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CHAPTER 2 
 

TEACHING NOTES 

 
This is the chapter where I expect students to follow most, if not all, of the algebraic derivations. 

In class I like to derive at least the unbiasedness of the OLS slope coefficient, and usually I 

derive the variance. At a minimum, I talk about the factors affecting the variance. To simplify 

the notation, after I emphasize the assumptions in the population model, and assume random 

sampling, I just condition on the values of the explanatory variables in the sample. Technically, 

this is justified by random sampling because, for example, E(ui|x1,x2,…,xn) = E(ui|xi) by 

independent sampling. I find that students are able to focus on the key assumption SLR.4 and 

subsequently take my word about how conditioning on the independent variables in the sample 

is harmless. (If you prefer, the appendix to Chapter 3 does the conditioning argument carefully.) 

Because statistical inference is no more difficult in multiple regression than in simple regression, 

I postpone inference until Chapter 4. (This reduces redundancy and allows you to focus on the 

interpretive differences between simple and multiple regression.) 
 

You might notice how, compared with most other texts, I use relatively few assumptions to 

derive the unbiasedness of the OLS slope estimator, followed by the formula for its variance. 

This is because I do not introduce redundant or unnecessary assumptions. For example, once 

SLR.4 is assumed, nothing further about the relationship between u and x is needed to obtain 

the unbiasedness of OLS under random sampling. 
 

Incidentally, one of the uncomfortable facts about finite-sample analysis is that there is a 

difference between an estimator that is unbiased conditional on the outcome of the covariates and 

one that is unconditionally unbiased. If the distribution of the is such that they can all equal the 

same value with positive probability – as is the case with discreteness in the distribution – then 

the unconditional expectation does not really exist. Or, if it is made to exist then the estimator is 

not unbiased. I do not try to explain these subtleties in an introductory course, but I have had 

instructors ask me about the difference.

https://testbankpack.com/p/solution-manual-for-introductory-econometrics-a-modern-approach-5th-edition-wooldridge-1111531048-9781111531041/
https://testbankpack.com/p/solution-manual-for-introductory-econometrics-a-modern-approach-5th-edition-wooldridge-1111531048-9781111531041/
https://testbankpack.com/p/solution-manual-for-introductory-econometrics-a-modern-approach-5th-edition-wooldridge-1111531048-9781111531041/


 
 
 
 
 
 
 
 
 
 

6



7  

= 

SOLUTIONS TO PROBLEMS 

 
2.1 (i) Income, age, and family background (such as number of siblings) are just a few 

possibilities. It seems that each of these could be correlated with years of education. (Income and 

education are probably positively correlated; age and education may be negatively correlated 

because women in more recent cohorts have, on average, more education; and number of siblings 

and education are probably negatively correlated.) 
 

(ii) Not if the factors we listed in part (i) are correlated with educ. Because we would like to 

hold these factors fixed, they are part of the error term. But if u is correlated with educ then 

E(u|educ) ≠ 0, and so SLR.4 fails. 

 

2.2 In the equation y = β0 + β 1x + u, add and subtract α0 from the right hand side to get y = (α0 

+ β0) + β 1x + (u − α0 ). Call the new error e = u − α0, so that E(e) = 0. The new intercept is α0 

+ β0, but the slope is still β1. 
 

n 

2.3 (i) Let yi = GPAi, xi = ACTi, and n = 8. Then  x = 25.875, y = 3.2125, ∑ (xi – x )(yi – y ) = 
i=1

n 

5.8125, and ∑ (xi – 
i=1 

2                                                                                                                                     ˆ 
x ) = 56.875. From equation (2.9), we obtain the slope as   

β
1

ˆ                ̂    
5.8125/56.875 ≈ .1022, rounded to four places after the decimal. From (2.17), β0 

≈ 3.2125 – (.1022)25.875 ≈ .5681. So we can write 
 

 

GPA = .5681 + .1022 ACT 
 

n = 8. 

=y – β1            x

 

The intercept does not have a useful interpretation because ACT is not close to zero for the 

population of interest. If ACT is 5 points higher, GPA increases by .1022(5) = .511. 

 

(ii) The fitted values and residuals — rounded to four decimal places — are given along with 

the observation number i and GPA in the following table:
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i GPA GPA  

1 2.8 2.7143 .0857 

2 3.4 3.0209 .3791 

3 3.0 3.2253 –.2253 

4 3.5 3.3275 .1725 

5 3.6 3.5319 .0681 

6 3.0 3.1231 –.1231 

7 2.7 3.1231 –.4231 

8 3.7 3.6341 .0659 

 

uˆ 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

You can verify that the residuals, as reported in the table, sum to −.0002, which is pretty close 

to zero given the inherent rounding error. 

 
(iii) When ACT = 20, GPA= .5681 + .1022(20) ≈ 2.61. 

 

 
n 

(iv) The sum of squared residuals, ∑uˆi
2 

, is about .4347 (rounded to four decimal places), 
i =1 

n 

2

and the total sum of squares, ∑ (yi – y ) 
i=1 

, is about 1.0288. So the R-squared from the regression

is 
 

R
2  

= 1 – SSR/SST ≈ 1 – (.4347/1.0288) ≈ .577. 
 

 
Therefore, about 57.7% of the variation in GPA is explained by ACT in this small sample 

of students. 

 
2.4 (i) When cigs = 0, predicted birth weight is 119.77 ounces. When cigs = 20, bwght = 109.49. 

This is about an 8.6% drop. 

 

(ii) Not necessarily. There are many other factors that can affect birth weight, particularly 

overall health of the mother and quality of prenatal care. These could be correlated with 

cigarette smoking during birth. Also, something such as caffeine consumption can affect birth 

weight, and might also be correlated with cigarette smoking. 
 

(iii) If we want a predicted bwght of 125, then cigs = (125 – 119.77)/( –.524) ≈ –10.18, or 

about –10 cigarettes! This is nonsense, of course, and it shows what happens when we are trying 

to predict something as complicated as birth weight with only a single explanatory variable. The 

largest predicted birth weight is necessarily 119.77. Yet almost 700 of the births in the sample 

had a birth weight higher than 119.77.
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(iv) 1,176 out of 1,388 women did not smoke while pregnant, or about 84.7%. Because we 

are using only cigs to explain birth weight, we have only one predicted birth weight at cigs = 

0. The predicted birth weight is necessarily roughly in the middle of the observed birth weights 

at cigs = 0, and so we will under predict high birth rates. 
 

2.5 (i) The intercept implies that when inc = 0, cons is predicted to be negative $124.84. This, of 

course, cannot be true, and reflects that fact that this consumption function might be a poor 

predictor of consumption at very low-income levels. On the other hand, on an annual basis, 

$124.84 is not so far from zero. 

(ii) Just plug 30,000 into the equation: cons = –124.84 + .853(30,000) = 25,465.16 dollars. 

(iii) The MPC and the APC are shown in the following graph. Even though the intercept is 

negative, the smallest APC in the sample is positive. The graph starts at an annual income level 

of $1,000 (in 1970 dollars). 
 
 
 
 

MPC           .9 

APC 
 

 
.853 

 

 
 
MPC

 
 

 
APC 

 

 
 
 
 
 
 

.728 
 

 

.7 

1000                               10000                                      20000                                  30000 

inc 
 

 
2.6 (i) Yes. If living closer to an incinerator depresses housing prices, then being farther away 

increases housing prices. 
 

(ii) If the city chose to locate the incinerator in an area away from more expensive 

neighborhoods, then log(dist) is positively correlated with housing quality. This would violate 

SLR.4, and OLS estimation is biased.
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(iii) Size of the house, number of bathrooms, size of the lot, age of the home, and quality of 

the neighborhood (including school quality), are just a handful of factors. As mentioned in part 

(ii), these could certainly be correlated with dist [and log(dist)]. 
 

 

2.7 (i) When we condition on inc in computing an expectation,    inc becomes a constant. So 

E(u|inc) = E(    inc e|inc) =    inc E(e|inc) =    inc 0 because E(e|inc) = E(e) = 0. 
 

 

(ii) Again, when we condition on inc in computing a variance,    inc becomes a constant. So

Var(u|inc) = Var(    inc e|inc) = (    inc  
2
 Var(e|inc) = σ  

2
 inc because Var(e|inc) = σ  

2 
.

 

(iii) Families with low incomes do not have much discretion about spending; typically, a 

low-income family must spend on food, clothing, housing, and other necessities. Higher income 

people have more discretion, and some might choose more consumption while others more 

saving. This discretion suggests wider variability in saving among higher income families. 
 

 
2.8 (i) From equation (2.66), 

 
n 

n                                      2

β1 

 

 
Plugging in yi = β0 + β1xi + ui gives 

=       ∑ 
x

i 
y

i   / ∑ 
x

i                    . 
 

i =1                               i =1

 

n 
n                                                                  2

β           = ∑ 
x

i 
(β 

0            + β x + u ) / ∑ 
x

i                    
.

 

i =1                                                            i =1 

 

After standard algebra, the numerator can be written as 

 
n                          n                   n

β 0 ∑ xi +β1 ∑ x i +∑ xi ui .

i =1                        i =1                    i=1 
 

 

Putting this over the denominator shows we can write β1 as 

 
n                  n                                n                      n 

2                                                                         2

β                    = β0  ∑ x / ∑ 
x

i                            + β1 
+        x  u 

i i / ∑  i    
.

 

 
Conditional on the xi, we have 

 

i =1                   i =1                                      i =1                        i =1

 
n 

n                               2

E( β1 ) = β0 ∑ 
x

i / ∑ 
x

i                    + β1 
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i =1                        i =1
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i σ 
2 
∑ x i 

=                                    = 

n 

i 

n 

because E(ui) = 0 for all i. Therefore, the bias in β1 is given by the first term in this equation. 
 

n   
This bias is obviously zero when β0 = 0. It is also zero when ∑ xi = 0, which is the same as x 

i=1   
= 0. In the latter case, regression through the origin is identical to regression with an intercept. 

(ii) From the last expression for β1 in part (i) we have, conditional on the xi, 
n              −2         n                        n 

2 
−2 

2     n   2

Var( β1 ) = ∑ 
x

i                           
Var 

∑ 
x

i 
u

i                            
=  

∑ 
x

i      ∑ 
x

i                        Var(ui )

 

i =1                           i =1                           i =1                     i =1 

n       −2                    n 

= ∑ x 
2                                  2

 

n 

=  σ 
2 

/∑ x 
2   .

 

i =1                              i=1                                     i =1 

 

ˆ         2              
n                       

2                                                 
n             

2                                   2 
(iii) From (2.57), Var( β1 ) =  σ                 /

 ∑(xi  − x) 
 
. From the hint, ∑ xi ≥ ∑( xi −  x) , and so

i =1                                                                           i=1 

ˆ                                                                         n                    
2

 

i=1 

n 

2                 2
 

Var( β1 ) ≤ Var( β1 ). A more direct way to see this is to write ∑( xi − x) 

 
n 

is less than ∑ xi
2  

unless   x  = 0. 
i=1 

 

 
i=1 

= ∑ xi 
i=1 

− n (  x) , which

(iv) For a given sample size, the bias in β1 increases as  x increases (holding the sum of the 
ˆ

xi
2 

fixed). But as  x increases, the variance of β 1 increases relative to Var( β1 ). The bias in β1 is 
ˆ

also small when β0 is small. Therefore, whether we prefer β1 or β 1 on a mean squared error

 

  n  
basis depends on the sizes of β0 , x , and n (in addition to the size of ∑ xi 

2 
). 

  i=1  
 

2.9 (i) We follow the hint, noting that c1 y = c1  y (the sample average of c1 yi  is c1 times the 

sample average of yi) and c2 x = c2  x . When we regress c1yi on c2xi (including an intercept) we 

use equation (2.19) to obtain the slope: 
 

n                                                                                          n 

∑ ( c2  xi  − c2  x )(c1 yi − c1 y )      ∑c1c2    (xi − x )( yi −y ) 
β1                                                                                                                                                                                                                                                                                                                                                                                                                                                   n                                                                                                                                                                                                          n 

i = 1  

∑ ( c2  xi  − c2 x )
2                            ∑c2

2  
(xi − x  )

2
 

i =1                                                                                        i=1 

n 

= c   ∑(xi  − x)( yi − y )  =  c  β1.
   1       i=1                                                                    

             
      1       ˆ

c2           ∑(xi  − x) 
i=1 

2                            c2
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n 

ˆ 
From (2.17), we obtain the intercept as β0  = (c1  y ) – β1 (c2  x ) = (c1  y ) – [(c1/c2) β 1 ](c2  x ) = c1(

ˆ 
y – β 

ˆ 
1  x ) = c1 β 

ˆ 
0 ) because the intercept from regressing yi on xi is ( y – β 

 

1  x ).

 

 

c  
 (ii) We use the same approach from part (i)  along with the fact that ( c1 + y ) = c1 +   y   and 

(     2   + x )  = c2 +  x   . Therefore,  ( c1 + yi ) − ( c1 + y ) = (c1   + yi) – (c1 +   y ) = yi –   y and (c2 + xi) – 

( c2 + x ) = xi –  x . So c1 and c2 entirely drop out of the slope formula for the regression of (c1 + 
ˆ                                                                                                  ˆ 

yi) on (c2 + xi), and β1 =                     β1                          . The intercept is β0 = ( c1 + y) – β1 ( c2 + x) = (c1 + y ) –                             β1 (c2 +

     ̂                        ˆ 
 

x ) = ( y − β1x ) + c1 – c2   β1 

ˆ                    ˆ 
β 

=   0   + c1 – c2 β1 , which is what we wanted to show.

(iii) We can simply apply part (ii) because log(c1 yi ) = log(c1 ) + log( yi ) . In other 

words, replace c1 with log(c1), yi with log(yi), and set c2 = 0. 
 

(iv) Again, we can apply part (ii) with c1 = 0 and replacing c2 with log(c2) and xi with log(xi).

ˆ 
If β 

ˆ 
0 and β 

ˆ 
1 are the original intercept and slope, then β1 = β 

ˆ 
1 and β 0 = β 

ˆ 
0 − log(c2 )β 1 .

 

2.10 (i) This derivation is essentially done in equation (2.52), once (1/SSTx ) is brought inside 

the summation (which is valid because SSTx does not depend on i). Then, just define 

wi = di /SSTx . 

 
ˆ                ˆ            

(ii) Because Cov(β1    ,u ) = E[(β1  − β1 )u ] , we show that the latter is zero. But, from part (i), 
ˆ                           n                                        n                       

− β  )u ] =E
 

w u   u =
 

w E(u u ). Because the u
E[(β1 1               ( ∑ i =1 i   i ) ∑i=1    i        i i                                                        are pairwise uncorrelated

(they are independent), E(u  u ) = E(u 
2 

/ n ) = σ 
2 

/ n (because E(u u 
i                       i                                                                          i    h 

∑ i
n
=1 wi E(ui u ) = ∑ i

n
=1 wi (σ 

2 
/ n ) = (σ 

2 
/ n )∑i

n
=1 wi = 0. 

) = 0, i ≠ h ). Therefore,

ˆ 
(iii) The formula for the OLS intercept is β 

ˆ 
0 = y − β 

 

 

x and, plugging in  y = β 0 + β1x

ˆ 
+ u gives β 

ˆ 
0 = (β 0 + β1  x + u ) − β 

ˆ         

ˆ 
1  x = β 0 + u − (β 

 

1 − β1 )x.

(iv) Because β 
1 and u are uncorrelated,

ˆ                          ˆ 
Var(β 0 ) = Var(u ) + Var(β 1 )x 

2 
= σ 

2 
/ n + (σ 

2 
/SSTx )x 

2 
= σ 

2 
/ n + σ 

2 
 x 

2 
/SSTx , 

which is what we wanted to show. 

ˆ 
(v) Using the hint and substitution gives Var(β 

 

0 ) = σ 
2 

[(SSTx / n ) + x 
2 

]/SSTx
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n = σ 
2   ( n 

−1 ∑ i =1 xi
2
 

 

− x 
2

 )+ x 
2

 

 

/SSTx = σ 
2

 (n 
−1

 ∑i =1 xi
2
 )/SSTx .
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2.11 (i) We would want to randomly assign the number of hours in the preparation course so 

that hours is independent of other factors that affect performance on the SAT. Then, we would 

collect information on SAT score for each student in the experiment, yielding a data set 

{(sati , hoursi ) : i = 1,..., n}, where n is the number of students we can afford to have in the study. 

From equation (2.7), we should try to get as much variation in hoursi  as is feasible. 
 

 

(ii) Here are three factors: innate ability, family income, and general health on the day of the 

exam. If we think students with higher native intelligence think they do not need to prepare for 

the SAT, then ability and hours will be negatively correlated. Family income would probably be 

positively correlated with hours, because higher income families can more easily afford 

preparation courses. Ruling out chronic health problems, health on the day of the exam should 

be roughly uncorrelated with hours spent in a preparation course. 
 

(iii) If preparation courses are effective, β1 should be positive: other factors equal, 

an increase in hours should increase sat. 
 

(iv) The intercept, β0 , has a useful interpretation in this example: because E(u) = 0, β0 is the 

average SAT score for students in the population with hours = 0. 

2.12 (i) I will show the result without using calculus. Let be the sample average of the and 

write 
n                                              n 

∑ ( yi  − b0  )
2  

= ∑[( yi  − y ) + (y − b0 )]
2
 

i =1                                            i=1 

n                                              n                                                       n 

= ∑ ( yi − y )
2 
+ 2∑ ( yi − y )(y − b0 ) + ∑( y − b0 )

2
 

i =1                                 i =1                                                   i=1 

n                                                                         n 

= ∑ ( yi − y )
2 
+ 2( y − b0 )∑( yi − y) + n( y − b0 )

2
 

i =1                                                       i=1 

n 

= ∑( yi − y)
2 

+ n(  y − b0 )
2
 

i=1 

n 

where we use the fact (see Appendix A) that ∑( yi − y) = 0 always. The first term does not 
i=1 

depend on b  and the second term, n ( y − b )
2 
, which is nonnegative, is clearly minimized when 

0                                                                                    0 

b0 = y  . 
 

n                  n 
(ii) If we define ui = yi − y then ∑ ui = ∑( yi − y) and we already used the fact that this sum 

 

is zero in the proof in part (i). 
i =1             i=1

 

 
 

SOLUTIONS TO COMPUTER EXERCISES
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R 

R 

R 

C2.1 (i) The average prate is about 87.36 and the average mrate is about .732. 

(ii) The estimated equation is 

prate = 83.05 + 5.86 mrate 

n = 1,534,   
2
 
 

= .075.

 

(iii)  The intercept implies that, even if mrate = 0, the predicted participation rate is 83.05 

percent. The coefficient on mrate implies that a one-dollar increase in the match rate – a fairly 

large increase – is estimated to increase prate by 5.86 percentage points. This assumes, of 

course, that this change prate is possible (if, say, prate is already at 98, this interpretation 

makes no sense). 
 

(iv) If we plug mrate = 3.5 into the equation we get prateˆ = 83.05 + 5.86(3.5) = 103.59. 

This is impossible, as we can have at most a 100 percent participation rate. This illustrates that, 

especially when dependent variables are bounded, a simple regression model can give strange 

predictions for extreme values of the independent variable. (In the sample of 1,534 firms, only 

34 have mrate ≥ 3.5.) 
 

(v) mrate explains about 7.5% of the variation in prate. This is not much, and suggests that 

many other factors influence 401(k) plan participation rates. 
 

C2.2 (i) Average salary is about 865.864, which means $865,864 because salary is in 

thousands of dollars. Average ceoten is about 7.95. 
 

(ii) There are five CEOs with ceoten = 0. The longest tenure is 37 years. 

(iii) The estimated equation is 

log( salary) = 6.51 + .0097 ceoten 

n = 177,   
2
 
 

= .013.

 

We obtain the approximate percentage change in salary given ∆ceoten = 1 by multiplying the 

coefficient on ceoten by 100, 100(.0097) = .97%. Therefore, one more year as CEO is predicted 

to increase salary by almost 1%. 
 

C2.3 (i) The estimated equation is 
 

 

sleep = 3,586.4 – .151 totwrk 

n = 706,   
2
 

 

= .103.
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R 

R 

R 

The intercept implies that the estimated amount of sleep per week for someone who does 

not work is 3,586.4 minutes, or about 59.77 hours. This comes to about 8.5 hours per night. 

 

(ii) If someone works two more hours per week then ∆totwrk = 120 (because totwrk is 

measured in minutes), and so ∆sleep = –.151(120) = –18.12 minutes. This is only a few minutes 

a night. If someone were to work one more hour on each of five working days, ∆sleep = 

–.151(300) = –45.3 minutes, or about five minutes a night. 
 
C2.4 (i) Average salary is about $957.95 and average IQ is about 101.28. The sample standard 

deviation of IQ is about 15.05, which is pretty close to the population value of 15. 
 

(ii) This calls for a level-level model: 
 

 

wage = 116.99 + 8.30 IQ 

n = 935,   
2
 
 

= .096.

 

An increase in IQ of 15 increases predicted monthly salary by 8.30(15) = $124.50 (in 

1980 dollars). IQ score does not even explain 10% of the variation in wage. 

(iii) This calls for a log-level model: 

log( wage) = 5.89 + .0088 IQ 

n = 935,   
2
 
 

= .099.

 

If ∆IQ = 15 then ∆log( wage) = .0088(15) = .132, which is the (approximate) proportionate 

change in predicted wage. The percentage increase is therefore approximately 13.2. 

 

C2.5 (i) The constant elasticity model is a log-log model: 

 
log(rd) = β0  + β1 log(sales) + u, 

where β1 is the elasticity of rd with respect to sales. 

(ii) The estimated equation is 
 

 

log( rd) = –4.105 + 1.076 log(sales) 

n = 32,    
2
 

 

= .910.

 

The estimated elasticity of rd with respect to sales is 1.076, which is just above one. A one 

percent increase in sales is estimated to increase rd by about 1.08%.
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C2.6 (i) It seems plausible that another dollar of spending has a larger effect for low-spending 

schools than for high-spending schools. At low-spending schools, more money can go toward 

purchasing more books, computers, and for hiring better qualified teachers. At high levels of 

spending, we would expend little, if any, effect because the high-spending schools already 

have high-quality teachers, nice facilities, plenty of books, and so on. 
 

(ii) If we take changes, as usual, we obtain 

∆math10 = β1 ∆ log(expend ) ≈ (β1 /100)(%∆expend ), 

just as in the second row of Table 2.3. So, if % ∆expend = 10, ∆math10 = β1 /10. 

(iii) The regression results are 

math10 = −69.34 + 11.16 log(expend ) 
 

n = 408, R
2 

= .0297 
 

 

(iv) If expend increases by 10 percent, math10 increases by about 1.1 percentage points. 

This is not a huge effect, but it is not trivial for low-spending schools, where a 10 percent 

increase in spending might be a fairly small dollar amount. 

 
(v) In this data set, the largest value of math10 is 66.7, which is not especially close to 

100. In fact, the largest fitted values is only about 30.2. 
 

C2.7 (i) The average gift is about 7.44 Dutch guilders. Out of 4,268 respondents, 2,561 did 

not give a gift, or about 60 percent. 
 

(ii) The average mailings per year is about 2.05. The minimum value is .25 (which 

presumably means that someone has been on the mailing list for at least four years) and the 

maximum value is 3.5. 
 

(iii) The estimated equation is 
 

 

gift = 2.01 + 2.65 mailsyear 

n = 4,268, R
2 

= .0138 

 

(iv) The slope coefficient from part (iii) means that each mailing per year is associated with 

– perhaps even ―causes‖ – an estimated 2.65 additional guilders, on average. Therefore, if each 

mailing costs one guilder, the expected profit from each mailing is estimated to be 1.65 guilders. 

This is only the average, however. Some mailings generate no contributions, or a contribution 

less than the mailing cost; other mailings generated much more than the mailing cost. 
 

(v) Because the smallest mailsyear in the sample is .25, the smallest predicted value of gifts 

is 2.01 + 2.65(.25) ≈ 2.67. Even if we look at the overall population, where some people have 

received no mailings, the smallest predicted value is about two. So, with this estimated equation, 

we never predict zero charitable gifts.
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C2.8 There is no ―correct‖ answer to this question because all answers depend on how the 

random outcomes are generated. I used Stata 11 and, before generating the outcomes on the xi , I 

set the seed to the value 123. I reset the seed to 123 to generate the outcomes on the ui . 

Specifically, to answer parts (i) through (v), I used the sequence of commands 

 

set obs 500 
set seed 123 
gen x = 10*runiform() 

sum x 

set seed 123 
gen u = 6*rnormal() 
sum u 

gen y = 1 + 2*x + u 
reg y x 

predict uh, resid 

gen x_uh = x*uh 
sum uh x_uh 
gen x_u = x*u 
sum u x_u 

 
(i) The sample mean of the xi  is about 4.912 with a sample standard deviation of about 

2.874. 

 
(ii) The sample average of the ui  is about .221, which is pretty far from zero. We do not get 

zero because this is just a sample of 500 from a population with a zero mean. The current sample 

is ―unlucky‖ in the sense that the sample average is far from the population average. The sample 

standard deviation is about 5.768, which is nontrivially below 6, the population value. 
 

(iii) After generating the data on yi and running the regression, I get, rounding to three 

decimal places, 
ˆ                    ˆ 

β 0 = 1.862 and β 1 = 1.870 
The population values are 1 and 2, respectively. Thus, the estimated intercept based on this 

sample of data is well above the population value. The estimated slope is somewhat below the 

population value, 2. When we sample from a population our estimates contain sampling error; 

that is why the estimates differ from the population values. 
 

(iv) When I use the command sum uh x_uh and multiply by 500 I get, using scientific 

notation, sums equal to 4.181e-06 and .00003776, respectively. These are zero for practical 

purposes, and differ from zero only due to rounding inherent in the machine imprecision (which 

is unimportant).
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(v) We already computed the sample average of the ui in part (ii). When we multiply by 500 

the sample average is about 110.74. The sum of xi ui is about 6.46. Neither is close to zero, and 

nothing says they should be particularly close. 
 

(vi) For this part I set the seed to 789. The sample average and standard deviation of the xi 

are about 5.030 and 2.913; those for the ui are about −.077 and 5.979. When I generated the yi 

and run the regression I get 
ˆ                  ˆ 

β 0 = .701 and β 1 = 2.044 
These are different from those in part (iii) because they are obtained from a different 

random sample. Here, for both the intercept and slope, we get estimates that are much closer 

to the population values. Of course, in practice we would never know that. 


