Solution Manual for Mechanisms and Machines Kinematics Dynamics and Synthesis SI Edition 1st Edition Stanisic 1285057562 9781285057569
 Link full download:
 Solution Manual:

https://testbankpack.com/p/solution-manual-for-mechanisms-and-machines-kinematics-dynamics-and-synthesis-si-edition-1st-edition-stanisic-
 1285057562-9781285057569/

Chapter 2

Kinematic Analysis Part I: Vector Loop Method - Solutions

For the mechanisms shown in Problems 2.1-2.16,
1.) Draw an appropriate vector loop.
2.) Write out the VLE(s).
3.) Write the X and Y components of the VLE(s) in their simplest form.
4.) Write down all geometric constraints.
5.) Summarize the scalar knowns and the scalar unknowns.
6.) From all the above, deduce the number of degrees of freedom in the systems.
7.) Check your result in 6.) against Gruebler's Criterion.

Problem 2.1
1.) A correct vector loop is drawn below. In all vector loop problems, vectors may be in the opposite direction of what is shown and they can also be in any sequence and numbered in any way. Take origin of coordinate system to be at the pin joint between 1 and 2 (pin joint between 1 and 4 also suitable). Align the X axis with $r^{-}{ }_{1}$.
2.) The VLE is,

$$
r_{1}^{-}+r_{4}^{-}+r_{3}^{-} \quad r_{2}^{-}=0
$$

3.) The VLE has simplified scalar components (noting $\theta_{1}=0$),

$$
\begin{align*}
r_{1}+r_{4} \cos \theta_{4}+r_{3} \cos \theta_{3}-r_{2} \cos \theta_{2} & =0 \tag{1}\\
r_{4} \sin \theta_{4}+r_{3} \sin \theta_{3}-r_{2} \sin \theta_{2} & =0 \tag{2}
\end{align*}
$$

4.) There are no geometric constraints
5.) The two position equations (1) and (2) contain,
scalar knowns: $r_{1}, r_{4}, r_{3}, r_{2}, \theta_{1}=0$
and
scalar unknowns:nd θ_{4}, θ_{3} a $\quad \theta_{2}$.
6.) Two position equations in three scalar unknowns means one scalar unknown must be given so that the remaining two can be calculated from the position equations. So, the system has one degree of freedom, which agrees with Gruebler's Criterion.

Problem 2.2

1.) A correct vector loop is drawn below.

1
Take the origin of the fixed coordinate system to be at the pin joint between 1 and 2 . There is no other fixed point in the vector loop which could serve as the origin. Align the X axis with $r^{-}{ }_{4}$.
2.) The VLE is,

$$
r_{4}^{-}+r_{3}^{-} \quad r_{2}^{-}=0
$$

3.) The VLE has simplified scalar components (noting that $\theta_{4}=0$ and $\theta_{3}=\pi / 2$),

$$
\begin{equation*}
r_{4}-r_{2} \cos \theta_{2}=0 \tag{1}
\end{equation*}
$$

$$
\begin{equation*}
r_{3}-r_{2} \sin \theta_{2}=0 \tag{2}
\end{equation*}
$$

4.) There are no geometric constraints
5.) The two scalar position equations (1) and (2) contain,
scalar knowns: $r_{2}, \theta_{3}={ }_{2}, \theta_{4}=0$
and
scalar unknowns: θ_{2}, r_{3} and r_{4}.
6.) Two position equations in three unknowns means one of the scalar unknowns must be given so the remaining two can be calculated. So the system has one degree of freedom, which agrees with Gruebler's Criterion.

Problem 2.3
1.) A correct vector loop is drawn below.

Take the origin of the fixed coordinate system to be at the pin joint between 1 and 2. Could also have been located at the point where $r^{-}{ }_{1}$ contact $r^{-}{ }_{4}$. Align the X axis with $r^{-}{ }_{1}$.
2.) The VLE is,

$$
r_{1}^{-}+r_{3}^{-}+r_{4}^{-} \quad r_{2}^{-}=0
$$

3.) The VLE has simplified scalar components (noting that $\theta_{1}=0$ and $\theta_{3}=\pi / 2$)

$$
\begin{align*}
& r_{1}+r_{4} \cos \theta_{4}-r_{2} \cos \theta_{2}=0 \tag{1}\\
& r_{3}+r_{4} \sin \theta_{4}-r_{2} \sin \theta_{2}=0 \tag{2}
\end{align*}
$$

4.) Since $r^{-} 2$ and $r^{-} 4$ are always orthogonal, we have a geometric constraint,

$$
\begin{equation*}
\theta_{2}+\pi / 2=\theta_{4}-\rightarrow \theta_{2}+\pi / 2-\theta_{4}=0 \tag{3}
\end{equation*}
$$

5.) The three scalar position equations (1) - (3) contain, scalar knowns: $r, r, \theta \quad=0, \theta \quad=\frac{\pi}{2}$.
scalar unknowns: $r_{2}, \theta_{2}, \theta_{4}$, and r_{3}.
6.) The three position equations contain four unknowns meaning one of the scalar unknowns must be given so that the remaining three can be calculated from the position equations. This means the system has one degree of freedom which agrees with Gruebler's Criterion.
1.) A correct vector loop is drawn below.

Take the origin of the fixed coordinate system to be at the pin joint between 1 and 2 . The origin could also have been located at the pin joint between 1 and 4 . Align the X axis with $r^{-}{ }_{1}$.
2.) The VLE is,

$$
r_{1}^{-}+r_{4}^{-} \quad-\quad-\quad-\quad-\quad r_{3}^{-} \quad-\quad r_{2}=0
$$

3.) The VLE has scalar components (noting that $\theta_{1}=0$),

$$
\begin{align*}
r_{1}+r_{4} \cos \theta_{4} & -r_{3} \cos \theta_{3}-r_{2} \cos \theta_{2}=0 \tag{1}\\
r_{4} \sin \theta_{4} & -r_{3} \sin \theta_{3}-r_{2} \sin \theta_{2}=0 \tag{2}
\end{align*}
$$

4.) Vectors r_{2}^{-}and r_{3}^{-}are always orthogonal so,

$$
\begin{equation*}
\theta_{3}+\pi / 2=\theta_{2} \rightarrow \theta_{3}+\pi / 2-\theta_{2}=0 \tag{3}
\end{equation*}
$$

5.) The three position equations (1) - (3) contain, scalar knowns: $r_{1}, r_{2}, r_{4}, \theta_{1}=0$,
and
scalar unknowns: $\theta_{2}, \theta_{3}, r_{3}$ and θ_{4}.
6.) The three position equations contain four unknowns meaning one of the scalar unknowns must be given so that the remaining three can be calculated from the position equations. This means the system has one degree of freedom, which agrees with Gruebler's Criterion.
1.) Correct vector loops are drawn below.

fig179asoltn
Take the origin of the fixed coordinate system to be at the pin joint between 1 and 2 . The point where $r^{-}{ }_{4}$ and r_{4}^{-} touch is an alternate location for the origin. Align the X axis with $r^{-}{ }_{1}$.
2.) The VLEs are,

$$
\begin{aligned}
& r_{2}^{-}+r_{3}^{-}-r_{5}^{-}-r_{6}^{-}=0 \\
& r_{1}^{-}+r_{4}^{-}-r^{-}{ }_{5}-r_{6}^{-}=0
\end{aligned}
$$

3.) The VLE has scalar components (note that $\theta_{1}=0$ and $\theta_{4}=-\pi / 2$),

$$
\begin{array}{r}
r_{2} \cos \theta_{2}+r_{3} \cos \theta_{3}-r_{5} \cos \theta_{5}-r_{6} \cos \theta_{6}=0 \\
r_{2} \sin \theta_{2}+r_{3} \sin \theta_{3}-r_{5} \sin \theta_{5}-r_{6} \sin \theta_{6}=0 \\
r_{1}-r_{5} \cos \theta_{5}-r_{6} \cos \theta_{6}=0 \\
-r_{4}-r_{5} \sin \theta_{5}-r_{6} \sin \theta_{6}=0 \tag{4}
\end{array}
$$

4.) There are no geometric constraints
5.) The four scalar position equations (1) - (4) contain,
scalar knowns: $r_{1}, r_{2}, r_{3}, r_{5}, r_{6}, \theta_{1}=0, \theta_{4}=-\frac{\pi}{2}$
and
scalar unknowns: $\theta_{2}, \theta_{3}, r_{4}, \theta_{5}, \theta_{6}$.
6.) The four position equations contain five unknowns meaning one of the scalar unknowns must be given so that the remaining four can be calculated from the position equations. This means the system has one degree of freedom which agrees with Gruebler's Criterion.

Take the origin of the fixed coordinate system to be at the pin joint between 1 and 2 . The pin joint between 1 and 5 is also suitable. Align the X axis with $r^{-}{ }_{1}$.
2.) The VLE is,

$$
{r_{2}^{-}+r_{3}^{-}+r_{6}^{-}+r_{4}^{-} \quad r_{5}^{-} \quad r_{1}^{-}=0, ~}_{0}
$$

3.) The VLE has simplified scalar components (note $\theta_{1}=0$),

$$
\begin{array}{r}
r_{2} \cos \theta_{2}+r_{3} \cos \theta_{3}+r_{6} \cos \theta_{6}+r_{4} \cos \theta_{4}-r_{5} \cos \theta_{5}-r_{1}=0 \\
r_{2} \sin \theta_{2}+r_{3} \sin \theta_{3}+r_{6} \sin \theta_{6}+r_{4} \sin \theta_{4}-r_{5} \sin \theta_{5}=0 . \tag{2}
\end{array}
$$

4.) Vectors ${r^{-}}_{6}$ and r_{4}^{-}are always orthogonal so,

$$
\begin{equation*}
\theta_{6}+\pi / 2=\theta_{4}-\rightarrow \theta_{6}+\pi / 2-\theta_{4}=0 \tag{3}
\end{equation*}
$$

5.) The three position equations (1) - (3) contain,
scalar knowns: $r_{2}, r_{3}, r_{6}, r_{5}, r_{1}, \theta_{1}=0$
and
scalar unknowns: $\theta_{2}, \theta_{3}, \theta_{6}, \theta_{4}, \theta_{5}$, and r_{4}.
6.) The three position equations contain six unknowns meaning three of the scalar unknowns must be given so that the remaining three can be calculated from the position equations. This means the system has three degrees of freedom which agrees with Gruebler's Criterion.
1.) A correct vector loop is drawn below.

1
\qquad
Y
Take the origin of the fixed coordinate system to be at the point where vectors r_{2} and r_{7} contact. The origin could also have been located at the pin joint between 1 and 4 or the pin joint between 1 and 5. Align the X axis with r_{2}^{-}.
2.) The VLEs are,

$$
\begin{aligned}
r_{7}^{-}+r_{2}^{-}+r_{3}^{-}+r_{4}^{-}-r_{8}^{-} & =0 \\
r_{8}^{-}+r_{6}^{-}-r^{-}{ }_{5}+r_{1}^{-} & =0
\end{aligned}
$$

3.) The VLE has simplified scalar components (note $\theta_{2}=0$ and $\theta_{7}=\pi / 2$),

$$
\begin{align*}
& r_{2}+r_{3} \cos \theta_{3}+r_{4} \cos \theta_{4}-r_{8} \cos \theta_{8}=0 \tag{1}\\
& r_{7}+r_{3} \sin \theta_{3}+r_{4} \sin \theta_{4}-r_{8} \sin \theta_{8}=0 \tag{2}\\
& r_{8} \cos \theta_{8}+r_{6} \cos \theta_{6}-r_{5} \cos \theta_{5}+r_{1} \cos \theta_{1}=0 \tag{3}\\
& r_{8} \sin \theta_{8}+r_{6} \sin \theta_{6}-r_{5} \sin \theta_{5}+r_{1} \sin \theta_{1}=0 \tag{4}
\end{align*}
$$

4.) Vectors $r^{-} 8$ and $r^{-} 4$ both rotate with 4 , so the angle between them, γ, is a constant, so

$$
\begin{equation*}
\theta_{4}+\gamma=\theta_{8}-\rightarrow \theta_{4}+\gamma-\theta_{8}=0 \tag{5}
\end{equation*}
$$

5.) These five position equations (1) - (5) contain,
scalar knowns: $r_{1}, \theta_{1}, r_{2}, \theta_{2}=0, r_{3}, r_{4}, r_{5}, r_{6}, r_{7}, \theta_{7}=\pi / 2, r_{8}$ and
scalar unknowns: $r_{2}, \theta_{3}, \theta_{4}, \theta_{5}, \theta_{6}, \theta_{8}$.
6.) The five scalar position equations contain six scalar unknowns meaning one of the scalar unknowns must be given so that the remaining five can be calculated from the position equations. This means the system has one degree of freedom, which agrees with Gruebler's Criterion.
1.) A correct vector loop is drawn below.

1
The simplest possible vector loop uses a reference point Q on a hypothetical extension of 3 . You can imagine the slot on 3 extending out to include the point Q on it. Take the origin of the fixed coordinate system to be at the pin joint between 1 and 2. This is the only possible origin. Align the Y axis with r_{3}^{-}.
2.) The VLE is,

$$
\begin{array}{llll}
r_{2} & r_{4}^{-} & r_{3} & =0
\end{array}
$$

3.) The VLE has simplified scalar components (note $\theta_{3}=\pi / 2$),

$$
\begin{array}{r}
r_{2} \cos \theta_{2}-r_{4} \cos \theta_{4}=0 \\
r_{2} \sin \theta_{2}-r_{4} \sin \theta_{4}-r_{3}=0 \tag{2}
\end{array}
$$

4.) There are no geometric constraints.
5.) The position equations (1) and (2) contain,
scalar knowns: $r, \theta==_{2}^{\frac{\pi}{2}}, \theta$.
scalar unknowns: θ_{2}, r_{3} and r_{4}.
6.) The two position equations (1) and (2) contain three unknowns meaning one of the scalar unknowns must be given so that the remaining two can be calculated from the position equations. This means the system has one degree of freedom which agrees with Gruebler's Criterion.
1.) A correct vector loop is drawn below.

Alternate location for origin of coordinate system

Take the origin of the fixed coordinate system to be at the pin joint between 1 and 2 . The origin also can be placed where $r^{-}{ }_{1}$ contacts $r^{-}{ }_{3}$.
2.) Align the Y axis with $r^{-}{ }_{1}$. The VLE is,

$$
r_{1}^{-}+r_{3}^{-} \quad r_{2}^{-}=0
$$

3.) The VLE has simplified scalar components (note $\theta_{1}=\pi / 2$ and $\theta_{3}=0$),

$$
\begin{align*}
& r_{3}-r_{2} \cos \theta_{2}=0 \tag{1}\\
& r_{1}-r_{2} \sin \theta_{2}=0 \tag{2}
\end{align*}
$$

4.) There are no geometric constraints.
5.) The position equations (1) and (2) contain,
scalar knowns: $r_{1}, \theta_{1}=\pi / 2, r_{2}, \theta_{3}=0$
and
scalar unknowns: θ_{2} and r_{3}.
6.) The two position equations contain two unknowns meaning none of the scalar unknowns need be given. This means the system has zero degrees of freedom and is a statically determinate structure, which agrees with Gruebler's Criterion.
1.) A correct vector loop is drawn below.

Take the origin of the fixed coordinate system to be at point where $r^{-}{ }_{1}$ touches $r^{-}{ }_{4}$. The pin joint between 1 and 2 is an alternate location for the origin. Align the X axis with $r^{-}{ }_{4}$.
2.) The VLE is,

$$
r_{1}^{-}+r_{4}^{-}+r_{3}^{-} \quad r_{2}^{-}=0
$$

3.) The VLE has simplified scalar components (note $\theta_{1}=\pi / 2$ and $\theta_{4}=\pi$),

$$
\begin{gather*}
-r_{4}+r_{3} \cos \theta_{3}-r_{2} \cos \theta_{2}=0 \tag{1}\\
r_{1}+r_{3} \sin \theta_{3}-r_{2} \sin \theta_{2}=0 \tag{2}
\end{gather*}
$$

4.) r_{3}^{-}and r_{2}^{-}both rotate with 2 and are always orthogonal, so

$$
\begin{equation*}
\theta_{2}+\pi / 2=\theta_{3}-\rightarrow \theta_{2}+\pi / 2-\theta_{3}=0 \tag{3}
\end{equation*}
$$

5.) The three position equations (1) - (3) contain,
scalar knowns: $r_{1}, \theta_{1}=0, \theta_{4}=\pi, r_{3}$,
and
scalar unknowns: $r_{4}, \theta_{3}, \theta_{2}$ and r_{2}.
6.) The three position equations contain four unknowns meaning one of the scalar unknowns must be given so that the remaining three can be calculated from the position equations. This means the system has one degree of freedom which agrees with Gruebler's Criterion.
1.) A correct vector loop is drawn below.

Take the origin of the fixed coordinate system to be at pin joint between 1 and 3. There are no other possibilities for this origin. Align the X axis with $r^{-} 2$.
2.) The VLE is,

$$
r_{2}^{-}+r_{1}^{-}+r_{4}^{-} \quad r_{3}^{-}=0
$$

3.) The VLE has simplified scalar components (note $\theta_{1}=\pi / 2$ and $\theta_{2}=0$),

$$
\begin{align*}
& r_{2}+r_{4} \cos \theta_{4}-r_{3} \cos \theta_{3}=0 \tag{1}\\
& r_{1}+r_{4} \sin \theta_{4}-r_{3} \sin \theta_{3}=0 \tag{2}
\end{align*}
$$

4.) $r^{-}{ }_{3}$ and $r^{-}{ }_{4}$ both rotate with 3 and are always orthogonal so,

$$
\begin{equation*}
\theta_{3}+\pi / 2=\theta_{4} \rightarrow \theta_{3}+\pi / 2-\theta_{4}=0 \tag{3}
\end{equation*}
$$

5.) The three position equations (1) - (3) contain, scalar knowns: $\theta_{2}=0, r_{1}, \theta_{1}=\pi / 2, r_{4}$,
and
scalar unknowns: r_{2}, θ_{4}, r_{3} and θ_{3}.
6.) The three position equations contain four unknowns meaning one of the scalar unknowns must be given so that the remaining three can be calculated from the position equations. This means the system has one degree of freedom which agrees with Gruebler's Criterion.
1.) A correct vector loop is drawn below.

Alternate location for origin of coordinate system
Take the origin of the fixed coordinate system to be at the pin joint between 1 and 3. An alternate location would be where vectors $r^{-}{ }_{1}$ and r_{2}^{-}touch. Align the X axis with $r^{-}{ }_{1}$.
2.) The VLE is,

$$
{\overline{r_{1}}+r_{2}^{-}}_{r_{3}}^{r_{4}^{-}=0}
$$

3.) The VLE has simplified scalar components (note $\theta_{1}=\pi$ and $\theta_{2}=\pi / 2$),

$$
\begin{gather*}
-r_{1}-r_{3} \cos \theta_{3}-r_{4} \cos \theta_{4}=0 \tag{1}\\
r_{2}-r_{3} \sin \theta_{3}-r_{4} \sin \theta_{4}=0 \tag{2}
\end{gather*}
$$

4.) $r^{-}{ }_{3}$ and r_{4}^{-}both rotate with 3 and are always orthogonal so,

$$
\begin{equation*}
\theta_{4}+\pi / 2=\theta_{3} \rightarrow \theta_{4}+\pi / 2-\theta_{3}=0 \tag{3}
\end{equation*}
$$

5.) The three position equations (1) - (3) contain, scalar knowns: $r_{1}, \theta_{1}=\pi, r_{2}, \theta_{5}=\pi / 2, r_{4}$, and
scalar unknowns: $r_{5}, \theta_{2}, r_{3}, \theta_{3}$ and θ_{4}.
6.) The three position equations contain five unknowns meaning two of the scalar unknowns must be given so that the remaining three can be calculated from the position equations. This means the system has two degrees-of-freedom which agrees with Gruebler's Criterion.
1.) A correct vector loop is drawn below.

Take the origin of the fixed coordinate system to be at the point where r_{1}^{-}and $r^{-}{ }_{7}$ touch. There are no other possibilities for this origin. Align the X axis with $\mathrm{r}^{-}{ }_{1}$.
2.) The VLE is,

$$
r_{1}^{-}+r_{6}^{-}-r_{5}^{-}-r_{7}^{-}=0
$$

but none of these vectors capture the rotation of 2,3 or 4 , so we need to attach vectors to those three bodies. These are the vectors $r^{-}{ }_{2}, r^{-}{ }_{3}$ and r_{4}^{-}respectively. Their magnitudes r_{2}, r_{3} and r_{4} are arbitrary but known.
3.) The VLE has simplified scalar components (note $\theta_{1}=0$),

$$
\begin{align*}
r_{1}+r_{6} \cos \theta_{6}-r_{5} \cos \theta_{5}-r_{7} \cos \theta_{7} & =0 \tag{1}\\
r_{6} \sin \theta_{6}-r_{5} \sin \theta_{5}-r_{7} \sin \theta_{7} & =0 \tag{2}
\end{align*}
$$

4.) There are no geometric constraints.
5.) The position equations (1) and (2)and the additionally needed vectors r_{2}^{-}, r_{3}^{-}and r_{2}^{-}contain scalar knowns: $r_{2}, r_{3}, r_{4}, \theta_{1}=0, \theta_{7}, r_{5}, r_{6}$, and
scalar unknowns: $\theta_{2}, \theta_{3}, \theta_{4}, \theta_{5}, \theta_{6}, r_{1}$ and r_{7}.
6.) The two position equations along with the three additionally required vectors contain seven unknowns meaning five of the unknowns must be given in order to compute the remaining two. This means the system has five degrees of freedom which agrees with Gruebler's Criterion.
1.) A correct vector loop is drawn below. The shown origin is the only possibility. Align the X axis with r_{1}^{-}. 2.) The VLEs are,

3

$$
r_{1}^{-}+r_{4}^{-}+r_{5}^{-}+r_{3}^{-} \quad r_{6}^{-} \quad r_{2}^{-}=0 \quad \text { and } r_{6}^{-} \quad r_{3}^{-} \quad r_{5}^{-}=0
$$

3.) The VLEs simplified scalar components are (note $\theta_{1}=0$),

$$
\begin{align*}
r_{1}+r_{4} \cos \theta_{4}+r_{5} \cos \theta_{5}+r_{3} \cos \theta_{3}-r_{6} \cos \theta_{6}-r_{2} \cos \theta_{2} & =0 \tag{1}\\
r_{4} \sin \theta_{4}+r_{5} \sin \theta_{5}+ & r_{3} \sin \theta_{3}-r_{6} \sin \theta_{6}-r_{2} \sin \theta_{2}=0 \tag{2}\\
& r_{6} \cos \theta_{6}-r_{3} \cos \theta_{3}-r_{5} \cos \theta_{5}=0 \tag{3}\\
& r_{6} \sin \theta_{6}-r_{3} \sin \theta_{3}-r_{5} \sin \theta_{5}=0 \tag{4}
\end{align*}
$$

4.) $r^{-} 2$ and $r^{-}{ }_{6}$ both rotate with 2 and are always in-line. Likewise $r^{-} 4$ and $r_{5}^{-} \quad$ both rotate with 4 and are always inline so,

$$
\begin{gather*}
\theta_{2}=\theta_{6} \rightarrow \theta_{2}-\theta_{6}=0 \tag{5}\\
\theta_{4}=\theta_{5} \rightarrow \theta_{4}-\theta_{5}=0 \tag{6}
\end{gather*}
$$

5.) This system of 6 position equations (1) - (6)has
scalar knowns: $r_{2}, r_{6}, r_{4}, r_{5}, \theta_{1}=0$,
and
scalar unknowns: $\theta_{2}, \theta_{6}, r_{3}, \theta_{3}, \theta_{5}, \theta_{4}$, and r_{1}.
6.) The six position equations along with the seven unknowns means one of the unknowns must be given in order to compute the remaining six. This means the system has one degrees of freedom which agrees with Gruebler's Criterion. Many people are confused by the variable θ_{3} being an unknown. They are inclined to say $\theta_{3}=0$. If the exacting conditions of $r_{2}=r_{4}$ and $r_{5}=r_{6}$ are met, along with exacting conditions that r_{2}^{-}, r_{6}^{-}and $r_{4}^{-}, r^{-}{ }_{5}$ in-line, then it is true

Pratbdgunile system. Consequently, θ_{3} is an unknown and as the mechanism articulates it will vary. The variation may be so small as to not be observable, but it exists.
1.) A correct vector loop is drawn below. Take the origin at the point where $r^{-}{ }_{1}$

Alternate location for origin of coordinate system
with r_{2}^{-}. An alternate origin is the pin joint between 1 and 3 .
2.) The VLE is,

$$
r_{1}^{-}+r_{2}^{-}+r_{4}^{-}+r_{3}^{-}=0
$$

3.) The VLE has simplified scalar components (note $\theta_{1}=-\pi / 2$ and $\theta_{2}=0$),

$$
\begin{array}{r}
r_{2}+r_{4} \cos \theta_{4}+r_{3} \cos \theta_{3}=0 \\
-r_{1}+r_{4} \sin \theta_{4}+r_{3} \sin \theta_{3}=0 \tag{2}
\end{array}
$$

4.) r_{3}^{-}and r_{4}^{-}rotate with 3 and are always orthogonal so,

$$
\begin{equation*}
\theta_{4}+\pi / 2=\theta_{3} \longrightarrow \theta_{4}+\pi / 2-\theta_{3}=0 \tag{3}
\end{equation*}
$$

5.) The three position equations (1) and (3) contain,

$$
\text { scalar knowns }: r_{1}, \theta_{1}=-\pi / 2, \theta_{2}=0, r_{4}
$$

and
scalar unknowns: $r_{2}, \theta_{4}, \theta_{3}$ and r_{3}.
6.) The three position equations contain four unknowns meaning one of the scalar unknowns must be given so that the remaining three can be calculated from the position equations. This means the system has one degree of freedom which agrees with Gruebler's Criterion.
1.) A correct vector loop is drawn below. Take the origin of the fixed coordinate system to be at the pin joint

1
between 1 and 2. There is no alternate possibility for the origin. Align the X axis with $r^{-}{ }_{8}$ (and $r^{-}{ }_{5}$). 2.) The VLEs are,

$$
\begin{array}{r}
r_{2}^{-}+r_{3}^{-}+r_{4}^{-}-r_{5}^{-}-r_{1} \\
r_{2}^{-}+r_{3}^{-}+r_{4}^{-}+r_{6}^{-}+r_{7}^{-}-r_{8}^{-}=0
\end{array}
$$

3.) The VLEs have simplified scalar components (note $\theta_{1}=-\pi / 2, \theta_{5}=\theta_{8}=0, \theta_{7}=\pi / 2$),

$$
\begin{array}{r}
r_{2} \cos \theta_{2}+r_{3} \cos \theta_{3}+r_{4} \cos \theta_{4}-r_{5}=0 \\
r_{2} \sin \theta_{2}+r_{3} \sin \theta_{3}+r_{4} \sin \theta_{4}+r_{1}=0 \\
r_{2} \cos \theta_{2}+r_{3} \cos \theta_{3}+r_{4} \cos \theta_{4}+r_{6} \cos \theta_{2}-r_{8}=0 \\
r_{2} \sin \theta_{2}+r_{3} \sin \theta_{3}+r_{4} \sin \theta_{4}+r_{6} \sin \theta_{2}+r_{7}=0 . \tag{4}
\end{array}
$$

4.) $r^{-} 4$ and $r^{-} 6$ both rotate with link 4 so the angle between them (γ as shown) is constant, so

$$
\begin{equation*}
\theta_{6}+\gamma+\pi=\theta_{4}-\rightarrow \theta_{6}+\gamma+\pi-\theta_{4}=0 \tag{5}
\end{equation*}
$$

5.) The five position equations (1) and (5) contain,
scalar knowns: $r_{2}, r_{3}, r_{4}, \theta_{5}=0, r_{1}, \theta_{1}=-\pi / 2, r_{6}, \theta_{7}=\pi / 2, r_{8}, \theta_{8}=0$, and
scalar unknowns: θ_{2}, θ_{3} and $\theta_{4}, r_{5}, \theta_{6}, r_{7}$
6.) The five position equations contain six unknowns meaning one of the scalar unknowns must be given so that the remaining five can be calculated from the position equations. This means the system has one degree of freedom which agrees with Gruebler's Criterion.

Problem 2.17
1.) Take θ_{2} as the known input. Outline all equations needed to implement Newton's Method to solve for the remaining five unknowns as was done in Section 2.4, using,

$$
\begin{gathered}
\sqsubset r_{3}\llcorner \\
x^{-}=\left\llcorner\quad \begin{array}{c}
r_{5} \\
r_{5} \\
\sqsubset \\
\theta_{3} \sqsubset \\
\theta_{4}
\end{array} .\right.
\end{gathered} .
$$

Solution to Part 1.)
Define a vector f of the homogeneous functions whose roots are to be found.

$$
\begin{aligned}
& \square_{f_{1}\left(x^{-}\right)} \quad \square r_{2} \cos \theta_{2}-r_{3} \cos \theta_{3}+r_{1}{ }^{\sqsubset} \\
& f^{-}\left(x^{-}\right)=\begin{array}{c}
f_{2}\left(x^{-}\right) \\
f_{3}\left(x^{-}\right) \\
\\
f_{5}\left(x^{-}\right) \\
f_{4}\left(x^{-}\right) \square \\
f_{5}\left(x^{-}\right) \\
f_{5}\left(x^{-}\right)
\end{array} \quad \begin{array}{c}
r_{2} \sin \theta_{2}-r_{3} \sin \theta_{3} \\
r_{6} \cos \theta_{4} \quad \square \\
\theta_{4}-\theta_{3} \\
\square
\end{array}
\end{aligned}
$$

Find the Jacobian matrix of partial derivatives.

$$
\begin{aligned}
& \Sigma \\
& \Sigma \\
& J\left(x^{-}\right)=\begin{array}{ccccc}
- & - & - & - & - \\
\partial f / \partial r_{3} & \partial f / \partial r_{4} & \partial f & \partial r & \\
\hline
\end{array}
\end{aligned}
$$

2.) Flowchart how these equations would be used in a computer program to solve for the output variables.

Solution to Part 2.)
Flowchart of Newton's Method

fig 087b

2.1 Programming Problems

For the following problems you may use any programming language or script of your choice.

Programming Problem 1

The Matlab code
$\mathrm{pi}=4.0^{*} \operatorname{atan}(1.0)$;
$\mathrm{t} 2=283.0^{*} \mathrm{pi} / 180$;
r1=4.8;
r2 $=2.0$;
r6=3.65;
r3 $=3$;
r4=11;
r5=4;
$\mathrm{t} 3=300 * \mathrm{pi} / 180$;
$\mathrm{t} 4=300 * \mathrm{pi} / 180$;
$\mathrm{x} 0=[\mathrm{r} 3 ; \mathrm{r} 4 ; \mathrm{r} 5 ; \mathrm{t} 3 ; \mathrm{t} 4]$;
t3d=t3*180/pi;
t4d=t4*180/pi;
xd0=[r3;r4;r5;t3d;t4d];
for $\mathrm{i}=1: 6$
$\mathrm{ct} 2=\cos (\mathrm{t} 2)$;
$\mathrm{st} 2=\sin (\mathrm{t} 2)$;
$\mathrm{ct} 3=\cos (\mathrm{t} 3)$;
$\mathrm{st} 3=\sin (\mathrm{t} 3)$;
$\mathrm{ct} 4=\cos (\mathrm{t} 4)$;
$\mathrm{st} 4=\sin (\mathrm{t} 4)$;
$\mathrm{f} 1=\mathrm{r} 2 * \mathrm{ct} 2-\mathrm{r} 3 * \mathrm{ct} 3+\mathrm{r} 1$;
f2 $=$ r2 2 st2-r3*st3;
$\mathrm{f} 3=\mathrm{r} 6-\mathrm{r} 4$ * $\mathrm{ct} 4+\mathrm{r} 1$;
f4=-r5-r4*st4;
f5=t4-t3;
f=[f1;f2;f3;f4;f5];
a $11=-\mathrm{ct} 3$;
a12 $=0$;
a13 $=0$;
a14=r3*st3;
a15=0;
a21=-st3;
a22 $=0$;
a23 $=0$;
a24=-r3*ct3;
a25=0;
a31 $=0$;
a32=-ct4;
a33 $=0$;
a34=0;
a35=r4*st4;
$\mathrm{a} 41=0$;
a42=-st4;
a $43=-1$;
a44=0;
a45=-r4*ct4;
a51=0;
a52=0;
a53=0;
a54=-1;
a55=1;
$\mathrm{A}=[\mathrm{a} 11 \mathrm{a} 12 \mathrm{a} 13 \mathrm{a} 14 \mathrm{a} 15 ; \mathrm{a} 21 \mathrm{a} 22$ a23 a24 a25;a31 a32 a33 a34 a35; ... a41 a42 a43 a44 a45;a51 a52 a53 a54 a55]; x
$=\mathrm{x} 0-\mathrm{inv}(\mathrm{A}) * \mathrm{f}$;
$\mathrm{x} 0=\mathrm{x}$;
x xd=[r3;r4;r5;t3d;t4d]; xd
r3 $=x(1,1)$;
r4=x $(2,1)$;
r5=x $(3,1)$;
$\mathrm{t} 3=\mathrm{x}(4,1)$;
$\mathrm{t} 4=\mathrm{x}(5,1)$;
t3d=t3*180/pi;
t4d=t4*180/pi;
end
The Matlab Output
Initial x^{-0} as given in problem statement

$x^{-}=$| \square |
| ---: |
| 3.0000 |
| 11.0000 |
| 4.0000 |
| 5.2360 |
| 5.2360 |$\square^{\llcorner }$

Computed x^{-}after $1^{\text {st }}$ iteration

$$
\llcorner\quad 4.3126
$$

-5.7864
$x^{-0}=$
-1
1.5601
6.4267
6.4267

Computed x^{-}after $2^{\text {nd }}$ iteration
ᄃ 4.9172
9.0574
$x^{-0}=$
-4.
8539 L
5.8054
5.8054

Computed x^{-}after $3^{\text {rd }}$ iteration

$$
\begin{gathered}
\llcorner 5.5580 \\
8.8637 \\
x^{-0}= \\
2.95 \\
77 \\
5.9444
\end{gathered}
$$

Computed x^{-}after $4^{\text {th }}$ iteration
$\llcorner .5991$
9.0116
$x^{-0}=$
3.1
351
\sqsubset
5.9276
5.9276

Computed x^{-}after $5^{\text {th }}$ iteration

§c 2015 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Programming Problem 2

To capture the angles θ_{2}, θ_{3} and θ_{4} as defined, you must use a vector loop which has the vectors $r_{2}^{-},^{-}{ }_{3}$ and $r_{4}^{-}{ }_{4}$, and the direction of the X axis, as defined in the figure below. The direction of r_{1}^{-}is immaterial.

Figure 2.1: Open four bar mechanism

The vector loop equation has scalar components,

$$
\begin{array}{r}
r_{2} \cos \theta_{2}+r_{3} \cos \theta_{3}-r_{4} \cos \theta_{4}=0 \\
r_{2} \sin \theta_{2}+r_{3} \sin \theta_{3}-r_{4} \sin \theta_{4}-r_{1}=0
\end{array}
$$

The scalar unknowns are θ_{2}, θ_{3} and θ_{4}. Applying Grashof's Criterion shows the four bar mechanism is a crank input (2) and a rocker output (4). We write the following Matlab code that increments θ_{2} from 0° to $360{ }^{\circ}$ and computes the corresponding values of θ_{3} and θ_{4} using Newton's Method then produces the desired plots.

The Matlab Code
Note that the initial guesses of θ_{3} and θ_{4} for the crossed four bar mechanism are commented out.
clear all;
$\mathrm{pi}=4.0 * \operatorname{atan}(1.0)$;
values of scalar knowns (dimensions)
r1=10.0;
r2=6.0;
r3=8.0;
r4=10.0;
$\%$ set value of input angle theta2 (given joint variable) in radians t2=0;
\% guess values of scalar unknowns the (remaining joint variables) the values of these \% guesses dictate whether the solution converges to the open or crossed case. these
\% guesses lead to the open case. the guesses below that are not commented out are for the open case.
$\mathrm{t} 3=\mathrm{pi} / 2$;
t4=3*pi/4;
\% the guesses below that are commented out are for the crossed case.
$\% \mathrm{t} 3=3 * \mathrm{pi} / 2$;
$\% \mathrm{t} 4=5$ *pi/4;
define vector of initial guesses
$\mathrm{x} 0=[\mathrm{t} 3 ; \mathrm{t} 4]$;
initialize counter i
$\mathrm{i}=1$;
while t2<360*pi/180
$\%$ set initial error as large, so as to enter the loop below error=10;
while error>. 01
$\%$ compute the necessary sines and cosines of angles theta2-theta $4 \operatorname{ct} 2=\cos (\mathrm{t} 2)$;
$\mathrm{st} 2=\sin (\mathrm{t} 2)$;
$\operatorname{ct} 3=\cos (\mathrm{t} 3)$;
$\mathrm{st} 3=\sin (\mathrm{t} 3)$;
$\mathrm{ct} 4=\cos (\mathrm{t} 4)$;
st4=sin(t4);
\%compute the functions at the guessed value
$\mathrm{f} 1=\mathrm{r} 2 * \mathrm{ct} 2+\mathrm{r} 3 * \mathrm{ct} 3-\mathrm{r} 4 * \mathrm{ct} 4-\mathrm{r} 1$;
$\mathrm{f} 2=\mathrm{r} 2 * \mathrm{st} 2+\mathrm{r} 3 * \mathrm{st} 3-\mathrm{r} 4 * \mathrm{st} 4$;
$\%$ define vector of functions computed at the guessed solution $\mathrm{f}=[\mathrm{f} 1 ; \mathrm{f} 2]$;
$\%$ calculate the partials of f w.r.t. each element of x dfdt $3=[-$
r3*st3;r3*ct3];
dfdt4=[r4*st4;-r4*ct4];
define the A matrix
A = [dfdt3 dfdt4];
\% Compute the solution x
$\mathrm{x}=\mathrm{x} 0-\operatorname{inv}(\mathrm{A}) * \mathrm{f}$;
error $=\operatorname{norm}(x-x 0)$;
$\mathrm{x} 0=\mathrm{x}$;
$\mathrm{t} 3=\mathrm{x}(1)$;
$\mathrm{t} 4=\mathrm{x}(2)$;
end
\% building vectors of the angles, in units of degrees
t2d(i) $=\mathrm{t} 2 * 180 / \mathrm{pi}$;
t3d(i)=t3*180/pi;
t4d(i) $=\mathrm{t} 4 * 180 / \mathrm{pi}$;
$\%$ taking 5 degree step in theta 2
$\mathrm{t} 2=\mathrm{t} 2+5^{*} \mathrm{pi} / 180$;
$\mathrm{i}=\mathrm{i}+1$;
end
$\%$ plotting theta3 versus theta 2 using " + "
$\%$ and theta 4 versus theta 2 using "o'" where all
$\%$ angles are in degrees
$\operatorname{plot}\left(t 2 d, t 3 d,{ }^{\prime}+,, t 2 d, t 4 d,{ }^{\prime}{ }^{\prime}\right)$;

Open four bar mechanism

Crossed four bar mechanism

Programming Problem 3

The Matlab Code
It is important that the command "axis equal;" is used after the plot command. If it were not used, then the coupler curve would have been compressed in either the X or Y direction because one inch along each axis would not have been the same distance.
clear all;
$\mathrm{pi}=4.0^{*} \operatorname{atan}(1.0)$;
values of scalar knowns (dimensions)
r1=10.0;
r2=6.0;
r3=8.0;
$\$$ the variables r3p and phi3 define the location of Q on the coupler as per Figure 2.29
r3p=6;
phi3 $=68.3$ *pi/180;
r4=10.0;
$\%$ set value of input angle theta2 (given joint variable) in radians t $2=60 * \mathrm{pi} / 180$;
\% guess values of scalar unknowns the (remaining joint variables) the values of these
\% guesses dictate whether the solution converges to the open or crossed case. these
\% guesses lead to the open case.
$\% \mathrm{t} 3=\mathrm{pi} / 2 ; \%$
$\mathrm{t} 4=3 * \mathrm{pi} / 4$;
$\mathrm{t} 3=\mathrm{pi} / 4$;
t4=pi/2;
define vector of initial guesses
$\mathrm{x} 0=[\mathrm{t} 3 ; \mathrm{t} 4]$;
initialize counter i
$\mathrm{i}=1$;
while $\mathrm{t} 2<420 * \mathrm{pi} / 180$
$\%$ set initial error as large, so as to enter the loop below error=10;
while error>. 01
$\%$ compute the necessary sines and cosines of angles theta2-theta $4 \mathrm{ct} 2=\cos (\mathrm{t} 2)$;

```
st2=sin(t2);
ct3=}\operatorname{cos}(\textrm{t}3)
st3=sin(t3);
ct4=cos(t4);
st4=sin(t4);
%compute the functions at the guessed value
f1=r2*ct2+r3*ct3-r4*ct4-r1;
f2=r2*st2+r3*st3-r4*st4;
% define vector of functions computed at the guessed solution f=[f1;f2];
% calculate the partials of f w.r.t. each element of x dfdt3=[-
r3*st3;r3*ct3];
dfdt4=[r4*st4;-r4*ct4];
    define the A matrix
A = [dfdt3 dfdt4];
% Compute the solution x
x = x0-inv(A)*f;
error=norm(x-x0);
x0=x;
```

$\mathrm{t} 3=\mathrm{x}(1)$;
$\mathrm{t} 4=\mathrm{x}(2)$;
end
\% building vectors of the coordinates of Q , inches
$\mathrm{X}(\mathrm{i})=\mathrm{r} 2 * \mathrm{ct} 2+\mathrm{r} 3 \mathrm{p} * \cos (\mathrm{t} 3+\mathrm{phi} 3) ; \mathrm{Y}(\mathrm{i})=\mathrm{r} 2 * \mathrm{st} 2+\mathrm{r} 3 \mathrm{p} * \sin (\mathrm{t} 3+\mathrm{phi} 3)$;
taking 5 degree step in theta2
$\mathrm{t} 2=\mathrm{t} 2+5^{*} \mathrm{pi} / 180$;
$\mathrm{i}=\mathrm{i}+1$;
end
$\operatorname{plot}\left(\mathrm{X}(1), \mathrm{Y}(1),{ }^{\prime}{ }^{\prime}, \mathrm{X}, \mathrm{Y},{ }^{\prime}+{ }^{\prime}\right) ;$ axis equal;

Path of Coupler Point Q for $0 \leq \theta_{2} \leq 360^{\circ}$

10
5

0
-5
$\begin{array}{llllllllll}-12 & -10 & -8 & -6 & -4 & -2 & 0 & 2 & 4 & 6\end{array}$
X coordinate of coupler point Q (inches)
Coupler curve of point Q

