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Chapter 2

Euclidean Space

2.1 Practice Problems
[ ,1 0 10 , 1141

lL.u-w= 3 - 0 = 3-0 = 3
4 -2 4-(-2) 6
[ ;1 [ g1 [_j,351 [4]
vV +3w = 6 +3 0 = 6+3(0) = 6
[ 61 0,1 [0 [ 564 caracnd [
2w+ u+3v = -2 0 + 3 +3 6 = —20) +3+3(06) = 21
-2 4 2 —-2(-2)+4+3(2) 14
2. @ X3 + 4xp = 3
77Xy + 6xp, = 10
2X7 — 6x = b
(b) 3X1 - X3 = 4
4X, - 2% + 2X3 = 7
- bBx, + 9x3 = 11
2x7y + _6Xo + bxzg = —6
- . [ ,1 [ ;1
3. (@ xg 5 +x 7 +X3 6 = 12
0 -8 0
[,1 [_,1 [_,1 [ :1T10I,]
(b) X1 0 +x 2 +X3 5 +x4 -2 = 6
3 12 6 0 10
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Xo []5 + S i

Oxx0_0 00 DOD+SZD 10

(b) 51
0 O O 1 O C1a O
X3 7 1 0
X4 Od- 1 0
[ ] [L.1 [ 1
1 3 5 [ X1 + 3Xo
5 (@ xqar+x82=b & X1 _ +X2 o = < _Bx; + 6Xy
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[ ]

the augmented matrix _é g g has a solution:

[ ] [ ]

1 3 5 5R1+R;—>R; 1 3 5
-5 6 9 0 21 34

From row 2, 21x;= 34 = X = 3}. From row 1, x; +3(;2*) =5 = x3 =_'. Thus, b is a linear

combination of a; and a,, with b :17a1 +%la2.

M S P T

(b) x1a1+ X222+ X2a2=b < x; -3 +x 3 = 5 =
L X1 — 2Xo L 7 1 L 1 -2 7 1
=3X;p +3%Xz = 5  «the augmented matrix -3 3 5  yields a solution.
8X1 — 3X2 —4 8 -3 —4

Ly 2 71 wrerere Ly o0 7]

3 3 5 ~8R1+Rs—Rs 0 -3 26
8 -3 —4 L0 13 60
( ¥)R2+Rs—Rs 1 -2 7
~ 0o -3 260
0o o 8

3

From the third equation, we have 0 = 13 and thus the system does not have a solution. Thus,
b is not a linear combination of a;, ap, and as.

6. (a) False. Addition of vectors is associative and commutative.
(b) True. The scalars may be any real number.

(c) True. The solutions to a linear system with variables Xxi,...,Xn can be expressed as a vector X,
which is the sum of a fixed vector with n components and a linear combination of k vectors with
n components, where k is the number of free variables.

(d) False. The Parallelogram Rule gives a geometric interpretation of vector addition.

2.1 \ectors
[ ;1 [_,1 [3_(_4)] [ .1
lL.u-v= -2 - 1 = -2-1 = -3
0 5 0-5 -5
[ ,1 I (6)2] [ ,1]
ew=6 -7 = 67 = -42
-1 (6) (1) -6

[ ,1 0,10 , 51 [_,1

2 w—-u= -7 - =2 = —-T71—-(-2) = -5
-1 0 -1-0 -1
[ 41 Loyl [ 5]
—-s5v=(-5 1 = (51 = -5
S (-5)5 -25
[ ,1 [ ,1 [hug0g91 [ 4]
3.w+3v= -7 +3 1 = -7+3(1)) = -4
-1 5 -1+3(5) 14
[ ,1 [_,] 5

2w —7v=2 -7 -7 1
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[ ,1 031 0 ,p_31 [ ¢

4, 4w —u=4 -7 — =2 = 4(-7)-(-2) = -26
-1 0 4(-1)-0 —4
L_,1 [ 11 (-2) (-4) + 5(2) 1 [ 451
-2v+5w=(-2) 1 +5 -7 = (-2)(1)+5(-7) = =37
5 -1 (-2)(5) +5(-1) -15

5, - u+v+w=— -2 + 1 + -7 =
0 5 -1
L —3—4+2:I [—5]
-(-2)+1-7 = -4
—-0+5-1 4
[ ,1 [ ,1 [ ,1
2u-v+3w=2 -2 - 1 +3 -7 =
0 5 -1
[2(3) -(-4)+30© 1 1 16]
2(-2)-1+3(-7) = -26
2(0) —5+3(-1) -8

[ ;1 [ ,1 [ ,1
6. 3u-2v +5w =3 —S -2 1 +5 -7 =
5

[ 3@ -2¢ay+5091 [ 271
3(-2)-2@1) +5(-7) :
3(0) —2(5) +5(-1) -15
[ ;1 [_,1 [ ,1
—4u+3v —2w=-4 -2 +3 é -2 -7 =

1]
|
~
w

! (-4)(3) +3(-4)-2(2) 11 —28 1

(-4)(-2)+3(1) —2(-7 = 25
(-4)(0) +3(5) —2(-1) 17
7. 3X1 - Xo = 8
2X7 + bBx, = 13
8. -X1 + 9X2 = -7
6x; - bBx, = -11
—4x; = 3
9. —-6x; + 5Xx» = 4
5x; - 3o + 2x3 = 16
10. 2x; + bBXx3 + 4xyu

X1 + 2% + X3 + 5X%4
8Xy + 4Xo + 6x3 + TXa
3Xy + 2%, + X3

[ 1 [ _1 [ 1

2 8 —4 -10
11. X1 -1 + Xo -3 + X3 5 = 4

I n
M owpro



339 Section 2.1: Vectors Chapter 2: Euclidean Space 339

2 [, [ [

+ X3 ] + Xy

6 ]
1
0
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[ o1 [ 41 [ 4]
14.X1 3 + Xo -5 = -9
-2 -2
[ 1 [ 1 [.]
X1 _ —4 3
[X] [ 2]
L _
16 X2 =S 1
[X1] [ -1 [ _,]1
17. X2 = =3 +g3 0
X3 0 1
DX1DD 1Ii| D3D D_4D
18DX2D:D—2D 0o 1 o 510
DX3DD OD+81DOD+32D 1D
Xa 0 1 0
DxlD 4D EéD D_SD
]
19.DX2D_D 0D+51DOD+SQ 10
0 0 0 ] 0 0 0
X3 -9 3 0
X4 — 1 0
0
DXlD 0 1 D_7li| D14li| D_lD
0
X2 L1 0 0 0 1
@%x %z 0%51%0%32%1§+33%0%
By s O
DX4 0 Dﬁlzl:l 1D |:|0D O OD
X5 1 0 0
0
[ 1] [_, 1] [ [,1 10,
21, lu+0v =u= _5 ,Ou+lv=v= _, ,lu+1v = + _y = g
[ .1 [ .1
22. lu+0v =u= 1 ,Qu+lv=v= -3 ,
—-13 2
[ .10 110 1
lu+ 1lv = 1 + -3 = -2
-13 2 -11
[_,] [_,1 [ 4]
23. lu+0v+0w =u= 0 ,0u+1lv+0w=v= —é ,0u+Ov+1lw=w= 6
- 11
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0 1 ] 0 4 ] 0 9 0
24, lu+0v+0w=u="1 g H ou+lv+ow=y=" _52§,0u+0v+1W:W:§(?F.
]
2 -5 1
(.1 0 10 1 ., ,1 [ 1
25. -3 5 +4 h = 19 =  —9+4p = 19 = -3a-4=-10and -9+ 4b=19.
Solving these equations, we obtain a=2and b= 7.
t 1 € .1 [ 1 [ 1
4 -3 b -1 L 16—9—2b]:[—1]
6.4 5 *3 5 =2 g = 7 Z 4a+15-16 7 =

7—-2b=—-1and 4a—1=7. Solving these equations, we obtain a =2 and b= 4.
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[ ,1 [ ,1 0,1 [ ;.10 .1

27. — a +2 -2 = -1 = -a-4 = -7 =
2 b 8 -2+2b 8

7=c —a-4=-7,and —2+ 2b=8. Solving these equations, we obtain a=3,b=5,and c=7.

[ .1 0,1 0,1 [, .1 1[,1]

28.—- -3 — b = 2 = 3-bh = 2 =
0 5 c -5 c
—a—1=4,3-b=2,and -5 =c. Solving these equations, we obtain a= -5,b=1, and ¢ = -5.
Dll:lmb DZDD_3D DZb—SDD—SD
]
20 DlDD 0oc 0O —-40 ] —-c0 0O -40
[
29. =00 , 0+20 0-0g0=0 g0 =0 _4_9g0=0 g0 =

-2
3

1 0 d 5 d

2b—-3=-3, —c= -4, -a-9=3, and 5 =d. Solving these equations, we obtain a = —12, b= 0,
c=4,and d = 5.

U alil DSD U 2 Dlll:l D_a+10_2DD11D
U
4I:P 010 co 0O —-40 O —4+2-c 0O -40

-1 3 -6 d 1+6+6 d

—a+8=11, —2—c= -4,5+2b =3, and 13 = d. Solving these equations, we obtain a = -3, b= -1,
c=2,and d = 13.

[ .1 [ 1 [_1 [ 1 [ 1
3. xa +xa =2 X ! — 8 m2X Xz 8
t2 9 = 5x1- 3%z 9
11 22=b & X > 3 ! 2 & the
-2 7 8"
augmented matrix has a solution:
5 -3 9
! -2 7 8 1 (5/2)R1+R>—R> L -2 7 8 ]

5 -3 Y (0] % 29
From row 2, £x, =29 = x,=2. From row 1, —2x; +7(2) = 8 = x1 = 3. Hence b is a linear

combination o% a; and a, , with b =3a; + 2a,.
6

L [ 4]+ S I ¢?[ dr— 66, ]
- X181 Xpd2 = < X X 9 T 5 —6X; + 9x;
[, ] L, o ]
= g < the augmented matrix _6 9 _5& has a solution:
[ 4 —6 1 1 (3/2)R1+R>—R» [ 4 —6 1 ]

-6 9 -5 - o o0 -7

Because no solution exists, b is not a linear combination of a; and ay.

[ ,1 [ ,1 1,1 [ a1 [ 41



343

Section 2.1: Vectors Chapter 2: Euclidean Space 343

33. xja1+xcao=b & x; -3 +X 3 = =5 = —3xX1+3x, = -5 . The
1 -3 -2 X1 — 3X2 -2
first equation 2x; = 1 = x; = 1. Then the second equation —3(1) +3x,= -5 = xo=-". We
)

check the third equation, 3 —3 —, =4 = -2. Hence b is not linear combination of a; and a,-

L ,1 L 0 1 I 6 1 L 2%, 1 [ 6 1
4. X+ X2a2=b < x; -3 +x 3 = 3 = =3x1+3X; = 3 . The
-3 -9 X1 = 3%z -9

first equation 2x; = 6 = X7 = 3. Then the second equation —3(3) + 3x, = 3 = X, = 4. We check
the third equation, 3 —3(4) = —9. Hence b is a linear combination of a; and a,, with b =3a; + 4a,.
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[,1 [_31 [,1 0 31 [, 50,01
35. Xjai+Xsax+xzax =b < X3 2 + X 5 + X3 2 = -2 & 2%+ BXo + 2X3
L 1 1 L 1 -3 2 1 1
= -2 <the augmented matrix 2 5 2 —2  vyields a solution.
3 1 -3 4 3
[, 3, 1] RurReTRe L1 5 2 4]
2 b 2 =2 ~ 0 11 -2 -4
1 -3 4 3 0 0 2 2
From row 3, we have 2x3 = 2 = Xz = 1. From row 2, 11x,- 2(1) = -4 = X, = —131. From row
2 17 . : A .
1 11 Hence b is a linear combination of a;, a, and as, with
b:—%l—ﬁaz+ag. X = —
[ ,b1 [ o1 [_,1T10,]1
36. Xxja1+ Xzax+ Xza=b & x1 -3 +x 3 +x3 -1 = -4 =
L 2X1 — 2X3 L 2 ] L 2 0 -2 2 1
=3X1+3X2- X3 = —4  <the augmented matrix -3 3 -1 —4  yields a solution.
X1 — 3X2 + 3X3 5 1 -3 3 5

L _ 1 Gori+r—rR, L[ 1
2 0 2 2 (—1/2)Rll+l§3—>F§3 2 0 -2 2

-3 3 -1 -4 ~ 0 3 -4 -1
1 -3 3 5 0 -3 4

[y 0 241

Rz+Rg—Ra 03 -4 -1

00 0 3

From the third equation, we have 0 = 3, and hence the system does not have a solution. Hence b is
not a linear combination of a;, ap, and as.

[, 1 [g1 [41
3 25 = 31
@ 5 o 6 14

37. Using vectors, we calculate

Hence we have 76 pounds of nitrogen, 31 pounds of phosphoric acid, and 14 pounds of potash.
38. Using vectors, we calculate
L 29 1 [ 18 11 242 1
4 3 +(7) 25 = 187
4) . (7 ; co

Hence we have 242 pounds of nitrogen, 187 pounds of phosphoric acid, and 58 pounds of potash.

39. Let x; be the amount of Vigoro, x, the amount of Parker’s, and then we need
[29] [18] I:112:I

X1 3 + X2 25 = 81
4 6 26

Solve using the corresponding augmented matrix:

[ 29 18 112 1 (—3/29)R1+R2—R> - 29 18 112 5
3 25 81 (—4/29)R’£+R3—>R3 0 0 % % 0
4 6 26 0 & %
29 29
(—102/671)R2+Rs—Rs  [] 28 51118 2%1132 0
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From row 2, we have %2 x, = 88 = x, =3, Form row 1, we have 29x;+ 18(3) = 112 = x; = 2.
Thus we need 2 bags o% Vigoro and 3 bags of Parker’s.

40. Let x; be the amount of Vigoro, x, the amount of Parker’s, and then we need

[29] I:18:I [285]

X1 3 +x, 25 = 284
4 6 78

Solve using the corresponding augmented matrix:

[ 29 18 285 ] (—3/29)R1+R2—R2 0 29 18 285 U
3 25 284 (—4/29)R’L+R3—>R3 0 o0 % % 0
4 6 78 0 102 1122

29 29

U U
(—102/671)R2+R3—=R3s ] 28 6_%18 isgls O
29 29

0 0 0

From row 2, we have §2x, = B8 = x,=11. Form row 1, we have 29x;+ 18(11) = 285 = x; = 3.
Thus we need 3 bags 019 Vigoro and 11 bags of Parker’s.

41. Let x; be the amount of Vigoro, X, the amount of Parker’s, and then we need

[29] I:18:I [123:I

X1 3 +X%x, 25 = 59
4 6 24

Solve using the corresponding augmented matrix:

[, 158 1231 seori+r—r: Y29 18 123 "
3 25 59 (—4/29)R1+Rs—>Rs [ 8 8 182 g
4 6 24 %%
29 29
(29/671)R2—R> L 29 18 123 1
(—102/29)R,+R3—R3
N 0 1 2
0 O 0

Back substituting gives X, = 2 and x; = 3. Hence we need 3 bags of Vigoro and 2 bags of Parker’s.

42. Let x; be the amount of Vigoro, x, the amount of Parker’s, and then we need

[29] I:18:I [159:I

X1 3 +x, 25 = 109
4 6 36

Solve using the corresponding augmented matrix:

O
[ 29 18 159 ] (—3/29)R1+R2—R> 29 18 159

(—4/29)R1+R3—R3 %0 671 2684H

3 25 109 2
4 6 36 0 25 29

(29/671)R2—R L 1
(—102/29)}33—20—R3—3>R3 209 18 159
0

Back substituting gives x> = 4 and x; = 3. Hence we need 3 bags of Vigoro and 4 bags of Parker’s.
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43. Let x; be the amount of Vigoro, x, the amount of Parker’s, and then we need
[29] [18] [148]

X1 3 +x, 25 = 131
4 6 40

Solve using the corresponding augmented matrix:

[29 18 148] (=3/29)R1+R2—R2 . 29 18 148 -
3 25 131  CVPRUReoRe gog &5 386 0
4 6 40 102 568

29 9

5 %9 18 148 H

(—102/6712132+R3ﬁR3 671 3355 0
29 29
0 0 2

Since row 3 corresponds to the equation 0 =2, the system has no solutions.

44, Let X1 be the amount of Vigoro, X, the amount of Parker’s, and then we need
[29] [18:I I:100]

X1 3 +x, 25 = 120
4 6 40

Solve using the corresponding augmented matrix:

[29 18 100] (—3/29)R1+R2—Rz2 - 29 18 100 .
3 25 120  CVPRUTemRe g0 S 30
4 6 40 0 102 760
29 29
(—102/671)R2+R3—R3 Dl:lzog £ ﬁg 5
~ 29 29

Since row 3 is 0 = &% we conclude that we can not obtain the desired amounts.

45. Let x; be the amount of Vigoro, x, the amount of Parker’s, and then we need
L 29 1 L 18 1L 25 1
X1 3 +%x, 26 = T2
4 6 14

Solve using the corresponding augmented matrix:

[, 18 251 (229Rri+roorR, 29 18 25 ©
3 25 72 (—4/29)R’£+R3%R3 0 0 6%% % 0

4 6 14 0 102 308

29 29

[

(—102/671)R>+R3—Rs ] %9 6]i§ ﬁ

29 29

0 0 0

From row 2, we have 8 x, = BB = x,=3. From row 1, we have 29x;+ 18(3) =25 = x; = —1.
Since we can not use a negative amount, we conclude that there is no solution.

46. Let x; be the amount of Vigoro, x, the amount of Parker’s, and then we need
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[29:I [18:I I:301]

X1 3 +x, 25 = 8
4 6 38
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Solve using the corresponding augmented matrix:

L 29 18 301 1 (—3/29)R1+R2—R2 O 29 18 301 O
3 25 8 (—4/29)Ri+R3—>R3 0o % _% 0
4 6 38 o 102 102
29 T 29
(—102/671)R2+R3—R3 ) 29 6%? 3(97]1 )
~ Uo 5 —5% U
0 o 0
From row 2, we have Gzigl Xo = —%1 = X, = —1. Since we can not use a negative amount, we conclude

that there is no solution.

47. Let X1 be the number of cans of Red Bull, and x, the number of cans of Jolt Cola, and then we need

[27] I:94]_[148]

X1 go +X2 280 T 440

Solve using the corresponding augmented matrix:

[27 94 148] (—80/27)R1+R2—R> [27 94 148:I

80 280 440 0 &

From row 2, we have %xz = ‘2‘—3 = Xp =1 Fom row 1, 27x;+ 94(1) = 148 = x; = 2. Thus we
need to drink 2 cans of Red Bull and 1 can of Jolt Cola.

48. Let x; be the number of cans of Red Bull, and x», the number of cans of Jolt Cola, and then we need

[27] [94]_[309]

X1 go *X2 280 T 920

Solve using the corresponding augmented matrix:

Lot o s0s ] covonmieriors D27 0 300 )
80 280 920 0 £ 4«

From row 2, we have %xz = ‘5—0 = Xo = 3. From row 1, 27x;+ 94(3) =309 = x; = 1. Thus we

need to drink 1 can of Red Bull and 3 cans of Jolt Cola.

49. Let x; be the number of cans of Red Bull, and x, the number of cans of Jolt Cola, and then we need

[27] [94]_[242:I

X1 gy +X2 280 T 720

Solve using the corresponding augmented matrix:

[27 94 242] (—80/27)R1+R2—R> [27 94 242]

80 280 720 0o % %

From row 2, we have 39x, = 83 = xo = 2. From row 1, 27x;+ 94(2) =242 = x; = 2. Thus we

need to drink 2 cans of Red Bull and 2 cans of Jolt Cola.
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50. Let x1 be the number of cans of Red Bull, and x> the number of cans of Jolt Cola, and then we need
[._1 L 1 [ ]

27 94~ _ 457
X1 gy *+X2 280 T 1360
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5L

52.

53.

Solve using the corresponding augmented matrix:

27 94 4577 (ewanRricRaor. 27 94 457
80 280 1360 0 4_% %
From row 2, we have $9x, = ¥ = x,=4. From row 1, 27x; + 9464) =457 = x1=3. Thus we

need to drink 3 cans of Red Bull and 4 cans of Jolt Cola.

]

Let x; be the number of servings of Lucky Charms and X, the number of servings of Raisin Bran, and
then we need [ 1 [ 1 I 1
10 2 40
Xx1 25 +x, 25 = 200
25 10 125

Solve using the corresponding augmented matrix:

L 1 (s/2ri+rR»RrR, [ 1
10 2 40 (—5/2)R1+R§—>R§ 10 2 40

25 25 200 ~ 0 20 100

25 10 125 0 5 25
L 10 2 40 1

(—1/4)R%:'R3ﬁR3 O 20 100

0 O 0

From row 2, we have 20x,= 100 = X, =5. From row 1, 10x;+ 2(5) =40 = x; = 3. Thus we need
3 servings of Lucky Charms and 5 servings of Raisin Bran.

Let x; be the number of servings of Lucky Charms and X, the number of servings of Raisin Bran, and
then we need [ 1 [ 1 I 1
10 2 34
X1 25 +x, 25 = 125
25 10 95

Solve using the corresponding augmented matrix:

L 1 (s2ri+rR—»rR, L[ ]
10 2 34 (—5/2)R1+R§—>R§ 10 2 34

25 25 125 ~ 0 20 40

25 10 95 0 5 10
L 10 2 34 1

(~1/4)Rz+R3—R3 0 20 40

0 0 O

From row 2, we have 20x,= 40 = X, = 2. From row 1, 10x;+ 2(2) =34 = x1 = 3. Thus we need
3 servings of Lucky Charms and 2 servings of Raisin Bran.

Let x; be the number of servings of Lucky Charms and X, the number of servings of Raisin Bran, and
then we need [ 1 [ 1 I 1
10 2 26
X1 25 +x, 25 = 125
25 10 80

Solve using the corresponding augmented matrix:

L 1 s/29r+rR—»R, L 1
10 2 267 CFARRoRe Ly 2 26

25 25 125 ~ 0 20 60

25 10 80 0 5 15
L 10 2 26 ]

(~1/8)Rz+R3—R3 0 20 60

0O 0 O

From row 2, we have 20x,= 60 = X, = 3. From row 1, 10x;+ 2(3) =26 = X3 = 2. Thus we need
2 servings of Lucky Charms and 3 servings of Raisin Bran.
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54. Let x; be the number of servings of Lucky Charms and X, the number of servings of Raisin Bran, and

then we need
[p] [ ,1 [ 41
X1 25 +x, 25 = 175
25 10 115

Solve using the corresponding augmented matrix:

L 1 s52ri+R—R, L ]
10 2 38 C¥AReRoR Lgg o g

25 25 175 ~ 0 20 80

25 10 115 0 5 20
! 10 2 38 1

0 0 O

From row 2, we have 20x,= 80 = X, =4. From row 1, 10x;+ 2(4) =38 = X1 = 3. Thus we need
3 servings of Lucky Charms and 4 servings of Raisin Bran.
55 _[2000] b—[ 3000]
- (@ a= gooo +P= 10000

[ 1 I ]

3000 24000
(b) 8b = (8) 10000 — 80000 The company produces 24000 computer monitors and 80000
flat panel televisions at facility B in 8 weeks.
t2000* . .~ 30007 _ L 30000
(c) 6a+ 6b =6 8000 +6 10000 = 108000 - The company produces 30000 computer

monitors and 108000 flat panel televisions at facilities A and B in 6 weeks.

(d) Let x; be the number of weeks of production at facility A, and X, the number of weeks of
production at facility B, and then we need

L 2000 ] L 3000 ] _ L 24000 ]

X1 gooo TX2 10000 T 92000

Solve using the corresponding augmented matrix:

I:2000 3000 24000:I (-HR1+R2—R2 I:2000 3000 24000:I

~

8000 10000 92000 0 -—2000 -—4000

From row 2, we have —2000x, = —4000 = X, = 2. From row 1, 2000x; + 3000(2) = 24000 =
x1 = 9. Thus we need 9 weeks of production at facility A and 2 weeks of production at facility B.

56. We assume a 5-gday work we
E 10 jj E<20 [ 40 1
@ a= 20 ,b= 30 ,c= 70
10 40 50

I:40:I I:800:I

(b) 20c =(20) 70 = 1400 . The company produces 800 metric tons of PE, 1400 metric tons
50 1000
of PVC, and 1000 metric tons of PS at facility C in 4 weeks.

Lipdl Ll "Lyl L oggod

(c) 10a+ 10b+ 10c =10 20 +10 30 +10 70 = 1200 . The company produces 700
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10 40 50 1000
metric tons of PE, 1200 metric tons of PVC, and 1000 metric tons of PS at facilities A,B, and C
in 2 weeks.
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(d) Let x; be the number of days of production at facility A, X, the number of days of production at
facility B, and x3 the number of days of production at facility C. Then we need
[ ]

Lol Lal T[pl
X7 20 +x, 30 +x3 70 = 420
10 40 50 320
Solve using the corresponding augmented matrix:
10 20 40 240:I —2R1+R2—Re [10 20 40 240]
20 30 70 420 ~ TTReTRa 0
10 40 50 320

-10 -10
0 20 10 80
[ 10 20 40 240 1
0 -10 -10 -60
0 0 —-10 —-40
From row 3, we have -10x3 = —40 = X3 =4. From row 2, -10x, — 10(4) = —60 = xp = 2.
From row 1, 10x; +20(2) +40(4) = 240 = x; = 4. Thus we need 4 days of production at facility
A, 2 days of production at facility B, and 4 days of production at facility C.
,"‘

2R2>+R3—R3

—60

57, B
(r,1 .1 [.» _r_11L,]1
v = dwtset2us 1 g 37 43 1 +2 -1 16 - s
5+3+2 10 2 4 5 10 32 16
5
CL_;1 [ ,1 [, [ [,1
Bg. v = Awtluzt2ussbui— 1 4 0 41 1 +2 4 +5 2 =1 19 =18
4+1+2+5 12 2 -3 3 0 12 11 i
12
59. Let Xx1,Xz,and X3 be the mass of u, u,, and us respectively. Then
XU+ Xoup+ 1 L -1 3 1 [ 5 D
%aus =5 X 3 tXe _p tXs 9
- 11
L | 3 s 1 [;1
_ TuXatgpXet g Xs o
We obtain the 2 equations, —X; +3x,+5%x3 = 13 and 3Xx; —2X, +2x3 = 16. Together with the equation
X1 + X2 + X3 = 11, we have 3 equations and solve the corresponding augmented matrix:
L -1 3 5 13 1 3R1+R>—R> L -1 3 5 13 1
R1+R3—R3
3 -2 2 16 ~ 0 17 55
1 1 1 11 0 0

(—4/7)R2+R3—>R3

~

From row 3, —8x3; = —

Koo

354
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= Xz = 2. From row 2, 7x, + 17(2) =55 = X, = 3. From row 1,
—-X1+33) +5(2) =13 = x;=6.
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60. Let X1,X2,X3,and X4 be the mass of uy, Uy, us, and uy respectively. Then

cr,1 [ ,1 [, [_,D
_ XU+ XoUo+ XazUz+ _1
s L=2 253 =7 X 1 +x, -1 +x3 3 +Xx4 0
gi=t 2 0 2 1
11
0, , , Do,0
X1+ ., Xo— Xq
_oY T N T YT o_of% oo
S0 pXa-gXetyXs 0% g 0O

2 2 1 12
11 X1t {iXs+ 3Xa 11

We obtain the 3 equations, X; + 2Xp — X4 = 4, X3 — X2 + 3X3 = 5, and 2Xx; + 2x3 + X4 = 12. Together
with the equation X; + X, + X3+ X4 = 11, we have 4 equations and solve the corresponding augmented

matrix: . - . .
1 20 -1 4 SRR 1 20 -1 4
B 1 -1 3 0 5 —R1+Rs—Rg4 HO -3 3 1 1%
2 0 2 1 12 0 -4 2 3 4
1 11 1 11 0 -1 1 2 7
5 1 2 0o -1 4 5
(—4/3)R2+R3—R
(—1/3)R§+Rj—>Rj oo -3 3 1 10
~ o o -2 § &5
o 0o o 3 %
From row 4, 5x4 = 2 = x, = 4. Fom row 3, —2x3 + 2(4) = &8 = x3 = 2. Fom row 2,

3%, +3(2) +4=1 > xp=3. From row 1, x; +2(3) —4 =4 = x; = 2.
61. For example, u=(0,0,-1) and v = (3, 2,0).
62. For example, u=(4,0,0,0) and v = (0, 2,0, 1).
63. For example, u=(1,0,0), v=(1,0,0), and w = (2,0, 0).
64. For example, u=(1,0,0,0), v=(1,0,0,0), and w = (-2,0,0,0).
65. For example, u=(1,0) and v = (2, 0).
66. For example, u=(1,0) and v = (-1,0).
67. For example, u=(1,0,0), v=(2,0,0), and w = (3, 0,0).
68. For example, u=(1,0,0,0), v=(2,0,0,0), w =(2,0,0,0),and x = (4,0,0,0).
69. Simply, x; =3 and x, = —2.

70. For example, x; — 2X; = 1 and X, + X3 = 1.

[ _3 | | (_2)(_3)] [ 6 1
71. (a) True, since —2 5 = (=2)(5) = _1
[. .1 I 1 I 1 [_1 I ]
(b) False, since u—v = % - _g = 1§£_24) = ? = _i

72. (a) False. Scalars may be any real number, such as c = —1.
(b) True. Vector components and scalars can be any real numbers.

73. (a) True, by Theorem 2.3(b).
(b) False. The sum c; + u; of a scalar and a vector is undefined.
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74. (a) False. A vector can have any initial point.
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L ,1
1
(b) False. They do not point in opposite directions, as there does not exist c < 0 such that -2 =
4
[ ,1
c 4
8

75. (a) True, by Definition 2.1, where it is stated that vectors can be expressed in column or row form.
(b) True. For any vector v, 0 = 0v.
76. (a) True, because —2(-u) = (]—2) —1}u) = ((-2)(-1))u = 2u.

L

(b) False. For example, x 8 = has no solution.

77. (a) False. It works regardless of the quadrant, and can be established algebraically for vectors posi-
tioned anywhere.

(b) False. Because vector addition is commutative, one can order the vectors in either way for the
Tip-to-Tail Rule.
78. (&) False. For instance, if u=(2,1) and v = (—1,3), then u—v = (3, -2) while —u +v = (=3, 2).
(The difference u — v is found by adding u to —v.)
(b) True, as long as the vectors have the same number of components.

. Ug . Dul - (a+b)u1 -
0 up (a+ b) U

79. (@) Letu= g . gThen (a+b)u—(a+b)g ﬁ ﬁ @
Un Un @+ b)un
H au;, + bug au; bu,q - Dul - Dul .

o 0O o O
au, + bU2 auo bUz O Cup O Cuz
+ r=ar). b= 5 =au+bhu.

=H

aun+ bun aun bun Un Un
0 0 ] 0 ] O
0 u O vy O Cwy [J
(b) Letu=1(y . (s V=. pandw = . 5. Then
Un Vn Wn
od 0 0 0o 0 0 0 0 0
Uy Vi W1 up +vi Wi
OO0 U2 Vo Wo Uy + Vo Wo
(u+v) +w = ﬁ+ﬁ -0 E=0" "H+0" 0
Vn Wn Un + Vp Wn
0 0 0 0 0 0
(U +vy) +wy Uy + (vi +wy) uz Vi + W
3 (U2 +v2) +w; ﬁ ﬁ Uy +(V2 +Wp) ﬁ ﬁ UZ@ ﬁ Va2 + W @
= . = -+
(Un + vn) + wp un + (Vn + Wp) Un Vn + Wp
0 Uy 0 od Vi 0 O Wy 0o
T s I P e
:E ) + . + CE SuH (v w).
Un Vn Wp
0 0 0 EI od od
Uz uz b ug

(c) Letu= gu (7. Then a(bu)—agbgu2 @@—aﬁbuz ﬁﬁ

Un n
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apu) U @)u Sy,
- (ab)uz O Ouy O
] a (buy) = - =(ab) - - = (ab)u
0 ' o o 0 0 0
a(bup) (ab) un Un
0 0 ] o o o g
Uy Uz Uz
0 ux O Uz uz
(d Letu= 1y . = Then u+ (-u)= (— . ﬁﬁ“%_ﬁ . @ﬁ
u.n u.n uln
. Uiy . D—ul . I:‘Jl — Uz S - 0
Ou Qg QO—-Uug Qgu-—u
= + . = 0 0 0 D: 0.
0 a o 0 0 0 0
]
0 0 —Un O 0 0 0 0
. Unp— Un 0
Un
0 0 ] O O O 0 ] 0
u; Uz 0 u; +0 Uz
. 0 uz O ™ 0 Cup O u +00 [uz O o
= ) -+ = = =
(e) Let u . en u 0 p0oq . . u. Likewise,
nt - =
0 0 0 0 ]
0 0 - 0 0 ] H . H E E
' O ' ’ us+0 Un
Un Un 0
0 0 Jd U ] D|:|0+ ™ 0 Uy
0 3 0Ou J O u 0O
0 0+ux O
0
O+u=p [+t H=4 f=t H=u
O Un O + Un Un
0 0 ] 0 0 0 0 0
Up u; 83 u; Ug
0 ux O Uy Us up; O
(f) Letu=1p . . Then lu=(1) . ﬁ:ﬁ i ﬁ:ﬁ . o=
Un Un (1) un Un
[ ) 1 [ L 1
80. Using, for example, u= { and v= 3

The vector u—v =
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1 is the
translat
ion of
the
vector
W’
which
has
initial
point
the tip
ofu
and
terminal point the tip of v, as in Figure 6.

81.
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82.

83.

84.

85.

el
|
86.
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87. We obtain the three equations 2x; + 2xp + 5x3 = 0, 7X; + 44Xz + X3 = 3, and 3x; + 2X, + 6x3 = 5.
Using a computer algebra system to solve this system, we get X3 = 4, X = —6.5, and x3 = 1.

88. We obtain the four equations X; +4x, —4X3+5x4 = 1, —3X; +3Xp+2X3+2X4 = 7, 2X1 +2X, —3X3—4X4 =

2, and X2 + x3 = —6. Using a computer algebra system to solve this system, we get x; = —7.5399,

Xp = —1.1656, X3 = —4.8344, and x4 = —1.2270. (Solving this system exactly, we obtain x; = —2
— _19 = _78 and x, = —20

X2 163 X3 163 and Xa 163"

2.2 Practice

[ 2]
1. (@ Oui+Qu, =0 _3 +0 1 = 0 , lu; +0u, =1 _3 +0 1 T _3 ,Ouy+1u, =
0[ 2]+1[4]:[4]
-3 1 1
[¢1 [_,1 [,1 [¢1 [_,1 [41
(b) Ou;+0u, =0 1 +0 3 = 0 ,1u3+#0u, =1 1 +0 3 = 1 ,0u;+1lu, =
4 -3 0 4 -3 4
[¢1 [_,1 [_,1
0 1 +1 3 = 3
4 -3 -3
[ ;1 [,1 11
2. Set XU+ XU, =b = xq 2 +x 4 = 2 =
-2 3 5
[ w1 L]
2X1+ 44X, = 2 . From the first equation, x; = —1. Then the second equation is 2(-1) +
—2X1 + 3X2 5

4x, = 2 = Xp = 1. The third equation is now —2(-1)+ 3(1) =5 = 5=5. So b is in the span of
{ug,uz}, with (-1)uy + (1) uz = b.

[ ; 5, 5,1 [,1 [4]
3. @ A= -1 7 4 x= X ,b= 11
3 -1 =2 X3 1
[ ] 0 % 0
L [ 1
_ 4 -3 -1 5 O xe oo 0
0 A= 3 1 60’X_HX3D’b_ 10
X4
4. (a) Row-reduce to echelon form:
L 2 3] (1/2)R1+R2—R> [2 3]
-1 =2 - 0o -2

There is not a row of zeros, so every choice of b is in the span of the columns of the given matrix
and, therefore, the columns of the matrix span RZ2.

(b) Row-reduce to echelon forrE:
4 1 (—1/4)R1+R2ﬁR2 4 1

1 -3 - 0o -
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Since there is not a row of zeros, every choice of b is in the span of the columns of the given
matrix, and therefore the columns of the matrix span R2.
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5. (a) Row-reduce to echelon form:

Ly 5 4! L1 5 1l
R1+R>—R2

-1 -2 3 ~ 01 2

0 2 5 02 5

Ly 5 11

THRerBemRs 01 2

00 1

There is not a row of zeros, so every choice of b is in the span of the columns of the given matrix
and, therefore, the columns of the matrix span RZ.

(b) Row-reduce to echelon form:
2 0 6 ] (—1/2)R1+R2—R>2 [ 2 O 6 ]

(1/2)R1+R3ﬁR3
1 -2 1 ~ 0 -2 -2
-1 4 1 0 4 4
[2 0 6]
2Rz+R3—Rs 0 -2 -2
0 0 0

Because there is a row of zeros, there exists a vector b that is not in the span of the columns of
the matrix and, therefore, the columns of the matrix do not span RS.
6. (a) False. If the vectors span RS, then vectors have three components, and cannot span R?2.
(b) True. Every vector b in R? can be written as

b = Xjui+ Xous
X X
= 75 (u) + " (Bur)

which shows that {2u;, 3u,} spans R?2.

(c) True. Every vector b in R can be written as b = X;u; + XoUs + XaUsz. SO AX = b has the
solution [ ]

X1

X = X2

X3

(d) True. Every vector b in R? can be written as b = X;U;+XoUs = X1Uq+XoUp+0U3, SO {U7, Uy, U3}

spans RZ2.
2.2 Span
[2] [9] [O] [2] [9] [2]
1. Ouy + Ou, = 0 6 +0 15 = 0 , lu;+ O0us = 1 6 +0 15 = 6 , Oug + 1u, =
[.] L 1 [ _1
2 9 9
0 g *1 15 = 15
[ 1 I 1 [ 1 L 1 I 1 I ]
2 0u+0L,=0 5 +0 5 = 0 1u+ou=1 5 w0 P = 2 ou+iun-=
[ 1 [ 1 [ 1
0 27, 3 _ -3
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L ,1 [,1 [0] [ ,1 (.1 0,1
3. 0u;+0u,=0 5 +0 0 = 0 ,1up+0u,=1 5 +0 0 = 5 ,0u;+ 1lu, =
-3 4 0 -3 4 -3
L 2] [1] [1]
0 5 +1 0 = 0
-3 4 4
[0] [1] [_6] [0] [0] [1]
4. Ouy+Ouy,+0uz =0 5 +0 2 +0 7 = 0 ,1u;+0u,+0uz=1 5 +0 2 +
-2 6 2 0 -2 6
[ 1 [ 41 [ 1 [,1 [ 1 [;]1
2 -2 -2 6 2 6
[,]1 [,1 [_,1 [0] [,]1 [,1
5. 0up + Ou,+ Ouz =20 0 +0 1 +0 0 = 0 , 1u; + Oup, + OQuz =1 0 +0 1 +
0 6 7 0 0 6
L_,1 [,]1 [,]1 [,1 r_,1 [,1
0 0 = 0  Qug+1lup+0uz=0 0 +1 1 +0 0 = 1
7 0 0 6 7 6
n,=2 o0o_,90,300,0 0,2 0_,0
6. Oup+0u+0us =0 + ot 8 ol "1 O_00 L Lo, you =171 Hol 855
04 O D_%ummlmmom 1 2 3 0300 _gO
0 2 0 0 0 2
0,30,0 n,2 o0o_,00,30_,0
o100l O 010 0 8 O0-110 80
0 1050300+ 1u+0u3=00 5 0+10 _0+0 , 0=0 0O
0
0 0 0 2 0 2
L. 1 L 1 [ 1 [ 1
7. Set xqai=b = x; ° = 9" o 3 9
) 191 1 5 -15 5X1 —-15

From the first component,x; = 3, but from the second component x; = —3. Thus b is not in the span

of a.
L 10 I =30 ] L 10x; I -30 ]

8. Setxjar=b =x1 _15 = 45 = _i5¢, = 45

From the first component,x; = -3, and from the second component x; = 3. Thus b = —3a;,and b is
in the span of a;.
[ ,1 0,1 [ ,,1T1L,]

9. Set xja1=b =>x;, -2 = -1 = =27 = -1
10 -5 10x4 -5
From the first and second components, x; = 3, but from the third component x; = —3. Thus b is not

in the span of a;.

[_,1 - [_,]

10. Set xja1+ X0 =b = x; 3 1 + Xo -3
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6 [

9
=
[ 1 [ .1 2
—X1 — 2Xo -6
31— 3 = 9 . We obtain 3 equations and row-reduce the associated augmented matrix
—X1 + 6X» 2
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to determine if there are solutions.
L -1 -2 -6 1 3R1+R2—R> L -1 -2 -6 1
3 -3 9 TRiFRe™Rs 0 -9 -9
-1 6 2 0 8 8
(8/9)R2+R3—R3 L -1 -2 -6 ]
~ 0 -9 -9
0 0 O
From the second row, —9x, = -9 = X, = 1.From row 1, —-x; — 2(1) = -6 = X1 = 4. We conclude
b is in the span of a; and ap, with b =4a; + a,.
[ ;1 [ ,1 [ _4]1
11. Set xja1+ Xoao=b = Xx; 4 + x5 8 = -8 =
-3 -7 7
[ —X1 + 2X5 ] [ =10 ]
Ax, + 8%, = —8 . We obtain 3 equations and row-reduce the associated augmented matrix
—3X1 — X2 7
to determine if there are solutions.
L -1 2 -10 ] 4R1+R2—Ro L -1 2 -10 1
4 8 -8 ~3RitRe~Re 0 16 —48
-3 -7 7 [ 0 -13 3
(13/16)Rz+R3—Rs3 _é 1% :ig
0o 0 -2
From the third row, 0 = —2,and hence there are no solutions. We conclude that there do not exist X;
and X, such that x;a; + Xoaz = b, and therefore b is not in the span of a; and a,.
O 3 1 O —4 10O 0 O
12. Setx1a1+x2a2=b =3X1D 1D+X2D 2D=D10D =
O O O O O
S R
1O 9

3X1 — 4X5 0

0 Xi+2X, [ 010 O

0 —2x; + 3%, 0=0 .0 We obtain 4 equations and row-reduce the associated augmented matrix

—X1 + 3X> 5

to determine if there are solutions.

[0 (/3R +R,—R: U g3 _, o U
3 -4 0 (2/3)R1+R3s =Rs 0 1 1o
O 1 2 10 [J (1/3)Ri+Rs—»Rs U 3 0
~ 0 - 0
U2 3 1V 00 Y1
3
-1 3 5 0 g 5
- 3 4 0 -
(-1/10)R2+R4—R >
(—1/2)R3§—R44—>R43 ﬁ 0 % 10 ﬁ
0 O 0
0 O 0

From the second row, %xz =10 = Xz =3.From row 1, 3x; - 4(3) =0 = X1 = 4. We conclude b is
in the span of a; and a, with b = 4a; + 3a,.
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-1
3 L X1] [_10
5 , X = Xo , b ]

X3 =
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14,

15.

16.

17.

18.

19.

20.

21.

22.

23.

24,

[_2 5 _10] [Xl] [ 4]
A= 1 -2 3 ,x= X2 ,b= -1
7 =17 34 X3 -16
DX ]
1
S P « L]
A= -2 2 6 2 ,x=0R2Hb= -1
-3 -3 10 3
X4
[ 5 ol [ 1 [ 5]
A= 3 -5 ,x= X1 p= -9
1 -2 X2 -2
L 1
(.1 .1 [_1 [,
X1 1 + Xo -5 + X3 -4 - 2
[,1 [ 1 [ 51 [,]
X1 3 +Xy 4 +x3 2 =1
6 —-13 7 2
[,1 [ ,1 [ .,1 [ 1 [4]
X1 0 +X%x -5 +x3 7T +X4 3 = 6
3 8 2 -1 2
[,1 [ g1 [4]1
X1 2 +Xp 4 = 9
1 -7 2
Row-reduce to echelon form:
[15 —6] (1/3)R1+R2—R2 [15 —6]
-5 2 ~ 0 0

Since there is a row of zeros, there exists a vector b which is not in the span of the columns of A, and
therefore the columns of A do not span R2.

Row-reduce to echelon form:

I:4 —12] (-1/2)R1+R2—R: I:4 —12:I

2 6 0 12

Since there is not a row of zeros, every choice of b is in the span of the columns of A, and therefore
the columns of A span R2.

Row-reduce to echelon form:

[ 2 1 0 1 —3R;+R>—R> [ 2 1 0 1

~

6 -3 -1 0 -6 -1

Since there is not a row of zeros, every choice of b is in the span of the columns of A, and therefore
the columns of A span R2.

Row-reduce to echelon form:

[ 1 0 5:I 2R;+R>—R» I:1 0 5:I
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-2 27 0 2 17

Since thzere is not a row of zeros, every choice of b is in the span of A, and therefore the columns of A
span R-.
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25. Row-reduce to echelon form:

L 3 1 0 ] (—=5/3)R1+R2—R2 - 3 1 0 -
(-4/3)R1+R3—R3 11
2 _i _% ~ oo —% -1 0
— —_ 1 _
0 0 3 8 0
—16/11)R,+R3—R 3 1 0
( JR2+R3s—>Rs ] _131 10
0 0 iz

11

Since there is not a row of zeros, every choice of b is in the span of the columns of A, and therefore
the columns of A span R3.
26. Row-reduce to echelon form:

L 1 2 8:I 2R1+R2—R> [1 2 8:I

2 3 7 TRBRSRs 450 70 o3
3 -1 1 0 -7 -23
L, 8i

R2+Ré—)R3 0 7 23

00 0

Since there is a row of zeros, there exists a vector b which is not in the span of A, and therefore the
columns of A do not span RS2,
27. Row-reduce to echelon form:

[ o] Ho o1 3 5"
2 1 3 5 (—1/2)R1+R2—R> 7 77
14 26 ~ a0 , , ,0
03 3 3 403 33

2 1 -3 5
(—6/7)R2~+R3—>R3 0o % % % 0
00 00

Since there is a row of zeros, there exists a vector b which is not in the span of the columns of A, and
therefore the columns of A do not span RS3.

28. Row-reduce to echelon form:

Ly 70 21 L, 71 2]
0 0 3 8 2 5 -1 1 -4

5 -1 1 —4 0 03 8 _
-4 -7 1 2
(574)R1+R2—R> 0 _ 39 9 3

~ . s 7 3 U

Since there is not a row of zeros, every choice of b is in the span of A, and therefore the columns of A

span RS,
29. Row-reduce A to echelon form:
[ 3 -4 ] (—4/3)R1+R2—R> [ 3 -4 ]
~ 22
4 2 0 =

Since there is not a row of zeros, for every choice of b there is a solution of Ax = b.
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30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

Row-reduce A to echelon form:

-9 21] (2/3)R1+R2—R> [—9 21]

~

6 -14 0 0

Since there is a row of zeros, there is a choice of b for which Ax = b has no solution.

Since the number of columns, m = 2, is less than n = 3, the columns of A do not span RS2, and by
Theorem 2.9, there is a choice of b for which Ax = b has no solution.

Row-reduce A to echelon form.
L 1 -1 2] 2R1+R2—R3 I:1 -1 2]

2 3 -1 TRTRePRe 45 g 3

1 0 5 0 1 3
—R,+R3—R [1 -1 2]

2 ~3 3 0 1 3

0 0 0

Since there is a row of zeros, there is a choice of b for which AXx = b has no solution.

Row-reduce A to echelon form:

[ -3 2 1 ] (1/3)R1+R2—R> O -3 2 1 0
5/3)R1+R3—R 2
1 -1 -1 (573) 1+Rs 3 0 0 _;3 -4 0
5 -4 -3 0 -2 4
3 3
. -3 2 1 5
(—2)R2+R3—R3 0 -1 2
~ . 3 —3 U
0 0 0

Since there is a row of zeros, there is a choice of b for which Ax = b has no solution.

Since the number of columns, m = 3, is less than n = 4, the columns of A do not span R*, and by
Theorem 2.11, there is a choice of b for which Ax = b has no solution.

[ 1 i 1[0 1> {a .10 13> {a 1>
_ . . 1 -3 . 1 -3 _
b= ;| isnot in span _2 6 , since span _2 6 = span 2 and
[ 1 1
b=c _5 forany scalar c.
[0] {[3][6]} {[3][6]} {[3]}
b[= ] 1 is not in span 1 0 2 , since span 1 0 2 = span 1 and b =
3
c 4 for any scalar c.
[,] {a ,10 ,13 [ ;1 [ ,1 [,]
. . ) = 0 has no solutions.
b= 0 isnot in span 3, -1 , since ¢, 3 +c, -1 1
1 —2 1 —2 1
[,] €,10 ,110_,13 [,1 [ 31 [_41 [,4]
b= 0 isnot inspan 2, -1 | 5 ,sincec; 2 +c, -1 +c3 5 = 0
1 1 1 1 1 1 1
s np sofpions a. 10 13 a. 10,13 a1
1 ] 1 4 1 4 1
b= 1 is not in span 5o v g , because span 2 v g = span 2 and b =
[, 1]
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c 5 for any scalar c.
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40.

41.

42,

43.

44,

45,

46.

47.

48.

49,

[ 1 {[_3][ 15]} { 11 15]}
b= 7 isnotin span 2 _10 , because span 2 _10
{ 13 [ .1
_ - _ -3
= span 2 and b=c 5 forany scalar c.
[, 1 10 110 13
b= 1 is not in span —4 ' 10 0 —14 , because
{I 2][_5][ 7]} {a 1> 2]
span 4 10 ' -14 =span 4 and b=¢c _4 for any scalar c.
[ 1 {[ 4][2][_6]}
b= is not in span : ; , because
5 —_
d 10,00 B S alh [,
span 10 ' 5 ' -15 =span ¢ and b=c 5 for any scalar c.
[,] a ;10,13 [, [,1 [,]
b= 0 isnot in span 2 , 5 , because c; 2 +c, 5 = 0 has no solutions.
1 -1 4 -1 4 1
[,] {a,10 ,13 [,1 [ ,1 [,]
b= 0 isnotinspan 1, -1 ,becausec; 1 +c, -1 = 0 has no solutions.
1 2 3 2 3 1
[,] {,10 110 _,13 [,1 [ 1 [_,1
b= 0 isnot in span 1 2, 4 , because ¢c; 1 +ocy 2 +c3 4 =
1 3 1 7 3 1 7
[,1]
(1) has no solutions.
[,] € 10 ,110_,13 [ ,1 [ ,1 [_]1
b= 0 isnot inspan -1, -3 0 ,because c; -1 +c, -3 +cs 0 =
1 2 7 1 2 7 1
[,]
(1) has no solutions.
[ ) 1 [.1
h = 3,since when h = 3 the vectors 4 and g are parallel and do not span R?2.
S N
h = 12 since when h = 12 the vectors and are parallel and do not span R2.
5 5 12 —4

h = 4. This value for h was determined by row-reducing

0
Ly n 21 2
4 8 2 ~UO0 8-2h
5 10 6 0 0
[,1 [ ,1 [,1 [,1
Then ¢ 4 +o0¢ 8 +¢3 2 =y

NINO -

0 0

has a solution provided h = 4.
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5 10 6 z
50. h = —27. This value for h was determined by row-reducing
[ 1 0 0
-1 4 1 -1 4 1
h -2 -3 ~0 0 33 9 L
7 5 2 0 0 —-ih-%
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Sl
52.
53.
54.
55.
56.
57.
58.
59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

[_,1 L 4,1 L ,1 [,1
Thenc; h +c, -2 +c¢3 -3 = 'y has asolution provided h = —27.
7 5 2 z

u = (1,0,0), uz = (0,1,0), uz= (0,0,1), us = (1,1,1)

uz = (1,0,0,0), uz = (0,1,0,0), uz = (0,0,1,0), us = (0,0,0, 1)
uz = (1,0,0), uz = (2,0,0), uz = (3,0,0), us = (4, 0,0)

uz = (1,0,0,0), uz = (2,0,0,0), uz = (3,0,0,0), us = (4,0,0,0)
u1 = (1,0,0), uz = (0,1,0)

uy = (0,1,0,0), up = (0,0,1,0), uz = (0,0,0,1)

ur=(1,-1,0), u = (1,0, -1)

ui= (1, -1,0,0), up = (1,0, -1,0), us = (1, 0,0, —1)

(@)
(b)

(@)
(b)

(@)
(b)

(@)

(b)

@)
(b)

(@)

(b)

(@)
(b)

(@)
(b)

(@)
(b)

(©
(d)
(@)
(b)

True, by Theorem 2.9.
False, the zero vector can be included with any set of vectors which already span R".

False, since every column of A may be a zero column.
False, by Example 5.

False. Consider A =[1].
True, by Theorem 2.11.

True, the span of a set of vectors can only increase (with respect to set containment) when adding
a vector to the set.

False. Consider u; = (0,0,0), u, = (1,0,0), uz=(0,1,0), and us = (0,0, 1).

False. Consider u; = (0,0,0), u, = (1,0,0), us=(0,1,0), and us = (0, 0,1).

True. The span of {uy, up, uz} will be a subset of the span of {uy, uy, Uz, Us} .

True. span {up, Uz, Uz} < span {uy, Uy, Uz, Ug} is always true. If a vector

W €span {uj, Uz, Uz, Ug}, then since ug is a linear combination of {uy, uy,us}, we can express

w as a linear combination of just the vectors ui, us, and uz. Hence w is in span {ui, Uz, uz}, and
we have span {ui, Uz, Uz, Us} S Span {us, Uy, Us}.

False. If uy is a linear combination of {ui, u,, us} then span {us, Uy, Uz, Us} = span {ug, Uy, Uz}
(See problem 61, and the solutions to problems 43 and 45 for examples.)

False. Consider u; = (1,0,0,0), u, =(0,1,0,0), uz=(0,0,1,0), and us = (0,0,0,1).

True. Since ug €span {Ug, Uz, Uz, Ug}, but uys & span {uq, Uy, Us}.

True, because ¢;0+Cou;+C3Us+CaU3z = c2u1+c3u2+ctu3, span {ul,{uf, Ugf}: span {0, up, Uz, us} .
False, because span {ui,u,} = span {u;} & R?, and 0 £ span i
Cannot possibly span RS2, sincem =1<n = 3.

Cannot possibly span RS2, sincem =2<n =3,

Can possibly span R3. For example, u; = (1,0,0), u, = (0, 1,0), us = (0,0,1).

Can possibly span R3. For example, u; = (1,0,0), us = (0, 1,0), us = (0,0, 1), us = (0, 0,0).
Cannot possibly span RS2, sincem =1<n =3.

Cannot possibly span R3, sincem =1<n =3.
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69.

70.

71.

72.

73.

74.

75.

76.

(c) Can possibly span R3. For example, u; = (1,0,0), u, = (0,1,0), uz = (0,0,1).
(d) Can possibly span R3. For example, ui = (1,0,0), ux = (0, 1,0), uz = (0,0, 1), us = (0, 0, 0).

Let w €span {u}, then w = x;u= (§ ) (cu), so w €span {cu} and thus span {u} < span {cu}. Now
let w € span {cu} then w = xi(cu) = (x;¢)(u), so w € span {u} and thus span {cu} < span{u} .
Together, we conclude span {u} = span {cu}.
\ 7 \ 7

Let w €span {ug, Uy}, then w = X1U1+ XoUp = ’é—i (ciup) + ’C% (cauy), so W €span {CiUg, CoUy}
and thus span {ui,u,} < span {CiuUy,Couy}. Now let w € span {Ciuq, CoUs}, then w = Xy(ciuU;) +
X2(C2U2) = (X1€1) (U1) + (X2C2) (U2),S0 W € span {uy, Up}and thus span {ciug, CoUz} < span {ug, Uz }.
Together, we conclude span {u;,u,} = span {CyUs, CoUs} .

We may let S; = {uj,Up,...,un}p and S; = {ug,Uz,...,Un,Un+1,...Unt Where m < n. Let w €
span(Sy), then

W=X1U1+ XoUp + -+ + XpUm
= XpUp+ XaUz+ * - + XmUm + OUm4g + -+ + 0up

and thus w € span(S;). We conclude that span (S;) < span (Sz).

Let b € R? thenb =X1U; + XU, for some scalars x; and X, because span {ui,u,} = R?. We can
rewrite b =*137*2 (u; +u,) + *25%2 (U1 - Uyp) , thus b €span {u; + Uy, u; — Uy}. Since b was arbitrary,
span {u; + Uz, u; — Uz} = R2.

Let b € R® thenb =x Uy + XoUy + XUz for some scalars Xq, X, and X3 because

span {uy, Uz, Uz} = R3. We can rewrite b =X17X2=X3 (yy + up) + 1222355 (; + ug) + X4X2X8 (y, +
u32,thusb €span {u; + uz,uU; + Uz, Uz + Ug}. Since b was arbitrary, span {u; + u»,u; + Uz, Uz + U3} =
R*>.

If b is in span{uy,...,um}, then by Theorem 2.11 the linear system corresponding to the augmented
matrix

has at least one solution. Since m > n, this system has more variables than equations. Hence the
echelon form of the system will have free variables, and since the system is consistent this implies that
it has infinitely many solutions.

Let A =[uy---um] and suppose A ~ B, where B is in echelon form. éénﬁ m < n, the last row of

B must consist of zeros. Form B; by appending to B the vector e = D_D, sothat By =[B ¢]. If

1
B; is viewed as an augmented matrix, then the bottom row corresponds to the equation 0 =1, so the
corresponding linear system is inconsistent. Now reverse the row operations used to transform A to
B, and apply these to B;. Then the resulting matrix will have the form [A e]. This implies that e
is not in the span of the columns of A, as required.

[(@) =(b)] Since b €span {a, a,, ..., am} there exists scalars Xi, Xz, ... , Xm such thatb = x;a; +
Xzaz+ - Xmam, Which is statement (b).

[(b) =(c)] The linear system corresponding to [ a1 a --- am b ]can be expressed by the vector
equation Xia; + Xzaz+ -+ Xmam = b. By (b), X181+ X282+ - Xmam = b has a solution, hence we
conclude that linear system corresponding to [ a2 a2 --- am b ]has a solution.

[(c) =(d)] Ax = b has a solution provided the augmented matrix [ A b ] has a solution. In terms
of the columns of A, this is true if the augmented matrix [ a3 a, ‘- am b ]has asolution. This
is what (c) implies, hence Ax = b has a solution.

[(d) =(a)] If Ax = b has a solution, then xja;+Xza82+- " Xmam =bwhere A=[a; a -+ am]
and X = (X1,X2,...,Xm). Thus b €span {ai,ay, ...,am}.
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77. True. Using a computer algebra system, the row-reduced echelon form of the matrix with the given
vectors as columns does not have any zero rows. Hence the vectors span RS3.

78. False. Using a computer algebra system, the row-reduced echelon form of the matrix with the given
vectors as columns does have a zero row. Hence the vectors do not span R3.

79. False. Using a computer algebra system, the row-reduced echelon form of the matrix with the given
vectors as columns does have a zero row. Hence the vectors do not span R*.

80. True. Using a computer algebra system, the row-reduced echelon form of the matrix with the given
vectors as columns does not have any zero rows. Hence the vectors span R*.

2.3 Practice Problems
Section 2.3

1. (@) Consider x;u;+ Xou, =0, and solve using the corresponding augmented matrix:

! 2 4 O] (3/2)R1+R2—R3 2 4 0

-3 10 070

The only solution is the trivial solution, so the vectors are linearly independent.
(b) Consider x1u; + Xoup = 0, and solve using the corresponding augmented matrix:

0 0
[6 -2 O] (—=1/6)R1+R2—R> 6 -2 0
(~2/3)Ri+Rs—Rs 1 0 10

1 3 0 ~ O 3
4 -3 0 0 -3 0
O O
6 -2 0
(1/2)R2+R3—R3 o 1
~ O 3 00O
0 0 0

The only solution is the trivial solution, so the vectors are linearly independent.
2. (a) We solve the homogeneous system of equations using the corresponding augmented matrix:

[1 5 0:I —3R1+R2—R> [1 50

~

3 -4 0 0 -19 0

The only solution is the trivial solution, so the columns of the matrix are linearly independent.
(b) We solve the homogeneous system of equations using the corresponding augmented matrix:

L 1 03 0] —riwreore [p g 3 ol

3R1+R3—R3
2 -2 4 0 ~ 0 -2 -2 0
-3 7 2 0 0 7 11 0
[1 0o 3 0:I
(7/2)R2iR3ﬁR3 O _2 _2 0
0 0 40

There is only the trivial solution; the columns of the matrix are linearly independent.

3. (a) We solve the homogeneous equation using the corresponding augmented matrix:

1 4 2 0 —2R,+R3—R3 1 4 2 0

~

2 8 40 0 00O
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Because there exist nontrivial solutions, the homogeneous equation Ax =0 has nontrivial solu-
tions.
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(b) We solve the homogeneous equation using the corresponding augmented matrix:
L 1 0 -11 0] R1+R2—R; [1 0 -1 1 0]

2R1+R3—R3
-1 -1 010 ~ 0 -1 -1 2 0
-2 2 1 00 0 2 -1 2 0
I:1 0 -1 1 0:I
Re+Rg—Rs 0 -1 -1 2 0

0 0 -3 6 0

Because there exist nontrivial solutions, the homogeneous equation Ax =0 has nontrivial solu-

tions.
{10,713
4. (a) False, because 8 , 1 is linearly independent in RS but does not span RS.
0

(b) True, by the Unifying Theorem.
(c) True. Because u; — 4t12 = 4u]? — 4u, = 0, {ug, Uy} is linearly dependent. [ ]

(d) False. Suppose A = ! , then the columns of A are linearly dependent, and Ax = 0

00 1
has no solutions.

2.3 Linear Independence

1. Consider x;u+ Xov =0, and solve using the corresponding augmented matrix:

3 -1 O] (2/3)R1+R2—R2 3 -1 0

-2 -4 0 ~ 0 -4 o

Since the only solution is the trivial solution, the vectors are linearly independent.
2. Consider x;u+ xpv =0, and solve using the corresponding augmented matrix:

6 -4 0 ] (5/2)R1+R2—R2 [ 6 -4 0 ]

~

=15 -10 O 0 -20 O

Since the only solution is the trivial solution, the vectors are linearly independent.

3. Consider x;u+ xov =0, and solve using the corresponding augmented matrix:

[ 5 5 o1 uvnri+reR, 57 5 0
(13/7)R1+R3—R3 26
33 Ty TR,
0? 7T %4
, 7 265 0
79/26)R>+R3—R
(19/26)RerRa=Rs o - o O
0 0 0

Since the only solution is the trivial solution, the vectors are linearly independent.
4. Consider x;u+ Xpv+ X3w = 0, and solve using the corresponding augmented matrix:
0

[, o s ol 4 -8 0
(—=3/4)R1+R3—R3 2
0 -1 20 - 0% -1 200

-3 5 -19 0 LB _13 0
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[ 4 2 8ol
0 -1 20
0 0 00

(13/2)R2+R3ﬁR3

Since there exist nontrivial solutions, the vectors are not linearly independent.
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5. Consider xi1u+ X,V + xgw =0, and solve using the corresponding augmented matrix:
30 2 0 ] (1/3)R1+R2—R2 30 2 0

(—2/3)R1+R3—R3 14
-1 4 4 0 ~ oo 4 5, 00
2 170 014 0
0 0
30 20
(~1/4)R,+R3—R3 14
~ oo 4 , 00O
00 % 0

Since the only solution is the trivial solution, the vectors are linearly independent.

6. Consider xju+ X,V + Xgw =0, and solve using the corresponding augmented matrix:
D 1 4 _1 0 l:l —8R1+R2ﬁR2

1
_3R;+R.—R, 1 4 -1 0
H 8 -2 2 0 E| —3R1+B4—>R4 B 0 -34 10 0 E
3 5 00 0o -7 30
3 -5 10 2 —11 411 SD
—7/34)R+R3—R -
((—1/2))R22—|_—'_R43—>R43 0 —-34 10 0 O
~ Ho o 2 of
0 0 -1 0
1
1 4 -1 0
(17/16)Rs+R,—R, U 0 =34 10 0 I
~ Ho o 1 od
0 0 00

Since the only solution is the trivial solution, the vectors are linearly independent.

7. We solve the homogeneous[ system of equitlons using the corr[espondlng au%mented matrix:
15 -6 0 (2/3)R1+Ry—R; 15 -6 0

~

-5 2 0 0 00

Since there exist nontrivial solutions, the columns of A are not linearly independent.

8. We solve the homogeneoui system of eqjlatlons using the corrfspondlng augjnented matrix:
4 -12 0 (—1/2)R1+R2—R> -12 0

~

2 6 0 0 12 0

Since the only solution is the trivial solution, the columns of A are linearly independent.

9. We solve the homogeneous system of equations using the corresponding augmented matrix:

[ 1 00l orew—r L1 g ol
2 20 e 020
5 —/ 0 /
(7/2)R2iR3%R3 % g_ 8
000

There is only the trivial solution, the columns of A are linearly independent.
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10. We solve the homogeneous system of equations using the corresponding augmented matrix:

[ ] -+ — [ ]
1 -1 20 4§ll+§3zﬁ§3z 1 -1 20
-4 5 -5 0 ~ 0 130
-1 2 10 0 130
L1 1 2 0]
~R2*+Rs=Rs 0 1 30
0 00O

Since there are trivial solutions, the columns of A are linearly dependent.

11. We solve the homogeneous system of equations using the corresponding augmented matrix:

[3 1 0 O] (=5/3)R1+R2—R> - 3 1 0 0 5
(—4/3)R1+R3—R3 1
5 —2 -1 0 ~ no -, -100
4 -4 -3 0 DO -% 30 .
3 1 00
(—16/11)Ro+R3—R3 0 1
~ O -1 00O

0 0 -} 0
Since the only solution is the trivial solution, the columns of A are linearly independent.

12. We solve the homogeneous system of equations using the corresponding augmented matrix:

S -7 10 4 -1 10"
0 0 30 RooRs 8§ 2 -4 0
15 1 1o ~ S5 1 10C

8 2 -4 0
- 2 07 31 0o -~
(5/4)R1+R3—R
fORiTRaSRe 0 g 12 -2 0 OO
~ H 0o -2 200
0 0 30
0
4 -7 10
(-13/16)Ro;+Rs—Rs [ ] (0 —12 -2 0 O
- 7 0o o &of
S0 0 30 _
4 -7 1 0
(-24/31)Rs+Rs—Rs [] 0 —12 -2 0 O
- 7o o 2 of

0 0 0 0
Since the only solution is the trivial solution, the columns of A are linearly independent.
13. We solve the homogeneous equation using the corresponding augmented matrix:

-3 50 (4/3)R1+R2—R> -3 50

~

410 020

Since the only solution is the trivial solution, the homogeneous equation Ax = 0 has only the trivial
solution.

14. We solve the homogeneous equation using the corresponding augmented matrix:

I:12 10 0] (—1/2)R1+R2—R: I:12 10 O:I
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6 5 0 0 0 O

Since there exist nontrivial solutions, the homogeneous equation Ax = 0 has nontrivial solutions.



368 Section 2.3: Linear Independence Chapter 2: Euclidean Space 368

15. We solve the homogeneous equation using the corresponding augmented matrix:

L 8 1 0] - 8 1 0 -
-1 0 (3/8)R1tR3—>R3 0 0 -1 0 0
-3 20 . 1 0
(19/8)R2:R3—»R3 (8) _% 8
0 00

Since the only solution is the trivial solution, the homogeneous equation Ax = 0 has only the trivial

solution.
16. We solve the homogeneous equation using the corresponding augmented matrix:
[_3 2 1 0] (1/3)R1+R2—R2 -3 2 10
5 -4 -3 0 _2 4
S i L
-3 2 10
_2R2+B3—>R3 0 0 _13 _33 00
0 00

Since there exist nontrivial solutions, the homogeneous equation Ax = 0 has nontrivial solutions.

17. We solve the homogene%us equatlon usmg tﬂe corresponding fugmented matri

4R1+R2—R2 3 1
3R1+R3—R3
4 -3 -1 0 ~ 0 9 30
3 0 50 0 9 80
[ -1 3 10 1
“RetRs=Rs 0 9 3 0
0 050

The homogeneous equation Ax = 0 has only the trivial solution.

18. We solve the homogeneous equation using the corresponding augmented matrix:

O . U
2 -3 00 (5/2)R1+Rs—Rs 2 -3 00
O 0 1 2 0 [J(=3/2)Ri+Ry—Ry 0 1 2 00
~ O 9 0
U5 3 -9 0" 70 =2 90
3 0 9 0 0 g 9 0
]
(9/2)R2+R3—R3 (2) -3 g 8
(—9/2)R2+R3—R3 1
- H0 0 00 -
0 0 0O

Since there exist nontrivial solutions, the homogeneous equation Ax = 0 has nontrivial solutions.
19. Linearly dependent. Notice thatu = 2v, so u—2v = 0.
20. Linearly independent. The vectors are not scalar multiples of each other.
21. Linearly dependent. Apply Theorem 2.14.
22. Linearly independent. The vectors are not scalar multiples of each other.

23. Linearly dependent. Any collection of vectors containing the zero vector must be linearly dependent.
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24. Linearly dependent. Since u=v, u—v =0.

25. We solve the homogeneous system of equations using the corresponding augmented matrix:

[ 6 1 0 ] (—1/3)R1+R2—R2 . 6 1 O -
(5/6)R1+R3—R3 20
5
2 70 ~ 0 % ; 00
-5 0 0 . s 0 .
6 1 O
(-1/8)Rz2+R3—R3 0 2
~ 0 3 00
0 0 O

Since the only solution is the trivial solution, the columns of the matrix are linearly independent. By
Theorem 2.15, none of the vectors is in the span of the other vectors.

26. We solve the homogeneous system of equations using the corresponding augmented matrix:

[ 2 1 1 0] (=7/2)R1+R2—R2 . 2 1 1 0 H

713 0 (1/2)R1+R3—Rs 0o _§2 _12 0O
-1 6 0 0 0 B 1 g
i 2
Ho 01 1 o
(18/5Rz*+Ra=Rs - _52 _32 00O
0 0 -% o0

Since the only solution is the trivial solution, the columns of the matrix are linearly independent. By
Theorem 2.15, none of the vectors is in the span of the other vectors.

27. We solve the homogeneous system of equations using the corresponding augmented matrix:

[ 4 3 5 o] R +R>R, D 4 3 50 -
1 5 70 (-/HRyFRaRe [ B 2 o[
3 2 -7 0 0o ¥ _B 9

0 4 4 0
4 3 -5 0

(17/723)Ry+Rs—>Rs 0 2473 273 0O
0 O 10

Since the only solution is the trivial solution, the columns of the matrix are linearly independent. By
Theorem 2.15, none of the vectors is in the span of the other vectors.

28. We solve the homogeneous system of equations using the corresponding augmented matrix:

0 [ (-7)Ri+R—R 0 O
1 -1 30 G 1 -1 30
7 3 1 0 (-4)R;+R3—R3 0 10 -20 O
Bz 2—885 ~ B0 13—260E
0 0 6 -12 0 -
(~13/10)Ro+Rs—Rs 1 -1 30
(—3/5)R2+R4—R4 0 10 -20 O E
~ 0 O 00
0 0 00

Since there exist nontrivial solutions, the columns of the matrix are linearly dependent. By Theorem
2.15, one of the vectors is in the span of the other vectors.

29. We row-reduce to echelon form:

[ ] [ ]

2 _1 —(1/2)R1+R2ﬁR2 2 _1
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1 0 ~ o i
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30.

3L

32.

33.

Because th2e echelon form has a pivot in every row, by Theorem 2.9 Ax = b has a unique solution for
all b in R=.

We row-reduce to echelon form:

]

4 1 2R1+R2—R2 4 1

~

-8 2 0 4

Because th2e echelon form has a pivot in every row, by Theorem 2.9 Ax = b has a unique solution for
all b in R=.

We row-reduce to echelon forr[n:

]

6 —9] (2/3)R1+R2—R>2 6 -9

~

-4 6 0 O
Because the echelon form does not have a pivot in every row, by Theorem 2.9 Ax = b does not have
a solution for all b in R?,
We row-reduce to echelon form:

]

1 _2 —2R1+R2—R> 1 _2

~

2 7 0 11

Because th2e echelon form has a pivot in every row, by Theorem 2.9 Ax = b has a unique solution for
all b in R=.

We solve the homogeneous system of equations using the corresponding augmented matrix:

[ 2 -1 0 0 ] (—1/2)R1+R2—>R, O 2 =1 0 O —
(3/2)R1+R3—R3 1
0 5
1 010 ~ oo , 1 00
-3 4 5 0 . , 50 .
2 -1 00
—5R,+R3—R3 0 1
~ O > 1 00O
0 0 0O

Since there exist nontrivial solutions, the columns of the matrix are linearly dependent. By The
Unifying Theorem, Ax = b does not have a unique solution for all b in RS.

34. We solve the homogeneous system of equations using the corresponding augmented matrix:

[ 3 4 7 O] (=7/3)R1+R2—>R> O 3 4 7 0 0

_ 8 20
2 020 - 0 g 2 9 -
/31)R>+R R 3 4 70
(8/31) 2¥Rs=>Rs _3_:13 _3_; 00
0 0 4 0

Since the only solution is the trivial solution, the columns of the matrix are linearly independent. By
The Unifying Theorem, Ax = b has a unique solution for all b in RS,

35. We solve the homogeneous system of equations using the corresponding augmented matrix:

[ 3 -2 1 0] (4/3)R1+R2—R2 a 3 -2 1 0 0
5

(5/3)R1iR3—>R3 0 O _ 0 0
0o -1 0

""low
Wl Wl

n
N
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] ]
3 =2 10
R Ra=Ry [ g 00

“3 3

0 0 0O
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36.

37.
38.
39.
40.
41,
42,

43.

44,

45,

46.

47.

Since there exist nontrivial solutions, the columns of the matrix are linearly dependent. By The
Unifying Theorem, Ax = b does not have a unique solution for all b in R3.

We solve the homogenious system of equitions using the coriesponding augmejwted matrix:
1 - 2 0 1 -

0 1 10 —2R1+Rs—>Rs 0 1 1 8

2 4 70 0 10 11 0
[, 3 2 ol

—lORz-':vR3ﬁR3 0 1 1 0

0 0 10

Since the only solution is the trivial solution, the columns of the matrix are linearly independent. By
The Unifying Theorem, Ax = b has a unique solution for all b in RS,

u=(1,0,0,0), v=(0,10,0), w=(,100)
u=(1,0,0,0,0), v=1(0,1,0,0,0), w = (0,0,1,0,0)
u=(,0), v=(0),w=(30)
u=(1,0),v=(1),w=(,1)

u=(1,0,0), v=(0,10),w=(11,0)

u=(10,0), v=(0,10), w=(0,01),x =(0,0,0) . The collection is linearly dependent, and x is a
trivial linear combination of the other vectors, so Theorem 2.15 is not violated.

(a) False. For example, u = (1,0) and_v = (2,0) are linearly dependent but do not span RZ2.

il ][0][1D

(b) False. For example, (1) o101 spans R?, but is not linearly independent.
(@) True, by Theorem 2.14.
{L,1IL 5 110 3 1>
(b) False. For example, 1 2 3 does not span RZ.
L 1 01 It 101 ]
(d) False. For example, A = 011 ~ 011 and has a pivot in every row, but the

columns of A are not linearly independent.

(b) True. If every column has a pivot, then Ax = 0 has only the trivial solution, and therefore the
columns of A are linearly independent.

(@) False. If A=[1 1], then Ax =0 has infinitely many solutions, but the columns of A are
linearly dependent. [ ]
(b) False. For example, A = 11 has linearly dependent columns, and the columns of A do not
11
span R2.
[ ]
(@) False. For example, A = 2 —2 has more rows than columns but the columns are linearly
0 O
dependent.
[ 1

1

(b) False. For example, A = | % 3

0 has more columns than rows, but the columns are linearly

dependent. (Theorem 2.14 can also be applied here to show that no matrix with more columns
than rows can have linearly independent columns.)
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48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

(a) False. Ax =0 corresponds to x]]a1+ R >[<nar]: 0, and by linear independence, each x; = O.

(b) False. For example, if A = and b= then Ax = b has no solution.
1 0o -

(a) False. Consider for example u, = 0.

(b) True. If {ug, up,uz} is linearly dependent, then X;u; + Xous + Xzuz = 0 with at least one of
the xj = 0. Since Xi1U1 + XpUp + XzUz = 0 =XyU; + XoUp + XaUz + Oug = 0, {Uq, Up, Uz, Ug} IS
linearly dependent.

(@) True. Consider xjuj+ XU+ Xgugz = 0. If one of the x; = 0, then Xju; + XpUz + Xguz + 0uy = 0
would imply that {us, uz, us, us} is linearly dependent, a contradiction. Hence each x; = 0, and
{uy, Uz, uz} is linearly independent.

(b) False. Consider u; = (1,0,0), uz =(0,1,0), uz=(0,0,1),us = (0, 0,0).

(a) False. If us = X1uU; + XoUp + X3Ugz, then Xjuq + XoUs + XzUz — Ug = 0, and since the coefficient
of ug is =1, {ug, Uz, us, uy} is linearly dependent.

(b) True. If us = X1uUq + XoUp + X3U3z, then XiU; + XoUs + XzUz — Ug = 0, and since the coefficient
of ug is =1, {ug, Uz, us, uy} is linearly dependent.

(a) False. Consider u; = (1,0,0), ux =(1,0,0), uz=(1,0,0), us = (0, 1,0).
(b) False. Consider u; = (1,0,0,0), u, =(0,1,0,0), uz=(0,0,1,0),us =(0,0,0,1).

(@), (b), and (c). For example, consider u; = (1,0,0), u, = (1,0,0), and uz = (1,0,0). (d) cannot be
linearly independent, by Theorem 2.14.

Only (c), since to span R3 we need at least 3 vectors, and to be linearly independent in R® we can
have at most 3 vectors.

Consider xi(ciup) + Xa(Couz) + Xz(c3uz) = 0. Then (X1€1)u; + (X2C2) U + (X3C3)uz = 0, and since
{u1, Uz, usz} is linearly independent,x;c; = 0, X2¢2 = 0, and xzcz = 0. Since each c¢; = 0, we must
have each x; = 0. Hence, {cius, Caup, C3us} is linearly independent.

Consider x1(u+ V) + Xa(u—-v) = 0. This implies (X1 + Xz2)u+ (X1 — X2)v = 0. Since {u, v} is linearly
independent, x; + X, = 0 and X; — X = 0. Solving this system, we obtain x; = 0 and x, = 0. Thus
{u+v,u—v}islinearly independent.

Consider x;(up + up) + X2(uy + uz) + Xz (Uzx+ uz) = 0. This implies (X1 + X2)ug + (X3 + X3)up +
(X2 + x3)uz= 0. Since {ui, Uy, us} is linearly independent,x; + X, = 0, X + X3 = 0, and X, + X3 = 0.
Solving this system, we obtain x; = 0, X = 0, and X3 = 0. Thus {u; + uy,u; + ug, uy + ug} is linearly
independent.

We can, by re-indexing, consider the non-empty subset as {ui,Us,...,uUn} where 1 <= n < m.
Let xqu1 + XoUs + -+ + Xpun = 0, then Xquq + XoUz + -++ + Xpup + OUps1 + 7o+ + Ouyy, = 0.
Since {ui,Uy,...,Upn,Un+1, ..., Uy}t is linearly independent, every xj = 0, 1 < i1 < n. Therefore,
{u1, Uz, ..., un} is linearly independent.

Suppose {ui, Usz,...,Upn} is linearly dependent set, and we add vectors to form a new set
{U1,Uz,..., Upn,... Uy} There exist x; with a least one X; = 0 such that x;u; +Xouz +- -+ X,un = 0.
Thus XUz + XaUz + + -+ + XpUp + 0Upeg + -+ +0uy, = 0, and so {ui, Uz,...,Un,...Un} is linearly
dependent.

Since {u,v, w} is linearly dependent, there exists scalars X1, X, X3 such that x;u + X,v+ Xsw = 0,

and at least one x; = 0. If x3 = 0, then Xx;u+ Xov = 0 with either x; or X, nonzero, contradicting
{u, v} is linearly independent. Hence x3 = 0, and we may write then w = (—X1/X3)u + (—X2/X3)V,
and therefore w is in the span of {u, Vv}.

u and v are linearly dependent if and only if there exist scalars x; and X, not both zero, such that
XU+ XoV=0. If X3 =0, then u = (=X2/X1)v =cv. If X, =0, then v = (=X1/X2) u = cu.
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62. Let u; be the vector in the it nonzero row of A. Suppose the pivot in row i occurs in column k;. Let r
be the number of pivots, and consider x;u;+---X,u, = 0. Since A is in echelon form, the k; component
of uj for i = 2 must be 0. Hence when we equate the k; component of x;u; + ---X,u, = 0 we obtain
x1 = 0. Applying the same argument to the k, component now with the equation Xpuo+ ---X U, =0
we conclude that x, = 0. Continuing in this way we see that x; = 0 for all i, and hence the nonzero
rows of A are linearly independent.
63. Suppose A =[a a& ... am ], X = (X1,X2,...,Xm) and y = (Y1, Y2, --.,¥m)- Then we have
X =Yy =(X1—Yy1, X2—= VY2, ..., Xm — ¥Ym), and thus
AX —y) =(Xi—y1) a1 + (X2—Yz2) & + -+ (Xm — Ym) @m
= (xpar+ Xzaz+ *++ + Xmam) — (Yia1+ yzaz+ - +Ymam)
= Ax — Ay
64. Since u; = 0 and {ug, us,...,un} is linearly dependent, there exists a smallest index r such that
{uz, Uz, ..., u} is linearly independent but {ui,uUs,...,Ur,Urs1} is linearly dependent. Consider
X1Ug + "+ + XeUp + XeeqUpe1 = 0. Since {ui, Us,...,Ur, Ups} iS linearly dependent, at least one
of the Xj = 0. If Xp+1 = 0, then Xyu1+ --- + X ur = 0, which implies thatx; = 0 forall i = r
since {us, Uy,...,ur} is linearly independent. But this contradictsthat some x; = 0, and so we must
have Xr+1 = 0. Thus we may write Ur+1 = (—X1/Xr+1) Uz + -+ + (=X /Xr+1) Ur. We select those
subscripts i with x; = 0 (there mugt be at Ieasj one, otherwise u,.; = 0, a contradiction), and rewrite
Ur+1 = (—Xk/Xr+1) Uk, + -7+ =X, /Xr+1” Uk,. We now have a vector ur.y writtenas a linear
combination of a subset of the remaining \fctors, with nonzFro coefficients. Since {ug, Uz,..., U} iS
linearly independent, this subset of vectors Uy, , Uk,, ..., Uk, isalso Iinearky independjent (see exercise
56). Finally, these coefficients are unique, since if (=X, Xreny) Uk, + 0+ =X, IXpe1 Uk, = Y1Ug, +
{-+ YpUk, then fyl = Xy /Xp+1) Uk, + -5+ Yp— X, /Xp+1” Uk, =0, and by linear independence of
Uk, Uky, - -+, Uk, €ach Vi — X, /Xr+1 =0, and thus yi = X /Xr+1.
65. Using a computer algebra system, the vectors are linearly independent.
66. Using a computer algebra system, the vectors are linearly dependent.
67. Using a computer algebra system, the vectors are linearly independent.
68. Using a computer algebra system, the vectors are linearly dependent.
69. We row-reduce to using computer software to obtain
0 10O 0
2 1 -1 3 1 001
o-5 3 1 2030010 20
ﬁ—l 2 -2 1ﬁ~§0 01 1@
1 -2 0 -3 0 0O
0
3 1 -4 1 0 00O
So, because Ax = 0 has infinitely many solutions, we conclude that the vectors are linearly dependent.
70. We row-reduce to using computer software to obtain
0 10O 0
4 2 -3 0 1 000
o 2 3 2 20330010 00C
@—1 11 _1%%%0 01 o@
5 -1 1 3 0 001
2 0 1 2 0 00O
So, because Ax = 0 has only the trivial solution, we conclude that the vectors are linearly indepen-
dent.
71. Using a computer algebra system, Ax = b has a unique solution for all b in R3,
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72. Using a computer algebra system, Ax = b has a unique solution for all b in R3.
73. Using a computer algebra system, Ax = b does not have a unique solution for all b in R*.

74. Using a computer algebra system, Ax = b has a unique solution for all b in R%.

Chapter [2 Slipp[lem]enEary] Exercises

1 -2 -1
1. u+v= -3 + 4 = 1
2 1 3
[ ,1 [ 41
3w=3 -5 = -15
7 21

2.V—w= 4 - -5 = 9
1 7 —6
[ ;1 [_,1
—4u = —4 -3 = 12
2 -8
[ ,1 [_,1 [_,1
3.2w+3v=2 -5 +3 4 = 2
7 1 17
[ ;1 [ ;1 [ ,1
2u-5w=2 -3 -5 -5 = 19
7 -31
[ ,1 [ ;1 1[_,1
4, 3v+2u=3 4 +2 -3 = 6 ;
1 2 7
[ 1] B P
2u+4w=-2 -3 +4 -5 = -14
2 7 24

[ ,1 0,1 [ ;100 ,I

5, 2u+v+3w=2 -3 + 4 +3 -5 = =17
2 1 7 26
[ ;1 [ _,1 [ ;1 [ 41
u-3v+2w= -3 -3 4 +2 -5 = =25
2 1 7 13
6. u—2v+4w= -3 -2 4 +4 -5 = =31 ;
2 1 7 28
L ;1 [_,1 L ;1 [ -1
—3u+v-2w=-3 -3 + 4 -2 -5 = 23
2 1 7 -19
7. X1 - 2X2 = 1
—3X;7 + 4x, = =5
2Xx;y + X2 = 7
8. X1 + X, = 4
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—5x;1 - 3% -8
Xy + 2X2 -2
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[ ;1 [ _,1 I

0
9.0 -3 +0 4 = 0 :1 -3 +0 4 = =3
2 1 0 2 1 2
[ ;1 [ _,1 [ _,1
0 -3 +1 4 = 4
2 1 1
1000 -5 +0 4 = 0 ;1 -5 +0 4 = -5
7 1 0 7 1 7
[ ;1 [ ,1 [ _,1
0 -5 +1 4 = 4
7 1 1
[ ;1 [_,1 10 ;1 [ -2, ]
11. Xxqu+Xov=w & X1 -3 +Xp 4 = -5 = —3X1 + 4%,
2 1 7 2X1 + X2
[ ;1 L, o, 41
= -5 < the augmented matrix —3 4 —5 has a solution:
7 2 1 7
L 1 -2 1 ] 3R1+Rz2—R> L 1 -2 1 1
-3 4 -5 THRuTRemRe g 2 2
i ' ! (5/2)R2+R3—R : 1 _g Fl) ]
2~ 3 3 O _2 _2
0 0 O
Because a solution exists, w is a linear combination of u and v.
[ ,1 [ ;11,1
12. W+ XoU=V & X7 -5 +X%X» -3 = 4 =
7 2 1
L x1+x2] [—2] L 1 1 —2]
—5x; —=3x2 = 4 <> the augmented matrix —9 —3 4 has a solution:
X1+ 2Xo 1 7 2 1

L 1 1 —2] SR1+R2—R; [1 1 —2]

—7R1+R3—R3

-5 -3 4 0 2 -6
7 2 1 -5 15
(5/2)R2+R3z—R3 If)l L- 1

~ 0 2 -6

00 O

Because a solution exists, v is a linear combination of w and u.
13. Because w is in the span of u and v, by Exercise 11, {u,v, w} is linearly dependent.

14. Because {u,v, w} is linearly dependent, by Exercise 13, span {u,v, w}= RS3.

R O B A I
15 X]_ 1 + X2 _7 + X3 4 - 12

[ ,1 [_,1 [_,1 [ ,1 [ ,I

2
16. Xy -1 + X2 5 + X3 0 + Xa 1 = -7
-3 0 10 -3 2
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[,1 [_,1 [,]

17. X2 = 0 +s, 3
X3 0 1
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[,1 [ 51 [_;]
18. X2 = -4 +5 0
X3 0 1
0 1 d ]
Xy 3 0 _5 ] 0 _1 0
19.DX2D:D OD+51D OD+SD 10
0 0 ] 0 0 0
X3 -1 8 0
X4 = 1 0
0
0 0 0 ] 0 ] 0 ]
X1 1 1 0 6
0 X2 OounQ 0 I oo™ 01 J
2. x = 6 +s -1 45 4 45 O
?E s 0 00 H B H H
0 0 0 0
Oy, O DDO 0 o0 3 0 OO
X5 1 0 0
0
[ 1 I 1
2 34 1 b 27 - 7= 2and2a 8=5
' 2 = , SO we have the equations 2b - © -
a 0o ~ 4 2a—8 o B -
We solve these and obtain a= % and b= -3.
[ ,1 [,1 [4_,]1
22. — 1 +3 b = 3b-1 | sowe have the equations 9—a=1,3b—1=-4,and 2=c. We
-2 0 2
solve these and obtain a =8, b= —1, and ¢ = 2.
[ ,1 [ ,1 10 1 [ i1 [ ;1]
23. Xxja1+ xsa=Db S X1 2 +Xo 3 = -11 = —2X1 + 3Xy = —-11 =
4 -1 10 4X1 — Xo 10
L 1 2 -1 1
the augmented matrix —2 3 —11 vyields a solution.
4 -1 10
L1 2 a1 werere [ 5 4]
—2 3 —11  TREReeRe o 7 g3
4 -1 10 0 -9 14
0 ]
(9/7)R2+Rs—Rs (1) % __1% -
19
0 0 —%
From the third row, we have 0 = —%, and hence the system does not have a solution. Hence b is not
a linear combination of a; and as.
0 ] 0 ] 0 0
1 0 -2
24. Xja;+ Xpa,+ Xzaz=b & xlD 80,0 20,,0800_
0 1 20 4 [0 30 ]
0 1 3
2 1 -1
0 0 0 ] 0 0
D—Z X1 — 2X3 -2 1 0 -2 -2
0O -4 [ 0 —3X1+2%X, I O -4 [ 0 -3 2 0 -4 10
=

U 5D



Chapter 2: Euclidean Space

376

376 Supplementary Exercises
—3X, + 3X3 0o=10
2X1+ X2 — X3
a solution.
. 1
o -3
U0
2

5 U 0 yields
<sthe
augme
nted
matrix
U oo -1 3 5
3 1 -1 3
2
] 0 0
-2 =2 3R,+R» R 1 0o -2 -2
0 —4 [0 —-2R;+R4—Rs4 oo 2 —6 =100
3 5 ~ o -1 3 5
-1 3 0 0 1 3 7D
(1/2)R2+R3—>R3 1 0 _2 _2
—(1/2)Rz+Rqa—Ra H 0 2 -6 -10
00 0 0

0 0 6 12
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From row 4, 6X3 = 12 = Xz=2.From row 2, 2x, — 6(2) = —10 = X, =1. From row 1, x5 — 2(2) =
—2 = X1=2. We conclude b is a linear combination of a;, a,, and az with b = 2a; +a, + 2as.
O 1
X1
[2 3 -8 l]X:DXZD [5]
5. A= o 1 4 o ngD,ande 9
X4
O 1 O O
3 -1 -7 [ Xy 1 2
_o-4 5 00O _0-40
26.A—D_ 0.X= X ,andb—D O
8 2 6 M 3
1 3 9 8 7
[ ;1 [,1 [_;1
27. Set xja1+ Xoao=b = X3 -1 +x, 4 = 5 =
-2 5 7
[ 3X1+ X2 [ -1 ]
—Xp+4x; = 5 We obtain 3 equations and row-reduce the associated augmented matrix
—2X; + 5%, 7
to determine if there are solutions. . .
L 3 1 -1 1 (1/3)R1+R2—R> 8 _1 -1
(2/3)R1+R3—R3 O B T 0O
-1 4 5 ~ - 3 3 0
_2 5 7 137 3
O
3 1 -1
—(17/13)R2+R3—>R3 O 0 13 14 O
~ 0 33 0
0 0 3

From the third row, 0 = 1—2 ,and hence there are no solutions. We conclude that there do not exist x;
and X, such that x;a; + Xoa, = b, and therefore b is not in the span of a; and a,.

O, @O O O O OO O 0 O
1 -1 2 -3 X1 = Xz + 2X3

30 o 20 O

[ 2 00 413 O 33Xy + 2Xo + 2X3 O
28. Set xja;+Xzax+xzaz=b = X1 1 X2 [ 3 [+X30 0 Oo=10d =
O

O = X1 + 3X» a

0 5 O] 0 4 -1 1 4X, — X3

H _;1 % We obtain 4 equations and row-reduce the associated augmented matrix to determine if there

1
are solutions.

0 ] 0 ]
1 -1 2 -3 CaRLARL R, 1 -1 2 -3
H 3 2 2 4 —R1+R3—>Rs3 B 0 5 -4 13 E
1 3 0 -7 0 4 -2 -
0 4 -1 1 0 4 -1 1
U112 3 M
(—=4/5)R2+Rs—R3 0 5 —4 13
(~4/5)Rg+Ra—Ra H o o & _7 H
O 5 5
1 47

1
0 0 = (~11/6)R3+R4—Ra4



Chapter 2: Euclidean Space 378
oo 5 -4 130

378 Supplementary Exercises

D1 152 53D
0 5 5 U
c o 0 17

From the third row, 0 = 17,and hence there are no solutions. We conclude that there do not exist Xy,
X2, and X3 such that xja; + Xoa, + Xzaz = b, and therefore b is not in the span of a;, a,, and as.
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29. {a;} does not span R?, by Theorem 2.9, because m =1< 2 =n.
30. Row-reduce to echelon form:

[ ] [ ]

6 -2 (3/2)R1+R2—R> 6 -2

-9 3 0 0

Because there is a row of zeros, there exists a vector b which is not in the span of the columns of the
matrix, and therefore {ai,a,} does not span R?Z.

31. Row-reduce to echelon form:

[ ] [ ]

1 _3 —2R1+R2—R> 1 _3

2 5 0 11

Because there is not a row of zeros, every choice of b is in the span of the columns of the given matrix,
and therefore {a;,a,} spans R?2.

32. Row-reduce to echelon form:

1 _1 2 —3R1+R2—R> [ 1 _1 2

~

Because there is not a row of zeros, every choice of b is in the span of the columns of the given matrix,
and therefore {a;,a,, as} spans R2.

33. {a;} does not span RS2, by Theorem 2.9, because m = 1< 3 =n.
34. {a;,a,} does not span RS2, by Theorem 2.9, because m =2< 3 =n.

35. Row-reduce to echelon form:
L 1 -3 4 ] —2R1+R2—R2 L 1 -3 4 1

2 —5 g ORBeoRe g4

5 4 11 0 19 -9
[, 3 41

—lng“;/R;gﬁR;g O 1 _2

0 0 29

Because there is not a row of zeros, every choice of b is in the span of the columns of the given matrix,
and therefore {a;,a,, as} spans R3.

36. Row-reduce to echelon form:
L 1 -1 1 —2] 3R1+R2—R> [1 -1 1 —2:I

—R;1+R3—R3

-3 2 -5 2 0 -1 -2 -4

1 -2 -1 -6 0 -1 -2 -4
[1 -1 1 —2]

—R2+E3—)R3 0 -1 -2 —4

0 0 0 ©

Since there is a row of zeros, there exists a vector b which is not in the span of the columns of the
matrix, and therefore {ai,ay, as, as} does not span R3.

37. We solve the homogeneous system of equations using the corresponding augmented matrix:

[ 1 -2 0:I 5R1+R2—R> I:1 -2 O:I

-5 9 0 0 -1 0
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Because the only solution is the trivial solution, the set of column vectors, {a;,a,}, is linearly inde-
pendent.



381 Supplementary Exercises Chapter 2: Euclidean Space

381

38. We solve the homogeneous system of equations using the corresponding augmented matrix:

[ 9 -6 0] (2/3)R1+R2—R> [9 -6 0]

-6 4 0 0 00

Because there exist nontrivial solutions, the set of column vectors, {a;, a}, is not linearly independent.
39. By Theorem 2.14, because m = 3> 2 =n, the set {a;, ay, ag} is not linearly independent.

40. We solve the homogeneous[ system of equitions using the correfponding au%mented matrix:

_2 0 —6R;+R>—R>
6 3 0 2RarRe—Re 0 15 0
-2 0 0 0 40
(4/15)R2+R3—R L 1 -20 ]
TR0 150
0 00
Because the only solution is the trivial solution, the set of column vectors, {a;,ay}, is linearly inde-
pendent.
41. We solve the homogeneous I?ystem of equaﬂons using the cor[espondlng aL_Jlgmented matrix:
l —4R1+R2>—R>2
5R;+R3—R3
4 -8 0 ~ 0 00
-5 10 O 0 00

Because there exist nontrivial solutions, the set of column vectors, {a;,a,}, isnot linearly independent.

42. We solve the homogerifeous system of equailons using the corrfsponding augmerjted matrix:

R1+R2—R2 -2 2
-1 3 -5 0 RRTRe g9 1 39
3 4 90 0 10 3 0
L 1 -2 20 1
—10R24;R3—>R3 O 1 _3 0
0 0 33 0
Because the only solution is the trivial solution, the set of column vectors, {ai,ay, as}, is linearly
independent.
43. We solve the homogeneous system of equations using the corresponding augmented matrix:
0 0
: 3 -2 0 O] 2/3)R;+Rs—>R 3 =2 00
0 3 9 0 (m2/3Ri#Rs—>Rs 7 3 9 00O
2 -4 -8 0 0 -§ 80
L 1
(8/9)R2+R3—R3 8 _g 8 8
0 00O

Because there exist nontrivial solutions, the set of column vectors, {ai,ap, as}, is not linearly inde-
pendent.

44, By Theorem 2.14, because m =4 > 3 =n, the set {a, a,, as, as} is not linearly independent.



