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Chapter  2 
 
 

Euclidean Space 
 
 
 
 

2.1  Practice Problems
[ 

−4  
]  [ 

5 
]   [ 

 

−4 − 5 
]   [ 

−9  
]

1.  u − w = 3     −      0     = 
4             −2 

3 − 0     =      3 
4 − (−2)             6

 
v + 3w = 

[ 
−1  

]
 

6 

[  
5 

]
 

+ 3        0     = 

[ 
−1 + 3 (5)  

]
 

6 + 3 (0)     = 

[ 
14 

]
 

6

 
−2w + u + 3v = −2 

[  
5 

]
 

0 
−2 

[ 
−4  

]
 

+      3 
4 

[ 
−1  

]
 

+ 3        6 
2 

[ 
−2 (5) + (−4) + 3 (−1) 

]
 

=          −2 (0) + 3 + 3 (6)     = 
−2 (−2) + 4 + 3 (2) 

[ 
−17  

]
 

21 
14

 

2.   (a)    −x1     +   4x2    =     3 
7x1    +   6x2    =   10
2x1 −    6x2    =     5

 

(b)    3x1                         −      x3     =      4 
4x1    −    2x2    +   2x3    =      7 

−    5x2    +   9x3    =    11 
2x1    +   6x2    +   5x3    =   −6 

 
3.   (a)  x1 

[  
1 

]
 

−5 
4 

 
+ x2 

[ 
1 

]
 

7 
0 

 
+ x3 

[ 
−2  

]
 

6     = 
−8 

[  
3 

]
 

12 
0

 

 
(b)  x1 

[ 
4 

] 

0 
3 

 

 
+ x2 

[ 
−3  

] 

2 
12 

 

 
+ x3 

[ 
−1  

] 

5 
6 

 

 
+ x4 

[  
5 

] 

−2     = 
0 

[  
0 

] 

6 
10

 4.   (a) 
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[ 
x1 

x2 

x3 

]   

[ 
5 

]
 

=   
7 

0 

 
+ s1 

[  

3 
]

 
−
2 

1

 
x1    

   
1   

 
2   

 
13 

(b)  
 x2  

= 
 0  

+ s1 
 0  

+ s2 
   1 

 x3 

x4 

      
17 

         

 
0 

1 
         

 
1 
 

[   
1 

] 

0  
0 
 

[ 
3 

] 

 

 
 
[ 

5 
] 

 

 
 

[    
x1 + 3x2  

] 

 

 
 
[ 

5 
]

5.   (a)  x1a1 + x2a2 = b    ⇔     x1       −5 + x2     6     
=    

9          
⇔ −5x1  + 6x2      

=     
9         

⇔

 

335
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7              21 

21                                                        21                                        7 

( 13
 

3 

3 

 
 

 
[   

1   3   5 
]

the augmented matrix                             has a solution: −5    6   9 

[   
1   3   5 

]  
5R1+R2→R2

 

−5    6   9                
∼

 

 

 
[ 

1    3     5  
]

 
0   21   34

 

From  row 2, 21x2 = 34  ⇒  x2 = 34 . From  row 1, x1 + 3( 34 ) = 5  ⇒  x1 = 1 . Thus,  b is a linear 

combination of a1   and a2,  with b = 1 a1  +  34 a2.

 
(b)  x1a1 + x2a2 + x2a2 = b    ⇔      x1 

[  
1 

]
 

−3 

 

 
+ x2 

[ 
−2  

]
 

3 

[  
7 

]
 

=      5         ⇔

[    
x1 − 2x2 

−3x1  + 3x2 

8x1 − 3x2 

]   [  
7 

]
 

=      5 
−4 

 
⇔ the augmented matrix 

[  
1   −2       7 

]
 

−3       3       5 
8   −3    −4 

 
yields a solution.

[  
1   −2       7 

]   
3R1+R2→R2 

[ 
1   −2         7 

]

−3       3       5 
8   −3    −4 

−8R1+R3→R3 ∼ 
 
 

3 )R2+R3→R3
 

0   −3       26 
0     13   −60 

 
1   −2        7  

∼                  0   −3      26  
0       0    158

 

 

From  the  third  equation,  we have 0 = 158 , and  thus  the  system  does not  have a solution.  Thus, 
b is not  a linear combination of a1,  a2,  and a3. 

 

6.   (a)  False.  Addition  of vectors  is associative  and commutative. 

(b)  True.  The scalars may be any real number. 

(c)  True.  The  solutions  to a linear  system  with variables  x1, . . . , xn can be expressed  as a vector  x, 
which is the sum of a fixed vector  with n components  and a linear combination of k vectors with 
n components, where k is the number  of free variables. 

(d)  False.  The Parallelogram Rule gives a geometric  interpretation of vector  addition. 
 

 

2.1     Vectors 
[  

3 
]  [ 

−4  
]   [ 

3 − (−4) 
]   [  

7 
]

1.  u − v = −2     −      1     = 
0                5 

−2 − 1     = 
0 − 5 

−3     ; 
−5

 
6w = 6 

[  
2 

]
 

−7     = 
−1 

[    
(6) 2 

]
 

(6) (−7) 
(6) (−1) 

[  
12 

]
 

=   −42 
−6

 
 

2.  w − u = 

[  
2 

] 

−7     − 
−1 

[  
3 

] 

−2     = 
0 

[      
2 − 3 

]
 

−7 − (−2) 
−1 − 0 

[ 
−1  

] 

=   −5     ; 
−1

 
−5v = (−5) 

[ 
−4  

]
 

1 
5 

[ 
(−5) (−4) 

]
 

=  (−5) 1 
(−5) 5 

[  
20 

]
 

=     −5 
−25

 
 

3.  w + 3v = 

[  
2 

] 

−7 
−1 

[ 
−4  

]
 

+ 3        1     = 
5 

[ 
2 + 3 (−4) 

]
 

−7 + 3 (1)     = 
−1 + 3 (5) 

[ 
−10  

]
 

−4     ; 
14

 
2w − 7v = 2 

[  
2 

]
 

−7 
−1 

[ 
−4  

]
 

− 7        1 

5 
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[ 
2 (2) − 7 (−4) 

]
 

=   2 (−7) − 7 (1) 
2 (−1) − 7 

(5) 

[  

3
2 
]

 
=   
−21 

−
3
7
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4.  4w − u = 4 

[  
2 

]
 

−7 
−1 

[  
3 

]
 

−    −2     = 
0 

[      
4 (2) − 3 

]
 

4 (−7) − (−2) 
4 (−1) − 0 

[    
5 

]
 

=   −26     ; 
−4

 
−2v + 5w = (−2) 

[ 
−4  

]
 

1 
5 

[  
2 

]
 

+ 5    −7     = 
−1 

[ 
(−2) (−4) + 5 (2) 
(−2) (1) + 5 (−7) 
(−2) (5) + 5 (−1) 

]   [  
18 

]
 

=   −37 
−15

 
 

5.  −u + v + w = − 

[  
3 

] 

−2 
0 

[ 
−4  

] 

+      1 
5 

[  
2 

] 

+   −7     = 
−1

[     
−3 − 4 + 2 

]
 

− (−2) + 1 − 7     = 
−0 + 5 − 1 

[ 
−5  

]
 

−4     ; 
4

 
2u − v + 3w = 2 

[  
3 

]
 

−2     − 
0 

[ 
−4  

]
 

1 
5 

[  
2 

]
 

+ 3    −7     = 
−1

[ 
2 (3) − (−4) + 3 (2) 
2 (−2) − 1 + 3 (−7) 

2 (0) − 5 + 3 (−1) 

]   [  
16 

]
 

=   −26 
−8

 
 

6.  3u − 2v + 5w = 3 

[  
3 

] 

−2 
0 

[ 
−4  

]
 

− 2        1 
5 

[  
2 

] 

+ 5    −7     = 
−1

[  
3 (3) − 2 (−4) + 5 (2) 

3 (−2) − 2 (1) + 5 (−7) 
3 (0) − 2 (5) + 5 (−1) 

]   [  
27 

]
 

=   −43     ; 
−15

 
−4u + 3v − 2w = −4 

[  
3 

]
 

−2 
0 

[ 
−4  

]
 

+ 3        1 
5 

[  
2 

]
 

− 2    −7     = 
−1

[  
(−4) (3) + 3 (−4) − 2 (2) 

(−4) (−2) + 3 (1) − 2 (−7) 
(−4) (0) + 3 (5) − 2 (−1) 

 

7.    3x1    −      x2     =     8 
2x1    +   5x2    =   13 

 

8.      −x1     +   9x2    =     −7 
6x1    −    5x2    =   −11 

−4x1                              =      3 

]   [ 
−28  

]
 

=      25 
17

 

9.    −6x1      +   5x2                         =     4 
5x1    −    3x2    +   2x3    =   16 

 

10.    2x1                         +   5x3    +   4x4    =   0 
7x1    +   2x2    +     x3     +   5x4    =   4 
8x1    +   4x2    +   6x3    +   7x4    =   3 
3x1    +   2x2    +     x3                         =   5

 
11.  x1 

[   
2 

] 

−1 

 
+ x2 

[   
8 

] 

−3 

 
+ x3 

[ 
−4  

] 

=
 

5 

[ 
−10  

]
 

4

 
12.  x1 

[ 
−2  

]
 

1 
7 

 
+ x2 

[    
5 

]
 

−2 
−17 

 
+ x3 

[ 
−10  

]
 

3 
34 

[    
4 

]
 

=     −1 
−16

 
 

13.  

x1 

[  
1 

] −
2 

−3  
 

+ x2 [ 
−1  

]
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2 
−3 

 
 
+ x3 

[ 
−3  

]
 
6 

1
0 

 
 
+ x4 

[ 

−1  

]
 

2     

= 
0 

[ 

−
1  

]
 
−
1 

5
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1 

− 

= 

 

 
 

 
14.  x1 

[ 
−5  

]
 

3 
1 

 
+ x2 

[  
9 

]
 

−5     = 
−2 

[ 
13 

]
 

−9 
−2

 

 
15. 

[ 
x1

 

x2 

] 

= 

[ 
−4  

]
 

0 

 

 
+ s1 

[ 
3 

] 

1

[     ]      [     ]

16.      
x1 
x2 

[ 
x1

 

= s      
−2 

1 

]   [  
7 

] 

 

 
 
[ 

−2  
]

17. x2      = 
x3 

−3     + s1            0 
0                    1

 
x1   

      
1  

  
3  

  
−4  

18.  
 x2

  
= 

 −2    0        5 

 x3         0  + s1  0  + s2      1 

x4                     0                  1                     0

 
x1  

     

 

4 
          

6 
          

−5  

19.  
 x2  

= 
 0  

+ s1 
 0  

+ s2 
     1 

 x3 

x4 

      −9  
         

 
0 

3 
              

0  
1                     0

 
x1  

            
1  

 

 
−7   

 
14   

 
−1  

 x2        
20.  

 
x  

     
     3        

 

0           
0 

 
+ s1            

0           
0 

 
+ s2            

0               1   
1 

 
+ s3 

     
0                     

 x4 

x5 

      −12           

 
0 

1           
1 

0               0  
0                     0

 

 
21.  1u + 0v = u = 

[   
3 

] 

−2 

 

 
, 0u + 1v = v = 

[   
1 

]
 
, 1u + 1v = 

−4 

[   
3 

] 

−2 
+ 

[ 
−1  

]
 

−4 

[   
2 

]
 

=   
−6

 
22.  1u + 0v = u = 

[    
7 

]
 

1 
−13 

 
, 0u + 1v = v = 

[  
5 

]
 

−3    , 
2

 
1u + 1v = 

[    
7 

]
 

1     + 
−13 

[  
5 

]
 

−3 
2 

[  
12 

]
 

=     −2    . 
−11

 
23.  1u + 0v + 0w = u = 

[ 
−4  

]
 

0 
−3 

 
, 0u + 1v + 0w = v = 

[ 
−2  

]
 

−1 
5 

 
, 0u + 0v + 1w = w = 

[  
9 

]
 

6    . 
11
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1  

     
4   

 
9 

24.  1u + 0v + 0w = u = 
 8 

, 0u + 1v + 0w = v = 
 −2  

, 0u + 0v + 1w = w = 
 9 

. 
2 

                                       

 
5 

                                         
0 

 
[ 

a  
] 

 
[ 

−1  
] 

2 

[ 
−10  

] 

 
[ 

−3a − 4 
] 

−5                                                 1 

[ 
−10  

]

25.  −3     
3    

+ 4        
b    

= 19      
⇒ −9 + 4b    

=
 19      

⇒ −3a − 4 = −10 and −9 + 4b = 19.

Solving these equations,  we obtain  a = 2 and b = 7.

[ 
4 

] [ 
−3  

] [ 
b 

] [ 
−1  

] [  
16 − 9 − 2b 

] 

= 

[ 
−1  

]

26.  4    
a     

+ 3 5    
− 2    

8     
= 7      

⇒    
4a + 15 − 16                7         

⇒

7 − 2b = −1 and 4a − 1 = 7. Solving these equations,  we obtain  a = 2 and b = 4.
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−2 7   8 
]

 
 

(5/2)R1+R2→R2 

[ 
−2 7 8 

5 −3    9 
∼ 0 29 

2 
29 

 

− 

− 

[               ] 

2 

2 

6 

 

 
 

[ 
−1  

]    [
 3 

]   [
 c 

]    [
 1 + 6 

]   [   
c 

]

27.  − a     + 2    −2     =   −7 
2                   b                8 

⇒        −a − 4     =   −7         ⇒ 
−2 + 2b                8

7 = c, −a − 4 = −7, and −2 + 2b = 8. Solving these equations,  we obtain  a = 3, b = 5, and c = 7.
 

 

28.  − 

[  
a  

] 

−3 
0 

[ 
1 

] 

−    b     = 
5 

[ 
4 

] 

2 
c 

[ 
−a − 1 

]
 

⇒       3 − b     = 
−5 

[ 
4 

] 

2         ⇒ 
c

− a − 1 = 4, 3 − b = 2, and −5 = c. Solving these equations,  we obtain  a = −5, b = 1, and c = −5.

  
1  

      
b  

 

 
2  

  
−3  

    
2b − 3   

 
−3  

2          1       c    −4           −c    −4  

29.       a 
1 

 + 2  −2   −  
3 

5  =  
0 

3   ⇒ 
d 

 −a − 9 
5 

 =  3      ⇒ 
d

2b − 3 = −3, −c = −4, −a − 9 = 3, and  5 = d.  Solving these  equations,  we obtain  a = −12,  b = 0, 
c = 4, and d = 5.

    
a  

  
5 

         
2  

 

   
11  

  
−a + 10 − 2   

   
11 

4         1       c       −4       −4 + 2 − c    −4  

30.       −2 
−1 

 + 2   b 
3 

 −  −3   =  
−6 

3   ⇒    
d 

2 + 2b + 3 
1 + 6 + 6 

 =  3      ⇒ 
d

− a + 8 = 11, −2 − c = −4, 5 + 2b = 3, and 13 = d. Solving these equations,  we obtain  a = −3, b = −1, 
c = 2, and d = 13.

 
31.  x a

  
+ x a

 
[ 

−2  
]   

x 

[ 
7 

]   [
 

= 
8 

]         [ 
 

−2x1  + 7x2
 
]   [ 

8 
]

1   1          2   2  = b   ⇔      x1 

5    
+  2       −3 9         

⇔         
5x1 − 3x2      

=     
9 

⇔  the

augmented matrix      
−2       7   8     

has a solution: 
5   −3    9 

[                                                      ] 
 

 

From  row 2,   29 x2 = 29  ⇒  x2 = 2.  From  row 1, −2x1  + 7(2) = 8   ⇒ 
combination of a1   and a2   , with b =3a1 + 2a2. 

x1 = 3.  Hence b is a linear

 
32.  x1a1 + x2a2 = b    ⇔      x1 

[   
4 

]
 

−6 

 
+ x2 

[ 
−6  

]
 

9 

[   
1 

]
 

=   
−5 

[   
4x1 − 6x2  

]
 

⇔      
−6x1  + 9x2

[   
1 

]
 

=   
−5 

 

⇔  the augmented matrix 

[   
4   −6       1 

]
 

−6       9   −5 

 

has a solution:

[   
4   −6       1 

]  
(3/2)R1+R2→R2 

[ 
4   −6      1   

]

−6       9   −5                   
∼

 0     0     − 7

 

Because no solution  exists, b is not a linear combination of a1   and a2.

[  
2 

]     [
 0 

]   [
 1 

]        [
 2x1  

]   [  
1 

]
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2 

2 2 

7 

33.  x1a1 + x2a2 = b   ⇔     x1     −3     + x2        3     =      −5 ⇔       −3x1  + 3x2        = −5    .  The

1                  −3              −2 x1 − 3x2                 −2

first equation  2x1 = 1  ⇒  x1 = 1 . 

( 
Then  the  second equation  −3 

( 
1 
) 

+ 3x2 = −5 

) 
⇒  x2 = − 7 .  We

check the third  equation,   1  − 3 − 6     = 4 = −2. Hence b is not  linear combination of a1   and a2.

 

 

34.  x1a1 + x2a2 = b    ⇔      x1 

[  
2 

]
 

−3 
1 

 

 
+ x2 

[  
0 

]
 

3 
−3 

[  
6 

]
 

=      3 
−9 

[         
2x1 

⇔       −3x1  + 3x2 

x1 − 3x2 

]   [  
6 

]
 

=      3 
−9 

 

 
.  The

first equation  2x1 = 6  ⇒  x1 = 3.  Then  the  second equation  −3 (3) + 3x2 = 3  ⇒  x2 = 4.  We check 
the third  equation,  3 − 3(4) = −9. Hence b is a linear combination of a1  and a2, with b =3a1 + 4a2.
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1   −3 2 1 
2       5 2 −2 
1   −3 4 3 

 
11 

11   1 

 2 

− 

0 

0 

 

 
 

 
35.  x1a1 +x2a2 + x2a2 = b    ⇔      x1 

[ 
1 

]
 

2 
 
+x2 

[ 
−3  

]
 

5 
 
+x3 

[ 
2 

]
 

2 

[  
1 

]
 

=   −2 

[  
x1 − 3x2 + 2x3  

]
 

⇔    2x1 + 5x2 + 2x3

[  
1 

]
 

=   −2 
3 

 
⇔ the augmented matrix 

 
[ 

[ 
1   −3    2       1 

]
 

2       5   2   −2 
1   −3    4       3 

]  −2R1+R2→R2 

−R1+R3→R3 ∼ 

 
yields a solution. 

 
[ 

1   −3       2       1 
]

 
0     11   −2    −4 
0       0       2       2

 

From  row 3, we have 2x3 = 2  ⇒  x3 = 1.  From  row 2, 11x2 − 2(1) = −4   ⇒  x2 = −  2  .  From row 
 2                                                                    17

 

11                                                                   11 
.  Hence b is a linear  combination of a1,  a2,  and  a3,  with

b = − 17 a − 
11 

a2  + a3. x  = −

[  
2 

]     [
 0 

]     [ 
−2  

]   [  
2 

]

36.  x1a1 + x2a2 + x2a2 = b   ⇔     x1       −3 + x2 3     + x3     −1 =   −4         ⇔

[        
2x1 − 2x3 

−3x1  + 3x2 − x3 

x1 − 3x2 + 3x3 

]   [  
2 

]
 

=   −4 
5 

 
⇔ the augmented matrix 

[  
2       0   −2       2 

]
 

−3       3   −1    −4 
1   −3       3       5 

 
yields a solution.

[  
2       0       2       2 

]   (3/2)R1+R2→R2 

(−1/2)R1+R3→R3
 

[ 
2       0   −2       2 

]

−3       3   −1    −4 
1   −3       3       5 

∼ 
 
 
R2+R3→R3 

∼ 

0       3   −4    −1 
0   −3       4       4 

[ 
2   0   −2       2 

]
 

0   3   −4    −1 
0   0       0       3

 

From  the  third  equation,  we have 0 = 3, and  hence the  system  does not  have a solution.   Hence b is 
not  a linear combination of a1,  a2,  and a3. 

37.  Using vectors,  we calculate
 

(2) 

[ 
29 

]
 

3 
4 

 

+ (1) 

[ 
18 

]
 

25     = 
6 

[ 
76 

]
 

31 
14

Hence we have 76 pounds  of nitrogen,  31 pounds  of phosphoric  acid, and 14 pounds  of potash. 
 

38.  Using vectors,  we calculate
 

(4) 

[ 
29 

]
 

3 
4 

 

+ (7) 

[ 
18 

]
 

25     = 
6 

[ 
242 

]
 

187 
58

Hence we have 242 pounds  of nitrogen,  187 pounds  of phosphoric  acid, and 58 pounds  of potash. 
 

39.  Let x1 be the amount of Vigoro, x2 the amount of Parker’s,  and then  we need
[ 

29 
]

 

x1        3 
4 

 

 
+ x2 

[ 
18 

]
 

25     = 
6 

[ 
112 

]
 

81 
26

 

Solve using the corresponding  augmented matrix: 

[ 
29   18   112 

]   (−3/29)R1+R2→R2 

 

 
 
29     18     112 

3   25     81 
(−4/29)R1+R3→R3 ∼ 0    671            

29 
2013 

29      

4     6     26 102 
29 

306 
29

 
29     18     112  

(−102/671)R2+R3→R3                                     671 ∼                                 
29 

2013 
29      
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0       0         0
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29 18 159 
0 1 4 
0 0 0 

 

29                   29 

0 

0 

29                  29 

0 

0 

0 

 

 
 

From  row 2, we have  671 x2 = 2013     ⇒  x2 = 3.  Form  row 1, we have 29x1 + 18(3) = 112 
Thus  we need 2 bags of Vigoro and 3 bags of Parker’s. 

 

40.  Let x1 be the amount of Vigoro, x2 the amount of Parker’s,  and then  we need 

⇒  x1 = 2.

[ 
29 

] 

x1        3 
4 

 
 
+ x2 

[ 
18 

] 

25     = 
6 

[ 
285 

]
 

284 
78

Solve using the corresponding  augmented matrix: 
 

[ 
29   18   285 

]   (−3/29)R1+R2→R2 

 

 
 
29     18     285 

3   25   284 
(−4/29)R1+R3→R3 ∼ 0    671            

29 
7381 

29      

4     6     78 102 
29 

1122 
29

 
29     18     285  

(−102/671)R2+R3→R3                                     671 ∼                                 
29 

7381 
29      

0       0         0 
 

From row 2, we have  671 x2 = 7381    ⇒  x2 = 11. Form row 1, we have 29x1 + 18(11) = 285 
Thus  we need 3 bags of Vigoro and 11 bags of Parker’s. 

 

41.  Let x1 be the amount of Vigoro, x2 the amount of Parker’s,  and then  we need 

 

 
⇒  x1 = 3.

[ 
29 

] 

x1        3 
4 

 
 
+ x2 

[ 
18 

] 

25     = 
6 

[ 
123 

]
 

59 
24

Solve using the corresponding  augmented matrix: 
 

[ 
29   18   123 

]   (−3/29)R1+R2→R2 

 

 
 
29    18     123  

3   25     59 
(−4/29)R1+R3→R3 

∼ 0     671            
29 

1342 
29      

4     6     24 102 
29 

204 
29

(29/671)R2→R2 

(−102/29)R2+R3→R3 
∼ 

[ 
29   18   123 

]
 

0     1      2 
0     0      0

 

Back substituting gives x2 = 2 and x1 = 3. Hence we need 3 bags of Vigoro and 2 bags of Parker’s. 
 

42.  Let x1 be the amount of Vigoro, x2 the amount of Parker’s,  and then  we need

[ 
29 

] 

x1        3 
4 

 
 

+ x2 

[ 
18 

] 

25     = 
6 

[ 
159 

]
 

109 
36

Solve using the corresponding  augmented matrix: 
 

[ 
29   18   159 

]   (−3/29)R1+R2→R2 

 
 
29    18     159  

3   25   109 
4     6     36 

(−4/29)R1+R3→R3 
∼ 

 
 

(29/671)R2→R3 

(−102/29)R2+R3→R3 
∼ 

671           
 29           
102 
29 

[ 

2684 
 29       
408      
29 

]

 
 

Back substituting gives x2 = 4 and x1 = 3. Hence we need 3 bags of Vigoro and 4 bags of Parker’s.
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0 

0 

0 

0      0 

671 

0 

0 

29                  29 

0 

 

 
 
 

43.  Let x1 be the amount of Vigoro, x2 the amount of Parker’s,  and then  we need

[ 
29 

]
 

x1        3 
4 

 

 
+ x2 

[ 
18 

]
 

25     = 
6 

[ 
148 

]
 

131 
40

 

Solve using the corresponding  augmented matrix: 

[ 
29   18   148 

]   (−3/29)R1+R2→R2 

 
 

 
29    18     148  

3   25   131 
(−4/29)R1+R3→R3 ∼ 0     671            

29 
3355 

29      

4     6     40 102 
29 

568 
29

 
29    18     148  

(−102/671)R2+R3→R3 
∼                       

671 
29 

3355 
29      

0      0        2 
 

Since row 3 corresponds  to the equation  0 = 2, the system  has no solutions. 
 

44.  Let x1 be the amount of Vigoro, x2 the amount of Parker’s,  and then  we need

[ 
29 

] 

x1        3 
4 

 

 
+ x2 

[ 
18 

] 

25     = 
6 

[ 
100 

]
 

120 
40

 

Solve using the corresponding  augmented matrix: 

[ 
29   18   100 

]   (−3/29)R1+R2→R2 

 
 

 
29    18     100  

3   25   120 
(−4/29)R1+R3→R3 ∼ 0     671            

29 
3180 

29      

4     6     40 102 
29 

760 
29

 
29    18     100  

(−102/671)R2+R3→R3 
∼ 

671            
29 

3180 
29      

6400 
671 

 

Since row 3 is 0 = 6400 , we conclude that we can not obtain  the desired amounts. 
 

45.  Let x1 be the amount of Vigoro, x2 the amount of Parker’s,  and then  we need

[ 
29 

] 

x1        3 
4 

 

 
+ x2 

[ 
18 

] 

25 
6 

[ 
25 

] 

=   72 
14

 

Solve using the corresponding  augmented matrix: 

[ 
29   18   25 

]   (−3/29)R1+R2→R2 

 
 

 
29    18      25   

3   25   72 
(−4/29)R1+R3→R3 ∼ 0     671            

29 
2013 

29      

4     6   14 102 
29 

306 
29

 
29    18      25    

(−102/671)R2+R3→R3                                     671 ∼                                 
29 

2013 
29      

0      0        0 
 

From  row 2, we have  671 x2 = 2013     ⇒  x2 = 3. From  row 1, we have 29x1 + 18(3) = 25 
Since we can not use a negative  amount, we conclude that there  is no solution. 

 

46.  Let x1 be the amount of Vigoro, x2 the amount of Parker’s,  and then  we need 

 
 

⇒  x1 = −1.



348 Chapter 2:  Euclidean Space Section 2.1:  Vectors 348 

 
 
 

[ 
29 

] 

x1        3 
4 

 

 

+ x2 

[ 
18 

] 

25     = 
6 

[ 
301 

]
 

8 
38
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29                     29 

0 

27               27 

0 

27                 9 

0 

27               27 

 

 
 

Solve using the corresponding  augmented matrix: 
 

[ 
29   18   301 

]   (−3/29)R1+R2→R2 

 

 
 
29    18      301   

(−4/29)R1+R3→R3
 

671
 

671
3   25       8 ∼                         0 29        

− 
29     

4     6     38 
0     102 102

29        
− 

29  
29    18      301   

(−102/671)R2+R3→R3
 

671
 

671
∼                        0 29        

− 
29     

0      0         0 

 
From row 2, we have  671 x2 = − 671    ⇒ x2 = −1. Since we can not use a negative  amount, we conclude 
that there  is no solution. 

 

47.  Let x1 be the number  of cans of Red Bull, and x2 the number  of cans of Jolt  Cola, and then  we need

[ 
27 

]
 

x1     80 

 

 
+ x2 

[  
94 

]
 

280     
=

 

[ 
148 

]
 

440

Solve using the corresponding  augmented matrix: 

[ 
27     94   148 

]  
(−80/27)R1+R2→R2

 

 
[ 

27    94   148 
]

80   280   440                      
∼

 40          40 
27          27

 

From  row 2, we have  40 x2 = 40     ⇒  x2 = 1.  From  row 1, 27x1 + 94(1) = 148 
need to drink  2 cans of Red Bull and 1 can of Jolt  Cola. 

 

⇒  x1 = 2. 

 

Thus  we

 

48.  Let x1 be the number  of cans of Red Bull, and x2 the number  of cans of Jolt  Cola, and then  we need

[ 
27 

]
 

x1     80 

 

 
+ x2 

[  
94 

]
 

280     
=

 

[ 
309 

]
 

920

Solve using the corresponding  augmented matrix: 

[ 
27     94   309 

]  
(−80/27)R1+R2→R2

 

 
[ 

27    94    309 
]

80   280   920                      
∼

 40        40 
27          9

 

From  row 2, we have  40 x2 = 40
 

 

⇒  x2 = 3.  From  row 1, 27x1 + 94(3) = 309  ⇒  x1 = 1.  Thus we

need to drink  1 can of Red Bull and 3 cans of Jolt  Cola. 
 

49.  Let x1 be the number  of cans of Red Bull, and x2 the number  of cans of Jolt  Cola, and then  we need

[ 
27 

]
 

x1     80 

 

 
+ x2 

[  
94 

]
 

280     
=

 

[ 
242 

]
 

720

Solve using the corresponding  augmented matrix: 

[ 
27     94   242 

]  
(−80/27)R1+R2→R2

 

 
[ 

27    94    242 
]

80   280   720                      
∼

 40        80 
27        27

 

From  row 2, we have  40 x2 = 80     ⇒  x2 = 2.  From  row 1, 27x1 + 94(2) = 242 
need to drink  2 cans of Red Bull and 2 cans of Jolt  Cola. 

 

⇒  x1 = 2.  Thus  we
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50.  Let x1 be the number  of cans of Red Bull, and x2 the number  of cans of Jolt  Cola, and then  we need

[ 
27 

]
 

x1     80 

 

 

+ x2 

[  
94 

]
 

280     
=

 

[  
457 

]
 

1360
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27     94     457 
]

 
 

(−80/27)R1+R2→R2 

[ 
27    94    457 

80   280   1360 
∼ 

0     40       160 
27        27 

 27                27 

 

 
 
 

Solve using the corresponding  augmented matrix: 
[                                                              ] 

 

 

From  row 2, we have  40 x2 = 160     ⇒  x2 = 4.  From  row 1, 27x1 + 94(4) = 457 
need to drink  3 cans of Red Bull and 4 cans of Jolt  Cola. 

⇒  x1 = 3.  Thus  we

 

51.  Let x1 be the number  of servings of Lucky Charms  and x2 the number  of servings of Raisin Bran,  and 
then  we need [ 

10 
]

 
x1      25 

25 

 

+ x2 

[  
2 

]
 

25     = 
10 

[  
40 

]
 

200 
125

Solve using the corresponding  augmented matrix: 

[ 
10     2     40 

]  (−5/2)R1+R2→R2 

(−5/2)R1+R3→R3
 

 

 

[ 
10     2     40 

]

25   25   200 
25   10   125 

∼ 
 
 
(−1/4)R2+R3→R3 

∼ 

0   20   100 
0     5     25 

[ 
10     2     40 

]
 

0   20   100 
0     0       0

 

From  row 2, we have 20x2 = 100  ⇒  x2 = 5. From  row 1, 10x1 + 2(5) = 40  ⇒  x1 = 3. Thus  we need 
3 servings of Lucky Charms  and 5 servings of Raisin Bran. 

 

52.  Let x1 be the number  of servings of Lucky Charms  and x2 the number  of servings of Raisin Bran,  and 
then  we need [ 

10 
]

 
x1      25 

25 

 

+ x2 

[  
2 

]
 

25     = 
10 

[  
34 

]
 

125 
95

Solve using the corresponding  augmented matrix: 

[ 
10     2     34 

]  (−5/2)R1+R2→R2 

(−5/2)R1+R3→R3
 

 

 
[ 

10     2   34 
]

25   25   125 
25   10     95 

∼ 
 
 
(−1/4)R2+R3→R3 

∼ 

0   20   40 
0     5   10 

[ 
10     2   34 

]
 

0   20   40 
0     0     0

 

From  row 2, we have 20x2 = 40  ⇒  x2 = 2. From  row 1, 10x1 + 2(2) = 34  ⇒  x1 = 3. Thus  we need 
3 servings of Lucky Charms  and 2 servings of Raisin Bran. 

 

53.  Let x1 be the number  of servings of Lucky Charms  and x2 the number  of servings of Raisin Bran,  and 
then  we need [ 

10 
]

 
x1      25 

25 

 

+ x2 

[  
2 

]
 

25     = 
10 

[  
26 

]
 

125 
80

Solve using the corresponding  augmented matrix: 

[ 
10     2     26 

]  (−5/2)R1+R2→R2 

(−5/2)R1+R3→R3
 

 

 
[ 

10     2   26 
]

25   25   125 
25   10     80 

∼ 
 
 
(−1/4)R2+R3→R3 

∼ 

0   20   60 
0     5   15 

[ 
10     2   26 

]
 

0   20   60 
0     0     0

 

From  row 2, we have 20x2 = 60  ⇒  x2 = 3. From  row 1, 10x1 + 2(3) = 26  ⇒  x1 = 2. Thus  we need 
2 servings of Lucky Charms  and 3 servings of Raisin Bran.
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[       ]     [ 

 

 
 
 

54.  Let x1 be the number  of servings of Lucky Charms  and x2 the number  of servings of Raisin Bran,  and 
then  we need [ 

10 
]

 
x1      25 

25 

 

+ x2 

[  
2 

]
 

25     = 
10 

[  
38 

]
 

175 
115

 

Solve using the corresponding  augmented matrix: 
 

[ 
10     2     38 

]  (−5/2)R1+R2→R2 

(−5/2)R1+R3→R3
 

 

 
[ 

10     2   38 
]

25   25   175 
25   10   115 

∼ 
 
 
(−1/4)R2+R3→R3 

∼ 

0   20   80 
0     5   20 

[ 
10     2   38 

]
 

0   20   80 
0     0     0

 

From  row 2, we have 20x2 = 80  ⇒  x2 = 4. From  row 1, 10x1 + 2(4) = 38  ⇒  x1 = 3. Thus  we need 
3 servings of Lucky Charms  and 4 servings of Raisin Bran.

 
55.   (a)  a = 

[ 
2000 

]
 

8000 

 
, b = 

[  
3000 

]
 

10000

[  
3000 

] [ 
24000 

]

(b)  8b = (8) 
10000     

=
 80000 

.  The  company  produces  24000 computer monitors  and  80000

flat panel televisions  at facility B in 8 weeks.

(c)  6a + 6b = 6    
2000     

+ 6 
8000 

3000 
]    [

 

10000     
=

 
30000 

108000 

] 

.   The  company  produces  30000 computer

monitors  and 108000 flat panel televisions  at facilities A and B in 6 weeks. 

(d)  Let  x1  be  the  number  of weeks  of production  at  facility  A,  and  x2  the  number  of weeks  of 
production at facility B, and then  we need

[ 
2000 

x1     8000 

]      [ 

+ x2 
3000 

]   [
 

10000     
=

 
24000 

]
 

92000

Solve using the corresponding  augmented matrix: 

[ 
2000     3000   24000 

]  
(−4)R1+R2→R2

 

 
[ 

2000      3000    24000 
]

8000   10000   92000                   
∼

 0   −2000    −4000

 

From  row 2, we have −2000x2  = −4000  ⇒  x2 = 2.  From  row 1, 2000x1 + 3000(2) = 24000  ⇒ 
x1 = 9. Thus  we need 9 weeks of production at facility A and 2 weeks of production at facility B. 

 

56.  We assume a 5-day work week. 

 
(a)  a = 

[ 
10 

]
 

20 
10 

 
, b = 

[ 
20 

]
 

30 
40 

 
, c = 

[ 
40 

]
 

70 
50

[ 
40 

]   [
 800  

]

(b)  20c = (20)     70     =   1400    . The company  produces  800 metric  tons of PE,  1400 metric  tons 
50             1000 

of PVC,  and 1000 metric  tons of PS at facility C in 4 weeks.
[ 

10 
]     [ 

20 
]     [ 

40 
]   [

 700  
]

(c)  10a + 10b + 10c = 10    20     + 10    30     + 10    70     =   1200    . The company  produces  700 
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10                  40                  50              1000 
metric  tons of PE,  1200 metric  tons of PVC,  and 1000 metric  tons of PS at facilities A,B, and C 
in 2 weeks.
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0 −10 −10 −60 
0 0 −10 −40 

 

1 

− 

7 

7                       7 

3 
5 

7 

 

 
 
 

(d)  Let x1 be the number  of days of production at facility A, x2 the number  of days of production at 
facility B, and x3 the number  of days of production at facility C. Then  we need

[ 
10 

]
 

[ 
20 

]
 

[ 
40 

]
 

[ 
240 

]

x1 20 + x2 30 + x3 70 = 420 

 10  40  50  320 

Solve using the corresponding  augmented matrix: 

[ 
10   20   40   240 

]  −2R1+R2→R2 

 
[ 

10       20       40     240 
]

20   30   70   420 
10   40   50   320 

−R1+R3→R3 ∼ 
 
 
2R2+R3→R3 

∼ 

0   −10    −10    −60 
0       20       10       80 

[ 
10     20       40      240  

]

 

 
 
 
 
 
 
 
 
 
 
 

57. 

From  row 3, we have −10x3 = −40   ⇒  x3 = 4.  From  row 2, −10x2 − 10(4) = −60   ⇒  x2 = 2. 
From row 1, 10x1 + 20(2) + 40(4) = 240  ⇒  x1 = 4. Thus we need 4 days of production at facility 
A, 2 days of production at facility B, and 4 days of production at facility C.

 
 
 

v = 5u1+3u2+2u3
 

  ( [   ] 
1       5

 
+ 3 

[ 
−1  

] [ 
2 

])     [ 
16 

]   [  8    
]

 

+ 2              =              =
5+3+2        

= 
10 2 

 

( [ 
−1  

]
 

4               5 
 

[  
2 

]
 

10 

 
[ 

0 
]

 

32              16 
5 

[ 
5 
])

 

 
[ 

23 
]     

12

58.  v = 4u1 +1u2+2u3 +5u4
 

 1       4
 

0     + 1
 

1     + 2    4
 

+ 5    2
 

=   1
 

19     = 
 

19    

4+1+2+5          
= 

12 

2                −3 
12 

3                0                     11 
  12     

11 
12

59.  Let x1, x2,and x3  be the mass of u1, u2, and u3 respectively.  Then
 

       x1u1 +  x2u2 +  
x3u3 
v= 

11 

  1  
(

 
=       x1 

11 

[ 
−1  

]
 

3 

 
+ x2 

[   
3 

]
 

−2 

 
+ x3 

[ 
5 

])
 

2

[    
 1                3

 
 5          

] [ 
 13    

]

=   
− 

11 
x1 + 

11 
x2 + 

11 
x3      

=     11 
 3                2                2                              16

 

11 
x1 − 

11 
x2 + 

11 
x3                   11 

 

We obtain  the 2 equations,  −x1 +3x2 +5x3  = 13 and 3x1 −2x2 +2x3  = 16. Together with the equation 
x1 + x2 + x3 = 11, we have 3 equations  and solve the corresponding  augmented matrix:

[  
1       3   5   13 

]    
3R1+R2→R2 

R1+R3→R3
 

[ 
−1    3     5   13 

]

3   −2    2   16 
1       1   1   11 

∼ 
 

 
(−4/7)R2+R3→R3

 

0   7   17   55 
0   4     6   24 

 
−1    3         5       13 

∼                        0   7       17       55  
0   0   − 26      − 52

 From  row 3, − 26 x3 = − 52
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 ⇒   x3 = 2.  From  row 2, 7x2 + 17(2) = 55   ⇒   x2 = 3.  From  row  1,

−x1 + 3(3) + 5(2) = 13  ⇒  x1 = 6.
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60.  Let x1, x2, x3,and x4  be the mass of u1, u2, u3, and u4 respectively.  Then

 
         x1u1 +  x2u2 +  x3u3 +  
x4u4 
v = 

11 

  1  
(

 
=       x1 

11 

[ 
1 

] 

1 
2 

 
 
+ x2 

[  
2 

] 

−1 
0 

 
 
+ x3 

[ 
0 

] 

3 
2 

 
 
+ x4 

[ 
−1  

]) 

0 
1

  
 1                2

 
 1          

   
 4    

11 
x1 + 

11 
x2 − 

11 
x4                  11

= 
   1                1

 
 3           

= 
   5    

  11 
x1 − 

11 
x2 + 

11 
x3        11    

 2                2                1                             12
 

11 
x1 + 

11 
x3 + 

11 
x4                  11 

 

We obtain  the 3 equations,  x1 + 2x2 − x4 = 4, x1 − x2 + 3x3 = 5, and 2x1 + 2x3 + x4 = 12. Together 
with the equation  x1 + x2 + x3 + x4 = 11, we have 4 equations  and solve the corresponding  augmented 
matrix:

 
1       2   0   −1      4   

 1   −1    3       0     5   
 2       0   2       1   12   

1       1   1       1   11 

−R1+R2→R2 

−2R1+R3→R3 

−R1+R4→R4 ∼ 
 

 
(−4/3)R2+R3→R3 

(−1/3)R2+R4→R4 

 
1       2   0   −1    4  

 0   −3    3       1   1  
 
0   −4    2       3   4  
0   −1    1       2   7 

 
1       2       0   −1      4  

 0   −3       3       1      1 

∼                    
0       0   −2       5         8                                 3         3     
0       0       0      5       20

 

From  row 4,  5 x4  =  20 

 

⇒   x4 = 4.   From  row 3,  −2x3  + 5 (4)  =  8 

3        3 

⇒   x3 = 2.   From  row 2,

3                  3                                                                                                   3                  3 

−3x2  + 3(2) + 4 = 1  ⇒  x2 = 3. From  row 1, x1 + 2(3) − 4 = 4  ⇒  x1 = 2. 
 

61.  For example,  u = (0, 0, −1) and v = (3, 2, 0). 
 

62.  For example,  u = (4, 0, 0, 0) and v = (0, 2, 0, 1). 
 

63.  For example,  u = (1, 0, 0), v = (1, 0, 0), and w = (−2, 0, 0). 
 

64.  For example,  u = (1, 0, 0, 0), v = (1, 0, 0, 0), and w = (−2, 0, 0, 0). 
 

65.  For example,  u = (1, 0) and v = (2, 0). 
 

66.  For example,  u = (1, 0) and v = (−1, 0). 
 

67.  For example,  u = (1, 0, 0), v = (2, 0, 0), and w = (3, 0, 0). 
 

68.  For example,  u = (1, 0, 0, 0), v = (2, 0, 0, 0), w = (2, 0, 0, 0),and  x = (4, 0, 0, 0). 
 

69.  Simply, x1 = 3 and x2 = −2. 
 

70.  For example,  x1 − 2x2 = 1 and x2 + x3 = 1.

[ 
−3  

] [ 
(−2)(−3) 

] [    
6 

]

71.   (a)  True,  since −2 
5     

=    
(−2)(5) 

=   
−10    

.

 
(b)  False, since u − v = 

[ 
1 

]
 

3 

[ 
−4  

]
 

−      
2     

=
 

[ 
1 − (−4) 

] 

=
 

3 − 2 

[ 
5 

]
 

1 
= 

[ 
−3  

]

.
 

1

 

72.   (a)  False.  Scalars may be any real number,  such as c = −1. 

(b)  True.  Vector  components  and scalars can be any real numbers. 
 

73.   (a)  True,  by Theorem  2.3(b). 

(b)  False.  The sum c1 + u1 of a scalar and a vector  is undefined. 
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74.   (a)  False.  A vector  can have any initial  point.
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[ 
0 

 

= 

 

 

= 

= 

 

  = . 
. 

 
= . 

. 
+ . 

. 
     

     

+ . 
. 

+ . = . 
. 

+ . 
. 

 
= . 

. 
= . 

. 
+ . 

. 

 
+ . + . 

. 
 

 b   = a . 
. 

 

 
 

 
(b)  False.  They do not point in opposite directions,  as there does not exist c < 0 such that 

[ 
−2  

] 

[  
1 

]
 

−2     = 
4

c        4    . 
8 

 

75.   (a)  True,  by Definition 2.1, where it is stated that vectors  can be expressed in column or row form. 

(b)  True.  For any vector  v, 0 = 0v. 

76.   (a)  True,  because −2 (−u) = (−2) ((−1) u) = ((−2) (−1)) u = 2u.

(b)  False.  For example,  x   
0 
0 

]   [   ] 

= 
1 

 

has no solution.

 

77.   (a)  False.  It works regardless  of the  quadrant, and  can be established algebraically  for vectors  posi- 
tioned  anywhere. 

(b)  False.   Because  vector  addition  is commutative, one can order  the  vectors  in either  way for the 
Tip-to-Tail Rule. 

 

78.   (a)  False.  For instance,  if u = (2, 1) and  v = (−1, 3), then  u − v = (3, −2) while −u + v = (−3, 2). 
(The  difference u − v is found by adding  u to −v.) 

(b)  True,  as long as the vectors  have the same number  of components.

  
u1

 

u2 

79.   (a)  Let u = 
   

.    

. 
un 

                                               
u1

 

u2 

. Then  (a + b)u = (a + b) 
    

.                                                  

. 
un 

       
(a + b) u1     

       (a + b) u2     
                          
                          

(a + b) un

  
au1  + bu1 

au2  + bu2 
          .           

. 
aun + bun 

       
au1 

       au2 
      
      

aun 

      
bu1 

      bu2 
     
     

bun 

          
u1 

u2  
= a 

    
.             
. 

un 

         
u1 

u2  
+ b 

    
.            
. 

un 

 
 

 
= au + bu. 

  
u1 

u2 

(b)  Let u = 
   

.    

. 
un 

            
v1 

v2 

, v = 
   

.              

. 
vn 

                     
w1 

w2 

, and w = 
    

.                        

. 
wn 

 
 

. Then 

  
u1 

u2 

(u + v) + w = 
   

.    

. 
un 

      
v1 

      v2 
     
     

vn 

      
w1 

      w2 
     
        

. 
wn 

       
u1  + v1 

       u2  + v2 
      
      

un + vn 

      
w1    

      w2    
             
             

wn

  
(u1  + v1) + w1 

(u2  + v2) + w2 
              .               

. 
(un + vn) + wn 

       
u1  + (v1  + w1) 

       u2  + (v2  + w2) 
      
      

un + (vn + wn) 

       
u1 

       u2 
      
      

un 

      
v1  + w1     

      v2  + w2     
                      
                      

vn + wn

  
u1 

u2 
   .    

. 
un 

      
v1 

      v2 
     
       

. 
vn 

      
w1 

      w2 
     
     

wn 

 
 

=u+ (v + w). 

  
u1 

u2 

(c)  Let u = 
   

.    

. 
un 

                                  
u1 

u2 

. Then  a(bu) = a 
      

.                                     

. 
un 

         
 

         
         
         

bu1    
bu2    

 
 

bun
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= 

 

. 

 

 

= 

   

  + − . 

= 

. . . . 

  = . 
. 

= . 
. 

 

 

 
 

  
a (bu1)  

   

 
  a (bu2)      
       

.       
    

(ab) u1 

(ab) u2 
 

.
 

              
u1 

u2  
= (ab)  

.
 

 
 

 
= (ab)u.

                                                     

a (bun) (ab) un                         un

  
u1 

u2 

(d)  Let u = 
   

.    

. 
un 

                                    
u1 

u2 

. Then  u + (−u) = 
    

.                                       

. 
un 

         
u1     

         u2     
                
          

.    
un

  
u1 

  u2 

=       
.
 

      
 

 
+ 

 

−u1 

−u2 

. 

      
 

 
= 

 

u1  − u1 

u2  − u2 

. 

      
0  

 
      0   

. 

 
 
= 0.

   

.   

         

.     

     

 

.        

       

.  

             

 

un 

−un       

un − un 

           

0

  
u1 

u2 

(e)  Let  u = 
   

.
 

                                
u1 

u2 

.   Then  u + 0 = 
    

.
 

      
0 

       

 

 
+ 

 0  
=  

 

u1  + 0 
u2  + 0 

.
 

        
u1 

u2  
= 

    
.
 

 
 

 
= u.  Likewise,

                                                         
 

                                         
.   

           

 
un                                             un                 0 

                              
                              

un + 0                un

 
0  
0  

  
u1    

  u2   
 

  
0 + u1   

 
  0 + u2   

 

  
u1     

  u2    

0 + u =    
. 
0 

 +          
. 

un 

 =        
 

. 
0 + un 

 =           
. 

un 

 = u. 

  
u1 

u2 

(f)  Let u = 
   

.    

. 
un 

                              
u1 

u2 

. Then  1u = (1) 
    

.                                 

. 
un 

       
(1) u1 

       (1) u2 
      
      

(1) un 

       
u1 

       u2 
      
      

un 

 
 

 
= u. 

 
80.  Using, for example,  u = 

[ 
2 

]
 

1 

 
and v = 

[ 
1 

]
 

3    
.

 
 
 
 
 
 
 
 
 
 
 The vector  u − v = 
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[   
1 

]
 

−2 

 

is the 

translat

ion of 

the 

vector  

w′  

which 

has 

initial  

point 

the tip 

of u 

and
 

 
 
 
 
 
 
 
 

81. 

terminal  point the tip of v, as in Figure  6.
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82. 

 
 
 
 
 
 
 

83.           
 
 
 

 

84.          
 
 
 
 

 

85.             
 
 
 
 
 
 

86.
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163 

 

2 

4 

3 

 

 
 
 

87.  We obtain  the  three  equations  2x1 + 2x2 + 5x3 = 0, 7x1 + 4x2 + x3  = 3, and  3x1 + 2x2 + 6x3 = 5. 
Using a computer algebra  system  to solve this system,  we get x1 = 4, x2 = −6.5, and x3 = 1. 

 

88.  We obtain the four equations  x1 +4x2 −4x3 +5x4  = 1, −3x1 +3x2 +2x3 +2x4  = 7, 2x1 +2x2 −3x3 −4x4  = 
2, and  x2 + x3 = −6. Using a computer algebra  system  to solve this  system,  we get x1 = −7.5399, 
x2 = −1.1656, x3 = −4.8344, and x4 = −1.2270.  (Solving this system  exactly,  we obtain  x1 = − 1229 , 

x2 = − 190 , x3 = − 788 , and x4 = − 200 .)163 163                                  163

 

2.2  Practice 

Problems 
[   

2 
] 

 

 
[ 

4 
] 

 

 
[ 

0 
] 

 

 
[   

2 
] 

 

 
[ 

4 
] 

 

 
[   

2 
]

1.   (a)  0u1 +0u2  = 0 −3    
+0    

1     
=

 0    
, 1u1 +0u2  = 1    

−3    
+0    

1     
=

 , 0u1 +1u2  = −

[   
2 

]
 

0    
−3 

[ 
4 

]
 

+ 1    
1     

=
 

[ 
4 

]
 

1

 

 

(b)  0u1 + 0u2 = 0 

[ 
6 

] 

1    +0 
4 

[ 
−2  

] 

3     = 
−3 

[ 
0 

] 

0 
0 

 

 

, 1u1 + 0u2 = 1 

[ 
6 

] 

1    +0 
4 

[ 
−2  

] 

3 
−3 

[ 
6 

] 

=   1 
4 

 

 

, 0u1 +1u2  =

[ 
6 

]
 

0    1 
4 

[ 
−2  

]
 

+ 1        3     = 
−3 

[ 
−2  

]
 

3 
−3 

[  
1 

] 

 

 
 
 
[ 

0 
] 

 

 
 
 
[ 

−1  
]

2.  Set x1u1 + x2u2 = b ⇒   x1 2     + x2     4     =      2         ⇒

[          
x1

 ]   [ 
−1  

] 
−2                  3                 5

2x1 + 4x2      = 2    .  From  the  first equation,  x1 = −1. Then  the  second equation  is 2 (−1) +

−2x1  + 3x2                    5 
4x2 = 2  ⇒  x2 = 1. The  third  equation  is now −2 (−1) + 3 (1) = 5  ⇒ 
{u1, u2} , with (−1) u1 + (1) u2 = b. 

 

5 = 5. So b is in the  span  of

 
3.   (a)  A = 

[  
7   −2    −2  

]
 

−1       7       4 
3   −1    −2 

 
, x = 

[ 
x1 

x2 

x3 

] 
 

, b = 

[  
6 

]
 

11 
1

 
 

(b)  A = 

 

[ 
4   −3    −1    5 

]
 

3     12       6   0 

 
x1 

, x = 
 x2  x3 

x4 

 
 

, b = 

 

[  
0 

] 

10

4.   (a)  Row-reduce  to echelon form: 

[   
2       3 

]  
(1/2)R1+R2→R2

 

 

 
[ 

2       3 
]

−1    −2                   
∼

 0   − 1

 
There  is not a row of zeros, so every choice of b is in the span of the columns of the given matrix 
and,  therefore,  the columns of the matrix  span R2. 

(b)  Row-reduce  to echelon form: 
[ 

4       1 
]  

(−1/4)R1+R2→R2 

[ 
4         1 

]

1   −3                    
∼

 0   − 13
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Since there  is not  a row of zeros,  every  choice of b is in the  span  of the  columns  of the  given 
matrix, and therefore  the columns of the matrix  span R2.
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0 1 2 
0 0 1 

 

1 2→ 2 

 

 
 

5.   (a)  Row-reduce  to echelon form: 

[  
1       3   −1  

]    

R +R    R
 

 

 
[ 

1   3   −1  
]

−1    −2       3 
0       2       5 

∼ 
 
 
−2R2+R3→R3 

∼ 

0   1       2 
0   2       5 

[ 
1   3   −1  

]

 

 
There  is not a row of zeros, so every choice of b is in the span of the columns of the given matrix 
and,  therefore,  the columns of the matrix  span R3. 

(b)  Row-reduce  to echelon form: 
[  

2       0   6 
]  (−1/2)R1+R2→R2 

(1/2)R1+R3→R3
 

[ 
2       0       6 

]

1   −2    1 
−1       4   1 

∼ 
 
 
2R2+R3→R3 

∼ 

0   −2    −2 
0       4       4 

[ 
2       0       6 

]
 

0   −2    −2 
0       0       0

 
Because there  is a row of zeros, there  exists a vector  b that is not  in the  span of the  columns of 
the matrix  and,  therefore,  the columns of the matrix  do not span R3. 

 

6.   (a)  False.  If the vectors  span R3, then  vectors  have three  components, and cannot  span R2. 

(b)  True.  Every  vector  b in R2 can be written as 
 

b   =   x1u1 + x2u2

= 
 

 

which shows that {2u1, 3u2} spans R2. 

x1 

2  
(2u1) +

 

x2 

3  
(3u2)

(c)  True.   Every  vector  b in R3  can  be written as b = x1u1 + x2u2 + x3u3. So Ax  = b has  the 
solution [ 

x1  
]

 
x =     x2       . 

x3 

 

(d)  True.  Every vector b in R2 can be written as b = x1u1 +x2u2  = x1u1 +x2u2 +0u3, so {u1, u2, u3} 
spans R2. 

 

2.2     Span 
 
 
[ 

2 
] 

 
 
[  

9 
] 

 
 
[ 

0 
] 

 
 
[ 

2 
] 

 
 
[  

9 
] 

 
 
[ 

2 
]

1.  0u1 + 0u2 = 0    
6 + 0    

15     
= 0    

, 1u1 + 0u2 = 1    
6 + 0    

15     
= 6    

, 0u1 + 1u2 =

[ 
2 

]
 

0    
6 

[  
9 

]
 

+ 1    
15 

[  
9 

]
 

=   
15

 

2.  0u1 + 0u2 = 0 

[ 
−2  

] 

+ 0 
7 

[ 
−3  

]
 

4 

[ 
0 

]
 

=   
0 

 

, 1u1 + 0u2 = 1 

[ 
−2  

] 

+ 0 
7 

[ 
−3  

]
 

4 
= 

[ 
−2  

]
 

7 

 

, 0u1 + 1u2 =

0 

[ 
−2  

]
 

7 
+ 1 

[ 
−3  

] 

= 
4 

[ 
−3  

]
 

4
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[  
2 

]
 

[ 
1 

]
 

[ 
0 

]
 

[  
2 

]
 

[ 
1 

]
 

[  
2 

]

3. 0u1 + 0u2 = 0 5 + 0    0 =    0 , 1u1 + 0u2 = 1 5 + 0 0 = 5    , 0u1 + 1u2 = 

  −3 4 0  −3  4  −3 

[  
2 

]
 

0        5 
−3 

[ 
1 

]
 

+ 1    0 
4 

[ 
1 

]
 

=   0 
4

 

 
4.  0u1 + 0u2 + 0u3 = 0 

[  
0 

]
 

5    + 0 
−2 

[ 
1 

]
 

2    + 0 
6 

[ 
−6  

]
 

7 
2 

[ 
0 

]
 

=   0 
0 

 
, 1u1 + 0u2 + 0u3 = 1 

[  
0 

]
 

5    + 0 
−2 

[ 
1 

]
 

2    + 
6

[ 
−6  

]
 

 

2 

[  
0 

]
 

 

−2 

[  
0 

]
 

 

−2 

[ 
1 

]
 

 

6 

[ 
−6  

]
 

 

2 

[ 
1 

]
 

 

6

 

 
5.  0u1 + 0u2 + 0u3 = 0 

[ 
2 

]
 

0 
0 

[ 
4 

]
 

+ 0    1 
6 

[ 
−4  

]
 

+ 0        0 
7 

[ 
0 

]
 

=    0 
0 

 
, 1u1 + 0u2 + 0u3 = 1 

[ 
2 

]
 

0 
0 

[ 
4 

]
 

+ 0    1     + 
6

[ 
−4  

]
 

0        0     = 
7 

[ 
2 

]
 

0 
0 

 
, 0u1 + 1u2 + 0u3 = 0 

[ 
2 

]
 

0 
0 

[ 
4 

]
 

+ 1    1 
6 

[ 
−4  

]
 

+ 0        0     = 
7 

[ 
4 

]
 

1 
6

 
0  

 
−1   

   
12   

 
0   

 
0   

 
−1  

6.  0u1 +0u2 +0u3  = 0 
 1  

+0 
 8  

+0 
 −1   

= 
 0 

, 
1u

 +0u
 
+0u

 
= 1 

 1  
+0 

 8  
+

 3  
0 

 −5   
2 

     1   
0 

 0        1
 

0 

2            3            3   
0 

 −5   
2

   
12   

 
0   

 
0   

 
−1   

   
12   

 
−1  

0 
 −1    1    1        8    −1        8 

     1  =  3 
, 0u1 + 1u2 + 0u3 = 0  3  + 1  −5   + 0 

 

1  =  −5  

0              0                                                0 2                   0                 2

[ 
3 

]
 

7.  Set x1a1 = b ⇒  x1     5     
=

 

[    
9 

]
 

−15 

[ 
3x1  

]
 

⇒    
5x1 

[    
9 

]
 

=               . 
−15

From the first component, x1  = 3, but  from the second component x1 = −3. Thus  b is not in the span 
of a1. 

[   
10 

] [ 
−30  

] [   
10x1  

] [ 
−30  

]

8.  Set x1a1 = b ⇒   x1 −15     
=

 45      
⇒ −15x1      

=
 45    

.

From  the first component, x1  = −3, and from the second component x1 = 3. Thus  b = −3a1,and b is 
in the span of a1. 

 
9.  Set x1a1 = b ⇒   x1 

[  
4 

]
 

−2     = 
10 

[  
2 

]
 

−1 
−5 

[  
4x1 

⇒       −2x1 

10x1 

]   [  
2 

]
 

=   −1    . 
−5

From the first and second components, x1  = 1 , but  from the third  component x1 = − 1 . Thus  b is not 2                                                                                                  2 
in the span of a1. 

 
10.  Set x1a1 + x2a2 = b ⇒   x1 

[ 
−1  

]
 

3 

−
1 

 
+ x2 

[ 
−2  

]
 

−3 
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6 [ 

−

6  
]

 

=     
 
9     
    

⇒ 
2

[ 
−x1 − 2x2 

3x1 − 3x2 

−x1 + 6x2 

]   [ 
−6  

]
 

=      9 
2 

 
.  We obtain  3 equations  and  row-reduce  the  associated  augmented matrix
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0 0 0 

0 0 0 

 

10 

0     5
 

3        
10 

3 

 

 
 

to determine if there  are solutions. 

[ 
−1    −2    −6  

]   
3R1+R2→R2 

 

 
[ 

−1    −2    −6  
]

3   −3       9 
−1       6       2 

−R1+R3→R3 ∼ 
 
 
(8/9)R2+R3→R3 

∼ 

0   −9    −9 
0       8       8 

[ 
−1    −2    −6  

]
 

0   −9    −9 
0       0       0

From  the second row, −9x2  = −9  ⇒  x2 = 1.From  row 1, −x1 − 2(1) = −6 
b is in the span of a1   and a2,  with b = 4a1  + a2. 

⇒  x1 = 4. We conclude

[ 
−1  

]     [ 
2 

]   [ 
−10  

]

11.  Set x1a1 + x2a2 = b ⇒   x1 4     + x2        8     =     −8         ⇒

[  
−x1 + 2x2 

−3                  −7                   7 
]   [ 

−10  
]

4x1 + 8x2      =      −8    . We obtain  3 equations  and row-reduce the associated  augmented matrix 
−3x1  − 7x2                      7 

to determine if there  are solutions.

[ 
−1       2   −10  

]    
4R1+R2→R2 

[ 
−1         2   −10  

]

4       8     −8 
−3    −7         7 

−3R1+R3→R3 ∼ 
 
 
(13/16)R2+R3→R3 

∼ 

0       16   −48 
0   −13       37 

[ 
−1      2   −10  

]
 

0   16   −48 
0     0     −2

 

From  the third  row, 0 = −2,and hence there  are no solutions.  We conclude that there  do not exist x1 

and x2 such that x1a1 + x2a2 = b, and therefore  b is not in the span of a1   and a2.

     
3 

  
−4   

   
0 

12.  Set x1a1 + x2a2 = b ⇒ x1 
 1  

+ x2 
 2  

= 
 10      

⇒

 
     

3x1 − 4x2    

 
   

0  
 

 −2  
          

 
−1 

3 
        

1  
3                5

       x1 + 2x2   
  10 

 −2x1  + 3x2 

−x1 + 3x2 

 =  1 
. We obtain  4 equations  and row-reduce  the associated  augmented matrix 

5

to determine if there  are solutions. 
 

     
3   −4      0   

     1       2   10   

 

 
(−1/3)R

1
+R2→R2 

(2/3)R1+R3⇒R3 

(1/3)R1+R4→R4 

 

 
 
3   −4     0   

 0     
3        

10 

 −2       3     1                  ∼  
0     1         1  

−1       3     5 

         
3                  

3         
5

 

(−1/10)R2+R4→R3 

(−1/2)R3+R4→R4 
∼ 

 
3   −4     0   

 0    10                                        
                      

 

From  the second row,  10 x2 = 10  ⇒  x2 = 3.From  row 1, 3x1 − 4(3) = 0  ⇒ 
in the span of a1   and a2,  with b = 4a1  + 3a2. 

x1 = 4. We conclude b is

 

 
13.  A = [   

2       8   −4  
]
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−1    
−3       
5 

 

 
, x = 

[ 
x1 

x2 

x3 

] 
 

, b 

= 

[ 
−10  

]
 

4
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14.  A = 

[ 
−2         5   −10  

]
 

1     −2         3 
 
, x = 

[ 
x1 

x2 

] 
 

, b = 

[    
4 

]
 

−1

7   −17       34 x3 

 
x1   

 

−16

 

15.  A = 

[  
1   −1    −3    −1  

]
 

−2       2       6       2 
−3    −3     10       0 

, x = 
 x2  x3 

x4 

, b = 
 

[ 
−1  

]
 

−1 
5

 
 

16.  A = 

[ 
−5       9 

]
 

3   −5 
1   −2 

 
 

, x = 

[ 
x1

 

x2 

] 

, b = 

[ 
13 

] 

−9 
−2

 

 
17.  x1 

[ 
5 

] 

1 

 

 
+ x2 

[   
7 

] 

−5 

 

 
+ x3 

[ 
−2  

] 

−4 

[ 
9 

]
 

=   
2

 
18.  x1 

[ 
4 

]
 

3 
6 

 
+ x2 

[  
−5  

]
 

4 
−13 

 
+ x3 

[ 
−3  

]
 

2 
7 

[ 
0 

]
 

=   1 
2

 
 

19.  x1 

[ 
4 

] 

0 
3 

 
 
+ x2 

[ 
−2  

] 

−5 
8 

 
 
+ x3 

[ 
−3  

] 

7 
2 

 
 
+ x4 

[  
5 

] 

3     = 
−1 

[ 
12 

] 

6 
2

 
 

20.  x1 

[ 
4 

] 

2 
1 

 
 

+ x2 

[ 
−9  

] 

4     = 
−7 

[ 
11 

] 

9 
2

 

21.  Row-reduce  to echelon form: 
 
 
[ 

15   −6  
]  

(1/3)R1+R2→R2
 

 
 
[ 

15   −6  
]

−5       2                  
∼                        

0       0 
 

Since there  is a row of zeros, there  exists a vector  b which is not in the span of the columns of A, and 
therefore  the columns of A do not span R2. 

 

22.  Row-reduce  to echelon form:
[ 

4   −12  
]  

(−1/2)R1+R2→R2
 

[ 
4   −12  

]

2         6                    
∼

 0     12

 

Since there  is not  a row of zeros, every choice of b is in the  span  of the  columns  of A,  and  therefore 
the columns of A span R2. 

 

23.  Row-reduce  to echelon form:
[ 

2       1       0 
]  

−3R1+R2→R2
 

[ 
2       1       0 

]

6   −3    −1                 
∼

 0   −6    −1

 

Since there  is not  a row of zeros, every choice of b is in the  span  of the  columns  of A,  and  therefore 
the columns of A span R2. 

 

24.  Row-reduce  to echelon form:
[   

1   0   5 
]  

2R1+R2→R2
 

[ 
1   0     5 

]
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−2    2   7                
∼

 0   2   17

 

Since there  is not a row of zeros, every choice of b is in the span of A, and therefore  the columns of A 
span R2.



Section 2.2:  Span 360 360 Chapter 2:  Euclidean Space 
 
 
 

1 2 8 
0 7 23 
0 0 0 

 

 2 2 2 

0 0 0 0 

 

3       
−3 

3 

11 

0 

0 

∼ 

3 

 

 
 

25.  Row-reduce  to echelon form: 
 

[ 
3       1       0 

]   (−5/3)R1+R2→R2 

(−4/3)R1+R3→R3
 

 

 
 
3         1       0   

11

5   −2    −1 
4   −4    −3 

∼                     0   − 
3       

−1   

0   − 16
 

 
3         1         0 

(−16/11)R2+R3→R3                                       ∼                     0   − 11
 −1  

0         0   − 17
 

 

Since there  is not  a row of zeros, every choice of b is in the  span  of the  columns  of A,  and  therefore 
the columns of A span R3. 

26.  Row-reduce  to echelon form: 

[  
1       2   8 

]  
2R1+R2→R2 

 

 
[ 

1       2         8 
]

−2       3   7 
3   −1    1 

−3R1+R3→R3 ∼ 
 
 

R2+R3→R3 
∼ 

0       7       23 
0   −7    −23 

[           ]

 
 

Since there  is a row of zeros, there  exists a vector  b which is not  in the  span  of A,  and  therefore  the 
columns of A do not span R3. 

27.  Row-reduce  to echelon form: 

[ 
2   1   −3    5 

]  
(−1/2)R1+R2→R2

 

 
 
2    1   −3     5  

7          7       7

1   4       2   6 ∼                    0    
2 2       2   

0   3       3   3 0    3       3    3 
 
2    1   −3     5  

(−6/7)R2+R3→R3                               7          7       7 ∼                                                
 

 
Since there  is a row of zeros, there  exists a vector  b which is not in the span of the columns of A, and 
therefore  the columns of A do not span R3. 

28.  Row-reduce  to echelon form: 

[ 
−4    −7    1       2 

]       
R    R

 

0       0   3       8                 
2↔  3

 

5   −1    1   −4 

 
[ 

−4    −7    1       2 
]

 
5   −1    1   −4 
0       0   3       8 

 
−4      −7     1       2  

(5/4)R1+R2→R2 
0   − 39       9           3

∼                                
4 4      

− 
2   

0         0    3       8 
 

Since there  is not a row of zeros, every choice of b is in the span of A, and therefore  the columns of A 
span R3. 

29.  Row-reduce  A to echelon form: 

[ 
3   −4  

]  
(−4/3)R1+R2→R2

 

 
[ 

3   −4  
]

4       2                    
∼                                22

 

 

Since there  is not a row of zeros, for every choice of b there  is a solution  of Ax  = b.
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0 1 3 
0 0 0 

 

37. b =    0 is not in span 3 ,     −1 , since c1 3 + c2       −1 

 1  −2 1  −2 1 

 

 

 
 

30.  Row-reduce  A to echelon form: 
[ 

−9       21 
]  

(2/3)R1+R2→R2
 

 
[ 

−9    21 
]

6   −14                   
∼                         

0     0 
 

Since there  is a row of zeros, there  is a choice of b for which Ax  = b has no solution. 
 

31.  Since the  number  of columns,  m  = 2, is less than  n = 3, the  columns  of A  do not  span  R3, and  by 
Theorem  2.9, there  is a choice of b for which Ax  = b has no solution. 

 

32.  Row-reduce  A to echelon form.

[  
1   −1       2 

]  
2R1+R2→R2 

[ 
1   −1    2 

]

−2       3   −1 
1       0       5 

−R1+R3→R3 ∼ 
 
 
−R2+R3→R3 

∼ 

0       1   3 
0       1   3 

[ 
1   −1    2 

]

 

 

Since there  is a row of zeros, there  is a choice of b for which Ax  = b has no solution. 
 

33.  Row-reduce  A to echelon form:

[ 
−3       2       1 

]  (1/3)R1+R2→R2 
 
−3        2       1 

(5/3)R1+R3→R3                                           1           2
1   −1    −1 
5   −4    −3 

∼                      0   − 
3      

− 
3    

0   − 2           4

3      
− 

3  
−3        2       1 

(−2)R2+R3→R3 
0   − 1           2

∼                               
3      

− 
3    

0       0       0 
 

Since there  is a row of zeros, there  is a choice of b for which Ax  = b has no solution. 
 

34.  Since the  number  of columns,  m  = 3, is less than  n = 4, the  columns  of A  do not  span  R4, and  by 
Theorem  2.11, there  is a choice of b for which Ax  = b has no solution.

 
35.  b = 

[ 
0 

]
 

1 

 
is not  in span 

{[   
1 

]
 

−2 
, 

[ 
−3  

]}
 

6 

 
, since span 

{[   
1 

]
 

−2     
,
 

[ 
−3  

]}
 

6 

 
= span 

{[   
1 

]}
 

−2 

 
and

 

b = c 

[   
1 

]
 

−2 

[ 
0 

] 

 

for any scalar c. 
 

{[ 
3 

] 

 

 
 
[ 

6 
]} 

 

 
 
{[ 

3 
] 

 

 
 
[ 

6 
]} 

 

 
 
{[ 

3 
]}

36.  b =    
1 

[ 
3 

]
 

is not  in  span 
1    

,    
2 ,  since  span 

1    
,    

2 = span        
1 and  b =

c    
1     

for any scalar c. 
[ 

0 
]

 
{[   

1 
]

 
[  

2 
]}

 
[  

1 
]

 
[  

2 
]

 
[ 

0 
]

 

=   0 
1 

 
has no solutions.

 
 

38.  b = 

[ 
0 

] 

0 
1 

 
 

is not in span 

{[ 
1 

] 

2 
1 

[  
3 

] 

,     −1     , 
1 

[ 
−1  

]} 

5 
1 

 
 

, since c1 

[ 
1 

] 

2 
1 

 
 

+c2 

[  
3 

] 

−1 
1 

 
 

+c3 

[ 
−1  

]
 

5 
1 

[ 
0 

] 

=   0 
1

has no solutions. 
[ 

1 
] 

 

{[ 
1 

] 

 

[ 
4 

]} 

 

{[ 
1 

] 

 

[ 
4 

]} 

 

{[ 
1 

]}

39.  b =    
1 

[ 
1 

]
 

is not  in span 
2    

,    
8 , because  span 

2    
,    

8 = span        
2 and  b =
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c    
2     

for any scalar c.
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3                                 3 

1 2 

4 

2 

− 

 
 
 

40.  b = 

[ 
1 

]
 

1 

 

is not in span 

{[ 
−3  

] 

, 
2 

[   
15 

]}
 

−10 

 

, because span 

{[ 
−3  

] 

, 
2 

[   
15 

]}
 

−10

{[     ]}            [     ] 

= span        
−        

and b = c    
−     

for any scalar c.
 

 
41.  b = 

 

[ 
1 

] 

1 

2 
 

 
is not in span 

2 

{[   
2 

]
 

−4     
,
 

 

[ 
−5  

] 

,
 

10 

 

[    
7 

]} 

−14 

 

 
, because

 

span 

{[   
2 

]
 

−4     
,
 

[ 
−5  

]
 

10 

[    
7 

]}
 

,    
−14 

 

= span 

{[   
2 

]}
 

−4 

 

and b = c 

[   
2 

]
 

−4 

 

for any scalar c.

[   ]                {[ 

42.  b =         is not in span 4 
] [   ] [

 
,           , 

−6  
]}

, because

 

 
span 

1 
{[  

4 
]

 

10    
,
 

[ 
2 

]
 

5    
,
 

10 
[  

−6  
]}

 
−15 

5 
 

= span 

−15 
{[ 

2 
]}

 
5 

 

 
and b = c 

[ 
2 

] 

5 

 

 
for any scalar c.

 
 

43.  b = 

[ 
0 

] 

0 
1 

 
 
is not in span 

{[   
1 

] 

2    , 
−1 

[ 
3 

]} 

5 
4 

 
 

, because c1 

[  
1 

] 

2 
−1 

 
 

+ c2 

[ 
3 

] 

5     = 
4 

[ 
0 

] 

0 
1 

 
 
has no solutions.

 

 

44.  b = 

[ 
0 

] 

0 
1 

 

 

is not in span 

{[ 
3 

] 

1    , 
2 

[  
4 

]} 

−1 
3 

 

 

, because c1 

[ 
3 

] 

1 
2 

 

 

+c2 

[  
4 

] 

−1     = 
3 

[ 
0 

] 

0 
1 

 

 

has no solutions.

 

 
45.  b = 

[ 
0 

] 

0 
1 

 

 
is not  in span 

{[ 
2 

] 

1 
3 

[ 
−5  

] 

,        2    , 
1 

[ 
−1  

]} 

4 
7 

 

 
, because  c1 

[ 
2 

] 

1 
3 

 

 
+ c2 

[ 
−5  

] 

2 
1 

 

 
+ c3 

[ 
−1  

] 

4     = 
7

[ 
0 

]
 

0 
1 

 
has no solutions.

 

 
46.  b = 

[ 
0 

] 

0 
1 

 

 
is not in span 

{[   
1 

] 

−1 
2 

[  
2 

] 

,     −3     , 
7 

[ 
−1  

]} 

0 
1 

 

 
, because c1 

[  
1 

] 

−1 
2 

 

 
+c2 

[  
2 

] 

−3 
7 

 

 
+c3 

[ 
−1  

] 

0     = 
1

[ 
0 

]
 

0 
1 

 
has no solutions. 

 
 

 
[ 

2 
]     [ 

3 
]

47.  h = 3,since when h = 3 the vectors 
4     

and 6     
are parallel  and do not span R2.

[     ]     [     ]

48.  h = 12 , since when h = 12   the vectors      
−3 

and
 5     

are parallel  and do not span R2.

5                                               5                                         12 
5 

49.  h = 4. This value for h was determined by row-reducing

[ 
2     h    1 

]
 

4     8   2 
5   10   6 

 
2        h        1   

˜  0   8 − 2h    0   
0        0         7

[ 
2 

]     [
 h  

]     [ 
1 

]   [ 
x 

]

Then  c1       4     + c2          8     + c3       2     =    y      has a solution  provided  h = 4. 
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5                 10                 6              z 
 

50.  h = −27.  This value for h was determined by row-reducing

[ 
−1       4       1 

]
 

 
−1     4             1          

h    −2    −3 
7       5       2 

˜    0     33            9           
0      0    −  1  h − 27

11            11



Section 2.2:  Span 365 365 Chapter 2:  Euclidean Space 
 
 
 
 

 
 

[ 
−1  

]     [
 4 

]     [
 1 

]   [ 
x 

]

Then  c1           h     + c2       −2     + c3       −3     =    y      has a solution  provided  h = −27. 
7                    5                    2              z 

 

51.  u1 = (1, 0, 0), u2 = (0, 1, 0), u3 = (0, 0, 1), u4 = (1, 1, 1) 
 

52.  u1 = (1, 0, 0, 0), u2 = (0, 1, 0, 0), u3 = (0, 0, 1, 0), u4 = (0, 0, 0, 1) 
 

53.  u1 = (1, 0, 0), u2 = (2, 0, 0), u3 = (3, 0, 0), u4 = (4, 0, 0) 
 

54.  u1 = (1, 0, 0, 0), u2 = (2, 0, 0, 0), u3 = (3, 0, 0, 0), u4 = (4, 0, 0, 0) 
 

55.  u1 = (1, 0, 0), u2 = (0, 1, 0) 
 

56.  u1 = (0, 1, 0, 0), u2 = (0, 0, 1, 0), u3 = (0, 0, 0, 1) 
 

57.  u1 = (1, −1, 0), u2 = (1, 0, −1) 
 

58.  u1 = (1, −1, 0, 0), u2 = (1, 0, −1, 0), u3 = (1, 0, 0, −1) 
 

59.   (a)  True,  by Theorem  2.9. 

(b)  False, the zero vector  can be included  with any set of vectors  which already  span Rn. 
 

60.   (a)  False, since every column of A may be a zero column. 

(b)  False, by Example  5. 

61.   (a)  False.  Consider  A = [1]. 

(b)  True,  by Theorem  2.11. 

62.   (a)  True,  the span of a set of vectors can only increase (with respect to set containment) when adding 
a vector  to the set. 

(b)  False.  Consider  u1 = (0, 0, 0), u2 = (1, 0, 0), u3 = (0, 1, 0), and u4 = (0, 0, 1). 
 

63.   (a)  False.  Consider  u1 = (0, 0, 0), u2 = (1, 0, 0), u3 = (0, 1, 0), and u4 = (0, 0, 1). 

(b) True.  The span of {u1, u2, u3} will be a subset  of the span of {u1, u2, u3, u4} . 

64.   (a)  True.  span {u1, u2, u3} ⊆  span {u1, u2, u3, u4} is always true.  If a vector 
w ∈ span {u1, u2, u3, u4}, then  since u4  is a linear  combination of {u1, u2, u3}, we can  express 
w as a linear combination of just the vectors u1, u2, and u3. Hence w is in span {u1, u2, u3}, and 
we have span {u1, u2, u3, u4} ⊆  span {u1, u2, u3}. 

(b)  False.  If u4 is a linear combination of {u1, u2, u3} then  span {u1, u2, u3, u4} = span {u1, u2, u3}. 
(See problem  61, and the solutions  to problems  43 and 45 for examples.) 

 

65.   (a)  False.  Consider  u1 = (1, 0, 0, 0), u2 = (0, 1, 0, 0), u3 = (0, 0, 1, 0), and u4 = (0, 0, 0, 1). 

(b)  True.  Since u4 ∈ span {u1, u2, u3, u4}, but  u4 ∈/ span {u1, u2, u3}. 

66.   (a)  True, because c10+c2u1+c3u2+c4u3 = c2u1+c3u2+c4u3, span {u1, u2, u3} = span {0, u1, u2, u3} .
[ 

1 
(b)  False, because span {u1, u2} = span {u1} ∈/ R2, and      

0 
 

67.   (a)  Cannot possibly span R3, since m = 1 < n = 3. 

(b)  Cannot possibly span R3, since m = 2 < n = 3. 

]        {[ 
1 

]}
 

∈/ span        
1       

.

(c)  Can possibly span R3. For example,  u1 = (1, 0, 0), u2 = (0, 1, 0), u3 = (0, 0, 1) . 

(d)  Can possibly span R3. For example,  u1 = (1, 0, 0), u2 = (0, 1, 0), u3 = (0, 0, 1), u4 = (0, 0, 0). 
 

68.   (a)  Cannot possibly span R3, since m = 1 < n = 3. 

(b)  Cannot possibly span R3, since m = 1 < n = 3.
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c 

(  )         (  ) 

c1                                    c2 

 

 
 
 

(c)  Can possibly span R3. For example,  u1 = (1, 0, 0), u2 = (0, 1, 0), u3 = (0, 0, 1) . 

(d)  Can possibly span R3. For example,  u1 = (1, 0, 0), u2 = (0, 1, 0), u3 = (0, 0, 1), u4 = (0, 0, 0). 

69.  Let w ∈ span {u}, then  w = x1u = 
( 

x1  
) 

(cu), so w ∈ span {cu}  and thus  span {u} ⊆  span {cu}.  Now 

let w  ∈ span {cu} ,then  w  = x1(cu) = (x1c) (u), so w  ∈ span {u} and  thus  span {cu}  ⊆  span {u} . 

Together, we conclude span {u} = span {cu}. 
 

70.  Let w ∈ span {u1, u2}, then  w = x1u1 + x2u2 =   x1      (c1u1) +   x2       (c2u2), so w ∈ span {c1u1, c2u2} 

and  thus  span {u1, u2} ⊆  span {c1u1, c2u2}.  Now let  w  ∈ span {c1u1, c2u2}, then  w  = x1(c1u1) + 
x2(c2u2) = (x1c1) (u1) + (x2c2) (u2),so w ∈ span {u1, u2}and thus  span {c1u1, c2u2} ⊆  span {u1, u2}. 
Together, we conclude span {u1, u2} = span {c1u1, c2u2} . 

 

71.  We may  let S1   = {u1, u2, . . . , um} and  S2   = {u1, u2, . . . , um, um+1, . . . un} where m  ≤ n.   Let  w  ∈ 
span(S1), then 

 

w=x1u1 + x2u2 + · · · + xmum 

= x1u1 + x2u2 + · · · + xmum + 0um+1  + · · · + 0un 

 

and thus  w ∈ span(S2). We conclude that span (S1)  ⊆  span (S2). 
 

72.  Let  b ∈ R2
,then b =x1u1 + x2u2 for some scalars  x1  and  x2  because  span {u1, u2} = R2.  We can 

rewrite b = x1+x2 (u1 +u2) + x1 −x2 (u1 − u2) , thus b ∈ span {u1 + u2, u1 − u2}. Since b was arbitrary, 2                                        2 

span {u1 + u2, u1 − u2} = R2. 
 

73.  Let b ∈ R3,then b =x1u1 + x2u2 + x3u3 for some scalars x1, x2, and x3 because 
span {u1, u2, u3} = R3. We can rewrite b = x1 +x2 −x3 (u1 + u2) +  x1 −x2 +x3 (u1 + u3) +  −x1 +x2+x3 (u2 +

 
2                                                 2                                                   2 

u3),thus b ∈ span {u1 + u2, u1 + u3, u2 + u3}. Since b was arbitrary, span {u1 + u2, u1 + u3, u2 + u3} = 
R3. 

 

74.  If b is in span{u1, . . . , um}, then  by Theorem  2.11 the linear system  corresponding  to the augmented 
matrix 

[u1      · · ·    um    b] 
 

has  at  least  one solution.   Since m  >  n,  this  system  has  more  variables  than  equations.   Hence the 
echelon form of the system will have free variables,  and since the system is consistent this implies that 
it has infinitely many  solutions. 

 

75.  Let  A  = [u1 · · · um]  and  suppose  A  ∼  B,  where B  is in echelon form.  Since m  < n,  the  last  row of 
0

B  must  consist  of zeros.  Form  B1   by appending  to B  the  vector  e =  
. , so that B1   = [B    e].  If 

1
B1   is viewed as an augmented matrix, then  the bottom row corresponds  to the equation  0 = 1, so the 
corresponding  linear  system  is inconsistent.  Now reverse  the  row operations used to transform A  to 
B,  and apply  these  to B1.  Then  the resulting  matrix  will have the form [A    e′]. This implies that e′ 

is not in the span of the columns of A, as required. 
 

76.  [(a) ⇒ (b)] Since b ∈ span {a1, a2, . . . , am} there  exists scalars  x1, x2, . . .  , xm such that b = x1a1 + 
x2a2 + · · · xmam, which is statement (b). 
[(b) ⇒ (c)] The linear system corresponding  to [  a1      a2      · · ·    am    b ] can be expressed by the vector 
equation  x1a1 + x2a2 + · · · xmam = b. By (b),  x1a1 + x2a2 + · · · xmam = b has a solution,  hence we
conclude that linear system  corresponding  to [  a1      a2 · · ·    am    b ] has a solution.

[(c) ⇒ (d)] Ax  = b has a solution  provided  the  augmented matrix  [  A    b ] has a solution.  In terms
of the columns of A, this is true  if the augmented matrix  [  a1      a2 

is what  (c) implies, hence Ax  = b has a solution. 
· · · am    b ] has a solution.  This

[(d) ⇒ (a)] If Ax  = b has a solution, then x1a1 +x2a2 + · · · xmam = b where A = [  a1      a2 

and x = (x1, x2, . . . , xm). Thus  b ∈ span {a1, a2, . . . , am}. 
· · · am  ]



Section 2.3:  Linear Independence 361 361 Chapter 2:  Euclidean Space 
 
 
 

− 

3 

 

 
 
 

77.  True.   Using a computer algebra  system,  the  row-reduced  echelon form of the  matrix  with  the  given 
vectors  as columns does not have any zero rows.  Hence the vectors  span R3. 

 

78.  False.  Using a computer algebra  system,  the  row-reduced  echelon form of the  matrix  with  the  given 
vectors  as columns does have a zero row.  Hence the vectors  do not span R3. 

 

79.  False.  Using a computer algebra  system,  the  row-reduced  echelon form of the  matrix  with  the  given 
vectors  as columns does have a zero row.  Hence the vectors  do not span R4. 

 

80.  True.   Using a computer algebra  system,  the  row-reduced  echelon form of the  matrix  with  the  given 
vectors  as columns does not have any zero rows.  Hence the vectors  span R4. 

 

 

2.3  Practice Problems 
 

Section 2.3 
 

1.   (a)  Consider  x1u1 + x2u2 = 0, and solve using the corresponding  augmented matrix:
[   

2   4   0 
]  

(3/2)R1+R2→R2
 

[ 
2   4   0 

]

−3    1   0                   
∼

 0   7   0

 

The only solution  is the trivial  solution,  so the vectors  are linearly  independent. 

(b)  Consider  x1u1 + x2u2 = 0, and solve using the corresponding  augmented matrix:

[ 
6       2   0 

]  (−1/6)R1+R2→R2 

(−2/3)R1+R3→R3 

 
6    −2    0  

 0     10

1       3   0 
4   −3    0 

∼                             3       
0  

0   − 5      0 
 

 
(1/2)R2+R3→R3

 

 
6   −2    0  

0     10

∼                             
3       

0  
0       0   0 

 

The only solution  is the trivial  solution,  so the vectors  are linearly  independent. 
 

2.   (a)  We solve the homogeneous  system  of equations  using the corresponding  augmented matrix:
[ 

1       5   0 
]  

−3R1+R2→R2
 

[ 
1         5   0 

]

3   −4    0                 
∼

 0   −19    0

 

The only solution  is the trivial  solution,  so the columns of the matrix  are linearly  independent. 

(b)  We solve the homogeneous  system  of equations  using the corresponding  augmented matrix:

[  
1       0   3   0 

]   −2R1+R2→R2 

3R1+R3→R3
 

[ 
1       0       3   0 

]

2   −2    4   0 
−3       7   2   0 

∼ 
 
 
(7/2)R2+R3→R3 

∼ 

0   −2    −2    0 
0       7     11   0 

[ 
1       0       3   0 

]
 

0   −2    −2    0 
0       0       4   0

 

There  is only the trivial  solution;  the columns of the matrix  are linearly  independent. 
 

3.   (a)  We solve the homogeneous  equation  using the corresponding  augmented matrix:
[ 

1   4   2   0 
]  

−2R2+R3→R3
 

[ 
1   4   2   0 

]

2   8   4   0                 
∼

 0   0   0   0
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Because  there  exist  nontrivial solutions,  the  homogeneous  equation  Ax  = 0 has nontrivial solu- 
tions.
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− 

3 

7       
0 

26 

0 

2 

 

 
 
 

(b)  We solve the homogeneous  equation  using the corresponding  augmented matrix:

[  
1       0       1   1   0 

]  
R1+R2→R2 

2R1+R3→R3
 

[ 
1       0   −1    1   0 

]

−1    −1       0   1   0 
−2       2       1   0   0 

∼ 
 
 
2R2+R3→R3 

∼ 

0   −1    −1    2   0 
0       2   −1    2   0 

[ 
1       0   −1    1   0 

]
 

0   −1    −1    2   0

0       0   −3    6   0 
 

Because  there  exist  nontrivial solutions,  the  homogeneous  equation  Ax  = 0 has nontrivial solu- 
tions.

 
4.   (a)  False, because 

{[ 
1 

]
 

0 
0 

[ 
0 

]}
 

,     1 
0 

 
is linearly  independent in R3 but  does not span R3.

(b)  True,  by the Unifying Theorem. 

(c)  True.  Because u1 − 4u2 = 4u2 − 4u2 = 0, {u1, u2} is linearly  dependent.
[ 

1 
(d)  False.  Suppose  A = 1 

]                                                                   [ 
0 

]
 

, then  the  columns  of A  are linearly  dependent, and  Ax  =

0   0                                                                                                                 1 

has no solutions. 

 

2.3     Linear Independence 
 

1.  Consider  x1u + x2v = 0, and solve using the corresponding  augmented matrix:
[   

3   −1    0 
]  

(2/3)R1+R2→R2 

[ 
3      −1    0 

]

−2    −4    0 ∼                      
0   − 14      0

 

Since the only solution  is the trivial  solution,  the vectors  are linearly  independent. 
 

2.  Consider  x1u + x2v = 0, and solve using the corresponding  augmented matrix:
[    

6     −4    0 
]  

(5/2)R1+R2→R2 

[ 
6     −4    0 

]

−15    −10    0                   
∼

 0   −20    0

 

Since the only solution  is the trivial  solution,  the vectors  are linearly  independent. 
 

3.  Consider  x1u + x2v = 0, and solve using the corresponding  augmented matrix:

[    
7       5   0 

]  (−1/7)R1+R2→R2 

(13/7)R1+R3→R3
 

 
7         5   0   

26

1   −3    0 
−13       2   0 

∼ 
 

 
(79/26)R2+R3→R3 

∼ 

 0   − 
7       

0   

0       79
 

 
7         5   0   

 0   − 
7       

0   

0         0   0
 

Since the only solution  is the trivial  solution,  the vectors  are linearly  independent. 
 

4.  Consider  x1u + x2v + x3w = 0, and solve using the corresponding  augmented matrix:

[ 
−4    −2      −8    0 

]  
(−3/4)R1+R3→R3

 

 
−4    −2      −8    0 

0   −1         2   0 ∼                        0   −1         2   0 

−3       5   −19    0 13      −13    0
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(13/2)R2+R3→R3 

∼ 

[ 
−4    −2    −8    0 

]
 

0   −1       2   0 
0       0       0   0

 

Since there  exist nontrivial solutions,  the vectors  are not linearly  independent.
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1 0 0 
]   

2R1+ R2→R2       
[ 

1       0   0 

−2 2 0         
−5R1+

 
R3→R3 
∼                      0 2 0 

5 −7 0 0 −7 0 

 

3       
0 

2 

 

 
 
 

5.  Consider  x1u + x2v + x3w = 0, and solve using the corresponding  augmented matrix: 
[  

3   0   2   0 
]   (1/3)R1+R2→R2 

(−2/3)R1+R3→R3
 

 
3   0      2   0  

14

−1    4   4   0 ∼                    0    4 3       
0 

2   1   7   0  

 
(−1/4)R2+R3→R3

 

0   1    17
 

 
3   0      2   0  

14

∼                    0   4 3       
0 

0   0      9      0 
 

Since the only solution  is the trivial  solution,  the vectors  are linearly  independent. 
 

6.  Consider  x1u + x2v + x3w = 0, and solve using the corresponding  augmented matrix: 
 
1       4   −1    0   

 8   −2       2   0   
 3       5       0   0   
3   −5       1   0 

−8R1+R2→R2 

−3R1+R3→R3 

−3R1+R4→R4 
∼ 

 

 
(−7/34)R2+R3→R3 

(−1/2)R2+R4→R4 

 
1         4   −1    0   

 0   −34     10   0   
 
0     −7       3   0   
0   −17       4   0 

 
1         4   −1    0   

 0   −34     10   0  

∼                                       16             0         0 
17      

0 

 
 
 

(17/16)R3+R4→R4 

0         0   −1    0 
 
1         4   −1    0   

 0   −34     10   0  

∼                                       16             0         0 
17      

0 

0         0       0   0 
 

Since the only solution  is the trivial  solution,  the vectors  are linearly  independent. 
 

7.  We solve the homogeneous  system  of equations  using the corresponding  augmented matrix: 
[ 

15   −6    0 
]  

(2/3)R1+R2→R2 

[ 
15   −6    0 

]

−5       2   0                   
∼

 0       0   0

 

Since there  exist nontrivial solutions,  the columns of A are not linearly  independent. 
 

8.  We solve the homogeneous  system  of equations  using the corresponding  augmented matrix: 
[ 

4   −12    0 
]  

(−1/2)R1+R2→R2 

[ 
4   −12    0 

]

2         6   0                    
∼

 0       12   0

 

Since the only solution  is the trivial  solution,  the columns of A are linearly  independent. 
 

9.  We solve the homogeneous  system  of equations  using the corresponding  augmented matrix: 
 

[                                               ] 
 

 
 

(7/2)R2+R3→R3 
∼ 

[ 
1   0   0 

]
 

0   2   0 
0   0   0

 

There  is only the trivial  solution,  the columns of A are linearly  independent.
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0 1 3 0 
0 0 0 0 

 

− 

0   − 16
 

11 

0 0 
3 

 

 
 
 

10.  We solve the homogeneous  system  of equations  using the corresponding  augmented matrix:

[  
1       1       2   0 

]  
4R1+R2→R2 

R1+R3→R3
 

[ 
1   −1    2   0 

]

−4       5   −5    0 
−1       2       1   0 

∼ 
 
 
−R2+R3→R3 

∼ 

0       1   3   0 
0       1   3   0 

[ 
1   −1    2   0 

]

 

 

Since there  are trivial  solutions,  the columns of A are linearly  dependent. 
 

11.  We solve the homogeneous  system  of equations  using the corresponding  augmented matrix:

[ 
3       1       0   0 

]   (−5/3)R1+R2→R2 

(−4/3)R1+R3→R3
 

 
3         1       0   0  

11

5   −2    −1    0 
4   −4    −3    0 

∼ 
 

 
 
(−16/11)R2+R3→R3

 

 0   − 
3       

−1    0  

3       
−3    0 

 
3         1         0   0  

0   − 11

∼                                
3          

−1    0  

0         0   − 17      0 
 

Since the only solution  is the trivial  solution,  the columns of A are linearly  independent. 
 

12.  We solve the homogeneous  system  of equations  using the corresponding  augmented matrix:

 
−4    −7       1   0   

 
−4    −7       1   0 

     0       0       3   0   
     5   −1       1   0   

8       2   −4    0 

R2↔R4 
∼ 

 

 
 
(5/4)R1+R3→R3 

2R1+R2⇒R2 

     8       2   −4    0   
     

5   −1       1   0   
0       0       3   0 

 
−4      −7       1   0   

     0    −12    −2    0  

∼                                  39           9                 0   − 
4 4      

0 

0         0       3   0 
 
−4      −7       1   0  

(−13/16)R2+R3→R3         0   −12    −2    0 

˜                                   31                 0         0 
8       

0 

0         0       3   0 
 
−4     −7       1     0  

(−24/31)R3+R4→R4    0     −12    −2    0 

˜                                   31                0        0 
8        

0 

0        0        0     0 
 

Since the only solution  is the trivial  solution,  the columns of A are linearly  independent. 
 

13.  We solve the homogeneous  equation  using the corresponding  augmented matrix:
[ 

−3    5   0 
]  

(4/3)R1+R2→R2
 

[ 
−3      5   0 

]

4   1   0                  
∼                                 23

 

 

Since the  only solution  is the  trivial  solution,  the  homogeneous  equation  Ax  = 0 has only the  trivial 
solution. 

 

14.  We solve the homogeneous  equation  using the corresponding  augmented matrix:
[ 

12   10   0 
]  

(−1/2)R1+R2→R2
 

[ 
12   10   0 

]
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6     5   0                    
∼

 0     0    0

 

Since there  exist nontrivial solutions,  the homogeneous  equation  Ax  = 0 has nontrivial solutions.
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0 

− 

0       9
 

0 
8 

 

 
 
 

15.  We solve the homogeneous  equation  using the corresponding  augmented matrix:
 

[  
8       1   0 

]
 

0   −1    0 

 

 
(3/8)R1+R3→R3 

∼ 

 
8       1   0  

 0   −1    0 

−3       2   0                                                  19

 
(19/8)R2+R3→R3 

∼ 

[ 
8       1   0 

]
 

0   −1    0 
0       0   0

 

Since the  only solution  is the  trivial  solution,  the  homogeneous  equation  Ax  = 0 has only the  trivial 
solution. 

 

16.  We solve the homogeneous  equation  using the corresponding  augmented matrix: 
[ 

−3       2       1   0 
]  (1/3)R1+R2→R2 

 
−3        2       1   0 

(5/3)R1+R3→R3                                           1           2
1   −1    −1    0 ∼                      0   − 

3      
− 

3      
0 

5   −4    −3    0
 

0   − 2           4

3      
− 

3      
0  

−3        2       1   0 
−2R2+R3→R3

 

0   − 1           2
∼                               

3      
− 

3      
0  

0       0       0   0 
 

Since there  exist nontrivial solutions,  the homogeneous  equation  Ax  = 0 has nontrivial solutions. 
 

17.  We solve the homogeneous  equation  using the corresponding  augmented matrix: 
[  

1       3       1   0 
]  

4R1+R2→R2 

3R1+R3→R3
 

[ 
−1    3   1   0 

]

4   −3    −1    0 
3       0       5   0 

∼ 
 
 
−R2+R3→R3 

∼ 

0   9   3   0 
0   9   8   0 

[ 
−1    3   1   0 

]
 

0   9   3   0 
0   0   5   0

 

The homogeneous  equation  Ax  = 0 has only the trivial  solution. 
 

18.  We solve the homogeneous  equation  using the corresponding  augmented matrix:
 

     
2   −3       0   0   

     0       1       2   0   

 

 
(5/2)R1+R3→R3 

(−3/2)R1+R4→R4 

 
2    −3       0   0  

 0       1       2   0 

 −5       3   −9    0                 ∼  
0   − 9

 
9   0 

 

3       0       9   0 

           2      
−        

2           
9   0

(9/2)R2+R3→R3 

(−9/2)R2+R3→R3 
∼ 

 
2   −3    0   0   

 0       1   2   0   
 0       0   0   0   
0       0   0   0

 

Since there  exist nontrivial solutions,  the homogeneous  equation  Ax  = 0 has nontrivial solutions. 
 

19.  Linearly  dependent. Notice that u = 2v, so u − 2v = 0. 
 

20.  Linearly  independent. The vectors  are not scalar multiples  of each other. 
 

21.  Linearly  dependent. Apply Theorem  2.14. 
 

22.  Linearly  independent. The vectors  are not scalar multiples  of each other. 
 

23.  Linearly  dependent. Any collection of vectors  containing  the zero vector  must  be linearly  dependent.
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0 23 23 0 4 4 

0 0 1 0 

 

0     5
 

0 1 

5 

0 

0 − 

0 

 

 
 
 

24.  Linearly  dependent. Since u = v, u − v = 0. 
 

25.  We solve the homogeneous  system  of equations  using the corresponding  augmented matrix:

[  
6   1   0 

]  (−1/3)R1+R2→R2 

(5/6)R1+R3→R3
 

 
6     1     0   

20

2   7   0 ∼                     0 3       
0 

−5    0   0  

 
(−1/8)R2+R3→R3

 

6       
0 

 
6     1     0  

0    20

∼                            
3       

0  
0     0     0 

 

Since the only solution  is the trivial  solution,  the columns of the matrix  are linearly  independent.  By 
Theorem  2.15, none of the vectors  is in the span of the other  vectors. 

 

26.  We solve the homogeneous  system  of equations  using the corresponding  augmented matrix:

[  
2   1   1   0 

]  (−7/2)R1+R2→R2 
 
2       1       1   0 

(1/2)R1+R3→R3                                       5           1
7   1   3   0 ∼                    0   − 

2      
− 

2      
0 

1   6   0   0                                                    13 
2            2  

2       1       1   0 
(13/5)R2+R3→R3

 

0   − 5           1
∼                              

2      
− 

2      
0  

0       0   − 4      0 
 

Since the only solution  is the trivial  solution,  the columns of the matrix  are linearly  independent.  By 
Theorem  2.15, none of the vectors  is in the span of the other  vectors. 

 

27.  We solve the homogeneous  system  of equations  using the corresponding  augmented matrix:

[  
4       3   −5    0 

]   (1/4)R1+R2→R2 
 
4          3      −5    0 

−1       5       7   0 
(−3/4)R1+R3→R3                                     23            23 

∼                               
4              4             

3   −2    −7    0
 

0   − 17            13
 
 

(17/23)R2+R3→R3 
∼ 

4       
− 

4       
0  

4      3   −5    0  
                             

 
 

Since the only solution  is the trivial  solution,  the columns of the matrix  are linearly  independent.  By 
Theorem  2.15, none of the vectors  is in the span of the other  vectors. 

 

28.  We solve the homogeneous  system  of equations  using the corresponding  augmented matrix:
 

 
1   −1       3   0   

 7       3       1   0   
 
8       5   −2    0   
4       2       0   0 

 
(−7)R1+R2→R2 

(−8)R1+R3→R3 

(−4)R1+R3→R3 

∼ 
 
 
(−13/10)R2+R3→R3 

(−3/5)R2+R4→R4 
∼ 

 

 
1   −1         3   0   

 0     10   −20    0   
 
0     13   −26    0   
0       6   −12    0 

 
1   −1         3   0   

 0     10   −20    0   
 0       0         0   0   
0       0         0   0

 

Since there  exist nontrivial solutions,  the  columns of the  matrix  are linearly  dependent. By Theorem 
2.15, one of the vectors  is in the span of the other  vectors. 

 

29.  We row–reduce  to echelon form:
[ 

2   −1  
]  

−(1/2)R1+R2→R2
 

[ 
2   −1  

]



Section 2.3:  Linear Independence 370 370 Chapter 2:  Euclidean Space 

 
 
 

0 
2 

1       0                    
∼                                 1



Section 2.3:  Linear Independence 371 371 Chapter 2:  Euclidean Space 
 
 
 

− 

0      5
 

0 0 

5 

3 
8 

5 4 

 

 
 
 

Because the echelon form has a pivot  in every row, by Theorem  2.9 Ax  = b has a unique  solution  for 
all b in R2. 

 

30.  We row–reduce  to echelon form:
[   

4   1 
]  

2R1+R2→R2
 

[ 
4   1 

]

−8    2                
∼                   

0   4 
 

Because the echelon form has a pivot  in every row, by Theorem  2.9 Ax  = b has a unique  solution  for 
all b in R2. 

 

31.  We row–reduce  to echelon form:
[   

6   −9  
]  

(2/3)R1+R2→R2 

[ 
6   −9  

]

−4       6                  
∼                      

0       0 
 

Because the  echelon form does not  have a pivot  in every row, by Theorem  2.9 Ax  = b does not  have 
a solution  for all b in R2. 

 

32.  We row–reduce  to echelon form:
[ 

1   −2  
]  

−2R1+R2→R2
 

[ 
1   −2  

]

2       7                 
∼

 0     11

 

Because the echelon form has a pivot  in every row, by Theorem  2.9 Ax  = b has a unique  solution  for 
all b in R2. 

 

33.  We solve the homogeneous  system  of equations  using the corresponding  augmented matrix:

[  
2       1   0   0 

]  (−1/2)R1+R2→R2 

(3/2)R1+R3→R3
 

 
2   −1    0   0   

1

1       0   1   0 ∼                     0 2      
1   0 

−3       4   5   0  

 
−5R2+R3→R3

 

2      
5   0 

 
2   −1    0   0  
0      1

∼                             
2      

1   0  
0       0   0   0 

 

Since  there  exist  nontrivial solutions,   the  columns  of the  matrix   are  linearly  dependent.   By  The 
Unifying Theorem,  Ax  = b does not have a unique solution  for all b in R3. 

 

34.  We solve the homogeneous  system  of equations  using the corresponding  augmented matrix:

[  
3       4   7   0 

]  (−7/3)R1+R2→R2 
 
3         4         7   0 

(2/3)R1+R3→R3
 

31            31
7   −1    6   0 ∼                    0   − 

3       
− 

3       
0 

−2       0   2   0 8           20 
3            3

 
3         4         7   0 

(8/31)R2+R3→R3
 

0   − 31            31
∼                               

3       
− 

3       
0  

0         0         4   0 
 

Since the only solution  is the trivial  solution,  the columns of the matrix  are linearly  independent.  By 
The Unifying Theorem,  Ax  = b has a unique solution  for all b in R3. 

 

35.  We solve the homogeneous  system  of equations  using the corresponding  augmented matrix:

[  
3   −2    1   0 

]  (4/3)R1+R2→R2 
 
3      −2     1   0 

−4       1   0   0 
−5       0   1   0 

(5/3)R1+R3→R3 
∼  0     − 

3
 

0   − 10
 

3      
0  

3      
0
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4 

 
3    −2     1   0 

−2R2+R3→R3 ∼  0   − 
3 3      

0 

0       0    0   0
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0 1 1 0 
0 0 1 0 

 

 

 
 
 

Since  there  exist  nontrivial solutions,   the  columns  of the  matrix   are  linearly  dependent.   By  The 
Unifying Theorem,  Ax  = b does not have a unique solution  for all b in R3. 

 

36.  We solve the homogeneous  system  of equations  using the corresponding  augmented matrix: 
[ 

1   −3    −2    0 
]

 
0       1       1   0 
2       4       7   0 

 
−2R1+R3→R3 

∼ 
 
 
−10R2+R3→R3 

∼ 

[ 
1   −3    −2    0 

]
 

0       1       1   0 
0     10     11   0 

[ 
1   −3    −2    0 

]

 
 

Since the only solution  is the trivial  solution,  the columns of the matrix  are linearly  independent.  By 
The Unifying Theorem,  Ax  = b has a unique solution  for all b in R3. 

 

37.  u = (1, 0, 0, 0), v = (0, 1, 0, 0), w = (1, 1, 0, 0) 
 

38.  u = (1, 0, 0, 0, 0), v = (0, 1, 0, 0, 0), w = (0, 0, 1, 0, 0) 
 

39.  u = (1, 0), v = (2, 0), w = (3, 0) 
 

40.  u = (1, 0), v = (0, 1), w = (1, 1) 
 

41.  u = (1, 0, 0), v = (0, 1, 0), w = (1, 1, 0) 
 

42.  u = (1, 0, 0), v = (0, 1, 0), w = (0, 0, 1), x = (0, 0, 0) .  The  collection is linearly  dependent, and  x is a 
trivial  linear combination of the other  vectors,  so Theorem  2.15 is not violated. 

 

43.   (a)  False.  For example,  u = (1, 0) and v = (2, 0) are linearly  dependent but  do not span R2. 
{[ 

1 
] [ 

0 
] [ 

1 
]}

 
(b)  False.  For example,               ,           ,               spans R2, but  is not linearly  independent. 

0          1          1 
 

44.   (a)  True,  by Theorem  2.14. 
{[ 

1 
] [ 

2 
] [ 

3 
]}

 
(b)  False.  For example,               ,           ,               does not span R2. 

1          2          3

[ 
1   0   1 

] [ 
1   0   1 

]

45.   (a)  False.   For  example,  A  = 
0   1   1     

∼       
0   1    1 and  has  a pivot  in every  row,  but  the

columns of A are not linearly  independent. 

(b)  True.   If every column  has a pivot,  then  Ax  = 0 has only the  trivial  solution,  and  therefore  the 
columns of A are linearly  independent. 

 

46.   (a)  False.   If A  = [  1   1 ] , then  Ax  = 0  has  infinitely  many  solutions,  but  the  columns  of A  are 
linearly  dependent.

[ 
1 

(b)  False.  For example,  A = 1 
]

 
has linearly  dependent columns,  and the columns of A do not

1   1 

span R2.

[
1
 

47.   (a)  False.   For  example,  A  =  2 
0 

dependent. 

−1
]

 
−2    has  more  rows than  columns  but  the  columns  are  linearly 
0

(b)  False.   For  example,  A = 

[
1    2   3

]  

has more columns  than  rows, but  the  columns  are linearly 
0   0   0 

dependent.  (Theorem 2.14 can also be applied  here to show that no matrix  with  more columns 
than  rows can have linearly  independent columns.)
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48.   (a)  False.  Ax  = 0 corresponds  to x1a1 + · · · + xnan = 0, and by linear independence, each xi = 0.
[ 

1 
]          [ 

1 
]

 

(b)  False.  For example,  if A =         and b = 

 
then  Ax  = b has no solution.

1                         0    
,
 

 

49.   (a)  False.  Consider  for example  u4 = 0. 

(b)  True.   If {u1, u2, u3} is linearly  dependent, then  x1u1 + x2u2 + x3u3 = 0 with  at  least  one of 
the  xi = 0.  Since x1u1 + x2u2 + x3u3 = 0 ⇒ x1u1 + x2u2 + x3u3 + 0u4 = 0, {u1, u2, u3, u4}  is 
linearly  dependent. 

 

50.   (a)  True.  Consider x1u1 + x2u2 + x3u3 = 0.  If one of the xi = 0, then  x1u1 + x2u2 + x3u3 + 0u4 = 0 
would imply that {u1, u2, u3, u4} is linearly  dependent, a contradiction. Hence each xi = 0, and 
{u1, u2, u3} is linearly  independent. 

(b)  False.  Consider  u1 = (1, 0, 0), u2 = (0, 1, 0), u3 = (0, 0, 1), u4 = (0, 0, 0). 
 

51.   (a)  False.  If u4 = x1u1 + x2u2 + x3u3, then  x1u1 + x2u2 + x3u3 − u4 = 0, and  since the  coefficient 
of u4 is −1, {u1, u2, u3, u4} is linearly  dependent. 

(b)  True.  If u4 = x1u1 + x2u2 + x3u3, then  x1u1 + x2u2 + x3u3 − u4 = 0, and  since the  coefficient 
of u4 is −1, {u1, u2, u3, u4} is linearly  dependent. 

 

52.   (a)  False.  Consider  u1 = (1, 0, 0), u2 = (1, 0, 0), u3 = (1, 0, 0), u4 = (0, 1, 0). 

(b)  False.  Consider  u1 = (1, 0, 0, 0), u2 = (0, 1, 0, 0), u3 = (0, 0, 1, 0), u4 = (0, 0, 0, 1). 
 

53.  (a),  (b),  and (c).  For example,  consider u1 = (1, 0, 0), u2 = (1, 0, 0), and u3 = (1, 0, 0).  (d) cannot  be 
linearly  independent, by Theorem  2.14. 

 

54.  Only  (c),  since to span  R3  we need at  least  3 vectors,  and  to be linearly  independent  in R3  we can 
have at most 3 vectors. 

 

55.  Consider  x1(c1u1) + x2(c2u2) + x3(c3u3) = 0.  Then  (x1c1) u1 + (x2c2) u2 + (x3c3) u3  = 0, and  since 
{u1, u2, u3} is linearly  independent, x1c1  = 0, x2c2 = 0, and  x3c3 = 0.  Since each ci  = 0, we must 
have each xi = 0. Hence, {c1u1, c2u2, c3u3} is linearly  independent. 

 

56.  Consider x1(u + v) + x2(u − v) = 0.  This implies (x1 + x2)u + (x1 − x2)v = 0.  Since {u, v} is linearly 
independent, x1 + x2  = 0 and  x1 − x2 = 0.  Solving this  system,  we obtain  x1 = 0 and  x2 = 0.  Thus 
{u + v, u − v} is linearly  independent. 

 

57.  Consider  x1(u1 + u2) + x2(u1 + u3) + x3 (u2 + u3) = 0.  This  implies (x1 + x2)u1 + (x1 + x3)u2 + 
(x2 + x3) u3= 0.  Since {u1, u2, u3} is linearly independent, x1 + x2  = 0, x1 + x3 = 0, and x2 + x3 = 0. 
Solving this system, we obtain  x1 = 0, x2 = 0, and x3 = 0. Thus {u1 + u2, u1 + u3, u2 + u3} is linearly 
independent. 

 

58.  We  can,  by  re-indexing,   consider  the  non-empty  subset  as  {u1, u2, . . . , un} where  1  ≤ n  ≤ m. 
Let  x1u1 + x2u2 + · · · + xnun  = 0,  then  x1u1 + x2u2 + · · · + xnun + 0un+1  + · · · + 0um   = 0.
Since  {u1, u2, . . . , un, un+1, . . . , um} is linearly  independent, 
{u1, u2, . . . , un} is linearly  independent. 

every  xi  = 0,  1 ≤ i ≤ n.  Therefore,

 

59.  Suppose {u1, u2, . . . , un} is linearly  dependent set, and we add vectors  to form a new set 
{u1, u2, . . . , un, . . . um}. There exist xi with a least one xi = 0 such that x1u1 +x2u2 + · · · +xnun = 0. 
Thus  x1u1 + x2u2 + · · · + xnun + 0un+1  + · · · + 0um  = 0, and  so {u1, u2, . . . , un, . . . um} is linearly 
dependent. 

 

60.  Since {u, v, w} is linearly  dependent, there  exists scalars  x1, x2, x3  such that x1u + x2v + x3w = 0, 
and  at  least  one xi = 0. If x3 = 0, then  x1u + x2v = 0 with  either  x1  or x2  nonzero,  contradicting 
{u, v} is linearly  independent.  Hence x3 = 0, and  we may write  then  w = (−x1/x3)u + (−x2/x3)v, 
and therefore  w is in the span of {u, v}. 

 

61.  u and  v are linearly  dependent if and  only if there  exist  scalars  x1 and  x2, not  both  zero, such that 
x1u + x2v = 0.  If x1 = 0, then  u = (−x2/x1) v = cv.  If x2 = 0, then  v = (−x1/x2) u = cu.



Section 2.3:  Linear Independence 375 375 Chapter 2:  Euclidean Space 
 
 
 

− 

 

 
 
 

62.  Let ui be the vector in the ith nonzero row of A.  Suppose the pivot in row i occurs in column ki. Let r 
be the number  of pivots, and consider x1u1 +· · · xrur = 0.  Since A is in echelon form, the k1  component 
of ui for i ≥ 2 must  be 0. Hence when we equate  the k1  component of x1u1 + · · · xrur = 0 we obtain 
x1 = 0. Applying  the same argument to the k2  component now with the equation  x2u2 + · · · xrur = 0 
we conclude  that x2 = 0.  Continuing in this  way we see that xi = 0 for all i, and  hence the  nonzero 
rows of A are linearly  independent. 

 

63.  Suppose  A  = [  a1      a2      . . .    am  ] , x  = (x1, x2, . . . , xm) and  y  = (y1, y2, . . . , ym).  Then  we have 
x − y = (x1 − y1, x2 − y2, . . . , xm − ym), and thus 

 

A(x  − y) = (x1 − y1) a1  + (x2 − y2) a2  + · · · + (xm − ym) am 

= (x1a1 + x2a2 + · · · + xmam) − (y1a1 + y2a2 + · · · + ymam) 

= Ax − Ay 

 
64.  Since u1 = 0  and  {u1, u2, . . . , um} is linearly  dependent, there  exists  a smallest  index  r  such  that 

{u1, u2, . . . , ur} is linearly  independent  but  {u1, u2, . . . , ur, ur+1}  is linearly  dependent.   Consider 
x1u1 + · · · + xrur + xr+1ur+1 = 0.   Since {u1, u2, . . . , ur, ur+1}  is linearly  dependent, at  least  one 
of the  xi  = 0.   If xr+1  = 0, then  x1u1 + · · · + xrur = 0,  which  implies  that xi  = 0 for all i  ≤ r 
since {u1, u2, . . . , ur} is linearly  independent. But  this  contradicts that some xi = 0, and  so we must 
have  xr+1 = 0.  Thus  we may  write  ur+1  = (−x1/xr+1) u1 + · · · + (−xr/xr+1) ur . We select  those 
subscripts i with xi = 0 (there  must  be at least one, otherwise  ur+1 = 0, a contradiction), and rewrite
ur+1 = (−xk1 

/xr+1) uk1  
+ · · · + 

(
 xkp 

/xr+1

) 
ukp 

.   We  now have  a vector  ur+1   written as a linear

 
combination of a subset  of the  remaining  vectors,  with  nonzero coefficients.  Since {u1, u2, . . . , ur} is 

linearly independent, this subset of vectors 
{
uk1 

, uk2 
, . . . , ukp 

} 
is also linearly independent (see exercise 

56). Finally,  these coefficients are unique,  since if (−xk1 
/xr+1) uk1 

+ · · · + 
(
−xkp 

/xr+1

) 
ukp  

= y1uk1 
+ 

· · · + ypukp 
, then  (y1  − xk1 

/xr+1) uk1 
+ · · · + 

(
yp − xkp 

/xr+1

) 
ukp  

= 0, and by linear independence  of {
uk1 

, uk2 
, . . . , ukp 

}
, each yi − xki 

/xr+1 = 0, and thus  yi = xki 
/xr+1. 

 

65.  Using a computer algebra  system,  the vectors  are linearly  independent. 
 

66.  Using a computer algebra  system,  the vectors  are linearly  dependent. 
 

67.  Using a computer algebra  system,  the vectors  are linearly  independent. 
 

68.  Using a computer algebra  system,  the vectors  are linearly  dependent. 
 

69.  We row–reduce  to using computer software  to obtain

     
2       1   −1       3   

 
1   0   0   1 

 −5       3       1       2    0   1   0   2 

 −1       2   −2       1  ∼   0   0   1   1 
                                                                 

     1   −2       0   −3         

0 

0   0   0 

3       1   −4       1 0   0   0   0

 

So, because Ax  = 0 has infinitely many solutions,  we conclude that the vectors are linearly dependent. 
 

70.  We row–reduce  to using computer software  to obtain

     
4       2   −3       0   

     2       3       2       2   

 
1   0   0   0  

 0   1   0   0 

 −1       1       1   −1   ∼   0   0   1   0 
                                                                 

     5   −1       1       3   
2       0       1       2 

 0   0   0   1   
0   0   0   0

 

So, because  Ax  = 0 has only the  trivial  solution,  we conclude  that the  vectors  are linearly  indepen- 
dent. 

 

71.  Using a computer algebra  system,  Ax  = b has a unique solution  for all b in R3.
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72.  Using a computer algebra  system,  Ax  = b has a unique solution  for all b in R3. 
 

73.  Using a computer algebra  system,  Ax  = b does not have a unique solution  for all b in R4. 
 

74.  Using a computer algebra  system,  Ax  = b has a unique solution  for all b in R4. 
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1.  u + v = 

[  
1 

]
 

−3 
2 

[ 
−2  

]
 

+      4     = 
1 

[ 
−1  

]
 

1    ; 
3

[ 
 

3w = 3 
1 

]   [
 

−5     = 
7 

3 
]

 
−15 

21

 
 

2.  v − w = 

[ 
−2  

] 

4 
1 

[  
1 

] 

−    −5     = 
7 

[ 
−3  

] 

9    ; 
−6

 
−4u = −4 

[  
1 

]
 

−3 
2 

[ 
−4  

]
 

=    12 
−8

[  
1 

]    [ 
−2  

]   [ 
−4  

]

3.  2w + 3v = 2    −5     + 3 
7 

4     =      2    ; 
1               17

 
2u − 5w = 2 

[  
1 

]
 

−3 
2 

[  
1 

]
 

− 5    −5 
7 

[  
−3  

]
 

=      19 
−31

 
 

4.  3v + 2u = 3 

[ 
−2  

] 

4 
1 

[  
1 

] 

+ 2    −3     = 
2 

[ 
−4  

] 

6    ; 
7

 
−2u + 4w = −2 

[  
1 

]
 

−3 
2 

[  
1 

]
 

+ 4    −5     = 
7 

[    
2 

]
 

−14 
24

[  
1 

]  [ 
−2  

]    [ 
1 

]   [    
3 

]

5.  2u + v + 3w = 2    −3     + 
2 

4     + 3    −5     = 
1                   7 

−17     ; 
26

 
u − 3v + 2w = 

 
 
 

6.  u − 2v + 4w = 

[  
1 

]
 

−3 
2 

[  
1 

] 

−3 
2 

[ 
−2  

]
 

− 3        4 
1 

[ 
−2  

] 

− 2        4 
1 

[  
1 

]
 

+ 2    −5     = 
7 

[  
1 

] 

+ 4    −5     = 
7 

[    
9 

]
 

−25 
13 

[    
9 

] 

−31     ; 
28

 
−3u + v − 2w = −3 

[  
1 

]
 

−3 
2 

[ 
−2  

]
 

+      4 
1 

[  
1 

]
 

− 2    −5     = 
7 

[  
−7  

]
 

23 
−19

 

7.      x1        −    2x2    =      1 
−3x1      +   4x2    =   −5 
2x1      +     x2     =      7 

 

8.      x1       +    x2    =     4 
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−5x1      −    3x2    =   −8 
7x1      +   2x2    =   −2
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9.  0 

[  
1 

]
 

−3 
2 

[ 
−2  

]
 

+ 0        4 
1 

[ 
0 

]
 

=   0    ; 1 
0 

[  
1 

]
 

−3 
2 

[ 
−2  

]
 

+ 0        4 
1 

[  
1 

]
 

=   −3     ; 
2

[  
1 

]
 

0    −3 
2 

[  
1 

] 

[ 
−2  

]
 

+ 1        4 
1 

[ 
−2  

] 

[ 
−2  

]
 

=      4 
1 

[ 
0 

] 

 
 

 
[  

1 
] 

 
 

 
[ 

−2  
] 

 
 

 
[  

1 
]

10.  0    −5     + 0 
7 

4     =   0 
1             0 

; 1    −5     + 0 
7 

4     =   −5     ; 
1                 7

[  
1 

]
 

0    −5 
7 

[ 
−2  

]
 

+ 1        4 
1 

[ 
−2  

]
 

=      4 
1 

[  
1 

] 

 
 

 
[ 

−2  
] 

 
 

 
[  

1 
] 

 
 

 
[    

x1 − 2x2  
]

11.  x1u + x2v = w     ⇔    x1     −3 
2 

+ x2 4     =   −5 
1                 7 

⇔       −3x1  + 4x2 

2x1 + x2

[  
1 

]
 

=   −5 
7 

 

⇔  the augmented matrix 

[  
1   −2       1 

]
 

−3       4   −5 
2       1       7 

 

has a solution:

[  
1   −2       1 

]    
3R1+R2→R2 

[ 
1   −2       1 

]

−3       4   −5 
2       1       7 

−2R1+R3→R3 ∼ 
 

 
(5/2)R2+R3→R3 

∼ 

0   −2    −2 
0       5       5 [ 
1   −2       1 

]
 

0   −2    −2 
0       0       0

 

Because a solution  exists, w is a linear combination of u and v.

[  
1 

]     [ 
1 

]   [ 
−2  

]

12.  x1w + x2u = v     ⇔    x1     −5 
7 

+ x2     −3     =      4         ⇔ 
2                 1

[     
x1 + x2 

−5x1  − 3x2 

7x1 + 2x2 

]   [ 
−2  

]
 

=      4 
1 

 
⇔  the augmented matrix 

[  
1       1   −2  

]
 

−5    −3       4 
7       2       1 

 
has a solution:

[  
1       1   −2  

]    
5R1+R2→R2 

[ 
1       1   −2  

]

−5    −3       4 
7       2       1 

−7R1+R3→R3 ∼ 
 

 
(5/2)R2+R3→R3 

∼ 

0       2   −6 
0   −5     15 [ 

1   1   −2  
]

 
0   2   −6 
0   0       0

 

Because a solution  exists, v is a linear combination of w and u. 
 

13.  Because w is in the span of u and v, by Exercise 11, {u, v, w} is linearly  dependent. 
 

14.  Because {u, v, w} is linearly  dependent, by Exercise 13, span {u, v, w} = R3.

 
15.  x1 

[ 
4 

]
 

1 

 
+ x2 

[ 
13 

]
 

−7 

 
+ x3 

[ 
−1  

]
 

4 
= 

[ 
−7  

]
 

12

 
 

16.  x1 

[  
3 

] 

−1 
−3 

 
 
+ x2 

[ 
−2  

]
 

5 
0 

 
 
+ x3 

[ 
−1  

]
 

0 
10 

 
 
+ x4 

[  
2 

] 

1     = 
−3 

[  
0 

] 

−7 
2
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17. 

[ 
x1 

x2 

x3 

]   [ 
−1  

] 

=      0 
0 

 

 
+ s1 

[ 
2 

] 

3 
1
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[     ]  [ 
−1  

]
 −   − 

7 

7 

3 

 

 
 

 
18. 

[ 
x1 

x2 

x3 

]   [  
5 

]
 

=   −4 
0 

 
+ s1 

[ 
−7  

]
 

0 
1

 
x1    

     
3   

 
−5   

 
−1  

19.  
 x2  

= 
 0  

+ s1 
 0  

+ s2 
     1 

 x3 

x4 

      −1  
         

 
0 

8 
              

0  
1                     0

  
x1 

 x2 

20.      x
 

      
1  

      0  
=    6     + s

 

     
1   

     0   
−1

 

 

 
 
+ s2

 

 
0   

 0   
4
 

 

 
 
+ s3

 

 
6   

 1   
0

                       
1 

         

                                     

                    
                   

 x4 

x5 

      0          

 
0 

0           
1 

1           0  
0                  0

 

21.  2    
−3     

+
 

[ 
b 

]   [   
2b    7 

]
 

2           =                 , so we have the equations     2b
 

 
7 =   2, and 2a

 
 
8 = 5.

a               0    
−     

4 2a − 8 
−   −      −            −

We solve these and obtain  a = 13   and b = − 5 .
 
 

22.  − 

[  
a  

] 

1 
−2 

[ 
3 

] 

+ 3     b 
0 

2 

[  
9 − a  

]
 

=    3b − 1 
2 

2 

 
, so we have the  equations  9 − a = 1, 3b − 1 = −4, and  2 = c.  We

solve these and obtain  a = 8, b = −1, and c = 2. 
[  

1 
]     [  

2 
]   [  

−1  
]        [    

x1 + 2x2  
]   [  

−1  
]

23.  x1a1 + x2a2 = b    ⇔     x1     −2 
4 

+ x2        3 
−1 

=    −11 
10 

⇔       −2x1  + 3x2 

4x1 − x2 

=    −11      ⇔ 
10

[  
1       2     −1  

]

the augmented matrix −2       3 −11      yields a solution.

4   −1       10 
[  

1       2     −1  
]   

2R1+R2→R2 

 
[ 

1       2     −1  
]

−2       3   −11 
4   −1       10 

−4R1+R3→R3 ∼ 
 

 
(9/7)R2+R3→R3 

∼ 

0       7   −13 
0   −9       14 

 
1   2      −1   

 0   7    −13   
0   0   − 19

 

From  the third  row, we have 0 = − 19 , and hence the system does not have a solution.  Hence b is not
a linear combination of a1   and a2. 

     
1  

 

     
0  

 
 

 
−2  

24.  x1a1 + x2a2 + x3a3 = b   ⇔     x1 
 −3   

+ x  
 2  

+ x  
 0  

=
     0  

2 

2  −1   
1 

3      3   
−1

 
−2  

          

 
x1 − 2x3    

 
−2   

     
1       0   −2    −2  

 −4        −3x1  + 2x2   
  −4    −3       2       0   −4  

     5      ⇔  3 
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−1 3 5 
1 −1 3 

 

−3x2  + 3x3 

2x1 + x2 − x3 

 =  5   

⇔ the 

augme

nted 

matrix  

     0 
3                                                           
2 

 yields

a solution.  
     

1       0   −2    −2   

 

 
3R1+R2→R2 

 
 
1       0   −2      −2  

 −3       2       0   −4   −2R1+R4→R4  0       2   −6    −10  

     0   −1       3       5   
2       1   −1       3 

∼ 
 

 
(1/2)R2+R3→R3 

−(1/2)R2+R4→R4 
∼ 

 0   −1       3         5   
0       1       3         7 

 
1   0   −2      −2   

 0   2   −6    −10   
 0   0       0         0   
0   0       6       12
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0 

0      0 

13 

  
1 

 

 

 

 
 
 

From  row 4, 6x3 = 12  ⇒  x3 = 2.From  row 2, 2x2 − 6(2) = −10  ⇒  x2 = 1. From  row 1, x1 − 2(2) = 
−2  ⇒  x1 = 2. We conclude b is a linear combination of a1,  a2,  and a3   with b = 2a1  + a2  + 2a3.

 
x1   [ 

2       3   −8       1 
] 

, x = 
 x2  

 

 

[ 
5 

]

25.  A = 
6   −1       4   −2   x3 

x4 

 , and b =    
9

     
3   −1    −7   

 

[ 
x1  

] 
     

2 

26.  A = 
 −4       5       0   

, and b = 
 −4  

 −8       2       6  , x =     x2 

1       3       9                   
x3

 

     3   
7

 

 

27.  Set x1a1 + x2a2 = b ⇒   x1 

[  
3 

] 

−1 
−2 

 

 
+ x2 

[ 
1 

] 

4     = 
5 

[ 
−1  

]
 

5         ⇒ 
7

[    
3x1 + x2 

−x1 + 4x2 

−2x1  + 5x2 

]   [ 
−1  

]
 

=      5 
7 

 
.We obtain  3 equations  and  row-reduce  the  associated  augmented matrix

to determine if there  are solutions. 

[  
3   1   −1  

]   (1/3)R1+R2→R2 

 

 
3       1   −1  

(2/3)R1+R3→R3
  0    13        14    

−1    4       5 
−2    5       7 

∼                                  3 
17 
3 

 3 
19     
3

 
3      1   −1  

−(17/13)R2+R3→R3  0    13        14    

∼                             3           3     
3 

13 
 

From  the  third  row, 0 =   3  ,and  hence there  are no solutions.  We conclude that there  do not exist x1 

and x2 such that x1a1 + x2a2 = b, and therefore  b is not in the span of a1   and a2.
 
1  

 
−1   

     
2   

 
−3   

     
x1 − x2 + 2x3  

3             2       2        4    3x1 + 2x2 + 2x3  

28.  Set x1a1+x2a2+x3a3 = b ⇒  x1  +x2  3 
+x3  0  =  −7       ⇒ 

 

x1 + 3x2  
 =

 
−3  

 
0                    4                 −1                  1 4x2 − x3

     4  
 −7  

. We obtain  4 equations  and row-reduce the associated  augmented matrix  to determine if there 
1 

are solutions.
 
1   −1       2   −3   

 3       2       2       4   
 1       3       0   −7   
0       4   −1       1 

 
−3R1+R2→R2 

−R1+R3→R3 
∼ 

 

 
 
(−4/5)R2+R4→R3 

 
1   −1       2   −3   

 0       5   −4     13   
 
0       4   −2    −4   
0       4   −1       1 

 
1   −1       2      −3   
0       5   −4       13

(−4/5)R3+R4→R4          
                                 

∼                    0       0      6 − 72    

                    5            5 

0       0     11            47
 

 
 

(−11/6)R3+R4→R4 
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5       
− 

5 
 
1   −1       2      −3   

 0       5   −4       13 

∼                    
0       0      6 − 72    

                    
5            5     

0       0       0       17 
 

From  the third  row, 0 = 17,and  hence there  are no solutions.  We conclude that there  do not exist x1, 
x2, and x3 such that x1a1 + x2a2 + x3a3 = b, and therefore  b is not in the span of a1,  a2,  and a3.
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29.  {a1} does not span R2, by Theorem  2.9, because m = 1 < 2 = n. 
 

30.  Row-reduce  to echelon form:
[   

6   −2  
]  

(3/2)R1+R2→R2
 

[ 
6   −2  

]

−9       3                  
∼                      

0       0 
 

Because there  is a row of zeros, there  exists a vector  b which is not in the span of the columns of the 
matrix, and therefore  {a1, a2} does not span R2. 

 

31.  Row-reduce  to echelon form:
[ 

1   −3  
]  

−2R1+R2→R2
 

[ 
1   −3  

]

2       5                 
∼

 0     11

 

Because there is not a row of zeros, every choice of b is in the span of the columns of the given matrix, 
and therefore  {a1, a2} spans R2. 

 

32.  Row-reduce  to echelon form:
[ 

1   −1    2 
]  

−3R1+R2→R2
 

[ 
1   −1       2 

]

3   −3    4                 
∼

 0       0   −2

 

Because there is not a row of zeros, every choice of b is in the span of the columns of the given matrix, 
and therefore  {a1, a2, a3} spans R2. 

 

33.  {a1} does not span R3, by Theorem  2.9, because m = 1 < 3 = n. 
 

34.  {a1, a2} does not span R3, by Theorem  2.9, because m = 2 < 3 = n. 
 

35.  Row-reduce  to echelon form:

[ 
1   −3      4 

]  −2R1+R2→R2 
[ 

1   −3       4 
]

2   −5      6 
5       4   11 

−5R1+R3→R3 ∼ 
 
 
−19R2+R3→R3 

∼ 

0       1   −2 
0     19   −9 

[ 
1   −3       4 

]
 

0       1   −2 
0       0     29

 

Because there is not a row of zeros, every choice of b is in the span of the columns of the given matrix, 
and therefore  {a1, a2, a3} spans R3. 

 

36.  Row-reduce  to echelon form:

[  
1   −1       1   −2  

]  
3R1+R2→R2 

[ 
1   −1       1   −2  

]

−3       2   −5       2 
1   −2    −1    −6 

−R1+R3→R3 ∼ 
 
 
−R2+R3→R3 

∼ 

0   −1    −2    −4 
0   −1    −2    −4 

[ 
1   −1       1   −2  

]
 

0   −1    −2    −4 
0       0       0       0

 

Since there  is a row of zeros, there  exists  a vector  b which is not  in the  span  of the  columns  of the 
matrix, and therefore  {a1, a2, a3, a4} does not span R3. 

 

37.  We solve the homogeneous  system  of equations  using the corresponding  augmented matrix:

[   
1   −2    0 

]  
5R1+R2→R2

 

[ 
1   −2    0 

]

−5       9   0                
∼

 0   −1    0
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Because  the  only solution  is the  trivial  solution,  the  set of column  vectors,  {a1, a2} , is linearly  inde- 
pendent.
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− 

3 

 

 
 
 

38.  We solve the homogeneous  system  of equations  using the corresponding  augmented matrix:

[   
9   −6    0 

]  
(2/3)R1+R2→R2

 
[ 

9   −6    0 
]

−6       4   0                   
∼

 0       0   0

 

Because there exist nontrivial solutions,  the set of column vectors, {a1, a2} , is not linearly independent. 
 

39.  By Theorem  2.14, because m = 3 > 2 = n, the set {a1, a2, a3} is not linearly  independent. 
 

40.  We solve the homogeneous  system  of equations  using the corresponding  augmented matrix: 
[  

1   −2    0 
]   −6R1+R2→R2 

[ 
1   −2    0 

]

6       3   0 
−2       0   0 

2R1+R3→R3 ∼ 
 
 
(4/15)R2+R3→R3 

∼ 

0     15   0 
0   −4    0 

[ 
1   −2    0 

]
 

0     15   0 
0       0   0

 

Because  the  only solution  is the  trivial  solution,  the  set of column  vectors,  {a1, a2} , is linearly  inde- 
pendent. 

 

41.  We solve the homogeneous  system  of equations  using the corresponding  augmented matrix: 
[  

1       2   0 
]  

−4R1+R2→R2 

5R1+R3→R3
 

[ 
1   −2    0 

]

4   −8    0                  ∼ 
−5     10   0 

0       0   0 
0       0   0

 

Because there exist nontrivial solutions,  the set of column vectors, {a1, a2} , is not linearly independent. 
 

42.  We solve the homogeneous  system  of equations  using the corresponding  augmented matrix: 
[  

1   −2       2   0 
]   

R1+R2→R2 
[ 

1   −2       2   0 
]

−1       3   −5    0 
3       4       9   0 

−3R1+R3→R3 ∼ 
 
 
−10R2+R3→R3 

∼ 

0       1   −3    0 
0     10       3   0 

[ 
1   −2       2   0 

]
 

0       1   −3    0 
0       0     33   0

 

Because  the  only  solution  is the  trivial  solution,  the  set  of column  vectors,  {a1, a2, a3} , is linearly 
independent. 

 

43.  We solve the homogeneous  system  of equations  using the corresponding  augmented matrix: 

 
3    −2       0   0 

 [ 
3   −2       0   0 

]  
(−2/3)R1+R3→R3

0       3       9   0 
2   −4    −8    0 

∼                    0       3       9   0  
0   − 8      −8    0

 
(8/9)R2+R3→R3 

∼ 

[ 
3   −2    0   0 

]
 

0       3   9   0 
0       0   0   0

 

Because  there  exist  nontrivial solutions,  the  set  of column  vectors,  {a1, a2, a3} , is not  linearly  inde- 
pendent. 

 

44.  By Theorem  2.14, because m = 4 > 3 = n, the set {a1, a2, a3, a4} is not linearly  independent. 


