consider the  Prü fer sequences of trees. The leaves of 

a tree are  the  labels that do not appear in the  sequence. We can choose the 

labels of the  leaves in 
  

n
  

ways.  Given  a fixed set  of leaves, we must count 

this way.  A tree T in H uses  at most one edge between each pair of vertices. 

Since  T is connected and  acyclic,  the  edges  in G whose  copies  are  used  in 

T form a spanning tree of G that generates T . Hence τ (H ) ≤ kn−1τ(G). 

Proof 2 (induction on m using the  recurrence for τ ).  If m = 0, then 
τ (G) = τ (H ) = 0, unless n = 1, in which  case  1 = k0 · 1.  If m > 0, choose 

0

k                                                                                                                                                          e ∈ E(G).  Let  H be the  graph obtained from  H by contracting all k copies
the sequences of length n − 2 in which  the remaining n − k labels all appear. 

Each label  occupies some set of positions in the  sequence. We partition the 

set  of positions into  n − k nonempty parts, and  then we can  assign these 

parts to the  labels in (n − k)! ways  to complete the  sequence. The  number 

of ways to perform the partition, by definition, is S(n − 2, n −k). Since these 

operations are  independent, the  total number of legal  Prü fer sequences is  
n
 
(n − k)!S(n − 2, n − k). 

 

2.2.10.  K2,m has  m2m−1  spanning trees.  Let  X, Y be the  partite sets, with 

of e. Let  H 00    be the  graph obtained from  H by deleting all k copies of e. The 

spanning trees of H can  be grouped by whether they  use  a copy of e (they 

cannot use more  than one copy). There are  k × τ(H 0) of these trees that use 

a copy of e and  τ (H 00) that do not.  We can  apply the  induction hypothesis 

to H 0    and  H 00, since  each  arises from  a graph with fewer  than m edges  by 

having k copies  of each  edge:  H 0    from  G · e and  H 00    from  G − e. Thus 

 
τ (H ) = k × τ (H 0) + τ (H 00) = k · kn−2τ (G · e) + kn−1τ(G − e)

|X | = 2.  Each spanning tree has  one  vertex of Y  as  a common neighbor 

of the  vertices in  X ; it can  be chosen in m ways.   The  remaining vertices 
= kn−1 [τ (G · e) + τ (G − e)] = k n−1 τ(G).

are  leaves; for each,  we choose its neighbor in X in one of two ways.  Every 

spanning tree is formed this way, so there are  m2m−1  trees. 

Alternatively, note  that  K2,m is  obtained from  the  two-vertex multi- 

graph H with m edges  by replacing each  edge with a path of 2 edges.  Since 

H itself  has  m spanning trees, Exercise 2.2.12  allows  the  spanning trees of 

Proof 3 (matrix tree theorem).  Let  Q, Q 0   be the  matrices obtained 

from  G, G 0,  from  which  we delete one  row  and  column before  taking the 

determinant. By construction, Q 0  = k Q. When  we take the  determinant of 

a submatrix of order n − 1, we thus obtain τ(G 0) = kn−1τ (G). 

b) If H is obtained from  G by replacing each e ∈ E(G) with a path P(e)

K2,m  to be counted by multiplying m by a factor of 2e(H )−n(H )+1 = 2m−1. 
K2,m  has  b(m + 1)/2c isomorphism classes  of spanning trees.  The  ver- 

of k edges, then  τ (H ) = 
Proof 1

 km−n+1τ(G). 

argument).  A spanning tree T  of G  yields
 

tices  in  X have one common neighbor, and  the  isomorphism class  is deter- 
 

km−n+1 

(combinatorial 
spanning trees of H as  follows.   If e ∈  E(T ), include all  of P(e).  If

mined by splitting the  remaining m − 1 vertices between them as  leaves. We  attach k  leaves to  one  neighbor and  m − 1 − k  to  the  other, where 
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0 ≤ k ≤ b(m − 1)/2c. Hence there are  b(m + 1)/2c isomorphism classes. 

2.2.11.   τ (K3,m ) = m23m−1.   Let  X, Y  be the  partite sets, with |X | = 3.  A 

spanning tree must have a single vertex in Y  adjacent to all  of X or two 

vertices in Y forming P5  with X . In each  case,  the  remaining vertices of Y 

e ∈/  E(T ), use  all but  one edge of P(e).  Choosing one of the  k edges  of P(e) 

to omit for each e ∈ E(G)− E(T ) yields  km−n+1 distinct trees (connected and 

acyclic) in  H . Again  we must show  that all spanning trees have been  gen- 

erated.  A tree T 0     in  H omits at most  one  edge  from  each  path P(e), else 

some  vertex in  P(e) would  be separated from  the  remainder of H .  Let  T 

be the  spanning subgraph of G with E (T ) = {e ∈  E(G):  P(e) ⊆ T 0}.  If T 0
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b(i ) 

s 

r 

b(i ) 

is connected and  has  no cycles, then the  same is true of T , and  T 0    is one of 

the  trees generated from  T as described above. 

Proof 2 (induction on m). The basis step m = 0 is as in (a).  For m > 0, 

select an  edge  e ∈  E(G).   The  spanning trees of H  use  k or k − 1 edges 

of P(e).  These two types are  counted by τ (H 0) and  τ (H 00), where H 0    is the 

graph obtained from H by contracting all edges in P(e), and  H 00   is the graph 

obtained from  H by deleting P(e) (except for its  end-vertices). Since  these 

graphs arise from G · e and  G − e (each  with m − 1 edges)  by replacing each 

edge with a path of length k, applying the  induction hypothesis yields 

 
τ (H ) = τ (H 0) + k · τ (H 00) = k (m−1)−(n−1)+1τ (G · e) + k[k(m−1)−n+1τ(G − e)] 

= km−n+1[τ (G · e) + τ (G − e)] = km−n+1τ(G). 
 
 

2.2.13. Spanning trees in Kn,n . For each spanning tree T of Kn,n , a list  f (T ) 

of pairs of integers (written vertically) is formed as follows:  Let u, v be the 

least-indexed leaves of the  remaining subtree that occur in  X and  Y . Add 

the  pair 
 

a
  

to the  sequence, where a is the  index  of the  neighbor of u and  b 

xv  and  yu  to eliminate them from  further consideration. After  n − 1 pairs, 

we add  one edge joining the  two remaining unmarked vertices. 

After  the  i th step, we have 2n − 2i components, each  containing one 

unmarked vertex.  This  follows  by induction on  i ; it holds  when i  =  0. 

Since indices cannot be marked until after they  no longer appear in the list, 

the  two edges  created in the  i th step join pairs of unmarked vertices.  By 

the  induction hypothesis, these come from  four different components, and 

the  two added edges  combine these into  two, each  keeping one unmarked 

vertex. Thus adding the  last edge completes the  construction of a tree. 

In computing f (T ), a label  no longer appears in the  sequence after it 

is deleted as a leaf.  Hence the vertices marked at the i th step in computing 

g(L) are  precisely the  leaves deleted at the  i th step in computing f (g(L)), 

which  also  records 
 

a(i )
 
. Thus L = f (g(L)).  Similarly, the  leaves deleting 

at the  i th step in computing f (T ) are  the  vertices marked at the  i th step 

in computing g( f (T )), which  yields  T = g( f (T )). Hence each  maps inverts 

the  other, and  both  are  bijections. 
 

2.2.14. The  number of trees with vertices  1, . . . , r + s that have  partite sets

b                                                                                                                                                                          
r +s 

r   1   s   1

is the  index  of the  neighbor of v. Delete {u, v} and  iterate until n − 2 pairs of sizes  r  and  s is 
 
s − r −

 if  r  6= s.   It suffices  to  count the  Prü fer

are  generated and  one edge remains. 

a) Every  spanning tree of Kn,n  has  a leaf in each partite set, and  hence 

f  is well-defined.  If each  vertex of one  partite set  has  degree at least 2, 

then at least 2n edges  are  incident to this partite set,  which  are  too many 

to have in a spanning tree of a graph with 2n vertices. 

b)  f  is a bijection from  the  set  of spanning trees  of Kn,n   to the  set  of 

n − 1-element lists  of pairs of elements from  [n], and  hence  Kn,n  has  n2n−2 

spanning trees.     We use  an  analogue of Prü fer codes.  Consider Kn,n  with 

partite sets  X = {x1, . . . , xn } and  Y  = {y1, . . . , yn }.  For  each  spanning tree 

T , we form  a sequence f (T ) of n − 1 pairs of integers chosen from  [n] by 

recording at each  step the  ordered pair of subscripts of the  neighbors of the 

least-indexed leaves of T  remaining in  X and  Y , and  then deleting these 

leaves. What remains is a spanning tree in a smaller balanced biclique, so 

by part (a) the  process is well-defined. 

codes  for such  trees.  The  factor 
 

r +s
  

counts the  assignments of labels to 

the  two  partite sets  (half  that amount if r  = s).  When  deleting a vertex 

in computing the  Prü fer code, we record a vertex of the  other partite set. 

Since  an  edge  remains at the  end  of the  construction, the  final  code has 

s − 1 entries from the  r -set  and  r − 1 entries from the  s-set. 

It suffices  to show  that the  sublists formed from  each  partite set  de- 

termine the  full  list,  because there are  sr −1r s−1  such  pairs of sublists. In 

reconstructing the  code and  tree from  the  pair of lists, the  next  leaf  to be 

“finished” by receiving its last edge is the  least label  that is unfinished and 

doesn’t  appear in the  remainder of the  list.  The remainder of the  list  is the 

remainder of the  two sublists.  We know  which  set  contains the  next  leaf 

to be finished. Its  neighbor comes  from  the  other set.   This  tells  us which 

sublist contributes the  next  element of the  full list.   Iterating this merges 

the  two sublists into  the  full Prü fer code.

Since  there n2n−2   such  lists, it suffices  to  show  that f  establishes a 

bijection from the  set  of spanning trees of Kn,n  to the  set  of lists. 
When  r = s, the  given  formula counts the  lists twice.

From a list  L of n − 1 pairs of integers chosen from  [n], we generate a 

tree g(L) with vertex set  X ∪ Y .  We begin  with X ∪ Y , no edges,  and  each 
2.2.15.  For n ≥ 1, the  number of spanning trees  in  the  graph Gn  with 2n 
vertices  and  3n − 2 edges pictured below satisfies the recurrence tn  = 4tn−1 −

vertex unmarked.  At the  i th step, when the  i th ordered pair is  
 

a(i )
 
, let u 

be 

the  least index  

of an  

unmarke

d vertex 
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in Y  that does  not  appear in first  coordinates of L at or after position i , 

and  let v be the  least index  of an 

tn−2 for n ≥ 3, with t1 = 1 and  t2 = 4.

unmarked vertex in  X that does  not  appear in second coordinates of L at 

or after position i .  We add  the  edges  xa(i ) yu  and  yb(i ) xv , and  then we mark 

•           •           • 
 

 

•           •           • 

· · ·         •           •           • 

e 

· · ·         •           •           •
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2 

1 0 

0   r I 

1    r Is 

3 

 

    (Comment: The solution to the  recurrence is tn  =  1    [(2 + 
√ 

)n − (2 −
  

with a spanning tree of K1 ∨ Pn

 
 
1. Among  trees containing zx , let i be the

√                   3                                                                                        − 
√                                                                                                                                          highest index  such  that all of the  path x

  
, . . . , x

 n 

appears in the  tree. For

3)n ].)  Using the  recurrence, this follows  by induction on n.)  We derive 

the  recurrence. Let tn  = τ (Gn ). 

Proof 1 (direct argument for recurrence). Each spanning tree in G n 

uses  two or three of the  three rightmost edges.  Those  with two of the  right- 

most  edges  are  obtained by adding any  two of those edges  to any  spanning 

tree of Gn−1.   Thus there are  3tn−1  such  trees.  To prove  the  recurrence 

tn  = 4tn−1 − tn−2, it suffices  to show that there are  tn−1 − tn−2 spanning trees 

that contain the  three rightmost edges. 

Such trees cannot contain the second-to-last vertical edge e. Therefore, 

deleting the  three rightmost edges  and  adding e yields  a  spanning tree 

of Gn−1.   Furthermore, each  spanning tree of Gn−1  using e arises exactly 

once in this way,  because we can invert this operation. Hence the  number 

of spanning trees of Gn  containing the  three rightmost edges  equals the 

number of spanning trees of Gn−1  containing e.  The  number of spanning 

trees of Gn−1  that don’t contain e is tn−2, so the  number of spanning trees 

of Gn−1  that do contain e is tn−1 − tn−2. 

Proof 2 (deletion/contraction recurrence).  Applying the recurrence in- 

troduces graphs of other types. Let Hn be the graph obtained by contracting 

the  rightmost edge of Gn , and  let  Fn−1  be the  graph obtained by contracting 

one of the  rightmost edges  of Hn . Below we show  G4, H4, and  F3. 

i +1             n 

each  i , there are  ai  such  trees, since  the  specified edges  are  combined with 
a spanning tree of K1 ∨ Pi . The term 1 corresponds to i = 0; here the  entire 
tree is Pn ∪ zxn . This  exhausts all possible spanning trees. 
 

2.2.17.  Cayley’s  formula from  the  Matrix Tree  Theorem.  The  number of 

labeled n-vertex trees is the  number of spanning trees in  Kn .  Using the 

Matrix Tree  Theorem, we compute this by subtracting the  adjacency ma- 

trix  from the  diagonal matrix of degrees, deleting one row and  column, and 

taking the  determinant. All degrees are  n − 1, so the  initial matrix is n − 1 

on the  diagonal and  −1 elsewhere. Delete the  last row  and  column.  We 

compute the  determinant of the  resulting matrix. 

Proof 1 (row  operations).  Add  every  row  to  the  first  row  does  not 

change the  determinant but  makes every  entry in the  first  row 1. Now add 

the  first  row to every  other row.  The determinant remains unchanged, but 

every row below the first is now 0 everywhere except on the diagonal, where 

the  value is n.  The  matrix is now upper triangular, so the  determinant is 

the  product of the  diagonal entries, which  are  one 1 and  n − 2 copies  of n. 

Hence the  determinant is nn−2, as desired. 

Proof 2 (eigenvalues). The  determinant of a matrix is the  product of 

its  eigenvalues.  The  eigenvalues of a matrix are  shifted by λ when λI  is

•       •       •       • 
 

•       •       •       • 

•       •       • 
• 

•       •       • 

•       •       • 
 

•       •       • 

added to the  matrix. The  matrix in question is n In−1  − Jn−1, where In−1 is 

the  n − 1-by-n − 1 identity matrix and  Jn−1 is the  n − 1-by-n − 1 matrix with 

every entry 1. The eigenvalues of −Jn−1 are −(n −1) with multiplicity 1 and

By using τ (G) = τ (G − e) + τ (G · e) on a rightmost edge e and  observing 

that a pendant edge appears in all spanning trees while  a loop appears in 

none,  we obtain 

0 with multiplicity n − 2. Hence the  eigenvalues of the  desired matrix are 

1 with multiplicity 1 and  n with multiplicity n − 2. Hence the  determinant 

is nn−2, as desired.

τ (Gn ) = τ (Gn−1) + τ (Hn )  

2.2.18.  Proof that τ(K 
 

r,s ) = 
 

sr −1r s−1 using the  Matrix Tree  Theorem. The

τ(Hn ) = τ (Gn−1) + τ (Fn−1) 

τ (Fn ) = τ (Gn ) + τ (Hn−1) 

Substituting in  for  τ (Hn ) and  then for  τ (Fn−1)  and  then for  τ (Hn−1) 

yields  the  desired recurrence: 

adjacency matrix of Kr,s  is 
 

0 1
 
, where 0 and  1 denote matrices of all 0s and 

all 1s, and  both  the  row partition and  the  column partition consist of r in 

the  first  block and  s in the  second block.  The diagonal matrix of degrees is  
s Ir     0 

 
, where In is the  identity matrix of order n. Hence we may  delete the 

s 

first  row and  column to obtain Q∗  = 
 

s Ir −1    −1 
 
.

τ (Gn ) = τ (Gn−1) + τ (Gn−1) + τ (Fn−1) = 2τ(Gn−1) + τ (Gn−1) + τ (Hn−2) We apply row and  column 
− 

operations that do not  change the  determi-

= 3τ(Gn−1) + τ (Gn−1) − τ (Gn−2) = 4τ(Gn−1) − τ (Gn−2). 

 
2.2.16. Spanning trees in  K1 ∨  Pn .  The  number an  of spanning trees sat- 

n−1
 

nant.  We subtract column r − 1 (last of the  first  block)  from  the  earlier 

columns and  subtract column r (first  of the  second block)  from  the  later 

columns. This  yields  the  matrix on the  left below, where the  values outside
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i =1 isfies  an  = an−1  + 1 + 
P

 ai  for n > 1, with a1  = 1.  Let  x1, . . . , xn  be the the  matrix indicate the  number of rows or columns in the  blocks.  Now, we

vertices of the  path in order, and  let z be the  vertex off the  path. There are 

an−1  spanning trees not  using the  edge  zxn ; they  combine the  edge  xn−1 xn 

add  to row r − 1 the  earlier rows  and  add  to row r the  later rows,  yielding 

the  matrix on the  right below.
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−1 

2                                            − 

1  1   

r − 2     1       1     s − 1 

r − 2 
 
s Ir −2      0     −1      0     

1        −s1     s      −1      0         
0       −1    r       −r 1  

s − 1        0       −1    0     r Is−1 

r − 2     1          1         s − 1 

r − 2 
 
s Ir −2      0         −1         0     

1           0         s      −r + 1       0         
0       −s          r            0     

s − 1        0       −1      0         r Is−1 

Alternative proof  of sufficiency.  If G is not  bipartite, then G contains 

an odd cycle.  When  decomposing a d-regular graph into copies of K1,d , each 

subgraph used  consists of all  d edges  incident to a single vertex.  Hence 

each  vertex occurs  only  as  a center or only  as  a leaf  in  these subgraphs. 

Also,  every  edge  joins  the  center and  the  leaf  in  the  star containing it. 

These statements require that centers and  leaves alternate along  a cycle,
Adding  row r − 1 to row r now makes row r all zero except for a single 

1 in position r (on the  diagonal). Adding  row r to the  first  r − 2 rows  (and 

r − 1 times row r to row r − 1) now leaves the  1 in row r as the  only nonzero 

entry in column r . Also, the  s in column r − 1 of row r − 1 is now the  only 

nonzero entry in row r − 1. Hence we can add 1/s times row r − 1 to each  of 

the  last s − 1 rows to eliminate the  other nonzero entries in column r − 1. 

The  resulting matrix is diagonal, with diagonal entries consisting of 

but  this cannot be done  in an odd cycle. 
 

2.2.21.  Decomposition of K2m−1,2m  into m spanning paths. We add  a vertex 

to the  smaller partite set and  decomposition K2m,2m  into m spanning cycles. 

Deleting the  added vertex from  each  cycle  yields  pairwise edge-disjoint 

spanning paths of K2m−1,2m . 

Let the  partite sets  of K2m,2m  be x1, . . . , x2m  and  y1, . . . , y2m . Let the  kth

r − 1 copies  of s, one copy of 1, and  s − 1 copies  of r .  Since  adding a mul- 
cycle consist of the edges of the forms  xi yi

 
2k−1 and  x y

 
, where subscripts

tiple of a row or column to another does  not  change the  determinant, the 

determinant of our original matrix equals the  determinant of this diagonal 

matrix. The determinant of a diagonal matrix is the product of its diagonal 

entries, so the  determinant is sr −1r s−1. 

2.2.19.  The  number tn  of labeled trees on n vertices  satisfies the recurrence 

+                    i   i +2k 

above  2m are  reduced by 2m.   These sets  are  pairwise disjoint and  form 

spanning cycles. 
 

2.2.22. If G is an n-vertex simple graph having a decomposition into k span- 

ning trees,  and  1(G) = δ(G) + 1, then  G has  n − 2k vertices  of degree  2k 

k vertices  of degree  2k − 1.  Each spanning tree has  n − 1 edges,  so

tn  = 
Pn−1 

n−2 and  2

k=1 k
 

k 

 
tk tn−k . For an arbitrary labeled tree on n vertices, delete the e(G) k(n 1).  Note  that k < n/2, since  G is simple and  is not  K (since

edge incident to v2  on the  path from v2  to v1. This  yields  labeled trees on k                         
=      −                                                                              n

and  n − k vertices for some k, where v1 belongs to the  tree on k vertices and 

v   to the tree on n     k  vertices.  Each such pair arises from exactly k
 

n−2
 
 

k−1 

labeled trees on n vertices.  To see  this, reverse the  process. First choose 

the  k − 1 other vertices to be in  the  subtree containing v1.  Next, choose 

a tree on k labeled vertices and  a tree on n − k labeled vertices (any  such 

choice  could  arise by deleting the  specified edge  of a  tree on n vertices). 

Finally, reconnect the  tree by adding an  edge  from  v2  to  any  one  of the 

k vertices in  the  tree containing v1.  This  counts the  trees such  that the 

subtree containing v1  has  k vertices, and  summing this over k yields  tn . 

2.2.20.  A d-regular graph G has  a decomposition into  copies of K1,d  if and 

only  if  G is bipartite.  If G has  bipartition  X, Y , then for each  x  ∈  X we 

it is not regular). If G has  r vertices of minimum degree and  n − r of maxi- 

mum degree, then the  Degree-Sum Formula yields  2k(n − 1) = n1(G) − r . 

Since  1 ≤ r ≤ n, we conclude that 1(G) = 2k = r . 
 

2.2.23.  If the  Graceful Tree  Conjecture holds and  e(T ) = m, then  K2m  de- 

composes into 2m − 1 copies of T . Let T 0    = T − u, where u is a leaf of T with 

neighbor v. Let  w be a vertex of K2m . Construct a cyclic T 0-decomposition 

of K2m − w using a graceful labeling of T 0    as in the  proof of Theorem 2.2.16. 

Each vertex serves as  v in exactly one copy of T 0.  Extend each  copy of T 0 

to a copy of T by adding the  edge  to w from  the  vertex serving as  v.  This 

exhausts the  edges  to w and  completes the  T -decomposition of G.

include the  copy of K1,d obtained by taking all d edges  incident to x . Since 0                                                                  0 
8                 1                                               8                 1

every  edge has  exactly one endpoint in X , and  every  vertex in X has  degree 
d , this puts every  edge of G into  exactly one star in our list. 

If G has  a K1,d -decomposition, then we let  X be the set of centers of the 

 

0    4    2    3 
•     •     •     • 

• 
•                • 

 

7•                          •2 

 

0    4    2    3 
•     •     •     • 

• 
•                • 

 

7•         
v •           

•2

copies  of K1,d  in the  decomposition. Since  G is d-regular, each  copy of K1,d 
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uses  all edges  incident to its center. Since  the  list  is a decomposition, each 

edge  is in exactly one  such  star, so X is an  independent set.   Since  every 

edge  belongs to some  K1,d centered in  X , there is no edge  with both  end- 

1
•                          

6
•                      •

3
 

5
•       

4
•

 

1
•     

v
• 6

•                      •
3 

5
•       

4
•

points outside X .  Thus the  remaining vertices also  form  an  independent 

set,  and  G has  bipartition X, X . 

2.2.24. Of the nn−2  trees with vertex  set {0, . . . , n − 1}, how many are grace- 

fully labeled by their  vertex names? This  question was incorrectly posed.  It
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P 

n n 

n 

1 2 1 

Pk Pn Pn 

n 2 1 1 2 1 i   1 

n 

n 

should be of the graphs with vertex  set {0, . . . , n − 1} that have  n − 1 edges, 

how many are gracefully labeled by their  vertex names? Such  a graph has  k 

choices  for the  placement of the  edge with difference n − k, since  the  lower 

endpoint can be any of {0, . . . , k −1}. Hence the number of graphs is (n −1)!. 

2.2.25.  If a graph G is graceful and  Eulerian, then  e(G) is congruent to 0 

or 3 mod 4. Let  f be a graceful labeling. The parity of the  sum  of the  labels 

on an  edge  is the  same as  the  parity of their difference. Hence the  sum 

v∈V (G) d(v) f (v) has  the  same parity as  the  sum  of the  edge  differences. 

The first  sum  is even,  since  G is Eulerian. The second has  the  same parity 

as the  number of odd numbers in the  range from  1 to e(G).  This  is even  if 

and  only if e(G) is congruent to 0 or 3 mod 4, which  completes the  proof. 
 

2.2.26.  The  cycle Cn  is graceful if and  only  if 4 divides n or n + 1.  The  ne- 

cessity of the  condition is a special case  of Exercise 2.2.25.  For sufficiency, 

we provide a construction for each  congruence class. We show  an  explicit 

construction (n = 16 and  n = 15) and  a general construction for each  class. 

central vertex. Let the neighbors of x be y0, . . . , y2k−1, and let the remaining 

vertices be z0, . . . , zk−1, such  that N (zi ) = {y2i , y2i +1}. 

Define  a  labeling  f  by  f (x)  = 0,  f (yi ) = 4k − 2i , and   f (zi ) = 4i + 
1.  The  labels on y1, . . . , y2k  are  distinct positive even  numbers, and  those 
on z1, . . . , zk  are  distinct odd  numbers, so  f  is injective, as  desired.  The 
differences on the  edges  from  x are  the  desired distinct even  numbers. 

The  differences on the  remaining edges  are  odd  and  less  than 2k; it 

suffices  to show that their values are  distinct. Involving zi , the  differences 

are  4k − 1 − 8i and  4k − 3 − 8i . Starting from z0 through increasing i , these 

are 4k − 1, 4k − 3, 4k − 9, 4k − 11, . . .. Starting from zk−1 through decreasing 

i , these are  −4k + 5, −4k + 7, −4k + 13, −4k + 15, . . .. The absolute values 

are  distinct, as needed. 

 
0 
•

In the  class  where n + 1 is divisible by 4, we let n 0  denote n + 1. When  n is 

divisible by 4, let n 0  = n. 

16•  14•  12•  10• 8 •   6 • 4 •   2 •

The  labeling uses  a base  edge  joining 0 and  n 0/2, plus  two paths. The 

bottom path, starting from 0, alternates labels from the  top and  bottom to 
1
•                

5
•

 9
•               

1
•
3

give the large differences: n, n −1, and  so on down to n 0/2+1. The top path, 

starting from  n0/2, uses  labels working from  the  center to give  the  small 

differences: 1, 2, and  so on up to n 0/2 − 1. The label  next  to n 0/2 is n0/2 − 1 

when 4 divides n, otherwise n 0/2 + 1. When  chosen this way, the  two paths 

reach the  same label  at their other ends  to complete the  cycle:  n/4 in the 

even  case,  3n0/4 in the  odd case.  Checking this ensures that the  intervals 

of labels used  do not  overlap. Note  that the  value 3n/4 is not  used  in the 

 
2.2.28.  Given  positive integers  d1, . . . , dn , there exists a caterpillar with 

vertex degrees d1, . . . , dn  if and  only  if 
P 

di   = 2n − 2.   If there is such  a 

caterpillar, it is a tree and  has  n − 1 edges,  and  hence the  vertex degrees 

sum  to n − 2. Hence the  condition is necessary. There are  various proofs of 

sufficiency, which  construct a caterpillar with these degrees given  only the 

list  d1, . . . , dn  of positive numbers with sum  2n − 2. 

Proof 1 (explicit construction).  We may  assume that d1  ≥ · · · ≥ dk  >

even  case,  and  n0/4 is not used  in the  odd case. 1  = dk +1  = · · ·  = dn .   Begin  with a  path of length k + 1 with vertices

8     7     9     6 
•      •      •      • 

10    5    11    4 
•      •      •      • 

8     9     7    10 
•      •      •      • 

6    11    5 
•      •      • 

v0, . . . , vk+1.   Augment these vertices to  their desired degrees by adding 
di  − 2 edges  (and  leaf neighbors) at vi , for 1 ≤ i ≤ k.  This  creates a cater-

 

•      •      •      • 
 

•      •      •      • 
 

•      •      •      • 
 

•      •      • 
• 12 

pillar with vertex degrees d1, . . . , dk for the  nonleaves. We must prove  that

0    16    1    15 2    14    3    13 0    15    1    14 2    13    3 it has  n − k leaves, which  is the  number of 1s in the  list. 

Including v0 and  vk+1, the actual number of leaves in the caterpillar we

2  
− 1 

2  
− 2 

4  
+ 1         

4
 n0                          n0 

2  
+      

2  
+ 3n0 

4   
− constructed is 2 + 

i =1(di − 2).  This  equals 2 − 2k + ( 
i =1 di ) − 

i =k+1 di .

2                2  
+ 1 3n                  3n 

4   
−      

4   
− n0                      n 0 

2                2  
− n0                          n0 

4  
+      

4  
+ Since  

Pn
 = di  = 2n − 2, the  number of leaves is (2 − 2k) + (2n − 2) − (n −

•      •      •      • · · · •      •      •      • •      •      •      • · · · •      •      •  

3n0 • 
4 

k) = n − k, as desired. We have created an n-vertex caterpillar with vertex 
degrees d1, . . . , dn .
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2 1 1 

•      •      •      • · · · 
n  

•      • 
n  

•      • •      •      •      • · · · 
n0   •      •  

 n0   •

0             1                 4  
− 2 4  

− 1                0             1 4  
− 2 4  

− 1 Proof 2 (induction on n).  Basis step (n = 2): the  only list  is 1, 1, and

n         n − 1 
3n                  3n 

4   
+      

4   
+ n         n − 1 

3n0 

4   
+ the  one graph realizing this is a caterpillar. Induction step (n > 2): n pos- 

itive  numbers summing to 2n − 2 must include at least two 1s; otherwise,

2.2.27.  The  graph consisting of k copies  of C4  with one common vertex  is 

graceful.  The  construction is  illustrated below  for  k  = 4.   Let  x  be  the 

the  sum  is at least 2n − 1.  If the  remaining numbers are  all  2s,  then Pn 

is a caterpillar with the  desired degrees. Otherwise, some  di  exceeds 2; by
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symmetry, we may  assume that this is d1. Let d 0  be the  list  obtained by re- 

ducing d1 by one and  deleting one of the  1s.  The list  d 0  has  n − 1 entries, all 

positive, and  it sums to 2n − 4 = 2(n − 1) − 2. By the  induction hypothesis, 

there is a caterpillar G 0  with degree list  d 0. 

2.2.31.  Every  caterpillar has  an  up/down  labeling.  Constructive proof. 

Let  P = v0, . . . , vk be a longest path in a caterpillar G with m edges;  by the 

argument above  P is the  spine of G.  We iteratively construct a graceful 

labeling  f  for G.  Define  two  parameters l, u that denote the  biggest low

Let  x be a vertex of G 0  with degree d 0 .  Since  d1  > 2, we have d 0 ≥ 2, label  and  smallest high  label  used;  after each  stage the  unused labels are
1                                                                    1

and  hence x is on the spinal path. Growing a leaf at x yields  obtain a larger 

caterpillar G with degree list  d . This  completes the  induction step. 
 

2.2.29.  Every  tree transforms to a caterpillar with the same  degree  list  by 

operations that delete  an  edge  and  add  another rejoining the  two  compo- 

nents.  Let  P be a longest path in the  current tree T .  If  P is incident to 

every  edge,  then T is a caterpillar. Otherwise a path P 0    of length at least 

two leaves P at some  vertex x .  Let  uv be an  edge  of P 0, with u between  x 

and  v, and  let  y be a neighbor of x on P . 

Cut  xy and  add  yu.  Now cut  uv and  add  vx .  Each operation has  the 

specified type,  and  together they  form a 2-switch preserving the  vertex de- 

grees. Also, the  new tree has  a path whose  length is that of P plus  dT (x , u). 

Since  the  length of a path cannot exceed  the  number of vertices, this 

process terminates.  It can only terminate when the longest path is incident 

to all edges  and  the  tree is a caterpillar. 
 

2.2.30. A connected graph is a caterpillar if and  only if it can be drawn on 

a channel without edge crossings. 

Necessity.  If G is a caterpillar, let  P be the  spine of G.  Draw P on 

a  channel by alternating between the  two  sides  of the  channel.  The  re- 

maining edges  of G consist of a leaf and  a vertex of P .  If u, v, w are  three 

consecutive vertices on  P , then v has  an  “unobstructed view” of the  other 

side  of the  channel between the  edges  vu and  vw.  Each leaf  x adjacent to 

v can be placed in that portion of the  other bank, and  the  edge vx can then 

be drawn straight across the  channel without crossing another edge. 

Sufficiency. Suppose that G is drawn on a  channel.  The  endpoints 

of an  edge  e cannot both  have neighbors in the  same direction along  the 

channel, since  that would  create a crossing. Hence G has  no cycle, since  a 

cycle would  leave  an edge and  return to it via the  same direction along  the 

channel. We conclude that G is a tree. 

If G contains the  7-vertex tree that is not a caterpillar, then let v be its 

central vertex. The three neighbors of v occur on the other side of the chan- 

nel in some  order; let u be the  middle neighbor. The other edge incident to 

u must lie in one direction or the other from uv, contradicting the preceding 

paragraph. Hence G avoids the  forbidden subtree and  is a caterpillar. 

(Alternatively, we can prove  this directly by moving along  the  channel 

to extract the spine, observing that the remainder of the tree must be leaves 

attached to the  spine.) 

{l + 1, . . . , u − 1}.  Let  r denote the  lowest edge  difference achieved; after 

each  stage r, . . . , m have been  achieved. 

Begin  by setting f (v0)  = 0 and   f (v1)  = m; hence l = 0, u = m, r  = 
m.   Before  stage i , we  will  have { f (vi ),  f (vi −1)} =  {l, u}; this is  true by 

construction before  stage 1. Suppose this is true before  stage i , along  with 

the  other claims made for l , u, d . Let d = dG (vi ). In stage i , label  the  d − 1 

remaining neighbors of vi with the d − 1 numbers nearest f (vi −1) that have 

not  been  used, ending with vi +1.  Since  we start with | f (vi ) − f (vi −1)|  = 
u − l = r , the  new  differences are  r − 1, . . . , r − d + 1, which  have not  yet 

been  achieved.  To finish stage i , reset r to r − d + 1; also,  if  f (xi −1) = l 

reset l to l + d − 1, but  if  f (xi −1) = u reset u to u − d + 1.  Now stage i is 

complete, and  the  claims about l , u, r are  satisfied as we are  ready to start 

stage i +1: { f (vi +1), f (vi )} = {l, u}, r = u − l, and  the edge differences so far 

are r, . . . , m. After stage k −1, we have assigned distinct labels in {0, . . . , m} 
to all  m + 1 vertices, and  the  differences of labels of adjacent vertices are 

all distinct, so we have constructed a graceful labeling. 

The  7-vertex  tree that is not a caterpillar has  no up/down labeling. In 

an  up/down labeling of a connected bipartite graph, one  partite set  must 

have all  labels above  the  threshold and  the  other have all  labels below 

the  threshold.  Also,  we  can  interchange the  high  side  and  the  low side 

by subtracting all  labels from  n − 1.  Hence for this 7-vertex tree we may 

assume the  labels on  the  vertices of degree 2 are  the  high  labels 4,5,6. 

Since  0,6 must be adjacent, this leaves two cases:   0 on the  center or 0 on 

the leaf next  to 6. In the first  case, putting 1 or 2 next  to 6 gives a difference 

already present, but  with 3 next  to 6 we can  no longer obtain a difference 

of 1 on any edge.  In the  second case,  we can only obtain a difference of 5 by 

putting 1 on the  center, but  now putting 2 next  to 5 gives  two edges  with 

difference 3, while  putting 2 next  to 4 and  3 next  to 5 give two edges  with 

difference 2. Hence there is no way to complete an up/down labeling. 
 

2.2.32.  There  are 2n−4 + 2b(n−4)/2c  isomorphism classes  of n-vertex  caterpil- 

lars.  We describe caterpillars by binary lists. Each 1 represents an edge on 

the  spine. Each 0 represents a pendant edge  at the  spine vertex between 

the edges corresponding to the nearest 1s on each side.  Thus n-vertex cater- 

pillars correspond to binary lists of length n − 1 with both  end bits  being  1. 

We can generate the  lists for caterpillars from either end  of the  spine; 

reversing the list yields  a caterpillar in the same isomorphism class. Hence
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we count the  lists, add  the  symmetric lists, and  divide  by 2. There are  2n−3 

lists of the  specified type.  To make a symmetric list,  we specify  d(n − 3)/2e 
bits.  Thus the  result is (2n−3 + 2d(n−3)/2e)/2. 

 

2.2.33.  If T is an orientation of a tree such  that the heads of the edges are 

all distinct, then  T is a union of paths from  the root (the one vertex  that is 

not a head), and  each each vertex  is reached by one path from  the root.  We 

use  induction on n, the  number of vertices.  For  n = 1, the  tree with one 

vertex satisfies all  the  conditions.  Consider n > 1.  Since  there are  n − 1 

edges,  some vertex is not a tail. This  vertex v is not the  root,  since  the  root 

is the tail  of all its incident edges.  Since the heads are distinct, v is incident 

to only one edge and  is its head. Hence T − v is an orientation of a smaller 

tree where the heads of the edges are distinct. By the induction hypothesis, 

it is a tree of paths from  the  root  (one  to each  vertex), and  replacing the 

edge to v preserves this desired conclusion for the  full tree. 
 

2.2.34.  An  explicit de  Bruijn cycle  of length 2n   is  generated by  starting 

with n 0’s and  subsequently appending a 1 when doing  so does not  repeat 

a previous string of length n (otherwise append a 0).  A de Bruijn cycle is 

formed by recording the  successive edge labels along  an Eulerian circuit in 

the  de Bruijn digraph. The  vertices of the  de Bruijn digraph are  the  2n−1 

binary strings of length n − 1. From each  vertex two edges  depart, labeled 

0 and  1.  The  edge  0 leaving v goes to the  vertex obtained by dropping the 

first  bit  of v and  appending 0 at the  end.  The  edge  1 leaving v goes to the 

vertex obtained by dropping the  first  bit of v and  appending 1 at the  end. 

Let  v0  denote the  all-zero vertex, and  let  e be the  loop at v0  labeled 

0.  The  2n−1 − 1 edges  labeled 0 other than e form  a tree of paths in to v0. 
(Since a path along these edges never reintroduces a 1, it cannot return to a 

vertex with a 1 after leaving it.)  Starting at v0 along  edge e means starting 

with n 0’s. Algorithm 2.4.7 now tells  us to follow the edge labeled 1 at every 

subsequent step unless it has  already been  used;  that is, unless appending 

a 1 to the  current list  creates a previous string of length n. Theorem 2.4.9 

guarantees that the  result is an Eulerian circuit. 
 

2.2.35.  Tarry’s  Algorithm (The  Robot  in  the  Castle).  The  rules of motion 

are:  1) After entering a corridor, traverse it and  enter the room at the other 

end.   2) After  entering a room  whose  doors  are  all  unmarked, mark I on 

the  door  of entry.  3) When  in a room  having an  unmarked  door, mark O 

on some  unmarked door and  exit through it.  4) When  in a room having all 

doors marked, find one not marked O (if one exists), and  exit through it.  5) 

When  in a room having all doors  marked O, STOP. 

When  in a room other than the original room u, the number of entering 

edges  that have been  used  exceeds the  number of exiting edges.   Thus an 

exiting door  has  not  yet  been  marked O. This  implies that the  robot  can 

only terminate in the  original room u. 

The  edges  marked I grow  from  u a tree of paths that can  be followed 

back  to u.  The  rules for motion establish an  ordering of the  edges  leaving 

each  room so that the  edge labeled I (for a room other than u) is last. 

In order to terminate in u or to leave  a room  v by the  door marked I, 

every  edge  entering the  room  must have been  used  to enter it,  including 

all  edges  marked I at the  other end.   Therefore, for every  room  actually 

entered, the  robot  follows all its incident corridors in both  directions. 

Thus it suffices  to show that every  room is reached. Let V be the  set of 

all rooms,  and  let S be the set of rooms reached in a particular robot tour. If 

S 6= V , then since  the  castle is connected there is a  corridor joining rooms 

s ∈ S and  r ∈/  S (the  shortest path between S and  S.  Since  every reached 

vertex has  its  incidence corridors followed  in both  directions, the corridor 

sr is followed,  and  r is also reached. The contradiction yields  S = V . 

Comment. Consider a digraph in which  each  corridor becomes a pair 

of oppositely-directed edges.   Thus indegree equals outdegree at each  ver- 

tex.  The digraph is Eulerian, and  the  edges  marked I form an intree to the 

initial vertex. The  rules for the  robot  produce an  Eulerian circuit by the 

method in Algorithm 2.4.7. 

The  portion of the  original tour after the  initial edge  e = uv is not  a 

tour formed according to the rules for a tour in G −e, because in the original 

tour no door  of u is ever  marked I. If e is not  a cut-edge, then tours that 

follow e, follow G − e from  v, and  return along  e do not  include tours that 

do not start and  end with e. There may  be such  tours, as illustrated below, 

so such  a proof falls  into  the  induction trap. 

v 
•                       e        • 

u 
• 

 

•                                   • 
 
 

 

2.3.  OPTIMIZATION AND  TREES 
 
 
2.3.1.   In an edge-weighting of Kn , the total  weight on every cycle is even if 

and  only  if the  total  weight on every  triangle is even.   Necessity is trivial, 

since  triangles are  cycles.  For  sufficiency, suppose that every  triangle has 

even  weight.  We use  induction on the  length to prove  that every  cycle C 

has  even  weight. The  basis step, length 3, is given  by hypothesis. For  the
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• • 

induction step, consider a cycle C and  a chord  e.  The  chord  creates two 

shorter cycles C1, C2  with C . By the  induction hypothesis, C1  and  C2  have 

even  weight. The  weight of C is the  sum  of their weights minus twice  the 

weight of e, so it is still  even. 

make an  extra copy of the  matrix and  use  crossouts to update candidate 

distances in each row, using the original numbers when updating candidate 

distances. The answer can be presented with more information by drawing 

the  tree of shortest paths that grows  from each  vertex.

 

2.3.2.   If T is a minimum-weight spanning tree of a weighted graph G, then 

the u, v-path in T need  not be a minimum-weight  u, v-path in G.  If G is a 

 
0     10    20    ∞     17  

7      0      5     22    33 

 
0     10    15    25    17  

7      0      5     20    24

cycle of length of length at least 3 with all edge weights 1, then the cheapest                        
                                                                                                  
 
14    13     0     15    27  →      

 
14    13     0     15    25 

path between the  endpoints of the  edge  omitted by T  has  cost  1, but  the                             
                                                                                                  

 

cheapest path between them in T costs  n(G) − 1. 
 

2.3.3.   Computation of minimum spanning tree.   The  matrix on  the  left 

 
30    ∞     17     0     10  

∞     15    12     8      0 

 
30    25    17     0     10  

22    15    12     8      0

below  corresponds to the  weighted graph on the  right.  Using Kruskal’s 

algorithm, we  iteratively select the  cheapest edge  not  creating a  cycle. 

Starting with the  two edges  of weight 3, the  edge of weight 5 is forbidden, 

but  the  edge  of weight 7 is available. The  edge  of weight 8 completes the 

minimum spanning tree, total weight 21.  Note  that if the  edge  of weight 

8 had  weight 10,  then either of the  edges  of weight 9 could  be chosen to 

complete the  tree; in this case  there would  be two spanning trees with the 

minimum value. 

1 
• 

2.3.6.   In  an  integer weighting of the  edges  of Kn , the  total  weight is even 
on every cycle if and  only  if the subgraph consisting of the edges  with odd 

weight is a spanning complete bipartite subgraph. 

Sufficiency.   Every cycle  contains an  even  number of edges  from  a 

spanning complete bipartite subgraph. 

Necessity. Suppose that the  total weight on every  cycle is even.   We 

claim  that every  component of the  spanning subgraph consisting of edges 

with even  weight is a complete graph.  Otherwise, it has  two vertices x , y 

at distance 2, which  induce P3 with their common neighbor z. Since  xy has 

odd weight, x , y, z would  form a cycle with odd total weight.

 
0     3     5     11     9   

 3     0     3      9      8   
9           3 

5              8              2 
11     5

 

If the  spanning subgraph of edges  with even  weight has  at least three 

components, then selecting one vertex from each of three components yields

                                     
 5     3     0     ∞     10  
 
11    9    ∞      0      7   

9     8    10     7      0 

7     10  9      3 
 

4
•                •

3
 

a triangle with odd weight. Hence there are  at most  two components. This 
implies that the  complement (the  graph of edges  with odd  weight) is  a 

spanning complete bipartite subgraph of G. 
 

2.3.7.   A weighted graph with distinct edge weights has a unique minimum-
2.3.4.   Weighted trees in  K1 ∨ C4. On the  left,  the  spanning tree is unique, 
using all  edges  of weights 1 and  2.  On the  right it can  use  either edge  of 

weight 2 and  either edge of weight 3 plus  the  edges  of weight 1. 

weight spanning tree (MST). 

Proof 1 (properties of spanning trees). If G has  two minimum-weight 

spanning trees, then let e be the  lightest edge of the  symmetric difference.

 

4 
•    

1    2    
•

 

 

2 
•    

4    3    
•

 

Since  the  edge weights are  distinct, this weight appears in only one of the 

two trees. Let T be this tree, and  let T 0   be the other. Since e ∈ E(T )− E(T 0), 

there exists e0  ∈ E(T 0) − E (T ) such  that T 0   + e − e0  is a spanning tree. By

1   
3    

•    
3   

2   1   
4

 
•    

3   
1

 
the  choice of e, w(e ) > w(e).  Now w(T

 
+ e − e ) < w(T ), contradicting the0                                                                                                                     0                                              0                                                 0

 

 

•        
4       

• 

 

 

•        
2       

• 
assumption that T 0    is an MST. Hence there cannot be two MSTs. 

Proof 2 (induction on k  = e(G) − n(G) + 1).   If k  = 0,  then G is  a 

tree and  has  only  one spanning tree.  If k > 0, then G is not  a tree; let  e
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2.3.5.   Shortest paths in a digraph. The direct i to j travel time is the entry 

ai, j  in the  first  matrix below.   The  second matrix recordes the  least i to  j 

travel time for each  pair i, j .  These numbers were  determined for each  i 

by iteratively updating candidate distances from  i and  then selecting the 

closest of the  unreached set  (Dijkstra’s Algorithm).  To do this by hand, 

be the  heaviest edge  of G that appears in  a cycle,  and  let  C be the  cycle 

containing e. We claim  that e appears in no MST of G. If T is a spanning 

tree containing e, then T omits some edge e0  of C , and  T − e + e0  is a cheaper 

spanning tree than T . Since  e appears in no MST of G, every  MST of G is 

an MST of G − e. By the  induction hypothesis, there is only one such  tree.
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Proof 3 (Kruskal’s Algorithm).  In  Kruskal’s Algorithm, there is no 

choice  if there are  no ties  between edge  weights. Thus the  algorithm can 

produce only one tree. We also need  to show  that Kruskal’s Algorithm can 

produce every  MST. The proof in the  text  can be modified to show  this; if e 

is the  first  edge  of the  algorithm’s tree that is not  in an  MST  T 0, then we 

obtain an  edge  e0   with the  same weight as  e such  that e0   ∈  E(T 0) − E(T ) 

and  e0  is available when e is chosen. The  algorithm can  choose  e0  instead. 

w(e0)  ≤ w(e).   Since  e0   is  incident to U , e0   is  available for  consideration 

when e is chosen by the  algorithm; since  the  algorithm chose  e, we have 

w(e) ≤ w(e0).  Hence w(e) = w(e0), and  T ∗  + e − e0  is a spanning tree with 

the  same weight as  T ∗.  It is thus an  optimal spanning tree that agrees 

with T longer than T ∗, which  contradicts the  choice of T ∗. 

 
e

Continuing to modify  the  choices  in this way turns T into  T 0.                                                                                                 •                            • 
 

2.3.8.   No matter how ties are broken in choosing the next edge for Kruskal’s                                                        
U                                          U 

Algorithm, the list  of weights of a minimum spanning tree (in nondecreas- 

ing order) is unique. We consider edges  in nondecreasing order of cost.  We

prove that after considering all edges  of a particular cost, the  vertex sets  of 

the  components of the  forest built so far is the  same independent of the  or- 

der of consideration of the  edges  of that cost.  We prove this by induction on 

the number of different cost values that have been considered. At the start, 

none  have been  considered and  the  forest consists of isolated vertices. 

Before  considering the  edges  of cost  x , the  induction hypothesis tells 

us that the  vertex sets  of the  components of the  forest are  fixed.  Let  H be a 

graph with a vertex for each such component, and put two vertices adjacent 

in  H if G has  an  edge of cost x joining the  corresponding two components. 

Suppose that H has  k vertices and  l components. Independent of the  order 

in  which  the  algorithm consider the  edges  of cost  x , it must select some 

k − l edges  of cost x in G, and  it cannot select more,  since  this would  create 

a cycle among the  chosen edges. 
 

2.3.9.   Among the cheapest spanning trees containing a spanning forest  F is 

one containing the cheapest edge joining components of F. Let T be a cheap- 

est spanning tree containing F . If e ∈/  E(T ), then T +e contains exactly one 

cycle, since  T has  exactly one u, v-path.  Since  u, v belong  to distinct com- 

ponents of F , the  u, v-path in T contains another edge  e0  between distinct 

components of F . If e0  costs  more  than e, then T 0    = T − e0  + e is a cheaper 

spanning tree containing F , which  contradicts the  choice  of T .  Hence e 0 

costs  the  same as e, and  T 0    contains e and  is a cheapest spanning tree con- 

taining F .  Applying this statement  at every  step of Kruskal’s algorithm 

proves that Kruskal’s algorithm finds  a minimum weight spanning tree. 
 

2.3.10.  Prim’s  algorithm produces a minimum-weight spanning tree.  Let 

v1 be the  initial vertex, let T be the  tree produced, and  let T ∗  be an optimal 

tree that agrees with T for the most  steps. Let e be the first  edge chosen for 

T that does not appear in T ∗, and  let U be the  set of vertices in the  subtree 

of T that has  been  gr own before  e is added. Adding  e to T ∗  creates  a cycle 

C ; since  e links U to U , C must contain another edge e0  from U to U . 
Since  T ∗  + e − e0  is another spanning tree, the  optimality of T ∗  yields 

•            
e0                  

•
 

 
2.3.11. Every  minimum-weight spanning tree achieves the minimum of the 

maximum weight edge over all spanning trees.  Let T be a minimum-weight 

spanning tree, and let T ∗ be one that minimizes the maximum weight edge. 

If T does not, then T has  an edge e whose  weight is greater than the weight 

of every  edge  in T ∗.  If we delete e from  T , Then we can  find an  edge  e∗  ∈ 
E (T ∗) that joins  the  components of T − e, since  T ∗   is  connected.  Since 

w(e) > w(e∗),  the  weight of T − e + e0  is less  than the  weight of T , which 

contradicts the  minimality of T . Thus T has  the  desired property. 
 

2.3.12.  The  greedy  algorithm cannot guarantee minimum  weight span- 

ning paths. This  fails  even  on four vertices with only three distinct vertex 

weights. If two incident edges  have the  minimum weight a, such  as a = 1, 

the  algorithm begins by choosing them.  If the  two edges  completing a 4- 

cycle with them have maximum weight c, such  as c = 10, then one of those 

must be chosen to complete a path of weight 2a + c. However, if the  other 

two  edges  have intermediate weight b, such  as  b = 2, there is a path of 

weight 2b + a, which  will be cheaper whenever b < (a + c)/2. For  n > 4, 

the  construction generalizes in  many possible ways  using three weights 

a < b < c. A path of length n − 2 having weight a for each  edge and  weight 

c for the  two edges  completing the  cycle yields  a path of weight (n − 2)a + c 

by the  greedy algorithm, but  if all other weights equal b there is a path of 

weight 2b + (n − 3)a, which  is cheaper whenever b < (a + c)/2. 
 

2.3.13. If T and  T 0   are spanning trees in a weighted graph G, with T having 

minimum weight, then  T 0    can be changed into  T by steps that exchange one 

edge of T 0   for one edge of T so that the edge set is always a spanning tree and 

the total  weight never  increases. It suffices  to find one such  step whenever 

T 0    is different from  T ; the  sequence then exists by using induction on the 

number of edges  in which  the  two trees differ.
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Choose  any  e0   ∈  E(T 0) − E(T ).  Deleting e0   from  T 0     creates two  com- 

ponents with vertex sets  U, U 0.  The  path in T between the  endpoints of e0 

must have an  edge  e from U to U 0; thus T 0   − e0  + e is a spanning tree. We 

want to show  that w(T 0   − e0  + e) ≤ w(T 0). 

these paths form  a u, v-walk,  which  contains a u, v-path. Hence adding ek 

would  complete a cycle, and  the  algorithm rejects ek . 

2.3.16. Four people crossing a bridge. Name the  people  10, 5, 2, 1, respec- 

tively, according to the  number of minutes they  take to cross when walking

Since e is an edge of the path in T between the endpoints of e0, the edge 
alone.  To get  across before  the  flood, they  can  first  send

 
1, 2

 
in time 2.

e belongs to the  unique cycle in T created by adding e0  to T . Thus T + e0 − e { 
Next  1 returns with the  flashlight in time 1, and  now   5,

 } 
in time

is also  a spanning tree.  Because T − e + e0   is a spanning tree and  T  has  
10.  Finally, 2 carries the  flashlight back,  and

  
1, 2

 {    10} cross 
together again.

minimum weight, w(e) ≤ w(e0).  Thus T 0    − e0  + e moves  from  T 0    toward  T  
The  time used  is 2

  
1     10     2     2

 { 
17.

 } cross 
is to send  5 and  10

 

without increasing the  weight. 
+   +     +   +    = The  key

 
2.3.14.  When  e is  a heaviest edge  on  a cycle  G in  a connected weighted 

graph G, there  is a minimum spanning tree not  containing e.  Let  T  be a 

minimum spanning tree in G. If e ∈ E(T ), then T − e has  two components 

with vertex sets  U and  U 0.  The subgraph C − e is a path with endpoints in 

U and  U 0; hence it contains an edge e0  joining U and  U 0.  Since  w(e0) ≤ w(e) 

by hypothesis, T − e + e0  is a tree as cheap as T that avoids e. 

Given  a weighted graph, iteratively deleting a heaviest non-cut-edge 

produces a minimum spanning tree.  A non-cut-edge is an  edge  on a cycle. 

A heaviest such  edge  is  a  heaviest edge  on  that cycle.   We  have shown 

that some minimum spanning tree avoids it, so deleting it does not change 

the  minimum weight of a spanning tree.  This  remains true as  we delete 

edges.   When  no cycles  remain, we have a connected acyclic  subgraph. It 

is the  only remaining spanning tree and  has  the  minimum weight among 

spanning trees of the  original graph. 
 

2.3.15. If T is a minimum spanning tree of a connected weighted graph G, 

then  T omits some heaviest edge from  every cycle of G. 

Proof 1 (edge  exchange). Suppose e is a heaviest edge  on cycle C .  If 

e ∈  E(T ), then T − e is disconnected, but  C − e must contain an  edge  e0 

joining the two components of T −e. Since T has minimum weight, T −e+e 0 

has  weight as large as T , so w(e0) ≥ w(e).  Since  e has  maximum weight on 

C , equality holds, and  T does not contain all the  heaviest edges  from C . 

Proof 2 (Kruskal’s algorithm).  List  the  edges  in order of increasing 

weight, breaking ties  by putting the  edges  of a given  weight that belong 

to T before  those that don’t belong  to T .  The  greedy algorithm (Kruskal’s 

algorithm) applied to this ordering L yields  a minimum spanning tree, and 

it is precisely T . Now let C be an arbitrary cycle in G, and  let e1, . . . , ek  be 

the  edges  of C in order of appearance in L; ek  = uv is a heaviest edge of C . 

It suffices  to show  that ek  does not  appear in T . For each  earlier edge ei  of 

C , either ei  appears in T or ei  is rejected by the  greedy algorithm because it 

completes a cycle.  In either case,  T contains a path between the  endpoints 

of ei . Hence when the  algorithm considers ek , it has  already selected edges 

that form  paths joining the  endpoints of each  other edge  of C .  Together, 
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together to avoid  a charge of 5. 

To solve the problem with graph theory, make a vertex for each possible 

state. A state consists of a partition of the  people  into the  two banks, along 

with the  location of the  flashlight. There is an  edge  from  state A to state 

B if state A is obtained from state B by moving one or two people  (and  the 

flashlight) from the  side  of A that has  the  flashlight to the  other side.  The 

problem is to find a shortest path from the  initial state (10, 5, 2, 1, F |∅) to 

the  final  state (∅|10, 5, 2, 1, F). Dijkstra’s algorithm finds  such  a path. 

There are  many vertices and  edges  in the  graph of states.  The  path 

corresponding to the solution in the first paragraph passes through the ver- 

tices (10, 5|2, 1, F), (10, 5, 1, F |2), (1|10, 5, 2, F), (2, 1, F |10, 5), (10, 5, 2, 1). 
 

2.3.17.  The  BFS algorithm computes d(u, z) for every z ∈ V (G).  The  algo- 

rithm declares vertices to have distance k when searching vertices declared 

to have distance k − 1.  Since  vertices are  searched in the  order in which 

they  are  found, all  vertices declared to have distance less  than k − 1 are 

searched before  any  vertices declared to have distance k − 1. 
We use  induction on d(u, z).   When  d(u, z) = 0, we have u = z, and 

initial declaration is  correct.  When  d(u, z)  > 0,  let  W  be  the  set  of all 

neighbors of z along  shortest z, u-paths.  Since  d(u, W ) = d(u , z) − 1, the 

induction hypothesis implies that the  algorithm computes d(u , v) correctly 

for all  v ∈  W .  Also,  the  preceding paragraph ensures that z will  not  be 

found  before  any  vertices of W are  searched. Hence when a vertex of W is 

searched, z will be found  and  assigned the  correct distance. 
 

2.3.18. Use of Breadth-First Search to compute the girth of a graph. When 

running BFS, reaching a vertex that is already in the list of vertices already 

reached creates a second path from  the  root  to that vertex. Following one 

path and  back  the  other is a closed  path in which  the  edges  reaching the 

new vertex occur only once, so they  lie on a cycle. 

When  the root is a vertex of a shortest cycle, the sum  of the two lengths 

to the  reached vertex is the  length of that cycle.   The  sum  can  never be 

smaller. Thus we run BFS  from  each  vertex as root  until we find a vertex 

repeatedly, record the  sum  of the  lengths of the  two  paths, and  take the 

smallest value of this over all choices  of the  root.
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2.3.19.  Computing diameter of trees.   From a arbitrary vertex w, we find 

a maximally distant vertex u (via BFS),  and  then we find a vertex v maxi- 

mally distant from u (via BFS).  We show  that  d(y, z) ≤ d(u, v) for all  y, z ∈ 
V (T ). Because v is at maximum distance from u, this holds  if u ∈ {y, z}, so 

we may  assume that u ∈/ {y, z}. 
We use  that each  vertex pair in a tree is connected by a unique path. 

Let  r be the  vertex at which  the  w, y-path separates from  the  w, u-path. 

Let  s be the  vertex at which  the  w, z-path separates  from  the  w, u-path. 

By symmetry, we may  assume that r is between w and  s.  Since  d(w, u) ≥ 
d(w, z), we have d(s, u) ≥ d(s, z). Now 

 

 

d(y, z) = d(y, r )+d(r, s)+d(s, z) ≤ d(y, r )+d(r, s)+d(s, u) = d(y, u) ≤ d(v, u). 

2.3.22.  The  Chinese Postman Problem in the k-dimensional cube  Qk , with 

every edge having weight 1. If k is even, then no duplicate edges are needed, 

since  Qk  is k-regular; total cost is k2k−1.  If k is odd, then a duplicated edge 

is needed at every  vertex. It suffices  to duplicate the  matching across the 

last coordinate. Thus the  total cost in this case is (k + 1)2k−1. 
 

2.3.23. The Lazy Postman. The postman’s trail must cover every  edge and 

contribute even  degree to  each  vertex except the  start P  and  end  H.  In 

the  example given,  C,D,G,H have the  wrong  parity.  Hence the  duplicated 

edges  must consist of two paths that pair these vertices (with  least total 

distance), since  this will change the  degree parity only for the  ends  of the 

paths. If we pair them as DG and  CH, then the  shortest paths are  DEIFG 

and  CBEIH, totaling 18 extra (obviously not optimal since  both  use  EI). If 

CG and  DH,  then the  paths are  (CBEIFG or CPAFG)  and  DEIH, totaling

w •      
r 

y • 

• z 
 
 
s     

• u 

18 in  either case.   If CD and  GH,  then the  paths are  CBED  and  GFIH, 

totaling 15.  Hence the  edges  in the  paths CBED  and  GFIH are  traveled 

twice;  all others are  traveled once. 
 

2.3.24.  Chinese Postman Problem. Solving the  Chinese Postman problem 

on a weighted graph with 2k vertices of odd  degree requires duplicating

2.3.20.  Minimum diameter spanning tree.   An MDST  is a spanning tree 

in which  the  maximum length of a path is as  small as  possible. Intuition 

suggests that running Dijkstra’s algorithm from  a vertex of minimum  ec- 

centricity (a center) will produce an MDST,  but  this may  fail. 

a) Construct a 5-vertex example of an unweighted graph (edge weights 

all  equal 1) in which  Dijkstra’s algorithm can  be run from  some  vertex of 

minimum eccentricity and  produce a spanning tree that does not have min- 

imum diameter. Answer: the  chin  of the  bull. 

(Note:   when there are  multiple candidates with the  same distance 

from the  root, or multiple ways  to reach the  new vertex with minimum dis- 

tance, the  choice in Dijkstra’s algorithm can be made arbitrarily.) 

b) Construct a 4-vertex example of a weighted graph such  that Dijk- 

stra’s algorithm cannot produce an MDST when run from any  vertex. 
 

2.3.21. Algorithm to test for bipartiteness. In each component, run the BFS 

search algorithm from  a  given  vertex x , recording for  each  newly  found 

vertex a  distance one  more  than the  distance for the  vertex from  which 

it is  found.  By the  properties of distance, searching from  a  vertex v to 

find  a vertex w may  discover d(x , w) = d(x , v) − 1 or d(x , w) = d(x , v) or 

d(x , w) = d(x , v) + 1 (if w is not yet in the  set  found). 

If the  second case  ever  arises, then we have adjacent vertices at the 

same distance from  x , and  there is an  odd cycle in the  graph. Otherwise, 

at the  end we form a bipartition that partions the  vertices according to the 

parity of their distance from  x . 

the  edges  in  a  set  of k trails that pair up  the  vertices of odd  degree as 

endpoints. The only vertices of a trail that have odd degree in the  trail are 

its endpoints. If some u, v-trail T in the optimal solution is not a path, then 

it contains a u, v-path P . In  P , every  vertex degree is even,  except for the 

endpoints. Hence using P instead of T to join u and  v does not  change the 

parity on any  vertex and  yields  smaller total weight. 

Since  no edge  need  be used  thrice, the  duplicated trails in an  optimal 

solution are  pairwise edge-disjoint. As in the  example below, they  need  not 

be vertex-disjoint. With  four vertices of odd degree, two paths are required, 

and  the  cheapest way is to send  both  through the  central vertex. 

• 
3              3 

1 
•     

1    
•            • 

1 
3              3 

• 
 

2.3.25.  If G is an n-vertex  rooted  plane  tree in which every vertex  has  0 or 

k children, then  n = tk + 1 for some integer t . 

Proof 1 (Induction). We use  induction on the  number of non-leaf ver- 

tices.  When  there are  no such  vertices, the  root is the  only vertex, and  the 

formula works with t = 0.  When  the  tree T is bigger, find a leaf  at maxi- 

mum distance from the  root,  and  let  x be its parent. By the  choice of x , all
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n(T 0) = tk + 1 for some  t , and  thus n(T ) = (t + 1)k + 1. A  B  C   D   E   F  G   H   I   J   K   L   M   N   O P Q R S T   U   V   W   X  Y   Z  ∅ 
Proof 2 (Degree counting). If T has  n vertices, then it has  n − 1 edges, 9   2   2   4   12   2   3   2   9  1   1   4   2    6   8 2 1 6 4 6   4   2    2    1   2   1   2 

and  the  degree-sum is 2n − 2. If n > 1, then the  root has  degree l, the  other 3   6   6   5    3    6   5   6   3  7   7   5   6    4   4 6 7 4 5 4   5   6    6    7   6   6   5 

 

n 

i =1 

k=1 

1=k 

i ∈W 
lg 

 pi 

− 

children of x are  leaves. Deleting the  children of x yields  a tree T 0    with one 

less non-leaf vertex and  k fewer total vertices. By the induction hypothesis, 

of (7 · 4 + 6 · 19 + 5 · 21 + 4 · 26 + 3 · 30)/100 = 4.41 bits  per character, which 

is less than the  5 bits  of ASCII.

 
 

t − 1 non-leaf vertices each  have degree k + 1, and  the  n − t leaves each 

have degree 1. Thus 2n − 2 = k + (t − 1)(k + 1) + (n − t). This  simplifies to 

n = tk + 1. 
 

2.3.26. A recurrence relation to count the binary trees with n + 1 leaves.  Let 

 

2.3.30. Optimal code for powers  of 1/2. 

a) the  two  smallest probabilities are  equal.    Let  pn , pn−1   be smallest 

and  second smallest  probabilities in  the  distribution.   Each probability 

other than pn  is a multiple of pn−1.  If  pn  < pn−1, then the  sum  of all  the

an  be the  desired number of trees. When  n = 0, the  root  is the  only  leaf. probabilities is not  a multiple of pn−1.  This  contradicts 
P   

pi  = 1, since

When  n > 0, each  tree has  some  number of leaves, k, in the  subtree rooted 

at the  left  child  of the  root,  where 1 ≤ k ≤ n.  We can  root  any  binary tree 

with k leaves at the left child and any binary tree with n −k +1 leaves at the 

1 is a multiple of pn−1. 
 

b) The  expected  message length of the optimal (Huffman) code for such 

a distribu tion  is − 
P 

pi lg pi .  We use  induction on n to prove  that each

right child.  Summing over k counts all the  trees. Thus an  = 
Pn

 ak−1a n−k item with probability (1/2)k
 is assign to a leaf at length k from the root; this

for n > 0, with a0  = 1. (Comment: These are  the  Catalan numbers.) 
 

2.3.27.  A recurrence relation for the  number of rooted  plane  trees  with n 

vertices. Let  an  be the  desired number of trees. When  n = 1, there is one 

tree. When  n > 1, the  root has  a child.  The  subtree rooted at the  leftmost 

child  has  some  number of vertices, k, where 1 ≤ k ≤ n − 1. The remainder 

of the  tree is a rooted subtree with the  same root as the  original tree; it has 

n − k vertices. We can combine any tree of the first  type with any tree of the 

yields  the  stated formula. For n = 1 and  p1  = 1, the  one item has  message 

length 0, as desired. For larger n, the  Huffman tree is obtained by finding 

the  optimal tree for the  smaller set  q1, . . . , qn−1  (where qn−1   = pn  + pn−1 

and  qi   = pi  for 1 ≤ i  ≤ n) and  extending the  tree at the  leaf  for qn−1  to 

leaves one  deeper for  pn−1  and   pn .  By part (a),  qn−1   = 2 pn−1   = 2 pn .  By 

the  induction hypothesis, the  depth of the  leaf  for  qn−1   is  − lg qn−1,  and 

for  p1, . . . , pn−2   it is as  desired.  The  new  leaves for  pn−1, pn  have depth

second type.   Summing over  k counts all the  trees. Thus an  = 
Pn−1 

akan   k 
+1 − lg qn−1 = − lg pn−1 = − lg pn , as desired.

for n > 1, with a1  = 1.  (Comment:  This  is the  same sequence as  in  the 

previous problem, with index  shifted by 1.) 
 

2.3.28.  A code with minimum expected  length for messages with relative 

frequencies 1,2,3,4,5,5,6,7,8,9. Iteratively  combining least-frequent items 

and  reading paths from  the  resulting tree yields  the  codes  below.   Some 

variation in  the  codes  is possible, but  not  in  their lengths.  The  average 

length (weighted by frequency!) is 3.48. 

2.3.31.  For every probability distribution { pi } on n messages and  every bi- 
nary  code for these  messages, the expected  length of a code word  is at least 
− 

P 
pi lg pi . Proof by induction on n. For  n = 1 = p1, the  entropy and  the 

expected length for the  optimal code both  equal 0; there is no need  to use 

any  digits. For  n > 1, let  W be the  words  in an  optimal code, with W0, W1 

denoting the  sets  of code words  starting with 0,1, respectively. If all words 

start with the  same bit,  then the  code is not  optimal, because the  code ob- 

tained by deleting the  first  bit  of each  word  has  smaller expected length.

frequency 1 2 3 4 5 5 6 7 8 9 Hence W0, W1  are  codes for smaller sets  of messages. Let q0, q1  be the  sum 

of the  probabilities for the  messages in W0, W1. Normalizing the  pi ’s by q0 

or q1  gives  the  probability distributions for the  smaller codes.  Because the 
code 00000 00001 0001 100 101 110 111 001 010 011 

length 5 5 4 3 3 3 3 3 3 3 

           words  within W0  or W1  all start with the  same bit, their expected length is 

2.3.29.  Computation of an  optimal code.   Successive combination of the 

cheapest pairs leads to a tree.  For  each  letter, we list  the  frequency and 

at least 1 more  than the  optimal expected length for those distributions. 

Applying the  induction hypothesis to both  W0 and  W1, we find that the

the  depth of the  corresponding leaf,  which  is the  length of the  associated expected length for W is at least q0[1−
P

 
 pi 

0   q0 q0 
] + q1[1− P i ∈W 

 p
i 
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lg ] 1   q1 
 pi 

q1

codeword.  The  assignment of codewords is not  unique, but  the  set  (with = 1 − 
P     

i            i 0               i ∈W1   
pi (lg pi − lg q1) = 1 + q0 lg q0 + q1 lg q1 −

multiplicities) of depths for each  frequency is.  Given  frequencies f i , with 

associated lengths li  and  total frequency T , the  expected length per  char- 

acter is 
P 

fi li /T . For the  given  frequencies, this produces expected length 

P 
pi lg pi . It suffices to prove that 1+q0 lg q0 +q1 lg q1  ≥ 0 when q0 +q1 = 1. 

Because f (x) = x lg x is convex  for 0 < x < 1 (since   f 00(x) = 1/x  > 0), we 

have 1 + f (x) + f (1 − x) ≥ 1 + 2 f (.5) = 0. 


