Materials for Civil @nd臣

Full Link Download:
https://testbankpack.com/p/solution-manual-for-materials-for-civil-and-construction-engineers-4th-edition-mamlouk-zaniewski-01343205309780134320533/

CHAPTER 2. NATURE OF MATERIALS

2.1. See Section 2.2.1.

2.2. See Section 2.1.
2.3. See Section 2.1.1.
2.4. See Section 2.1.1.
2.5. See Section 2.1.2.
2.6. See Section 2.2.1.
2.7. See Section 2.1.2.
2.8. See Section 2.2.1.
2.9. See Section 2.2.1.
 with a higher APF will have a larged ${ }^{5}$ densify. Thie FAcic sturicture has a higher APF than the BCC structure.
2.11. For the face-center extic cell $=4$
By inspection the diagonal of the face of if
Using Pythagorean theory:

$$
\begin{aligned}
& (4 \mathrm{r})^{2}=\mathrm{a}^{2}+\mathrm{a}^{2} \\
& 16 \mathrm{r}^{2}=2 \mathrm{a}^{2} \\
& 8 \mathrm{r}^{2}=\mathrm{a}^{2} \\
& a=2 \sqrt{2} r
\end{aligned}
$$

2.12. a. Number of equivalent whole atoms in each unit cell in the BCC lattice structure $=\mathbf{2}$
b. Volume of the sphere $=(4 / 3) \pi r^{3}$

Volume of atoms in the unit cell $=2 \times(4 / 3) \pi r^{3}=(8 / 3) \pi r^{3}$
By inspection, the diagonal of the cube of a BCC unit cell

$$
=4 \mathrm{r}=\sqrt{a^{2}+a^{2}+a^{2}}=a \sqrt{3}
$$

$\mathrm{a}=$ Length of each side of the unit cell $=\frac{4 r}{\sqrt{3}}$
c. Volume of the unit cell $=\left[\begin{array}{c}\underline{4} r \\ \sqrt{ } \\ 3\end{array}\right]^{3}$

$$
\begin{array}{r}
\text { APF }=\frac{\text { volume of atoms in the unit cell }}{}=\frac{(8 / 3) \pi \cdot r^{3}}{\sqrt{ }}=\mathbf{0 . 6 8} \\
\text { total unit volume of the cell } \\
(4 r / 3)^{3}
\end{array}
$$

2.13. For the BCC lattice structure: $a=\frac{4 r}{\sqrt{3}}$

2.14. For the FCC lattice structure: $a=2 \sqrt{2} r$

Vol. of unit cell of aluminum $=(2 \sqrt{2} r)^{3}=(2 \sqrt{2} x 0.143)^{3}=0.06616725 \mathrm{~nm}^{3}=\mathbf{6 . 6 1 6 7} \times 10^{-29} \mathbf{m}^{\mathbf{3}}$
2.15. From Table 2.3, copper has an FCC lattice stakertureisind of 2.1278 nm Volume of the unit cell of copper $=(2 \sqrt{2} r)^{3}=0 \cdot(2 \sqrt{2} \cdot \sqrt{2}$
2.16. For the BCC lattice structure: a

$\mathrm{n}=$ Number of equivalent atoms. $N 1 \mathrm{~N}^{2}$ the unit cell $=2$
$\mathrm{A}=$ Atomic mass of the element $=55.9 \mathrm{~g} / \mathrm{mole}$
$\mathrm{N}_{\mathrm{A}}=$ Avogadro's number $=6.023 \times 10^{23}$

$$
\rho=\frac{2 \times 55.9}{\frac{2.348 \times 10^{-29}}{x 6.023 \times 10^{23}}}=7.904 \times 10^{6} \mathrm{~g} / \mathrm{m}^{3}=7.904 \mathbf{~ M g} / \mathrm{m}^{3}
$$

$\begin{array}{ll}\text { 2.17. For the BCC lattice structure: } a=\frac{4 r}{\sqrt{3}} \begin{array}{c}\text { Vol. } \\ \text { of the } \\ \text { unit } \\ \text { cell of } \\ \text { molyb }\end{array} & \text { denum }= \\ \end{array} \quad\lceil\underline{4} r\rceil^{3}$

$$
\begin{aligned}
& 1 \quad \sqrt{ } \\
& \Gamma_{4 x 0}=3.119 \times 10^{-29} \mathrm{~m}^{3} \\
& \text {. } 13 \\
& 63 x
\end{aligned}
$$

$$
\begin{aligned}
& \rho=\frac{n A}{}=\frac{2 \times 95.94}{3.119 \times 10^{-29} \times 6.023 \times 10^{23}}=10.215 \times 10^{6} \mathrm{~g} / \mathrm{m}^{3}=\mathbf{1 0 . 2 1 5} \mathbf{~ M g} / \mathbf{m}^{3} \\
& V_{C} N_{A}
\end{aligned}
$$

2.18. For the BCC lattice structure: $a=\frac{4 r}{\sqrt{3}}$

$$
\begin{aligned}
& \text { Volume of the unit cell of the metal }=\left[\frac{4 r}{\sqrt{3}}\right\rceil^{3}=\left[\left.\frac{4 \times 0.128 \times 10^{-9}}{\sqrt{3}}\right|^{3}=2.583 \times 10^{-29} \mathrm{~m}^{3}\right. \\
& \rho=\frac{n A}{V_{C} N_{A}}=\frac{2 \times 63.5}{2.583 \times 10^{-29} \times 6.023 \times 10^{23}}=8.163 \times 10^{6} \mathrm{~g} / \mathrm{m}^{3}=\mathbf{8 . 1 6 3 ~ \mathbf { M g } / \mathbf { m } ^ { 3 }}
\end{aligned}
$$

2.19. For the FCC lattice structure: $a=2 \sqrt{2} r$

Volume of unit cell of the metal $=(2 \sqrt{2} r)^{3}=(2 \sqrt{2} x 0.132)^{3}=0.05204 \mathrm{~nm}^{3}=5.204 \times 10^{-29} \mathrm{~m}^{3}$

$$
\rho=\frac{n A}{V_{C} N_{A}}=\frac{4 \times 42.9}{5.204 \times 10^{-29} \times 6.023 \times 10^{23}}=5.475 \times 10^{6} \mathrm{~g} / \mathrm{m}^{3}=\mathbf{5 . 4 7 5} \mathbf{~ M g} / \mathbf{m}^{3}
$$

2.20. For the FCC lattice structure: $a=2 \sqrt{2} r$

Volume of unit cell of aluminum $=(2 \sqrt{2} r)^{3}=(2 \sqrt{2} x 0.143)^{3}=0.06616725 \mathrm{~nm}^{3}=6.6167 \times 10^{-29} \mathrm{~m}^{3}$

For FCC lattice structure, $\mathrm{n}=4$
A = Atomic mass of the element $=$
$\mathrm{N}_{\mathrm{A}}=$ Avogadro's number $=6.023 \times 10_{e}^{23_{3} e^{\circ}}$

$$
\rho=\frac{4 \times 26.9}{\begin{array}{l}
6.6167 \times 10^{-29} \\
x 6.023 \times 10^{23}
\end{array}}
$$

2.21.

$$
\rho=\frac{n A}{V_{C} N_{A}}
$$

For FCC lattice structure, $n=04$

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{c}}=\frac{4 \times 63.55}{\begin{array}{l}
8.89 \times 10^{6} \\
x 6.023 \times 10^{23}
\end{array}}=4.747 \times 10^{-29} \mathrm{~m}^{3} \\
& \mathrm{APF}=0.74=\frac{4 x(4 / 3) \pi . r^{3}}{4.747 \times 10^{-29}} \\
& \mathrm{r}^{3}=0.2097 \times 10^{-29} \mathrm{~m}^{3} \\
& \mathrm{r}=0.128 \times 10^{-9} \mathrm{~m}=\mathbf{0 . 1 2 8} \mathbf{~ n m}
\end{aligned}
$$

2.22. a. $\rho=\frac{n A}{V_{C} N_{A}}$

For FCC lattice structure, $\mathrm{n}=4$

$$
\mathrm{V}_{\mathrm{c}}=\frac{4 \times 40.08}{1.55 \times 10^{6} \times 6.023 \times 10^{23}}=1.717 \times 10^{-28} \mathrm{~m}^{3}
$$

b. $\mathrm{APF}=0.74=\frac{4 x(4 / 3) \pi \cdot r^{3}}{1.717 \times 10^{-28}}$
$\mathrm{r}^{3}=0.7587 \times 10^{-29} \mathrm{~m}^{3}$
$\mathrm{r}=0.196 \times 10^{-9} \mathrm{~m}=\mathbf{0 . 1 9 6} \mathbf{~ m m}$
2.23. $\frac{\rho_{1}}{\rho_{2}}=\frac{n_{1} A_{1} V_{c 2} N_{A}}{V_{c 1} N_{A} n_{2} A_{2}}=\frac{n_{1} V_{c 2}}{n_{2} V_{c 1}}$

$$
\frac{8.87}{\rho_{2}}=\frac{2 x\left(\frac{4 r}{\sqrt{3}}\right)^{3}}{4 x(2 r \sqrt{2})^{3}}
$$

$$
\rho_{2}=32.573 \mathrm{~g} / \mathrm{cm}^{3}
$$

2.24. See Section 2.2.2.

2.25. See Section 2.2.2.
2.26. See Section 2.2.2.
2.27. See Figure 2.14.
2.28. See Section 2.2.5.
2.29. $m_{t}=100 \mathrm{~g}$
$P_{B}=65 \%$
$P_{I B}=30 \%$
$P_{s B}=80 \%$
From Equations 2.4
$m_{l}+m_{s}=100$
$30 m_{l}+80 m_{s}=65 \times 100^{\circ}$
Solving the two equations Simudtaneatusly, we get:
$m_{l}=$ mass of the alloy which is in okie liquid phase $=\mathbf{3 0} \mathbf{g}$
$m_{s}=$ mass of the alloy which is in the solid phase $=70 \mathbf{g}$
2.30. $m_{t}=100 \mathrm{~g}$
$P_{B}=45 \%$
$P_{I B}=17 \%$
$P_{s B}=65 \%$
From Equations 2.4 and 2.5,
$m_{l}+m_{s}=100$
$17 m_{l}+65 m_{s}=45 \times 100$
Solving the two equations simultaneously, we get:
$m_{l}=$ mass of the alloy which is in the liquid phase $=\mathbf{4 1 . 6 7} \mathrm{g}$
$m_{s}=$ mass of the alloy which is in the solid phase $=\mathbf{5 8 . 3 9} \mathbf{g}$
2.31. $m_{t}=100 \mathrm{~g}$
$P_{B}=60 \%$
$P_{l B}=25 \%$
$P_{S B}=70 \%$
From Equations 2.4 and 2.5,
$m_{l}+m_{s}=100$
$25 m_{l}+70 m_{s}=60 \times 100$
Solving the two equations simultaneously, we get:
$m_{l}=$ mass of the alloy which is in the liquid phase $=\mathbf{2 2 . 2 2} \mathbf{g}$
$m_{s}=$ mass of the alloy which is in the solid phase $=77.78 \mathbf{g}$
2.32. $m_{t}=100 \mathrm{~g}$
$P_{B}=40 \%$
$P_{I B}=20 \%$
$P_{s B}=50 \%$
From Equations 2.4 and 2.5,
$m_{l}+m_{s}=100$
$40 m_{l}+50 m_{s}=40 \times 100$
Solving the two equations simultaneously, wgeget $m_{l}=$ mass of the alloy which is in the liquid phase $=35.33$ $m_{s}=$ mass of the alloy which is in the scid plonse 966.
2.33. a. Spreading salt reduces the patiting temperatare ofx fee. For example, at a salt composition
 temperature of $-5^{\circ} \mathrm{C}$, alfice, सरीll mét.
b. $-21^{\circ} \mathrm{C}$
c. $-\mathbf{2 1}^{\circ} \mathrm{C}$
2.34. See Section 2.3.
2.35. See Section 2.3.
2.36. See Section 2.4.

