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                              Preface 
 

 
 
 

This solutions manual is designed to accompany the ninth edition of Linear Algebra with Applications 
by  Steven  J. Leon.  The  answers in  this  manual  supplement  those given  in  the answer key  of the 
textbook.  In addition,  this manual contains  the complete solutions to all of the nonroutine exercises 
in the book. 

At the end of each chapter of the textbook  there are two chapter tests (A and B) and a section 
of computer exercises to be solved using MATLAB. The  questions in each Chapter Test A are to be 
answered as either true or false. Although the true-false answers are given in the Answer Section of the 
textbook, students are required to explain or prove their answers. This manual includes explanations, 
proofs, and counterexamples  for all  Chapter Test A questions. The chapter  tests labeled B contain 
problems similar  to the exercises in the chapter.  The  answers to these problems are not given in the 
Answers  to Selected Exercises Section  of the textbook;  however, they  are provided  in this  manual. 
Complete  solutions  are given  for all of the nonroutine  Chapter Test B exercises. 

In  the MATLAB exercises. most of the computations  are straightforward. Consequently, they 
have not been included  in this solutions manual.  On the other hand, the text also includes questions 
related  to the computations.  The  purpose of the questions  is to emphasize  the significance  of the 
computations.  The  solutions manual  does provide the answers to most of these questions. There  are 
some questions for which  it is not possible to provide  a single answer. For example,  some exercises 
involve  randomly   generated  matrices.  In  these cases,  the  answers  may  depend  on  the  particular 
random matrices  that  were generated. 
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Chapter 1 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Matrices and 

Systems 

                      of Equations 
 
 
 
 
 
 
 

  1    SYSTEMS OF LINEAR EQUATIONS   
 

1        1        1          1          1   
 

0        2        1       −2           1                                                     
2.   (d) 

 
0        0        4          1       −2                                                      
0        0        0          1       −3   

 
0        0        0          0          2   

5.   (a)   3x1  + 2x2  = 8 
x1  + 5x2  = 7 

(b) 5x1  − 2x2  +  x3  = 3 
2x1  + 3x2  − 4x3  = 0 

(c)   2x1  +  x2  + 4x3  = −1 
4x1  − 2x2  + 3x3  =  4 
5x1  + 2x2  + 6x2  = −1 

 
1



 

m 
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(d) 4x1  − 3x2  +  x3  + 2x4  = 4 
3x1  +  x2  − 5x3  + 6x4  = 5 
x1  +  x2  + 2x3  + 4x4  = 8 

5x1  +  x2  + 3x3  − 2x4  = 7 

9.  Given  the system 

 

 
 
 
 
 
 

−m1x1 + x2   = b1 

−m2x1 + x2   = b2

one can  eliminate  the  variable  x2   by  subtracting the  first  row from  the second. One  then 
obtains  the equivalent  system 

−m1x1 + x2   = b1 

(m1 − m2)x1 =  b2 − b1 

(a)   If m1  = m2,  then one can solve the second equation for x1 

   b2 −  b1  
 

x1  = 
1 − m2 

One  can  then  plug  this  value  of x1   into  the  first  equation  and  solve  for  x2.  Thus,  if 
m1  = m2,  there will  be a unique ordered pair  (x1, x2) that  satisfies the two equations. 

(b) If m1  = m2,  then the x1  term drops out in the second equation 

0 = b2 − b1 

This is possible if and only if b1 = b2. 
(c)   If  m1   = m2,  then  the two equations  represent lines  in  the plane  with  different  slopes. 

Two  nonparallel  lines  intersect  in  a  point.  That point  will  be the  unique  solution  to 
the system.  If  m1   = m2   and  b1  = b2, then both equations  represent the same line and 
consequently every point on that line will satisfy both equations. If m1  = m2  and b1 = b2, 
then the equations represent parallel  lines. Since  parallel  lines do not intersect,  there is 
no point on both lines and hence no solution  to the system. 

10.   The  system must be consistent  since (0, 0) is a solution. 

11.   A linear equation in 3 unknowns represents a plane in three space. The  solution set to a 3 × 3 
linear  system  would  be the  set of all  points  that  lie  on all  three planes.  If  the  planes  are 
parallel  or one plane is parallel  to the line of intersection  of the other two, then the solution 
set will  be empty.  The  three equations  could  represent the same plane  or the three planes 
could all intersect in a line. In either case the solution set will contain  infinitely many points. 
If the three planes intersect  in a point,  then the solution  set will  contain  only that  point. 

 

 

  2    ROW ECHELON FORM   
 

2.  (b) The  system is consistent  with  a unique solution  (4, −1). 

4.  (b) x1  and x3  are lead variables  and x2  is a free variable. 
(d) x1  and x3  are lead variables  and x2  and x4  are free variables. 
(f) x2  and x3  are lead variables  and x1  is a free variable. 

5.  (l)  The  solution  is (0, −1.5, −3.5). 

6.  (c)  The  solution  set consists of all ordered triples  of the form (0, −α, α). 

7.  A homogeneous linear  equation  in  3 unknowns  corresponds  to a plane that  passes through 
the origin in 3-space. Two  such equations would correspond to two planes through the origin. 
If  one equation  is a multiple  of the other, then both  represent the same plane through  the 
origin  and every point  on that  plane will  be a solution  to the system.  If  one equation is not 
a multiple  of the other, then we have two distinct  planes that  intersect in a line through  the
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origin.  Every point  on the line of intersection  will  be a solution  to the linear  system.  So in 
either case the system must have infinitely many  solutions. 

In the case of a nonhomogeneous 2 × 3 linear system, the equations correspond to planes 
that do not both pass through the origin.  If one equation is a multiple  of the other, then both 
represent the same plane and there are infinitely  many  solutions.  If  the equations represent 
planes that  are parallel,  then they  do not intersect  and hence the system  will  not have any 
solutions.  If  the  equations  represent  distinct   planes  that  are not  parallel,  then  they  must 
intersect  in a line and hence there will  be infinitely many  solutions.  So the only  possibilities 
for a nonhomogeneous 2 × 3 linear  system are 0 or infinitely  many  solutions. 

9.  (a)  Since  the system is homogeneous it must be consistent. 

13.   A homogeneous system is always  consistent  since it has the trivial solution  (0, . . . , 0). If  the 
reduced row echelon form of the coefficient matrix  involves  free variables,  then there will  be 
infinitely many  solutions.  If there are no free variables,  then the trivial solution  will  be the 
only solution. 

14.   A nonhomogeneous system could be inconsistent  in which  case there would be no solutions. 
If  the system  is consistent  and  underdetermined,  then  there will  be free variables  and  this 
would imply  that  we will  have infinitely  many  solutions. 

16.   At each intersection, the number of vehicles entering must equal the number of vehicles leaving 
in order for the traffic  to flow. This condition  leads to the following  system of equations 

x1  + a1   = x2  + b1 

x2  + a2   = x3  + b2 

x3  + a3   = x4  + b3 

x4  + a4   = x1  + b4 

If we add all four equations, we get 
 

x1  + x2  + x3  + x4  + a1  + a2  + a3  + a4  = x1  + x2  + x3  + x4  + b1 + b2 + b3 + b4 

and hence 
a1  + a2  + a3  + a4  = b1 + b2 + b3 + b4 

17.   If (c1, c2) is a solution,  then 

a11c1  + a12c2    = 0 

a21c1  + a22c2    = 0 

Multiplying both equations through  by α,  one obtains 
 

a11(αc1) + a12(αc2) = α · 0 = 0 

a21(αc1) + a22(αc2) = α · 0 = 0 

Thus (αc1, αc2) is also a solution. 

18.   (a)  If  x4   = 0, then x1,  x2,  and  x3   will  all  be 0. Thus if no glucose is produced,  then there 
is no reaction.  (0, 0, 0, 0) is the trivial solution  in the sense that  if there are no molecules of 
carbon dioxide  and water, then there will  be no reaction. 
(b) If  we choose another  value  of x4,  say  x4   = 2, then  we end up  with  solution  x1   = 12, 
x2  = 12, x3  = 12, x4  = 2. Note the ratios are still  6:6:6:1. 

 

 

  3    MATRIX ARITHMETIC  
 

1.   (e)   
 

8       −15       11   

0         −4       −3   
−1          −6           6
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5       −10      15   

(g)   
 

5         −1          4   
 

8         −9          6   

 
36    10    56 

 
2.  (d)                      

10      3    16  

 
15       20  

5.   (a)   5A =  
 

5         5   
10       35 

 
6         8   

 
 

 
9       12   

 
 

 
15       20  

2A + 3A = 
 

2         2  
 
+ 

 
3         3  

 
=  5         5  

 
4       14   

 
6       21   

 
10       35  

 
18       24  

(b) 6A =  
 

6         6   
12       42 

 
6         8   

 
 

 
18       24  

3(2A) = 3 
 

2         2  
 
=  6         6  

 
4       14   

 
12       42  

 
3    1    2 

 
(c)   AT  =                 

4    1    7  

 
3    1    2 

T 

 

 
3    4 

(AT )T  =     = 
 
1    1 

 
= A

 
4    1    7  

 

 
5    4    6 

 

 
2    7 

6.   (a)   A + B =   = B + A
 
0    5    1  

 
5       4       6  

 

 
15       12     18 

(b) 3(A + B) = 3   =                         
 
0       5       1  

 
12       3       18  

  
0       15       3  

   
3        9            0 

3A + 3B =   +                               
  

6       9       15  
 
−6         6       −12 

 
15       12       18 

=  
0       15         3 

 
5    4    6 

T 
 
5    0 

(c)   (A + B)T =     = 
 
4    5 

 
0    5    1  

 
6    1 

 
4       2   

 
1       −2   

 
5       0  

A
T  + BT   = 

 
1       3  

 
+ 

 
3          2  

 
= 

 
4       5   

6       5   
 

0       −4   
 

6       1  

   
5       14   

 
15         42  



 

7.   (a)   3(AB) = 3 
 

15       42  
 
= 

 
45       126     

0       16   
   

0         48  

     
6         3  

       
 

15         42  

(3A)B = 
 

18         9  
 

 2    4  = 
 

45       126  
 
−6       12 

 
 
1    6     

0         48  

     
2       1  

       
 

15         42  

A(3B) = 
 

6       3  
 

 6    12  = 
 

45       126  
 
−2       4 

 
 
3    18     

0         48  
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5       14  
T

 

(b) (AB)T = 
 

15       42  
   

=
 5       15         0  

                                                      

0       16 
 

14       42       16  

 
2       1  

                                                              

BT AT  = 
 2        6       −2 

                              
5       15         0 

                             

 
4       6  

  
1        3          4  

 =  
14       42       16  

 
0    5  

 
3    1  

 
3    6 

8.   (a)   (A + B) + C =   +   =          
 
1    7  
 
2    4  

 
2    1  
 
1    2  

 
3    8  
 
3    6 

A + (B + C) =   +   =          
 
1    3  

                     

 
2    5  

 

 
3    8  
                  

(b)  (AB)C =  −4       18    3       1   =  24       14  
 
−2       13  

  
2       1   

 
20       11  

 
2       4  

                         

A(BC) = 
 

  −4       −1   24       14 
                   

1       3  
 

 8          4  
 =  

20       11  

 
2       4  

  
1       2    

10       24  

(c)   A(B + C) =                  =                   
 

1       3  
  

2       5   
   

7       17  

                                                               

AB + AC =  −4       18   +  14       6   =  10       24  
 
−2       13   

   
9       4   

   
7       17  

 
0    5 

  
3    1  

 
10    5 

(d)  (A + B)C =             =            
 
1    7 

  
2    1  

 
17    8 

 
14       6  

                           

AC + BC = 
 

 +  −4       −1   10       5 
                   

9       4  
     

 8          4  
 =  

17       8  

9.  (b) x = (2, 1)T   is a solution since b = 2a1 + a2. There  are no other solutions since the echelon 
form of A is strictly triangular. 
(c)  The  solution  to Ax = c is x = (− 5 , − 1 )T . Therefore c = − 5 a1  − 1 a2. 2        4                                                   2              4 

11.   The  given information  implies  that
 
1 

 

x1 = 
 
1  

 
0 

 

and    x2 = 
 
1 

 
0  

 
1 

 

are both solutions to the system. So the system is consistent and since there is more than one 
solution,  the row echelon form of A must involve  a free variable.  A consistent  system with  a 
free variable  has infinitely  many  solutions. 

12.   The  system is consistent  since x = (1, 1, 1, 1)T   is a solution.  The  system can have at most 3 
lead variables  since A only has 3 rows. Therefore,  there must be at least one free variable.  A 
consistent  system with  a free variable  has infinitely  many  solutions. 

13.   (a)   It follows from the reduced row echelon form that  the free variables  are x2,  x4,  x5. If we 
set x2  = a, x4  = b, x5  = c, then 

 



 

x1   = −2 − 2a − 3b − c 

x3   = 5 − 2b − 4c 

and hence the solution  consists of all vectors of the form 
 

x = (−2 − 2a − 3b − c, a, 5 − 2b − 4c, b, c)T
 

 

(b) If we set the free variables  equal to 0, then x0 = (−2, 0, 5, 0, 0)T   is a solution  to Ax = b 
and hence 

b = Ax0 = −2a1 + 5a3  = (8, −7, −1, 7)T



 

1  3 1   
 
1         32 

4 10 4 6 120 
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14.   If w3  is the weight given to professional activities, then the weights for research and teaching 

should be w1  = 3w3  and w2  = 2w3. Note that 
 

1.5w2  = 3w3 = w1, 
 

so the weight  given  to research is 1.5 times the weight  given  to teaching.  Since  the weights 
must all add up to 1, we have 

 

1 = w1 + w2 + w3  = 3w3 + 2w3 + w3  = 6w3 
 

and hence it follows that w3  = 1 , w2  = 1 , w1  = 1 . If C is the matrix  in the example problem 
6                   3                   2 

from the Analytic  Hierarchy Process  Application, then  the rating  vector  r is computed  by 
multiplying C times the weight vector w.

 1        1 1  
  

1     43   

2        5        4              2                         120        

r = Cw = 
 1 1        1    1   

= 
  45   

 
4        2 2  

  
3    

120  

                                   
 

 

15.   AT   is an n × m matrix. Since AT   has m columns and A has m rows, the multiplication AT A 

is possible. The multiplication AAT   is possible since A has n columns and AT   has n rows. 

16.   If A is skew-symmetric, then AT  = −A. Since the (j, j) entry of AT  is ajj and the (j, j) entry 
of −A is −ajj , it follows that ajj = −ajj for each j and hence the diagonal  entries of A must 
all be 0. 

17.   The  search vector is x = (1, 0, 1, 0, 1, 0)T . The  search result is given  by the vector 
 

y = AT x = (1, 2, 2, 1, 1, 2, 1)T
 

 

The  ith  entry  of y is equal to the number of search words in the title  of the ith  book. 

18.   If α = a21/a11, then
 

1      0  
  

a11        a12   
    

a11                 a12
 

      
a11               a12          

 
α     1  

    
0          b

 
 =  

αa
 

αa     + b 
 =  

a
 

αa     + b 
                                                                                      

11               12                                    21               12
 

The  product  will  equal A provided 
 

 
 

Thus we must choose 

 

 
αa12 + b = a22 

 
 
 
 

 
a21a12

b = a22  − αa12 = a22  −  

a11

 

 

  4    MATRIX ALGEBRA   
 

1.   (a)   (A + B)2 = (A + B)(A + B) = (A + B)A + (A + B)B = A2 + BA + AB + B2
 

For real numbers, ab + ba = 2ab; however, with matrices AB + BA is generally  not equal 
to 2AB.

(b)  
 

(A + B)(A − B) = (A + B)(A − B) 

= (A + B)A − (A + B)B 

= A2 + BA − AB − B2
 

 

For real numbers,  ab − ba = 0; however, with  matrices  AB − BA is generally  not equal 
to O.
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2.  If we replace a by A and b by the identity matrix, I , then both rules will  work, since 

(A + I)2 = A2 + IA + AI + B2  = A2 + AI + AI + B2  = A2 + 2AI + B2

 

and 
 

 

(A + I)(A − I ) = A2 + IA − AI − I2 = A2 + A − A − I2 = A2 − I2

3.  There  are many  possible choices for A and B. For example, one could choose
 
0    1   

1    1 

A =                                                  

 

More generally  if 

 
0    0 

        and         B =  
0    0 

  
a        b   

A =                   

     
db         eb  

                        

 
ca      cb 

        B =  
−da     −ea  

then AB = O for any choice of the scalars  a, b, c, d, e. 

4.  To construct nonzero matrices A, B, C with the desired properties, first find nonzero matrices 
C and D such that DC = O (see Exercise 3). Next,  for any nonzero matrix A, set B = A +D. 
It follows that 

BC = (A + D)C = AC + DC = AC + O = AC 

5.  A 2 × 2 symmetric  matrix  is one of the form 
 
a    b 

 
A =          

 
Thus 

 
b   c  

 

 
a2  + b2     ab + bc 

A2  =                                
ab + bc   b2 + c2  

If A2  = O, then its diagonal  entries must be 0. 

a2  + b2 = 0        and         b2 + c2  = 0 
 

Thus a = b = c = 0 and hence A = O. 

6.  Let

D = (AB)C = 

 
a11b11  + a12b21          a11b12  + a12b22  
a21b11  + a22b21          a21b12  + a22b22 

  
c11          c12    

  
c21          c22   

It follows that 
 

 
 
 
 
 
 
 
 
 
 
 
 

If we set 

 
 

d11   = (a11b11  + a12b21)c11  + (a11b12  + a12b22)c21 

= a11b11c11  + a12b21c11  + a11b12c21  + a12b22c21 

d12   = (a11b11  + a12b21)c12  + (a11b12  + a12b22)c22 

= a11b11c12  + a12b21c12  + a11b12c22  + a12b22c22 

d21   = (a21b11  + a22b21)c11  + (a21b12  + a22b22)c21 

= a21b11c11  + a22b21c11  + a21b12c21  + a22b22c21 

d22   = (a21b11  + a22b21)c12  + (a21b12  + a22b22)c22 

= a21b11c12  + a22b21c12  + a21b12c22  + a22b22c22

E = A(BC ) = 

 
a11          a12  
a21          a22 

  
b11c11  + b12c21          b11c12  + b12c22    

  
b21c11  + b22c21          b21c12  + b22c22   

then it follows that 
 

 
e11   = a11(b11c11  + b12c21) + a12(b21c11  + b22c21) 

= a11b11c11  + a11b12c21  + a12b21c11  + a12b22c21
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Thus 

 

 

and hence 
 

 
9. 

e12   = a11(b11c12  + b12c22) + a12(b21c12  + b22c22) 

= a11b11c12  + a11b12c22  + a12b21c12  + a12b22c22 

e21   = a21(b11c11  + b12c21) + a22(b21c11  + b22c21) 

= a21b11c11  + a21b12c21  + a22b21c11  + a22b22c21 

e22   = a21(b11c12  + b12c22) + a22(b21c12  + b22c22) 

= a21b11c12  + a21b12c22  + a22b21c12  + a22b22c22 
 

 

d11  = e11            d12  = e12            d21  = e21            d22  = e22 

 
(AB)C = D = E = A(BC)

 
0    0    1    0  

 
0    0    0    1 

                                                            
A2  = 

 0    0    0    1   
0    0    0    0  A3  = 

 0    0    0    0   
0    0    0    0 

                                                            
 

 

and A4  = O. If n > 4, then 

 
0    0    0    0  

 
0    0    0    0 

An = An−4A4  = An−4O = O 
 

10.   (a)   The  matrix  C is symmetric  since 

CT  = (A + B)T = AT  + BT   = A + B = C 
 

(b) The matrix  D is symmetric  since 

DT   = (AA)T  = AT AT  = A2  = D 
 

(c)   The  matrix  E = AB is not symmetric  since 

ET   = (AB)T = BT AT  = BA 
 

and in general, AB = BA. 
(d) The matrix  F  is symmetric  since 

F T  = (ABA)T  = AT BT AT  = ABA = F 
 

(e)  The  matrix  G is symmetric  since 

GT   = (AB + BA)T  = (AB)T  + (BA)T  = BT AT  + AT BT   = BA + AB = G 
 

(f) The  matrix  H  is not symmetric  since 

HT   = (AB − BA)T = (AB)T − (BA)T = BT AT  − AT BT   = BA − AB = −H 
 

11.   (a)   The  matrix  A is symmetric  since 

AT  = (C + CT )T = CT  + (CT )T  = CT  + C = A 
 

(b) The matrix  B is not symmetric  since 

BT   = (C − CT )T = CT  − (CT )T  = CT  − C = −B 
 

(c)   The  matrix  D is symmetric  since 

AT  = (CT C)T  = CT (CT )T  = CT C = D 
 

(d) The matrix  E  is symmetric  since 

ET    = (CT C − CCT )T = (CT C)T − (CCT )T
 

= CT (CT )T  − (CT )T CT  = CT C − CCT   = E



 

 

0 
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(e)  The  matrix  F  is symmetric  since 

F T  = ((I + C)(I + CT ))T = (I + CT )T (I + C)T = (I + C)(I + CT ) = F 
 

(e)  The  matrix  G is not symmetric. 

F  =  (I + C)(I − CT ) = I + C − CT  − CCT
 

F T   =  ((I + C)(I − CT ))T = (I − CT )T (I + C)T
 

=  (I − C)(I + CT ) = I − C + CT  − CCT
 

F  and F T  are not the same. The  two middle terms C − CT   and −C + CT   do not agree. 

12.   If d = a11a22 − a21a12 = 0, then
 

1 
     

a22

 

 

  
12                    11 

 

12   

      a11a22 −  a12a21                                            
d                                                 

−a            a                              a  =  

 = I

d 
 
−a21           a11

   
a21          a22    

                                                                       

0                      a11a22 − a12a21 
d

 
a11          a12

     
1 

  
a22

 
 

  
12             = 

a11a22 −  a12a21 

d
 0                 

 
= I

                            −a                                                                             

 
a21          a22     d 

 
−a21           a11    

                                                                         

 
Therefore 

0                      a11a22 − a12a21 
d

1 
     

a22

  
12                        1                 −a     = A− 

d 
 
−a21           a11     

                

13.   (b)  −3        5     
2    −3  

14.   If  A were nonsingular  and  AB  = A, then it  would  follow that  A−1AB  = A−1A  and  hence 
that  B = I . So if B = I , then A must be singular. 

15.   Since 
A−1A = AA−1  = I 

it follows from the definition  that  A−1  is nonsingular  and its inverse is A. 

16.   Since
 

 
 
 

it follows that 

AT (A−1)T    = (A−1A)T  = I 

(A−1)T AT    = (AA−1)T  = I 
 

 

(A−1)T  = (AT )−1

17.   If  Ax = Ay and x = y, then A must  be singular,  for if A were nonsingular, then we could 
multiply by A−1  and get

 

 
 
 

18.   For m = 1, 

A−1Ax  = A−1Ay 

x =  y 

 
(A1)−1  = A−1  = (A−1)1

Assume  the result holds in the case m = k, that  is, 

(Ak)−1  = (A−1)k

 

It follows that 

and 

 

 

(A−1)k+1Ak+1  = A−1(A−1)kAkA = A−1A = I 

Ak+1(A−1)k+1  = AAk(A−1)kA−1  = AA−1  = I



 

2 

 
d2

 

 
0      d 
. 
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Therefore  
(A−1)k+1  = (Ak+1)−1

and the result follows by mathematical induction. 

19.   If A2  = O, then
 

 

and 

(I + A)(I − A) = I + A − A + A2  = I 

 
(I − A)(I + A) = I − A + A + A2  = I

Therefore I − A is nonsingular  and (I − A)−1  = I + A. 

20.   If Ak+1 = O, then 

(I + A + · · · + Ak)(I − A) = (I + A + · · · + Ak) − (A + A2 + · · · + Ak+1) 

= I − Ak+1 = I

and 
 
 

(I − A)(I + A + · · · + Ak) = (I + A + · · · + Ak) − (A + A2 + · · · + Ak+1) 

= I − Ak+1 = I

Therefore I − A is nonsingular  and (I − A)−1  = I + A + A2 + · · · + Ak. 

21.   Since     
cos θ    sin θ 

  
cos θ    − sin θ 

  
1    0 

RT R =                            =          

 
and 

 
− sin θ    cos θ 

  
sin θ       cos θ  

 
0    1 

 
cos θ    − sin θ 

  cos θ    sin θ 
  

1    0 

RRT =                            =          

 

 
22. 

 
sin θ       cos θ 

  
− sin θ    cos θ  

it follows that  R is nonsingular  and R−1  = RT
 

 
0    1 

 
cos2 θ + sin2 

θ               0             

G2  =                                                      

 
23. 

           
0                cos2 θ + sin2 θ 

 = I

H2  = (I − 2uuT )2  = I − 4uuT  + 4uuT uuT
 

= I − 4uuT  + 4u(uT u)uT
 

= I − 4uuT  + 4uuT  = I (since uT u = 1) 

24.   In  each case, if you square the given  matrix, you will  end up with  the same matrix. 

25.   (a)   If A2  = A, then

 
(b) If A2  = A, then 

(I − A)2 = I − 2A + A2  = I − 2A + A = I − A

1                                 1                  1   2                   1                  1
 

 
and 

(I − 
2 

A)(I + A) = I − 
2 

A + A − 
2 

A
 

= I − 
2 

A + A − 
2 

A = I

1                            1         1   2                              1         1
(I + A)(I − 

2 
A) = I + A − 

2 
A − 

2 
A

 
= I + A − 

2 
A − 

2 
A = I

 
26.   (a) 

Therefore I + A is nonsingular  and (I + A)−1  = I − 1 A.

11        0      · · ·      0   
            2 

D
2  = 

            22
  

 

· · ·      0    
 
 



 

nn 

. 

0        0      · · ·    d2



 

jj 

− − 
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Since  each diagonal  entry  of D  is equal to either  0 or 1, it  follows that  d2
 = djj , for

j = 1, . . . , n and hence D2  = D. 
(b) If A = XDX−1, then 

 

A2  = (XDX−1)(XDX−1) = XD(X−1X)DX−1  = XDX−1  = A 
 

27.   If A is an involution, then A2  = I and it follows that 
 

B2   = 
1 

(I + A)2 = 
1 

(I + 2A + A2) = 
1 

(2I + 2A) = 
1 

(I + A) = B
4 

C
2   = 

1 
(I 

4 

4 

A)2 = 
1 

(I 
4 

4 

2A + A2) = 
1 

(2I 
4 

2 
1 

− 2A) = 
2 

(I
 

 

 

− A) = C

 

So B and C are both idempotent. 
 

1                                   1                              2           1
 

BC = 
4 
(I + A)(I − A) = 

4 
(I + A − A − A ) = 

4 
(I + A − A − I) = O

 
 

28.   (AT A)T  = AT (AT )T  = AT A 

(AAT )T  = (AT )T AT  = AAT
 

29.   Let  A and B be symmetric  n × n matrices.  If (AB)T = AB,  then 
 

BA = BT AT  = (AB)T = AB 

Conversely, if BA = AB,  then  
 

(AB)T = BT AT  = BA = AB

30.   (a)  
 

BT    = (A + AT )T = AT  + (AT )T  = AT  + A = B 

CT    = (A − AT )T = AT  − (AT )T  = AT  − A = −C
 

(b) A = 1 (A + AT ) + 1 (A − AT )2                                2 

34.   False. For example, if 
 

 
 
2    3 

 

 
 

 
1    4 

 

 
 

 
1 

A =                                   

 
then 

 
2    3 

 ,   B =  
1    4 

 ,   x =  
1  

 
 
5 

Ax = Bx =    
 

 

however, A = B. 

35.   False. For example, if 

 

 
 
 

 
1    0 

 

 
5  

 

 
 

 
0    0 

A =                                            
0    0 

    and    B =  
0    1  

 

then it  is easy to see that  both  A and  B  must  be singular,  however, A + B  = I , which  is 
nonsingular. 

36.   True. If A and B are nonsingular, then their product AB must also be nonsingular. Using  the 
result from Exercise 23, we have that  (AB)T  is nonsingular  and ((AB)T )−1 = ((AB)−1)T . It 
follows then that 

 

((AB)T )−1 = ((AB)−1)T  = (B−1A−1)T  = (A−1)T (B−1)T



 

−5 0 1 

1 0 0 

 

0 

0 
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5     ELEMENTARY MATRICES 
 
0    1 

2.   (a) 1    0 
,  type I

(b) The given matrix  is not an elementary matrix. Its  inverse is given by 
 1                
2              

 
 

(c)    
 

 

1 
3 

1       0       0   

0       1       0  ,   type III 
 

(d) 
 

0       1/5       0  ,   type II
 

 
0         0         1  

5.  (c)  Since 
 

 

C = F B = F EA

where F  and E  are elementary matrices,  it follows that  C is row equivalent  to A.
 
1     0     0  

 
1     0     0  

 
1       0       0 

6.  (b) E−1 = 
 
3     1     0 ,   E2      = 

 
0     1     0 ,   E3      = 

 
0       1       0 

1             
0     0     1  

−1 
 
2     0     1  

−1 
 
0    −1        1 

 

The  product  L = E−1
E

−1
E

−1 is lower triangular.1        2        3  

 
1         0       0  

L = 
 
3         1       0  
2     −1        1  

 

7.  A can be reduced to the identity matrix  using  three row operations
 
2    1  

 
2    1  

 
2    0  

 
1    0 

                                              

 
6    4 

 →  
0    1 

 →  
0    1 

 →  
0    1  

 

The  elementary matrices  corresponding  to the three row operations are
   

1    0   
1    −1   

1      0 

E1  =                                           2          

 
So 

 
 

and hence 

 
−3    1 

 ,    E2  =  
0       1 

 ,    E3  =  
0    1  

 
 

E3E2E1A = I 
 

 
1    0 

  
1    1 

  
2    0 

A = E−1E−1  −1                  
 

           
 

and A−1  = E3E2E1. 

1        3    E3      =  
3    1 

  
0    1 

  
0    1 

   
1    0 

  
2    4 

8.   (b)            
 
−1    1 

  
0    5  

   
1       0    0 

  
−2    1    2 

(d) 
 
−2        1    0 

  0    3    2 



 

   
3    −2    1 

  
0    0    2 

 
1       0       1  

 
 1          2       −3   

 
1       0       0  

9.   (a)   
 

3       3       4  
  

−1           1       −1  
 
= 

 
0       1       0   

2       2       3 
  

0       −2           3   
 

0       0       1  



 

= 

= 
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1          2       −3  

  
1       0       1   

 
1       0       0  

                                                                                     
 −1           1       −1    3       3       4   =  0       1       0  

0       −2       −3 2       2       3 0       0       1

 
1    −1        0  

10.   (e) 
 
0       1    −1  
 
0       0       1  

12.   (b) XA + B = C 

X = (C − B)A−1
 

       
8       −14                             

−13         19   

(d) XA + C = X 

XA − XI = −C 

X (A − I ) = −C 

X = −C(A − I)−1
 

     
2       −4                         

−3           6   

13.   (a)   If E  is an elementary matrix  of type I or type II, then E  is symmetric.  Thus ET   = E  is 
an elementary matrix  of the same type. If E is the elementary matrix  of type III formed 
by  adding  α  times  the ith  row of the identity matrix   to the jth row,  then  ET    is  the 
elementary matrix  of type III formed from the identity matrix  by adding  α times the jth 
row to the ith  row. 

(b) In  general,  the product  of two elementary  matrices  will  not  be an  elementary  matrix. 
Generally, the  product  of two  elementary  matrices  will  be a  matrix   formed  from  the 
identity matrix  by the performance of two row operations. For example, if

 
1    0    0  

E1  = 
 
2    1    0  

 
1    0    0  

and         E2  = 
 
0    1    0 

 
0    0    0  

 
2    0    1 

 

then E1   and E2   are elementary matrices,  but 
 
1    0    0  

E1E2 = 
 
2    1    0 

 

 
is not an elementary matrix. 

14.   If T = U R, then 

 
2    0    1 

 
 

 
Since  U and R are upper triangular 

n 

tij = 
X 

uikrkj 

k=1

 

 
 
 

If i > j, then 

 

ui1 = ui2 = · · · = ui,i−1 = 0 

rj+1,j = rj+2,j = · · · − rnj = 0

 
tij  = 

j X 
uikrkj  + 

k=1 

j 

 

n X 
 
k=j+1 

n 

 

 
uikrkj

= 
X 

0 rkj  + 
k=1 

X 
 
k=j+1 

uik0

= 0
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Therefore T is upper triangular. 
If i = j, then 

 
tjj = tij  = 

 
 
 
i−1 X 

uikrkj  + ujj rjj + 
k=1 

i−1 

 
 
 

n X 
 
k=j+1 

n 

 
 
 
 
uikrkj

= 
X 

0 rkj  + ujj rjj + 
k=1 

X 
 
k=j+1 

uik0

 

 

Therefore 
 

 

15.   If we set x = (2, 1 − 4)T , then 

= ujj rjj 

 

 

tjj = ujj rjj       j = 1, . . . , n 
 
 

Ax = 2a1  + 1a2  − 4a3  = 0

Thus x is  a nonzero solution  to the  system  Ax = 0.  But  if  a homogeneous system  has  a 
nonzero solution,  then it must have infinitely many solutions.  In particular, if c is any scalar, 
then cx is also a solution  to the system since 

 

A(cx) = cAx = c0 = 0 
 

Since Ax = 0 and x = 0, it follows that  the matrix A must be singular.  (See Theorem 1.5.2) 

16.   If a1  = 3a2  − 2a3,  then 
a1  − 3a2  + 2a3  = 0 

Therefore  x = (1, −3, 2)T   is a nontrivial solution  to Ax = 0.  It follows from Theorem  1.5.2 
that  A must be singular. 

17.   If x0 = 0 and Ax0 = Bx0, then Cx0 = 0 and it follows from Theorem 1.5.2 that  C must be 
singular. 

18.   If B is singular,  then it follows from Theorem  1.5.2 that  there exists a nonzero vector x such 
that  Bx = 0. If C = AB,  then 

Cx = ABx = A0 = 0 

Thus, by Theorem  1.5.2, C must also be singular. 

19.   (a)   If U is upper triangular with nonzero diagonal entries, then using row operation II, U can 
be transformed into an upper triangular matrix  with 1’s on the diagonal.  Row  operation 
III can then be used to eliminate  all  of the entries above the diagonal.  Thus, U is row 
equivalent  to I and hence is nonsingular. 

(b) The same row operations that were used to reduce U to the identity  matrix  will transform 
I into  U −1. Row  operation  II applied  to I will  just change  the values  of the diagonal 
entries. When the row operation III steps referred to in part (a)  are applied to a diagonal 
matrix, the entries above the diagonal  are filled  in.  The  resulting  matrix, U −1, will  be 
upper triangular. 

20.   Since  A  is  nonsingular   it  is  row  equivalent  to  I . Hence,  there  exist  elementary  matrices 
E1, E2, . . . , Ek   such that

 

 

It follows that 

and 

Ek  · · · E1A = I 

 
A−1  = Ek  · · · E1 

 
Ek  · · · E1B  = A−1B = C

The  same row operations that  reduce A to I , will  transform  B to C. Therefore,  the reduced 
row echelon form of (A | B) will  be (I | C).



 

i 
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21.   (a)   If  the  diagonal   entries  of  D1    are  α1, α2, . . . , αn  and  the  diagonal   entries  of  D2    are 

β1, β2, . . . , βn, then D1D2 will be a diagonal  matrix  with diagonal entries α1β1, . . . , αnβn 

and  D2D1  will  be a diagonal  matrix  with  diagonal  entries β1α1, β2α2, . . . , βnαn. Since 
the two have the same diagonal  entries, it follows that  D1D2 = D2D1.

(b)  

 

AB  = A(a0I + a1A + · · · + akAk) 

= a0A + a1A2  + · · · + akAk+1
 

=  (a0I + a1A + · · · + akAk)A 

= BA
 

22.   If A is symmetric  and nonsingular, then 
 

(A−1)T  = (A−1)T (AA−1) = ((A−1)TAT )A−1  = A−1
 

 

23.   If A is row equivalent  to B, then there exist  elementary matrices  E1, E2, . . . , Ek   such that 
 

A = EkEk−1 · · · E1B 
 

Each  of the Ei’s is invertible  and E−1 is also an elementary matrix  (Theorem 1.4.1).  Thus 
 

B = E−1E−1        −1 

 

and hence B is row equivalent  to A. 

1        2     · · · Ek     A

24.   (a)   If  A is  row equivalent  to B,  then  there exist  elementary  matrices  E1, E2, . . . , Ek   such 
that 

A = EkEk−1 · · · E1B 

Since B is row equivalent  to C, there exist elementary matrices H1, H2, . . . , Hj  such that 
 

B = Hj Hj−1 · · · H1C
 

Thus 
 
 

A = EkEk−1 · · · E1Hj Hj−1 · · · H1C

and hence A is row equivalent  to C . 
(b) If A and B are nonsingular  n × n matrices,  then A and B are row equivalent  to I . Since 

A is row equivalent  to I and I is row equivalent  to B, it follows from part  (a)  that  A is 
row equivalent  to B. 

25.   If  U is  any  row echelon form  of A,  then  A can  be reduced to U using  row operations,  so 
A is  row  equivalent  to  U .  If  B  is  row  equivalent  to  A,  then  it  follows  from  the  result  in 
Exercise 24(a)  that  B is row equivalent  to U . 

26.   If B is row equivalent  to A, then there exist  elementary matrices  E1, E2, . . . , Ek   such that 
 

B = EkEk−1 · · · E1A 
 

Let  M = EkEk−1 · · · E1.  The  matrix  M  is nonsingular  since each of the Ei’s is nonsingular. 
Conversely, suppose there exists  a nonsingular  matrix  M  such that  B = M A. Since  M 

is nonsingular, it is row equivalent  to I . Thus, there exist elementary matrices E1, E2, . . . , Ek 

such that
 
 

It follows that 

M = EkEk−1 · · · E1I 
 
 

B = M A = EkEk−1 · · · E1A

Therefore,  B is row equivalent  to A.



 

1 1 

n+1 n+1 

i 

c2   

. 
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27.   If  A is nonsingular, then A is row equivalent  to I . If  B  is row equivalent  to A, then using 

the result  from Exercise  24(a),  we can conclude that  B is row equivalent  to I . Therefore,  B 

must be nonsingular.  So it is not possible for B to be singular  and also be row equivalent  to 
a nonsingular  matrix. 

28.   (a)   The  system V c = y is given by

 
1       x1                x

2
 

 
1       x2                x

2 

 

· · ·       xn
 

· · ·       xn 

     
c1      

 

                            

    
y1      

 

    
y2      

                           2                                   2 

 
      .                .      

= 
                                                                                           

.  
1       xn+1        x

2
 

 

· · ·       xn
 

  
. 

cn+1    

.  
yn+1   

 

Comparing the ith  row of each side, we have 
 

c1 + c2xi  + · · · + cn+1xn  = yi
 

Thus 
 

 
p(xi) = yi            i = 1, 2, . . . , n + 1

 

(b) If x1, x2, . . . , xn+1 are distinct  and V c = 0, then we can apply  part (a)  with y = 0. Thus 
if p(x) = c1 + c2x + · · · + cn+1xn, then 

 

p(xi) = 0        i = 1, 2, . . . , n + 1 
 

The  polynomial  p(x) has n + 1 roots. Since  the degree of p(x) is less than  n + 1, p(x) 
must be the zero polynomial.  Hence 

 

c1  = c2  = · · · = cn+1  = 0 
 

Since the system V c = 0 has only the trivial solution, the matrix V  must be nonsingular. 

29.   True. If A is row equivalent  to I , then A is nonsingular, so if AB = AC, then we can multiply 
both sides of this equation by A−1. 

 

A−1AB  = A−1AC 

B  = C 
 

30.   True.  If  E  and F  are elementary  matrices,  then they  are both nonsingular  and the product 
of two nonsingular  matrices  is a nonsingular  matrix. Indeed, G−1  = F −1E−1. 

31.   True. If a + a2  = a3  + 2a4,  then 
 

a + a2  − a3  − 2a4  = 0 
 

If we let x = (1, 1, −1, −2)T , then x is a solution  to Ax = 0. Since  x = 0 the matrix A must 
be singular. 

32.   False. Let  I be the 2 × 2 identity  matrix  and let A = I , B = −I , and 
 
2    0 

 
C =            

0    1  
 

Since  B and C are nonsingular, they are both row equivalent  to A; however, 
 
1    0 

 
B + C =            

0    0  
 

is singular,  so it cannot be row equivalent  to A.



 

+ + 

i i 
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  6    PARTITIONED MATRICES  
 

aT      
aT a1          aT a2          · · ·       aT an  

1                                                                  1                   1                                    1 

                                                                                        
aT      aT a1          a

T a2          · · ·       a
T an  

2.  B = AT 
A = 

 2 

 (a , a  , . . . , a 

2                   2                                    2 

) =                                                        

   
.             1      2    
.      

aT    
 

n                   . 
.  

aT                   T
 

 

T          

n                                              n a1          an a2          · · ·       an an

 
1    1    1 

  
4    −2       1      

1 
    

6       0      1  

5.   (a)      
2       3      1  

 
+  

 (1   2  3) =                         

 2    1    2  
 1       1      2   − 

 
−1  

 11    −1       4  

(c)   Let  

  3               4    
 

 
0    0 

A11  = 
 

5          − 5 

                        
4               3      A12  =  

0    0  
5               5 

 

A21  = (0    0)                     A22  = (1    0) 

The  block  multiplication is performed as follows: 
 

 
A11   A12  

  
AT         T   

                 
T                      T                     T                      T   

                  11   A21                       A11A11 + A12A12     A11A21 + A12A22  =                                                                   

A21   A22 AT         T A21AT
 22     12      A21A21 + A22A22

12   A22 11  + A   AT                     T                      T

 
1     0       0   

= 
 

0     1       0  
 

 
6.   (a) 

 
0     0       0  

 

XY 
T   =  x1yT + x2yT + x3yT

1                  2  
2 

           

 
4 

    1    2 

3  
1 

            

 

2 
    

2    3
 

 
5 

           

 

3 
    

4    1

=                                                                
 
2    4   

2    3   
20    5 

=                                      

 
(b) Since  yix

T
 

 
4    8 

 +  
4    6 

 +  
12    3  

 

= (xiy
T )T for j = 1, 2, 3, the outer product  expansion  of Y XT   is just  the

transpose of the outer product  expansion  of XY T . Thus 

Y X
T    =  y1xT + y xT + y xT 

1            2    2            3    3 
2    4  

 
2    4  

 
20    12 

=                                         4    8  +  3    6  + 
 5      3 

 



 

11 

7.  It is possible to perform both block multiplications. To see this, suppose A11  is a k ×r matrix, 
A12  is a k × (n − r) matrix, A21  is an (m − k) × r matrix  and A22  is (m − k) × (n − r). It is 
possible to perform the block multiplication of AAT   since the matrix  multiplications A11AT   ,
A11AT

 

12     12,  A12AT
 

T                   T                   T                   T
22,  A21A11,  A21A21,  A22A12,  A22A22  are all  possible. It is possible to 

perform the block  multiplication of AT A since the matrix  multiplications AT  A11,  AT  A12,
AT                   T                   T                   T                   T

 11                 11

21A21,  A21A11,  A12A12,  A22A21,  A22A22  are all possible. 
 

8.  AX = A(x1, x2, . . . , xr) = (Ax1, Ax2, . . . , Axr) 
B = (b1, b2, . . . , br) 
AX = B if and only if the column vectors of AX  and B are equal 

 

Axj  = bj            j = 1, . . . , r 
 

9.   (a)   Since  D is a diagonal  matrix, its jth  column will  have djj  in the jth  row and the other 
entries will  all be 0. Thus dj  = djj ej  for j = 1, . . . , n.



 

O         A 

 

O                  A 

1 
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(b)  
 

AD  = A(d11e1, d22e2, . . . , dnnen) 

= (d11Ae1, d22Ae2, . . . , dnnAen) 

= (d11a1, d22a2, . . . , dnnan)

10.   (a)  
 
Σ1 

U Σ = 
 
U1     U2 

 
  

= U1Σ1  + U2O = U1Σ1                   
O 

 

(b) If we let X = U Σ, then
 

 
and it follows that 

 

X = U1Σ1  = (σ1u1, σ2u2, . . . , σnun)

 

A = U ΣV 
T  = XV 

T  = σ1u1vT + σ2u2vT + · · · + σnunvT

 
11. 

1                        2                                      n

 
A−1

   
A11           A12   

   
I      A

−1
A12  + CA22    11               C                                                11                                  

                            =                                            

                   
−1 
22 

If 

  
O         A22    
 

 

A
−1

 

 
O                     I           

 
then 

11  A12  + CA22  = O 

 
C = −A

−1
A12A

−1

 

Let 
 

 
A−1

 

11               22 

 
−1

 

 

−1   

B =  
 

11             −A11 A12A22  
 

−1 
22

Since  AB = BA = I , it follows that  B = A−1. 

12.   Let  0 denote the zero vector  in Rn. If  A is singular,  then there exists  a vector  x1 = 0 such 
that  Ax1 = 0. If we set  

x1 
 

x =      

 
then 

 
0  

 
A    O 

  
x1 

 
 
Ax1 + O0  

 
0 

M x =                      

 
O    B 

  
0  

 =  
Ox + B0  =  0 

By  Theorem 1.5.2, M  must be singular.  Similarly, if B is singular,  then there exists a vector 
x2 = 0 such that  Bx2 = 0. So if we set 

 
0   

x =      
 

 
 

15. 

 
x2  

then x is a nonzero vector and M x is equal to the zero vector.

 
O        I 

  
I   B 

  
B       I 

A−1  =   ,   A2  =   ,   A3  =              

 

 
and hence 

 
I   −B  

 
B     I  

 
I   2B 

 



 

A−1  + A2 + A3  =  I + B    2I + B  

 
2I + B      I + B 



 

= 

11 11 

11 

 . 
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16.   The  block  form of S−1  is given by  
 
I     −A 

S−1  =                  
 

 

It follows that 

 
O          I  

 
 
I     −A 

  
AB       O 

  
I     A 

S−1M S  =                                   
 
O          I 

 
 B        O 

  
O       I 

 
I     −A 

  
AB       ABA 

 
=                                           

O          I 
 

 B          BA  

 
O        O   
                   
B       BA  

 

17.   The  block  multiplication of the two factors yields
 
I        O

   
A11          A12   

    
A11                    A12           

 
B       I  

    
O          C

 
 =  

BA
 

BA    + C  
                                                             

11                   12

If we equate this matrix  with  the block  form of A and solve for B and C, we get

B = A21A
−1

 
 

To check that  this works note that 

and         C = A22  − A21A
−1

A12

BA11    = A21A
−1

A11  = A21 

BA12  + C  = A21A
−1

A12  + A22  − A21A
−1

A12  = A22 

and hence 
 

 
I       O

 

11 
 

  
A11          A12   

 

11 
 

 
A11          A12   

 
B       I  

    
O          C

 
 =  

A
 

A     
 = A                                               

21              22

18.   In  order for the block  multiplication to work, we must have 
 

XB  = S        and         Y M = T 
 

Since both B and M are nonsingular,  we can satisfy  these conditions  by choosing X = SB−1
 

and Y  = T M −1. 
19.   (a)

 
b1  
 
b2 

 

 
b1c  
 
b2c 

                      
BC =  .  

 (c) =  .   
 = cb

 
 
 

(b) 

  
.    

bn  

  
.     

bnc 

 
x1   
 
x2  

Ax = (a1, a2, . . . , an)   
 

 
 

.   

xn 

 

= a1(x1) + a2(x2) + · · · + an(xn) 

(c)   It follows from parts  (a)  and (b)  that 

Ax = a1(x1) + a2(x2) + · · · + an(xn) 

= x1a1 + x2a2 + · · · + xnan
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20.   If Ax = 0 for all x ∈ Rn, then 

 

aj  = Aej  = 0    for    j = 1, . . . , n 

and hence A must be the zero matrix. 

21.   If
 

 

then 

Bx = Cx   for all    x ∈ Rn
 

 

 

(B − C)x = 0    for all    x ∈ Rn

It follows from Exercise 20 that 
 

 
 
 

22.   (a) 

 
 
B − C  =  O 

B  =  C

    
A−1           0 

  
A     a 

    
x     

    
A−1           0 

    
b    

                                    =            
 
−cT A−1      1 

  
cT       β 

  
xn+1  

 
−cT A−1      1 

  
bn+1 

   
I            A−1a      

x   
      A−1b              

                                          =                                   
 

 
(b) If 

 
0T          −cT A−1a + β 

  
xn+1    

 
−cT A−1b + bn+1   

 

 

then 

y = A−1a         and         z = A−1b 
 

 

(−cT y + β)xn+1 = −cT z + bn+1 

   cT  z + bn+1 

 
and 

xn+1 = 
−

 
−cT y + β 

(β − cT y = 0)

x + xn+1A−1a = A−1b 

x = A−1b − xn+1A−1a = z − xn+1y 

 

MATLAB EXERCISES   
 

1.  In  parts  (a),  (b),  (c) it  should  turn  out that  A1 = A4 and A2 = A3. In  part  (d)  A1 = A3 
and A2 = A4. Exact equality  will  not occur in parts  (c) and (d)  because of roundoff error. 

2.  The  solution  x obtained  using  the \ operation  will  be more accurate  and  yield  the smaller 
residual  vector.  The  computation  of x is also more efficient since the solution  is computed 
using  Gaussian elimination  with  partial  pivoting  and this involves  less arithmetic  than com- 
puting  the inverse matrix  and multiplying it times b. 

3.   (a)   Since  Ax = 0 and x = 0, it follows from Theorem 1.5.2 that  A is singular. 
(b) The columns of B are all multiples  of x. Indeed, 

 

B = (x, 2x, 3x, 4x, 5x, 6x)
 

and hence 
 

 

(c)   If D = B + C, then 

AB = (Ax, 2Ax, 3Ax, 4Ax, 5Ax, 6Ax) = O 

AD = AB + AC = O + AC = AC

4.  By  construction,  B  is upper triangular whose diagonal  entries are all  equal to 1. Thus B  is 
row equivalent  to I and hence B is nonsingular. If one changes B by setting  b10,1  = −1/256 
and computes Bx, the result is the zero vector. Since x = 0, the matrix  B must be singular.
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5.   (a)   Since  A is nonsingular, its  reduced row echelon form is I . If  E1, . . . , Ek   are elementary 

matrices  such that  Ek  · · · E1A  = I , then these same matrices  can be used to transform 
(A  b) to its reduced row echelon form U . It follows then that 

 

U = Ek  · · · E1(A b) = A−1(A   b) = (I  A−1b) 
 

Thus, the last column  of U should be equal to the solution  x of the system Ax = b. 
(b) After  the third  column  of A is changed,  the new matrix  A is now singular.  Examining 

the last row of the reduced row echelon form of the augmented matrix  (A b),  we see that 
the system is inconsistent. 

(c)   The  system Ax = c is consistent  since y is a solution.  There  is a free variable  x3,  so the 
system will  have infinitely many  solutions. 

(f) The  vector v is a solution  since 
 

Av = A(w + 3z) = Aw + 3Az = c 
 

For this  solution,  the free variable  x3  = v3  = 3. To  determine the general solution  just 
set x = w + tz. This will  give the solution  corresponding  to x3  = t for any  real number 
t. 

6.   (c)   There  will  be no walks  of even length  from Vi  to Vj  whenever i + j is odd. 
(d) There will  be no walks  of length  k from Vi  to Vj  whenever i + j + k is odd. 
(e)  The  conjecture is still  valid  for the graph  containing  the additional  edges. 
(f) If  the edge {V6, V8}  is included,  then the conjecture  is no longer valid.  There  is now a 

walk  of length  1 from V6  to V8  and i + j + k = 6 + 8 + 1 is odd. 

8.  The  change in part  (b)  should  not have a significant effect on the survival potential  for the 
turtles.  The  change in part  (c)  will  effect the (2, 2) and (3, 2) of the Leslie  matrix. The  new 
values  for these entries will  be l22  = 0.9540 and l32  = 0.0101. With  these values,  the Leslie 
population  model should predict  that  the survival period will double but the turtles  will still 
eventually  die out. 

9.  (b) x1  = c − V x2. 
10.   (b)

 

A2k  =  I      kB  

 
kB        I   

 

This can be proved using  mathematical induction.  In  the case k = 1 
 
O       I 

                                  

A2  = 
 O       I            I      B 

                                   
I     B 

  
I     B 

 =  
B       I  

 

If the result holds for k = m
 

A2m =  I       mB  

 

 

then 

 
mB         I   

 

 
 

A2m+2  = A2A2m

 
I     B 

  
I       mB 

=                                       
B       I 

  
mB         I   

        
I            (m + 1)B  

=                                             
(m + 1)B                I       

 

It follows by mathematical induction  that  the result holds for all positive  integers k.



 

11 11 

11 

11 
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(b)  
 
O       I 

  

 

I      kB 
 

 
 
kB               I     

A2k+1 = AA2k  =                                                                       
I     B 

  
kB         I  =  

I        (k + 1)B 

 

 

11.   (a)   By  construction,  the entries of A were rounded to the nearest integer.  The  matrix B = 
ATA must also have integer entries and it is symmetric  since 

 

BT   = (ATA)T  = AT (AT )T  = ATA = B
 

(b) 
 

 
 
I   O 

  
B11      O 

            
T  

LDLT =               I    E                

 
E     I 

 
 O     F 

  
O      I  

  
B11                   B11ET         

=                                        
 

 
where 

 
EB11      EB11ET + F 

 
 

It follows that 

E = B21B
−1

 and    F = B22  − B21B
−1

B12

 

B11ET =  B11(B−1)T BT 
 

= B11B
−1

B12  = B12
11            21                     11 

EB11 = B21B−1B11  = B21 

 
EB11ET + F  =  B21ET + B22  − B21B

−1
B12 

1= B21B−1B12  + B22  − B21B− B12
 

 
 

Therefore 

11                                                11 

= B22

LDLT = B 

 

CHAPTER TEST A   
 

1.  The   statement  is  false.  If  the  row  echelon form  has  free variables   and  the  linear  system 
is consistent,  then there will  be infinitely many  solutions.  However,  it is possible to have an 
inconsistent system whose coefficient matrix  will reduce to an echelon form with free variables. 
For example, if

 
1    1  

 
1  

A =                                      
0    0 

               b =  
1   

then A involves  one free variable,  but the system Ax = b is inconsistent. 

2.  The  statement is true since the zero vector will  always  be a solution. 

3.  The  statement  is true.  A matrix  A is nonsingular  if and  only  if it  is row equivalent  to the 
I (the  identity  matrix). A will  be row equivalent  to I if and only  if its  reduced row echelon 
form is I . 

4.  The  statement  is  true.  If  A is  nonsingular,  then  A is  row  equivalent  to  I . So  there exist 
elementary matrices  E1, E2, . . . , Ek,  such that 

 

A = EkEk−1 · · · E1I = EkEk−1 · · · E1 

 

5.  The  statement  is false. For example,  if A = I and B = −I , the matrices  A and B are both 
nonsingular,  but A + B = O is singular.
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6.  The  statement is false. For example, if A is any matrix  of the form 

 
cos θ        sin θ 

 
A =                          

 

 

Then  A = A−1. 

7.  The  statement is false. 

 
sin θ    − cos θ 

 

(A − B)2 = A2 − BA − AB + B2  = A2 − 2AB + B2
 

 

since in general BA = AB.  For example, if
 
1    1   

0    1 

A =                                                  

 
then 

 
1    1 

        and         B =  
0    0 

 
1    0 

2 
 
1    0 

(A − B)2 =    =          

 
however, 

 
1    1  

 
2    1 

 
2    2 

  
0    2 

  
0    0 

  
2    0 

A2 − 2AB + B2  =   −   +   =          
 
2    2  

 
0    2  

 
0    0  

 
2    0 

 

8.  The  statement is false. If A is nonsingular  and AB = AC, then we can multiply both sides of 
the equation by A−1  and conclude that  B = C. However,  if A is singular,  then it is possible 
to have AB = AC and B = C. For example, if

 
1    1   

1    1   
2    2 

A =                                           

 
then 

 
1    1 

 ,    B =  
4    4 

 ,    C =  
3    3 

 
1    1 

  
1    1   

5    5 

AB  =                          

 1    1   4    4  =  5    5 
 
1    1 

  
2    2   

5    5 

AC  =                          

 
1    1 

  
3    3 

 =  
5    5  

 

9.  The  statement  is  false. In  general,  AB  and  BA  are usually  not  equal,  so it  is  possible  for 
AB = O and BA to be a nonzero matrix. For example, if 

 
1    1 

                                      

A =          
 

 −1    −1 
 

 
then 

 
1    1 

    and    B = 
 1       1 

 
0    0 

                                         

AB =      and    BA =  −2    −2 

 
0    0  

   
2       2 

10.   The  statement is true. If x = (1, 2, −1)T , then x = 0 and Ax = 0, so A must be singular. 

11.   The  statement is true. If b = a1  + a3  and x = (1, 0, 1)T , then 



 

 

Ax = x1a1 + x2a2 + x3a3 = 1a1  + 0a2  + 1a3  = b 
 

So x is a solution  to Ax = b. 

12.   The  statement is true. If b = a1  + a2  + a3,  then x = (1, 1, 1)T   is a solution  to Ax = b,  since 
 

Ax = x1a1 + x2a2 + x3a3 = a1  + a2  + a3  = b 
 

If a2  = a3,  then we can also express b as a linear  combination 
 

b = a1  + 0a2  + 2a3



 

−1      3  2     1  
 

 
1    −1 3 2 1  

 
−1   

 0       0 
1 3 

−2      7  7 1  
 
0       0 1 3 −1  
 
1    −1 0 −7 4 

 
→   0       0 

1 3 −1 
 
0       0 0 0 0  

 

 
a 
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Thus y = (1, 0, 2)T    is  also  a  solution  to  the  system.  However,  if  there  is  more than  one 
solution,  then the reduced row echelon form of A must  involve  a free variable.  A consistent 
system with  a free variable  must have infinitely  many  solutions. 

13.   The  statement is true. An  elementary matrix  E of type I or type II is symmetric.  So in either 
case we have ET   = E  is elementary.  If  E  is an elementary  matrix  of type  III formed from 
the identity matrix  by  adding  a nonzero multiple  c of row k to row j, then ET   will  be the 
elementary  matrix  of type  III formed from the identity  matrix by  adding  c times  row j to 
row k. 

14.   The  statement  is false. An  elementary  matrix  is a matrix  that  is constructed  by performing 
exactly  one elementary row operation on the identity  matrix. The  product  of two elementary 
matrices will be a matrix  formed by performing two elementary row operations on the identity 
matrix. For example,

 
1    0    0  

E1  = 
 
2    1    0  

 
1    0    0  

and         E2  = 
 
0    1    0 

 
0    0    1  

 
3    0    1 

are elementary matrices,  however;  
 
1    0    0  

E1E2 = 
 
2    1    0 

 

 
is not an elementary matrix. 

 
3    0    1 

15.   The  statement  is true. The  row vectors of A are x1yT , x2yT , . . . , xnyT . Note, all  of the row 
vectors  are multiples  of yT .  Since  x and  y are nonzero  vectors,  at  least  one of these row 
vectors must be nonzero. However, if any nonzero row is picked as a pivot  row, then since all 
of the other rows are multiples  of the pivot  row, they will  all  be eliminated  in the first  step 
of the reduction  process. The  resulting  row echelon form will  have exactly  one nonzero row. 

 

CHAPTER TEST B   
 

1. 
   

1  
−1      1  −2  1  −2  → 

   
2 

 

 
 

 

 

The  free variables  are x2  and x4.  If we set x2  = a and x4  = b, then 

x1  = 4 + a + 7b       and         x3  = −1 − 3b 

and hence the solution  set consists of all vectors of the form 
 
4 + a + 7b 
 

x =  
 

 
 

−1 − 3b 

b        
 

2.   (a)   A linear  equation in 3 unknowns  corresponds to a plane in 3-space. 
(b) Given  2 equations in 3 unknowns,  each equation corresponds to a plane. If one equation 

is a multiple  of the other, then the equations represent the same plane and any point on 
the that  plane will  be a solution  to the system. If the two planes are distinct, then they 
are either parallel  or they intersect in a line. If they are parallel  they do not intersect,  so 


