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Preface

This solutions manual is designed to accompany the ninth edition of Linear Algebra with Applications
by Steven J. Leon. The answers in this manual supplement those given in the answer key of the
textbook. In addition, this manual contains the complete solutions to all of the nonroutine exercises
in the book.

At the end of each chapter of the textbook there are two chapter tests (A and B) and a section
of computer exercises to be solved using MATLAB. The questions in each Chapter Test A are to be
answered as either true or false. Although the true-false answers are given in the Answer Section of the
textbook, students are required to explain or prove their answers. This manual includes explanations,
proofs, and counterexamples for all Chapter Test A questions. The chapter tests labeled B contain
problems similar to the exercises in the chapter. The answers to these problems are not given in the
Answers to Selected Exercises Section of the textbook; however, they are provided in this manual.
Complete solutions are given for all of the nonroutine Chapter Test B exercises.

In the MAATLAB exercises. most of the computations are straightforward. Consequently, they
have not been included in this solutions manual. On the other hand, the text also includes questions
related to the computations. The purpose of the questions is to emphasize the significance of the
computations. The solutions manual does provide the answers to most of these questions. There are
some questions for which it is not possible to provide a single answer. For example, some exercises
involve randomly generated matrices. In these cases, the answers may depend on the particular
random matrices that were generated.

Steven J. Leon
sleon@umassd.edu

Copyright © 2015 Pearson Education, Inc.
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Chapterl

Matrices and
Systems

of Equations

1 | SYSTEMS OF LINEAR EQUATIONS
0 0

1 1 1 1 1
o 2 1 =2 1

2. (d) % 0 0 4 1 =2 %
00 0 0 1 -3
0O 0 o0 0 2

5. (@) 3xy +2%x, =8
X1 +5X, =7
(b) 5X;1 —2X, + X3 =3
2X13 +3X, —4X3 =0

() 2X1 + Xp +4%X3 = —1
AX, —2Xp +3X3 = 4
5X1 +2X; +6X; = —1



2 Chapter 1 « Matricesand Systems of Equations

(d) 4xy — 3% + X3 +2X4 =4
3X1 + Xp —5X3 +6X4 =5
X1+ Xp +2X3 +4X4 =8
5X1 + Xop +3X3 —2X4 =7
9. Given the system

—M1X1+ Xo = bl
—MaX1+ X = by

one can eliminate the variable X, by subtracting the first row from the second. One then
obtains the equivalent system

—-MmiX1+ X = by
(my—my)Xy = by —by
(a) If my = m,, then one can solve the second equation for X;

b, — b
X, = —2=01
mi — My
One can then plug this value of X; into the first equation and solve for X,. Thus, if
m; = My, there will be a unique ordered pair (X1, X2) that satisfies the two equations.
(b) If my = my, then the X; term drops out in the second equation

0=by—h

This is possible if and only if by = b,.

(c) If my = my, then the two equations represent lines in the plane with different slopes.
Two nonparallel lines intersect in a point. That point will be the unique solution to
the system. If m; = my and by = by, then both equations represent the same line and
consequently every point on that line will satisfy both equations. If m; = m, and by = b,,
then the equations represent parallel lines. Since parallel lines do not intersect, there is
no point on both lines and hence no solution to the system.

10. The system must be consistent since (0, 0) is a solution.

11. A linear equation in 3 unknowns represents a plane in three space. The solution settoa 3x3
linear system would be the set of all points that lie on all three planes. If the planes are
parallel or one plane is parallel to the line of intersection of the other two, then the solution
set will be empty. The three equations could represent the same plane or the three planes
could all intersect in a line. In either case the solution set will contain infinitely many points.
If the three planes intersect in a point, then the solution set will contain only that point.

2 | ROW ECHELON FORM

2. (b) The system is consistent with a unique solution (4, —1).

4. (b) X; and X3 are lead variables and X, is a free variable.
(d) X1 and X3 are lead variables and X, and X4 are free variables.
(f) X2 and X3 are lead variables and X; is a free variable.

5. (I) The solution is (0, -1.5,-3.5).
6. (c) The solution set consists of all ordered triples of the form (0, —a, o).

7. A homogeneous linear equation in 3 unknowns corresponds to a plane that passes through
the origin in 3-space. Two such equations would correspond to two planes through the origin.
If one equation is a multiple of the other, then both represent the same plane through the
origin and every point on that plane will be a solution to the system. If one equation is not
a multiple of the other, then we have two distinct planes that intersect in a line through the



13.

14.

16.

17.

18.

Section 3 = Matrix Arithmetic 3

origin. Every point on the line of intersection will be a solution to the linear system. So in
either case the system must have infinitely many solutions.

In the case of a nonhomogeneous 2 x 3 linear system, the equations correspond to planes
that do not both pass through the origin. If one equation is a multiple of the other, then both
represent the same plane and there are infinitely many solutions. If the equations represent
planes that are parallel, then they do not intersect and hence the system will not have any
solutions. If the equations represent distinct planes that are not parallel, then they must
intersect in a line and hence there will be infinitely many solutions. So the only possibilities
for a nonhomogeneous 2 x 3 linear system are 0 or infinitely many solutions.

(a) Since the system is homogeneous it must be consistent.

A homogeneous system is always consistent since it has the trivial solution (0, ...,0). If the
reduced row echelon form of the coefficient matrix involves free variables, then there will be
infinitely many solutions. If there are no free variables, then the trivial solution will be the
only solution.

A nonhomogeneous system could be inconsistent in which case there would be no solutions.
If the system is consistent and underdetermined, then there will be free variables and this
would imply that we will have infinitely many solutions.

At each intersection, the number of vehicles entering must equal the number of vehicles leaving
in order for the traffic to flow. This condition leads to the following system of equations

X1 +a; = X +b;
Xo +d = Xz +by
X3 +a3 = X4 + b3
Xg4 +a4 = Xg +by
If we add all four equations, we get
X1 +Xp +X3 +Xg +8; +ay +a3 +ag =X, +Xp +X3 +Xg +by+by+b3+Dby

and hence
a; +ay +az +ay =b1+b2+b3+b4

If (c1,Cp) is a solution, then
a11C1 + a0
Ap1C1 +axnC; =0
Multiplying both equations through by a, one obtains
ajp(acy) +a2(acz) = a-0=0
az1(ocy) + azz(acy) a-0=0

Thus (acCy, acCy) is also a solution.

(@) If X4 = 0, then X3, X, and X3 will all be 0. Thus if no glucose is produced, then there
is no reaction. (0, 0,0, 0) is the trivial solution in the sense that if there are no molecules of
carbon dioxide and water, then there will be no reaction.

(b) If we choose another value of X4, say X4 = 2, then we end up with solution X; = 12,
Xo =12, X3 = 12, X4 = 2. Note the ratios are still 6:6:6:1.

3 | MATRIX ARITHMETIC
O

1.

O
8 -15 11

1 O
(e) 0 —4 -3
-1 —6 6



Chapter 1 « Matricesand Systems of Equations

0 0
05 -10 15
(g) OS5 -1 4
8 -9 6
Ds 0 6D
10 5
2. (d)@io S oo
0 0
15 20
5. (a) 5A = 5 5
1oD 35
0 0O 0O
6 8 9 12 15
0O O 0O O
2A + 3A = 2 2 + 3 3 = 5
0 0
4 14 6 21 10
0
18 24
(b) 6A = 6 6
12 42
0 0
6 8 18 24
0 0O O 0
32A) =3 2 2 = 6 6
0 0
4 14 12 42
0 0
T _ 483 1 2
(c) A —@4 1 7@
Hy 1 7 34
0 0
(AT)T=DD DD= 11 =A
4 1 7 a
7
0 .|
5 4 6
6. (a) A+B =10 U=B +A
Jo 5 1V
0 O 0
Ds 4 GD D15 12 18D
(b) 3(A + B)=3 =
o 05 1= Po 15 3
0 o
12 3 18 3 9
3A+3B =1 04 O
e 9 157 Y6 6 -12
0 0
15 12 18
- 0 15 3
0 0
0
_— 6@ 5 0
0 0
() (A+B) =1 0 ="45
o 5 1 0
6 1
0 o 0O 0O
4 2 ) 5
0 0O O 0O 0
AT+B" =01 3 + 03 2 = 4
6 5 0 -4 6
0 O 0

]!



7. (a) 3(AB) =31 15

0
0

6
0

(3A)B = 18
0

-6

5oy

ABB) =" 6
0

-2

0O o 0
42 =045 126
16 0 48

0 0

3 ] 0 15
0 0

o 102 40_" 4
ny B

12 16 0
0 0

1 OJ 0 15
0 0

;0p6 120 _0 ¢
ny B

4 3 18 0

42

126

48

42

126

48
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H = O D
5 14
0 0
(b) (AB)T= = 15 a2 - > B O@
0 0
o 16 14 42 16
0, HE 0P s s
TAT _ 0O 1 -
B™A 0o O O O
g sHH1 3 405U 40 16
0 o o° o 0
0 5 3 1 3 6
_0 0,0 0_0O 0
8. (a) (A+B)+C—D 5 1D_D3 SD
0 s 0 O 0
3 6
A+ (B+C)=U U4 0 =10 U
0, 3D+ D, 03 Oy g0
0 0O s 0
-4 18 3 1 24 14
_ A 0 0
(b) (AB)C _2 13552 1@: D% 110
0 0O 0 O 0
2 4
ABC) = [ 0o —4 —15_@24 14[@
Uy 33U g 42U=05 11
0 0o O O 0
2 4 1 2 10 24
(c) AB+C)=1U 0o -0 0
Dy 388, s 05 40
S 4 sn 1@ 6 10 24
= T _ 0 0
AB+AC =8 _ SH+B7 © =07 7
0 0o O O 0
05 10 5
(d) (A+ B)C=U RN 0—=0 U
U1 7UH, 1 F Uy gb
0 0 O 0 O 0
14 6
AC +BC = U 0,0 4 ~1g @10 5@
g 48 H g 405047 3

9. (b)x = (2,1)7 is a solution since b = 2a; +a». There are no other solutions since the echelon
form of A is strictly triangular.
(c) The solution to Ax =c is x = (—%, —]z'[)T. Therefore ¢ = —52a1 — %az.
11. The given information implies that

Dllil DOD

0o 0o~ 0
x1= 1 and x>= 1
0 0
0 1

are both solutions to the system. So the system is consistent and since there is more than one
solution, the row echelon form of A must involve a free variable. A consistent system with a
free variable has infinitely many solutions.

12. The system is consistent since x = (1,1,1,1)7 is a solution. The system can have at most 3
lead variables since A only has 3 rows. Therefore, there must be at least one free variable. A
consistent system with a free variable has infinitely many solutions.

13. (a) It follows from the reduced row echelon form that the free variables are Xy, X4, Xs. If we

set Xo =a, Xa = b, X5 =¢, then



X7 = —2—2a—-3b—c
X3 = 5— 2b —4c
and hence the solution consists of all vectors of the form
x=(—2—2a—3b—c,a 5—2b—4c, b,c)’

(b) If we set the free variables equal to 0, then xg = (—2,0,5,0,0)7 is a solution to Ax = b
and hence

b = Axg = —2a; +5a3 = (8,-7,—1,7)"
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14.

15.

16.

17.

18.

If ws is the weight given to professional activities, then the weights for research and teaching
should be w; = 3w3 and w, = 2wj3. Note that

1.5w; = 3w3 = Wy,

so the weight given to research is 1.5 times the weight given to teaching. Since the weights
must all add up to 1, we have

1=w; + W, +W3 =3W3 + 2W3 + W3 = 6W3

and hence it follows that ws = &, w, = 3, wy = 1. If C is the matrix in the example problem
from the Analytic Hierarchy Process Application, then the rating vector r is computed by
multiplying C times the weight vector w.

N

00,00 O 40
b2 5 4 002 [ 0120 []
O, 1 00,0 O 40O

Uz 2z z00gH0 U0
0 oo o o
1 3 1 1Y U3
4 10 4 6 120

AT is an n x m matrix. Since AT has m columns and A has m rows, the multiplication AT A
is possible. The multiplication AAT is possible since A has n columns and AT has n rows.

If A is skew-symmetric, then AT = —A. Since the (j,j) entry of AT is ajj and the (j,]) entry
of —A'is —a;jj, it follows that aj; = —a;;j for each j and hence the diagonal entries of A must
all be 0.

The search vector is x = (1,0,1,0,1,0)7 . The search result is given by the vector
v=ATx=(1,2,2,1,1,21)7

The ith entry of y is equal to the number of search words in the title of the ith book.

If o = as1/a11, then

0 00 ] 0 0 0 0
1 0 a;n anp an aip an ar

O=20 M =0
o 1 0 b ad aa12+b a,, aa12+b

nn

The product will equal A provided
oaqo+ b= aoo

Thus we must choose
dpidjip
b=ay —aaix= ay —
a1l

4 | MATRIX ALGEBRA

1.

(@) (A+B)2= (A+B)(A+B)= (A+B)A+(A+B)B=A2+BA +AB + B2
For real numbers, ab +ba = 2ab; however, with matrices AB + BA is generally not equal
to 2AB.

(b)

(A+B)(A- B) = (A+B)(A- B)
(A+B)A- (A+B)B

= A2 +BA — AB — B?

For real numbers, ab — ba = 0; however, with matrices AB — BA is generally not equal
to O.
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. If we replace a by A and b by the identity matrix, I, then both rules will work, since
(A+1)2=A2 + A+ Al +B? = A2 + Al +Al +B? = A? +2Al + B?

and
A+DA-1)=A?+1A-Al —1?2=AZ+A-A-1%2= A2 —|?

. There are many possible choices for A and B. For exampl% one c&)uld choose

0 1 1 1
A=@0 OE and |3=E0 OE
More generally if
O 1 O O
a b db eb
A="U L] 0 O
ca cb - B =0 —-da -ea

then AB = O for any choice of the scalars a, b, ¢, d, e.
. To construct nonzero matrices A, B, C with the desired properties, first find nonzero matrices
C and D such that DC = O (see Exercise 3). Next, for any nonzero matrix A, set B = A+D.
It follows that

BC =(A+ D)C=AC+DC =AC+0=AC

. A 2 x 2 symmetric matrix is one of the form -

_ma b
A_@b CE
Thus

a2 +h? ab+he

A2=@ 2@

ab+bc b2+c
If A2 = O, then its diagonal entries must be 0.

a®+b’=0 and b?+c® =0
Thus a =b=c =0 and hence A =0.

. Let O b b b b 00 0
aq1011 +ag2021 ai1Di2 +aizbz2 C11 C12
D =(AB)C = [ i
(AB) abiy +axpby  axnbi +axhxn Cau  Cx

It follows that

dir = (a1br1 +aszhz1)c1 + (a11b12 + ar2b22)Co1
= a11011C11 + A12b21C11 + @11D12C21 + A12022C21
diz = (a11bi1 + a12bz1)C12 + (A11b12 + a12022)C22
= a11b11C12 + @12021C12 + A11012C22 + @12022C22
da1 = (@21b11 + az2b21)C11 + (A21b12 + @22022)Co1
= az1b11C11 + @22021C11 + A21012C21 + @22022C21
dz2 = (@21b11 + az2b21)C12 + (A21b12 + @22022)Co2

= Ap1011C12 + A22021C1p + A21012C22 + @p2022C2

If we set

O 00 b b b b 0
ann a2 11C11 + D12C21 11C12 + D12C22
E =A(BC)=0
(BC) a1 axp D21C11 + D22Co1  Do1Cip + b2oCa

then it follows that

€11 = a11(012C11 +D12Co1) + A12(b21C11 + b22Co1)

a11011C11 + @11b12Co1 + A12b21C11 + A12D22C21
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10.

11.

= ay1(b11C12 + b12C22) + A12(b21C12 + b22C22)
= a11011C12 + A11b12Co2 + @12021C12 + A12022C22
€21 = a21(D11C11 + b12C1) + A22(D21C11 + b22Co1)

= a1011C11 + A21b12Co1 + @22021C11 + A22022C21
€22 = a21(D11C12 + b12C22) + A22(D21C12 + b22C22)
= A1011C12 + A21b12Co2 + A22021C12 + A22022C22

€12

Thus

diy = e dip = e dyy = e O = e

and hence
(AB)C =D =E =A(BC)

o0 1 0 Yo 0 0 1"
%OOODEA3%OOOO%
0000 0000
= B Iy &
0000 0000

and A* = 0. If n > 4, then

A" =A"4AY = A0 = O
(a) The matrix C is symmetric since
=(A+B)"=AT +BT =A+B =C
(b) The matrix D is symmetric since
T =(AA)T =ATAT =A?=D
(c) The matrix E = AB is not symmetric since
T = (AB)"=BTAT =BA

and in general, AB = BA.
(d) The matrix F is symmetric since

T =(ABA)" =ATBTAT = ABA =F

(e) The matrix G is symmetric since

= (AB +BA)" = (AB)" +(BA)T =B"AT +ATBT =BA +AB =G

(f) The matrix H is not symmetric since

=(AB-BA)"=(AB)"- (BA)"=B"AT —ATBT =BA -AB =

(a) The matrix A'is symmetric since
=(C+C")T=CcT+(Cc")T=Cc"T+C=A

(b) The matrix B is not symmetric since

T =(C—CT)T=CT _(CT)T=CT —-C=-B

(c) The matrix D is symmetric since
T _ (CTC)T — CT (CT)T — CTC =D
(d) The matrix E is symmetric since

ET (CTc—-cc™)T=(c™c)" - (cc™)T

=CcTichH-(«c")'c" =c'c-cc’ =E

—H
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(e) The matrix F is symmetric since
FT=(@+C)l+C')T=(+Cch)T1+C)"=(1+C)(I+CT)=F
(e) The matrix G is not symmetric.
F=(@+C)I-C")=1+C-CT —cCT
FT = ((+C)i-c™")"=@a-ch)’a+c)’
= (l-C)l+C")=1-C+C" —cCT
F and FT are not the same. The two middle terms C —CT and —C + CT do not agree.
If d=ajja22— az1812=0, then

D 0O 0 Ség@g_a aipap 0 H

1 an 12 11 12
=1

| —a 00 a a 0 — O

0 00 0 0 0
d  -az an a1 ax S —

0 djijapz — aizary
d

0 0 0 O Dé_lé_z—_a_zé_l 0 -

a aip 1 az 12 _ d 0

=1

U U L] -a 0 O
0 0 0 0

a1 az d  -ax a1 . .

0 diiagz — apgdpi
d
Therefore 0 0
l@ 82  —ap AL
d —a a
0 ; SD 21 11
()8 5 _3H
If A were nonsingular and AB = A, then it would follow that A~*AB = A~'A and hence
that B = 1.So if B = I, then A must be singular.
Since
AlA=AAT=1

it follows from the definition that A™! is nonsingular and its inverse is A.
Since

AT(A™HT = (AtA)T = |

(Afl)TAT — (AA*l)T =1

it follows that

(A*l)T — (AT )*l
If Ax = Ay and x = vy, then A must be singular, for if A were nonsingular, then we could
multiply by A1 and get

A lAx = A Ay

X =y
Form =1,
(Al)*l — Afl — (Afl)l

Assume the result holds in the case m =k, that is,

(Ak)*l — (Afl)k
It follows that

(Afl)k+1Ak+1 — A*l(A*l)kAkA — A*lA =1

and
Ak+l(Afl)k+l — AAk(A*l)kAfl — AA*l =1
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Therefore
(A—l)k+1 — (Ak+1)—1
and the result follows by mathematical induction.
19. If A2 =0, then

M+A)(1-A)=1+A-A+A? =

and

M=-A)I+A)=1-A+A+A? =
Therefore | — A is nonsingular and (I — A)" 1 =1+ A.
20. If AK*1 =0, then

B+A+-+AI-A)= I1+A+- + A - (A+A? + ... + AT

=1-At=|
and
(I-A)+A+-+A) = I+A+ -+ A" - (A+A? + ...+ AKHL)
=1-At=)
Therefore | — A is nonsingular and (I —A) 1 =1+ A+ A2 + ... + AK,
21. Since 0 O 0
cosO sin6 cosf —sin0 10
RTR =[O 0o O0-0 O
D—sinG cosGDDsinG cosel:| DO 1D
and
0 0 0 0
cosf —sin0 cosO sin6 10
RRT= 0o 0=0 O
Dsin() cosODD—sinO cosel:| DO ID
it follows that R is nonsingular and R™! = RT
22.
0
cos? 0 + sin’ 0 0
2 _ =
G* =1 0 c0526+sin26E !
23.
H2 =(1—=2uu’")? = I —4uu’ +4uuTuu’

I —4uu” +4u@uu)u’

I —4uu” +4uu’ =1 (since u"u = 1)

24. In each case, if you square the given matrix, you will end up with the same matrix.
25. (a) If AZ = A, then

(1-AP=1-2A+A>=1-2A+A=1-A
(b) If A2 = A, then
(I—lA)(I+A)=I—lA+A—lA2=I—lA+A—lA=I
2 2 2 2 2
and
1 1 1,, 1 1
(I+A)(I—2A)=I+A—2A—2A =l+A-"A-"A=1
2
Therefore 1 + A is nonsingular and (1 + A)"1=1— 1A,
26. (a)
o 0
d, o 0
0 d oE
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Since each diagonal entry of D is equal to either 0 or 1, it follows that dzjj = djj, for

j=1,...,n and hence D? = D.
(b) If A =XDX 1, then

A2 = (XDX 1)(XDX 1) = XD(X IX)DX 1 =XDX 1 =A

27. If Ais an involution, then AZ = | and it follows that
B? = 4l(|+A)2 =4l(l+2A+A2)=4l(2I+2A)? l(|+A)= B
2_; _ 2_;_ 2_1 _2A=l| _
C: = 4(I A)—4(I 2A+A)—4(2I ) 2( A)=C

So B and C are both idempotent.
1 1 2y 1
BC =4(I+A)(I—A)= 4(I+A—A—A )= 4(I+A—A—I)=O

28. (ATA)T = AT(AT)T = ATA
(AAT)T — (AT)TAT — AAT
29. Let A and B be symmetric n x n matrices. If (AB)T= AB, then

BA =BTAT = (AB)"= AB
Conversely, if BA = AB, then

(AB)"=BTAT =BA = AB
30. (a)
BT = (A+AT)T=AT +(AT)T =AT +A=B
CT = (A-ANT=AT-(AN)YT =AT —A=-C
(b) A=L(A+AT)+ L(A-AT)
34. False. For example, if

O O 0 0 o o
2 3 1 4 1
A =0 1 O o O
O 2 3 0, B=0O 1 49 X =[] 1 O
then 0 0
Ax = Bx= g .
however, A = B.
35. False. For example, if . . 0 0
1 0 00
A=@0 O@ and |3=E0 1@
then it is easy to see that both A and B must be singular, however, A + B = |, which is

nonsingular.

36. True. If A and B are nonsingular, then their product AB must also be nonsingular. Using the
result from Exercise 23, we have that (AB)T is nonsingular and ((AB)T)™! = ((AB)™1)7. It
follows then that

(AB)") ' = ((AB) )T =(B*'A )T =(A )T (BT
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ELEMENTARY MATRICES
"o 1
1 07

2. (a) type |

(b) The given matrix is not an elementary matrix. Its inverse is given by

0 .
1
0z °o
1
0 3
0
I:ll 0 0,
(c) 0 1 0 , typelll
-5 0 1
0
I:ll 0 0

0 0
(d oo 1/5 0 , type ll
0 0 1

5. (c) Since
C=FB =FEA

where F and E are elementary matrices, it follows that C is row equivalent to A.

1 0 0 1 0 0 1 0 o0
., O 0 0 0 0 0
6.(b)E'= 3 1 0 ,E =01 0 ,E =0 1 0
L < o 1 o
0 0 1 2 0 1 0 -1 1

The product L = EflE{laf1 is lower triangular.

0 1 0
0 0 0 0
L=03 1 0
2 -1 1
7. A can be reduced to the identity matrix using three row operations
0 1 O 0 0 0 0 0
2 1 2 1 2 0 10
0 0 ] 0 0 0 0 0
He 477 Ho 197 Hg U7 Hg (H
The elementary matrices corresponding to the three row operations are
0 ] 0 0 0 0
10 1 -1 o
E, =0 O O O 02 O
0_, .0, B2=0, .0, Bs=0, ,0
So
E3E2E1A =
and hence O 00 oo U

S 10002 4y
O 0o O
8. (b) g 00 0
-1 1-°0 5
O 0o O
o1 00,5-21 2
d -2 10 0 3 2
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O OO 0 O
1 2 -3 1 0 1 1 0 O

E—l 1 —IEEB 3 4E=EO 1 OE
0 -2 -3 2 2 3 0 O 1

0 0
ol -1 0g
10. (e) OO 1 -1
0 0 1
12. (b)) XA +B =C
— _ —1
- Bs)A 14D
=H _i3 19 ©
(d) XA +C = X
XA —X1=—-C

X(A-1)=-C
X=-CA-1)*
_ 2 -4
= £ _3 p B

13. (a) If E is an elementary matrix of type | or type Il, then E is symmetric. Thus ET =E is
an elementary matrix of the same type. If E is the elementary matrix of type Ill formed
by adding o times the ith row of the identity matrix to the jth row, then ET is the
elementary matrix of type 111 formed from the identity matrix by adding o times the jth
row to the ith row.

(b) In general, the product of two elementary matrices will not be an elementary matrix.
Generally, the product of two elementary matrices will be a matrix formed from the
identity matrix by the performance of two row operations. For example, if

0 ] 0 0
D1 0 OEI D1 0 OD
Ei= 2 1 0 and E,= 0 1 0
0 0
0 0O 2 0 1

then E; and E, are elementary matrices, but

0 0
0 10 OD
E1E2= g2 1 0
2 0 1
is not an elementary matrix.
14. If T = UR, then
X
tij = Uik Fkj
k=1
Since U and R are upper triangular
Uiz = Uji2=+""=Ujj1 =0
li+1j = Fj+2j="—Inj=0
If i >j, then
b ¢ X
tij = Uiklg + Uik Ik
k=1 k=j+1
] n
X X
= Oryj + U0
k=1 k=j+1
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15.

16.

17.

18.

19.

20.

Therefore T is upper triangular.

If i =], then
> X
tjj = tij = Uiklkj + Ujjrjj + Uik kj

k=1 k=j+1
i—1 n
x <

= Orgj + Ujjrjj + Uijk0
k=1 K=j+1

= UjiTii

Therefore
Gy =uj;r; J=1....n

If weset x=(2,1—4)T, then
Ax =2a; +1la, —4a3 =0

Thus x is a nonzero solution to the system Ax = 0. But if a homogeneous system has a
nonzero solution, then it must have infinitely many solutions. In particular, if ¢ is any scalar,
then Ccx is also a solution to the system since

A(cx) =cAx=¢c0=0

Since Ax =0 and x = 0, it follows that the matrix A must be singular. (See Theorem 1.5.2)
If a; = 3a, — 2a3, then
a; —3ap +2a3 =0

Therefore x = (1, —3,2)7 is a nontrivial solution to Ax = 0. It follows from Theorem 1.5.2

that A must be singular.

If xo =0 and Axg = Bxg,then Cxg= 0 and it follows from Theorem 1.5.2 that C must be

singular.

If B is singular, then it follows from Theorem 1.5.2 that there exists a nonzero vector x such

that Bx= 0. If C = AB, then

Cx=ABx=A0=0

Thus, by Theorem 1.5.2, C must also be singular.

(a) If U is upper triangular with nonzero diagonal entries, then using row operation 11, U can
be transformed into an upper triangular matrix with 1’s on the diagonal. Row operation
Il can then be used to eliminate all of the entries above the diagonal. Thus, U is row
equivalent to | and hence is nonsingular.

(b) The same row operations that were used to reduce U to the identity matrix will transform
I into U™1. Row operation Il applied to | will just change the values of the diagonal
entries. When the row operation |11 steps referred to in part (a) are applied to a diagonal
matrix, the entries above the diagonal are filled in. The resulting matrix, U™, will be
upper triangular.

Since A is nonsingular it is row equivalent to |. Hence, there exist elementary matrices

Ei, Es, ..., Ex such that

Ex -+ E1A =1
It follows that
Al=E --E
and
Ex ---E:B =A"'B=C

The same row operations that reduce A to I, will transform B to C. Therefore, the reduced
row echelon form of (A | B) will be (1 | C).



21.

22.

23.

24,

25.

26.
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(@) If the diagonal entries of D; are a4, 0y, ..., and the diagonal entries of D, are
B1, B2y - -+, Bn, then D1 D, will be a diagonal matrix with diagonal entries a3f, ..., dnPn
and Dy;D; will be a diagonal matrix with diagonal entries Biay, B0y, ..., PBnon. Since
the two have the same diagonal entries, it follows that D;D, = D,D;.

(b)

AB = A(aol + A + - + aAK)
= @A + a1A2 + -+ akAk+1
= (apgl+ a1A +---+akAk)A
= BA

If A is symmetric and nonsingular, then

A =AHTAA ) =(AHYAHA T =AT
If Ais row equivalent to B, then there exist elementary matrices Ej, Ej, ..., Ex such that
A =EEx—1---E1B
Each of the Ej’s is invertible and Ei_1 is also an elementary matrix (Theorem 1.4.1). Thus
B=E"'E"'-E A

and hence B is row equivalent to A.

(a) If A is row equivalent to B, then there exist elementary matrices E;, E, ..., Ex such
that
A =EEx—;---E1B
Since B is row equivalent to C, there exist elementary matrices Hi, Hy, ..., Hj such that
B =HjHj—1---H:C
Thus
A =EEk—1---EiHjHj—1---H.C
and hence A is row equivalent to C.

(b) If A and B are nonsingular n xn matrices, then A and B are row equivalent to I. Since
A is row equivalent to | and I is row equivalent to B, it follows from part (a) that A is
row equivalent to B.

If U is any row echelon form of A, then A can be reduced to U using row operations, so

A is row equivalent to U. If B is row equivalent to A, then it follows from the result in
Exercise 24(a) that B is row equivalent to U.
If B is row equivalent to A, then there exist elementary matrices E;, Ej, ..., Ex such that

B = EkEkfl e E]_A

Let M = ExEx—1--E;. The matrix M is nonsingular since each of the Ej’s is nonsingular.
Conversely, suppose there exists a nonsingular matrix M such that B = M A. Since M
is nonsingular, it is row equivalent to |I. Thus, there exist elementary matrices E;, E5, ..., Ex
such that
M = EkEkfl e E]_l

It follows that
B=MA=EEr_1---E/A

Therefore, B is row equivalent to A.
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27. If A is nonsingular, then A is row equivalent to I. If B is row equivalent to A, then using
the result from Exercise 24(a), we can conclude that B is row equivalent to |. Therefore, B
must be nonsingular. So it is not possible for B to be singular and also be row equivalent to
a nonsingular matrix.

28. (a) The system Vc = y is given by

0, 2 08, 20, ¢
0 1 1 e 1 1 0 1 g
1 X2 NG xN % E Co % oo Y2 oo
O
2 2 0o O O 0
] . .
O oo O O O
oo . O
1 Xpa Xhe1 o XBag Cn+1 Yn+1
Comparing the ith row of each side, we have
C1 + CoXi ++ + Cnsa X =i
Thus
pP(Xi) = Vi i=12,...,n+1
(b) If X1, X2, ..., Xp+1 are distinct and V¢ = 0, then we can apply part (a) with y = 0. Thus

if P(X) =C1 + CoX + -+ +Cny1 X", then
p(Xi) =0 i=12...,n+1

The polynomial p(Xx) has n + 1 roots. Since the degree of p(x) is less than n + 1, p(x)
must be the zero polynomial. Hence

Ci=C=-"=Ch+1 =0

Since the system V ¢ = 0 has only the trivial solution, the matrix V must be nonsingular.

29. True. If Ais row equivalent to I, then A is nonsingular, so if AB = AC, then we can multiply
both sides of this equation by A™1.

AlAB = AIAC
B =C

30. True. If E and F are elementary matrices, then they are both nonsingular and the product
of two nonsingular matrices is a nonsingular matrix. Indeed, G = F "1E~1.

31. True. If a +ay = a3 + 2a4, then
a+a; —azg —2a, =0

If welet x = (1,1, —1,-2)T, then x is a solution to Ax = 0. Since x = 0 the matrix A must

be singular.
32. False. Let | be the 2 x 2 identity matrix and let A=1,B = -1, and
O 1
_g2 0
c=40d o 1 =

Since B and C are nonsingular, they are both row equivalent to A; however,
0 ]

gl O
B+C—@0 0@

is singular, so it cannot be row equivalent to A.
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6 | PARTITIONED MATRICES
0 ] 0 0
al ala; a'a al an
1 1 1 1
[]
; 0 al - D aba, ahba alan 3
2. B=A A=
H@a,a,..,a)=" —
0
H . o 12 n 0 T
o T T
al a
hal  apaz anan
0 0%, , ;59 0 o 0 0
1 1 1 1 6 0 1
5 (a)D DDZ 3 1D+|:| D(123)=D U
0 0 0 0
2 1 2 1 1 ) D_ . 11 1 4
-1
L
(c) Let 0, : . .
_ _ 0 0
7 5
A = =
. , A12=EO OE
5 5
A =(0 0) Ap =(1 0)

The block multiplication is performed as follows:

U oo

O O O
A AL A o AT Ao _ D0 AuAy +ARA,  AuAy + AphAg g

A Az AT T A AT 2 12 AuAy +ARA,,
12 Ay u+A AT T T
O O
0 1 O OD
0 O 0
6. (a)
XYT = xayi + x2Y3 + X3y3
EZHD D‘@lmm o 0,00 0
+ +
O 0O 1 2 0o 0O O 0O
4 ) 2 3 3 4 1
— 0 0o O O O O O
O 10O O O
2 4 2 3 20 5
=H, g+l gH+H, 50

17

(b) Since y;x{ = (xjy7)7 for j = 1,2,3, the outer product expansion of Y XT is just the

transpose of the outer product expansion of XY T. Thus

T _ T T T
YX = Y11 + WZD-F Y3Xa, 0
2 4 2 4 20



7.

9.

It is possible to perform both block multiplications. To see this, suppose A1 is a K xr matrix,
A is a k x (n = r) matrix, Ay is an (M — K) x r matrix and Ay is (M= K)x (n—=r). It is
possible to perform the block multiplication of AAT since the matrix multiplications Aj1AT; 5,
AllAT 12 12, Ale-er, Az;_Aﬂ, A21A21i, A22A11é, A22A;2 are all possible. It is possible to
perform the block multiplication of AT A since the matrix multiplications Al A1, Al1A1,

AT T T T T )
1A, AyiArr, ApAr, ApnAo, AyAz are all possible.

AX = Alxg, X2, ..., Xr) = (Axg, Axz, ..., AXr)

B = (by,by, ..., by)
AX = B if and only if the column vectors of AX and B are equal

AXj=bj j=1...r

(a) Since D is a diagonal matrix, its jth column will have djj in the jth row and the other
entries will all be 0. Thus dj = djjej forj =1,...,n.
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(b)
AD = A(diieq, dype, ..., dnnen)
= (dllAel, d22Ae21 rey dnnAen)

= (d11a1, dxpaz, ...,dnnan)
10. (a)
. n 0,0
0 <1
Uz = DU]_ U2 0 = U]_Zl + Ugo = Ulzl
(b) If welet X =UZ, then
X =U13; = (61u1, 62U, ..., 0nUn)

and it follows that

A=UsVT =xVvT = 61u1v1T+ 62u2v2T+ ---+cnunv1,

11.
o, 00 O 0 . 0
0 AL C —Au Ap g gl A A2 +CA»
O 0O 0_0O O
0 0
o At 0o Ay 0 I
If
Ail
11 AlZ +CA22 =0
then
C=-A 11A12A !
Let
€ 0 Afl —1 —1 0
B ] n _A11 A12A22 1
o) At

Since AB = BA = |, it follows that B = A1,
12. Let O denote the zero vector in R". If A is singular, then there exists a vector x; = 0 such

that Ax; = 0. If we set 0 O
x=)51@
then
O oad 1O O o o
A O X1 Ax; + 00 0
Mx = ] oad O 1 O o o
o B"Y 0P Yox ;+B0 " = ol

By Theorem 1.5.2, M must be singular. Similarly, if B is singular, then there exists a vector
X2 = 0 such that Bxo= 0. So if we set

0 ]
x=02H
X2
then x is a nonzero vector and M x is equal to the zero vector.
15.
0 ] 0 0 0 0
0] | I B B |
Al= [ O aA2=0 O a3=0 U
L ) D D
Y " Hg U I 28
and hence



O
AT+A2+A=L]1+B 21+B —
D2I+B I+BD
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16. The block form of S™1 is given by

0 I AD
71 _ -
st=0 0 | -]
It follows that 0 00 0
S’lMS=DI -AAB O ol A o
"o 1" oP90 1F
- | AD - B ABA
-, Aprr A m
(0] 0]
= f B BA =
17. The block multiplication of the two factors yields
0 00 ] 0
| (@] A]_l A12 A11 A12
" 1 9%o ¢ "7PBa, BA,+c”

If we equate this matrix with the block form of A and solve for B and C, we get
B=AxnA;; and  C=Ayp —AnAjAp
To check that this works note that

BAi = AnAjf A =Ay
BAp, +C = AuAT AL + Ay — AyATT A = Ay
and hence O oo I 0O ]
I (o] An Ap An  Ap

o O O=0 m=A
B | O Cc A, A,

18. In order for the block multiplication to work, we must have
XB =S and YM =T

Since both B and M are nonsingular, we can satisfy these conditions by choosing X = SB™1
and Y =TM 1,

19. (a)

1 O O

b1 blC
b2 1 O byC O

Bc =1 Jig=0 D_

0 O 0 O

a . o .

bn bnC

(b)

Ax = (ai,ay, .. an)T:l E

I’1
= a1(X1) +az(xz) + -+ +an(Xn)
(c) It follows from parts (a) and (b) that

Ax = ai(X1) +ax(Xz) + -+ an(Xn)
= Xja1 + Xpap + +++ + Xpan
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20. If Ax =0 for all x € R", then
aj=Aej=0 for j=1,...,n

and hence A must be the zero matrix.

21. If
Bx=Cx forall x€eR"

then
(B-C)x=0 forall x€eR"

It follows from Exercise 20 that

B-C =0
B =°C
22. (a)
0 00 00 ] 0 00 0
A1l 0 A a X A1l 0 b
I ar U B ﬂjﬂjxml o L anﬂ d
0 00 0 ] 0
I A la X A 1lb
% 0 D|:| 0 — DD 0
00 -c"Ala+p Xna1 —cTA b +bnss
(b) If

v=Ata and z=A1b

then
(—cTy + B)Xn+1= —c'z+ bpsa
T
_ =C—z+ bn+y T
Xn+1— —CTV+I3 (B c y_o)
and

X+ Xpe1Ata = A lb

x=A1b—Xxn1A ta=2z— Xn+1Y

MATLAB EXERCISES

1. In parts (a), (b), (c) it should turn out that A1l = A4 and A2 = A3. In part (d) Al = A3
and A2 = A4. Exact equality will not occur in parts (c) and (d) because of roundoff error.

2. The solution x obtained using the \ operation will be more accurate and yield the smaller
residual vector. The computation of x is also more efficient since the solution is computed
using Gaussian elimination with partial pivoting and this involves less arithmetic than com-
puting the inverse matrix and multiplying it times b.

3. (a) Since Ax =0 and x =0, it follows from Theorem 1.5.2 that A is singular.

(b) The columns of B are all multiples of x. Indeed,

B = (x, 2x, 3%, 4x, 5x, 6x)

and hence
AB = (Ax, 2Ax, 3Ax, 4Ax, 5Ax, 6Ax) = O

(c) If D =B +C, then
AD =AB +AC =0+AC = AC

4. By construction, B is upper triangular whose diagonal entries are all equal to 1. Thus B is
row equivalent to | and hence B is nonsingular. If one changes B by setting bjg1 = —1/256
and computes Bx, the result is the zero vector. Since x = 0, the matrix B must be singular.
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10.
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(a) Since A is nonsingular, its reduced row echelon form is I. If E;, ..., Ex are elementary
matrices such that Ex ---E;{A = |, then these same matrices can be used to transform
(A b) to its reduced row echelon form U. It follows then that

U=Ex--Ei(A b)=A1A b)=(1 A lb)

Thus, the last column of U should be equal to the solution x of the system Ax = b.

(b) After the third column of A is changed, the new matrix A is now singular. Examining
the last row of the reduced row echelon form of the augmented matrix (A b), we see that
the system is inconsistent.

(c) The system Ax = c is consistent since y is a solution. There is a free variable X3, so the
system will have infinitely many solutions.

(f) The vector v is a solution since

Av =A(w+3z)=Aw +3Az=c

For this solution, the free variable X3 = v3 = 3. To determine the general solution just
set x = w + tz. This will give the solution corresponding to X3 = t for any real number
t.

(c) There will be no walks of even length from V; to V;j whenever i + j is odd.

(d) There will be no walks of length k from V; to Vj whenever i +j + K is odd.

(e) The conjecture is still valid for the graph containing the additional edges.

(f) If the edge {Vs,Vg} is included, then the conjecture is no longer valid. There is now a
walk of length 1 from Vg toVgand i+J+k=6+8+1is odd.

The change in part (b) should not have a significant effect on the survival potential for the

turtles. The change in part (c) will effect the (2, 2) and (3, 2) of the Leslie matrix. The new

values for these entries will be |, = 0.9540 and |3 = 0.0101. With these values, the Leslie

population model should predict that the survival period will double but the turtles will still

eventually die out.

(b) x1 =c —Vx2.

(b)
] 0
A2k — |:|| kB 0
Yvg 1 P
This can be proved using mathematical induction. In the case k =1
0 oo 0 0 [
A2 — o | @) | B
Oy gl gl=tdg b
If the result holds for Kk = m
]
A2m — [ | mB 0
“mg 1 U
then
A2m+2 — A2A2m
0 0 cJ 0
I B | mB
=8 1598 | B
0 | ( B 0
m+1
] (m+1)B | g

It follows by mathematical induction that the result holds for all positive integers k.
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(b)
O 0O 0 O O
@) | 1 kB kB |

A2'<+1=AA2k=EI B@@kB I h =th | (k+1)BDD

11. (a) By construction, the entries of A were rounded to the nearest integer. The matrix B =
ATA must also have integer entries and it is symmetric since

BT =(ATA)T =AT(AT)T =ATA=B

(b)
0 00 00 0
e 1 8o gHUg U
0
_ B1u1 BhET
-~ “"EB;; EBpET +F
where

11, 11
E=ByB ! and F =By —BxyB 'Bp
It follows that

B1iET= Bu(B ')"BT =B;1B 'Bi; = Bio
11 21 11

EBi11= B21B'B11 =By

EBLET +F = By ET+ By — ByyBii'Byy
= BB 'Biy + By — BB 1By,
1 11

Bo>
Therefore

LDL™=B

CHAPTER TEST A

1. The statement is false. If the row echelon form has free variables and the linear system
is consistent, then there will be infinitely many solutions. However, it is possible to have an
inconsistent system whose coefficient matrix will reduce to an echelon form with free variables.
For example, if O - 0 o

1 1 1

A=B, B b==5, &

then A involves one free variable, but the system Ax = b is inconsistent.
2. The statement is true since the zero vector will always be a solution.

3. The statement is true. A matrix A is nonsingular if and only if it is row equivalent to the
| (the identity matrix). A will be row equivalent to | if and only if its reduced row echelon
formis I.

4. The statement is true. If A is nonsingular, then A is row equivalent to |. So there exist
elementary matrices Eq, Ey, ..., Ex, such that

A =EgEx—1---E1l= ExEx—1---E4

5. The statement is false. For example, if A =1 and B = —1I, the matrices A and B are both
nonsingular, but A +B = O is singular.
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. The statement is false. For example, if A is any matrix of the form
0

_ [ cosH sin 0
A_@sine —cos0

Then A=A"1.

. The statement is false.

(A- B)>=A? —BA —AB +B? = A> —2AB + B?

since in general BA = AB. For example, if
]

0 0 0
11 01
A=@1 1@ and B=QO OE
then
0 0 0
1 0@ 10
(A-B=L1 0 =0 0
1 1D D2 ID
however,
0 1 O 0 0 0 0 0
2 2 0 2 00 2 0
A? —2AB +B? = U 0_0 040 0=0 0
D2 2D D0 2D D0 OD D2 OD

. The statement is false. If A is nonsingular and AB = AC, then we can multiply both sides of
the equation by A™! and conclude that B = C. However, if A is singular, then it is possible

to have AB = AC and B = C. For example, if
0 ] 0 0 0 0
11 11 2 2
A=0 O O O O O
Dl 1D, B=D4 4D, C=D3 3D
then
0 0g 1 U 0
1 1 11 5 5
AB = U 0 0 0 0
1 Uy 40=05 50
0g 0
1 1 2 2 5 5
AC = U 0 0 0 0
Dl 1DD3 3D=D5 SD

. The statement is false. In general, AB and BA are usually not equal, so it is possible for
AB = O and BA to be a nonzero matrix. For example, if

0 0 0 0
Dl 1D and B =10 1 1D
then
0 0 0 0
AB =19 00 4q BA=D"2 20
DO Ol:l 0 2 ZD

. The statement is true. If x = (1,2,-1)T, then x = 0 and Ax = 0, so A must be singular.
. The statement is true. If b =a; + a3 and x= (1,0,1)T, then



AX = Xja; + Xpap + Xzag= la; +0a; +1laz =b

So x is a solution to Ax = b.
12. The statement is true. If b = a; +ay + a3, then x = (1,1,1)7 is a solution to Ax = b, since

Ax =Xja; +Xpap + Xzaz=a; +a, +az3 =b
If a, = a3, then we can also express b as a linear combination

b =a; +0a, +2a3
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13.

14.

15.

Matricesand Systems of Equations

Thusy = (1,0,2)" is also a solution to the system. However, if there is more than one
solution, then the reduced row echelon form of A must involve a free variable. A consistent
system with a free variable must have infinitely many solutions.

The statement is true. An elementary matrix E of type I or type Il is symmetric. So in either
case we have ET = E is elementary. If E is an elementary matrix of type Il formed from
the identity matrix by adding a nonzero multiple ¢ of row k to row j, then ET will be the
elementary matrix of type Il formed from the identity matrix by adding ¢ times row j to
row K.

The statement is false. An elementary matrix is a matrix that is constructed by performing
exactly one elementary row operation on the identity matrix. The product of two elementary
matrices will be a matrix formed by performing two elementary row operations on the identity
matrix. For example,

0 ] 0 0
D1 0 OD D1 0 OD
E;= 2 1 0 and Eo= 0 1 0
0 0
0 0 1 3 01
are elementary matrices, however;
Dl 0
0 0 OD
E1E2= g2 1 0
3 01

is not an elementary matrix.

The statement is true. The row vectors of A are X1y',XoyT,...,Xny" . Note, all of the row
vectors are multiples of yT. Since x and y are nonzero vectors, at least one of these row
vectors must be nonzero. However, if any nonzero row is picked as a pivot row, then since all
of the other rows are multiples of the pivot row, they will all be eliminated in the first step
of the reduction process. The resulting row echelon form will have exactly one nonzero row.

CHAPTER TEST B

1.

2.

1 32 1\_1 u1 1 3 2 1L
o 1 [ E
D_l 1—21—ZD—>Q 1 3 |1
2 =2 771 0 0 1 3 |—-1
- 10 -7 4-—
- 13 -1
"0 00 o0 O
The free variables are X and X4. If we set X, = a and X4 = b, then
X1 =4+a+7b and X3 =—-1-13b

and hence the solution set consists of all \/Dectors of thezftlarm
%1 +a+7b
=R
-7 —1-3b
b

(a) A linear equation in 3 unknowns corresponds to a plane in 3-space.

(b) Given 2 equations in 3 unknowns, each equation corresponds to a plane. If one equation
is a multiple of the other, then the equations represent the same plane and any point on
the that plane will be a solution to the system. If the two planes are distinct, then they
are either parallel or they intersect in a line. If they are parallel they do not intersect, so



