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QUESTIONS 
 

2.1 Can  you  calculate  the percent  elongation of materials 
based  only  on the information given in  Fig.  2.6?  Ex- 
plain. 

 

Recall  that the percent elongation is defined by Eq. (2.6) 
on p. 35 and depends on the original gage length (lo) of 
the specimen.  From  Fig.  2.6 on p. 39, only  the necking 
strain  (true  and  engineering) and  true  fracture  strain 
can be determined. Thus, we cannot calculate  the per- 
cent  elongation of  the  specimen;   also,  note  that  the 
elongation is  a function  of gage  length  and  increases 
with  gage length. 

 
2.2 Explain if it is possible  for stress-strain curves  in  ten- 

sion  tests to reach 0% elongation as the gage  length  is 
increased  further. 

 

The percent elongation of the specimen is a function  of 
the initial and final gage lengths.  When the specimen is 
being  pulled, regardless of the original gage  length,  it 
will elongate uniformly (and  permanently) until  neck- 
ing  begins.   Therefore,  the specimen will always have 
a certain  finite  elongation.  However, note that as the 
specimen’s gage  length  is  increased,  the contribution 
of localized elongation (that is, necking) will decrease, 
but the total elongation will not approach zero. 

 
2.3 Explain why  the difference  between engineering strain 

and  true  strain  becomes  larger  as strain  increases.   Is 
this phenomenon true for both tensile and compressive 
strains?  Explain. 

 

The   difference    between   the   engineering  and   true 
strains  becomes  larger  because of the way  the strains 
are defined,  respectively, as can be seen by inspecting 
Eqs.  (2.1) and  (2.9).   This  is  true  for  both  tensile  and 
compressive strains. 

 
2.4 Using the same scale for stress, the tensile true-stress- 

true-strain curve  is higher  than the engineering stress- 

strain curve.  Explain whether this condition also holds 
for a compression test. 

 

During  a  compression  test,  the  cross-sectional  area 
of the specimen increases  as the specimen height  de- 
creases (because of volume constancy) as the load is in- 
creased.  Since true stress is defined  as ratio of the load 
to the instantaneous cross-sectional area of the speci- 
men, the true stress in compression will be lower  than 
the engineering stress for a given load,  assuming that 
friction  between the platens  and the specimen is negli- 
gible. 

 

2.5 Which of  the  two  tests,  tension  or  compression,  re- 
quires   a  higher   capacity  testing   machine   than   the 
other? Explain. 

 

The  compression test requires  a higher  capacity ma- 
chine  because the cross-sectional area of the specimen 
increases during the test, which is the opposite of a ten- 
sion  test.  The  increase  in  area requires  a load  higher 
than that for the tension test to achieve  the same stress 
level.    Furthermore, note that  compression-test spec- 
imens  generally have  a larger  original cross-sectional 
area than those for tension tests, thus requiring higher 
forces. 

 

2.6 Explain how  the modulus of  resilience  of  a material 
changes,  if at all, as it is strained:  (a) for an elastic, per- 
fectly  plastic  material,   and  (b)  for  an  elastic,  linearly 
strain-hardening material. 

 

Recall   that   the  modulus  of  resilience   is   given  by 
Eq.  (2.5)  on  p.  34 as  S2/(2E).   (a)  If  the  material   is 
perfectly  plastic,  then  the yield  strength  does  not in- 
crease with strain - see Fig.  2.7c on p. 42. Therefore,  the 
modulus of resilience  is unchanged as the material  is 
strained.  (b) For a linear  strain hardening material,  the 
yield  strength  increases  with  plastic  strain.   Therefore 
the modulus of resilience  will increase with  strain.
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2.7  If  you  pull and  break  a tensile-test  specimen rapidly, 
where  would the temperature  be the highest?  Explain 
why. 

 

Since  temperature  rise  is  due  to the work input,   the 
temperature  will be highest  in  the necked  region  be- 
cause  that is where  the strain,  hence the energy  dissi- 
pated  per unit  volume in plastic  deformation, is high- 
est. 

 

2.8  Comment on the temperature  distribution if the speci- 
men in Question 2.7 is pulled very  slowly. 

 

If the specimen is pulled very  slowly, the temperature 
generated  will be dissipated throughout the specimen 
and  to the environment.  Thus,  there  will be no  ap- 
preciable  temperature  rise anywhere, particularly with 
materials with  high  thermal  conductivity. 

 

2.9  In  a tension  test,  the area  under  the true-stress-true- 
strain curve  is the work done per unit volume (the spe- 
cific  work).  Also, the area under  the load-elongation 
curve  represents  the work done  on  the specimen. If 
you  divide this latter work by the volume of the spec- 
imen  between the gage  marks, you  will determine  the 
work done  per  unit  volume (assuming that all  defor- 
mation  is confined between the gage  marks). Will this 
specific work be the same  as the area under  the true- 
stress-true-strain curve?  Explain. Will your  answer  be 
the same for any value  of strain?  Explain. 

 

If we divide the work done by the total volume of the 
specimen between the gage  lengths,  we obtain  the av- 
erage  specific work throughout the specimen. How- 
ever,  the area  under  the true  stress-true  strain  curve 
represents  the specific work done  at the necked  (and 
fractured) region  in the specimen where  the strain  is a 
maximum. Thus, the answers will be different.   How- 
ever, up to the onset of necking (instability), the specific 
work calculated will be the same.  This is because  the 
strain  is uniform throughout the specimen until  neck- 
ing  begins. 

 

2.10  The  note at the bottom of Table 2.4 states that as tem- 
perature  increases,  C decreases  and  m increases.   Ex- 
plain why. 

 

The value  of C in Table 2.4 on p. 46 decreases with tem- 
perature  because it is a measure  of the strength  of the 
material.    The  value  of m increases  with  temperature 
because  the material  becomes  more  strain-rate sensi- 
tive,  due to the fact that the higher the strain  rate, the 
less time the material  has to recover  and  recrystallize, 
hence its strength  increases. 

 

2.11  You are given the K and n values of two different  mate- 
rials.  Is this information sufficient to determine  which 
material  is tougher?   If  not, what  additional informa- 
tion do you need, and why? 

 

Although the K  and  n values may  give  a good  esti- 
mate of toughness, the true fracture  stress and the true 
strain  at fracture  are required for accurate  calculation 

of toughness. The modulus of elasticity and yield stress 
would provide information about  the area under  the 
elastic region;  however, this region  is very  small  and is 
thus  usually negligible with  respect  to the rest of the 
stress-strain curve. 

 

2.12  Modify the curves  in Fig.  2.7 to indicate the effects of 
temperature.  Explain your  changes. 

 

These modifications can be made by lowering the slope 
of the elastic region  and lowering the general  height  of 
the curves.  See, for example, Fig.  2.9 on p. 43. 

 

2.13  Using a specific example, show  why the deformation 
rate,  say  in  m/s, and  the true  strain  rate are not  the 
same. 

 

The  deformation rate is  the quantity v in  Eqs.  (2.16) 
and  (2.17).  Thus, when  v is held  constant  during de- 
formation (hence a constant deformation rate), the true 
strain rate will vary (l increases),  whereas  the engineer- 
ing  strain  rate will remain  constant.    Hence,   the two 
quantities are not the same. 

 

2.14  It has  been stated  that the higher the value  of m,  the 
more  diffuse the neck  is,  and  likewise, the lower  the 
value  of m, the more localized the neck is. Explain  the 
reason for this behavior. 

 

As  discussed in Section  2.2.7, with  high  m values, the 
material  stretches to a greater length  before it fails; this 
behavior is an indication that necking is delayed with 
increasing m.    When  necking is  about  to  begin,   the 
necking region’s strength  with  respect to the rest of the 
specimen increases,  due to strain hardening. However, 
the strain  rate in the necking region  is also higher than 
in the rest of the specimen, because the material  is elon- 
gating faster there. Since the material in the necked  re- 
gion  becomes stronger  as it is strained  at a higher rate, 
the region  exhibits a greater resistance  to necking. The 
increase  in  resistance  to necking thus  depends on the 
magnitude of m.  As  the tension  test progresses, neck- 
ing  becomes  more  diffuse, and  the specimen becomes 
longer  before fracture; hence, total elongation increases 
with  increasing values of m.  As  expected,  the elonga- 
tion after necking (postuniform elongation) also increases 
with  increasing m.  It has been observed that the value 
of m decreases with  metals of increasing strength. 

 

2.15  Explain why materials with  high  m values, such as hot 
glass  and  silly putty,  when  stretched  slowly, undergo 
large  elongations before failure.  Consider events  tak- 
ing  place in the necked  region  of the specimen. 

 

The answer  is similar to Answer 2.14 above. 
 

2.16  Assume that you  are running four-point bending tests 
on a number of identical specimens of the same length 
and   cross-section,  but  with   increasing  distance   be- 
tween  the  upper   points   of  loading (see  Fig.   2.19b). 
What  changes,  if any,  would you  expect in the test re- 
sults?  Explain.
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As  the distance  between  the upper  points  of loading 
in  Fig.  2.19b increases,  the magnitude of the bending 
moment  decreases.   However, the volume of material 
subjected  to the maximum bending moment  (hence to 
maximum stress)  increases.    Thus, the probability  of 
failure in  the four-point test increases  as this  distance 
increases. 

 

2.17  Would Eq. (2.10) hold true in the elastic range?  Explain. 
 

Note  that this equation  is based on volume constancy, 
i.e., Aolo   = Al.   We know, however, that because  the 
Poisson’s ratio ν is less than 0.5 in the elastic range, the 
volume is not constant  in a tension  test; see Eq.  (2.47) 
on p. 71.  Therefore,  the expression is not valid in the 
elastic range. 

 

2.18  Why have different  types of hardness tests been devel- 
oped?  How would you measure  the hardness of a very 
large object? 

 

There are several  basic reasons: 
 

1.  The overall hardness range of the materials 

2.  The hardness of their constituents; see Chapter 3; 

3.  The  thickness of the specimen, such  as bulk ver- 
sus foil 

4.  The size of the specimen with respect to that of the 
indenter 

5.  The surface  finish of the part being  tested. 
 

2.19  Which  hardness tests  and  scales  would you  use  for 
very   thin  strips   of  material,   such  as  aluminum  foil? 
Why? 

 

Because  aluminum foil  is  very  thin,  the indentations 
on  the surface  must  be very  small  so as not to affect 
test results.   Suitable tests would be a microhardness 
test such  as Knoop or Vickers under  very  light  loads 
(see Fig.  2.20 on  p.  54).   The  accuracy of the test can 
be validated by  observing any  changes  in  the surface 
appearance opposite  to the indented side. 

 

2.20  List and explain the factors that you would consider in 
selecting an appropriate hardness test and  scale  for a 
particular application. 

 

Hardness tests mainly have three differences: 
 

1.  type of indenter, 

2.  applied load, and 

3.  method   of  indentation  measurement (depth   or 
surface  area of indentation, or rebound of inden- 
ter). 

 
2.21  In  a Brinell hardness test, the resulting impression is 

found  to be an ellipse.   Give possible explanations for 
this result. 

 

There  are several  possible reasons  for this phe- 
nomenon, but the two most likely are anisotropy in the 
material  and  the presence  of surface  residual stresses 
in the material. 

2.22  Referring to Fig.  2.20, the material  for testers are either 
steel,  tungsten carbide,   or  diamond.  Why isn’t  dia- 
mond  used for all of the tests? 

 

While  diamond  is   the  hardest   material   known,  it 
would not, for example, be practical to make  and  use 
a 10-mm  diamond indenter because  the costs  would 
be prohibitive.  Consequently, a hard  material  such  as 
those listed  are sufficient for most hardness tests. 

 

2.23  What  role  does  friction play  in  a hardness test?  Can 
high  friction between  a material  and  indenter affect a 
hardness test? Explain. 

 

The effect of friction has been found  to be minimal. In 
a hardness test, most of the indentation occurs through 
plastic  deformation, and  there is  very  little  sliding  at 
the indenter-workpiece interface; see Fig.  2.23 on p. 58. 

 

2.24  Describe the difference between creep and stress relax- 
ation,  giving two  examples for  each  as they  relate  to 
engineering applications. 

 

Creep  is  the permanent deformation of a part  that is 
under  a load over a period  of time, usually occurring at 
elevated temperatures. Stress relaxation is the decrease 
in the stress level  in a part under  a constant strain.  Ex- 
amples  of creep include: 

 

1.  turbine   blades   operating  at  high   temperatures, 
and 

2.  high-temperature steam linesand furnace  compo- 
nents. 

 

Stress relaxation is observed when,  for example, a rub- 
ber  band   or  a  thermoplastic  is  pulled  to  a  specific 
length  and held at that length  for a period  of time. This 
phenomenon is  commonly  observed in  rivets,   bolts, 
and guy  wires,  as well  as thermoplastic components. 

 

2.25  Referring to the two  impact  tests shown in  Fig.  2.26, 
explain how different  the results  would be if the speci- 
mens were impacted from the opposite  directions. 

 

Note  that impacting the specimens shown in Fig.  2.26 
on  p.  61 from  the  opposite   directions would  subject 
the roots  of the notches  to compressive stresses,  and 
thus  they would not act as stress raisers.   Thus, cracks 
would not propagate as they  would when  under  ten- 
sile stresses.  Consequently, the specimens would basi- 
cally behave as if they were not notched. 

 

2.26  If  you  remove  the  layer ad  from  the  part  shown in 
Fig.  2.27d,  such  as by  machining or  grinding, which 
way   will the  specimen curve?     (Hint:   Assume  that 
the part in diagram (d) is composed of four horizontal 
springs held at the ends.  Thus, from the top down, we 
have  compression, tension,  compression, and  tension 
springs.) 

 

Since  the internal forces will have  to achieve  a state of 
static equilibrium, the new part has to bow downward 
(i.e., it will hold  water).   Such  residual-stress patterns
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can  be modeled with  a set of horizontal tension  and 
compression springs. Note that the top layer of the ma- 
terial ad in Fig.  2.27d, which is under  compression, has 
the tendency  to bend the bar upward. When this stress 
is relieved (such  as by  removing a layer),  the bar will 
compensate  for it by bending downward. 

 

2.27  Is it possible to completely remove residual stresses in a 
piece of material  by the technique  described in Fig. 2.29 
if the material  is elastic,  linearly strain  hardening? Ex- 
plain. 

 

By   following  the   sequence   of   events   depicted in 
Fig.  2.29 on  p.  64, it  can  be seen  that  it  is  not  possi- 
ble to completely remove  the residual stresses.   Note 
that for  an  elastic,  linearly strain  hardening material, 
σc  will never catch up with  σt. 

0                                                                                                         0 

 
2.28  Referring to Fig.  2.29, would it  be possible to elimi- 

nate  residual stresses  by  compression?   Assume  that 
the piece of material  will not buckle  under  the uniaxial 
compressive force. 

 

Yes, by the same mechanism described in Fig.  2.29 on 
p. 64. 

 

2.29  List and  explain the  desirable mechanical properties 
for (a) an elevator  cable; (b) a bandage;  (c) a shoe sole; 
(d) a fish hook; (e) an automotive piston;  (f) a boat pro- 
peller; (g) a gas-turbine blade; and (h) a staple. 

 

The following are some basic considerations: 
 

(a)  Elevator cable: The cable should not elongate elas- 
tically to a large extent or undergo yielding as the 
load is increased. These requirements thus call for 
a material  with  a high  elastic  modulus and  yield 
stress. 

(b)  Bandage: The  bandage material  must  be compli- 
ant,  that  is,  have  a low  stiffness,   but  have  high 
strength  in the membrane  direction. Its inner  sur- 
face must  be permeable  and  outer  surface  resis- 
tant to environmental effects. 

(c)  Shoe sole: The sole should be compliant for com- 
fort, with  a high  resilience. It should be tough  so 
that it absorbs  shock  and  should have  high  fric- 
tion and wear resistance. 

(d)  Fish   hook:     A  fish   hook   needs   to  have   high 
strength   so  that  it  doesn’t  deform   permanently 
under  load, and thus maintain its shape.  It should 
be  stiff   (for  better  control   during  its  use)  and 
should be resistant  the environment it is used  in 
(such  as salt water). 

(e)  Automotive piston:  This product must  have  high 
strength  at elevated  temperatures, high  physical 
and thermal  shock  resistance,  and low  mass. 

(f)  Boat  propeller:   The   material   must   be  stiff   (to 
maintain its shape) and resistant to corrosion, and 
also  have   abrasion  resistance   because  the  pro- 
peller  encounters sand  and  other  abrasive parti- 
cles when  operated close to shore. 

(g)  Gas  turbine  blade:  A gas  turbine  blade  operates 
at high  temperatures (depending on its location  in 
the turbine);  thus it should have high-temperature 
strength  and resistance  to creep, as well  as to oxi- 
dation  and corrosion due to combustion products 
during its use. 

(h)  Staple:   The  properties should be closely parallel 
to that  of  a paper  clip.    The  staple  should have 
high  ductility to allow it to be deformed without 
fracture,  and  also  have  low  yield stress  so that it 
can be bent (as well as unbent  when  removing it) 
easily without requiring excessive force. 

 
2.30  Make  a sketch  showing the nature  and  distribution of 

the residual stresses in Figs.  2.28a and b before the parts 
were cut. Assume that the split  parts are free from any 
stresses. (Hint: Force these parts back to the shape they 
were in before they were cut.) 

 

As  the question  states,  when  we  force  back  the split 
portions in the specimen in Fig.  2.28a on p. 63, we in- 
duce  tensile  stresses  on  the outer  surfaces  and  com- 
pressive on  the inner.    Thus the original part  would, 
along  its total cross section,  have  a residual stress dis- 
tribution of  tension-compression-tension.   Using  the 
same technique,  we find that the specimen in Fig.  2.28b 
would have  a similar residual stress distribution prior 
to cutting. 

 

2.31  It is possible to calculate  the work of plastic  deforma- 
tion by measuring the temperature  rise in a workpiece, 
assuming that there is no heat loss and that the temper- 
ature  distribution is  uniform throughout?  If  the spe- 
cific heat of the material  decreases with increasing tem- 
perature,  will the work of deformation calculated us- 
ing  the specific heat at room  temperature  be higher or 
lower  than the actual work done? Explain. 

 

If  we calculate  the heat using a constant  specific heat 
value  in Eq.  (2.62), the work will be higher than it ac- 
tually is.  This is because,  by definition, as the specific 
heat decreases, less work is required to raise the work- 
piece temperature by one degree.   Consequently, the 
calculated work will  be higher than  the actual  work 
done. 

 

2.32  Explain whether or not the volume of a metal specimen 
changes  when  the specimen is  subjected  to a state of 
(a) uniaxial compressive stress and  (b) uniaxial tensile 
stress, all in the elastic range. 

 

For  case (a),  the quantity in  parentheses  in  Eq.  (2.47) 
on p. 71 will be negative, because  of the compressive 
stress. Since the rest of the terms are positive, the prod- 
uct of these terms is negative and, hence, there will be 
a decrease  in  volume (This can also  be deduced intu- 
itively.)  For  case (b), it will be noted  that the volume 
will increase. 

 

2.33  It is relatively easy to subject a specimen to hydrostatic 
compression, such  as by using a chamber  filled  with  a 
liquid.  Devise a means  whereby the specimen (say,  in
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the shape  of a cube or a round disk) can be subjected 
to hydrostatic tension,  or one approaching this state of 
stress.  (Note  that a thin-walled, internally pressurized 
spherical shell is not a correct answer,  because it is sub- 
jected only  to a state of plane  stress.) 

 

Two possible answers are the following: 
 

1.  A solid  cube  made  of a soft metal  has  all  its  six 
faces brazed to long square bars (of the same cross 
section  as the specimen); the bars  are made  of a 
stronger  metal. The six arms are then subjected to 
equal  tension  forces,  thus  subjecting the cube  to 
equal tensile stresses. 

2.  A thin, solid  round disk (such as a coin) and made 
of a soft  material  is  brazed between  the ends  of 
two solid  round bars of the same diameter  as that 
of the disk.  When  subjected  to longitudinal  ten- 
sion,  the disk will tend to shrink radially. But be- 
cause it is thin  and  its flat surfaces  are restrained 
by the two rods from moving, the disk will be sub- 
jected to tensile radial stresses. Thus, a state of tri- 
axial  (though not exactly  hydrostatic) tension  will 
exist within the thin disk. 

 
2.34  Referring to  Fig.   2.17,  make  sketches  of  the  state  of 

stress for an element in the reduced section of the tube 
when it is subjected to (a) torsion only; (b) torsion while 
the tube is internally pressurized; and (c) torsion  while 
the  tube  is  externally pressurized.   Assume that  the 
tube is a closed-end tube. 

 

These  states of stress can be represented  simply by re- 
ferring to the contents of this chapter as well  as the rel- 
evant materials covered  in texts on mechanics of solids. 

 

2.35  A  penny-shaped piece  of  soft  metal  is  brazed to the 
ends of two flat, round steel rods of the same diameter 
as the piece.  The  assembly is then subjected  to uniax- 
ial tension.  What is the state of stress to which the soft 
metal is subjected?  Explain. 

 

The penny-shaped soft metal piece will tend to contract 
radially due to Poisson’s ratio; however, the solid  rods 
to which it attached  will prevent  this from  happening. 
Consequently, the state of stress will tend to approach 
that of hydrostatic tension. 

 

2.36  A circular disk of soft metal  is  being  compressed be- 
tween two flat, hardened circular steel punches of hav- 
ing  the same  diameter  as the disk.  Assume that  the 
disk material  is  perfectly plastic  and  that  there is  no 
friction or any temperature effects. Explain the change, 
if any,  in the magnitude of the punch force as the disk 
is being  compressed plastically to, say, a fraction  of its 
original thickness. 

 

Note   that  as  it  is  compressed  plastically,   the  disk 
will  expand radially,  because  of  volume  constancy. 
An  approximately donut-shaped material  will then be 
pushed radially  outward, which will  then  exert  ra- 
dial   compressive stresses  on  the  disk  volume under 

the punches. The volume of material  directly between 
the punches will now  subjected  to a triaxial compres- 
sive  state  of  stress.    According to  yield criteria   (see 
Section 2.11), the compressive stress exerted by the 
punches will thus  increase,  even  though the material 
is not strain hardening. Therefore,  the punch force will 
increase  as deformation increases. 

 

2.37  A perfectly plastic  metal  is  yielding under  the stress 
state σ1,  σ2,  σ3,  where  σ1   > σ2   > σ3.   Explain what 
happens if σ1  is increased. 

 

Consider Fig.  2.32 on  p.  70.   Points  in  the interior of 
the yield locus  are in an elastic state, whereas  those on 
the yield locus  are in a plastic  state. Points  outside  the 
yield locus  are not admissible.  Therefore,  an increase 
in σ1  while the other stresses remain  unchanged would 
require  an increase  in yield stress.  This can also be de- 
duced  by inspecting either Eq. (2.38) or Eq. (2.39). 

 

2.38  What is the dilatation of a material  with  a Poisson’s ra- 
tio of 0.5?  Is  it possible for a material  to have  a Pois- 
son’s ratio of 0.7? Give a rationale  for your  answer. 

 

It can be seen from Eq. (2.47) on p. 71 that the dilatation 
of a material  with  ν = 0.5 is always zero, regardless of 
the stress state. To examine the case of ν = 0.7, consider 
the situation where  the stress  state is hydrostatic  ten- 
sion.   Equation (2.47) would then  predict  contraction 
under  a tensile stress, a situation that cannot occur. 

 

2.39  Can  a material  have a negative Poisson’s ratio?  Give a 
rationale  for your  answer. 

 

Solid material  do not have  a negative Poisson’s ratio, 
with  the exception of  some  composite  materials  (see 
Chapter 10), where  there can  be a negative Poisson’s 
ratio in a given direction. 

 

2.40  As  clearly as  possible, define  plane  stress  and  plane 
strain. 

 

Plane stress is the situation where the stresses in one of 
the direction on an element are zero; plane strain  is the 
situation where  the strains  in  one of the direction are 
zero. 

 

2.41  What test would you  use to evaluate  the hardness of a 
coating  on a metal surface?  Would it matter if the coat- 
ing  was harder  or softer than the substrate?  Explain. 

 

The  answer   depends on  whether  the coating   is  rela- 
tively thin or thick.  For a relatively thick  coating,  con- 
ventional hardness tests can be conducted, as long  as 
the  deformed region   under  the  indenter is  less  than 
about  one-tenth  of the coating  thickness.  If  the coat- 
ing  thickness is less than this threshold, then one must 
either  rely   on  nontraditional  hardness  tests,  or  else 
use  fairly  complicated indentation models   to extract 
the material  behavior.   As  an  example of the former, 
atomic  force microscopes using diamond-tipped pyra- 
mids have  been used  to measure  the hardness of coat- 
ings  less than 100 nanometers thick.  As  an example of
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the latter,  finite-element models  of a coated  substrate 
being  indented by  an  indenter of a known geometry 
can be developed and then correlated  to experiments. 

 

2.42  List the advantages and  limitations of the stress-strain 
relationships given in Fig.  2.7. 

 

Several  answers that are acceptable,  and the student  is 
encouraged to develop as many  as possible. Two pos- 
sible answers are: 

 

1.  There  is  a  tradeoff  between  mathematical com- 
plexity and accuracy in modeling material  behav- 
ior 

2.  Some  materials may  be better suited  for  certain 
constitutive laws  than others 

 
2.43  Plot  the data  in  the inside front  cover  on a bar chart, 

showing the range  of values, and  comment  on the re- 
sults. 

 

By the student.  An  example of a bar chart for the elastic 
modulus is shown below. 

 
Metallic materials 

 

Tungsten 
 

Titanium 

Stainless steels 

Steels 

Nickel 
 

Molybdenum 
 

Magnesium 
 

Lead 
 

Copper 
 

Aluminum 

0            100        200        300        400        500 

Elastic modulus  (GPa) 
 

Non-metallic  materials 

Spectra fibers 

Kevlar fibers 

Glass fibers 

Carbon  fibers 

Boron fibers 

Thermosets 

Thermoplastics 

Rubbers 

Glass 

Diamond 

Ceramics 

0           200       400       600       800      1000     
1200 

Elastic modulus  (GPa) 
 
 

Typical comments  regarding such a chart are: 

1.  There  is a smaller range  for metals  than for non- 
metals; 

2.  Thermoplastics,  thermosets   and  rubbers   are  or- 
ders  of  magnitude lower  than  metals  and  other 
non-metals; 

3.  Diamond and  ceramics can be superior to others, 
but ceramics have a large range of values. 

 
2.44  A hardness test is conducted on as-received metal as a 

quality check.  The results  show  indicate that the hard- 
ness  is too high,  indicating that the material  may  not 
have  sufficient ductility for  the intended application. 
The supplier is reluctant  to accept the return of the ma- 
terial,  instead  claiming that the diamond cone used  in 
the Rockwell testing  was  worn  and  blunt,  and  hence 
the test needed  to be recalibrated.  Is  this  explanation 
plausible? Explain. 

 

Refer  to Fig.  2.20 on  p. 54 and  note that if  an  inden- 
ter is blunt,  then the penetration, t, under  a given load 
will be smaller than that using a sharp  indenter. This 
then translates  into a higher hardness. The explanation 
is  plausible, but  in  practice,  hardness tests are  fairly 
reliable  and  measurements are  consistent   if  the  test- 
ing equipment is properly calibrated and routinely ser- 
viced. 

 

2.45  Explain why a 0.2%  offset is  used  to obtain  the yield 
strength  in a tension  test. 

 

The  value  of 0.2%  is  somewhat arbitrary and  is  used 
to set some standard. A yield stress,  representing  the 
transition point  from  elastic  to plastic  deformation, is 
difficult to measure.    This is  because  the stress-strain 
curve   is  not  linearly  proportional after  the  propor- 
tional  limit,  which can be as high  as one-half  the yield 
strength  in  some  metals.   Therefore,  a transition from 
elastic to plastic  behavior in a stress-strain curve  is dif- 
ficult  to discern.   The  use  of  a  0.2%  offset  is  a  con- 
venient  way  of consistently interpreting a yield point 
from stress-strain curves. 

 

2.46  Referring to Question 2.45, would the offset method  be 
necessary for a highly strained  hardened material?  Ex- 
plain. 

 

The  0.2%  offset  is  still advisable whenever it  can  be 
used,  because  it is a standardized approach for deter- 
mining yield stress, and thus one should not arbitrarily 
abandon standards. However, if the material  is highly 
cold  worked, there will be a more noticeable  ‘kink’ in 
the stress-strain curve,  and  thus  the yield stress  is far 
more  easily discernable than  for the same  material  in 
the annealed  condition. 

 

2.47  Explain why the hardness of a material  is related  to a 
multiple of the uniaxial compressive stress, since both 
involve compression of workpiece material. 

 

The  hardness is  related  to a multiple of  the uniaxial 
compressive stress,  not  just  the uniaxial compressive 
stress, because:
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− 

1.  The volume of material  that is stressed is different 
- in a hardness test, the volume that is under  stress 
is not just a cylinder beneath the inventor. 

2.  The  stressed  volume is  constrained by  the elas- 
tic material  outside  of the indentation area.  This 
often  requires  material   to  deform   laterally and 
counter to the indentation direction - see Fig.  2.21 

 
2.48  Without using the words “stress” or  “strain”,  define 

elastic modulus. 
 

This is actually quite  challenging, but historically sig- 

nificant, since Thomas Young did  not have  the benefit 
of the concept  of strain  when  he first  defined  modu- 
lus  of elasticity. Young’s definition satisfies  the project 
requirement. In Young’s words: 

The modulus of the elasticity of any substance is a column 

of the same substance, capable of producing a pressure on its 

base which is to the weight causing a certain degree of com- 

pression as the length of the substance is to the diminution 

of the length. 

There are many  possible other definitions, of course.

 

 
 

PROBLEMS 
 

2.49  A strip  of metal is originally 1.0 m long.  It is stretched 
in three steps:  first to a length  of 1.5 m, then to 2.5 m, 
and  finally to 3.0 m.  Show  that the total true strain  is 
the sum  of the true  strains  in  each  step,  that  is,  that 
the strains  are additive. Show  that, using engineering 
strains,  the strain  for each step cannot be added  to ob- 
tain the total strain. 

 

The true strain  is given by Eq. (2.9) on p. 36 as 
   

l 
 

 
  = ln 

lo 

 

Therefore,  the true strains  for the three steps are: 
   

1.5 
 

 

l0=1; 

l1=1.5; 

l2=2.5; 

l3=3; 

etot=(l1-l0)/l0+(l2-l0)/l0+(l3-l0)/l0; 

efin=(l3-l0)/l0; 

epstot=log(l1/l0)+log(l2/l1)+log(l3/l2); 

epsfin=log(l3/l0); 
 

 
2.50  A paper  clip  is made  of wire  1.00 mm  in diameter.   If 

the original material  from  which the wire  is made  is a 
rod 15 mm  in diameter,  calculate  the longitudinal and 
diametrical engineering and  true strains  that the wire 
has undergone during processing.

 1  = ln 
1.0 

= 0.4055 Assuming volume constancy, we may  write

 
 

 2  = ln 

 
  

2.5 
 

 

1.5 

 
 
= 0.5108 

 

lf         

  
do 

   2
 

= 
lo              df 

 
  
 15  

  2
 

= 
1.00 

 
= 225

 

 
 3  = ln 

   
3.0 
 

 

2.5 

 

 
= 0.1823 

Letting lo  be unity, the longitudinal engineering strain 
is e1  = (225 − 1)/1  = 224.  The  diametral engineering 
strain  is calculated as

The  sum  of these true strains  is    = 0.4055 + 0.5108 + 

0.1823 = 1.099. The true strain  from step 1 to 3 is 
 
ed  = 

 

1 − 15 
=   0.933 

15

 
  = ln 

  
3 
  

1 

 
= 1.099 

 

The  longitudinal true  strain  is  given by  Eq.  (2.9)  on 
p. 36 as

 

Therefore  the true strains  are additive. Using the same 
approach for engineering strain as defined  by Eq. (2.1), 

 

  = ln 

  
l 
  

lo 

 

= ln (224) = 5.412

we obtain e1  = 0.5, e2  = 0.667, and e3  = 0.20. The sum 
of these strains  is e1 + e2 + e3  = 1.367. The engineering 

The diametral true strain  is 
   

1 
 

strain  from step 1 to 3 is 
 

l − lo
 

 
 
3 − 1 

 d  = ln    
15 

= −2.708

e =        =        = 2 
lo                   1 

 

Note that this is not equal to the sum of the 
engineering strains  for the individual steps.  The  
following Matlab code can be used  to 
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15 

demonstrate that this  is generally true, and not just a 
conclusion for the specific deforma- tions stated in the 
problem. 

Note the large  difference between the engineering and 
true strains,  even though both describe  the same phe- 
nomenon.    Note  also  that the sum  of the true  strains 
(recognizing that  the radial strain  is   r  = ln 

   
0.5 

  
= 

−2.708)  in  the three principal directions is zero,  indi- 
cating  volume constancy in plastic  deformation. 

The following Matlab  code is useful:
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Ao 

d=0.001; 

d0=0.015; 

l0=1; 

and  
Aneck = Aoe−0.25  = 0.779Ao

lf=(d0/d)ˆ2*l0; 

e1=(lf-l0)/l0; 

ed=(d-d0)/d0; 

epsilon=log(lf/l0); 

epsilon_d=log(d/d0); 

 
2.51  A material  has the following properties: Sut = 350 MPa 

and n = 0.20. Calculate its strength  coefficient,  K . 
 

Note from Eq. (2.11) on p. 36 that Sut,true = K  n = Knn 

because  at necking  = n.   From  Fig.  2.3, Sut  =   P , 
where  P  is the load  at necking. The  true ultimate ten- 
sile strength  would be 

 

Ao
 

Consequently, 
 

Sut = (212)(0.779)  = 165 MPa. 
 

 
2.54  A material  has a strength  coefficient  K = 700 MPa.  As- 

suming that a tensile-test specimen made from this ma- 
terial  begins  to neck  at a true strain  of 0.20, show  that 
the ultimate tensile strength of this material  is 415 MPa. 

 

The  approach is the same  as in  Example 2.1 on p. 41. 
Since  the necking strain  corresponds to the maximum 
load  and  the necking strain  for  this  material  is  given 
as    = n  = 0.20, we have,  as the true ultimate tensile 
strength:

Sut,true = P/A = Sut 
A 

.
 Sut,true = (700)(0.20)0.20  = 507 MPa.

From  Eq. (2.10), 
 

   
Ao 

 
 

ln 
A 

 
 
 
=   = 0.20 

 

The  cross-sectional area at the onset of necking is ob- 
tained  from 
   

 Ao   

 

 

Therefore, 
 

 
Ao   

= exp(0.2)  = 1.2214 
A 

ln 
 

 
Consequently, 

Aneck 

= n = 0.20.

Substituting  into   the   expression  for   true   ultimate 
strength, 

 

Sut,true = (350 MPa) (1.2214) = 427 MPa. 
 

The strength  coefficient,  K , can then be found  as 
 

427 

 

Aneck = Ao exp(−0.20) 
 

and the maximum load, P , is 
 

P    =  σA = Sut,trueAo exp(−0.20) 

=  (507)(0.8187)(Ao) = 
 
415 × 106

  
Ao

K = 
0.20.2 

= 589 MPa.  

Since  Sut 

 

= P/Ao,  we  have  Sut 

 

= 415 MPa.   This is

 

2.52  Based on the information given in Fig. 2.6, calculate  the 
ultimate tensile strength  of 304 stainless steel. 

 

From  Fig.  2.6 on p. 39, the true stress for 304 stainless 
steel at necking (where the slope changes;  see Fig.  2.7e) 
is found  to be about  900 MPa,  while the true strain  is 
about 0.4. We also know that the ratio of the original to 
necked  areas of the specimen is given by 

   
 Ao   

 
 

confirmed with  the following Matlab  code. 

 
K=700e6; n=0.2; 

Sut_true=K*nˆn; 

P=Sut_true*exp(-n) 
 

 
2.55  A cable is made of four parallel strands  of different  ma- 

terials, all behaving according to the equation  σ = K  n,

ln 
Aneck 

or 

= 0.40 where  n  = 0.20.   The  materials, strength  coefficients 
and cross-sections are as follows:

Aneck 
= e−0.40  = 0.670 

Ao 

 

Material A: K = 450 MPa,  Ao 

 

= 7 mm2;

Thus,  
Sut = (900)(0.670)  = 603 MPa. 

Material B: K = 600 MPa,  Ao  = 2.5 mm2; 

Material C: K = 300 MPa,  Ao  = 3 mm2; 

2

2.53  Calculate the ultimate tensile strength  (engineering) of 
a material  whose  strength  coefficient  is  300 MPa  and 
that necks at a true strain  of 0.25. 

 

In this problem, K = 300 MPa and n = 0.25. 
Following the same procedure as in Example 2.1 
on p. 41, the true ultimate tensile strength  is 
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σ = (300)(0.25)0.25  = 212 MPa Material D: K = 750 MPa,  Ao  = 2 mm  ; 
 

 
(a)  Calculate the maximum tensile  force that this  ca- 

ble can withstand prior  to necking. 

(b)  Explain how you would arrive at an answer  if the 
n values of the three strands  were different  from 
each other.
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(a)  Necking will  occur  when      =  n   =  0.20.    At 
this point  the true stresses in each cable are, from 
Eq. (2.11) on p. 36, 

 

σA  = (450)0.20.2  = 326 MPa 

the ‘kink’ in the stress-strain curve). The original cross- 
sectional area is Ao  = π(0.006 m)2/4 = 2.827×10−5  m2. 
Since  n  = 0.4, a procedure similar to Example 2.1 on 
p. 41 demonstrates that 
 

 Ao  

σB = (600)0.20.2  = 435 MPa 

σC = (300)0.20.2  = 217 MPa 

 

 
Thus 

Aneck 

= exp(0.4)  = 1.49

σD = (760)0.20.2  = 543 MPa 
 

The  areas at necking are calculated from  Aneck  = 

Sut 

900 
=       = 604 MPa 

1.49

Aoe−n  (see Example 2.1 on p. 41): 
 

AA  = (7)e−0.2  = 5.73 mm2
 

 

AB = (2.5)e−0.2  = 2.04 mm2
 

AC = (3)e−0.2  = 2.46 mm2
 

AD = (2)e−0.2  = 1.64 mm2
 

 

Hence  the total load that the cable can support is 
 

P    =  (326)(5.73) + (435)(2.04) 

+(217)(2.46) + (543)(1.64) 

=  4180 N. 

 
The following Matlab  code is helpful: 

 

K_A=450e6; 

K_B=600e6; 

K_C=300e6; 

K_D=750e6; 

A0_A=7/1e6; 

A0_B=2.5/1e6; 

A0_C=3/1e6; 

A0_D=2/1e6; 

n=0.20; 

s_A=K_A*nˆn; 

s_B=K_B*nˆn; 

s_C=K_C*nˆn; 

s_D=K_D*nˆn; 

A_A=A0_A*exp(-1*n); 
A_B=A0_B*exp(-1*n); 
A_C=A0_C*exp(-1*n); 
A_D=A0_D*exp(-1*n); 
P=s_A*A_A+s_B*A_B+s_C*A_C+s_D*A_D; 

 

(b)  If  the  n  values of  the  four  strands   were  differ- 
ent, the procedure would consist  of plotting  the 
load-elongation curves  of the four  strands  on the 
same  chart,  then obtaining graphically the maxi- 
mum  load.  Alternately, a computer program can 
be written  to determine  the maximum load. 

 
2.56  Using only  Fig.  2.6, calculate  the maximum load in ten- 

sion  testing  of a 304 stainless-steel specimen with  an 
original diameter  of 6.0 mm. 

 

Observe from  Fig.  2.6 on p. 39 that necking begins  at 
a true  strain  of  about  0.4 for  304 stainless steel,  and 
that  Sut,true  is  about  900 MPa  (this  is  the location  of 

Hence  the maximum load is 
 

P = (Sut)(Ao) = (604)(2.827 × 10−5) 
 

or P  = 17.1 kN. The  following Matlab  code is helpful 
to investigate other parameters. 

 
n=0.4; 

Sut_true=900e6; 

A_0=pi*d0*d0/4; 

Sut=Sut_true/exp(n); 

P=Sut*A_0; 
 

 
2.57  Using the data given in the inside front cover, calculate 

the values of the shear modulus G for the metals listed 
in the table. 

 
The  important equation  is  Eq.  (2.24) which gives the 
shear modulus as 

 
E 

G = 
2(1 + ν) 

 
The following values can be calculated (mid-range val- 
ues of ν are taken as appropriate): 

 
Material E (GPa) ν G (GPa) 

Al & alloys 69-79 0.32 26-30 
Cu  & alloys 105-150 0.34 39-56 
Pb & alloys 14 0.43 4.9 
Mg & alloys 41-45 0.32 15.5-17.0 
Mo & alloys 330-360 0.32 125-136 
Ni & alloys 180-214 0.31 69-82 
Steels 190-200 0.30 73-77 
Stainless steels 190-200 0.29 74-77 
Ti & alloys 80-130 0.32 30-49 
W & alloys 350-400 0.27 138-157 
Ceramics 70-1000 0.2 29-417 
Glass 70-80 0.24 28-32 
Rubbers 0.01-0.1 0.5 0.0033-0.033 
Thermoplastics 1.4-3.4 0.36 0.51-1.25 
Thermosets 3.5-17 0.34 1.3-6.34 

 

 
2.58  Derive an  expression for  the toughness of a material 

represented   by  the  equation   σ   =  K (  + 0.2)
n   

and 
whose  fracture  strain  is denoted  as  f . 

 
Recall  that toughness is the area under  the stress-strain 
curve,  hence the toughness for this material  would be



12 

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently 

exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

 

 
 

 
 
 

 

  

 

2 =90
° 

  

 

 

Material K  (MPa) n 

1100-O Al 180 0.20 
Cu,  annealed 315 0.54 
304 Stainless, annealed 1300 0.30 
70-30 brass, annealed 895 0.49 

 

= 124 GPa.    The  modulus of resilience is  calcu- 304 Stainless, annealed 620 4389 

d from Eq. (2.5) on p. 34. For steel: 70-30 brass, annealed 348 2460 

 

S 

3 

= 

given by 

 
Toughness    = 

 

 
Z   f

 

 
 
 
σ d  

or a modulus of resilience for steel of 1.81 MN-m/m3. 
For copper,

0 Z   f 

= 
0 

 

 

K (  + 0.2)
n  

d  

2 

Modulus of Resilience =    
y

 
2E 

 
520 × 106

  2
 

2(124 × 109)

=   
 K   h 

n + 1 
( f + 0.2)

n+1 
− 0.2n+1

i
 

or  a  modulus  of  resilience  for  copper   of  1.09  MN- 
m/m3. 

Note  that  these values are slightly different  than  the

2.59  A  cylindrical specimen made  of  a brittle  material   50 
mm high  and with  a diameter  of 25 mm is subjected to 
a compressive force along  its axis.  It is found  that frac- 
ture takes place at an angle  of 45◦  under  a load  of 130 
kN. Calculate the shear  stress  and  the normal stress, 
respectively, acting  on the fracture  surface. 

 

Assuming that  compression takes  place  without fric- 
tion, note that two of the principal stresses will be zero. 
The  third  principal stress  acting  on  this  specimen is 
normal to the specimen and its magnitude is 

 

130, 000 
σ3  = − 

(π/4)(0.025)2   
= −264 MPa

 
 

The Mohr ’s  circle for this situation is shown below. 

values given in  the text.   This is  due  to the fact  that 
(a)  highly  cold-worked metals  such  as  these  have  a 
much  higher yield stress  than  the annealed  materials 
described in the text; and (b) arbitrary property values 
are given in the statement of the problem. 

 

2.61  Calculate the work done in frictionless compression of 
a solid  cylinder 40 mm  high  and  15 mm  in  diameter 
to a reduction in height  of 50% for the following mate- 
rials:   (a)  1100-O  aluminum; (b)  annealed  copper;   (c) 
annealed  304 stainless steel;  and  (d)  70-30 brass,  an- 
nealed. 

 

The work done is calculated from  Eq. (2.59) where  the 
specific energy,  u, is obtained  from  Eq. (2.57) on p. 73. 
Since  the reduction in height  is 50%, the final  height  is 
20 mm and the absolute  value  of the true strain  is 

   
40 
 

  = ln 
20 

= 0.6931

 

K and n are obtained  from Table 2.3 as follows: 
 

 
 
 

The fracture  plane  is oriented  at an angle  of 45◦, corre- 
sponding to a rotation of 90◦  on the Mohr’s  circle.  This 
corresponds to a stress  state on  the fracture  plane  of 
−σ = τ = 264/2 = 132 MPa. 

 

2.60  What  is  the  modulus of  resilience  of  a  highly  cold- 
worked piece  of steel with  a hardness of 280 HB?  Of 

 
 

 
u is then calculated from  Eq.  (2.57).  For  example, for 
1100-O aluminum, where K is 180 MPa and n is 0.20, u 

is calculated as

n+1 1.2

a piece of highly cold-worked copper  with  a hardness K            (180)(0.6931)   
u =          =                      = 96.6 MN/m

of 175 HB? n + 1 1.2

 

Referring to Fig. 2.22 on p. 57, the value  of c in Eq. (2.31) 
is approximately 3.2 for highly cold-worked steels and 
around 3.4 for cold-worked aluminum. Therefore,  ap- 
proximate  c  =  3.3  for  cold-worked  copper.     From 
Eq. (2.31), 

 

H        280                           2
 

 

The volume is calculated as 
 

V  = πr2l = π(0.0075)2(0.04) = 7.069 × 10−6  m3
 

 
The  work done  is the product of the specific work, u, 
and the volume, V . Therefore,  the results  can be tabu- 
lated as follows.

Sy,steel = 
3.2 

= 
3.2  

= 87.5 kg/mm
 

= 858 MPa  
u         Work

H        175                           2
 Material                               (MN/m3)    (Nm)

Sy,Cu = 
3.3 

= 
3.3  

= 53.0 kg/mm
 

= 520 MPa 
1100-O Al                           96.6             682

From   the  inside front  cover,   Esteel  =  200 GPa   and 
ECu 

late 



13 

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently 

exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

 

S 
= 

Cu,  annealed                                168            1186
 

2 

Modulus of Resilience =    
y

 
2E 

 
 
858 × 106

  2
 

2(200 × 

109) 

 
The  following Matlab  code can be used  to confirm re- 
sults:
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→ 

×  

y 

×            × 

h0=0.040; 

d0=0.015; 

hf=0.020; 

epsilon=log(h0/hf); 

K=180e6; 

n=0.20; 

u=K*epsilonˆ(n+1)/(n+1); 

2.64  In  a disk test performed on a specimen 50 mm  in  di- 
ameter  and  2.5 mm  thick,  the specimen fractures  at a 
stress of 500 MPa.  What was the load on it at fracture? 

 

Equation (2.22) is used  to solve  this  problem. Noting 
that σ = 500 MPa,  d = 50 mm  = 0.05 m, and  t = 2.5 

mm = 0.0025 m, we can write

V=pi*d0ˆ2/4*h0; 
Work=u*V; 

 

 
2.62  A tensile-test  specimen is  made  of  a  material   repre- 

 
 

 
Therefore 

2P 
σ =                P = 

πdt 

σπdt 

2

sented by the equation  σ = K(   + n)n.  (a) Determine 
the true strain  at which necking will begin.   (b) Show 
that it is possible for an engineering material  to exhibit 
this behavior. 

 

 
(a)  In  Section  2.2.4 on p. 40, it was  noted  that insta- 

bility, hence necking, requires the following con- 
dition to be fulfilled: 

 

dσ 
= σ 

(500      106)π(0.05)(0.0025) 
P =                                    = 98 kN. 

2 
 

The  following Matlab  code allows for variation in pa- 
rameters for this problem. 
 
d=0.050; 

t=0.0025; 

sigma=500e6; 

P=sigma*pi*d*t/2;

d  
 

Consequently, for this material  we have 
 

Kn (  + n)
n−1 

= K (  + n)
n

 

 
This is  solved as n  = 0; thus  necking begins  as 
soon as the specimen is subjected to tension. 

(b)  Yes, this behavior is possible. Consider a tension- 
test specimen that  has  been strained  to necking 
and then unloaded. Upon loading it again  in ten- 
sion, it will immediately begin  to neck. 

 

 
2.63  Take two  solid  cylindrical  specimens of equal  diame- 

ter, but different  heights.  Assume that both specimens 

 

2.65  In  Fig.  2.29a, let the tensile  and  compressive residual 
stresses both be 70 MPa,  and  the modulus of elasticity 
of the material  be 200 GPa  with  a modulus of resilience 
of 225 kN-m/m3. If the original length  in diagram (a) 
is 500 mm, what  should be the stretched  length  in dia- 
gram  (b) so that, when  unloaded, the strip  will be free 
of residual stresses? 

 

Note that the yield stress can be obtained  from Eq. (2.5) 
on p. 34 as 

 

 S
2 

Mod.  of Resilience = MR  = 
2E 

 

Thus,

are compressed (frictionless) by  the same  percent  re- 
duction, say 50%. Prove  that the final diameters will be 

 

Sy  = 
p

2
 
(MR)E = 

p
2
 

(225     103) (200     109)

the same.  

or Sy 

 

= 300 MPa.   The  strain  required to relieve  the

Identify the shorter cylindrical specimen with  the sub- residual stress is:

script  s and the taller one as t, and their original diam- σc         Sy
  70 × 106 300 × 106

eter as D.  Subscripts f and  o indicate final  and  origi- 
nal, respectively. Because both specimens undergo the 
same percent reduction in height, 

  =     +     =              +              = 0.00185 
E       E       200 × 109         200 × 109

 
 

Therefore,

 

htf 

 

hsf 
= 

   
lf 

            
    lf       

 
 

  = ln            = ln                      = 0.00185

hto hso lo                        0.500 m

 

and from volume constancy, 
 

2
 

 

Therefore,  lf   = 0.50093 m.  The following Matlab  code 
is helpful

 
 

 and htf 
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hto 

 
 
hsf 

hso 

  

D
t

o 

 
 

= 
D
t

f 

 
 
  

D

so 

  

2
 

= 
D
s

f 

 
s

i

g

m

a

_

c

=

7

0

e

6

; 

E

=

2

0

0

e

9

; 

M

R

=

2

2

5

e

3

; 

l

0

=

0

.

5

; 

Sy=(2*MR

*E)ˆ(0.

5); 
epsilon=
sigma_c/
E+Sy/E;

Because  Dto  = Dso, note from  these relationships that 
Dtf = Dsf . 

lf=l0*exp(epsilon);
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a 

T
ru

e
 s

tr
e
s
s
 (

M
P

a
) 

2.66  A  horizontal rigid bar  c-c  is  subjecting  specimen  a 

to tension  and  specimen b to frictionless compression 
such that the bar remains horizontal. (See the accompa- 
nying figure.) The force F is located at a distance  ratio 
of 2:1. Both specimens have an original cross-sectional 
area of 0.0001 m2  and  the original lengths  are a = 200 

mm and b = 115 mm.  The material  for specimen a has 
a  true-stress-true-strain  curve   of  σ  = (700 MPa) 0.5. 
Plot  the true-stress-true-strain curve  that the material 
for specimen b should have  for the bar to remain  hori- 
zontal. 

must  approach zero.    This  observation suggests that 
specimen b cannot  have  a true stress-true  strain  curve 
typical of metals,  and  that it will have  a maximum  at 
some strain.  This is seen in the plot of σb shown below. 
 
 

350 
 

 
280 

 

 
210

140 

a 
 

70 

F 

2                  1                                                                                       0 

c                                                             c 
 

x                                           b 

 
 
 
 
 
 
0         0.5        1.0        1.5        2.0        2.5 

Absolute value of true strain

 

 
From  the equilibrium of vertical forces and to keep the 
bar horizontal, we note that 2Fa = Fb. Hence,  in terms 
of true stresses and instantaneous areas, we have 

 

2σaAa  = σbAb 

 

From  volume constancy we also have, in terms of orig- 
inal  and final  dimensions 

 

AoaLoa = AaLa 

 

and 
AobLob = AbLb 

where  Loa = (0.200/0.115)Lob  = 1.73Lob.  From  these 
relationships we can show  that 

2.67  Inspect  the curve  that  you  obtained  in  Problem 2.66. 
Does a typical strain-hardening material  behave in that 
manner?  Explain. 

 
Based  on the discussions in Section  2.2.3, it is obvious 
that ordinary metals would not normally behave in this 
manner.    However, under  certain  conditions, the fol- 
lowing could  explain such behavior: 

 
• When  specimen b is heated to higher and  higher 

temperatures as deformation progresses, with  its 
strength  decreasing as x is increased further  after 
the maximum value  of stress. 

 

• In compression testing of brittle materials, such as 
ceramics,  when  the specimen begins  to fracture. 

 

• If  the  material   is  susceptible to  thermal   soften- 
ing,  then it can display such  behavior with  a suf-

σb  = 2 

  
  0.2   

 
 

0.115 
Kσa 

  
Lb 

 
 

La 
ficiently high  strain  rate.

 

Since  σa  = K  0.5  where  K  = 700 MPa,  we  can  now 
write   

0.4K 
    

Lb 

  
√  

 

2.68  Show  that you  can take a bent bar made  of an elastic, 
perfectly plastic  material  and  straighten it by  stretch- 
ing  it into the plastic  range.  (Hint:  Observe the events

σb  =  a 
0.115       La shown in Fig.  2.29.)

Hence,  for a deflection of x, 

  
0.4K 

        
0.115 − x 

   s 

 

 
   

0.2 + x 
 

 

 
The  series  of events  that  takes  place  in  straightening 
a bent bar by  stretching it can  be visualized by  start-

σb  = 
0.115 0.2 + x 

ln 
0.2 

ing  with  a stress distribution as in Fig.  2.29a on p. 64, 
which would represent  the unbending of a bent sec-

The true strain  in specimen b is given by 
   

0.115 − x 
 

 

tion.  As  we apply tension,  we algebraically add  a uni- 
form tensile stress to this stress distribution. Note  that 
the change  in the stresses is the same as that depicted

 b = ln 
0.115 in  Fig.  2.29d,  namely, the tensile  stress  increases  and 

reaches  the  yield stress,  Sy .    The  compressive stress
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By  inspecting the figure  in the problem statement,  we 
note  that  while  specimen a  gets  longer,   it  will  con- 
tinue exerting some force Fa. However, specimen b will 
eventually acquire  a cross-sectional area that will  be- 
come infinite as x approaches 115 mm, thus its strength 

is  first  reduced in  magnitude,  then  becomes  tensile. 
Eventually,  the  whole   cross  section  reaches  the  con- 
stant yield stress, Sy .  Because we now  have  a uniform 
stress distribution throughout its thickness, the bar be- 
comes straight and remains straight upon  unloading.



18 

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently 

exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 

 

y 

σ0
 

σ0
 

0 

y 

→ 

2 2 
2 

2 

2 

2 2 2 

2.69  A bar  1 m long  is  bent and  then  stress  relieved.  The 
radius of curvature to the neutral  axis  is 0.50 m.  The 
bar is 25 mm  thick  and  is made  of an elastic,  perfectly 

the maximum shear  stress  criterion as well.   Equation 
(2.39) on p. 67 gives

plastic   material   with   Sy    = 500 MPa  and  E   = 207 
GPa.   Calculate the length  to which this bar should be 

(σ1  − σ2) + (σ2  − σ3) + (σ3  − σ1) = 2S2

stretched  so that, after unloading, it will become  and 
remain  straight. 

Now consider a new  stress  state where  the principal 
stresses are

 

A review of  bending theory  from  a solid   mechanics 
textbook  is  necessary for  this  problem.  In  particular, 
it should be recognized that when  the curved bar be- 
comes  straight, the engineering strain  it undergoes is 
given by the expression 

 

t 

1  = σ1  + p 

2  = σ2  + p 

σ3  = σ3  + p 

which represents  a new loading with  an additional hy- 
drostatic  pressure, p.   The  distortion-energy criterion 
for this stress state is

e = 
2ρ                                                                   (σ0            0    2                               2                               2

1 − σ2) + (σ0  − σ0 ) + (σ0  − σ0 ) = 2S2

 
where  t is the thickness and  ρ is the radius to the neu-                or 
tral axis.  Hence  in this case, 

2           3                  3           1                   y 
 

 
 
2                                                                    2

(0.025) 
e = 

2(0.50) 

 
= 0.025 

2Sy       =  [(σ1  + p) − (σ2  + p)] 

+ [(σ2  + p) − (σ3  + p)] 

+ [(σ3  + p) − (σ1  + p)]
Since Sy  = 500 MPa and E = 207 GPa,  we find that the 
elastic limit  for this material  is at an elastic strain  of 

 
which can be simplified as

e = 
Sy 

E 

500 MPa 
= 

207 GPa 

 
= 0.00242 

 
(σ1  − σ2) 

 
+ (σ2  − σ3) 

 
+ (σ3  − σ1) 

 

= 2S2

 

which is smaller than  0.025.  Therefore,  we know that 
the bar  must  be loaded  in  the plastic  range.   Follow- 
ing  the description in Answer 2.68 above, the strain re- 
quired to straighten the bar is twice the elastic limit,  or 

 
e = (2)(0.00242)  = 0.0048 

 
or 

which is the original yield criterion. Hence,  the yield 
criterion is unaffected  by the superposition of a hydro- 
static pressure. 

 

2.71  Give two different  and  specific examples in which the 
maximum-shear-stress and the distortion-energy crite- 
ria give  the same answer. 

 

In  order  to obtain  the same  answer  for  the two  yield

lf − lo   
= 0.0048              l 

lo                                                      f 
 

or lf  = 1.0049 m. 

= 0.005lo + lo 

 

criteria,  we  refer to Fig.  2.32 on p. 70 for plane  stress 
and  note the coordinates at which the two  diagrams 
meet.  Examples are:  simple tension,  simple compres-

The following Matlab  code is helpful. 

 
l=1; 

rho=0.5; 

Sy=500e6; 

E=207e9; 

t=0.025; 

epsilon=t/2/rho; 

epsilon_y=Sy/E; 

epsilon_b=2*epsilon_y; 

lf=l/(1-epsilon_b); 
 

 
2.70  Assume that a material  with  a uniaxial yield strength 

Sy   yields under  a stress  state of principal stresses  σ1, 
σ2, σ3, where  σ1   > σ2   > σ3.  Show  that the superpo- 

sition  of a hydrostatic stress p on this  system  (such  as 
placing the specimen in a chamber  pressurized with  a 
liquid) does not affect yielding. In other words, the ma- 
terial will still  yield according to yield criteria. 

 

This solution considers the distortion-energy criterion, 
although the same derivation could  be performed with 
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sion,  equal  biaxial tension,  and  equal  biaxial compres- 
sion.  Thus, acceptable  answers would include (a) wire 
rope, as used on a crane to lift loads; (b) spherical pres- 
sure vessels,  including balloons and gas storage tanks; 
and (c) shrink fits. 

 

2.72  A thin-walled spherical shell  with  a yield strength  Sy 

is subjected to an internal pressure p. With appropriate 
equations,  show  whether  or not the pressure required 
to yield this shell depends on the particular yield crite- 
rion used. 

 

Here  we have  a state of plane  stress  with  equal  biax- 
ial  tension.   The  answer  to Problem 2.71 leads  one to 
immediately conclude that  both  the maximum  shear 
stress and distortion energy  criteria  will give  the same 
results.  We will now demonstrate this more rigorously. 
The principal membrane  stresses are given by 

 
pr 

σ1  = σ2  = 
2t

 

 

and 
σ3  = 0
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y 

y 

y 

3   σ            2 

E 

  2 
0 

E 

Using the maximum shear-stress criterion, we find that 
 

σ1  − 0 = Sy. 
 

Hence 
2tSy

 

Since  all the quantities are positive (note that in order 
to produce a tensile  membrane  stress,  the pressure is 
positive as well),   the longitudinal strain  is  finite  and 
positive. Thus the cylinder becomes longer  when pres- 
surized, as it can also be deduced intuitively.

p = 
r

Using the distortion-energy criterion, we have 
 

(0 − 0)2  + (σ2  − 0)2  + (0 − σ1)2   = 2S2
 

 

Since  σ1   = σ2, then this  gives σ1   = σ2   = Sy ,  and  the 
same expression is obtained  for pressure. 

 

2.73  Show  that, according to the distortion-energy criterion, 
the yield strength  in plane  strain  is 1.15Sy , where Sy  is 
the uniaxial yield strength  of the material. 

2.76  A round, thin-walled tube is subjected to tension in the 
elastic  range.  Show  that both the thickness and the di- 
ameter decrease as tension  increases. 

 
The stress state in this case is σ1, σ2  = σ3  = 0. From  the 
generalized Hooke’s law equations given by Eq. (2.34), 
and  denoting the axial  direction as 1, the hoop  direc- 
tion as 2, and the radial direction as 3, we have for the 
hoop strain:

 

A plane-strain condition is shown in Fig.  2.35d, where 
σ1   is  the  yield stress  of  the  material   in  plane  strain 
(S 0 ), σ3  is zero,  and   2   = 0.  From  Eq.  2.43b, we find 

 
 2  = 

 

1                                         ν   σ1 

E 
[σ2  − ν (σ1  + σ3)] = − 

E

that σ2   = σ1/2.  Substituting these into the distortion- 
energy  criterion given by Eq. (2.37), 

Therefore,  the diameter  is negative for a tensile  (posi- 
tive)  value  of σ1.  For the radial strain,  the generalized 
Hooke’s law gives

 

 
 

and 

σ1 
σ1  − 

2 

2 

+ 
  σ1

 

2 
−  

   
+ (0 − σ1)2   = 2S2

 
 

1 
3  =    [σ3  − 

 

 
ν (σ1 

 

 
+ σ2)] = 

 
νσ1 

− 
E

2 
1   = 2Sy

 
2 

hence 
2 

σ1  = √
3 

Sy  ≈ 1.15Sy
 

 

2.74  What would be the answer  to Problem 2.73 if the max- 
imum shear stress criterion were used? 

 

Because    σ2     is   an   intermediate   stress    and    using 
Eq. (2.38) on p. 67, the answer  would be 

 

σ1  − 0 = Sy. 
 

Hence,  the yield stress in plane  strain  will be equal  to 
the uniaxial yield stress, Sy . 

 

2.75  A closed-end, thin-walled cylinder of original length 
l thickness t, and  internal radius r is  subjected  to an 
internal  pressure p.    Using the  generalized Hooke’s 
law  equations,  show  the change,  if any,  that occurs  in 
the length  of this  cylinder when  it is pressurized. Let 
ν = 0.25. 

 

A closed-end, thin-walled cylinder under internal pres- 
sure is subjected to the following principal stresses: 

 

Therefore,  the radial strain is also negative and the wall 
becomes thinner  for a positive value  of σ1. 

 
2.77  Take a long  cylindrical balloon and, with  a thin felt-tip 

pen, mark  a small  square on it. What will be the shape 
of this square after you blow up the balloon,  (a) a larger 
square; (b) a rectangle  with  its long  axis  in the circum- 
ferential  direction; (c) a rectangle  with  its long  axis  in 
the longitudinal  direction; or (d)  an ellipse?   Perform 
this  experiment, and,  based  on your  observations, ex- 
plain the results,  using appropriate equations.  Assume 
that the material  the balloon is made up of is perfectly 
elastic  and  isotropic and  that this  situation represents 
a thin-walled closed-end cylinder under  internal pres- 
sure. 

 
This is  a simple graphic way  of  illustrating the gen- 
eralized Hooke’s law  equations.   A balloon is a read- 
ily  available and economical method  of demonstrating 
these stress  states.  It is also  encouraged to assign the 
students  the task  of predicting the shape  numerically; 
an example of a valuable experiment involves partially 
inflating the balloon,  drawing the square, then expand- 
ing  it further  and  having the students  predict  the di-

pr 
σ1  =  

2t 
;        σ2  =

 

pr 
;    σ3  = 0 

t 

mensions of the square. 

Although not as readily available, a rubber tube can be

where  the subscript 1 is  the longitudinal  direction, 2 
is the hoop  direction, and  3 is the thickness direction. 
From  Hooke’s law given by Eq. (2.34) on p. 66, 

 

1
 

used  to demonstrate the effects of torsion  in a similar 
manner. 

 

2.78  Take a cubic  piece  of metal  with  a side  length  lo  and

 1      = [σ1  − ν (σ2  + σ3)] deform  it plastically to the shape  of a rectangular par- 
allelepiped of dimensions l1, l2, and l3. Assuming  that

1  
   

pr 
= 

1   pr         
 

 
−         + 0 the material   is  rigid and  perfectly plastic,   show  that
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E    2t     3     t 
 pr 

= 
6tE 

volume constancy requires that the following expres- 
sion be satisfied:   1 +  2 +  3  = 0.
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o 
r 

The  initial volume and  the final  volume are constant, 
so that 

l1l2l3 

According to the distortion-energy criterion and  refer- 
ring  to Eq.  (2.53) on p. 72 for effective  stress,  we find 
that

lololo = l1l2l3     → = 1 
lololo  

1/2

Taking the natural  log of both sides, 
  1   

   
σ̄    =   √

2 

 

σ1  − 
σ1 

  2 

2 
+ 

  σ1 
  2

 

2 

  

+ (σ1)
2

  
l1l2l3 

 
 

ln 
 

= ln(1) = 0
   1       1      

1 

 1/2

lololo 

 

since ln(AB)  = ln(A) + ln(B), 

=   √
2 

1 

+   + 1        σ1 
4     4 

  √
3 
!    √

3

   
l1 

 
 

ln 

 

 
+ ln 

   
l2 

  
 

 
+ ln 

   
l3 

 
 
= 0 

=   √
2 

√
2    

σ1  =  
2  

σ1

lo                       lo                       lo 

 

From  the definition of true strain  given by Eq. (2.9) on   
l1 

  

Note  that for this case  3  = 0. Since  volume constancy 
is maintained during plastic  deformation, we also have 
 3   = − 1.  Substituting these into Eq.  (2.54), the effec-

p. 36, ln 
l0 

=  1, etc., so that 

 
 1 +  2 +  3  = 0. 

tive strain  is found  to be 
 

 ̄  = 

 

   
  2 
√

3    
 1

2.79  What  is the diameter  of an originally  40-mm-diameter 
solid  steel ball  when  the ball  is subjected  to a hydro- 
static pressure of 2 GPa? 

 

From  Eq. (2.47) on p. 71, and  noting  that, for this case, 
all  three  strains   are  equal  and  all  three  stresses  are 
equal to −p (accounting for the fact that a positive pres- 
sure is equivalent to a negative stress), 

   
1 − 2ν 

 
 

2.81  (a)  Calculate the  work done  in  expanding a  2-mm- 
thick  spherical shell  from a diameter  of 100 mm to 150 
mm,  where  the shell  is  made  of a material  for  which 
σ = 200 + 50 0.5 MPa.  (b) Does your  answer  depend on 
the particular yield criterion used?  Explain. 

 
(a)  For this case, the membrane  stresses are given by 

 
pt 

σ1  = σ2  = 
2t

3  = 
E        

(−3p)
  

and the strains  are

where  p is the hydrostatic pressure. Thus, from the in- 
side front cover, ν = 0.3 and E = 200 GPa,  so that 

 
 1  =  2  = ln 

   
fr 

  

r

 

  = 

  
1 − 2ν 

 

 
E 

 
(−p) = 

   
1 − 0.6 

 
 

200 

 
(−2) 

o 
 

Note  that  we  have  a balanced (or  equal)  biaxial 
state of plane stress. Thus, the specific energy  (for 
a perfectly-plastic material) will, according to ei-

or    = −0.004. Therefore 
   

Df 

 
 

ln 
Do 

 
 
= −0.004 

ther yield criteria,  be 

 
u = 2σ1 1  = 2Sy  ln 

 
   

rf 

  

r

 

Solving for Df , 
 

Df  = Doe−0.004  = (40)e−0.004  = 39.84 mm. 

o 
 

The work done will be, according to Eq. (2.59) on 
p. 73,

 
The following Matlab  code is useful. 

W    =  (Volume)(u) 
  

 
  

rf 

  

 
nu=0.3; 

E=200e9; 

=    
 
4πr2to

 
 

 
=  8πSyr

2
 

2Sy  ln 
o 

  
rf
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r do=0.040; 

p=2e9; 

epsilon=-(1-2*nu)/E*p; 

df=do*exp(epsilon); 

 
2.80  Determine the  effective  stress  and  effective  strain  in 

plane-strain compression according to the distortion- 
energy  criterion. 

o to ln 
o 

 

Using the pressure-volume method  of work, we 
begin  with  the formula 

Z 

W =    p dV 

 
where V  is the volume of the sphere.  We integrate 
this equation  between the limits Vo  and Vf , noting

Referring to Fig.  2.31d, note that, for this  case, σ3   = 0 

and σ2  = σ1/2, as can be seen from  Eq. (2.45) on p. 70. 

that  

2tSy 
p = 

r
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r 
2

 

o 
o 

o 

4 

= 

= 

× 

V 

and 
 

 
so that 

 
4πr3 

V  = 
3 

Obtain  an  expression  for  the  force  F  versus  piston 
travel  d up to d = 10 mm. 
 

The total force, F , on the piston  will be

dV = 4πr2 dr 

Also, from volume constancy, we have 
 

t =  
 o to 

r2
 

Combining these expressions, we obtain 

 

F  = Fw  + Fm, 
 
where  the subscript w denotes  the workpiece and  m 

the  matrix.   As   d increases,   the  matrix pressure in- 
creases,  thus  subjecting the  slug   to  transverse com- 
pressive stresses  on its circumference.  Hence  the slug 
will be subjected  to triaxial compressive stresses,  with

W = 8πSyr
2to

 

Z rf  dr 
= 8πSyr2to ln 

  
rf 

 
 σ2  = σ3. Using the maximum shear-stress criterion for

ro       
r ro                              simplicity, we have

which is the same expression obtained  earlier.  To 
obtain  a numerical answer  to this  problem,  note 
that Sy  should be replaced  with  an average  value 
S̄y . Also note that  1  =  2  = ln(150/100) = 0.4055. 
Thus, 

 

50(0.4055)1.5 

 
σ1  = σ + σ2 

 
where σ1  is the required compressive stress on the slug, 
σ is the flow  stress of the slug  material  corresponding 
to a given strain, and given as σ = 600 0.4, and σ2  is the 
compressive stress due to matrix pressure.

S̄y  = 200 + 
1.5 

= 208.6 MPa 
The initial volume of the slug  is equal to

Hence  the work done is 
 

π             2                                                        5       3

 

W    =   8πS̄yr2to ln 

  
rf 

  

ro
 

Vs  = 
4 

(0.025)  (0.025) = 1.227 × 10−    m

 

=  8π(208.6 × 106)(0.1)2(0.001) ln(75/50) 
and the volume of the cavity when  d = 0 is 
 

π
=  21.26 kN-m 

 

(b)  The  yield criterion used  does not matter because 

Vco  = (0.050)2(0.025) = 4.909     10−5 
4

this  is  equal  biaxial tension;   see  the  answer   to 
Problem 2.71. 

The volume of the matrix at any value  of d is then 
 

π             2                                                              −5

Vm      = (0.050)  (0.025 − d) − 1.227 × 10

2.82  A cylindrical slug  that has a diameter  of 25 mm and is 
25 mm high  is placed at the center of a 50-mm-diameter 
cavity in a rigid die (see the accompanying figure). The 
slug  is surrounded by a compressible matrix, the pres- 

 

=  3.682 × 10−5  − 0.001963d 
 
from which we obtain

sure of which is given by the relation 
 

∆V 

∆V 

Vom 

Vom − Vm 

Vom 

−5                                      −5

pm = 150 
om 

MPa (3.682  × 10     )  − (3.682  × 10      − 0.001963d) 

3.682 × 10−5

where m denotes matrix and Vom is the original volume 
of the compressible matrix. Both the slug  and  the ma- 
trix are being  compressed by a piston  and without any 
friction. The  initial pressure of the matrix is zero,  and 
the slug  material  has  the true-stress-true-strain curve 
of σ = 600 0.4. 

 
F 

=  53.33d 
 
Note  that  when  d  = 0.01875 m,  the  volume of  the 
matrix becomes  zero.    Therefore,   the  matrix volume 
is still  positive in  the bounds defined  by  the problem 
(d  < 0.010).   The  matrix pressure, hence  σ2,  is  now 
given by

σ2  = 150 
∆V 

= 150(53.33d) = 8000d 
V
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25 mm 

 

 
 
 

d 
 
 

 
25 mm 

 

The absolute value  of the true strain in the slug  is given 
by 

   0.025   
  = ln                  , 

0.025 − d 

with  which we can determine  the value  of σ for any d. 
The cross-sectional area of the workpiece at any d is

Compressible 
matrix 

50 mm  

Aw  = 
(π/4)(0.025)2(0.025) 

= 
0.025 − d 

1.227 × 10−5
 

0.025 − d
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d 

(m) 

0 

Aw 

(m2) 
4.908 × 10−4

 

  

 
0 

σ 

(MPa) 

0 

F 

(kN) 

0 

 
 

2.84 

Force = (1.15)(696)  = 800 kN. 

 
Obtain expressions for  the  specific energy   for  a ma- 

0.002 5.335 × 
10−4

 

0.0834 222 150  terial   for  each  of  the  stress-strain  curves   shown in 

0.004 5.843 × 
10−4

 

0.174 298 237  Fig.  2.7, similar to those shown in Section  2.12. 

0.006 6.458 × 
10−4

 

0.274 357 325   
0.008 7.218 × 

10−4
 

0.386 409 421   
0.010 8.180 × 

10−4
 

0.511 458 532  
Z   1 

 

  
1 

0 

1 

F
o
rc

e
 (

k
N

) 

3 

y 

2 

and that of the matrix is The cross-sectional area on which the force is acting  is

π             2 
Am = 

4 
(0.050)

 

 

− Aw  = 1.963 × 

10−3
 

 

− Aw 

 

Area =  
(0.025) 

0.003 

 
= 5.208 × 10−3  m2

The required compressive stress on the slug  is 
 

σ1  = σ + σ2  = σ + 

8000d. 
 

We may  now write the total force on the piston  as 
 

F  = Aw  (σ + 8000d) + Am8000d MN 
 

The following data gives some numerical results: 

According to the maximum shear-stress criterion given 
by  Eq.  (2.41)  on  p.  69,  we  have  σ1    =  σf    (because 
σ3  = 0), and thus 
 

Force = (133.6)(5.208 × 10−3) = 696 kN. 
 

According   to   the   distortion   energy     criterion  in 
Eq. (2.46) on p. 71, we have σ1  = 1.15σf , or

 
 
 
 
 
 

 
Equation (2.56) on p. 72 gives the specific energy  as 

 

 
And the following plot shows  the desired  results. 

 
600 

u =         σ d  
0 

1.  For  a  perfectly-elastic material   as  shown in  Fig 
2.7a, this expression becomes

 

 
400 

Z   1 

u = 
0 

 
E  d  = E 

   
2 
    1 

                = 
2    

0 

E     
2

 

2

 
200 

 

2.  For a rigid, perfectly-plastic material  as shown in 
Fig.  2.7b, this is 

Z   1
0

0      2      4      6      8     10 
Displacement (mm) 

 
 

2.83  A specimen in the shape of a cube 25 mm on each side 
is being  compressed without friction in a die cavity, as 

u =      Sy  d  = Sy  ( )
  1  = Sy   1 

0 
 

3.  For  an  elastic,  perfectly plastic   material,   this  is 
identical to an elastic material  for   1  < Sy/E, and 
for  1  > Sy /E it is

shown in  Fig.  2.31d,  where  the  width of  the  groove 
is  30 mm.   Assume that the linearly strain-hardening 
material  has the true-stress-true-strain curve  given by 

Z   1 

u    = 
0 

 

σ d  = 
 

2
 

Z Sy /E 

 
0 

 

E  d  + 

Z   1 

 
Sy /E 

 

Sy d 

σ  = 70 + 30   MPa.    Calculate the compressive force E 
  

Sy 

 
 

=                + S
 Sy 

 

required when  the height  of the specimen is 3 mm, ac- 
cording to both yield criteria. 

2     E             
y

 

S2                            S2 

1 − 
E 
  

 

 
Sy  

 

 

Note  that the volume of the specimen is constant  and 
=   

2E  
+ Sy   1 − 

y   
= Sy 

E 
 1 − 

2E

can be expressed as 
 

(0.025)3   = (h)(x)(x) 

4.  For a rigid, linearly strain  hardening material,  the 
specific energy  is

 

where  x is  the lateral  dimension assuming the spec- 
Z   1 

u =      (S
 

 
+ E   ) d  = S   

 Ep  2 
+

imen  expands uniformly  during  compression.  Since 
h  = 3 mm,  we have  x  = 72.17 mm.   Thus, the speci- 
men touches the walls and hence this becomes a plane- 

strain  problem (see Fig.  2.31d).  The  absolute  
value  of the true strain  is given by Eq. (2.10) on 
p. 36 as 
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1 

− 

− 

− 

y            p                       y   1 
0 

 

5.  For an elastic, linear strain hardening material,  the 
specific energy  is  identical to an  elastic  material 
for  1  < Sy /E and for  1  > Sy /E it is

 
  = ln 

   
25 
 

 
 
= 2.12 

Z   1  
  

u    = 
0 

 

Sy  + Ep 
Sy 

  
 

   d 
E

3 
 

We can now determine  the flow  stress, σf , of the mate- 

Z   1  
  

=          Sy 

0 

Ep 

 
 

1 
E 

 
+ Ep    d 

rial at this strain  as 
 

σf  = 70 + 30(2.12) = 133.6 MPa 

 

=  Sy 
Ep 

 
 

1 
E 

 

 1 + 
Ep  2

 

2
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y 

2 2 2 

σ1 

2 

l 

σ1 

3 

+ 

2.85  A material   with   a  yield strength   of  75  MPa  is  sub- 
jected to principal (normal) stresses of σ1, σ2  = 0, and 
σ3   = −σ1/2.  What  is the value  of σ1  when  the metal 
yields according to the von Mises criterion? 

 

The  distortion-energy criterion, given by Eq.  (2.39) on 

2.87  A  50-mm-wide, 1-mm-thick strip  is  rolled   to  a  final 
thickness of 0.5 mm.   It is noted  that the strip  has  in- 
creased  in  width to 51 mm.   What  is the strain  in  the 
rolling direction? 

 

The thickness strain  is given by Eq. (2.10) on p. 36 as

p. 67, is 
 

(σ1  − σ2) 

 
 
+ (σ2  − σ3) 

 
 
+ (σ3  − σ1) 

 

 

= 2S2
 

 
 t = ln 

   
l 
  

lo 

 
= ln 

   
0.5 mm 

 
 

1 mm 

 
= −0.693.

 

Substituting Sy   = 75 MPa  and  σ1,  σ2   = 0 and  σ3   = 

−σ1/2, we have 

 

The width strain  is 
  

l 
 

 

 
   

51 mm 
 

 

2(75)2  = (σ1)
2 
+ 

 
− + 

 
− 

σ1 
 2 

− σ1
 

 

= 3.5σ2 

 w  = ln 
o 

= ln 
50 mm 

= 0.0198.

2                 2                                               
Therefore,   from  Eq.  (2.49)  on  p.  71, the strain  in  the

thus,  σ1   = 56.69 MPa.   If  Sy   = 75 MPa  and  σ1,  σ2   = 
σ1/3 and σ3  = −σ1/2 is the stress state, then 

rolling (or longitudinal) direction is   l = 0 − 0.0198 + 

0.693 = 0.6732.

 

2(75)2       =  
 

σ1  − 
2       

σ1         σ1     
2 

3  
− 

2 
2

 

The following Matlab  code is useful. 
 
w0=0.050;

+ 
 
− 

σ1  
− σ  

 
 

= 2.72σ2

2        
1                            1

 

Thus, σ1  = 64.3 MPa.  Therefore,  the stress level  to ini- 
tiate yielding actually increases  when  σ2  is increased. 

 

2.86  A steel plate is 100 mm × 100 mm × 10 mm thick.  It is 
subjected  to biaxial tension  σ1   = σ2   = 350 MPa,  with 
the stress in the thickness direction of σ3  = 0. What  is 
the change  in volume using Hooke’s law? 

 

From  the inside front cover, it is noted that for steel we 
can use E = 200 GPa  and ν = 0.30. For a stress state of 
σ1  = σ2  = 350 MPa  and σ3  = 0, Equation (2.48) gives: 

 

∆  =   
1 − 2ν 

(σ   + σ  + σ ) 
E         

x        y           z
 

t0=0.001; 

tf=0.0005; 

wf=0.051; 

et=log(tf/t0); 

ew=log(wf/w0); 

el=0-et-ew; 

 
2.88  An  aluminum alloy  yields at a stress of 50 MPa  in uni- 

axial  tension.  If this material  is subjected to the stresses 
σ1  = 25 MPa,  σ2  = 15 MPa  and  σ3  = −26 MPa,  will it 
yield? Explain. 

 

According to the maximum  shear-stress criterion, the 
effective stress is given by Eq. (2.52) on p. 72 as:

=   
1 − 2(0.3) 
200 GPa 

 

[(350 MPa) + (350 MPa] 
σ̄ = σ1  − σ3  = 25 − (−26) = 51 MPa

=   = 0.0014 
 

Since  the  original volume is  (100)(100)(10)  =  100,000 

However, according to the distortion-energy criterion, 
the effective stress is given by Eq. (2.53) as:

mm3,  the stressed  volume is 100,140 mm3,  or the vol- 
ume change  is ∆V  = 140 mm3. 

For  copper,  we have  E  = 125 GPa  and  ν = 0.34.  Fol- 

  1   q
 

σ̄ = √
2    

(σ1  −
 

or 

σ2)
2  

+ (σ2  − σ3)
2  

+ (σ3  − σ1)
2

lowing the same  derivation, the dilatation for copper 
is 0.0018; the stressed volume is 100,180 mm3 and thus 
the change  in volume is ∆V  = 180 mm3. 

 
σ̄ = 

r 
(25  − 15)2  + (15  + 26)2  + (−26 − 25)2 

2

The  following Matlab  code  is  helpful.  Note  that  the or  σ̄ = 46.8 MPa.    Therefore,   the  effective  stress  is

values of E and ν need to be changed for each material 
considered. 

 

l1=0.1; 

l2=0.1; 

t=0.0

10; 

s1=35

0e6; 

s2=35
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0e6; s3=0; 

nu=0.30; 

E=200e9; 

Delta=(1-2*nu)/E*(s1+s2+s3); 

V=l1*l2*t; 

V2=V*(1+Delta); 

DeltaV=V2-V; 

higher than  the yield stress  for  the maximum shear- 
stress criterion, and  lower  than the yield stress for the 
distortion-energy  criterion.   It  is  impossible to  state 
whether   or  not  the  material   will yield at  this  stress 
state.   An  accurate  statement  would be that  yielding 
is imminent, if it is not already occurring. 

The following Matlab  code is helpful. 
 

Sy=50e6; 

s1=25e6; 

s2=15e6; 

s3=-26e6; 

s_MSS=s1-s3; 

se=1/((2)ˆ0.5)* 

((s1-s2)ˆ2+(s2-s3)ˆ2+(s3-s1)ˆ2)ˆ0.5;
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− 

× 

2.89  A pure  aluminum cylindrical specimen 25 mm  in  di- 
ameter and  25 mm  high  is being  compressed by drop- 
ping a weight of 1000 N on  it from  a certain  height. 

In the first step, we note that ho  = 100 mm and h1  = 70 

mm, so that from Eq. (2.1) on p. 31,

After  deformation, it is found  that the temperature  rise 
in the specimen is 50◦C. Assuming no heat loss and no 

e1  = 
h1   − ho 

ho 
= 

70 − 100
 

100 
= −0.300

friction, calculate  the final  height  of the specimen. Use 
the following information for  the material:   K  = 205 

and from Eq. (2.9) on p. 36,

MPa,  n = 0.4, ρ = 7800 kg/m3, and cp  = 450 J/kg-K. 
  

h1 

            
 70 

 
 

= ln             = ln              =
 

0.357

 
This problem uses  the same  approach as in  Example 

1                   
ho 100        

−

2.7 on p. 76. The volume of the specimen is Similarly, for the second  step where  h1   = 70 mm  and 
h2  = 30 mm,

πd2h 
V  =        = 

4 

π(0.025)2(0.025) 

4 

 

= 1.227 × 10−5  

m3
 

 
e2  = 

h2   − h1 

h1 
= 

30 − 70 
=   0.571 

70

The expression for heat is given by 
 

Heat     =  cpρV ∆T 

 
 2  = ln 

   
h2 

  

h1 

 
= ln 

   
30 
 

 

70 

 
= −0.847

=  (450)(7800)(1.227 × 10−5)(50) 

=  2150 J. 

Note  that if the operation were conducted in one step, 
the following would result:

 

Since, ideally, from Eq. (2.59), e = 
h2   − ho 

ho 
= 

30 − 100 
100 

 

= −0.7

      n+1
    

h               
  

30 
 

Heat = Work    =    V u = V 
K 

 
   2                          

n + 1  
1.4

 

  = ln 
ho 

= ln 
100 

= −1.204

 

 
 

Solving for  , 

=    
 
1.227     10−5

  (205)   
 

1.4 
As  was  shown in Problem 2.49, this  indicates that the 
true strains  are additive while the engineering strains 
are not. 

The  following Matlab  code  can  be  used  to  consider

 1.4 = 
          (1.4)(2150)               

= 

1.1966 
(1.227 × 10−5) (205 × 106) 

 

Therefore,    = 1.13. Using absolute  values, we have 

other parameters. 
 
ho=0.1; 

h1=0.07;

  
ho 

 
 

ln 
hf 

 
= ln 

  
25 mm 

 
 

hf 

 
= 1.13 

h2=0.03; 

e1=(h1-ho)/ho; 

eps1=log(h1/ho);

Solving for hf  gives hf  = 8.02 mm. 

The following Matlab code confirms the answer  and al- 
lows  investigation of alternate values: 

 
do=0.025; 

ho=0.025; 

W=1000; 

DT=50; 

K=205e6; 

n=0.4; 

e2=(h2-h1)/h1; 

eps2=log(h2/h1); 

etot=(h2-ho)/ho; 

eps_tot=log(h2/ho); 

 
2.91  Suppose the cylinder in Problem 2.90 has an initial di- 

ameter of 50 mm and is made of 1100-O aluminum. De- 
termine the load required for each step. 

 

From  volume constancy, we calculate

rho=7800; 
r 

ho
 

r 
100
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2 × 

cp=450; 

V=pi*doˆ2*ho/4; 

d1  = do = 50 
h1 

= 59.76 mm 
70

r 
h           

r 
100

H=cp*rho*V*DT; 
eps=((1+n)*H/V/K)ˆ(1/(1+n)); 

d2  = do 
 o  

= 50 
h2 

= 91.29 mm 
30

hf=ho/exp(eps); 
 

 
2.90  A ductile metal cylinder 100 mm high  is compressed to 

a final  height  of 30 mm  in two steps between friction- 
less platens.   After  the first step the cylinder is 70 mm 

Based on these diameters the cross-sectional area at the 
steps is calculated as: 

A   = 
π 

d2  = 2.805 × 10−3  m2 
1         

4  
1

 

π

high.  Calculate both the engineering strain and the true 
strain  for both steps, compare  them, and  comment  on 

A2  = d2  = 6.545     10−3  m2
 

4

your  observations. As  calculated in Problem 2.90,  1  = 0.357 and   total = 
1.204.  Note  that for 1100-O aluminum, K  = 180 MPa
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A 

and  n = 0.20 (see Table 2.2 on p. 38) so that Eq.  (2.11) 
on p. 36 yields 

 

σ1  = 180(0.357)0.20  = 146.5 MPa 

(b)  To determine  the ultimate tensile  strength  for the 
material,  realize  that the strain  at necking is equal 
to the strain  hardening exponent,  or    = n. There- 
fore,

σ2  = 180(1.204)0.20  = 186.8 MPa 

Therefore,  the loads  are calculated as: 

 
σult 

 

= K(n)n = 114(0.22)0.22  = 81.7 MPa

 

P1  = σ1A1  = (146.5) 
 
2.805 × 10−3

  
= 411 kN 

 

P2  = (186.8)(6.545 × 10−3) = 1223 

kN The following Matlab  code is helpful. 

Note  that  this  is  the  true  stress  whereas   Sut  is 
based  on  engineering stress.    Therefore,   the ap- 
proach  in  Example 2.1 on  p.  41 needs  to be fol- 
lowed.   The  cross-sectional area  at  the  onset  of 
necking is obtained  from 
   

 Ao   

 

ho=0.1; 

h1=0.07; 

h2=0.03; 

e1=(h1-ho)/ho; 

ln 
 

 
Consequently, 

Aneck 

= n = 0.22

eps1=log(h1/ho); 

e2=(h2-h1)/h1; 

eps2=log(h2/h1); 

etot=(h2-ho)/ho; 

eps_tot=log(h2/ho); 

do=0.050; 

K=180e6; n=0.20; 

d1=do*(ho/h1)ˆ0.5; 

d2=do*(ho/h2)ˆ0.5; 

A1=pi/4*d1*d1; 

Aneck = Aoe−0.22
 

 

and the maximum load is 
 

P = σA = σultAneck. 
 

Hence, 
 

P = (81.7)(Ao)e−0.22  = 65.6Ao 

 

Since Sut = P/Ao, we have 
 

65.6Ao
A2=pi/4*d2*d2; 
sigma1=K*(abs(eps1)ˆn); 
sigma2=K*(abs(eps_tot)ˆn) 

Sut = 
o 

= 65.6 MPa.

P1=sigma1*A1; 

P2=sigma2*A2; 

 
2.92  Determine the  specific energy   and  actual  energy   ex- 

pended for the entire process described in the previous 
two problems. 

 

From   Eq.  (2.57)  on  p.  73  and  using  total   =  1.204, 
K = 180 MPa  and n = 0.20, we have 

The following Matlab  code is helpful. 
 
n=0.22; e=0.2; 

sigma=80e6; 

K=sigma/(eˆn); 

sigma_ut=K*nˆn; 
Sut=sigma_ut*exp(-n); 

 
2

K  n+1 
u = 

n + 1 

(180)(1.204)1.2 
= 

1.2 

 
= 187 MPa 

2.94  The area of each face of a metal cube is 5 cm  , and  the 
metal  has  a shear  yield strength  k of 140 MPa.   Com- 
pressive loads of 40 kN and 80 kN are applied to differ- 
ent faces (say  in the x- and  y- directions).  What  must

2.93  A metal has a strain  hardening exponent  of 0.22. At  a 
true strain  of 0.2, the true stress  is 80 MPa.   (a) Deter- 
mine the stress-strain relationship for this material.  (b) 
Determine the ultimate tensile  strength  for this  mate- 
rial. 

 
(a)  This solution follows the same approach as in Ex- 

be the compressive load  applied to the z-direction  to 
cause  yielding according to the Tresca yield criterion? 
Assume a frictionless condition. 
 

Since  the area of each face is 5 cm2  = 5 × 10−4  m2, the 
stresses in the x- and y- directions are 
 

40, 000

ample  2.1 on p. 41.  From  Eq.  (2.11) on p. 36, and 
recognizing that n  = 0.22 and  σ  = 80 MPa  for 
  = 0.20, 

 

σ = K  n     →     80 = K(0.20)0.22 

σx = − 
5 × 10−4   

= −80
 

 

80, 000 
σy  = − 

5 × 10−4   
= −160

 

MPa 
 
 
MPa
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or K  = 114 MPa.  Therefore,  the stress-strain rela- 
tionship for this material  is 

 

σ = 114 0.22 MPa 

where   the  negative  sign   indicates  that  the  stresses 
are compressive.  If  the Tresca criterion is  used,  then 
Eq. (2.38) on p. 67 gives 
 

σmax − σmin = Sy  = 2k = 280 MPa
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d 

d 

4 

f 

l 

o 

f 

It is stated that σ3  is compressive, and is therefore neg- (c)  If the final  diameter  is df   = 5.60 mm,  then the fi-

ative.  Note that if σ3  is zero, then the material  does not nal  area is  Af    =  π d2 = 24.63 mm2.   If  the true
4    f

yield because σmax − σmin = 0 − (−160) = 160 MPa  < 
280 MPa.  Therefore,  σ3  must  be lower  than σ2, and  is 
calculated from: 

 

σmax − σmin = σ1  − σ3  = 280 MPa 

stress is 345 MPa,  then 

P = σA = (345)(24.63)  = 8497 ≈ 8500 N 

Therefore,  the engineering stress  is calculated as 
before as

or 
σ3  = σ1  − 280 = −80 − 280 = −360 MPa P 

σ = 
A   

= 
 π

 
8500 

 

= 345 MPa

 
The compressive load is then 

 

P = σ3A = 
 
−360 × 106

    
0.05 × 10−4

  
= −180 kN. 

o          4 
(0.0056)2

 

Similarly, from volume constancy,

2                2
 

lf          do            7   
=     =        = 1.5625

The following Matlab  code is helpful. lo             
2

 5.602

 
A=5/100/100; 

k=140e6; 

Px=-40e3; 

Py=-80e3; 

sigma_x=Px/A; 

sigma_y=Py/A; 

Sy=2*k; 

sigma_z=sigma_x-Sy; 

P=sigma_z*A; 

 
2.95  A tensile force of 9 kN is applied to the ends of a solid 

bar of 7.0 mm  diameter.   Under load,  the diameter  re- 
duces to 5.00 mm.  Assuming uniform deformation and 
volume constancy, (a) determine  the engineering stress 
and  strain;  (b) determine  the true stress and  strain;  (c) 
If the original bar had been subjected to a true stress of 
345 MPa and the resulting diameter  was 5.60 mm, what 
are the engineering stress and strain for this condition? 

 

First  note that, in this case, do  = 7 mm, df   = 5.00 mm, 
P = 9000 N, and from volume constancy, 

Therefore,  the engineering strain  is 
 

e = 
lf   

− 1 = 1.5625 − 1 = 0.5625 
o 

 

The  following Matlab  code is useful  for parts  (a) and 
(b). 

 
df=0.005; 

do=0.007; 

Ao=pi*do*do/4; 

Af=pi*df*df/4; 

P=9000; 

lr=do*do/df/df; 

s=P/Ao; 

e=lr-1; 

sigma=P/Af; 

eps=log(lr); 

 
2.96  Two identical specimens 20 mm  in diameter  and  with 

test sections 25 mm long  are made of 1112 steel. One is 
in the as-received condition and the other is annealed. 
(a) What  will be the true strain  when  necking occurs,

lod2  = lf d
2 lf          d

2
 

→          =     =   72  
 
= 1.96 and what will be the elongation of these samples at that

o                f             lo             
2

 5.002 instant?  (b) Find the ultimate tensile strength  for these 
materials.

(a)  The engineering stress is calculated from Eq. (2.3) 
on p. 32 as: 

 

This  problem uses  a  similar  approach as  for  Exam- 
ple  2.1  on  p.  41.    First,   we  note  from  Table 2.2  on

P 
s =     = 

Ao          
 π 

9000 
= 234 MPa p.  38 that  for  cold-rolled 1112 steel,  K   = 760 MPa

4 
(0.007)2

 and  n  = 0.08.  Also, the initial cross-sectional area is
 

and   the  engineering  strain   is   calculated  from Ao  =  π 

(0.020)2
 

= 3.142 × 

10−4
 

m2.  For annealed  1112

Eq. (2.1) as: 
 

e = 
l − lo 

lo 

 

 

= 
lf 

lo 

 
 
 
− 1 = 1.96 − 1 = 0.96 

steel, K = 760 MPa and n = 0.19. At necking,  = n, so 
that the strain  will be    = 0.08 for the cold-rolled steel 
and    = 0.19 for the annealed  steel. For the cold-rolled 
steel, the final  length  is given by Eq. (2.9) on p. 36 as

 

(b)  The true stress is calculated from Eq. (2.8) on p. 35 
as: 

  
lf 

 
 

  = n = ln 
lo
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P 
σ =    = 

A 

9000 
π

 = 458 MPa  

Solving for l  ,

4 
(5.00)2

 

and  the true strain  is calculated from  Eq. (2.9) on 
p. 36 as: 

f 
 

lf  = enlo = e0.08(25) = 27.08 mm 
 

The elongation is, from Eq. (2.6) on p. 35,
 

  = ln 

  
lf 

  

lo 

 

= ln 1.96 = 0.673 
 
Elongation = 

 

lf − lo 

lo 

 
× 100 = 

 

27.08 − 25 

25        
× 100
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or  8.32%.   To calculate  the ultimate strength,   we  can 
write,  for the cold-rolled steel, 

 

Sut,true = σut = Knn = 760(0.08)0.08  = 621 MPa 
 

As  in  Example 2.1 on  p.  41, we  calculate  the load  at 
necking as: 

P = σutAoe−n
 

So that 

Solving for σ1  gives σ1   = 227 MPa.   According to the 
Tresca criterion, Eq. (2.42) on p. 69 gives 

 

σ1  − σ3  = σ1  = 0 = Sy 

or σ1  = 200 MPa. 
 

2.98  The  following data  are  taken  from   a  stainless  steel 
tension-test  specimen: 

 

Load  P  (kN)     Extension  ∆l (mm)

 
P 

Sut = 
o 

Sut,trueAoe−n 
= 

Ao 

 

= Sut,truee−n
 

7.10                                            0 
11.1                                         0.50 
13.3                                          2.0

This expression is evaluated as 
 

Sut = (621)e−0.08  = 573 MPa. 
 

Repeating these calculations for the annealed  specimen 
yields l = 30.23 mm, elongation = 20.9%, and Sut = 458 

16.0                                          5.0 
18.7                                           10 
20.0                                         15.2 
20.5 (max)                              21.5 
14.7 (fracture)                      25

MPa. 

The  following Matlab  code is useful, and  can be used
 

 

Also, Ao 

 

= 3.5 × 10−5  m2, 
Af 

 

= 1.0 × 10−5  in2, 
lo 

 

= 50

 

to prove  the calculations for the annealed  specimen are 
correct by using n = 0.19. 

do=0.020; 

K=760e6; 
n=0.08; 

mm.  Plot the true stress-true  strain  curve  for the mate- 
rial. 
 

The   following  are  calculated  from   Eqs.   (2.6),   (2.9), 
(2.10), and (2.8): 
 

∆l       l                         A                 σ 

mm      mm                              (m2)         (MPa)

Ao=pi*do*do/4; 

lf=exp(n)*lo; 

elongation=(lf-lo)/lo*100; 

sigma_ut=K*nˆn; 

P=sigma_ut*Ao*exp(-n); 

Sut=sigma_ut*exp(-n); 

 
2.97  During the production of a part,  a metal  with  a yield 

0             50              0 
0.50     50.50     0.00995 
2.0        52.0       0.0392 
5.0        55.0       0.0953 
10         60.0        0.182 
15.2      65.2        0.262 
21.5      71.5        0.357 
25           75          0.405 

3.50 × 10−5           203 
3.46 × 10−5           321 
3.36 × 10−5           396 
3.18 × 10−5           503 
2.92 × 10−5           640 
2.69 × 10−5           743 
2.45 × 10−5           837 
2.33 × 10−5           631

strength  of 200 MPa  is  subjected  to a stress  state σ1, 
σ2   = σ1/3,  σ3   = 0.  Sketch  the Mohr’s  circle  diagram 
for this  stress state.  Determine the stress σ1  necessary 
to cause yielding by the maximum shear stress and the 
von Mises criteria. 

 

For  the stress  state of σ1,  σ1/3, 0 the following figure 
the three-dimensional Mohr ’s  circle: 

 

 
 

The  true stress-true  strain  curve  is then plotted  as fol- 
lows: 
 

 
1000 

800 

600 

400 

200 

0 
0                     0.2                   0.4 

True strain

 
3                    2                                              1 

 

2.99  A metal  is  yielding plastically under  the  stress  state 
shown.

 

20 MPa 
 

 

For the von Mises criterion, Eq. (2.39) on p. 67 gives:  
40 MPa

2S2
 =  (σ1  − σ2)   + (σ2  − σ3)   + (σ3  − σ1)

σ1 
=    σ1  − 

3 
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2                               2                               2 

2 4          1 
2 

+ 
  σ1 

3 

 2 

− 0     + (0 − σ1) 

14

=     σ2  + σ2  + σ2  =    σ2 50 MPa

9  
1        

9  
1

 
1          

9   
1
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5 mm  

    
 

    

√   

y 

y 

y 

a a a 

a 

(a)  Label the principal axes according to their proper 
numerical convention (1, 2, 3). 

(b)  What  is the yield strength  using the Tresca crite- 

can estimate  the diameter  of the indentation from  the 
expression: 
 

2P

rion? 

(c)  What if the von Mises criterion is used? 

HB =  

(πD)(D − 
 

D2  − d2)

(d)  The  stress  state causes  measured strains  of  1   = 

0.4 and   2    = 0.1,  with    3   not  being  measured. 
What is the value  of  3? 

 
 

(a)  The  1-direction corresponds to the 50 MPa  stress, 
the 2 direction corresponds to the 20 MPa  stress, 
and  the 3 direction corresponds to the -40 MPa 
stress. 

(b)  Since  σ1  ≥ σ2  ≥ σ3, then from  the figure  σ1  = 50 

MPa,  σ2  = 20 MPa  and σ3  = −40 MPa. 

(c)  The yield stress using the Tresca criterion is given 
by Eq. (2.38) on p. 67 as 

 
σmax − σmin = Sy 

 

So that 
 

Sy  = 50 MPa − (−40 MPa)  = 90 MPa. 

 
(d)  If the von  Mises  criterion is used,  then Eq.  (2.39) 

gives 
 

(σ1  − σ2)2  + (σ2  − σ3)2  + (σ3  − σ1)2   = 2S2
 

from which we find  that d = 3.51 mm for D = 10 mm. 
To calculate  the depth  of penetration, consider the fol- 
lowing sketch: 

 
 
 
 
 
 

 
3 mm 

 
 

Because  the radius is 5 mm  and  one-half  the penetra- 
tion diameter  is 1.755 mm, we can obtain α as 

   
1.755 

 
 

α = sin−1                          = 20.5◦
 

5 
 

The depth of penetration, t, can be obtained  from 
 

t = 5 − 5 cos α = 5 − 5 cos 20.5◦  = 0.318 mm 
 

 
2.101  It has been proposed to modify the von Mises yield cri- 

terion as:

 

or                                                                                                                          (σ1  − σ2) 
 

+ (σ2  − σ3) 
 

+ (σ3  − σ1)   = C

 

2S2  = (50 − 20)2  + (20 + 40)2  + (50 + 40)2
 

 

or 
2S2  = 12, 600 

 

which is solved as Sy  = 79.4 MPa. 

(d)  If the material  is deforming plastically, then from 
Eq. (2.49) on p. 71, 

 

where  C is a constant  and  a is an even  integer  larger 
than 2.  Plot  this  yield criterion for a = 4 and  a = 12, 
along  with  the Tresca and von Mises criterion, in plane 
stress. (Hint: See Fig.  2.32). 
 

For plane stress, one of the stresses, say σ3, is zero, and 
the other stresses are σA  and σB . The yield criterion is 
then

 
 1 +  2 +  3  = 0.4 + 0.2 +  3  = 0 

(σA  − σB ) + (σB )
a

 + (σA)
a 
= C

 
or  3  = −0.6. 

 

The following Matlab  code is useful. 
 

s1=50e6; 

s2=20e6; 

s3=-40e6; 

Sy_T=s1-s3; 

se=(s1-s2)ˆ2+(s2-s3)ˆ2+(s3-s1)ˆ2; 

Sy_vM=(se/2)ˆ(0.5); 

 
2.100  Estimate the depth of penetration in a Brinell hardness 

test using 500 kg as the load when the sample  is a cold- 
worked aluminum with  a yield strength  of 150 MPa. 

 

Note  from  Fig.  2.22 on p. 57 that for cold-worked 
alu- minum with  a yield stress of 150 MPa, the 
Brinell hard- ness is around 50 kg/mm2. From  Fig.  
2.20 on p. 54, we 
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y 

For uniaxial tension,  σA   = Sy  and  σB = 0 so that C = 
2Sa. These equations are difficult to solve  by hand;  the 
following solution was obtained  using a mathematical 

programming package: 
 

 

B 

von Mises 

a=4                   Y 

a=12 

Tresca 

 
A

 

 

Y
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Note  that the solution for a = 2 (von  Mises)  and a = 4 

are so  close  that  they  cannot  be distinguished  in the 
plot.   When  zoomed into  a portion  of the curve,  one 
would see that the a  = 4 curve  lies  between  the von 
Mises curve  and the a = 12 curve. 

 
2.102  Assume that you are asked to give a quiz to students on 

the contents of this chapter.  Prepare  three quantitative 

problems and  three qualitative questions, and  supply 
the answers. 
 

By the student.  This is a challenging, open-ended ques- 
tion  that requires considerable focus  and  understand- 
ing  on the part  of the student,  and  has been found  to 
be a very  valuable homework problem. 


