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A grades Men  Women 

Morning .20 .22 
Afternoon .64 .67 

Total .46 .44 

 

2 

SOLUTIONS FOR  PART I 
 

 

1. NUMBERS, SETS, AND  FUNCTIONS 
 

1.1.   “We have  at least  four times as many chairs as tables.”  The number of 

chairs (c) is at least (≥) four times the  number of tables (t). Hence c ≥ 4t . 

1.2.  Fill in the blanks. The equation x 2 +bx +c = 0 has exactly one solution 

when b2  = 4c, and  it has  no solutions when b2  < 4c.   These statements 

follow from the  quadratic formula. 
 

1.3.  Given  that x + y = 100, the maximum value of xy is 2500.  By the AGM 

Inequality, xy ≤ ( x +y 
)2  = ( 1000 )2  = 2500.  This  is achieved by x = y = 50. 

receiving an  A is  easier, while  half  of the  women come  from  each  class. 

This  makes it easier on average for men  to receive A grades. 
 

A grades Men   Women 

Morning 2/10 2/9 
Afternoon 9/14 6/9 

Total 11/24 8/18 

 
1.9.   Percentage changes.  In  either case,  (20% decline and  then 23% rise) 

or (20% rise  and  then 18% decline), the  original amount is multiplied by 

.984 = .80 · 1.23 = 1.20 · .82 = .984, producing a loss. 
 

1.10.   If 25% more PhD degrees are produced than the economy can absorb,

2                      2                                                                                                                                             then  there is a 1 in 5 chance  of underemployment. The economy  can absorb

1.4.   The  square has  the  largest area  among all  rectangles with a given 

perimeter.  With  side-lengths x , y  and  perimeter p, we have x + y = p/2. 

By the  AGM Inequality, x y ≤ ( x+y 
)2  = ( p/4)2.  The bound is achieved with 

equality when x = y, which  is the  case of a square. 

1.5.   Translation of “The temperature was  10◦ C and  increased by 20◦ C”. 

“The  temperature was  50◦  F  and  increased by  36◦  F”.  (One  converts a 

change of 20 degrees C to a change of 36 degrees F, not to a temperature of 

68 degrees.) 
 

1.6.   Temperature scales.  If  f  denotes the  current temperature in Fahren- 

heit  degrees and  c denotes the  current temperature in  Celsius degrees, 

then we always have f = (9/5)c + 32. 

a) Equality in the values occurs at −40 degrees  Fahrenheit, since  −40 

is the  solution to  f = (9/5) f + 32. 

b) Equal magnitude with opposite signs  occurs at 80/7 degrees Fahren- 

heit,  since  80/7 is the  solution to  f = (9/5)(− f ) + 32. 

c) The Fahrenheit value is twice the Celsius value at 320 degrees Fahren- 

heit,  since  320 is the  solution to  f = (9/5)( f /2) + 32. 
 

1.7.   Correction of “If x and  y are nonzero real  numbers and  x  > y, then 

(−1/x) > (−1/y).”  If y is negative and  x is positive, then −1/x  is negative 

and  −1/y is positive, so (−1/x) < (−1/y). 

Adding  the  condition y  > 0 makes the  statement true.  If now  x is 

negative, then (−1/x) > 0 > (−1/y).  If now x is also  positive, then 1/x  < 

1/y, and  multiplying by 1 yields  the  desired inequality. 

In fact, the  statement is true whenever y > 0 or x < 0, which  is a more 

general situation than y > 0. 
 

1.8.   Simpson’s Paradox.  The  tables below  confirm the  paradox.  The  ex- 

planation is  that the  bulk  of the  men  are  in  the  afternoon class, where 

x PhD’s, but  (5/4)x are  produced. The fraction unused is  
(5/4)x −x   = 1 . 

(5/4)x            5 
 

1.11.   Promotional discount. When  a 15% discount is applied to an amount 

x ,  the  actual cost  is  .85x .    When  5% tax  is  computed on  an  amount y, 

the  tax  is .05y,  and  the  paid  total is 1.05y.   If the  price  of the  item is z, 

then applying the  discount before  the  tax  yields  a total cost  of 1.05(.85z). 

Applying the tax first yields a total cost of .85(1.05z). By the commutativity 

of multiplication, these are  equal. 
 

1.12.   Installment plan. If the  first  of thirteen payments toward $1000  is 

half  the  others, then the  total will  be 12.5  times the  usual payment. We 

set 12.5x  = 1000 to obtain $80 as the  regular payment and  $40 as the  first 

payment. 
 

1.13.   If  A = {2k − 1: k  ∈  Z}  and   B  = {2k + 1: k  ∈  Z},  then   A = B.   If 

n = 2k − 1 ∈ A for k ∈ Z, then n = 2(k − 1) + 1.  Since  k − 1 ∈ Z, we have 

n ∈ B.  Similarly, n = 2k + 1 when k ∈ Z yields  n = 2(k + 1) − 1, and  thus 

n ∈ B implies n ∈ A. 
 

1.14.   [a, b] ∪ [c, d] using set difference. If a < b < c < d , then [a, b] ∪ [c, d] 

consists of all numbers in the  closed  interval [a, d] except those between b 

and  c. Thus [a, b] ∪ [c, d] = [a, d] − (b, c). 
 

1.15.   For sets,  A − B = B − A if and  only  if  A = B.  If  A = B, then both 

differences are  empty.  Conversely, each  element of A − B is not  in  B and 

hence not in B − A. Similarly, no element of B − A belongs to A − B. Hence 

equality requires that both  differences are  empty, and  thus that A = B. 
 

1.16.   Iteration of the Penny Problem operation. 
 

5 → 41 → 32 → 221 → 311 → 32, reaching a cycle of length 3. 

6 → 51 → 42 → 321 → 312, reaching a fixed point.
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1.17.   Domain and  image of the absolute value function. The domain is the 

set  of real  numbers.  The  image is the  set  of nonnegative real  numbers: 

{x ∈ R: x ≥ 0}. 

1.18.   Real  numbers exceeding their  reciprocals by 1.   If x is  such  a  real 

number, then x  = 1 + 1/x .   Since  x  cannot be  0,  we  can  multiply by  x 

and  obtain the  quadratic equation x 2  − x − 1 = 0 (without changing the 

Alternatively, one  can  observe that all  wine  leaving the  first  glass 

winds up in the  second, and  all water leaving the  second winds up in the 

first. The total wine  and  water is x each,  and  the  total in each  glass is x at 

each  step. Thus if y is the  amount of water in glass 1 at the  end,  then the 

amount of water in glass 2 at the  end  is x − y, and  the  amount of wine  in 

glass 2 at the  end  is y.

solutions). The solutions of this equation are  (1 ± 
√ 

)/2.5 

1.19.   Perimeter and  area.   The  perimeter of a rectangle is twice  the  sum 

of the  lengths of its  sides. Perimeter 48 and  area 108 leads to x + y = 24 

and  xy = 108;  the  solution is an  18 by 6 region.  More  generally, xy = a 

and  x + y = p/2.  This  yields  x( p/2 − a) = a, and  thus x 2 − ( p/2)x + a = 0. 

The  solutions are  1 [( p/2) ± 
p 

p2/4 − 4a].  Existence of a solution requires 

p2/4 − 4a ≥ 0; that is,  p2  ≥ 16a.  The  extreme case  p2  = 16a occurs  for a 

square with sides  of length p/4. 

1.20.   If r and  s are distinct real solutions of the equation ax 2 + bx + c = 0, 

then  r + s = −b/a and  rs = c/a.  Specifying the  leading coefficient and  two 

distinct zeros  of a quadratic polynomial determines the  polynomial; sim- 

ilarly, two  polynomials are  equal if and  only  if corresponding coefficients 

are  equal (the  proof of these statements appears in Chapter 3). 

The quadratic polynomial whose  value at x is a(x − r )(x − s) has  zeros 

r and  s and  leading coefficient a.  Thus ax 2  − a(r + s)x + ars  = 0 when 

x  ∈  {r, s}.   Equating  corresponding coefficients yields  r + s  = −b/a  and 

rs = c/a. 

1.23.   Broken clock.   A digital 12-hour clock broken so that the  readings 

for  minutes and  for  hours are  always the  same can  be  correct every  61 

minutes, except that between 12:12 and  1:01 there are  only 49 minutes. 

The  analogous problem for  analog clocks  is  different.  Suppose that 

the  minute and  hour hand must always point in the  same direction. In a 

normal clock, the  minute hand revolves twelve times while  the  hour hand 

revolves once, and  the  speeds are  steady. Thus, there is agreement every  1 

and  1/12 hours. They  agree 11 times in every  12 hours. 
 

1.24.   The  missing dollar. There is no missing dollar. The  correct account- 

ing is 3 · 9 − 2 = 25, not 3 · 9 + 2 6= 30. 
 

1.25.   The  Census Problem (daughters ages).  We assume that the  ages  are 

positive integers. Let them be a, b, c with a ≤ b ≤ c. We are told that abc = 
36, but  that knowing a + b + c is not  enough to determine a, b, c.  Of the 

possibilities (1 1 36), (1 2 18), (1 3 12), (1 4 9), (1 6 6), (2 2 9), (2 3 6), (3 3 4), 

the only case where the  sum  is not unique is 1 + 6 + 6 = 2 + 2 + 9 = 13. The 

extra information that there is a “well-defined” eldest daughter eliminates

√   Alternatively, the   qu adratic formula implies that  {r, s}   =   {(−b + the  possibility 1 + 6 + 6, where there are  eldest twins. Thus the  ages  are

b2 − 4ac)/(2a), (−b − 
√

 − 4ac)/(2a)}. Computing the  sum  and  prod- 

c/a.
 9, 2, and  2.

uct of these two numbers yields b/a and  rs =  

1.26.   The  mail carrier’s sons’ ages.

1.21.   Flawed “proof” that −b/2a is a solution to ax 2 + bx + c = 0. 

Let  x and  y be solutions to the  equation. Subtracting ay2 + by + c = 0 

from ax2 + bx + c = 0 yields  a(x 2 − y2) + b(x − y) = 0, which  we rewrite 

as  a(x + y)(x − y) + b(x − y) = 0.  Hence a(x + y) + b = 0, and  thus 

x + y = −b/a.  Since  x and  y can  be any  solutions, we can  apply this 

computation letting y have the  same value as x . With  y = x , we obtain 

2x = −b/a, or x = −b/(2a). 

The problem arises when we cancel x − y from a(x + y)(x − y) + b(x − y) = 
0.  The  validity of this step requires x − y 6= 0.  Thus we cannot use the 

resulting a(x + y) + b = 0 in the  case where x = y. 

1.22.   Mixing wine and  water. Let (a, b) denote amounts of wine and  water. 

Initially, glass 1 is (x , 0) and  glass 2 is (0, x).  After  the  first  step, they  are 

(x − 1, 0) and  (1, x).  The  amount moved  in the  second step is (   1    ,   x   ). 

 

Let m be the age of mail  carrier A, and  let a, b, c be the ages of the sons. 

The first  clue yields  m = abc. Since  that is not enough, m must have more 

than one expression as a product of three numbers. 

The  second condition, being  insufficient, implies that m has  two  ex- 

pressions as  a  product of three numbers that have the  same sum.  The 

third condition states that the  middle son is uniquely identified, and  hence 

the  three ages  are  different.  Furthermore,  since  this resolves the  prior 

ambiguities, m must have two expressions as  a product of three numbers 

with the  same sum  so that one such  triple consists of distinct numbers and 

all  others do not.   Call  these two  expressions the  “twin  triple” (repeated 

element) and  the  “solo triple” (no repeated element). 

First, we prove  that no two  triples with the  same sum  and  product
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x+1 x+1 can have a common number. If they  do, then the  remaining two from each

Thus the  final  outcome is (  x 2    

,   x   ) in glass 1 and  (   x   ,  x 2    

) in glass 2.
 

triple have the  same sum  and  product, as in ab
 

rs and  a    b
 

r     s. Let
x+1 x+1 x+1 x+1 

=             +   =   +
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a = r + k, so b = s − k.  Now ab = rs + k(s − r ) − k2.  Since  ab = rs, this 

yields  k2  = k(s − r ). If k 6= 0, then k = s − r , and  we obtain a = s and  b = r 

. If k = 0, then a = r and  b = s. In either case,  {a, b} = {r, s}. 

Suppose that m is a power  of a prime p. The  largest power  in the  two 

triples, pk , is only  in  one  triple.  Hence the  other triple sums to at most 
3 pk−1. The  first  triple sums to at least pk + 2. Having equal sum  requires 

pk  + 2 ≤ 3 pk−1.  Hence p + 2/ pk−1 ≤ 3.  This  requires p = 2.  Hence m is 

expressed as a sum  of powers of 2 in two ways.  One way is distinct powers 

of 2, so m has three terms in its binary expansion. The other expression has 

a repeated power  of 2, so m has  at most  two terms in its binary expansion. 

The contradiction implies that m is not a power  of a prime. 

Next suppose that the twin triple is (m, 1, 1). Since the triples have the 

same sum, some element in the solo triple exceeds m/3. Also every  element 

of the  solo triple divides m.  Hence the  only possibilities for the  solo triple 

are  (m/2, m/3, m/4) and  (m/2, m/3, m/5).  These lead  to m + 2 = m(13/12) 

( p2r, q , 1), ( pq, pr, 1), ( pq, p, r ) and  ( pr, p, q). Instead of considering cases 

for  the  form  of the  triple, let  use  consider cases   for  ( p, q , r )  that keep 

the  mail  carrier to a reasonable age.   The  only  cases  that keep  the  mail 

carrier under 100  have the  following  values for  ( p, q , r, m, p + p + qr ): 

(2, 3, 5, 60, 19), (2, 3, 7, 84, 25), and  (3, 2, 5, 90, 16).  In the  first  two cases, 

none  of the  possible solo triples have sum  19.  However, the  last case leads 

to 3 + 3 + 10 = 9 + 2 + 5, so the  mail  carrier could be 90. 

With  at least five factors in  the  factorization of m, only  243  and  245 

keep  the  mail  carrier under 100.   The  allowed twin triples are  ( p2, p2, q) 

and  ( p, p, p2q).  Neither when m = 48 and  nor  when m = 80 does the  sum 

of an allowed twin triple match the  sum  of a solo triple. 

Thus the  possible ages  under 100 for the  mail  carrier are  40 and  90. 
 

1.27.   The  set of real solutions to |x/(x + 1)| ≤ 1 is T = {x ∈ R: x ≥ −1/2}. 
We transform the  inquality without changing the  set of solutions to obtain 

x ≥ −1/2.  (We consider only  x 6= −1). We have |x/(x + 1)| ≤ 1 equivalent
with m = m3/24 and  m + 2 = m(31/30) with m = m3/30, respectively. Both 
cases  lead  to contradictions, so we forbid  (m, 1, 1) as the  twin triple. 

to x 2/(x + 1)2
 ≤ 1 equivalent to x 2 ≤ x   + 2x + 1 equivalent to 0 ≤ 2x + 1

 

Since  the  twin triple cannot repeat 1, m must have a repeated prime 

factor.  If m = p2q , where p and  q are  primes, then the  twin triple must 

be ( p, p, q).  The  possible solo triples are  ( p2, q , 1) and  ( pq, p, 1), but  each 

shares an element with ( p, p, q). 

We have shown that m has  at least four prime factors, counting multi- 

plicity, and they  are not all the same or all different. Suppose that m = p3q , 

where p and  q are  primes. The twin triple must be ( pq, p, p). The possible 

solo triples are  ( p2q, p, 1),  ( pq, p2, 1),  (q, p3, 1),  and  (q , p, p2).   Avoiding 

shared elements leaves only (q , p3, 1). 

The  condition of equal sum  is  pq + 2 p = p3 + q + 1.  Rewrite this as 

( p3  − 2 p + 1)/( p − 1) = q .  Whenever prime p on the  left  yields  prime q , 

we have a solution. Possibilities for ( p, q) are  (2, 5), (3, 11), (5, 29) (when 

p = 7, the  resulting q is not prime). The resulting ages  for the  mail  carrier 

are  235 = 40, 3311 = 297, and  5329 = 3625. 

equivalent to −1/2  ≤ x .  The  first  step uses  that the  absolute value of a 

number is nonnegative. 
 

1.28.   Optimizing quadratics without calculus. For c > 0, the value x(c − x ) 

is positive only  when 0 < x < c, so we may  restrict our  attention to that 

interval.  By the  Arithmetic-Geometric mean inequality, xy ≤ (x + y)2/4 

whenever x , y > 0.   Using y = c − x , this tells  us  that x(c − x) ≤ c2/4. 

This  bound on x(c − x) is attained when x = c/2, so c2/4 is the  maximum, 

occurring at x = c/2. 

As a function of y, y(c − ay) is maximized at the  same value of y where 

ay(c − ay) is maximized, since  the  ratio between these is the  constant a. 

Letting z = ay, we known that z(c − z) is maximized when z = c/2.  At this 

value of z, we have y = c/(2a). 
 

1.29.   If  x , y, z are  nonnegative real  numbers such  that y + z  ≥ 2,  then 
2

The  next  possibility is  m  =  p2q2.   By  symmetry, the  possible twin (x + y + z) ≥ 4x + 4yz, with equality if and  only if x = 0 and  y = z.

triples are ( p2, q , q) and ( pq, pq, 1). The possible solo triples are ( p2q, q , 1),
 Proof 1. Expanding the  square and  collecting like terms rewrites the

 

(q2 p, p, 1), (q2, p2, 1), (qp, q , p). Avoiding  shared numbers leaves only the inequality as x 2 + (2(y + z) − 4)x + (y − z)2
 ≥ 0. Since  y + z ≥ 2, all three

case  ( p2, q , q), (q2 p, p, 1).   Now  q  > q2 p/3  yields  qp < 3, so we may  as- 

sume that  p2   > q2 p/3,  which  requires p  > q2/3.    With  this we  study 

p2 + 2q = q2 p + p + 1. Now q = 2 requires p2 − 5 p + 3 = 0, which  has  no 

terms are  nonnegative, and  the  inquality holds.  Equality happens only 
when all three terms equal 0, which  occurs  if and  only if y = z and  x = 0. 

Proof 2. We expand the  square and  use the  AGM and  the  inequalities

rational solution, and  q = 3 requires p2 − 10 p + 5 = 0, and  q = 5 requires x2  ≥ 0 and  y + z ≥ 4 to obtain (x + y + z)2
 

2
 = x2

 + 2x(y + z) + (y + z)2  ≥

p2 − 26 p + 9 = 0, . . . Already q ≥ 7 and  p > 16, so the  mail  carrier is at 
x  +2x(y + z)+4yz ≥ 2x(y + z)+4yz ≥ 4x +4yz. Equality requires equality
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least 49 · 172  years old with no solution yet in sight. 

If m  = p2qr  with  p, q , r  prime, then the  only  allowed twin triple is 
( p, p, qr ).    The  solo  triples  avoiding p  and   qr  are  ( p2, q , r ),  ( p2q, r, 1), 

at each  step, which  requires y = z in the  first  inequality and  x = O in the 

second, after which  the  third is always an equality. 
 

1.30.   Let  x , y, u, v be real  numbers.
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a) (xu + yv)2  ≤ (x2 + y2)(u2  + v2). The AGM Inequality yields  2xvyu ≤ 
(xv)2  + (yu)2;  alternatively, this follows  immediately from  the  nonnega- 

equivalent to x − 3 < 0 and  x + 1 > 0.  This  becomes x < 3 and  x > −1, 

which  is the  condition defining the  set  T .

tivity of squares: (xu − yv)2  ≥ 0.  Adding  x 2u2  + y2v2  to both  side  of the 
inequality yields  x 2u2 + 2xuyv + y2v2  ≤ x2u2 + x2v2 + y2u2 + y2v2, which  is 

 

1.33.    If   S 
 

=  {(x , y) 
 

∈   N  : (2  − 
 

x)(2  + 
 

y)   >  2(y 
 

− x)} 
 

and   T   =
 

equivalent to the  desired inequality. 

b) Equality holds in  part  (a) if and  only  if  xu = yv.  When  equality 

holds, both  sides  reduce to 4x 2u2.  When  xu 6= yv, we have (xu − yv)2  > 

0, and  the  steps of part (a) yields  strict inequality in the  final  expression. 
 

1.31.   Extensions of the AGM  Inequality. 

a) 4xyzw ≤ x 4 + y4 + z4 + w4.  The  equality holds  immediately when 

an  odd  number of {x, y, z, w} are  negative and  reduces to the  case  of all 

positive when an even  number are  positive. This  allows  us to assume that 

all four variables are  positive. 
Recall  that 2tu ≤ t 2 + u2  always (Proposition 1.4).  Thus 2xy ≤ x 2 + y2

 

and  2wz  ≤ w2  + z2.  We multiply these inequalities together (justified by 

the  variables being  positive). We then apply 2a2b2  ≤ a4 + b4  to each  of the 

products of squares. Thus 

 

4xyzw ≤ x2w2  + y2w2  + x2z2  + y2z2
 

{(1, 1), (1, 2), (1, 3), (2, 1), (3, 1)}, then  S = T . By the  properties of inequal- 

ities, the  pairs (x , y) satisfying (2 − x)(2 + y)  > 2(y − x) are  the  pairs 

satisfying 4 > xy. Since  2 · 2 ≥ 4, the  pairs of natural numbers satisfying 

this are  those where the  smaller number is 1 and  the  larger is at most  3. 

These pairs form the  set  T . 

1.34.   Description of S = {(x, y) ∈ R2  : (1− x)(1− y) ≥ 1− x − y}. Expanding 

the  product and  canceling like terms shows  that the  pairs (x , y) satisfying 

this inequality are  those satisfying x y ≥ 0.  These are  the  pairs for which 

at least one of {x , y} is 0 or x and  y have the  same sign. 
 

1.35.   x/y + y/x ≥ 2 if and  only if x and  y have  the same  sign.  If x or y is 0, 

then the  expression is undefined. If they  have opposite signs, then the  left 

side  is negative. If they  have the  same sign,  then multiplying by xy yields 

x/y + y/x ≥ 2, equivalent to x 2 + y2  ≥ 2xy, equivalent to x 2 − 2xy + y2  ≥ 0, 

equivalent to (x − y)2   ≥ 0.   The  last inequality holds  whenever x and  y 

have the  same sign,  so this necessary condition is also sufficient.

x 4 + y 4 
≤     

2      
+

 

y 4 + w4
 

2       
+

 

x 4 + z4
 

2      
+

 

y 4 + z4            
4

 

2       
= x

 

 

+ y  + z4 + w 
1.36.   If  S = [3] × [3] and  T  = {(x, y) ∈ Z × Z:  0 ≤ 3x + y − 4 ≤ 8}, then 

S ⊆ T . Since  3x + y − 4 increases when x or y increases, it suffices  to check 

the  minimum and  maximum values for x and  y. Since  3 · 1 + 1 − 4 = 0 and

b) 3abc ≤ a3 +b3 +c3. Consider part (a) with w, x , y , z positive. Setting 
w = (xyz)1/3  yields  4(xyz)4/3  ≤ x4 + y4 + z4 + (x yz)4/3, and  thus 3(x yz)4/3  ≤ 

3 · 3 + 3 − 4 = 8, we obtain T ⊆ S. The set  T also contains other pairs, such 

as (1, 4), so equality does not hold.

x4 + y4 + z4. Setting x = a3/4, y = b3/4, z = c3/4  yields  the  result. 
1.37.   Solution to the  general quadratic inequality ax 2        bx     c

 
0.   If

The  inequality of part (a) has  four variables and  fourth powers, while 

that of part (b) has  three variables and  third powers. The first  substitution 

 

a = b 
 

= 0, then the  solution set  is R if c 

+ 
≤ 0 and  ∅  if c > 0. 

+ 
If a 

≤ 
= 0 and

eliminates the  extra variable, while  the  second scales fourth powers into 

third powers. 

The  inequality fails  when a, b, c are  negative and  not  all  equal, and 

often  also when two of {a, b, c} are  negative. 

b > 0, then the  solution set  is {x ∈ R: x ≤ −c/b.  If a = 0 and  b < 0, then 
the  solution set  is {x ∈ R: x ≥ −c/b. 

In the remaining cases, a 6= 0. Visually, the graph of the quadratic poly- 

nomial is a parabola, and  we want to determine for which  x the  graph is at 

or below the horizontal axis.  The quadratic formula yields the points where √
1.32.   {x ∈ R: x 2 − 2x − 3 < 0} = {x ∈ R: −1 < x < 3} .  Let  S be the  first the  polynomial is zero; these must have the  form.  (−b ± b2 − 4ac)/(2a).

set  and  T  the  second.  If x  ∈  T , then x + 1 > 0 and  x − 3 < 0.   Hence 
(x + 1)(x − 3) < 0, which  is the  same as x 2 − 2x − 3 < 0. Thus T ⊆ S. 

If x ∈ S, so that x 2 − 2x − 3 < 0, then (x + 1)(x − 3) < 0. The product of 

two numbers is negative only  when exactly one factor is negative.  Hence 

x < 3 and  x > −1. Thus −1 < x < 3 is needed, and  hence S ⊆ T . 

If b2 − 4ac < 0, then the  left side is never 0. If a > 0, then the  solution 

set  is empty. If a < 0, then the  solution set  is R. 

If b2 − 4ac = 0, then the  left  side  is 0 only at −b/(2a). If a > 0, then 

this value is the  only solution. If a < 0, then the  solution set  is R. 
If b2  − 4ac = 0, then the  left  side  is 0 at two  points.  If a > 0, then
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2a 

         −4 

A rephrasing. Since  x 2 − 2x − 3 = (x − 3)(x + 1) and  the  product of two 

numbers is negative if and  only if exactly one of them is negative, S is the 

set  of real  numbers x such  that exactly one of x − 3 and  x + 1 is negative. 

√ 
the  solution set  is the  interval [ 

−b−     b2 −4ac 
, 

solution set  is 

   b−
√ 

b2         ac
 

−b+
√

b2 −4ac 

2a            
]. If a > 0, then the 

√   
−b+     b2 −4ac

Since  x − 3 < x + 1, the  negative one must be x − 3, and  the  condition is {x ∈ R: x ≤ 
−

 
2a            

} ∪ {x ∈ R: x ≥ 2a            
}.
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1.38.   If S = {x ∈ R: x(x − 1)(x − 2)(x − 3) < 0}, T = (0, 1), and  U = (2, 3), 

then  S = T ∪ U.   The  sign  of x(x − 1)(x − 2)(x − 3) depends on how many 

negative factors it has;  the product is positive or negative when the number 

of negative factors is even  or odd, respectively. Thus it is positive when x 

is large or small or between 1 and  2.  It is 0 at {0, 1, 2, 3} and  negative on 

T ∪ U . Thus S = T ∪ U . 
 

1.39.   Solution of the  inequality (x − a1)(x − a2) · · · (x − an ) < 0.  The  left 

side of the  inequality is negative if and  only if an odd number of the  factors 

are  even,  because the  product of two negative numbers is positive and  the 

product of a negative and  a positive is negative.  With  a1  < · · · < an , an 

odd number of factors will be negative if and  only if x is less  than an  odd 

number of the  breakpoints.  Hence the  largest solutions to the  inequality 

are  in the  numbers in the  interval (an−1, an ). 

The next  interval (an−2, an−1) doesn’t work,  but (an−3, an−2) does (x = ai 

never works because it yields  0).   Within an  interval (ai , ai +1), the  par- 
ity  of the  number of breakpoints above  x doesn’t  change.  The  successive 

intervals alternate between consisting of solutions and  consisting of non- 

solutions. Recording this discussion yields  the  following  expression for the 

set  of solutions of the  inequality: 
 

(a1, a2) ∪ (a3, a4) ∪ · · · ∪ (an−1, an )       for n even 

(−∞, a1) ∪ (a2, a3) ∪ · · · ∪ (an−1, an )    for n odd 
 

1.40.   If  A and   B are  sets,  then  (A − B) ∪ (B − A) = (A ∪ B) − (A ∩ B). 

By definition, A − B consists of the  elements in  A but  not  in  B, and  B − 
A consists of the  elements in  B but  not  in  A, so the  left  side  is  the  set 

of elements in  exactly one  of A, B.   On  the  right side,  we  start with all 

elements in at least one of A, B and  delete the  elements belonging to both 

a) A ⊆  A ∪ B, and  A ∩ B ⊆  A.  The  union consists of everything in  A 

plus  everything in  B, so every  member of A is included. The  intersection 

consists of those elements of A that are  also in B, so the  elements of A ∩ B 

do belong  to A. 

b) A − B ⊆ A.  A − B consists of the  elements of A that are  not in B, so 

the  elements of A − B are  all in  A. 

c) A ∩ B = B ∩ A, and  A ∪ B = B ∪ A.  The  definitions of intersection 

and  union are  independent of the  order of the  arguments; the  intersection 

consists of the elements in both sets, and  the union consists of the elements 

in at least one of the  two sets. 

d) A ⊆ B and  B ⊆ C imply A ⊆ C. If every  element of A is an element 

of B, and  every  element of B is an  element of C , then an  element x ∈  A 

must be in B and  therefore also in C . 

e) A ∩ (B ∩ C) = (A ∩ B) ∩ C. The elements that are  in A and  in both  B 

and  C are  the  elements in all three of the  sets. The same characterization 

holds  for those that are  in C and  in both  A and  B. 

f) A ∪ (B ∪ C) = (A ∪ B) ∪ C. The elements that are  in  A or in at least 

one of B and  C are  the  elements in at least one of the  three sets. The same 

characterization holds  for those that are  in C or in at least one of A and  B. 
 

1.42.   Counting the days  in each month does not define  a function from  the 

set of months to N. The value for February depends on whether the  year is 

a leap  year. Thus we have not  assigned exactly one element of the  target 

to the  element “February” in the  domain. 

1.43.   The  graph of S = {(x, y) ∈ R2: 2x + 5y ≤ 10}.  The  set  S consists of 

the  points in the  Cartesian plane such  that y ≤ 2 − (2/5)x .  This  is the  set 

of points on or below the line defined by {(x , y) ∈ R2:  y = 2− (2/5)x}. When 

the  constraint is 2x + 5y < 10, the  points must be strictly below the  line.

of A, B, so again we are  left  with the  set  of elements belonging to exactly 

one of A and  B. This  is the  symmetric difference of A and  B. 

In the example, A is the set of U.S. state names beginning with a vowel 

1.44.   Analysis of S ∩ T  when S = {(x , y) ∈ R2: x2  + y 

{(x, y) ∈ R  : x + y ≤ 14}. 

 

≤ 100}  and  T  =

and  B is the  set  of U.S. state names with at most  six letters. We have A = 
{Alabama, Alaska, Arizona, Arkansas, Idaho, Illinois, Indiana, Iowa, Ohio, 

Oklahoma, Oregon, Utah},  B  =  {Alaska, Hawaii, Idaho, Iowa,  Kansas, 

Maine, Nevada, Ohio,  Oregon, Texas, Utah}, A − B = {Alabama, Arizona, 

Arkansas, Illinois, Indiana, Oklahoma}, B − A = {Hawaii, Kansas, Maine, 

Nevada, Texas}, A ∪ B =  {Alabama, Alaska, Arizona, Arkansas, Hawaii, 

Idaho, Illinois, Indiana, Iowa,  Kansas, Maine, Nevada, Ohio,  Oklahoma, 

Oregon, Texas, Utah}, and   A ∩ B =  {Alaska, Idaho, Iowa,  Ohio,  Oregon, 

Utah}. The symmetric difference is {Alabama, Arizona, Arkansas, Hawaii, 

Illinois, Indiana, Kansas, Maine, Nevada, Oklahoma Texas}. 
 

1.41.   Relationships among sets  A, B, C. 

a) The  graph of S ∩ T consists of the  points that are  on or inside the 
circle  with radius 10 centered at the  origin (this is  S) and  also  lie  on or 

below the  line through (0, 14) and  (14, 0). 

b) There are  317 points in S ∩ T whose  coordinates are  both  integers. 

It suffice  to  count the  integer points within the  circle  and  subtract the 

number above the  line.  First we count points in S with |x| + |y| ≤ 10.  With 

|x | + |y| = k, there are  4k such  points, except 1 when k = 0. Thus this part 

of S has  1 + 4(1 + 2 + · · · + 10) = 221 points. When  the  sum  is 11, 12, 13, or 

14, the  number of positive integer points in  S is 8, 7, 6, or 3, respectively, 

so there are  4(8 + 7 + 6 + 3)  = 96 such  integer points in  S.  No integer 

points in  S have coordinates summing to at least 15.  Thus T contains all 

the  integer points of S, and  the  count is 221 + 96 = 317.
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1.45.   Well-defined functions from  R to R. 

a)  f (x ) = |x − 1| if x < 4 and   f (x) = |x | − 1 if x > 2—TRUE. When 

2 < x < 4, both  x and  x − 1 are  positive, and  thus |x − 1| = x − 1 = |x | − 1 

in the  interval of overlap. 

b)  f (x ) = |x − 1| if x < 2 and   f (x) = |x | − 1 if x > −1—FALSE. When 

0 < x < 1, we have |x − 1| = −(x − 1) = −x + 1, but  |x| − 1 = x − 1. In this 

Now we determine the  image.  Since  exactly one  of a + 1 and  a + 2b 

is odd,  and  it exceeds 1, we know  that f (a, b) is the  product of two posi- 

tive  integers, one of which  is odd and  exceeds 1.  Thus the  image does not 

contain any  power  of 2. 

We must also  show  that all  other natural numbers are  in the  image. 

Let s be an odd factor of n greater than 1.

interval the  definitions conflict
 

When  s > 
√ 

n, we desire a + 2b = s and  (a + 1)/2 = n/s; the  product 

c) f (x ) = ((x + 3)2 − 9)/x if x 6= 0 and   f (x ) = 6 if x = 0—TRUE. 
When 

2 

is n. We set a = 2(n/s) − 1 and  b = s −a  = 1 (s + 1 − [2n/s]).  Since  s ≤ n, a is

2           2
x 6= 0, there is no division by 0, so the formula for  f (x) yields a real 

number. 
positive. Since  s and  a are  odd, b is an integer. Since  s > 

√ 
n, b is positive.

There is no overlap between the  sets  with x 6= 0 and  x = 0, so each 
real 

number has  been  assigned a unique real  number, and   f is well-defined. 

Hence n = f (a, b) and  n is in the  image. 

When  s ≤ 
√ 

n, we desire a + 1 = s and  (a + 2b)/2 = n/s; the  product

d)  f (x ) = ((x + 3)2  − 9)/x if x > 0 and   f (x ) = x + 6 if x < 7—TRUE. is n. We set  a
 

s     1 and  b
 

(n/s)
 

(a/2).  Since  s > 1, a
 

N. Since  a is

When  x > 0, we have ((x + 3)2  − 9)/x = x + 6.
 =   −            = −

   
          

√                         
∈

even,  b is an  integer. Since  n  − a  ≥   n     −
 2n−1 > 0, b is positive. Hence

    e)  f (x) = 
√

x2 if x ∈ Z  and   f (x) = x if  x < 1—FALSE. The  notation
 s         2         

√
2n              2

√
x2 denotes the  positive square root; thus 

√
x2 = −x when x is a negative 

again n = f (a, b) and  n is in the  image.

integer. Thus the  function is not  well-defined. Furthermore,  the  function 

has  not been  defined at all at real  numbers at least 1 that are  not integers. 
 

1.46.   Images of functions. Let  S denote the  image of  f .  In each  case,  we 

specify  T and  show  that S = T . 

a)  f : R → R defined by  f (x) = x 2/(1 + x 2). Let T = {y ∈ R: 0 ≤ y < 1}. 
In the  formula defining the  function, the  numerator is always nonneg- 

ative and  the  denominator is always positive, so the  image is nonnegative. 

Also the  numerator is always less  than the  denominator, so the  image is 

always less than 1. Thus S ⊆ T . 
 For each  y ∈ T , we seek  x ∈ R such  that y = f (x).  Solving for x shows 

that when x is ±
p

y(1 − y), the  image is  y.  Note  that the  square root  is 

defined when y ∈ T , because 0 ≤ y < 1 yields  y(1 − y) ≥ 0. Thus T ⊆ S. 

b)  f : R → R defined by  f (x) = x /(1 + |x |). Let  T = (−1, 1). 

In the  defining formula, the  absolute value of the  numerator is always 

less than the  absolute value of the  denominator, so S ⊆ T . 

For  y ∈ T , we know  that the  sign  of x must be the  same as the  sign  of 

y if y = f (x). For 0 ≤ y < 1, we solve  y = x /(1 + x) to obtain x = y/(1 − y). 

For  −1 < y  ≤ 0,  we  solve  y  =  x /(1 − x) to  obtain x  =  y/(1 + y).   The 

resulting x has  the  right sign,  so we have proved T ⊆ S. 
 

1.47.   The  image of the  function  f : N × N → N defined by  f (a, b) = (a + 

1)(a + 2b)/2 is the set of all natural numbers that are not powers  of 2.  We 

check  first  that this defines a  function from  N × N  to  N.   We need  that 

(a + 1)(a + 2b)/2 is a natural number when a, b ∈ N.  Since  we only  add, 

multiply and  divide  positive numbers, the result is positive. It is an integer 

because a + 2b has  opposite parity from a + 1. With  one odd and  one even, 

the  product is divisible by 2. 
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1.48.   Descriptions of the function f : [0, 1] → [0, 1] defined by  f (x) = 1 − x . 

The graph of f is the  line segment in R2  joining (1, 0) and  (0, 1). The func- 

tion can also be described as giving  the  amount of water left after x gallons 

are  removed from  a full  1-gallon jug.  Note  that with this description, the 

domain of the  function is the  interval [0, 1]. 
 

1.49.   Properties of functions f , g: R → R. 

a)  If   f  and  g are  bounded, then   f  + g is  bounded—TRUE. By  the 

definition of bounded function, there exist positive constants M1, M2  ∈ R 
such  that, for  x  ∈  R,  | f (x)|  ≤ M1  and  |g(x)|  ≤ M2.   The  constant M  = 
M1 + M2 works to show that f + g is bounded, because applying the triangle 

inequality yields, for x ∈ R, 
 

|( f + g)(x)| = | f (x) + g(x)| ≤ | f (x)| + |g(x )| ≤ M1 + M2  = M . 
 

b) If  f and  g are bounded, then  f g is bounded—TRUE. Using the same 

approach as in (a), let  M = M1, M2. Now 
 

|( f g)(x)| = | f (x)g(x)| = | f (x)| |g(x)| ≤ M1 M2  = M . 
 

c) If  f + g is bounded, then   f  and  g are bounded—FALSE. The  func- 

tions  f , g defined by  f (x) = x and  g(x)  = −x  provide a counterexample. 

Here f and  g have unbounded image, but   f (x) + g(x) = 0 for all x . 

d) If  f g is bounded, then   f  and  g are bounded—FALSE. Define   f  by 

f (x) = x . Define  g by g(x) = 1/x  for x 6= 0, and  g(0) = 0. In this example, 

f g(x) = 1 for x ∈ R − {0}, and   f g(0) = 0. Thus f g is bounded, but  f and  g 

are  unbounded. 

e) If  both   f  + g and   f g are  bounded, then   f  and  g are  bounded— 

TRUE. We are  given  M , N ∈ R such  that for all  x , | f (x) + g(x)| ≤ M and
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· 0 1 x 

0 0 0 0 

1 0 1 x 

x 0 x 1 

 

√ 

| f (x)g(x)| ≤ N . We show that f and  g are  bounded by showing that  f 2 and 
g2  are  bounded. We have 

1.54.   The  set S = {(x , y) ∈ R2:  y ≤ x and  x + 3y ≥ 8 and  x ≤ 8}. 

a) The  graph of S is  a triangle with corners  (8, 0),  (8, 8),  and  (2, 2). 

Replacing the  inequalities with equalities yields  three lines that form  the
  f (x)2  + g(x)2  =  ( f (x) + g(x))2  − 2 f (x)g(x)  boundary of this triangle. The  inequalities restrict the  solution points to

≤ 
                                                                             

the  side  of each  line that includes the  interior of the  triangle. ( f (x) + g(x))2  + 2 | f (x)g(x)| ≤ M 2 + 2N . 
 

Since   f (x)2   and   g(x)2   are   both   nonnegative,  we  have  f (x)2   and   g(x)2 

both bounded by  f (x)2  + g(x)2.   Thus | f (x)|  ≤  
√

M2 + 2N  and  |g(x)|  ≤ √
M2 + 2N . 

 

1.50.   Images of subsets of the  domain of  f : A → B.  (Note: The  original 

printing incorrectly stated the  problem using unions. Part (b) is valid  only 

for intersections.) For  a subset S of the  domain of  f , let  f (S) = { f (x): x ∈ 
S}. Let C and  D be subsets of the  domain. 

a)  f (C ∩ D) ⊆  f (C) ∩  f (D).  If some  b ∈ B belongs to  f (C ∩ D), then 

f (x) = b for some  element x in C ∩ D. Since  x ∈ C , b ∈  f (C).  Since  x ∈ D, 

b ∈  f (D).  Thus b ∈  f (C ∩ D) implies b ∈  f (C) ∩  f (D). 

b) Equality need  not hold.   Consider f : A → B with A = {−1, 1}, B = 
{1}, and   f (−1) =  f (1)  = 1.  Let  C = {−1}  and  D = {1}.  Now C ∩ D and 

hence also  f (C ∩ D) is empty, but  1 ∈  f (C) ∩ f (D). 
 

1.51.   “Preimage” of subsets of the  target  of  f : A  → B.   For  S  ⊆  B, let 

I f (S) = {x ∈ A: f (x) ∈ S}. Let  X and  Y be subsets of B. 

a) I f (X ∪ Y ) = I f (X ) ∪ I f (Y ). An element of A has  its image in X ∪ Y if 
and  only if its image is in X or its image is in Y . 

b) I f (X ∩ Y ) = I f (X ) ∩ I f (Y ). An element of A has  its image in X ∩ Y if 

and  only if its image is in X and  its image is in Y . 
 

1.52.   For nonnegative M , N, the maximum x among pairs (x , y) such  that 

|x + y| ≤ M and |xy| ≤ N is x = (M +
√

M2 + 4N )/2. As in Application 1.38, 

graphing of level  sets  shows  that the  maximum occurs  when x + y =  M 

and  xy = −N .  Solving these by x(M − x) + N = 0 and  taking the  larger 

zero yields  x = (M +   M2 + 4N )/2. 
 

1.53.   Maximization of x  such  that |x + y|  ≤ 8 and  |xy| ≤ 20,  using in- 

equalities.  We avoid  case  analysis by squaring the  first  inequality to get 

x2 + 2xy + y2  ≤ 64.  The second inequality implies −4xy ≤ 20.  The sum  of 

these is (x − y)2  ≤ 144, and  hence |x − y| ≤ 12. 

By the triangle inequality, 2 |x | ≤ |x + y|+|x − y| ≤ 8+12 = 20. Hence 

|x | ≤ 10.  Since  (x , y) = (10, −2) satisfies both  inequalities, the  answer is 

10. 

Comment: By symmetry, we have the  constraints −10 ≤ x ≤ 10 and 

−10 ≤ y ≤ 10, but  not  all  pairs (x , y) ∈ [−10, 10] × [−10, 10] satisfy the 

inequalities. 

 
b) The  minimum value of x + y such  that (x , y) ∈ S is 4. The level sets 

of f (x , y) = x + y are  lines at an angle of 45 degrees to the  horizontal axis. 

The first  one to hit  S hits S at the  point (2, 2). 

 
1.55.   If F is a field consisting of exactly  three elements 0, 1, x, then  x + x = 1 

and  x · x = 1. We are  given  that x is different from both  0 and  1. 

If y 6= z, then y + x 6= z + x , since otherwise adding the additive 

inverse 

−x to both  sides  yields  y = z. Thus 0 + x , 1 + x , and  x + x are  distinct. We 

have 0 + x = x , and  1 + x cannot equal 1 since  x 6= 0. Thus 1 + x = 0, which  

leaves x + x = 1. 

Since  nonzero elements have multiplicative inverses, it follows  that 

products of nonzero elements are  nonzero; hence x · x 6= 0. If x · x = x , then 

multiplication by x −1 yields  x = 1, which  is forbidden. Thus x · x = 1. 
 

 
+ 0 1 x 

0 0 1 x 

1 1 x 0 

x x 0 1 
 

 
 
1.56.   There  is a field of size four but  none of size six. 

Let  0, 1, x , y be the  elements of a field  F with four  elements.  Multi- 

plying distinct elements by a nonzero element produces distinct elements. 

Since  always 0 · z = 0 and  1 · z = 1, this determines the  multiplication table 

for F:  xy = y is forbidden by x 6= 1, and  hence we must have xy = 1 =  yx , 

x · x = y, y · y = x . 

Similarly, adding an  element to  distinct elements produces distinct 

elements, so 1 + x ∈/ {1, x}. If 1 + x = 0, then 0 = x · 0 = x(1 + x) = x + x · x . 

This  yields  x · x = 1, but  we have shown that x · x = y.  Thus 1 + x = y. 

Interchanging x and  y in this argument yields  1 + y = x . Also, if 0 = x + y, 

then 0 = 0x = (x + y)x = x · x + y · x = y + 1, which  we have just forbidden. 

We have shown that the  only possibility for the  arithmetic operations 

in F is that given  below.  With  this specification of addition and  multiplica- 

tion  in F, it is straightforward (but  perhaps tedious) to verify  that all the 

field axioms hold.
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· 0 1 x  y 

0 0 0 0 0 

1 0 1 x  y 

x 0 x  y 1 

y 0  y 1 x 

 

 

+ 0 1 x  y 

0 0 1 x  y 

1 1 0  y x 

x x  y 0 1 

x y x 1 0 

Now suppose that F is a field with six elements, with 0 and  1 being  the 

additive and  multiplicative identity elements. We derive a contradiction. 

two equations implies that a necessary condition for the  existence of such 

integers m, n is that a + b be even.  Thus (a, b) = (0, 1) is a counterexample. 

Adding  to the  hypothesis the  requirement that a and  b have the  same 

parity makes the  statement true.  In  this case  m  = (a + b)/2 and  n  = 
(a − b)/2 are  integers that solve the  equations. 
 

2.3.   Analysis of “If a is a real  number, then  ax = 0 implies x = 0”.  With 

P(a, x)  being  “ax  = 0” and   Q(x)  being  “x  = 0”,  the  sentence is  (∀a  ∈

Consider  successive  powers  of  an   element   x ∈/   {0, 1}.     The   list R)(P(a, x) ⇒  Q(x)).  When  a = 0, the  implication fails.   When  a 6= 0, it 
is

x , xx , xxx , . . . must eventually repeat, since  F  has  only  six  elements.   If 

the  first  repetition is x i  = x j  with i < j , then cancellation yields  x j −i  = 1. 

Let  k be the  least positive integer such  that x k  = 1.  For  any  y 6= 0, the el- 

ements y, yx , . . . , yx k−1  are  distinct, by the  choice  of k.  Multiplying by a 

power of x leaves this set unchanged, so every nonzero element is in exactly 

one such  set.  This  partitions F − {0} into  sets  of size k. Hence k divides 5, 

and  therefore k = 5. 

Thus for each x ∈ F, we can write the elements of F as {0, 1, x , x 2, x3, x 4}. 
Let  y be the  additive inverse of 1.  From y + 1 = 0, the  distributive law 

yields  0 = (1 + y)(1 + y) = 1 + y + y + y2, and  hence 0 = y + y2. Thus y2 is 

the  additive inverse of y, and  hence y2  = 1.  Our  earlier conclusion about 

powers now implies that y = 1. 

We now have 1 + 1 = 0, and  multiplying by z yields  z + z = 0 for all 

true. Thus (∃a ∈ R)(P(a, x ) ⇒  Q(x)) is true. 
 

2.4.   Negation of sentences, where  A, B  ⊆  R,   f : R  → R,  and   P  = {x  ∈ 
R: x > 0}. 

a) For  all  x ∈  A, there is a b ∈  B such  that b > x .  Negation:  Some 

x ∈ A is as large as every  element of B. 

b) There is an  x ∈ A such  that, for all b ∈ B, b > x . Negation: For  all 

x ∈ A, some  b ∈ B satisfies b ≤ x . 

c) For all x , y ∈ R,  f (x) = f (y) ⇒  x = y. Negation: Some  real  number 

is the  image of two different elements of R. 

d) For all b ∈ R, there is an  x ∈ R such  that f (x) = b. Negation: Some 

real  number does not occur in the  image of f . 

e) For  all  x , y ∈ R and  all    ∈ P , there is a δ ∈ P such  that |x − y| < δ

z  ∈  F.   Now  consider (1 + x)(1 + x + x 2  + x3  + x4) for  some  x ∈/  {0, 1}. implies | f (x) − f (y)|  <  .  Negation: There is some  choice  of x , y, ε such

By the  distributive law  and  our  observation about additive inverses, the 

product is 1 + x 5.  Since  x 5  = 1, the  product is 0.  This  requires that 1 + x 

or 1 + x + x2 + x3 + x4  is 0. Since  additive inverses are  unique, 1 + x 6= 
0, and  therefore 1 + x + x 2 + x3 + x4  = 0. 

that, for every  positive number δ, both  |x − y| < δ and  | f (x) − f (y)|  < ε 

are  true.  Comment: For  every  function  f , the  original statement (e) is 

true, since  whenever x = y the  conclusion of the  inner conditional is true, 

and  whenever x − y one  can  choose  δ between 0 and  |x − y| to make the

Finally, let  z  = 1 + x .   Since  z  ∈/ {0, 1, x}, we  have z  = x r  for  some hypothesis of the  conditional false.  The negated statement is nonsense.

r ∈ {2, 3, 4}. Substituting 1 + x = z and  applying x r + xr  = 0 in 1 + x + x2 + 
f) For all  

 
P , there is a δ

 
P such  that, for all  x , y

 
R,   x

 
y  < δ

x3 + x4  = 0 yields  x s + x t  = 0, where {s, t} = {2, 3, 4} − {r }. This  contradicts
  

implies
  

f (x)
 ∈ 

(y)
  

<  .
 ∈ 

There is some
 ∈       |   −  | 

ε       h
 

the  property that each  element is its own additive inverse.
 |          − f      | Negation: positive number suc

 
 

2. LANGUAGE AND  PROOFS 
 

2.1.   A flawed argument for 2 = 1. 

Let  x , y be real  numbers, and  suppose that x = y. This  yields  x 2  = xy, 

which  implies x 2  − y2   = xy − y2  by subtracting y2  from  both  sides. 

Factoring yields  (x + y)(x − y) = y(x − y), and  thus x + y = y. In the 

special case  x = y = 1, we obtain 2 = 1. 

The step where x − y is cancelled from both  sides  is not valid  when x = y. 
 

2.2.   Analysis of “If a and  b are integers, then  there  are integers m, n such 

that a = m + n and  b = m − n.”  The statement is false,  since  summing the 
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that, for every  positive number δ, some  pair of real  numbers that differ  by 

at most  δ satisfy | f (x) − f (y)| ≥ ε. 
 

2.5.   Statements about  real numbers. 

a) For all real numbers y, b, m with m 6= 0, there  is a unique real num- 

ber  x such  that y = mx + b.  Since  m 6= 0, the  number (y − b)/m  exists, 

and  the  properties of real  numbers imply  that it satisfies the equation for 

x . Hence there is at least one solution. 

To prove  that there is always at most  one solution, suppose that y = 
mx + b and  y = mx 0  + b. We conclude that mx + b = mx 0  + b, which  implies 

mx = mx 0, which  implies x = x 0  (since m 6= 0). Hence the solution is 

unique. b) For all real numbers y , m, there  exist  b, x ∈ R such  that y = mx 

+ b. Given the values of y and m, we can set x = 0 and b = y to obtain a 

solution.
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2 

2.6.   Usage  of language. 

a) Under the  mathematical convention about order of quantifiers, the 

sentence “Please note  that every  alternative may  not  be available at this 

time”  states that there may  be  no  food available.   Probably they  mean 

“Please note  that some  alternative may  be unavailable at this time”. 

b) (student-supplied example of an English sentence that has  different 

meaning depending on inflection, pronunciation, or context.) 
 

2.7.   Alibis and  conditional statements. An alibi  is a (true) statement that 

a suspect was  in a different location from  the  crime  at the  time that the 

crime  was  committed.  Assuming the  truth of “If A committed the  crime, 

then A was  present when the  crime  was  committed,” an  alibi  allows  us to 

conclude that  A did not  commit the  crime, since  otherwise the  hypothesis 

of our conditional is true and  its conclusion is false. 
 

2.8.  Student-supplied example of statements A, B, C such  that A and  B to- 

gether imply C, but such that neither A nor B alone implies C. For example, 

“If our team scores  at least 100 points and  our opponents score  fewer  than 

100 points, then we win the  game,”  or “If it rains and  my car  is parked on 

the  street, then my car will get wet."" 
 

2.9.  The negation of the statement “No slow learners attend this  school” is: 

c) Some  slow learners attend this school. 

This  option given  on the  1955  exam is not  completely correct, because it 

suggests that more  than one attendee is needed. The  best  response would 

be “Some  slow  learner attends this school”  or “At least one  slow  learner 

attends this school”. 
 

2.10.   Logical statements.  We list  the  given  statement, a rephrasing as  a 

conditional or a quantification, and  the  negation. 

a) Every odd number is prime. (It is not relevant that this is false.)  If 

x is an odd number, then x is prime. Some  odd number is not prime. 

b) The sum of the angles of a triangle is 180 degrees. For every  triangle 

T , the  sum  of the  angles in T is 180 degrees. Some triangle has  angle-sum 

not equal to 180 degree. 

c) Passing the  test requires answering all the  problems. If the  test was 

passed, then all  the  problems were  solved.   It is possible to pass the  test 

without solving  all the  problems. 

d) Being  first  guarantees getting a good seat. If I am  first, then I will 

get a good seat. I may  be first  and  not get a good seat. 

lead  to waste. 

g) I get mad  whenever you do that. If you do that, then I get mad. You 

might do that without me getting mad. 

h) I won’t say  that unless I mean it.   If I say  that, then I mean it.   I 

may  say that without meaning it. 
 

2.11.   The  $100  statement.  From a $1 bill,  a $10  bill,  and  a $100  bill,  a 

true statement gets a bill and  a false statement gets nothing. To guarantee 

receiving the  $100  bill,  one may  say,  “You will give me neither the  $1 bill 

nor the  $10 bill.” 
 

2.12.   Telephone bill.  The problem defines f on N∪{0} by  f (x) = mx +b and 

states that f (8) = 548 and   f (12)  = 572.  It is not  necessary to determine 

b.  We have 24 = f (12) − f (8) = 12m + b − (8m + b) = 4m.  Thus m = 6. 

We now have f (20) = f (12) + ( f (20) − f (12))  = 572 + 8 · 6 = 620. 

Alternatively, after computing m = 6,  f (8) = 548 yields  b = 500, and 

now  f (20) = 6 · 20 + 500 = 620. 
 

2.13.   A word  problem. Let m, w, h denote the  ages  of the  man, the  woman, 

and  the  house. The three sentences establish three equations among these 

values:  w + 1 = (h + 1)/3, m + 9 = (h + 9)/2, m = w + 10.   Solving by 

substitution yields  w = 27, m = 37, h = 83. 
 

2.14.   Circles.  The circle specified by a, b, c with c > −a2 + b2/4 is {(x , y) ∈ 
R2: x2 + y2 + ax + by = c}. 

a) Circles  with various intersections. Keeping a, b fixed and  changing 

c yields  circles  that do not  intersect (they are  different level  curves of the 

function f (x , y) defined by  f (x , y) = x 2 + y2 + ax + by.) 

The  circles  determined by (a, b, c) = (2, 0, 0) and  (a, b, c) = (−2, 0, 0) 

share  only the point  (0, 0).  If (x , y) lies on both  circles, then x 2 + y2 + 2x = 
x2 + y2 − 2x , which  yields  x = 0. Setting x = 0 in the  equation for the  first 

circle  y2  = 0, so the  only such  point is (0, 0). 

The  circles  determined by  (a, b, c)  =  (1, 0, 0)  and  (a, b, c)  =  (0, 1, 0) 

share exactly  the points (0, 0) and (−1/2, −1/2). If (x , y) lies on both circles, 

then x2 + y2 + x = x2 + y2 + y, which  yields  x = y.  Setting x = y on the 

first  circle yields  2x 2 + x = 0. The solutions of this are  x = 0 and  x = −1/2, 

which  yields  (0, 0) and  (−1/2, −1/2) as the  points of intersection. 

b) The  parameter c is restricted as given  in  order  to permit solutions. 

We write c = x2  + y2  + ax + by = (x − a/2)2  − a2/4 + (y − b/2)2  − b2/4. 

Since  the  contributions of squares are  nonnegative, we deduce that c ≥

e) Lockers must be turned in by the  last day  of class. If classes have 
ended, then lockers must have been  turned in.  Someone may keep  a locker

 −(a2
 + b )/4 if there is any  solution. When  equality holds, there is only a

 

past the  end  of classes. 

f) Haste makes waste. If haste, then waste. Haste might not  always 

single solution point, which  we usually don’t view as a circle. 
 

2.15.   Alternative derivation of the quadratic formula. Suppose a, b, c ∈ R
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2 

b 

b2 

b2 

j =0 

2 

2 

2 b 

with a 6= 0, and  assume that ax 2 + bx + c can be factored as a(x − r )(x − 
s) 

2.17.   If g(x) = x  +    x       and  g(x) = g(−x) for all  x such  that f (x) 6=  1,

2         f (x)−1

for real  numbers r, s, so that r and  s are  solutions to ax 2 + bx + c = 0. then   f (x) f (−x) = 1 for all such  x . The  given  conditions yield  x  +       x   

f (x)−1  
=

a) Sum and product of the roots.  From ax 2 + bx + c = a(x − r )(x − s) =                      h                           i

−x               −x                                                                                                                   1                      1
ax2  − a(r + s)x + ars, we equate coefficients of powers of x to obtain b = 2   

+ 
f (−x)−1 

. Collecting like  terms yields  x = −x f (x)−1) 
+  

f (−1)−1 . After

−a(r + s) and  c = ars, or r + s = −b/a and  rs = c/a. 

b) Expression for (r − s)2.  Since  (r − s)2  = (r + s)2  − 4rs, we can  sub- 

stitute the  expressions from a for the  sum  and  product of r and  s to obtain 

(r − s)2  = (−b/a)2  − 4c/a = (b2  − 4ac)/a2. 

c) Solution for r, s. Taking the square root of both sides  in (b), we obtain
 

further simplification, [ f (x)−1][ f (−x)−1] = −[ f (x)−1+ f (−x )−1]. After 

multiplying out and  canceling like terms, what remains is  f (x) f (−x ) = 1. 
 

2.18.   If  A is  the  sum of the  coefficients of the  even  powers  and   B is  the 

sum of the coefficients of the odd powers  in a polynomial p, then  A2 − B   =

r −s = 
√  

− 4ac/a. Together with r +s = −b/a from (a), we have a system
 p(1) p(−1). Let  p(x) = 

Pk ci x
i be the  formula for the  polynomial. Note

b2 

of linear equations in 
 
r and  s.  The  sum  of the  two equations yields  2r  = that A2 − B 

i =0 

= (A + B)(A − B). Thus we need  the  sum  of all the  coefficients

(−b + 
√  

2 
 

− 4ac)/a,  and  the  difference yields  2s  =  (−b − √   
− 4ac)/a.

 (A + B) and  the  alternating sum  of the  coefficients ( A − B = c0 − c1 + c2 −

 

Dividing by 2 yields  the  solutions. 
c3 + · · ·). These are  A + B = p(1) and  A − B = p(−1); setting x to be 1 or

d) Effect  of the negative square root.  Taking the square root of (b) could −1 yields  the  desired quantities.

also  yield  r − s  = −
√

 − 4ac/a.   Letting S  = r  and   R  = s then yields 
 

2.19.   “You can fool all of the people some of the time,  and  you can fool some

S = −
√

 − 4ac/a  and  R + S = −b/a  (from  (a)), which  are  the  same 

r and  s
 

 

of the people all of the time,  but you can’t fool all of the people all of the time.” 

Let  P be the  set of people,  T the  set of times, and  F( p, t) the  sentence “you
equations as before.   Hence the  negative square root  interchanges 
and  does not change the  set  of solutions. 

 

2.16.   a) Every  function f  :  R → R has  a unique expression as g + h such 

that g(−x)  = g(x) and  h(−x)  = −h(x)  for all  x  ∈  R.   The  value of  f  is 

known at each  real  number; the  values of g and  h must be determined. 

The equation f (x) = g(x)+ h(x) has  two unknowns; we need  another equa- 

tion  involving g(x) and  h(x).   The  desired expression for  f  in  terms of g 

and  h yields   f (−x) = g(−x) + h(−x).  The  properties required for g and  h 

transform this to  f (−x ) = g(x) − h(x).  This  yields  the  system 

f (x)     =    g(x) + h(x) 

f (−x)   =    g(x) − h(−x) 
 

We  now  have two  equations for  the   two  unknowns g(x)  and   h(x). 

Adding  them yields  2g(x) = f (x) + f (−x ); subtracting them yields  2h(x) = 
f (x) − f (−x ). Hence we have determined g and  h in terms of f by comput- 

ing g(x) = ( f (x) + f (−x))/2 and  h(x) = ( f (x) − f (−x))/2. 

b) Even  and  odd  parts of polynomials.  By  the  definition of polyno- 

 
can fool person p at time t”. The sentence is 

 

(∀ p ∈ P)(∃t ∈ T )(F( p, t)) ∧ (∃ p ∈ P)(∀t ∈ T )(F( p, t)) ∧ ¬(∀ p ∈ P)(∀t ∈ T )(F( p, t)) 
 

The negation is 
 

¬(∀ p ∈ P)(∃t ∈ T )(F( p, t)) ∨ ¬(∃ p ∈ P)(∀t ∈ T )(F( p, t)) ∨ (∀ p ∈ P)(∀t ∈ T )(F( p, t)) 
 

The  first  two parts of the  negation become  (∃ p ∈ P)(∀t ∈ T )(¬F( p, t)) 

and  (∀ p ∈ P)(∃t ∈ T )(¬F( p, t)).  Thus we might interpret the  negation in 

English as “There is someone you can never fool, or every person sometimes 

cannot be fooled, or everyone can always be fooled.” 

Which  statement is true?  One  might argue that no one  can  always 

be fooled (rather, everyone at some  time cannot be fooled), and  that there- 

fore  the  negation is more  believable than the  original statement.  This  is 

perhaps a matter of opinion. 
 

2.20.   The  notion of a “winning strategy”.   The  first  player has  a winning
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j =0 

i ≥1 

P 

mial,  f (x)  = 
Pk

 cj x j .  Thus  f (−x ) =  
Pk

 cj (−1) j x j .  Summing these strategy if there is some move for the first  player such that, no matter what

two formulas (and  dividing by 2) cancels the  terms with odd powers of x . 

Subtracting them (and  dividing by 2) cancels the  terms with even  powers 
the  second player does  in  response, the  first  player will  have a  winning 

strategy in what remains of the game. Let  M(x1, . . . , xk ) be the set of moves

of x .   Therefore, the  formulas in  (a) yield  g(x)  = 
P

 c2i x
2i   and  h(x)  = available for the  person making the  k + 1th  move  after the  first  k moves

i ≥1 c2i −1 x 
2i −1 .   Thus, g is  the  polynomial obtained by  taking the  even have been  x1, . . . , xk . If the game has  already ended, we let M(x1, . . . , xk ) be

terms of f , and  h is the  polynomial obtained by taking the  odd terms. 

Because of the special case for polynomials, the function g in this prob- 

lem is in general called the  even part  of  f  and  the  function h is called the 

odd part  of f . 

“pass”.  The statement that the  first  player has  a winning strategy is then 
 

 
(∃x1  ∈ M0)(∀x2  ∈ M(x1))(∃x3   ∈ M(x1, x2) · · · 

(∀x8 ∈ M(x1, . . . , x7))(∃x9  ∈ M(x1, . . . , x8))(Player 1 wins)
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2, 

√ 

2.21.   Negation of a quantified sentence.  The  sentence “For  every  n ∈  N 
there exists a real  x  > 0 such  that x  < 1/n” can  be formalized as  (∀n ∈ 
N)(∃x > 0)P(x , n), where P(x , n) is the sentence x < 1/n. Existential quan- 

tifiers are  usually followed by “such that”. We can negate the  statement as 

follows:  ¬(∀n ∈ N)(∃x > 0)P(x , n) ⇔ (∃n ∈ N)[¬((∃x > 0)P(x , n))] ⇔ (∃n ∈ 
N)(∀x  > 0)(¬P(x , n)).  In  words, this is “There exists a natural  number n 

such  that every  positive number x is at least 1/n.”  There is no such  natu- 

ral  number, because the  real  number 1/(2n) is less  than 1/n.  Hence this 

negation is false,  and  the  true statement is “For every  n ∈ N there exists 

x > 0 such  that x < 1/n.”  This  can be seen  directly; for each  n, the  number 

1/2n can be chosen as the  desired x . 
 

2.22.   Negation of the definition of increasing function. The  definition of  f 

being  increasing is on domain S is (∀x , x 0   ∈ S)(x < x 0  ⇒   f (x) < f (x 0)).  The 

negation is (∃x , x 0   ∈ S)[(x < x 0) ∧ ( f (x) ≥ f (x 0)].  In words, this is “for some 

pair x , x 0  with x < x 0, the  function values satisfy f (x) ≥ f (x 0). 
 

2.23.   The  meaning of “g  ∈/  S”, where  S = {g: R → R: (∃c, a ∈ R)(x  > a ⇒ 
|g(x)|  ≤ c | f (x)|)}.   Note  that S depends of  f .   The  meaning of “g ∈/  S” 

(more  restrictive on  f ), because here a single choice of δ must work  for all 

values of a, while  in (a) different δ can be chosen for different values of a. 

Comment: This  is the  distinction between continuity at a and  uniform 

continuity, which  is discussed in Chapter 15. 
 

2.27.   Interpretation of statements about  c ∈ R and   f : R → R. 

a) For all  x  ∈  R  and  all  δ > 0, there  exists      > 0 such  that |x | < δ 

implies | f (x) − c| <  . This  states that on every  interval, f is bounded. 

b) For all  x  ∈ R,  there  exists  δ > 0 such  that, for all     > 0, we have 

|x | < δ implies | f (x) − c| <  . This  is the  statement that f (x) = c on some 

open  interval containing 0. 
 

2.28.   The  equation x 4 y + ay + x = 0. 

a) It is false  that “For all a, x ∈ R, there  is a unique y such  that x 4 y + 
ay + x = 0.”  A counterexample to this statement is the  pair (a, x) = (0, 0). 

For this example, all  y ∈ R satisfy the  equation. 

b) The statement “For x ∈ R, there is a unique y such that x 4 y +ay + x = 
0” is true  if and  only  if a is positive.  If the  sentence holds  for a, then the 

equation must have a unique solution ywhen x  = 0.  Thus ay = 0 must

is (∀c, a ∈ R)(∃x  > a)(|g(x)|  > c | f (x)|).   In  other words, for each  c ∈ R, 
requiring x to be large does not make |g(x)| ≤ c | f (x)| true. 

 

2.24.   Two  statements about  a set S of natural numbers. 

a) There is a number M such  that, for every  x ∈ S, |x| ≤ M . 

b) For every  x ∈ S, there is a number M such  that |x | ≤ M . 

Statement (a) says  that there exists M such  that M is a bound for S, so this 

statement says  that S is finite. Statement (b) says  that every  element of S 

is bounded by a number, such  as itself, but  the  number can be different for 

different choices of x . Statement (b) is always true and places no restriction 

on S. Hence if (a) is true, then (b) is true; i.e.  (a) implies (b). 
 

2.25.   For  a  ∈  R  and   f : R  → R,  the  statements (a) and  (b) below  have
 

have a unique solution; this requires a 6= 0. Also, if a < 0, then x = 
(−a)1/4

 

is a choice of x for which  the  equation has  no solution. 

If a > 0, then for every  x ∈ R we can solve the  equation for y to obtain 

y = −x /(x 4 + a). This  computes a unique value for y that makes the  equa- 

tion  true.  Thus the  most  general condition on a that makes the  sentence 

true is “a > 0”. 
 

2.29.   Extremal problems. 

a) Characterization of “minimum”.  To prove  that β  = min{  f (x): x ∈ 
S}, it must be shown that (∀x ∈ S)( f (x) ≥ β) and  (∃x ∈ S)( f (x) = β). 

b) The  minimum of  f (x , y) = max{x , y, 1  + 1 }, over the set of ordered 
x         y 

pairs (x , y) of positive real  numbers, is  
√                                              √

2.   We prove  that f (x , y) ≥    2
different meanings. 

always, and  that this value is achieved  . If max{x , y} ≥ 
√

 then f (x , y)  ≥

2.  If x <  2 and  y < 
2, then f (x , y) ≥ 1  + 1  ≥  2    = 

√

a) (∀ε > 0)(∃δ > 0)[(|x − a| < δ) ⇒  (| f (x) − f (a)| < ε)] 

b) (∃δ > 0)(∀ε > 0)[(|x − a| < δ) ⇒  (| f (x) − f (a)| < ε)] max{x , y} ≥ 
√              √

 
√ 

√                                                                
2. 

√              x         y             2

Statement (b) is a stronger requirement satisfied only  by those functions Finally, when x = y = 2, we have f (x , y) =    2.

satisfying (a) that also  are  constant in a neighborhood of a.  For  example, 

the  function defined by  f (x) = x satisfies (a) (for each  ε > 0, simply choose 

The  paragraph above  is a complete proof,  but  it requires knowing the 
answer. How can the  answer be found  if not known? If x or y is larger than

1         1
δ equal to ε), but  it does not satisfy (b). On the  other hand, the  function de- 
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2. 

fined by  f (x) = 0 satisfies both.  (Comment: Statement (a) is the  definition 

of continuity at a—see Chapter 15). 
 

2.26.   Order  of quantifiers.  Omitting the  specifications of universes, the 

statements  symbolically become  (a):   ∀(ε)∀(a)∃(δ)∀(x)(| f (x) − f (a)|  < ε) 

and  (b):  ∀(ε)∃(δ)∀(a)∀(x)(| f (x) − f (a)|  < ε).   Statement (b) is  stronger 

x  
+ 

y 
, then we can  reduce the  maximum by reducing the  larger element 

of {x, y}.   Hence a  natural candidate for  the  minimum of the  maximum 
occurs  when the  three quantities are  required to  be  equal, which  yields 

x = y = 
√

 
 

2.30.   Each card  has  an integer on one side and  a letter on the  other. Cards 

are  mixed  up arbitrarily and  then laid  out.
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2 

a) "Whenever the  letter  side  is a vowel,  the  number side  is odd."  This 

is a conditional statement:  “If one side  is a vowel,  then the  other is odd.” 

The statement is false  only if there is a card  with one side a vowel and  the 

other side even.  The statement is true if this never happens. To check this, 

we must look at the  other side  of every  card  showing vowel or even. 

b) "The letter side is a vowel if and  only if the number side is odd." This 

is a  biconditional statement, requiring both  the  statement of (a) and  its 

converse. The  converse is “Number side  odd implies letter side  vowel.”  To 

factors as (n + 1)(n − 3), which  is 0 only when n is 3 or −1. Hence the  only 

triple of consecutive natural numbers solving  the  equation is 3, 4, 5. 

b) There  are no consecutive natural numbers such  that the cube of one 

is the sum of the cubes of the other two.  Now our equation is (n − 1)3  + n3  = 
(n + 1)3, which  holds  if and  only if n3 − 6n2 = 2. This requires n2(n − 6) = 2. 

Since  this expresses 2 as a product of integers, they  must all divide  2.  We 

must have n2  = 1, but  then n − 6 cannot equal 2. Hence the  equation is not 

satisfied by any  positive integer n.

check  the  converse, we must look at the  other side  of every  card  showing 

odd or consonant. To check the conditional in (a), we must look at the other 

 

2.35.   If x and  y are distinct real numbers, then  (x + 1)2
 

 

= (y + 1)2
 

 

if and

side of every  card  showing vowel or even.  Hence we must look at the  other only  if  x + y = −2. If x + y = −2, then x + 1 = −(y + 1),  and  then we

 

side  of every  card  to test (b). 
square both  sides. Starting with (x + 1)2

 = (y + 1)  , we must consider the

 

2.31.   Quantification over empty sets.  The set of my 5-legged dogs is empty. 

Given  any  condition, everything in this set  satisfies it, but  there does not 

exist an  element of this set  that satisfies it.   In  other words, every  state- 

two possibilities x + 1 = ±(y + 1).  If x and  y must be distinct, then only 

the  possibility x + y = −2, but  otherwise the  solution set  consists of these 

points together with those where x = y.

ment quantified universally over the empty set is true, and every statement 2.36.   If  x  is a real number such that |x − 1|  <  1, then 
 

quantified existentially over the  empty set  is false. 

a) “All of my 5-legged  dogs can fly”—TRUE.
 

 x2 − 4x + 3   < 3. 

Given  |x − 1|  < 1,  the  triangle inequality yields  |x − 3|  = |x − 1 − 2|  ≤ 
|x − 1| + |−2|  < 1 + 2 = 3.  (Geometrically, if x is within 1 of 1, then x is

 

b) “I have  no 5-legged  dog that cannot fly”—TRUE. 
within 3 of 3.)  This yields 

 

c) “Some of my 5-legged  dogs cannot fly”—FALSE. 

d) “I have  a 5-legged  dog that cannot fly”—FALSE. 

 x2 − 4x + 3  = |x − 1| |x − 3| < 1 · 3 = 3. 
 

2.37.   Conditional statements for real numbers. For a given  real  number x , 

let  A be the  statement “ 1  < x < 5 ”, let  B be the  statement “x ∈ Z”, let C be
2                    2 

2

2.32.   Fraternity pledges. Each person always tells  the truth or always lies: 
the  statement x = 1, and  let  D be the  statement “x = 2”.

A) All three of us are  liars. 

B) Only two of us are  liars. 

C) The other two are  liars. 

If the  statement of A is true, then it must be false.   Hence it is false  and 

A is a liar. If the  statement of C is true, then A,B and  only A,B are  liars. 

This  makes the  statement of B true, which  is a contradiction.  Hence the 

statement of C is false  and  C is a liar. Now the  statement of B is true, and 

B is a truth-teller. 
 

2.33.   Three  children in line.  The  hats are  from  a set  of two red  and  three 

black  hats. The third child sees the  first  two hats, the  second child sees the 

first, and  the  first  child  sees  none.  If the  first  two were  both  red,  the  third 

would know she wore black. Since  she is silent, at least one of the  first  two 

is black. The second also knows this reasoning. Thus if she saw red on the 

first, she  would  know  she  wore  black.  Since  she  is silent, the  first  child’s 

hat must be black. Thus she  names black. 
 

2.34.   Solution of equations in consecutive natural numbers. 

a)  (3,4,5)  is  the  only  solution to n2  + (n + 1)2   = (n + 2)2   in  natural 

numbers. The  equality holds  if and  only if n2 − 2n − 3 = 0.  The  quadratic 
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a) A ⇒  C—FALSE. Every number in (1/2, 5/2) other than 1 is a coun- 

terexample. 

b) B ⇒  C—FALSE. Every integer not in {1, −1} is a counterexample. 

c) (A ∧ B) ⇒  C—FALSE. The hypothesis is satisfied by 1 and  by 2, but 

the  conclusion is not satisfied by 2. 

d) (A ∧ B) ⇒  (C ∨ D)—TRUE. The hypothesis is satisfied by 1 and  by 

2. Since  1 satisfies C and  2 satisfies D, each  satisfies the  conclusion C ∨ D. 

e) C ⇒  (A ∧ B)—FALSE. The set of numbers satisfying the  hypothesis 

is {1, −1}.  Among  these, both  satisfy B, but  −1 does  not  satisfy A.  Thus 

−1 is a counterexample. 

f) D ⇒  [ A ∧ B ∧ (¬C)]—TRUE. The hypothesis is satisfied only by the 

number 2.  This  number is in (1/2, 5/2), is an  integer, and  does  not  yield 

1 when squared, so it also  satisfies the  conclusion, and  the  conditional 

statement is true. 

g) (A ∨ C) ⇒  B—FALSE. The  hypothesis is satisfied by −1 and  by all 

numbers in the interval (1/2, 5/2). Of these, only −1, 1, and  2 are integers; 

all other numbers in the  interval are  counterexamples. 
 

2.38.   Parity of products. 

a) xy is odd if and  only if x and  y are odd—TRUE. If x and  y are  odd,
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then x = 2k +1 and  y = 2l +1 for some integers k and l. The product is (2k + 
1)(2l + 1) = 4kl + 2k + 2l + 1 = 2(kl + k + l) + 1; being  one more  than twice 

an integer, this is odd.  We also prove  the  contrapositive of the  converse. If 

x and  y are  not  both  odd, then at least one is even;  by symmetry, we may 

assume that x = 2k, where k is an integer. Now xy = 2(ky), which  is even. 

b) xy is even  if and  only  if x and  y are even—FALSE. If x = 2k and 

y = 2l + 1, then xy = 2(2kl + k), and  xy is even  but  y is odd. 
 

2.39.   Conditions on the  position of a moving particle. Starting from  the 

origin, the  particle moves  one unit horizontally or vertices each  day.  Thus 

it is always at an  integer point, and  the  sum  of its  coordinates changes by 

one  each  day.   Thus the  sum  of the  magnitudes of the  coordinates of its 

position on day  k is at most  k, and  the  parity of the  sum  is the  parity of k. 

These conditions are  necessary if the  particle can be at (a, b) on day k. 

The  conditions are  also  sufficient. Suppose that |a| + |b| ≤ k and  that 

a + b has  the  same parity as k. To get the  particle to position (a, b) on day 

k, move  it to (a, 0) on the  first  |a| days  and  then to (a, b) at day  |a| + |b|. 
Since  |a| + |b| has  the  same parity as k, k − |a| − |b| is even,  and  we can now 

alternate between (a, b) and  (a, b + 1), ending at (a, b) on day k. 
 

2.40.   Checkerboard problems.  To prove  the  nonexistence of a  tiling, we 

assume that one exists and  obtain a contradiction. 

a) If two  opposite corner  squares are removed from  an  eight  by eight 

checkerboard,  then   the  remaining squares cannot be  covered  exactly   by 

dominoes.  Each domino covers  one  black  square and  one  white square, 

so a board covered by dominoes has  the  same number of black  squares as 

white squares.  Removing opposite corners leaves 32 squares of one color 

and  30 of the  other color. 

b) If two squares of each color are removed from  the checkerboard, then 

the remaining squares cannot be covered  exactly  by copies of the “T-shape” 

and its rotations. Since 60 squares remain, 15 T-shapes must be used. Each 

T-shape covers  an  odd number of squares of each  color.  Since  the  sum  of 

15 odd numbers is always odd, any  board formed from 15 T-shapes has  an 

odd number of squares of each  color. Our  remaining board has  30 squares 

of each  color, so it can’t be covered by 15 T-shapes. 

Alternatively, since  the  region has  the  same number of squares of each 

color, one can  conclude that there must be the  number of tiles  covering 3 

black  and  1 white must be the  same as the  number covering 3 white and  1 

black. Thus an  even  number of tiles  must be used, which  contradicts the 

total of 60 squares, since  60 is not 4 times an even  number. 
 

2.41.   When  n hats  are returned to n people, it is possible for exactly  k people 

to have  the wrong  hat  if and  only  if 0 ≤ k ≤ n and  k 6= 1.  When  a person 

has  the  wrong  hat, the  owner  of that hat also has  the  wrong  hat. Thus we 

must exclude k = 1. 

When  k = 0, we can give all people their own hats. For all other values 

with 0 ≤ k ≤ n, give hat i to person i + 1, for 1 ≤ i ≤ k − 1, and  give hat k to 

person 1.  Given  the  other hats to their owners. Thus all  specified values 

are  achievable. 

2.42.   If a closet contains n pairs of shoes, then  n + 1 shoes must be extracted 

to  guarantee that at  least  one  pair  of matching shoes  is  obtained.  It is 

possible to avoid  having a pair when choosing n shoes  by getting one from 

each  pair.  If more  than n shoes  are  chosen, then the  average number of 

shoes  chosed  from a pair is more  than 1, so some pair must be chosen more 

than once.  An alternative way  of arguing that more  than n shoes  force a 

pair is to prove  the  contrapositive: if no pair is obtained, then each  pair 

(group of two shoes)  is selected at most  once, so the  total number of shoes 

selected is at most  n. 

To guarantee that two matching pairs are obtained, n + 2 shoes must be 

extracted. Choosing two of one pair and  one each  from  the  others yields  a 

set of size n +1 without two pairs. Conversely, if two pairs are not obtained, 

then the  maximum possible is one from each  of n − 1 incomplete pairs, and 

at most  two from one complete pair. 

2.43.   Logical equivalence of P ⇔ Q and  Q ⇔ P. Writing iff (“if and  only 

if”) to mean logical  equivalence, we have 

P ⇔ Q iff (P ⇒  Q) ∧ (Q ⇒  P) iff (Q ⇒  P) ∧ (P ⇒  Q) iff Q ⇔ P . 
 

2.44.   Conditional statements that are true  for all statements P, Q. 

a) (Q ∧ ¬Q) ⇒  P. For every  statement Q, the  hypothesis of this condi- 

tional statement is false.  Thus the conditional statement is true regardless 

of whether P is true, since the conditional is false only when the hypothesis 

is true and  the  conclusion is false. 

b) P ∧ Q ⇒  P. When  P and  Q are not both true, the hypothesis is false, 

and  the  conditional is true. When  P and  Q are  both  true, the  conclusion  P 

is true. Hence the  conditional statement is always true. 

c) P ⇒  P ∨  Q.  When  the  hypothesis is true, P is true, which  means 

that P or Q is true regardless of whether Q is true. Since  the  conclusion is 

true whenever the  hypothesis is true, the  conditional statement is true. 

2.45.   P ⇒  Q and  Q ⇒  R imply P ⇒  R. One interpretation of the  hypoth- 

esis  is (¬P ∨ Q) ∧ (¬Q ∨  R).  Given  this, if Q is true, then R is true. If Q 

is false,  then ¬P is true. Regardless of whether Q is true or false,  we thus 

have ¬P ∨ R, which  is the  same as  P ⇒  R. 

P ⇔ Q and  Q ⇔ R imply P ⇔ R. This  follows by two applications of 

the  first  part.
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2.46.   S ⇔ [¬S → (R ∧ ¬R)] .  If S is true, then any  conditional that has 

¬S as  its  hypothesis is true, by the  definition of when the  conditional is 

true. Conversely, suppose the  conditional on the  right above  is true. Since 

its conclusion is always false,  the  truth of the  conditional requires that the 

hypothesis is always false,  which  means ¬S is false,  and  hence S is true. 

When   S is  the  statement P  → Q,  the  conditional on  the  right de- 

scribes the  method of contradiction, because in this case ¬S is P ∧ ¬Q, and 

the  statement then says  that P → Q is equivalent to  P ∧ ¬Q yielding a 

contradiction. 
 

2.47.   Quantifiers and  conditional statements.  Let  P(x) be “x is odd”, and 

 

 
 
 

A         B                                                A         B 
 
 
 

b)   A ∩ [(A ∩  B)c]   =  A − B.      A ∩ [(A ∩ B)c]   =  A ∩ (Ac ∪ Bc)   = 
(A ∩ Ac) ∪ (A ∩ Bc) = ∅ ∪ (A ∩ Bc) = A ∩ Bc = A − B. 

c)   A ∩ [(A  ∩  Bc)c]   =  A ∩  B.      A ∩ (A ∩ Bcc)   =  A ∩ (Ac ∪ B)   = 
(A ∩ Ac) ∪ (A ∩ B) = A ∩ B.

c                                                                   c                             c                          c
let  Q(x) be “x 2 − 1 is divisible by 8”. 

a) (∀x ∈ Z)(P(x ) ⇒  Q(x))—TRUE. Consider an  integer x .  Under the 

d)  (A ∪  B) ∩  A 

∅ ∪ (B − A) = B − A. 

=  B − A.    (A ∪ B) ∩ A =  (A ∩ A ) ∪ (B ∩ A )  =

hypothesis “x is odd”, we have x = 2k + 1 for some  integer k, and  hence 

x2 − 1 = 4k2  + 4k + 1 − 1 = 4k(k + 1).  When  k is an  integer, one of k and 

k + 1 is even,  and  hence this product is divisible by 8. 

b) (∀x  ∈  Z)(Q(x ) ⇒   P(x))—TRUE. For  (b), we prove  for each  x the 

contrapositive ¬P(x) ⇒  ¬Q(x).  If x is not  odd,  then x is even,  so x 2  is 

even,  so x2 − 1 is odd and  hence not divisible by 8. 
 

2.48.   Quantifiers and  conditional statements. Let  P(x) be the  assertion “x 

is odd”, and  let  Q(x) be the  assertion “x is twice  an integer”. 

a) (∀x ∈ Z)(P(x ) ⇒  Q(x))—FALSE. We need  only exhibit a single inte- 

ger  x where the  statement is false,  which  happens when the  hypothesis is 

true and the conclusion is false.  Each odd integer is such a counterexample. 

b) (∀x ∈ Z)(P(x )) ⇒  (∀x ∈ Z)(Q(x))—TRUE. This  is a single condi- 

tional. The hypothesis is the  statement “All integers are  odd”. The conclu- 

sion is the  statement “All integers are  even.  The hypothesis is false.  Hence 

the  conditional is true, regardless of whether the  conclusion is true. 

2.51.   Distributive laws  for intersection and  union. 

a) A ∪ (B ∩ C) = (A ∪ B) ∩ (A ∪ C). 

b) A ∩ (B ∪ C) = (A ∩ B) ∪ (A ∩ C).  An element in the  set  on the  left 

must belong  to A, and  it must also belong  to B or to C . In the  first  case,  it 

belongs to  A and  to B; in the  second, it belongs to  A and  to C .  Hence it is 

in the  set  on the  right. Similar discussion shows  that every  element of the 

set  on the  right belongs to the  set  on the  left. 
 

2.52.   If  A, B, C are sets,  then  A ∩ (B − C) = (A ∩ B) − (A ∩ C).  Elements 

of B − C belong  to B and  not  to C , so every  element in both  A and  B − C 

belongs to A ∩ B and  not to A ∩ C . Hence A ∩ (B − C) ⊆ (A ∩ B) − (A ∩ C). 

Conversely, every  element of (A ∩ B) − (A ∩ C) is in  A. Also it is in B. 

Since  we discard all elements of C that are  also in  A, we keep  no elements 

of A ∩ B in C .  Hence our  element is in  B but  not  in C , and  we have (A ∩ 
B) − (A ∩ C) ⊆ A ∩ (B − C). 
 

2.53.   If  A, B, C are sets, then  (A ∪ B) − C ⊆ [ A − (B ∪ C)] ∪ [B − (A ∩ C)], 

but  equality need  not  hold.   From a Venn  diagram with circles  for  A, B, C
2.49.   Comparison of S = {x ∈ R: x 2  > x + 6} and  T = {x ∈ R: x > 3}.  We 

forming eight regions, one can see that (A     B)
 

C consists of the  regions
rewrite S as  {x ∈ R: (x − 3)(x  + 2) > 0}.  The  quadratic inequality holds 

when |x | is “large”.   The  set  T  consists of the  positive numbers where it 

 

A−(B 
 

∪C), (A∩ 
 

B)− 
 

C , and  B 
 

−(A 

∪ 
∪C). The set 

− 
[ A − (B 

 

∪ C)] 
 

∪ [B 
 

− (A 
 

∩ C)]

holds, but  not the  negative numbers. 

a) T  ⊆  S.  If x > 3, then x − 3 and  x + 2 are  both  positive, and  thus 

x ∈ S. 

b) S 6⊆ T .  When  x < −2, both  x − 3 and  x + 2 are  negative, and 

thus 

x ∈ S. However, these elements of S are  not in T . 
 

2.50.   Identities about  sets. 

a) (A ∪ B)
c  = Ac ∩ Bc. The expression (A ∪ B)

c 
denotes the set of every- 

thing that is not in A or B. This consists of everything that is outside A and 

outside B, which  is precisely the  set  described by the  expression Ac ∩ Bc. 
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consists of these together with (B ∩ C) − A. 
Thus inclusion holds, and  the  sets  differ  whenever there is an element 

that is in  B and  C but  not  in  A.  The  smallest example of this is  A = ∅, 

B = {0}, C = {0}. 
 

2.54.   When  the seven  bounded regions  formed by three  circles  in the plane 

each have  a black/white token, the operations of (a) flipping the tokens in- 

side one circle or (b) making the tokens inside one circle all white CANNOT 

turn the all-white configuration into  the configuration that is all white ex- 

cept for the  region  common to all  three  circles.   The  desired configuration 

has an odd number of blacks in every circle, which  can begin to happen only
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∈ N 

k=1 

k=1 

k 

Pn+1 

i =1 i =1 

2 

via  operation (a).  Since  (a) flips  two or four  tokens in each  circle,  it does 

not change the  parity of the  number of black  tokens in any  circle.  Hence a 

configuration with an odd number of blacks in every  circle arises only from 

another such  configuration.  Since  the  initial configuration is not  of this 

n = 5, since  it is equivalent to 0 < n2 − 10n + 25 = (n − 5)2.  One can prove 

that 2n − 8 < n2 − 8n + 17 implies 2(n + 1) − 8 < (n + 1)2  − 8(n + 1) + 17 

when n ≥ 5. 
 

2

type,  the  desired configuration cannot be reached.
 3.8.  For n ∈ N, 2n − 18 < n − 8n + 8—TRUE. The inequality is equivalent

 

 

3. INDUCTION 

to 0 < n2 − 10n + 26 = (n − 5)2  + 1, which  is positive for all n. 
Alternatively, one can use induction. Let  P(n) be “2n − 18 < n2 − 8n + 

8”.  If  P(n) is true, then 2(n + 1) − 18 <= 2n − 18 + 2 < n2  − 8n + 10 = 
(n + 1)2  − 8(n + 1) + 8 − (2n + 1) + 10.  The  last expression is less  than or 

2

3.1.   A sequence  of statements where  the  100th statement is  the  first  one equal to (n + 1) − 8(n + 1) + 8 when −(2n + 1) + 10 ≤ 0, which  is true when

false.    If  P(n)  is  “n < 100”,  then P(1), . . . , P(99)  are  true but   P(100)  is 

false. 
 

3.2.   Falsity of a sequence  of statements. We are  given  P(1), P(2), . . . such 

n ≥ 9/2.  We can check  explicitly that  P(1), P(2), P(3), P(4), P(5) are  true 

and  then use  the  computation above  to complete a proof by induction. 
 

3.9.   For n        ,    2n−18   < 1—FALSE. The  inequality differs from  that in 
n2−8n+8 

2

that P(1)  is false,  and  such  that whenever P(k) is false,  also  P(k + 1) is the  preceding problem when n − 8n + 8 ≤ 0. It is false for n ∈ {2, 3, 4, 5, 6}.

false.   Define  Q(n) by  Q(n) = ¬P (n). The  hypotheses imply  that Q(1) is 

true and  that whenever Q(k) is true, also  Q(k + 1) is true. By the  principle 

of induction, all  Q(n) are  true, and  hence all  P(n) are  false. 
 

3.3.  Induction in both directions. We are  given  statements with an integer 

parameter such  that P(0)  is true, and  such  that whenever P(n) is true, 

also both  P(n + 1) and  P(n − 1) are  true. Since  P(n) ⇒  P(n + 1), ordinary 

induction implies that P(n) is true when n ≥ 0. 

Let  Q(n) = P(−n).  Since  P(n) ⇒  P(n − 1), ordinary induction implies 

that Q(n) is true when n ≥ 0, and  hence P(n) is true when n ≤ 0. 

3.10.   For  an  odd  number of odd  integers, the  sum and  the  product are 

odd.   We prove  this for 2n + 1 odd  integers, where n ≥ 0.   For  the  basis 

step, one odd integer is an  odd integer. The  induction step uses  the  direct 

computations that the  sum  of two odd integers is even,  while  the  product 

of two odd integers is odd.  Thus when we add  on the  last two odd integers 

to an odd sum, the  sum  remains odd, and  when we multiply on the  last two 

odd integers to an odd product, the  product remains odd. 
 

3.11.   Every  set of n elements has 2n  subsets. We use induction on n to prove 

this for n ≥ 0.  Basis step: The  empty set  ∅  is the  only  set  of 0 elements, 
0

3.4.   If  P(0) is true,  and  the  truth of P(n) implies the  truth of P(n + 1) or and  ∅ is the  only subset of ∅, so the  formula 2 is correct when n = 0.

P(n − 1), then  possibly only  two  of the  indexed statements are true.   Since 

P(0) is true, P(1) or P(−1) must be true.  However, the  truth of P(0) and 

P(1)  does  not  imply  that any  other statements among those indexed are 

true, and  neither does the  truth of P(0) and  P(−1). 

Induction step: Suppose that the  claim  is true when n = k.  Let  S be 

a  set  of k + 1 elements, and  let  x be an  element of S.   The  subsets of S 

consist of those containing x and  those not  containing x .  The  subsets not 

containing x are  subsets of S − {x}; by the  induction hypothesis, there are 

2k  of these.  The  subsets containing x consist of x together with a subset

3.5.   For n ∈ N, 
Pn

 (2k + 1) = n2 + 2n—TRUE. For n = 1, 2 · 1 + 1 = 3 = of S − {x}; again the  induction hypothesis implies that there are  2k .  Thus

12  + 2 · 1. If 
Pn

 (2k + 1) = n2 + 2n, then altogether there are  2k + 2 = 2k+1 subsets of S. Since  S was chosen as any

 

k=1(2k + 1) = (n 
 

+ 2n) + (2(n + 1) + 1) = (n + 1)2 

 

+ 2(n + 1). 
set  with k + 1 elements, the  claims also holds  when n = k + 1.

3.12.   If x ∈ R and  n ∈ N, then  
Pn

 x = nx. Let  P(n) be “
Pn

 x = nx”. We
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i =1 

i =0 

+                    n                                                             i =0 

3.6.   If  P(2n) is true  for all n ∈ N, and  P(n) ⇒  P(n + 1) for all n ∈ N, then 

P(n) is true  for all  n ∈ N—FALSE. The  statement P(1) need  not  be true.
 

use  induction on n. Basis step (P(1) is true): x = 1 · x . 

Induction step (P(k) ⇒  P(k + 1)).  The induction hypothesis is 
Pk

 

For example, suppose that P(n) is “n > 1”. Here P(n) is true when n is an 

even natural number, and  n > 1 implies n + 1 > 1 + 1 > 1, so this sequence 

i =1 = 
kx . Using this and  the  distributive law yields  

Pk+1 
x = kx + x = (k + 1)x . 

 

3.13.   The  sum and  the difference of two polynomials are polynomials. Let

of statements is a counterexample. 
f  and  g be polynomials, so that f (x) = 

Pn      
ai x

i
 and  g(x) = 

Pm
 bi x

i
 for

3.7.  For n ∈ N, 2n − 8 < n2 − 8n + 17—FALSE. The inequality holds  when some coefficients a0, . . . , an and  b0, . . . , bm . We may  assume that n ≥ m and

n ∈ {1, 2, 3, 4}, but  it fails  for n = 5. In fact,  the  inequality fails  only when let bm   1  = · · · = b  = 0. Writing g(x) = 
Pn

 bi x
i
 does not change g.
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i =1 

ai  ≤ 

Q − 

b) 

i =0 

i + 

i =1 

i =1 

i =1 

2        
= (−1) 

2 

k+2 

i =1 2 

i   1 i   > 

i   1 

2 

+ 
P 

Since  we can reorder terms in a sum  (proved by induction), we have 3.18.   If 0 ≤ ai  ≤ bi  for all i ∈ N, then  
Qn

 
Qn 

i =1 bi . We use  induction

 
n                          n                          n                                                n on n. Basis step (n = 1): given  by hypothesis.  

n−1

( f + g)(x) = f (x) + g(x) = 
X 

ai x
i  + 

X 
bi x

i  = 
X

(ai x
i  + bi x

i ) = 
X

(ai  + bi )x
i .

 Induction step (n > 1): The induction hypothesis states that 
Q ai  ≤

n   1                                                                                                                                                                  
i =1

 

i =0
  

i =0
  

i =0
  

i =0
 

=1 bi .  We use  this and  Proposition 1.45(F2) (twice,  with commutativity

 
Dropping high  indices if an  + bn  = 0, we have now  expressed  f + g as  a 

i 

of multiplication) to obtain

polynomial. A similar argument holds  for  f − g, which  is a polynomial with Qn      
ai  = 

 Qn−1 
ai 

  

an  ≤ 
 Qn−1 

bi 

  

an  ≤ 
 Qn−1 

bi 

  

bn  = 
Qn 

bi .

coefficients of the  form ai − bi . 
 

3.14.   Summation formulas. We reduce each  summation to a known sum- 

i =1 i =1 i =1  

 
2k+1

 

i =1 
 

 
2k+1

 

i =1

mation. In each  case,  induction can also be used  directly.
 3.19.   If k ∈ N and  x < y < 0, then  x < y       .  Using induction on k,

a) 
Pn 

(4i − 1) = 4 
Pn 

i − 
Pn 

 

1 = 2n(n + 1) − n = n(2n + 1). 
we prove  that x 2k+1 < y2k+1

 < 0 for each  nonnegative integer k. Basis step

i =1 i =1 i =1 
(k = 0): given  by hypothesis.Pn 

i =0 (4i +1) = 4 
Pn

 
Pn 

i =0 1 = 2n(n +1)+(n +1) = (n +1)(2n +1).  

Induction step (k > 0). We use commutativity and  associativity of mul-

c) −1+2−3+4−· · ·−(2n −1)+2n = 
Pn

 [−(2i −1)+2i ] = 
Pn

 1 = n.  

tiplication.  By Proposition 1.46a  and  x < y < 0, we have −x  > −y  > 0.

d) 1 − 3 + 5 − 7 + · · · + (4n − 3) − (4n − 1) = 
Pn

 
Pn

 
[(4i − 3) − (4i − 1)] =  

If a > b > 0 and  c > d > 0, then two applications of Proposition 1.45(F2)

i =1(−2) = −2n. 
yield  ac > bc > bd  > 0.   With  this and  Proposition 1.43e,  x 2  > y2  > 0.

3.15.   
Pn 

(−1)i i 2   =  (−1)n  n(n+1) 
.   When  n  = 1,  (−1)112 =  (−1)1 1·2 

,  so
 By  the  induction hypothesis, x 2k−1  <  y2k−1  <  0.   By  Proposition 1.46a,

i =1                                       2                                                                                                  2
 

the  formula holds. For  the  induction step, suppose that the  formula holds 

when n = k. By the  induction hypothesis, 
Pk+1

(−1)i i 2  = (−1)k+1(k + 1)2  + 

−x2k−1  > −y2k−1  > 0.  Combining this with x 2  > y2  > 0 yields  −x2k+1  > 

−y2k+1  >  0,  by  our  earlier computation.  Now  Proposition 1.46a  yields

i =1                                     
2k+1

 
2k+1

(−1)k k(k+1)
 k+1 (k + 1)[(k + 1) − k ] = (−1) k+1 (k + 1) 2   

.   Thus the x        < y < 0.

formula also holds  when n = k + 1, which  completes the  induction step. Alternatively, we can  verify  by induction that the  product of an  odd 

number of negative numbers is negative, and  that inequalities ai  > bi  > 0

3.16.   For n ∈ N, 
Pn

 i 3  = ( n(n+1) )2.  We use  induction on n. For  n = 1, we yield  
Q j 

= 
a       

Q j 
i =1 

bi   > 0.  Since  −x  > −y  > 0, this yields  (−x )2k+1  >

have 
P1

 = i 3  = 1 = ( 1·2 )2, which  completes the  basis step. (−y)2k+1
 > 0.   We transform this to  (−1) 2k+1 x 2k+1 > (−1) 2k+1 y2k+1

 > 0.

For the induction step, suppose that the claim holds  when n is k. Using 
the  induction hypothesis after isolating the  last term, we have 

Since  (−1)2k+1 < 0, we obtain x 2k+1 < y2k+1 < 0.

Pk+1   3
  

3             k        3
  

3           k (k +1)  2
 3.20.   The  proof of Lemma 3.13 in summation notation.

i =1 i = (k + 1) i =1 i = (k + 1)   + (    
2     

)  

 
n                                       n                                          n 

 

 
n−1                         n
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i   1 

3 

+ 

i   1 

= 

2 

  

= 
Pk+1 

P 

= 

k 

(k +1)2 
2           (k +1)2                       2

 X 
n− j

 
j −1

 X 
n− j +1

 
j −1

 X 
n− j    j

 X 
n− j    j

 X 
n− j    j            n         n

=    
4     

[4(k + 1) + k  ] = 4     
(k + 2)  . (x − y) x     y 

j =1
 

=     x 

j =1
 

y     −      x 

j =1
 

y   =       x 

j =0
 

y  −      x 

j =1
 

y   = x  − y

Hence the  claim  holds  also when n is k + 1.

3.17.   
Pn 

= 
i (i + 1) = n(n+1)(n+2) 

. Using known formulas, 
 

3.21.  The square of a sum. When expanding the product 
 Pn 

 

xi 

   Pn 

 

 
xi 

 
,

Pn                                 Pn        2             n
 

n(n+1)(2n+1)
 

n(n+1)
 i =1 i =1

i =1 i (i + 1) = i =1 i i =1 i = 6             
+    

2 each  term in the  first  factor is multiplied by each  term in the  second fac- 
2

 
n(n+1)(2n+1+3)

 
 
n(n+1)(n+2)

 tor. Thus 
 Pn

 
= xi 

 
 

Pn 
i =1 

Pn 
j =1 xi x j . After  collecting like terms, this can

=         
6                

=       
3           

. 
also be written as 

  Pn 
xi 

  = 
Pn 

x2 + 2 
P 

x x .
 

Using induction, the  basis step is 1 · 2 = 1 · 2 · 3/3.  For the  induction step, 
i =1   i 1≤i < j ≤n   i   j

we assume that the  formula holds  when n = k and  compute 3.22.   For  a1, . . . , an   ∈  R,  
 
 i   1 ai 

 

 i   1 |ai |.   We  use  induction on  n.

Pn              ≤ 
Pn

i =1 i (i + 1) = (k + 1)(k + 2) + 
P 

 

i (i + 1) = (k + 1)(k + 2) + 
 

k (k +1)(k +2) 

3
 

When  n = 1, the  two sides  are  equal.  When  n = 2, the  statement is the 
ordinary triangle inequality (Proposition 1.3).

i =1 

 

= (k + 1)(k + 2)(1 + k ) = (k +1)(k +2)(k +3) . 

 

For  the  induction step, suppose that the  inequality holds  when n = k; 
this is the induction hypothesis. We prove that if k ≥ 2, then the inequality

3                         3
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• • • • 

• • • • 

• • • • 

• • • • 

 

    1                 n   

  

i =1 

i =1 

i   1 i =1 i − 

i =1 

i   1 

 
a n 

1 

also  holds  when n = k + 1, using the  ordinary triangle inequality and  the 3.28.   
Pn =     . Induction can  be used. Alternatively, recognizing

i =1 i (i +1) n+1

induction hypothesis applied to the  first  k numbers. We compute
 

that      1  
 

1          1  
 

 Pk+1
 

 
        

+ 
Pk

  
k                                                  k                              k=1

 
i (i +1) 

= 
i  

− 
i +1  

leads to a telescoping sum.

i =1 
ai   =   k+1 i =1 

ai   ≤ |ak+1| +  
P

 ai   ≤ |a k+1| + 
P 

i =1 |ai | = 
P 

i =1 |ai | Pn           1       = 
P 

 

1          1             1           1              n 

−       =   −      =
1  i (    1)

 
i =1   i         i                           n              n

 
3.23.   Flaw  in induction proof that an  = 1 for every nonnegative integer n, 

i +                              +1 

 
n                                   2

 

1          +1         +1

wherea is  a  nonzero real  number.  “Basis  step:  a0   = 1.   Induction step: 3.29.   
P  

(2i − 1) = n .

an+1 = an · an /an−1  = 1 · 1/1 = 1.” Proof 1 (using a previous result). 
Pn

 
= (2i − 1) = 2 

Pn
 

Pn 

i =1    =

In the  induction step, the  induction hypothesis is applied for the  two 

previous values of the  induction parameter.   Thus the  argument of the 

2n(n + 1)/2 − n = n2. 

Proof 2 (induction on n). 
P1                                   2               k                                   2

i =1(2i − 1) = 1 . If 
P

 
(2i − 1) = k , then

induction step is not valid  when n = 0 (proving a1  = 1), because we do not 
Pk+1

(2i − 1) = 2k + 1 + 
Pk (2i − 1) = 2k + 1 + k2  = (k + 1)2.

i =1 i =1

have the statement for a−1. Thus we need  the statement for a1 in the basis, 

and  then the  proof for a2  can  use  the  statements for a0  and  a1.  However, 

the  statement for a1  is false. 
 

3.24.   If  T  is  a set  of integers such  that 1) x  ∈  T  and  2)  y  ∈  T  implies 

Proof 3 ("counting two ways").   Arrange n2  dots  in an  n by n square. 

We can  count these in layers from  a corner, starting with 1 in the  corner, 

then 3 around it,  then the  next  5,  and  so on.   Each successive rim  has 

two more  dots  than the  one  before  it,  so the  rim  sizes  are  the  first  n odd 
2

y + 1 ∈ T , then  it need  not hold  that T  = {y ∈ Z:  y ≥ x}.  The  hypothesis 

of this statement does  imply  that T  contains every  integer greater than 

or equal to x , by induction on y − x .  It does  not  imply  that T equals this 

set,  because T may  contain numbers less  than x .  For  example, if T  = N, 

the  hypothesis is true with x = 4, but  the  conclusion is not.  Changing the 

equality symbol  to ⊇ produces a true statement. 
 

3.25.   The sum and  product of natural numbers are natural numbers. First 

consider the  sum.  For  n ∈ N, let  Sn  = {m ∈ N: n + m ∈ N}.  It suffices  to 

prove  that Sn  = N for all n. We use  induction on n, omitting some  details. 

numbers, which  counts all n dots.

Basis step (n = 1).  By the  definition of N, every  real  number that is 3.30.   
Pn

 
= 

(2i − 1)2  = n(2n−1)(2n+1)

one  more  than a natural number is also  a natural number. Since  1 ∈ N, 
also 1 + m ∈ N when m = 1.  This  is the  basis step for a proof by induction 

on m that every  natural number m is in S1. Thus S1  = N. 

Induction step.  Suppose that  Sk   = N.   Given  that m  ∈  Sk , we have 

k + m  ∈  N,  and  hence also  k + m + 1  = (k + 1) + m  ∈  N,  which  
yields 
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3             
. 

Pn+1 = (2(n + 1) − 1) + 
P

 1 

2n+1 

[2n . 

Pm 

           1                        n   

i   1 

[ 

i =1 

2 

3 

Proof 1 (induction).  Basis Step:  the  formula holds  for n = 1 since 

2 · 1 − 1 = 1 = 1 · 1 · 3/3.  Induction Step: we prove  that the  formula holds 

when n = k + 1 under the  hypothesis that it holds  when n = k. Splitting off the  

last term of the  summation when n = k + 1 and  applying the  induction 

hypothesis to what remains yields

m + 1 ∈ Sk+1. Hence N = Sk  ⊆ Sk+1, so also  Sk+1 = N. 
 

3.26.   If hai  is a sequence  such  that a1  = 1 and  an+1 =  an  + 3n(n + 1) for 

n ∈ N, then  an  = n3 − n + 1 for n ∈ N.  We use  induction on n.  Basis step: 

 

i =1 (2i − 1) 

 
n 
i =1 

 

(2i − 1)2
 

 

= (2n + 1)2
 

 

+ 
3 

n(2n − 1)(2n + 1)

a1  = 1 = 13  − 1 + 1. Induction step: Given  that ak  = k3 − k + 1, we have =   
3    

[3(2n + 1) + n(2n − 1)] = 2n+1        2 
3 + 5n + 3] = (2n+1)(n+1)(2n+3) 

3

 

ak+1 = ak + 3k(k + 1) = k 
 

− k + 1 + 3k2 

 

+ 3k = (k + 1)3 

 

− k = (k + 1)3 

 

− (k + 1) + 1. Proof 2 (known formulas). We have proved that i =1 i = m(n + 1)/2

 

3.27.   
Pn 

 

 
=       . Induction can  be used. Alternatively, recog-

 
and  

Pm
 

= i 2  = m(m + 1)(2m + 1)/6. Thus

i =1 (3i −2)(3i +1) 3n+1               Pn     
(2i − 1)2  = 

Pn 
(4i 2 − 4i + 1) = 4 n(n+1)(2n+1) 4 n(n+1)       n

nizing that        1 1      1               1 =          − ] leads to a telescoping sum. 
i =1 i =1 6             

−     
2       

+

(3i −2)(3i +1) 

Pn                  1  
 

3   3i −2 

1       n
 

3i +1 
 

   1  
  

   1  
  

1 
 

1
  

    1     
  

=      n  
 

 
2n(n+1)(2n+1)

   
2n+2

 
 
n(2n−1)(2n+1)

i =1 (3i −2)(3i +1) 
= 

3 

P
 3i −2 

− 
3i +1 

= 
3 1  

− 
3n+1 

 

3n+1 =        
3              

− n(2n + 1) = n(2n + 1) 
3     

− 1  =        
3             

.
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.  For  n      2, 1     1/4 

i =2 

−                                                                                    n−1 

k   0 

−1 

k 

i =0 

n 

i 

3.31.   For n ∈ N and  n ≥ 2, 
Qn 

(1 −  1 
) =   n+1 

.  The  first  few values are
 3.38.   The second player wins the “1000” game.  Starting with 0, two players

 
3    4    5

 i =2 i 2                    2n 
n+1 

 

play  a game by alternately adding 1, 2, or 3 to the  previous total. The first
4 
, 

6 
, 

8 
; the  pattern suggests the  formula 

on n.  The  key observation is that 1 −   1 
2n  

, which  we prove  by induction 
(i −1)(i +1) =                       =       −      = player to bring the  total exactly to 1000  wins.   The  second player can  win

i 2                         i ·i if the  desired total is 4k, for any  k
 

N.  This  is true for k
 

1, because the
3/4 =  3  , as desired. For the  induction step, suppose that the  claim  holds                                                                                

∈                                            =
2·2 

when n is k. Using the  induction hypothesis for n = k, we have 
second player responds to 1, 2, or 3 by adding 3, 2, or 1 and  making the 

total 4.  For  k > 1, the  second player first  plays the  game for k − 1, which
Qk+1 

 
1 −   1 

  
=  k +1  

  
     1      

       
k +1      k (k +2)   

= 
   k +2  

 
(s)he  can  win,  by the  induction hypothesis. This  means the  second player

i =2 i 2                  2k 
1 − 

(k+1)2
 2k   (k+1)·(k+1)  

= 
2(k+1) 

.
 

completes a move on which  the  total becomes 4(k − 1). Now the  first  player

Hence the  claim  also holds  when n is k + 1. must add  1, 2, or 3, and  the  second player adds 3, 2, or 1 to reach 4k.

3.32.   If  an   = 
Qn

 (1 − (−1)i / i ),  then  an   = 1/2  if  n  is  even,  and  an   = Comments. The second player can guarantee a total of 4 in each round. 

Thus the  claim  can  be proved using multiplication, but  actually multipli-
(n + 1)/(2n) if n is odd.   After  guessing the  formula by computing small 
instances explicitly, we  prove  the  formula by  induction.  For  n  = 2,  di- 

rect  computation yields  an   = 1/2.   For  the  induction step, we  use  an   = 
an   1(1 − (−1)n /n) for n ≥ 3, with the  value of a      given  by the  induction 

hypothesis. When  n is odd, this yields  an  = (1/2)(1 + 1/n) = (n + 1)/(2n). 

When  n is even,  it yields  an  = (n/(2n − 2))(1 − 1/n) = 1/2. 
 

3.33.   The  number of closed  intervals with integer endpoints contained in 

the  interval [1, n] (including one-point intervals) is (n + 1)n/2.  There are 

n − i intervals of length i , for 0 ≤ i ≤ n − 1. Thus the  total count is the  sum 

of the  integers from 1 (when  i = n − 1) to n (when  i = 0). 
 

3.34.   The  defective box.  We have 20 boxes,  each  with 20 balls, each  ball 

weighing one pound except that the balls in one box are one ounce too heavy 

cation is defined from addition using induction. 

The argument generalizes further. Let S be the allowed set of numbers 

to add.   If B wins  the  S-game to the  total r and  to the  total s, then B also 

wins  to the  total r + s.  If S = {1, . . . , k}, then the  set  of values to which  B 

wins  is exactly the  multiples of k + 1. The proof that B wins  to these totals 

is as  above.   For  a total t of the  form  t = p(k + 1) + q with 1 ≤ q ≤ k, A 

can start with q and  then follow B ’s strategy for the  game to p(k + 1), so A 

wins  in the  remaining cases. 
 

3.39.   Hexagonal numbers.  Let  an  be the  number of dots  in the  hexagonal 

array Sn  with n rings.  We  use  the  summation formulas for  the  first  m 

integers and  the  first  m squares to compute an and  
Pn       

ak . As illustrated, 
=

a1  = 1.  Beyond that, ring  i adds 6(i − 1) dots,  so an  = 1 + 
Pn 

6(i − 1) =

or one ounce  too light. To identify the  defective box, we make one weighing 

consisting of i  balls from  the  i th box  for  each  1  ≤ i  ≤ 20.   The  result
 

 

1 + 6 
P 

1  i = 1 + 3n(n − 1) for n ≥ 1. Furthermore, 
i =2

 

differs by  j ounces from 190 pounds if and  only if the  j th box contains the
 

= 

Pn                          n
  

2                         n(n+1)
  

n(n+1)(2n+1)

 

defective balls, and  they  are  too heavy if and  only if the  total weight errs k=1 ak  = 
P 

=1(1 − 3k + 3k ) = n − 3    
2       

+ 3        
6            

.

to the  positive side  of 190 pounds. 

3.35.   Inductive proof  that 
Pn−1 

q i  = (qn  − 1)/(q − 1) when q 6= 1.  

When 

This simplifies algebraically to n3. This answer n3 can be explained directly 

by viewing Sn  as the  nth shell of a cubical array of dots.
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i =0 

q . 

i   2 

i   1 

k k q 

n = 1, the  formula reduces to 1, which  indeed equals 
P0

 q i . To prove  the

formula for a positive integer n = k + 1 assuming it holds  for when n = k, 

we have 

•   •   • 
•   •                     •   •   •   •

Pk          i 

i =0 
= x  + 

P k−1 
q i q k −1 

=      +  
q−1  

= q k +1 −q k +q k −1 

q−1          
= q k +1 −1 

q−1
 

•               •   •   • 
•   • 

•   •   •   •   • 
•   •   •   •

i =0 

3.36.   A  polynomial  f  such  that 
Pn 

= 

 
x i   =  f (x)/(x − 1).   Factoring out 

•   •   •

x2   from  the  terms in  the  sum  yields  a  standard  geometric sum.   Thus 3.40.   The  number of cubes of all positive integer sizes  in a cubical array  of

Pn         i
 

2 
Pn−2    i

 
2     n−1

 
size n is  1 n2(n + 1)2.  The number of cubes  with edges  of length n + 1 − i is

i =2 x  = x 
i =0  x = x  (x − 1)/(x − 1). Thus the  desired polynomial f                                4                                                            

n

is given  by  f (x) = xn+1 − x2. i 3. Hence the  desired value is 
P

 
= i 3. We prove  by induction on n that the

3        1    2   2

3.37.   A sum. We have 
Pn 

ni  = (nn+1 − 1)/(n − 1) − 1 = (nn+1 − n)/(n − 1), 
value of the  sum  is the  given  formula. Basis step: 1 = 

4 
1 2 .

 

by the  Geometric Sum. 
i =1 Induction step: If the  formuls is correct when n = k, then
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4 

k+1                k                                              
1

 Thus the  claim  holds  when S and  S 0  differ  by a single element.  Re-
X 

i 3  = (
X 

i 3) + (k + 1)3  = k2(k + 1)2  + (k + 1)3
 

 

peating this argument allows  us to switch numbers one by one to turn the

i =1 i =1 

1            2     2
 

 

1            2                  2
 

partition S, T into  the  partition S 0, T 0   without changing the  overall sum.

= 
4

(k + 1)  [k
 

+ 4(k + 1)] = 
4

(k + 1)  (k + 2)
 

3.43.   If   f : R  → R  satisfies  f (xy)  = x f (y) + y f (x) for  all  x , y  ∈  R,then 

f (1) = 0, and   f (un ) = nun−1  f (u) for all n ∈ N and  u ∈ R.   With  y = 1, the 

hypothesis yields   f (x) = x f (1) + f (x).  Thus x f (1) = 0 for all x ∈ R, which
3.41.   A function f : R → R such  that f (x + y) = f (x) + f (y) for x , y ∈ R. 

a)  f (0) = 0. When  x = y = 0, we obtain f (0 + 0) = f (0) + f (0).  Thus 

f (0) = 2 f (0), which  requires f (0) = 0. 

b)  f (n) = n f (1) for n ∈ N. We use induction on n. Since  f (1) = 1 · f (1), 

the claim holds when n = 1. For the induction step, suppose that  f (n −1) = 
(n −1) f (1).  Since  f (n −1+1) =  f (n −1)+ f (1) = (n −1) f (1)+ f (1) = n f (1), 

the  claim  holds  also at the  next  value. 
 

3.42.   The  sum of n numbers is  independent of the  order  of addition.  A 

strict interpretation of this statement considers only summation by adding 

summands to the  total, one  by one.   We use  induction on n.   For  n = 1, 

there is nothing to do. For n = 2, this is the  statement of the  commutative 

property. For  n > 2, consider two possible orderings for accumulating the 

sum. If the  last number is the  same in both  orderings, then the  induction 

hypothesis says  that the  sum  accumulated before  adding the  last number 

is the  same. If the  last numbers differ, let the  last number be x in the  first 

order and  y in the second order. Let t be the total of the other n −2 numbers; 

by the  induction hypothesis, this is independent of the  order. Thus we may 

assume that the  first  sum  is obtained as (t + y) + x and  that the  second is 

obtained as  (t + x) + y.  Now the  associative and  commutative properties 

yield (t + y) + x = t + (y + x) = t + (x + y) = (t + x) + y. 

A  more   general interpretation  allows   arbitrary  additions, always 

adding numbers that were  obtained by  summing smaller lists.  We  use 

strong induction to prove  that all resulting sums are  the  same. The  basis 

step is the  same as above.  For the  induction step, suppose that n ≥ 3. 

When  we sum  a list  S of fewer  than n numbers, the  induction hypoth- 

esis  yields  a common sum  σ (S) for any  order of summation.  Under any 

addition scheme, some  last addition is performed. The  two numbers com- 

bined are  σ (S) and  σ (T ) for some  partition of the  n numbers into  lists  S 

and  T , each  with fewer  than n numbers. We must show  that σ (S) + σ (T 

) is the  same as σ (S 0) + σ (T 0), where S 0, T 0   is another such  partition. 

Suppose that the  S, T partition differs from  the  S 0, T 0   by S = S0  ∪ {xi } 
and  T 0     = T ∪ {xi }.  The  induction hypothesis allows  us  to include xi  last 

when we sum  fewer  than n elements, or we can also write it first  and  sum 

the  rest to it.  Using this at the  ends  and  associativity in the  middle, 
 

σ (S) + σ (T ) = (σ (S0) + xi ) + σ (T ) = σ (S 0) + (xi  + σ (T )) = σ (S0) + σ 

(T 0). 
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i =1 

requires f (1) = 0. 

For  the  second statement,  the  proof  is  by  induction on  n.   For  n  = 
1,  we  have  f (x 1)  =  f (x)  = 1x 0 f (x).   For  n  > 1,  we  use  the  induction 

hypothesis for n − 1 to compute f (x n ) = f (xx n−1) = x f (x n−1) + xn−1 f (x) = 
x(n − 1)x n−2 f (x) + xn−1 f (x) = nx n−1  f (x). 
 

3.44.   The  set of natural numbers that can be expressed as the sum of some 

nonnegative number of 3’s and some nonnegative number of 10’s. For n ≤ 20, 

we can consider the  numbers achievable using at most  two 10’s to achieve 

first  {3, 6, 9, 12, 15, 18},  then  {10, 13, 16, 19},  and  then {20}.   This  omits 

S = {1, 2, 4, 5, 7, 8, 11, 14, 17} and  achieves {18, 19, 20}.  By induction on n 

with basis step n ∈ {18, 19, 20}, every  number larger than 17 is achievable. 

For n > 20, the  induction step achieves n by adding one 3 to the  set achiev- 

ing n − 3. Thus every  natural number can be expressed in this way except 

the  numbers in S. 
 

3.45.   A natural number n has  the property that every sum of n consecutive 

natural numbers is  divisible by  n if  and  only  if  n is  odd.   The  sum  of n 

consecutive natural numbers starting with s is 
Pn     

(s + i − 1) = ns + n(n − 
1)/2. This  is divisible by n if and  only if s + (n − 1)/2 is an  integer, which 

is true if and  only if n is odd. 

3.46.   If  f (n) = n2 − 8n + 18, then  the natural numbers n for which f (n) > 

f (n − 1) are {n ∈ N: n ≥ 5}. First compute g(n) = f (n) − f (n − 1) = 2n − 9. 

Since  2n > 9 for n ≥ 5 and  2n < 9 for n ≤ 4, the  claim  follows.  This  doesn’t 

need  induction, but  it can be proved using induction. 

3.47.   5n  + 5 < 5n+1 for all  n ∈ N.  Proof  by induction: For  the  basis step, 

51  + 5 = 10 < 25 = 52, so the  claim  holds  when n = 1. For n > 1, we factor 

out 5 and  then use  the  induction hypothesis to obtain 

5n  + 5 = 5(5n−1 + 5 − 4) < 5(5n  − 4) = 5n+1 − 20 < 5n+1. 
 

Alternatively, 1 + 1/5n−1  < 5 when n > 1, since  5n−1 > 1.  Multiplying 

both  sides  by 5n  then yields  the  desired inquality without induction. 

3.48.   Given  x > 0, the inequality x n + x < xn+1 holds for all n if and  only 

if x > 2.  For  n = 1, the  condition is x + x < x 2; when x is positive this is 

equivalent to x > 2.  Thus the  condition x > 2 is necessary.  We give two 

proofs  that x > 2 is sufficient.
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2. 

n+1 

x2 

Proof 1 (induction on n). Basis step (n = 1): checked above.  Induction 

step: suppose that x n+1 > xn + x . Since  x > 2, we have x 2  > x . Thus 
 

xn+2 = x(x n+1) > x(xn  + x) = xn+1 + x2  > xn+1 + x 

(k + 1)3  + (k + 2)3  > (k + 2)3  + (3k2  + 3k + 1) + [3(k + 1)2  + 3(k + 1) + 1]. 
 

Expanding the  right side  yields  (k + 1)3  + (k + 2)3  > k3 + 12k2  + 24k + 16. 

We need  to prove  that the  right side is at least (k + 3)3, which  is k3 + 9k2 + 
27k + 27.  This  holds  if and  only  if 3k2  > 3k + 11, which  is equivalent to

Proof 2 (direct proof for all n ∈ N).  Since  x > 2, we have 1/x n−1  ≤ 1, 
and  thus 1 + 1/x n−1  ≤ 2 < x . Since  x > 0, we can multiply both  sides  by x n

 

 

3k(k − 1) > 11 and  does hold for the  range k ≥ 6 where we are  interested.

to obtain xn + x < x n+1. 
 

3.49.   Inequalities by induction. 

3.50.   If  f (x − y) = f (x)/ f (y) for x , y ∈ Z and   f (1) = c, then   f (n) = cn  for 

n ∈ N. The formula holds  by hypotheses when n = 1. If  f (k) = ck , then we 

let  x = k + 1 and  y = 1 to obtain f (k + 1 − 1) = f (k + 1)/ f (1).  This  yields

a) 3n   ≥  2n+1.  By explicit computation, this fails  for n = 1, but  9>8. 
With  truth for n = 2 as  the  basis step, we prove  by induction on n that 

f (k + 1) = f (1) f (k) = ck+1.

the  inequality holds  for all n ≥ 2.  For  the  induction step, suppose it holds 

when n = k.  Then when n = k + 1 we 3k+1 = 3 · 3k  ≥ 3 · 2k+1 > 2 · 2k+1  = 
2k+1, which  yields  the  desired inequality for n = k + 1. 

b) 2n  ≥ (n + 1)2. By explicit computation, this fails for n ∈ {1, 2, 3, 4, 5}, 
but  26  = 64 > 49 = 72.  With  truth for n = 6 as  the  basis step, we prove 

by induction on n that the  inequality holds  for all n ≥ 6. For the  induction 

3.51.   A cubic  polynomial such  that the  set of natural numbers where  its 

value is at least  3 is {1} ∪ {n ∈ N:  n ≥ 5}.  We add  3 to a cubic  polynomial 

with zeros  at 1, 1, 5: let  f (x) = (x − 1)2(x − 5) + 3. 

We obtained  f  from  an  understanding of the  graphs of polynomials, 

and  we can use induction to prove that it has  the desired properties. Check 

the  values up to x = 5, and  prove  that f (x + 1) > f (x) when x ≥ 5.

step, suppose it holds  when n = k. Then when n = k + 1 we use  the  induc-  

      1  
  

−1/5
 

 

 1/5                        2

tion  hypothesis to compute 2k+1 = 2 · 2k  ≥ 2 · (k + 2)2  = k2 + 4k + 2 + k2. 
3.52.   Partial fraction expansion of 

x2+x−6 
is x+3

  + 
x−2

 . Since  x + x − 6 =

Because we are  consider values of k with k ≥ 6, we have k2  > 2, so we can
 

(x + 3)(x  − 2),  we seek  the  equality     1                   A              B

+x−6   
= x+3 

+  
x−2 

.  Multiplying by

replace k2  by 2 in the  last expression to obtain 2k+1 ≥ (k + 2)2. (x + 3)(x  − 2) yields  1  = Ax − 2A + Bx + 3B.   Since  equal polynomials

Alternatively, n ≥ 2 implies 1 + 1/(n + 1) < 
√

 Thus 2 > ( n+2 )2  when 
n+1 have equal coefficients, we require A + B = 0 (from  the  linear term) and

n ≥ 2, so the  induction step can  also  start with the  induction hypothesis 
2k  ≥ 2 · (k + 1)2  and  multiply by 2 > ( n+2 )2  to obtain 2k+1 ≥ (k + 2)2. 

c) 3n  > n4. By explicit computation, this fails  for n ∈ {1, 2, 3, 4, 5, 6, 7} 

1 = 3B − 2A (from the  constant term). The solution is A = −1/5, B = 1/5. 
 

3.53.   If  f is a polynomial of degree n and  the values f (0),  f (1), ....,  f (n) are 

known, then   f  can be determined by an inductive procedure. When  n     0,

(37  = 2187 < 2401 = 74), but  38  = 6561 > 4096 = 84.  With  truth for n = 8 
as the  basis step, we prove  by induction on n that the  inequality holds  for

 f  is  a  constant function, and  we are  given  c = f (0),  so  f  is = 
defined by

 

all n ≥ 8. The hypothesis of the  induction step is that it holds  when n = k. 
f (x) = c. This  provides the  basis step for induction. 

Suppose that n ≥ 1. Given  a polynomial f such  that f (n) = c, let g be

When  n = k + 1, we use this hypothesis to compute 3k+1 = 3 · 3k  > 3 · k4. To 
the  polynomial defined by g(x)

 
f (x)

 
c.  Since  g(n)

 
0, Theorem 3.24

prove  that 3 · k4  ≥ (k + 1)4, observe that 2k > 15 for the  values k ≥ 8 that
  

implies that g(x)
 =        − 

(x     n)h(x),                     a
 = 

degree n
  

1. If
 

interest us.  Also k3  > k2  > k > 1. Hence
 =     −              where h is polynomial of                 −

 
3 · k4  = k4 + 2k4  > k4 + 15k3  > k4 + 4k3  + 6k2  + 4k + 1 = (k + 1)4. 

 

d)  n3  + (n + 1)3   > (n + 2)3.    By  explicit computation, this fails  for 

n ∈ {1, 2, 3, 4, 5} (53 + 63  = 341 < 343 = 73), but  63 + 73  = 559 > 512 = 83. 

With  truth for n = 6 as the  basis step, we prove  by induction on n that the 
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i =0 

i =0 

inequality holds  for all n ≥ 6.  For  the  induction step, we assume that the 

inequality holds  for n = k. We have (k + 1)3  = k3 + (3k2  + 3k + 1) and 
 

(k + 2)3  = (k + 1)3  + [3(k + 1)2  + 3(k + 1) + 1].
 

we can determine h, then we can determine f by  f (x) = (x − n)h(x) + c. 

If we  can  compute the  values h(0), . . . , h(n − 1),  then the  induction 

hypothesis allows  us to determine h. Since  h(x) = g(x )/(x − n) when x 6= 
n, we have h(i ) = [ f (i ) − c]/(i − n) for i ∈ {0, . . . , n − 1}.  We are  given these 

values of f , so we obtain the  values h(0), . . . , h(n − 1). 

Comment: The  computation in this proof says  nothing directly about 

f until we work down to a constant polynomial, but  then we work back up, 

computing one polynomial of each  degree until we get  f from h. 

Alternatively, one can use n linear equations. The problem is to obtain

the  coefficients c0, . . . , cn  such  that f (x) = 
Pn

 ci x
i  for all  x .  Evaluating

When  we sum  these equations and  apply the  induction hypothesis to re- this expression for x ∈ {0, . . . , n} yields  n + 1 linear equations for the  n + 1

place  k3 + (k + 1)3  by (k + 2)3, we obtain coefficients.  The  equation for x = k is  f (k) = 
Pn

 k i ci .  What is needed
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2 

i =0 

2 

2 

1 

i =1 

2 

to ensure that this works is a proof  that a linear system with the  special 3.57.   If a1  = a2  = 1 and  an  = 1 (an −1 + 2/a 
 
n−2 ) for n ≥ 3, then  1 ≤ an  ≤ 2

coefficients ak,i  = k i  has  a unique solution for each  choice of the  constants 
f (0), . . . , f (n).  Even with a proof of this, the  method above  is faster. 

for n ∈ N.  Basis step (n ≤ 2).  Since  a1  = a2  = 1, these values lie in the 

interval [1, 2].  (We need  to check  two values in the  basis step because the

3.54.    If  F  is  defined by   f (x)  = 
Pn 

 

ci x
i   and   has  zeros  α1, . . . , αn   (all 

induction step always uses  the  statement for the  two previous values.)

nonzero), then  
Pn (1/αi ) = −c1/c0.  If α is a zero of a polynomial f , then Induction step (n ≥ 2).  Suppose that the  statement is true for n − 2

i =1 

f (x)  = (x − α)h(x)  for  some  polynomial h  of degree less  then  f .   The 

other zeros  of  f  are  zeros  of h.  Induction on the  degree of  f  thus yields 

f (x)  = c 
Q

(x − αi ), where c is  a  constant.  Multiplying out  the  product 

and  for n − 1. Since  an  = 1 (an 

an  ≥ 1 (1 + 2/2) = 1. 
 

3.58.   L -tilings. 

−1 + 2/a n−2 , we have an ≤ 
2 

(2 + 2/1) = 2 and

(using induction) shows  that c must be cn , the  leading coefficient of f .                                           
n             n

Let  β  = 
Qn αi .  The  constant term in the  expansion of the  product a) A 2 by 2 chessboard with one corner  square removed can  be tiled

is c0  = cn (−1)n 
Qn 

αi  = cn (−1)n β.  The  linear term is c1  = cn (−1)n−1  β   + by L.  Proof  by induction on n.  For  n = 1, the  region Rn  is a single copy of

i =1                                                                                                         α1 

. . . + cn (−1)n−1  β 
. Thus the  ratio −c1/c0  simplifies to the  desired sum.

 L .  For  the  induction step, suppose that Rn −1 can  be tiled by L .  If we split

αn 

Comment. Starting with the  the  desired sum  and  placing the  terms 
over  the  common denominator β leads to the  introduction of c0  and  c1.  A 

more  general result is proved in Exercise 17.40. 

Rn  down the  middle horizontally and  vertically, we obtain one copy of Rn−1 

and  three copies  of a full 2n−1 by 2n−1 board. Using one copy of L , we can 

cover  one  square from  each  of these boards to leave  three more  copies  of 

Rn−1.  Now we can apply the  induction hypothesis to each  of the  four copies

3.55.   If a1  = 1, a2  = 8, and  an  = an−1 + 2an−2 for n ≥ 3, then  an  = 3 · 2 n−1 + of Rn−1  to complete the  decomposition of Rn .

2(−1)n  for n ∈ N.  Basis step (n ≤ 2).  For  n = 1, a1  = 1 = 3 · 20  + 2(−1)1. 

For  n = 2, a2  = 8 = 3 · 21  + 2(−1)2. (We need  to check  two values in the 

basis step because the  induction step always uses  the  statement for the 

two previous values.) 

Induction step (n ≥ 2).  Suppose that the  statement is true for n − 2 

and  for n − 1. We compute 

an  = an−1 + 2an−2 = 3 · 2 n−2 + 2(−1) n−1 + 6 · 2 n−3 + 4(−1) n−2 

n            n

= (3 · 2 + 6)2n−3 + (2(−1) + 4)(−1)n−2 = 3 · 2n−1 + 2(−1)n b) A 2 by 2 chessboard with any one square removed can be tiled  by L.

 

 
3.56.   Properties of an  = 2an−1 + 3an−2 for n ≥ 2. 

a) If a1 and a2 are odd, then an is odd for all n ∈ N. Proof by induction on 
n. By hypothesis, a1 and  a2 are  odd, which  forms  the  basis of the  induction. 

For  the  induction step, consider n ≥ 3, and  suppose that an−1 and  an−2 are 

odd.  By the  recurrence, an  = 2an−1 + 3an−2, which  has  the  same parity as 

an−2.  Since  an−2 is odd, we conclude that an  is odd. 

b) If a1  = a2  = 1, then  an  = 1 (3n−1 − (−1)n ).  Proof  by induction on n. 

Since  1 (1 + 1) = 1 and  1 (3 − 1) = 1, the  formula holds  for n = 1 and  n = 2, 

Proof by induction on n. For n = 1, the  region is a single copy of L . For the 

induction step, suppose that the  previous statement P(n − 1) holds, and  let 

R be a 2n  by 2n  region missing one square. If we split R down  the  middle 

horizontally and  vertically, we obtain one region that contains the  missing 

square plus  three copies  of a  full  2n−1  by  2n−1  board.  By  the  induction 

hypothesis, the  quarter containing the  missing square can be tiled. Using 

one  copy of L , we can  cover  one  square from  each  of the  other quarters 

to leave  three copies  of the  region in  part (a).   By part (a),  these regions 
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can also be tiled. Alternatively, the  three squares together form a large L , 

which  by Solution 3.27 can be tiled by the  small L .
2                                          2

which  forms  the  basis. For  the  induction step, suppose the  formula holds 

for n ≤ k, in particular for ak  and  ak−1, where k ≥ 2. We can now apply the 

recurrence to compute 

 

3.59.   The m-by-n rectangle R(m, n) is L-tileable if and  only if mn is divisible 

by 3, except when min{m, n} = 3 and  mn is odd.  Since  the  L-tile  has  area

1      k−1
 

k                 1      k−2
 

k−1         1      k
  

k+1
 three, a necessary condition for tileability is that the  area mn is divisible

ak+1 = 2 · 
2 
(3 − (−1) ) + 3 · 

2 
(3 − (−1) ) = 

2 
(3 − (−1)   ), 

by 3, and  hence m or n is divisible by 3. By symmetry, we may  restrict our

so the  formula is also valid  when n = k + 1. attention to the  case where m is divisible by 3.
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Note  that  R(3, 2) is L-tileable. Also R(3k, 2l) is L-tileable, since  it can 

be partitioned into  kl copies of R(3, 2). It remains to consider R(3k, 2l + 1). 

If k = 1, then an  end  of the  rectangle can  be filled  only by two copies 

of L forming R(3, 2) at the  end,  leaving R(3, 2l − 1).  Since  R(3, 1) is not 

L-tileable, this implies by induction on l that  R(3, 2l + 1) is not  L-tileable. 

For  the  remaining cases  of R(3k, 2l + 1),  it suffices  by induction on 

k + l to show that  R(6, 5) and  R(9, 5) are  L-tileable, since  R(3k, 2l + 1) can 

be partitioned into  R(3k, 2l − 1) and  R(3k, 2) when l >= 3, and  R(3k, 5) 

can  be partitioned into  R(3k − 6, 5) and  R(6, 5) if k >= 4.  Since  we have 

shown that  R(6, 2) and  R(6, 3) are  L-tileable, we conclude that  R(6, 5) is L- 

tileable. However, R(9, 5) cannot be partitioned into  L-tileable rectangles; 

we need  an ad hoc decomposition such  as indicated on the left below, where 

five copies  of R(2, 3) and  five other copies  of L are  used. 
 

 
 
 
 
 
 
 
 

3.60.   Binary search—It is possible to search  for a number x in a sorted  list 

of length n using k probes  if and  only  if n < 2k .  We prove  each  statement 

by induction on k. 

a) n < 2k  suffices. When  k = 1, we can  answer the  question if there is 

at most  one location. For  k > 1, we examine the  middle location; let  y be 

its contents. If x = y, then we are  done.  If x < y, then we look for x among 

the  locations before  the  middle.  If x  > y, then we look for  x among the 

locations after the  middle. In each  case,  k − 1 probes remain. Since  n < 2k , 

there are  fewer  than 2k−1 locations before  the  middle and  fewer  than 2k−1 

locations after it.  The induction hypothesis guarantees that we can search 

for x in the  appropriate part of the  list  with the  remaining k − 1 probes. 

b) When  n ≥ 2k , no strategy suffices.  When  k = 1, one probe  will not 

suffice  when there is more  than one  location.  For  k > 1, we must check 

some  first  location; let  y be its  contents. It may  happen that y 6= x .   If 

the  location we check  is before  the  middle, it may  happen that y < x . If it 

is after the  middle, it may  happen that y > x .  Wherever we look, it may  

happen that the  remaining list  where x may  be located has  length at least 

(n − 1)/2. Since  n is an  integer at least 2k , the  remaining list  may have 

length at least 2k−1. The  induction hypothesis states that no strategy will 

guarantee completing the search with the remaining k −1 probes. Since we 

obtain this conclusion for each  possible initial probe, there is no strategy 

that guarantees completing the  search. 

3.61.    Removing all  the  heads.    The  rule   is  to  remove heads  and   flip 

neighbors.   The  string H T H T H H T H H H  has  an  odd  number of heads, 

so  the   game is  winnable.    Since   we  always  remove one  coin  at each 

step,  the   number of  steps  needed is  the   number of  coins,   10.     One 

winning strategy,  as  shown in  the   text, is  to  always remove the   left- 

most  head.  The  sequence is then H T H T H H T H H H , .H H T H H T H H H , 

..T T H H T H H H , ..T H.T T H H H , ..H..T T H H H , .....T T H H H , .....T H.T H , 

.....H..T H , ........T H , ........H.,  ..........  . 
 

3.62.   The  December  31 Game—Starting with Jan.  1, players alternately 

increase the  month or the  day  (not  both).   By  always leaving the  distance 

to Dec.   31 the  same  in  both  coordinates, the  first  player guarantees win- 

ning. A winning position is a pair (x , y) such  that a player who moves  the 

remainder to (x , y) can guarantee winning by proper play  thereafter. 

Proof 1. Observe that (12, 31) is a winning position. This  is the  basis 

step (n = 0) for a proof by strong induction that every  position of the  form 

(12 − n, 31 − n) is a winning position, where n is a nonnegative integer. For 

the  induction step, suppose that a player has  said  (12 − n, 31 − n).  The 

other player must say  a date of the  form  (12 − n +  j, 31 − n) or the  form 

(12 − n, 31 − n + j ); advancing the  month or the  day but  not both.  Now the 

original player can say (12 − n + j, 31− n + j ). By the induction hypothesis, 

this is a winning position, since  it can be written as (12 − (n − j ), 31 − (n − 
j )), and  n − j < n. 

Knowing the  winning positions, we find  that the  first  player can  win 

by saying Jan. 20.  This  is the  only position in the  winning set  that can be 

reached on the  first  move; all other first  moves  yield losing  positions. 

Proof 2. The game ends  with the  point (12, 31) on the  line  y = x + 19. 

We prove  that every  point on this line  is a winning position. From a point 

on this line,  the  other player must move off the  line,  rightward or upward. 

The original player can then make the  opposite move to return to the  line. 

Thus a player who reaches a position on the  line  can  maintain being  the 

only one to reach the  line  y = x + 19.  Comment. This  geometric phrasing 

actually uses  strong induction on the  distance from the  point (12, 31). 
 

3.63.   Playing along  the line  y = 5x.  Play  begins at the  origin. When  the 

token is at (x , y), the  player chooses  a natural number n and  moves  either 

to (x + n, y) or to (x , y + 5n).  In  order to stay along  the  line  y = 5x , the 

second player chooses  the  same natural number that the  first  player used 

on the  previous move but  moves  in the  other coordinate. 
 

3.64.   Derivation of the  Well-Ordering Property for natural numbers from 

the  principle of induction.  The  Well-Ordering Property states that every 

nonempty set  of natural numbers has  a least element. Its  contrapositive



45 Part I Solutions Chapter 4: Bijections and  Cardinality 46  

base  3 conversion to base  10 base  10 

120102                         1 · 2 43 + 2 · 81 + 0 · 27 + 1 · 9 + 0 · 3 + 2 · 1 416 

 

states the  a set  of natural numbers with no least element must be empty. 

A set  S of natural numbers is empty if and  only if S ∩ [n] = ∅ for all n ∈ N. 

Thus it suffices  to prove  that if S has  no least element, then S ∩ [n] = ∅ for 

all n ∈ N. We prove  the  conclusion by induction on n. 

Since  S ⊆ N and  S has  no least element, 1 ∈/  S, so S ∩ [1] = ∅.  For the 

4.2.   333(12)  is larger  than 3333(5). Let  x  = 333(12) = 3 · 111(12)  and  y = 
3333(5) = 3 · 1111(5). It suffices to compare 144 + 12+ 1 and  125+25+5+1. 
The first  is larger (by 1!), so x > y. 
 

4.3.  Squares in base 10.  The square of the  number obtained by appending

induction step, suppose that S ∩ [n] = ∅.  Since  S has  no least element, we 5 to the  base  10 representation of n is (10n + 5)2
 = 100n2

 + 100n + 25.  The

therefore have n + 1 ∈/  S, since  n + 1 is the  least natural number among 

those not in S. Now we have S ∩ [n + 1] = ∅. 
 

3.65.   Employers and  thieves.  Each employer has  one  apprentice.  When 

an  apprentice is a thief, everyone knows except the  thief ’s employer. The 

mayor declares: "At least one apprentice is a thief. Each thief  is known to 

be a thief  by everyone except his/her employer, and  all  employers reason 

perfectly.  If during the  i th day  from  now  you  are  able  to  conclude that 

your  apprentice is a thief, you must come to the  village square at the  next 

noon to denounce your  apprentice.”  The  villages gather at noon every  day 

thereafter to see what will happen. If in fact  k ≥ 1 of the  apprentices are 

thieves, then their employers denounce them on the  kth day. 

The  proof is by induction on k.  Basis step (k = 1).  When  there is ex- 

actly one thief, the thief ’s employer knows of no thieves. Since the employer 

knows there is at least one thief, his apprentice must be a thief. 

Induction step (k = n + 1). The induction hypothesis states that when 

there are  actually n thieves, they  will be denounced on the  nth day.  When 

there are n +1 thieves, every employer knows of n +1 thieves or of n thieves. 

An employer who knows of n thieves knows that there must actually be n 

thieves or n + 1 thieves, depending on whether his/her apprentice is a thief. 

If there were  actually n thieves, then by  the  induction hypothesis they 

would  be denounced on the  nth day.  Since  this doesn’t  happen (there is no 

one who knows of fewer than n thieves), there can’t be only n thieves. Hence 

there must be n + 1 thieves.  The  employers who  know  of only  n thieves 

conclude this after waiting past noon on the nth day, so they  denounce their 

employees on the  n + 1th  day. 

 

4. BIJECTIONS AND  CARDINALITY 
 

4.1.   Summation of (120102)3 and  (110222)3 in base 3, with check  in base 

10.  When  the  sum  of the  entries in a column is at least 3, the  number of 3s 

“carries” to the  next  column, as in decimal addition. 
 

 
 

       110222                         1 · 243 + 1 · 81 + 0 · 27 + 2 · 9 + 2 · 3 + 2 · 1               350   

1001101       1 · 729 + 0 · 243 + 0 · 81 + 1 · 27 + 1 · 9 + 0 · 3 + 1 · 1               766 

last two digits are 25. The number obtained by appending 25 to the base  10 
representation of n(n + 1) is 100n(n + 1) + 25.  These are  the  same number. 
 

4.4.   Another temperature scale.   If the  conversion of Fahrenheit temper- 

ature x  to  T-temperature is  ax + b,  then changes of fixed  amount in  x 

correspond to changes of fixed amount on the  T scale.   Thus the  Fahren- 

heit  temperature  corresponding to T-temperature 50 is the  average of the 

Fahrenheit temperatures corresponding to T-temperatures 20 and  80.   If 

water freezes at T-temperature 20 and  boils at T-temperature 80, then the 

Fahrenheit temperature corresponding to 50 is the  average of the  Fahren- 

heit  temperatures 32 (freezing) and  212 (boiling).  The answer is 90. 
 

4.5.   A finite  set  A has  a nonidentity bijection to itself  if and  only  if it has 

at least  two elements. With  one element, the  only function is the  identity. 

When  A has  at least two  elements, we let  x , y be distinct elements in  A. 

Let   f (x) = y,  f (y) = x , and   f (a) = a for every  a ∈  A other than x , y.  By 

construction, the  image is all  of A, and  no two elements of A are  mapped 

to the  same element of A, so  f is a bijection other than the  identity. 
 

4.6.   The  function giving each  day  of the  week  the  number of letters in  its 

English name is not injective.   Two days  are  mapped to the  same integer: 

f (Sunday) =  f (Monday) = 6, but  Sunday6=Monday. 
 

4.7.   Injectivity and  surjectivity of functions from  R2  to R. 

a) A(x, y) = x + y. The addition function is surjective. For each  b ∈ R, 

we have A(b, 0) = b. It is not injective, since  also  A(b − 1, 1) = b. 

b) M(x , y) = xy.  The  multiplication function is surjective.  For  each 

b ∈ R, we have M(b, 1) = b. It is not injective, since  also  M(b/2, 2) = b. 

c) D(x , y) = x 2 + y2.  This  function is not  surjective, since  no negative 

number belongs to the  image. It is not  injective, since  D(0, a) = D(a, 0) 

even  though (0, a) 6= (a, 0) when a 6= 0. 
 

4.8.  Examples of composition. If  f (x) = x − 1 and  g(x) = x 2 − 1, then f B g 
and  g B  f are  defined by ( f B g)(x) = x 2 − 2 and  (g B  f )(x) = x 2 − 2x . 
 

4.9.   If   f  and  g are  monotone functions from  R  to R,  then  g B   f  is  also 

monotone—TRUE. The  composition is decreasing if one  of { f , g} is inde- 

creasing and  the  other is decreasing.  The  composition is increasing if  f
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and  g are  both  increasing or both  decreasing. Given  x < y, application of 

the  functions reverses the  order for each  of { f, g} that is decreasing and 

preserves the  order for  each  of { f , g} that is  increasing.  Since   f  and  g 

are  monotone, this is independent of the  choice  of x and  y, so the  claimed 

statements hold. 
 

4.10.   Linear functions and  their  composition. Let  f (x) = ax +b and  g(x) = 
cx + d for constants a, b, c, d with a and  c not zero. 

Both   f and  g are bijections. For each  real  number y, the  number (y − 
b)/a is defined and  is the  only  choice  of x such  that f (x) = y.  Thus f  is 

both  surjective and  injective. The same analysis applies to g. 

The  function g B  f − f B g is neither injective nor surjective. Note  that 

(g B  f )(x) = c(ax + b) + d and  ( f B g)(x) = a(cx + d) + b. The difference h is 

defined by h(x) = cax + cb + d − acx − ad − b = cb − ad + d − b. Thus h is a 

constant function. It maps all of R to a single element of R, so it is neither 

injective nor surjective. 
 

4.11.   Multiplication by 2 defines a bijection from  R to R but  not from  Z to 

Z.   Let   f  denote the  doubling function.  For  y ∈ R,  the  number x  = y/2 

is the  unique real  number such  that f (x) = y.  When  y ∈ Z  and  y is odd, 

y/2 ∈/ Z.  Hence odd numbers are  not in the  image of f : Z → Z. 
 

4.12.   Properties of functions. 

a) Every  decreasing function from  R to R is surjective—FALSE. 

Let  f (x) = 
n 

−x    if x ≤ 0 
.
 

4.14.   Finding the q-ary expansion of n + 1 from  the q-ary expansion of n. 

The idea  is to add 1 in base  q . Let am , . . . , a0 be the  q-ary expansion of n. If 

a0  = q − 1, let b0  = a0 + 1, and  let bi  = ai  for i > 0. Otherwise, let  j be the 

greatest index  such  that ai  = q − 1 for 0 ≤ i ≤ j . Let  bi  = 0 for 0 ≤ i ≤ j , 

let bj +1 = aj +1 + 1, and  let bi  = ai  for i > j + 1. 

By construction, 0 ≤ bi  ≤ q − 1 for all  i , so b is the  q-ary  expansion 

of some  number.  The  contribution from  indices greater than  j + 1 is the 

same. By the  geometric sum, the  value of the  expansion b is one more  than 

the  value of the  expansion a. 
 

4.15.   By induction on k, the known weights {1, 3, . . . , 3k−1} suffice  to mea- 

sure  the weights 1 through (3k  − 1)/2 on a balance scale.  Basis Step: For 

k  = 1,  the  single known weight 1 balances 1.   Induction Step:  Suppose 

that the  statement holds  when the  parameter is k. When  we add  3k  as the 

k + 1th  known weight, we can still  weigh  the  numbers 1, . . . , (3k  − 1)/2 as 

done  previously, without using the  new weight. 

The new weight by itself can balance 3k . We can balance 3k −1, . . . , 3k − 
(3k  − 1)/2 by putting the  new weight on the  light side  of earlier configura- 

tions. Since 3k −(3k −1)/2 = (3k +1)/2, this fills the gap between the earlier 

configurations and  3k .  We can  balance weights 3k  + 1, . . . , 3k  + (3k  − 1)/2 

by putting the  new  weight 3k  on the  heavy side  of earlier configurations. 

Since  3k  + (3k  − 1)/2 = (3k+1 − 1)/2 and  we left no gaps,  we have balanced 

all the  desired weights. Thus the  claim  holds  also for k + 1. 

Comment: The  largest weight balanced by k weights occurs  when all 
k−1

0       if x > 0 the  known weights are  on the  same side.   This  value is 
P

 
= 3i , which  by

b) Every  nondecreasing function from  R to R is injective—FALSE. The the  geometric sum  equals (3k  − 1)/2.

constant function f defined by  f (x) = 0 is nondecreasing but  not injective. 

c) Every  injective function from  R to R is monotone—FALSE. The func- 

 

4.16.   Using weights  w 
j
 

 

1   ≤ · · ·  ≤ wn 

 

on  a  two-pan balance, where   Sj   =

tion   f  defined by  f (0)  = 0 and   f (x) = 1/x  for x 6= 0 is injective but 
not 

i =1 wi , every  integer weight from  1 to  Sn  can  be weighed if  and  only  if

monotone.  The  function is decreasing on every  interval not  containing 0, w1  = 1 and  w j +1 ≤ 2Sj + 1 for 1 ≤ j < n.  For  sufficiency, we use  induc-

but   f (x) is positive when x is positive and  negative when x is negative. 

d) Every  surjective function from  R to R is unbounded—TRUE. When 

f is surjective to R, every  real  number appears in the  image, which  means 

that there is no bound on the  absolute value of numbers in the  image. 

e) Every  unbounded function from  R to R is surjective—FALSE. Define 

f  by  f (x) = 0 for x ≤ 0 and   f (x) = x for x > 0. This  function is unbounded 

but  has  no negative numbers in its image. 
 

4.13.   The  difference between abc and  cba, added to its own  reverse,  yields 

1089 (given that a 6= c). We may  assume that a > c. The digits of abc − cba 

are (a −c −1), 9, (10+c −a), so abc −cba = 100(a −c −1)+90+ (10+c −a). 

The reverse of this is 100(10  + c − a) + 90 + (a − c − 1).  Summing the two 

expressions yields  100(10  − 1) + 180 + (10 − 1) = 1089. 
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tion  on  n.   When  n  = 1,  the  condition forces  w1   = 1,  and  the  weight 1 
can  be balanced. For  the  induction step, consider n > 1, and  suppose that 

the  condition is sufficient for n − 1 weights.  For  1 ≤ i  ≤ S − wn , the  in- 

duction hypothesis implies that we can weigh  i using {w1, . . . , wn−1}.  With 

wn  also  available, we can  also  weigh  wn  − i and  wn  + i , so we can  weigh 

every  weight from  wn  − Sn−1 to wn  + Sn−1 =  Sn  using {w1, . . . , wn }.  Since 

wn − Sn−1 ≤ Sn−1 + 1 by hypothesis, we can weigh  every  weight up to Sn . 

For  necessity, suppose we can  balance all  weights from  1 to  Sn .  The 

second largest possibility is  Sn  − w1, required to be  Sn  − 1, so w1  = 1.  If 

wj +1 > 2Sj  + 1 for some   j , then let  W  = Sn  − 2Sj  − 1; we claim  that  W 

cannot be weighed.  The  largest weight achievable without putting all  of 

{wj +1, . . . , wn } in one pan  is Sn − wj +1 < W , but  the  smallest weight achiev- 

able  using all of {wj +1, . . . , wn } in one pan  is Sn − 2Sj , which  exceeds W .
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4.17.   Winning positions in Nim. We prove  by strong induction on the  total 

number of coins that a position is winning (for the second player who leaves 

it) if and  only if for all  j , the  number of pile-sizes whose  binary represen- 

tation has  a 1 in the  j thplace is even.  By  j th place we mean contributions 

of 2 j . Let sj  be the  number of pile-sizes whose  binary representation has  a 

no other solutions. When  n is even,  the  solutions are  x = ±y. To show that 

there are  no other solutions, it suffices  to show  that exponentiation to the 

nth power  is injective from  the  set  of positive real  numbers to itself. This 

follows by an induction like that above. 

P2k

1 in the  j th place.  Let (*) denote the  condition that each  sj  is even. 4.19.   For k ∈  N, the  only  solution to j =0 x 
2k− j y j = 0 is (x , y) =  (0, 0).

The condition (*) holds  when the  (starting) number of coins is 0. Since
 For  (x , y) satisfying the  equation, multiplying both  sides  by (x − y) yields

 

Player 1 cannot move, we view this as Player 2 having taken the  last coin. 
x2k+1

 − y2k+1
 = 0.  Since  exponentiation to an  odd power  is injective, this

This  is the  only  position with 0 coins.   For  every   j , we have sj  = 0.  Thus requires x = y. Among  solution pairs with x = y, the  equation reduces to 
2k

the  position is winning and  satisfies (*). 
(2k + 1)x = 0.  The  only solution of this is x = 0, so the  only solution of

 

When  the  (starting) number of coins is larger, suppose first  that some 

of the  sj ’s are  odd.  We show that some amount can be taken from some pile 

to leave  them all even.  By the  induction hypothesis, Player 1 thus leaves a 

winning position, and  therefore Player 2 loses.  To find a winning move, let 

J be the  largest j such  that sj  is odd, and  let  S = { j : sj  is odd}.  Since  sJ  is 

odd, some  pile-size has  a 1 in position J .  We want to take coins  from  this 

pile  P change its binary representation b in the  positions indexed by S. 

For each  position j ∈ S where b has  a 1 in position j , we take 2 j  coins 

from  P .  For  each  position j ∈ S where b has  a 0 in position j , we add  2 j 

coins  to P . Because 
P j −1 

2i  is less  than 2 j , the  total of these adjustments 
= 

is a positive number less  that the  size  of P , so we have obtained a legal 

move  that achieves (*).  As we have remarked, the  induction hypothesis 

implies that Player 1 wins. 

the  original equation is (x , y) = (0, 0), which  indeed works. 
 

4.20.   Properties of the map   f : R2  → R2  defined by  f (x , y) = (ax − by, bx + 
ay), where  a, b are fixed parameters with a2 + b2  6= 0. 

a)  f is a bijection. As proved in Example 4.12, the function f : R2  → R2 

defined by  f (x , y) = (ax +by, cx +dy) is a bijection if and only if ad −bc 6= 
0. In  this problem, the  values taken by a, b, c, d are  a, −b, b, a, respectively, 

and  hence ad − bc becomes a2 + b2, which  by hypothesis is non-zero. Hence 

the  function given  here is a bijection, by Example 4.12. 

To prove  directly that  f  is a bijection, we show  directly that  f  is both 

surjective and  injective, meaning that for every  element (r, s) in the  target 

there is exactly one element (x , y) in the  domain such  that f (x , y) = (r, s). 

To prove  injectivity, suppose  f (x , y) = f (x 0, y 0).   This  requires ax − by = 
ax 0  − by 0  and  bx + ay = bx 0   + ay 0.  Subtracting b times the  first  equation

2          2                   2          2     0                                                                                         0
When  each  sj  is even,  every  move  changes the  binary representation from  a times the  second yields  (a + b )y = (a + b )y , and  hence y = y ,

of one  pile.   Thus it changes the  parity of some  sj , and  therefore Player since  a2  + b 6= 0.  Similarly, adding a times the  first  equation to b 
times

1 cannot produce a  smaller position that satisfies (*).   By  applying the 

method describedabove, Player 2 can now produce a position satisfying (*). 

By the  induction hypothesis, such  a  position is  winning, so the  original 

position is a winning position to leave. 
 

4.18.   Exponentiation to a positive odd  power  is a strictly increasing func- 

tion.  We use  induction on k to prove  this for the  power  2k − 1.  Basis step 

(k = 1). Here exponentiation is the  identity function: x < y implies x < y. 

Induction step.  Suppose that exponentiation to the  power  2n − 1 is 

strictly increasing.  Thus x 2n−1 <  y2n−1 when x  < y.  If 0 < x  < y, then 

0  < x2   < y2, and  multiplying the  two  inequalities yields  x 2n+1  <  y2n+1. 

If x < 0 ≤ y, then x 2n+1  is negative and  y2n+1  is nonnegative, so x 2n+1  < 

y2n+1. If x < y ≤ 0, then 0 ≤ −y < −x , and  we have proved that (−y)2n+1 < 

(−x)2n+1. Since  an odd power  of −1 is −1, this yields  −y2n+1 < −x2n+1, and 

thus x 2n+1  < y2n+1. 
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the  second yields  (a2  + b2)x = (a2  + b2)x 0, so x = x 0.  We have prove  that if 

element (x , y), (x 0, y 0) of the  domain have the  same image, then they  must 

be the  same element (no collapsing). 

To prove  surjectivity, we show that every  element (r, s) in the  target is 

the  image of some  element of the  domain. A suitable element (x , y) must 

satisfy r  = ax − by and  s = bx + ay.  Because a2  + b2  6= 0, we can solve 

this system of equations to find  such  a pair (x , y).  The  formula for (x , y) 

appears in part (b). 

b) Formula for  f −1.  When   f  is a bijection, the  inverse function f −1 

gives for each  element of the  target the  unique element of the  domain that 

maps to it.  Computing the  inverse function may  allow  us to prove  surjec- 

tivity and  injectivity simultaneously.  In  this example, the  inverse image 

of the  element (r, s) in the  target is the  set  of solutions (x , y) to the  system 

r = ax − by and  s = bx + ay. Because a2 + b2  6= 0, there is a unique solu- 

tion  (existence implies surjectivity of  f , uniqueness implies injectivity of

r a+bs
 

−br +as
Solutions to xn  = yn . All pairs with x = y are  solutions. When  n is odd, f ).  The  unique solution of the  system is x = 

a2 +b2   and  y = 
 

a2+b 2   .  Hence

the  exponentiation is strictly increasing, and  hence in this case  there are the  inverse function is  f −1(r, s) = ( r a+bs ,  −br +as ).
a2+b2 a2+b2
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b−1+b+1 

=                                                               R 

= 

 
c) A geometric interpretation  of  f  when a2  + b2   = 1.   This  uses  the 

distance from  the  origin to  a  point (x , y) in  R2,  defined to  be  
p

x2  + y2. 

The  distance from  the   origin to  the   image point (ax  − by, bx + ay)  is p
(a2  + b2)(x2  + y2),  which   equals the  distance from  the  origin to  (x , y) 

if a2 + b2  = 1. Hence the effect of f on the vector  (x , y) is to rotate it around 

the  origin.  Every vector  is  rotated through the  same angle; in  particu- 

lar, when a = 0 and  b = 1, the  function rotates everything by 90 degrees 

counterclockwise. Proving that every  vector  is rotated by the same amount 

relies on  knowing that the  angle between two  vectors is  determined  by 

4xy2   = 2x2  − 2x − 4x2 y and  then 2(y2  − x2) − 2(y − x) = 4xy(y − x).  If 

y 6= x , then we can divide  by 2(y − x ) to obtain y + x − 1 = 2xy.  Rewriting 

this as −x y = (x − 1)(y − 1) makes it clear  that there is no solution when 

x , y ∈ (0, 1), since  the  left side  is negative and  the  right side is positive. 

f is surjective. Suppose that  f (x) = b; we solve for x to obtain x ∈ (0, 1) 

such  that f (x) = b. Observe that b = 0 is achieved by x = 1/2, so we may 

assume that b 6= 0.   Clearing fractions leads to  xb − x 2b  = x − 1/2,  or 

bx2 + (1 − b)x − 1/2 = 0. The quadratic formula yields 

b − 1 ± 
√

b2 + 1

their dot product divided by the  product of their lengths. Considering the                                                                 x                                   . 

old vector  (x , y) and  the  new  vector  (ax − by, bx + ay), their dot  product                                                                          
2b

is ax2 − bxy + bxy + ay2  = a(x2  + y2), and  the  product of their lengths is 

x2 + y2. The ratio is a, independent of the  element (x , y), so every  point in 

the  plane is rotated by the  same amount. 
 

4.21.   The  number of subsets of [n] with odd size equals the number of sub- 

sets of [n] with even size, where  n ∈ N, bijectively. 

Let  A be the  collection of even subsets of [n], and  let  B be the  collection
 

The  magnitude of the  square root  is larger than |b|.  Therefore, choosing 

the  negative sign  in the  numerator yields  a negative x , which  is not in the 

domain of f . We therefore choose the  positive sign. 

If b > 0, then the  square root  is less  than b + 1, and  we obtain x < 

2b         
= 1. Also the  square root is bigger than 1,  so x > 0. If b < 0, then 

b +1−
√

b0   

let b0  = −b. The  formula for x becomes x =         
          

, where b0  > 0.  The
of odd subsets. For each  x ∈ A, define   f (x) as follows:

 
0 

2b0 

2+1

square root is strictly between 1 and  b0 + 1, so x is strictly between 1/2 and 
x in the  domain (0, 1) such  that f (x) = b. 

f (x) = 

    
f (x) − {n}    if n ∈ x 

f (x) ∪ {n}    if n ∈/ x 

0. In each  case,  we have found 
 

4.23.   Functions from  R to R. 

a)  f (x) = x3 − x + 1.  This  function is surjective, like all cubic polyno-
By this definition, |x | and  | f (x)| differ  by one,  so  f (x) is a set  of odd size, 

and   f maps A to B. 

We claim  that f  is  a  bijection.  Consider distinct  x , y  ∈  A.   If both 

contain or both  omit n, then f (x) and  f (y) agree on whether they  contain n 

but  differ  outside {n}. If exactly one of {x , y} contains n, then exactly one of 

{ f (x),  f (y)} contains n. Thus x 6= y implies f (x) 6= f (y), and   f is 
injective. 

If z ∈ B, then flipping whether n is present in z yields  a subset x such  that 

f (x) = z, so  f also is surjective. Thus f is a bijection. 

When  n = 0, there is one even  subset and  no odd subset. The bijection 

fails  because [0] = ∅ and  there is no element n to change. 

Alternatively, one  can  define  a function g: B  → A by the  same rule 

used  to define   f (switching the  domain and  target), and  observe that g B  f 
is the  identity function on  A and   f B g is the  identity function on B.  This 

implies that g is the inverse of f and thus that f is a bijection and  | A| = |B|. 
Without knowing | A| = |B|, it does not  suffice  to show  that only one of the 

compositions is the  identity. 

4.22.   The  formula f (x)          2x −1   defines a bijection from  (0, 1) to    . 
2x(1−x) 

mials, but  it is not  injective, since   f (1) = f (−1) = 1.  The  formula defines 

a bijection from  S to S, where S = [1, ∞). 

b)  f (x) = cos(π x/2).   This  function is not  surjective, since  the  value 

of cosine  is always between −1 and  1.   Also it is not  injective; the  value 

at every  odd integer is 0.  Nevertheless, when the  domain and  target are 

restricted to the  interval [0, 1],  f is a bijection. 
 

4.24.   If  f  and  g are surjective functions from  Z  to Z,  then  the  pointwise 

product of f and  g need not be surjective. If  f and  g are defined by  f (x) = x 

and  g(x) = x , then f and  g are  surjective, but   f g(x) = x 2, and   f g does not 

map  onto any  negative integer. (Many  other examples can be given.) 
 

4.25.   Formulas defining surjections from  N × N to N. 

a)  f (a, b) = a + b—NO. When  a, b ∈ N, a + b ≥ 2, so the  image does 

not contain 1. 

b)  f (a, b) = ab—YES. For n ∈ N,  f (n, 1) = n, so n is in the  image. 

c)  f (a, b) = ab(b + 1)/2—YES. For  n ∈ N,  f (n, 1) = n, so n is in the 

image.
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= , we f  is injective.   Suppose that  f (x)       f (y).   From    2x −1   
2x(1−x) 

  2 y−1   = 
2y(1−y) d)  f (a, b) = (a +1)b(b +1)/2—NO. When a, b ∈ N, (a +1)b(b +1)/2 ≥ 2,

obtain (2x − 1)2y(1 − y) = (2y − 1)2x(1 − x), which  simplifies to 2y2 − 2y − so the  image does not contain 1.
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α 

− 

e)  f (a, b) = ab(a + b)/2—NO. We have f (1, 1) = 1.  When  min{a, b} = 
1 and  max{a, b} ≥ 2, we have ab(a + b)/2 ≥ 3.  When  a, b ≥ 2, we have 

ab(a + b)/2 ≥ 8. Thus the  image does not contain 2. 
 

4.26.    If  there   are  positive constants  c, α  such   that,  for  all   x , y  ∈   R, 

| f (x) − f (y)|  ≥ c |x − y|  , then   f  is  injective.  If  f  is  not  injective, then 
α

 

bijection from R to R and  h = f B g. Thus f = h B g−1, and  f will be injective 

if and  only if h is injective. 

The  constant d 0  in  the  formula for  h does  not  affect  injectivity.   Re- 

placing it by 0 merely shifts the  images. It suffices  to consider y3  + ry. 

If  y3  + ry  = z3  + r z for some  distinct  y, z, then dividing by  y − z yields 

y2 + yz + z2  = −r .

there are  distinct numbers x , y such  that f (x) = f (y). Since  c |x − y| 
this contradicts the  hypothesized condition. 

> 0, 
If r is negative, then (y, z) = (0, 

√   
r is a solution, and  the  function is 

not  injective. If r is 0, then there is no solution with y 6= z (since  cubing 

is

4.27.   Surjectivity and  injectivity of polynomials.  Consider an  arbitrary 

quadratic polynomial, ax 2 + bx + c, with a 6= 0. As in the  derivation of the 

quadratic formula, we write ax 2  + bx + c = a(x + b/(2a))2 + c − b2/(4a). 

Since  (x + b/(2a))2 ≥  0,  the  value of the  polynomial cannot be  smaller 

than c − b2/(4a) if a > 0, and  it cannot be larger than c − b2/(4a) if a < 0. 

Hence the function is not surjective. (Comment: Since equality holds  when 

x = −b/(2a), this is where the  extreme value of the  quadratic occurs, and  

the  extreme value equals c − b2/(4a); this is consistent with problem 1 of 

homework 1). 

The  polynomial x 3 − x + 1 is not  injective, since  it has  the  value 1 at 

more  than once place  (at  x = 0 or x = ±1). Until Chapter 4, we can  only 

sketch a proof  that this function is surjective.  Note  that x(x 2  − 1) + 1 is 

increasing when x > 1, because y > x > 1 implies y2  − 1 > x2  − 1, and 

then y(y2 − 1) + 1 > x(x 2 − 1) + 1. Similarly, it is increasing when x < −1. 

If we believe in continuity and  in the  values getting arbitrarily far from 0, 

then the  function is surjective. 

injective). If r is positive, then again there is no solution, because y2 + yz + 
z2 is never negative, which  follows from y2 + z2  ≥ 2 |y| |z| (AGM Inequality). 

Thus h is injective if and  only  if r ≥ 0, and  this determines whether 

f  is injective. Since  we have assumed that a > 0, also  s > 0.  Canceling  s 

from the  formula for r yields  3a(st)2  + 2b(st) + c. It suffices  to consider the 

sign  of this.  From 3as3t + bs2  = 0, we obtain st = −b/(3a). Thus we are 

interested in the  sign  of b2/(3a) − 2b2/(3a) + c. This  is positive if and  only 

if b2 − 3ac < 0. 

Comment. The  methods of calculus in Part IV would  enable us to ob- 

serve that a differentiable function from R to R is injective if and  only if its 

derivative is never 0. The derivative of ax 3 + bx2 + cx + d is 3ax2 + 2bx + c. 

This  is never 0 if and  only  if 3ax 2 + 2bx + c = 0 has  no solution.  By the 

quadratic formula, the  condition for this is 4b2  − 12ac  < 0, which  is the 

same answer obtained above.  This  argument is shorter because it relies on 

the  work  of defining and  studying the  derivative. 
 

4.29.   Properties of three  functions  f , g, h mapping R to R.

4.28.   The cubic polynomial defined by ax 3 + bx2 + cx + d is injective if and 

only if b2 − 3ac < 0. 

 

f (x) = 
 

x /(1 + 
 

x 2), 
 

g(x) = 
 

x2/(1 + 
 

x 2), 
 

h(x) = 
 

x3/(1 + 
 

x 2).

The formula for the value of the general cubic polynomial at x is  f (x) = 
ax3  + bx2  + cx + d; these coefficients are  known.  Since  multiplying the 

function by −1 doesn’t  affect  injectivity and  quadratics are  not  injective, 

we may  assume that a > 0. 

We use  a  change of variables to  reduce the  problem to  polynomials 

h of the  form  h(y)  = y3  + ry + d 0.   We  determine constants s, t  so that 

substituting x = s(y + t) expresses ax 3 + bx2 + cx + d as y3 + ry + d 0, where 

r, d 0  are  constants. That is, 

a) The  functions  f  and  g are  not  injective, but  h is  injective.  Since 

g(x)  = g(−x)  for all  x , g is not  injective.  For   f , this is less  obvious.  If 

we do not  see  immediately something like   f (2)  = f (1/2), then we try  to 

prove  that f  is injective. Setting  f (x ) = f (y) and  assuming x 6=  y  yields 

x + xy2  = y + x2 y, which  simplifies to x − y = xy(x − y) and reduces to 

1 = xy. When  x 6= y, we have f (x) = f (y) if and  only if xy = 1. 

For h, again we set h(x) = h(y) and  assume that x 6= y. We obtain x 3 

+ x3 y2  = y3 + x2 y3, which  reduces to x 2 + xy + y2  = −x2 y2 after we rearrange 

and  divide  by x − y.  Rewriting this as  x 2(1 + y2) + yx + y2  =  0 yields  a
as3(y + t)3  + bs2(y + t)2  + cs(y + t) + d = y3 + ry + d 0. quadratic equation for x in terms of y. Since b2

 −4ac = y2 − y24(1+ y2) < 0,

Since  polynomials are  equal when their coefficients are  equal, we set as3  = 
1 for the  coefficient of y3  and  3as3t + bs2  = 0 for the  coefficient of y2. This 

there is no solution for x . Hence there are  no distinct x , y with h(x) = h(y). 

b) The  functions f  and  g are not surjective. For  all  x , g(x) > 0.  (Fur- 
2

yields  s = (1/a)1/3  and  t = −b/(3as). The  resulting  coefficient r for  y1  is
 

thermore,     x  
 

      1  
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3as3t2  + 2tbs2  + cs, which  can be computed using the  formulas for s and  t . 

Let  g(y)  = s(y + t).   When  a  6= 0 and  s, t are  defined above,  g is  

a 

1+x2  =  
1/x2+1  

< 1 for x 6= 0, so always 0 ≤ g(x) < 1.) 
Also  f (x)  < 1 always.  If x  < 0, then f (x)  < 0.  If 0 ≤ x  < 1, then 

x /(1 + x2) < x < 1. If x ≥ 1, then x /(1 + x 2) = 1/(1 + 1/x) < 1.
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All are  0 at 0. For large x , they  are  asymptotic to 0, 1, x , respectively. 
 
 
 
 
 
 
 

 
4.30.   If  a, b, c, d are  given  real  numbers, and   f : R2   → R2   is  defined by 

f (x , y) = (ax + by, cx + dy), then   f is injective if and  only if  f is surjective. 

If ad − bc 6= 0, then the  system ax + by = r and  cx + dy = s has  a unique 

solution pair (x , y) for each choice of (r, s). This implies that  f is a bijection. 

Thus, when ad − bc 6= 0,  f is both  injective and  surjective. 

In the  remaining case,  we have ad − bc = 0. Given   f (x , y) = (r, s), we 

can  multiply the  first  equation by c and  the  second by a to obtain acx + 
bcy = cr and  acx + ady = as.  Because ad = bc, the  left sides  of these two 

equations are equal. Hence (r, s) belongs to the image if and  only if cr = as. 

This  does  not  include all  of R2,  so  f  is not  surjective.  Also,  ad − bc = 0 

implies that increasing x by b and  decreasing y by a does not change ax +by 

or cx + dy.  Hence for each  (r, s) in  the  image, there are  infinitely many 

choices  of (x , y) such  that f (x , y) = (r, s). 

By considering the  two cases, we have that  f  is surjective if and  only 

if ad − bc 6= 0, and  that ad − bc 6= 0 if and  only if  f is injective. 

4.31.   If   f : A  → B is  an  increasing function, then   f −1  is  an  increasing 

function. The  contrapositive of the  statement x < y ⇒   f (x) < f (y) is the 

statement f (x) ≥ f (y) ⇒  x ≥ y.  Writing u = f (x) and  v = f (y) converts 

we have f (x) 6= f (x 0) because f  is injective, and  then g( f (x))  6= g( f (x 
0)) because g is injective. Thus x 6= x 0   implies (g B  f )(x) 6= (g B  f )(x 0), so 

g B  f is injective. 

b) The  composition of two  surjections is a surjection.  Assume that  f 

and  g are  surjective. Let  z be an  arbitrary element of C . Since  g is surjec- 

tive,  there is an  element y ∈  B such  that g(y) = z.  Since   f  is surjective, 

there is an  element x ∈  A such  that f (x) = y.  Hence we have found  an 

element of A, namely x , such  that (g B   f )(x)  = z, and  g B   f  satisfies the 

definition of a surjective function. 

c) The  composition of two bijections is a bijection. By (a) and  (b), g B  f 
is both  injective and  surjective and  hence is a bijection, by definition. 

d) If  f : A → B and  g: B → C are bijections, then  (g B  f )−1 = f −1 B g−1. 

By part (c), g B  f is a bijection from  A to C . Thus g B  f is invertible, and  the 

inverse is defined to be the  function that yields  the  identity function on  A 

when composed with g B  f . Let  IA  and  IB  denote the  identity functions on 

A and  B. Letting h = f −1 B g−1, we use  the  associativity of composition to 

obtain h B (g B  f ) = f −1 B (g−1 B g) B  f = f −1 B IB B  f = f −1 B  f = IA. Thus h 

is the  inverse of g B  f . 
One  can  also  argue more  explicitly that (g B  f )−1 and   f −1 B g−1  have 

the  same domain and  target and  have the  same value at each  element of 

the  domain, so they  are  the  same function. 
 

4.34.   Composition of functions. Suppose that  f : A → B, g: B → C , and 

h = g B  f . 

a) If h is injective, then   f is injective—TRUE. If  f is not injective, then 

there exist two distinct elements x , y ∈  A such  that f (x) = f (y).  Since  g 

is a function, this implies that g( f (x)) = g( f (y)).  Since  h = g B  f , we have

this to u ≥ v ⇒   f −1(u) ≥  f −1(v). obtained distinct elements x , y ∈ A such  that h(x) = h(y), and  hence h is

4.32.   When  F is a field, negation ( f ) defines a bijection from  F to itself,  and 

reciprocal (g) defines a bijection from  F −{0} to itself.  The field axioms imply 

that every  element of F has  a unique additive inverse, and  every  nonzero 

element of F has  a unique mulitplicative inverse.  Given  y in the  target, 

these inverses are  the  unique elements x 0   and  x such  that f (x 0) = −x 0  = y 

and  g(x) = x −1 = y (the  latter applies only for y 6= 0). 
 

4.33.   Composition of injections and surjections.  Let  f : A → B and  g: B → 
C , so (g B  f )(x) = g( f (x)) for all x ∈ A. 

a) The composition of two injections is an injection. Assume that  f and 

g are  injective. Suppose that (g B  f )(x) = (g B  f )(x 0), i.e.  g( f (x)) = g( f (x 0)). 

Since  g is injective, this implies f (x) = f (x 0).  Since   f  is injective, this in 

turn implies x = x 0.  Hence (g B  f )(x) = (g B  f )(x 0) implies x = x 0, and  g B  f 
is injective. 

not injective. We have proved the  contrapositive, so the  implication is true. 

b) If h is injective, then  g is injective—FALSE. Let  A = {1}, B = {a, b}, 
and  C  = {α}.   Define   f (1)  = a and  g(a)  = g(b)  = α.   Both   f  and  h are 

injective, but  g is not injective. 

c) If h is surjective, then   f  is surjective—FALSE. Let  A = {1, 2}, B = 
{a, b}, and  C = {α}.  Define   f (1)  = f (2)  = a and  g(a) = g(b) = α.  Then 

h(1) = h(2) = α, and  h is surjective, but   f is not surjective. 

d) If h is surjective, then  g is surjective—TRUE. If z = h(x), then z = 
g( f (x)).  Thus the  image of g contains the  image of h, which  the  hypothesis 

says  is all of C . 
 

4.35.   Composition of functions. Suppose f : A → B and  g: B → A. 

a) If  f (g(y)) = y for all  y ∈ B, then   f need not be a bijection. For each 

y ∈  B, y is the  image under  f  of some  element of A, namely g(y).   This
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guarantees that  f  is surjective, but   f  need  not  be injective. For  example, 

suppose A = N and  B = {2n : n ∈ N}. Suppose f (n) is the  least even  num- 

ber  as large as n. Suppose g(m) = m. Then f  and  g satisfy the  conditions 

required, but   f (2k − 1) = f (2k) = 2k, and   f is not injective. 

b) If  f  is injective and  g( f (x)) = x for all  x ∈ A, then  it need  not hold 

that f (g(y)) = y for all  y ∈ B. Let  A = {2n:  n ∈ N}, B = N, and   f (m) = m. 

Let  g(n) be the  least even  number as  large as  n.  Then f  is injective and 

g( f (x)) = x for all x ∈ A, but   f (g(y)) is even  when y is odd. 

If  f is injective but  not surjective, then the  conclusion no longer holds. 

Exchange  f  and   g in  the  earlier example, so  that A is  the  set  of even 

numbers and  B the  set  of all  natural numbers.  Then f  is injective and 

g( f (x)) = x for all x ∈ A, but   f (g(y)) is even  when y is odd. 

b) − b.   For  n  = 1,  the  formula reduces to  that for  f , which  completes 

the  basis step.  Assuming that the  formula holds  when n  = k, we  have 

f n+1(x) =  f ( f n (x)) = a[ f n (x) + b] − b = a[an (x + b) − b + b] − b = an+1(x + 
b) − b, and  the  formula also holds  when n = k + 1. 

In the  language of translation and  scaling, we have f = T−b B Ma Tb B I , 
where I is the  identity function. Thus this exercise is a special case  of the 

subsequent exercise. 
 

4.40.   a) Iteration of a  composition—If  f : A  → B,  g: B  → B,  and  h  = 

f −1 B g B  f , then  hn  = f −1 B gn B  f , for n ≥ 1.  We use  induction on n.  For n  

= 1, it holds  by the  definition of h.  For  n > 1, we use  the  definition of nth 

iterate, the  induction hypothesis, and  associativity of composition to 

compute

4.36.   Suppose f : A → B and  g: B → A.  
n                   n   1                 1

 
 
1        n   1

a) If  f B g is the identity function on B, then   f is surjective. By the  hy- h   = h B h 
−

 = ( f − B g B  f )( f − B g 
−

 B  f )

pothesis, y ∈ B ⇒   f (g(y)) = y. Hence there is an  element of A mapped to 

y by  f ; namely, the  element g(y). This  shows  that f satisfies the  definition 

of surjection. 

b) If  g B   f  is the  identity function on  A, then   f  is injective.  The  hy- 

pothesis states that x ∈  A implies g( f (x)) = x .  If  f  is not  injective, then 

distinct elements x1, x2  ∈ A exist such  that f (x1) = f (x2).  If we apply g to 

both  sides  of the  equality, we obtain x1  = g( f (x1)) = g( f (x2)) = x2, which 

contradicts our  choice  of distinct elements. Hence our  assumption that  f 

is not injective must be wrong. 
 

4.37.   If  f B  f  is injective, then   f  is injective. Suppose that  f (x) = f (y). 

Because f is a function, we can apply it to this element to obtain f ( f (x)) = 
f ( f (y)).  By the definition of composition, this yields  ( f B  f )(x) = ( f B  f )(y). 

The  hypothesis that  f B   f  is injective now  implies that x  = y.  We have 

proved that  f (x) = f (y) implies x = y , and  thus f is injective. 
 

4.38.   Translation and  scaling.  Given   f : R  → R, the  functions (Ta  f ) and 

(Mb f ) are  defined by (Ta  f )(x) = f (x + a) and  (Mb f )(x) = f (bx).  The  ver- 

tical  distance associated with x by (Ta  f ) is the  vertical distance associated 

with x + a by  f , so the  graph of (Ta  f ) is obtained by shifting the  graph of f  

to the  left by distance a. 

For  the  graph of (Mb f ), the  description of the  change depends on b. 

If b ≥ 1,  then the  graph shrinks toward the  vertical axis  by a  factor of 

b.  If 0 < b < 1, then the  result is expansion from  the  vertical axis  by a 

factor of 1/b.  If b = 0, then the  graph becomes a horizontal line  above  the 

horizontal axis by the amount f (0).  If b < 0, then the horizontal shrinkage 

or expansion is combined with reflection through the  vertical axis. 
 

4.39.   If  f (x) = a(x + b) − b, then  the nth iterate is given  by  f n (x) = an (x + 

= f −1 B g B ( f B  f −1) B gn−1 B  f = f −1 B g B gn−1 B  f = f −1 B gn B  f 
 
4.41.   If  f : A → A, and  n, k are natural numbers with k < n, then   f n  = 
f k  B  f n−k .  We use  induction on n.  When  n = 2, we have k = 1, and  the 

formula f 2  = f 1 B  f 1 is the definition of f 2. For the induction step, suppose 

that the  claim  is true when n = m; we prove that it also holds  for n = m +1. 

For  k = 1, again the  definition of iteration yields   f m+1  =   f 1  B   f m .  Now 

consider 1 < k < n + 1.   Using the  definition of iteration, the  induction 

hypothesis, the  associativity of composition, and  the  definition of iteration 

again, we have 
 

f m+1 =  f B  f m  = f B ( f k−1 B  f m+1−k ) = ( f B  f k−1) B  f m+1−k =  f k B  f m+1−k 

 

 
4.42.   If  f is a bijection from  [m] to [n], then  m = n. We use  induction on n. 

Basis step (n = 0). In this case,  [n] = ∅, and  a function from  A to ∅ can be 

defined only if A = ∅.  Hence m = 0. 

Induction step (n > 0).  Let   f  be a bijection from  [m] to [n].  Let  r = 

f −1(n). Define  g by g(k) = f (k) for k < r , while  g(k) = f (k + 1) for k ≥ r ; 

this function maps [m − 1] into  [n − 1].  Since   f  is a bijection and  we have 

used  all  images under  f  except  f (r ),  g is  a  bijection.  By the  induction 

hypothesis, m − 1 = n − 1, and  hence m = n. 
 

4.43.   There  is a bijection from  a set A to a proper  subset B of A only if A is 

infinite. If A is finite, then also  B is finite. Let m = | A| and  n = |B|. By the 

definition of size, there are  bijections f : A → [m] and  g: B → [n]. Let h be 

a bijection from  A to  B.  Now g B h B  f −1 is a bijection from  [m] to [n].  By 

Exercise 4.42,  m = n.  This  contradicts the  hypothesis that B is a proper 

subset of A. Hence the  hypothesis that A is finite  must be false.
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4.44.   The  function h in the proof of Corollary 4.41 is a bijection. We have 

h: A ∪ B → [m + n] defined by h(x) = f (x) for x ∈  A and  h(x) = g(x) + m 

for x ∈ B, where f : A → [m] and  g: B → [n] are  bijections. 

The  target of h is [m + n]. Since   f  has  target [m] and  g has  target [n], 

h maps A into  [m] and  B into  {m + 1, . . . , n}. Since   f  and  g are  bijections, 

we have a well-defined inverse function h−1 defined by h−1(y) = f −1(y) for 

y  ∈  [m] and  h−1(y)  = g−1(y − m) for  y  ∈  {m + 1, . . . , n}.   This  defines a 

function because f and  g are  injective and  surjective. 

Alternatively, one can  verify  separately that h is injective and  surjec- 

tive,  using the  hypothesis that these properties hold for  f and  g. 
 

4.45.   If  f : A → A and   A is finite, then   f  is injective if and  only  if  f  is 

surjective.  We use  the  method of contradiction to prove  each  direction of 

the  claim.   First suppose that  f  is injective, but  some  y ∈  A is not  in the 

image of  f . Each inverse image has  size at most  one (since   f  is injective) 

4.47.   The  even natural numbers, the  odd  natural numbers, and  the  set N 
itself all have the same  cardinality (they are countable). Every even natural 

number is obtained by doubling a unique natural number, so doubling is a 

bijection from  N to the  set  of even  numbers. The  operation of adding 1 is 

a bijection from  the  set  of odd natural numbers to the  set  of even  natural 

numbers.   Using this bijection and  the  inverse of the  first  one,  we  also 

obtain a bijection from  the  set  of odd natural numbers to N.  This  assigns 

to the  odd number k the  number (k + 1)/2. It is the  inverse of the  map  that 

assigns 2n − 1 to the  natural number n. 

 
4.48.   Explicit description of a bijection from  N × N to N.   The  sequence 

described in Theorem 4.44 has  k points on the  diagonal that starts at the 

point (k, 1).   The  points (i, j ) on  this diagonal all  satisfy i + j  = k + 1. 

The number of points in the  sequence before  the  point (k, 1) that starts the 

diagonal with i + j = k + 1 is 
Pk−1 

r , which  equals (k − 1)k/2.  The  point

and  I f (y) is empty. Hence the  total is less than | A|. This  is a contradiction, 
 

(i, j ) 
 

is the 
r =1 

j th point in  the  diagonal starting with 
 

(i, 
 

1).   Therefore, the

because there are  | A| elements in the  domain. 
position of (i, j ) in the  sequence is (i + j − 2)(i + j − 1)/2 + j . The function

Now  suppose that  f  is  surjective, but   f (x)  =  f (x 0)  = y  for  some 
f  defined by  f (i, j )      (i

 
j     2)(i

 
j     1)/2

 
j is an  explicit bijection

distinct x , x 0   ∈ A. Each inverse image has  size at least one (since   f  is sur-
  

from  N
  

N to N,
 =    +   − +   −       + 

N
  

exactly once in the
 

jective)  and  I f (y) has  size at least 2. Hence the  total is more  than | A|. This 

is a contradiction, because the  inverse images partition the  domain, which 

× 
sequence. 

because each  point of N × appears

has  only | A| elements. 

If  A = N and   f  is defined by  f (x)  = 2x , then f  is injective but  not 

surjective. Hence the  claim  does not hold when A is infinite. 
 

4.46.   Cardinality and  functions.  Suppose that  A and   B are  finite, and 

f : A → B. 

a) If  f is injective, then  | A| ≤ |B|. Since   f is injective, each  element of 

B is the  image of at most  1 element of A.  When  we sum  the  contribution 

0 or 1 over  all elements of B (depending on whether the  element is in the 

image), we obtain | A| (each  element of A has  an  image in  B) and  the  sum 

is at most  |B| (each  element of B contributes at most  once). 

b) If  f is surjective, then  | A| ≥ |B|. When   f is surjective, each  element 

of B belongs to the  image of  f .  By the  definition of function, the  inverse 

images of the  elements of B are  pairwise disjoint subsets of A.  Therefore, 

picking one element from the  inverse image of each  element of B yields  |B| 
distinct elements of A. This  is a subset of A, so |B| ≤ | A|. 

c) If  A and  B are finite  and   f : A → B and  g: B → A are injections, 

then  | A| = |B| and  f and  g are bijections. Applying (a) to  f yields  | A| ≤ |B|. 
Applying (a) to g yields  |B| ≤ | A|.  Hence | A| = |B|.  Since   f  is injective, 

its  image has  | A| elements; since  | A| = |B|, the  image is all of B and   f  is 

surjective. By the  same argument, g is surjective. Being  both  injective and 

surjective, f and  g are  bijections. 
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4.49.   The  union of a countable sequence  of countable sets is countable. Let 

{ Ai : i ∈ N} be the  sets, and  let  B be their union. Since  each  Ai  is countable, 

for each  i there is a sequence {ai, j :  j ∈ N} listing the  elements of Ai  once 

and  only once.  View these elements as listed at the  points ( j, i ) in the  first 

quadrant of the  Cartesian plane, with the  elements of Ai  in the  i th row. 

To show  that B is countable, it suffices  to construct a sequence listing 

each  element of B once and  only once.  Each element of B now appears at 

a point in the  first  quadrant, but  it appears more  than once if it belongs to 

more  than one of the  sets. The  positions with i + j − 1 = k form  the  kth 

diagonal of the  arrangement; every  element appears in some diagonal. We 

form  the  sequence by listing the  elements of the  first  diagonal, then the 

second, and  so on in increasing order of k, as in the  bijection from N × N to 

N. Within each  diagonal, we use increasing order in  j . However, whenever 

we  encounter an  element that already appears in  our  list,  we  skip  it to 

avoid  listing elements more  than once.   Since  each  diagonal is finite, we 

eventually reach each  specified diagonal and  thus each  specified element. 

Note:   When  we  are  given  only  that each   Ai  is  countable, obtaining 

the  sequences of the  form  ai,1, ai,2, ... relies on the  Axiom  of Choice.   This 

Axiom states that for any  collection of disjoint sets, it is possible to choose 

an  element of each  set.   We apply this to B1, B2, . . ., where Bi  is the  set  of 

bijections from N to Ai .



61 Part I Solutions Chapter 4: Bijections and  Cardinality 62  
 

4.50.   Applying the proof of the Shroeder-Bernstein Theorem. Let  A = (0, 1) 

and  B = {y ∈ R: 0 ≤ y < 1}.  Define   f : A → B and  g: B → A by  f (x) = x 

and  g(y) = (y +1)/2. The Shroeder-Bernstein Theorem provides a bijection 

h: A → B.  The  function h constructed in  the  proof  agrees with  f  on all 

elements of A except those whose  “family”  (backing up by alternating g−1 

and   f −1) has  an origin in B − f (A). 

In this example, B − f (A) = {0}, so we use g−1 instead of f on only one 

family. The values mapped using g−1 are  those of the  form  g(( f −1 B g)k )(0) 

for k  ≥ 0.   Since   f  is  the  identity, this reduces to  gk (0)  for k  ∈  N.   The 

resulting sequence begins 1/2, 3/4, 7/8;  it follows  by induction on k that 

gk (0) = 1 − 1/2k , since  g(1 − 1/2k ) = (2 − 1/2k )/2 = 1 − 2/2k+1. 
Thus h(x) = 2x −1 when x = 1−1/2k  for k ∈ N, and otherwise h(x) = x . 

 

4.51.   An  explicit bijection from  [0, 1] to (0, 1).   Define   f  : [0, 1] →  (0, 1) 

as  follows:    f (0)  = 1/2,   f (1/n)  =  f (1/(n + 2))  for  all  n  ∈  N,  f (x)  =  x 

otherwise. Every element of (0, 1) is in the  image of  f , and  no element is 

hit twice, because 1/2 comes only from 0, reciprocals of integers (other than 

1/2) come only  from  reciprocals of other integers, and  other elements are 

fixed points. The construction works because the  elements in the  sequence 

0, 1, 1/2, 1/3, 1/4, · · · are  shifted two  positions by  f , thus  omitting {0, 1} 
from the  image. 


