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Signals and Systems

SIGNALS AND THEIR PROPERTIES
Solution 2.1

@ (X ¥Y) = meoo ne—eoO(X—my—n)=  ____8x—-m)- Z_. 8(y—n), thereforeitisa
separable signal.

(b) &i(x,Yy) is separable if sin(20) = 0. Inthis case, either sin® = 0 orcos® = 0, §(X,y) is a product of a
constant function in one axis and a 1-D delta function in another. But in general, 8;(X, y) is not separable.

(c) e(x, y) = exp[j2r(uox+Voy)] = exp(j2rnuoX)-exp(j2nvoy) = eip(X; Uo)-e1p(Y; Vo), Where e1p(t; ®) =
exp(j 2not). Therefore, e(x, y) is a separable signal.

(d) s(x, y) is aseparable signal when ugvy = 0. Forexample, if uy = 0, s(X, y) = sin(2nvgy) is the product of a
constant signal in x and a 1-D sinusoidal signal iny. Butin general, when both ug and v, are nonzero, s(X, y) is not
separable.

Solution 2.2
(@) Not periodic. 3(X, y) is non-zero only whenx =y = 0.

(b) Periodic. By definition

X X
comb(x, y) = d(X—m,y—n).
m=—oco N=—oo
For arbitrary integers M and N, we have
X X
comb(x +M,y+N) = dX—m+M,y—n+N)

m=—oco N=—o0
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X X
3(x—p,y—q)fletp=m—-M,q=n—N]

p=—co q=—o0

comb(x, y) .
2
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So the smallest period is 1 in both x and y directions.
(c) Periodic. Letf (x+ Ty,y) = f(X,y), we have
sin(2nx) cos(4my) = sin(2n(x + Ty)) cos(4mny) .

Solving the above equation, we have 2Ty = 2km for arbitrary integer k. So the smallest period for x is
Txo = 1. Similarly, we find that the smallest period for y is Tyo = 1/2.

(d) Periodic. Letf(x+ Ty,y) = f(X,Yy), we have
sin(2x(x +y)) =sin@r(x + Ty +y)).
So the smallest period for X is Txg = 1 and the smallest period for y is Tyg = 1.

(e) Not periodic. We can see this by contradiction. Suppose f(x, y) = sin(2m(x?+ y?)) is periodic; then there exists
some Ty such that f (x + Ty, y) = f(X,y), and

sin(2n(x*+ y?))

sinr((x + Ty)? + y?))
sin(2r(x®+ y? + 2xTy+ T2)) .

In order for the above equation to hold, we must have that 2x T+ T2 = k.for some integer k. The solution for T,
depends on x. So f(x,y) = sin(2n(x?+ y?)) is not periodic.

(f) Periodic. Letfg(m+ M, n) = fg(m,n). Then

n

. 1 . T 1
sin —m cos n =sin “(M+M) cos “n

5 5 "5 5

Solving for M, we find that M = 10k forany integer k. The smallest period for both m and n is therefore
10.

(g) Not periodic. Following the same strategy as in (f), we let fg(m + M, n) = fy(m, n), and then
. 1 1 o1 1
_ cos —n — —(m + =
sin 5m 5 sin 5(m M) cos 5n
The solution for M is M = 10kzn. Since fq(m, n) is a discrete signal, its period must be an integer if it is

to be periodic. There is no integer k that solves the equality for M = 10kzn for some M. So, fg(m,n) =
sin 'm cos !re isnot pegiodic.

Solution 2.3
(@) Wehave
Z ol o
Ex(ds) = 82(x, y) dx dy
) oz x Ly 2 X
= lim lim 3(x —m, y —n) dx dy

X —>o0Y —o0o X -Y

m=—oco N=—oo

= lim lim (2bXc+1)@2bY c+ 1)

X—>00 Y —co

= o ,
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where bX c is the greatest integer that is smaller thamZ or eyal to X. Wealso have
. . 1 XY
Po(ds) = lim lim — 82(x, y) dx dy

X -0 Y oo 4XY X —-Y -~

= lim lim i d(X —m,y —n) dxdy

X—>o0 Y —-o0o 4XY -X

-y m=—oco N=—oo

(2bXc+ 1)(2bYc+ 1)

= lim lim
X—o0Y —oo 4XY
4bXcbYc 2bXc+ 2bYc 1
= lim lim + +
X—00Y —00 4XY 4XY 4XY
= 1.
(b) We have
VAN APN
Ew(d) = |8(x cos® + ysin 6 — 1)|2 dx dy
VAR Ane
= d(xcosB +ysind —I)dx dy
T2 57
% de, sing=0
PSS
= Z -
_Oolco—iel dy, cos@=0
Ex(®) = o.

Equality 1 comes from the scaling property of the point impulse. The 1-D version of Eq. (2.8) in the text is
d(ax) = IeTll 3(x). Suppose cos® = 0. Then

. sin |
d(xcosO +ysing —1) = i
( y ) | cos 0| cos®  cos6
Therefore, 7
o 1
d(xcos® +ysinb —dx = .
oo ( y ) | cosO|
We also have
1 z X z Y
Po(®) = lim lim — |3(x cos O + ysin® — I)|2dx dy
X —>00Y -0 4XY X -y
L ZxZy
= lim Ilim — d(x cos® +ysin6 — l)dx dy.

X—>o00Y -0 4XY X Y
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Without loss of generality, assume 6 = 0 and | = 0, so that we have sin ® = 0 and cos © = 1. Then it follows
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that

P (31)

(c) Wehave

Es(€)

And also

lim

P (e)

X—ooY —oo 4XY

lim

X—ooY —oo 4XY

= 1.

(d) Wehave
VA

oo

Ew(S)

3z

co

Il

VAN ANy

— 0o

1 ZxZy

lim lim — 3(x) dx dy

X—00Y =00 4 XY
1
lim lim
X—>0 Y —>co 4XY

1

—X Y
Z Y (_Z X )
dy
=Y
Z Y
1dx

-X
lim lim =

X -0 Y —»oo 4XY -y
. . 2Y

lim lim ——
X—oo Y —oo 4XY
M >t

lexp [j 27(uox + Voy)]|* dx dy

737y

ldx dy

. 1
lim —

. 1
lim —

-xX =Y

4

sin?[2x(uoXx + Voy)] dx dy

— oo
oo

1 —cos[4n(ugx + VoY)l dx dy

2.7

Zdxdy —
oo 2

(e e}

oo 2

—COo

“ cos[4n(uox + Vvoy)]

| explj 27(uox + voy)]|? dx dy

dx dy
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Equality 2 comes from the trigonometric identity cos(20) = 1 — 2sin?(0). Equality 3 holds because the
first integral goes to infinity. The absolute value of the second integral is bounded, although it does not
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converge as X and Y go to infinity. We also have

1 z X z Y
Po(s) = lim lim 2 sin [2n(uoX + voy)] dx dy
X—>0 Y >0 4XY X —-Y dX
z (2,
_ . 1 1 —cos[4n(ugx + voy)l
= lim lim v
. ) sin[4m(upX + v =sin[4n(—upX+ v
— Jim lim % % + Sin[4n(ug oY)l [47(=Uo oY)l dy
X—>00Y —o00 4XY vy 87‘[“0
z in(4mugX) cos(4
4 im lim s x — Sin(4mupX) cos(4mvoy) dy
X—oo Y=o 4XY _y 41tug

2 sin(4mupX) sin(4nvpY)

. . 1
= lim lim — 2XY —

X—o0 Y —oo 4XY (47[)2U0V0
=1
5

Inorder to get 4 , we have used the trigonometric identity sin(a. + ) = sina cosp + cosa sin . The rest of the
steps are straightforward.

Since s(x, y) is a periodic signal with periods X, = 1/ug and Yo = 1/vg, we have an alternative way to
compute P, by considering only one period in e%ch dimension. Accordingly,

1 Xo )
Po(s) = 3, sin2[2m(UoX + Voy)] dx dy

4X'Y

00 —Xo —Yo

—lzxo\(O _ 2.sin(4nugXo) sin(4mvoYo)

4XoYo (4m)2UoVo

1 2 sin(4x) sin(4r)
T 2XgYy — AT STRAT
4X,Yo oto (@) 2ugv

_ 1

5

SYSTEMS AND THEIR PROPERTIES
Solution 2.4

Suppose two LSI systems S; and S, are connected in cascade. For any two inputsignals f; (X, y), f2(X, y), and two
constants a; and a,, we have the following:

Sao[Sifasfi(X,y) + axf2(X, ¥)II = SalaiSi[fi(X,y)] + axS1[fa(x, y)1]
a1Sa[Sa[F1(x, Y)I] + a2S2[S1[F2(x, Y)II -



8 CHAPTER 2: SIGNALS AND SYSTEMS 8

So the cascade of two LSI systems is also linear. Now suppose for a given signal (X, y) we have S1[F(X,y)] = g(X, y),
and So[g(Xx,y)] = h(x, y). By using the shift-invariance of the systems, we can prove that the cascade of two LSI systems

is also shift invariant:

So[Sa[f(Xx =&y == S2[g(x =&y —m)] =h(x =&y —n).
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This proves that two LSI systems in cascade isan LSI system
To prove Eq. (2.46) we carry out the following:

g% y) = hy(x, y) = gn(xzv) *T(X,y)]

= hy(x, y) * hi(& M)F(x =&,y —n)d&dn
Z 7 Z 7,

= hy(u, V) hi(€, NF(X—u—¢&y—v—n)didn dudv
Z 2wl owZ

I
=
=
—~
‘{\“
=
—

ho(u, VVF(X—&—u,y—m—vVv)dudv d§dn

—0oo0 —oo —oco —oo

= hy(x, y) * [ha(X,y) * F(x,y)].

This proves the second equality in (2.46). By letting o = u + &, and B = v + 1, we have
2 2Z,2,2

co “~ oo &~ oo &~ oo

ha(u, V)hy (&, M)f(X —u =&,y —v—mn)dEdndudv

zZ.Z
= ho(a — & B —m)ha(§, n)dEdn F(X— o,y — ) dadp

— 0o — OO — OO — OO

[hl(X, y) * hz(X, y)] * f(X, y) ’

which proves the second equality in (2.46).
To prove (2.47) we start with the definition of convolution
Z,Z
a(x, y) = h2(€, mhi(x =&y —n)dEdn

— O — O

a(x, y)

(o]

oo

= hl(X! y) * hz(X, y) .

We then make the substitution o = x — & and B =y — n and manipulate the result

Z_Z _o
g(x, y) = ha(x — a, y - B)ha(a, B)(~da) (—dB)
ZoZ o
= ha(a, B)ha(x— o, y — B)da dp
Z o0 Z v
= hi(€, mha(x — &,y —n)d& dn

=ha(x, y) * ha(x, y),

where the next to last equality follows since o and B are just dummy variables in the integral.
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Solution 2.5
1. Suppose the PSF of an LSI system is absolutely integrable.
Z 7
[h(x, y)|dxdy = C < oo (S2.1)

where C is a finite constant. For a bounded input signal f (X, y)

[fF(x,y)| =B <o, forevery(xy), (S2.2)
for some finite B, we have

lg(x, Y)I ”i()i’oyﬁ tof(x,y)l

= h(x — &y —n)f(§ n)d&dn

—00 —oo

Z 7

oo “— oo

[h(x =&y —mn)|-[F(&,n)dEdn
2w
B |h(x, y)| dx dy

— O — O

< BC <o, forevery(X, Y) (52.3)

IA

IA

So g(x, y) isalso bounded. The system is BIBO stable.
2. We use contradiction to show that if the LSI system is BIBO stable, its PSF must be absolutely integrable. Suppose

the PSF of a BIBO stable LSI system is h(x, y), which is not absolutely integrable, that is,
Z 7z

oo “— oo

Ih(x, y)l dx dy

—0o0 —oo

is not bounded. Then for a bounded input signal f(x, y) = 1, the output is
Z,Z

oo

l9(x Y)I = [h(x, y) = F(x, y)| = Ih(x, y)I dx dy,

—0o —oo

oo

which is also not bounded. So the system can not be BIBO stable. This shows that if the LSI system is BIBO stable, its PSF
must be absolutely integrable.

Solution 2.6

P
(@) 1fg(x,y) isthe response of the system to input K k=1 WkTi(X,y), then

X X
g'(x,y) = wife(x,-1)+  w e (0,y)

k=1

X =1

= Wk[fk(X, _l) + fk(o, y)]
=1

xx

= Wi Gk (X, Y)
k=1
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where gk (X, ) is the response of the system to input fi (X, y). Therefore, the system is linear.

(o) 1f g°(x,y) is the response of the system to input f (X — Xo, Y — Yo), then
g'(x,y) = F(x= xo, =1 = yo) + f(=X0,Y = Yo);
while
g(X = Xo, ¥ = Yo) = F(X— X0, 1)+ F(0,y — ¥o).

Since g'(X, y) = g(X — Xo, Y — Yo), the system is not shift-invariant.
Solution 2.7

P
(@) Ifg'(x,y) isthe response of the system to input K k=1 Wk Tk (X, y), then

' '
g'(x,y) = wicFie (X, y) Wi Fi (X = Xo, Y — Yo)
k=1 k=1
XK X
= w;iw; fi (X, y)Tj(X — X0, ¥ — Yo),
i=1 j=1
while
XK X
Wi k(X ¥) = WP (X, Y) T (X = Xo, Y — Yo).
k=1 k=1

F)
Since g'(x,y) = |;=l ok (X, y), the system is nonlinear.

On the other hand, if g°(x, y) is the response of the system to input f (X — a, y — b), then

g'(x,y) f(x—ay-bf(x—a—x,y—b—yo)

g(x —a,y—h)

and the system is thus shift-invariant.

P
(b) 1fg°(x,y) is the response of the system to input = = k=1 Wk (X, y), then

Z o
g'(x,y) = wiFi(x,m) dn

T k=1
X Z o
- Wk fk (X1 T'I) dn
k=1 —oo
K

X
= wigk(X, ),
k=1

where gk(X, ) is the response of the system to input fi (X, y). Therefore, the system is linear.
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On the other hand, if g°(x, y) is the response of the system to input f (X — Xo, ¥ — Yo), then

Z
g'(x,y) = (X = X0, — Yo) dn
g
= F(X— X0, n— Yo) d(n — Yo)
s
= f(X— X0, T])dT]

Reo
Since g(X — Xo, ¥ — Yo) = _, T(X— Xg, n) dn, the system is shift-invariant.

Solution 2.8
From the results in Problem 2.5, we know that an LSI system is BIBO stable if and only if its PSF is absolutely

integrable.
- .. - - - R (o) R (o)
(@) Not stable. The PSF h(x, y) goes to infinite when x andfor y go to infinity. __ " jh(x, y)idxdy =

Reo 5 . Reo iRy , 7 R MRy, 0V Ry 0 R
(xc +y9)dx dy = x“dx dy + y“dy dx. Since xXdx = yedy

—0o —oo —oo — oo —oo — oo —oo —oo

Reo Reo )
is not bounded, then oo (x% + y?)dx dy is not bounded.

—oo

h i2
Reo Roo Ro Ro o : .
(b) Stable. [h(x, y)| dx dy = (exp{-(x? + y?)})dxdy = e X dx = m, whichis
bounded. So the system is stable.
, Reo R . hR , N
(c) Notstable. The absolute integral __, =% x2e=¥'dxdy = o x2 o e Ydy dx = 0  mx2dxis

unbounded. So the system is not stable.
Solution 2.9
R
(@ g(x) = _ f(x—-f(Hdt
(b) Given an input as afy (X) + bfy(x), where a, b are some constant, the output is

9'(x)

[af1(X) + bfa(x)] * [af(X) + bf2(X)]
a2fy (x) * f1(X) + 2abfy(x) * f2(X) + b>Fo(X) * F2(X)
ag1(x) + bga(x),

where g;(X) and gx(x) are the output corresponding to an input of f1 (X) and f,(x) respectively. Hence,
the system is nonlinear.

(c) Given ashifted input f1(x) = f (X — Xp), the corresponding output is

aux = fZ1(X) * F1(X)
- f1(x - t)f ()it
s

f(X -t- Xo)fl(t - Xo)dt.

—oo
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Changing variable t* = t — Xo in the above integration, we get
Z

(e}

91(X) f(x— 2xo — t)Fy(t")dt’

— o

= g(X = 2Xo).

Thus, if the input is shifted by X, the output is shifted by 2xo. Hence, the system is not shift-invariant.

CONVOLUTION OF SIGNALS

Solution 2.10
(@)
fx,y)s(x =1,y-2) = f(1,2)8(x -1,y-2)
= (L+23(x -Ly-2)
= 5(x-—-1y-2)
(b)
VANSS AN
fx,y)*d(x-1y—-2) = fEM)(x —&—-1,y—n—2)dEdn
VANV ANy
= f(x-1y-28(x —E-1,y—n—2)dEdn
= f(x-1y-2) d(x—&—-1y—m—2)dédn
= f(x-1y-2)
= (x-1)+(y-27
(c)
Z.7Z. Z 27,
d(x —1,y—2)f(x,3)dxdy = d(x — 1,y —2)f(1,3)dx dy
Zolx
= d(x —1,y —2)(1 + 3?%)dx dy
757,
= 10 d(x =1,y —2)dx dy
2 10
Equality 1 comes from the Eq. (2.7) in the text. Equality 2 comes from the fact:
ol Zolow

d(x —1,y—2)dxdy = 3(x, y)dx dy = 1.

13
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(d)
Z 7,
S(x —1,y—2)*fF(x+1y+2) = S(X —&—1,y —n — 2)F(& + 1,1+ 2)de dn
\ AN A
= d(x—&-1y—-n—-2)f((x—-1) +1,(y —2) +2)dEdn
yADS AN
= d(x —E&—1y—n—2)f(x,y)dE dn

2 f(xy) =x+y?

3 comes from the definition of convolution; 4 comes from the Eq. (2.7) intext; 5 isthe same as 2 in part
(c). Alternatively, by using the sifting property of 8(x, y) and defining g(x, y) = f(x+ 1,y + 2), we have
gx —1,y-2)

= f(x-1+1y—-2+2)

= f(xy)

= X+ y2 .

d(x —1,y—2)=g(x,y)

Solution 2.11
(a)

Z,Z,

fx,y)*g(x,y) = FEn)gx =&y —n)d&dn
zrezre

= F1(O)F2(n)g1(X — &)g2(y —n) d&dn
.7 Z .
fx,y)*g(x,y) = ) F1(8)g1(x — &) d& f2(m)g2(y — ) dn

Hence, their convolution is also separable.

(b)
oY) *g(x y) = (FL(X) * 91(X)) (Fa(y) * 92(Y)) -
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Solution 2.12

9 Y) = £06Y) <h(x, ¥)

= f(x=¢&,y—mn)h(&, n)d&dn

Z,7Z.
= (x =& +y - n)exp{-(&* + n*)}d&dn
L7, Z 7o ZoZg
2 2 2 2 2 2
= (X+Y) e™% " dédn — ge™% M dedn — ne~s 7N dédn
= (x+Y) e&de - e te=8de dn— 7S ne "dn dé
= (X +vYy) (S2.4)

We get (S2.4) by noticing that since & is an odd function and e =% * is an even function, we must have

4

ge~8'de = 0.
Also, Z o
2
v
e tde= m.

FOURIER TRANSFORMS AND THEIR PROPERTIES
Solution 2.13

(a) See the solution to part (b) below. The Fourier transform is

FZ{SS(X! y)} = 6S(u! V)
(b)

Fo{8s(X, y; Ax, Ay)} = 8s(X, y; Ax, Ay)e 127 Ux+VY) gy dy

—COo —COo

ds(X, Y; Ax, Ay) is a periodic signal with periods Ax and Ay inx and y axes. Therefore it can be written asa
Fourier series expansion. (Please review Oppenheim, Willsky, and Nawad, Signals and Systems for the definition of
Fourier series expansion of periodic signals.)

X i mx Ny
3s(X,y; Ax, Ay) = Cmne! n(7+7) )

AX Ay

m=—oco N=—oco
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where
— AX o AY
SRS iR+,
Cron - = AXAY _ax _ay 8s(x, y; Ax, Ay)e dx dy

AX Ay

zZ z — o

1 2 2 ey
xX X

= 8(x — mAx,y — nAy)e 32 (ax *av) dx dy.

In the integration region — 4 <X < Qzand — Ay sy < Ay there is only one impulse corresponding to
m =0, n = 0. Therefore, we have

— Ax « AY
1 2 2 —j 27‘(72_;( +%§
Cmn = AXAY _ax 3(x, y)e dx dy
_ 1
AXAY
We have:
l (o) [oe) _ n
— X X H mx .
Bs(0YIAXAY) = oy e 2n(X+ay)
m=—oco N=-—oo
Therefore,
Z [ele] Z oo ; Ax +Ay
Fo{8s} = 8s(X, Y; Ax, Ay)e 127 Ux+vY) gy dy
_:: S

1 ~ ny
xX X
— ej27'c(mx )e—j2n(ux+vy) dx dy

— ejZn(T;‘ —@Aly)e—j 2m(ux+vy) gy dy

AXAY
m=—oo N=—oco e T
X X —Lom(mx o
= F2
Moo e oo AXAY o
Ax+Ay)
_ >xX X 1 s y_m n
AXAY AX' Ay
m=—oco N=—oo

AXAY - AXAY3(UAX — m, VAy — n)
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m=—oco N=—oo0

F,{6s} = 0J&s(UAX,VAY)

Equality s comes from the property 6(ax) = —1|a<}(x).

17
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FZ{S(Xr y)}

FZ{S(X! y)}

Z 7

oo = oo

S(x, y)e 1ZrUx+vy) gy dy

AR A
sin[2x(upX + Voy)]e 12X+ WY) gy dy

Ay A i
= ejZn(uox+v0y) _ e—j 2t(UoX+Vvgy) e—j2ﬂ:(ux+vy) dx dy

)
1 ej 2n(UoX+VOY)e_j 2n(ux+vy) dx dy

_ e—j2n(uox+voy)e—j 2n(UxX+vy) dx dy

2,2,
g1 2ml(u—uo)x+(v=vo)yl gy dy

_ g—i2nl(U+ o)+ (V)Y gy dly

%[S(U — Uo, V — Vo) — (U + Up, V+ V)] .

We used Eq. (2.69) twice to get the last equality.

Fa2(c)(u, v)

Fa(c)(u,v)

Z 7

oo = oo

C(X, y)e—j 2x(UX+vy) dx dy

727
cos[2m(Ugx + Voy)]e 12X+ WY) gy dy
Z—oo Z—oo

oo ool

[el 27 (Uox+Voy) 4 g=i2m(Uox+Voy)|—i2n(Uux+vy) gy dy

2?5
} ej Zn(uox+voy)e—j 2 (ux+vy) dx dy
257,

+ e—j2n(uox+voy)e—j 2 (ux+vy) dx dy

2

- Zoooo —oo
1

eI 2r[(u—uo)x+(v—vo)y] gy dy

R
+ g—d2n[(u+uo)x+(v+vo)yl gy dy

—COo —COo

%[S(U — Up, V — Vo) + (U + Ug, V + Vo)].

We used Eq. (2.69) twice to get the last equality.

18
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(€)
OOZOO

F.(f)(u,v) = (X, y)e12mUx+v) gy dy

gy
— 1 . e—(x2+y2)/2<s2 pi2m(ux+vy) 4y dy
oo —oo 2TO

Z oo Z oo 1 2 o2 2 2, 2, 2 2
— ze—(x +j4nc“ux)/2c e—(y +jdno vy)/2c dx dy

216
i 1 2 2 2 i 1 2 2 2

— N e‘—(X +j4nc ux)/2c dx \/ %—(y +j4no vy)/2c dy

—oco ZTCG —oo ZTCG

Z
e 1 2 2 2 2 2 2
— —(X+j2nc u) /20 e(jZTcG u) /2c dx

Z— oo 2?(5

(e e}

1 2 2 2 2 2 2
N %—(y+j2nc v) /2c e(jZnG V) /2c dy
—oo 2?%
(o]
2 2 2 1 2 2 2
— e—ZTt 6 u N e‘—(X'FjZTEG u) /2c dx
2nc

1 2

VA
2 2
—(y+j2nc v) /2c d
Tmo? Y

2 22
2 2 2

oo
e—chv
— oo
2 2 2
— e—2ﬂ:0 u _e—ZTrG \Y

Fo(f)(u,v) = e 2r o (v

Solution 2.14
The Fourier transform of f(X) is b

F(u) = f(x)eI2mux(y,

—oo

(@) Assuming f(x) isreal and f(x) = f(—x),
Z oo
Fruy = F(x)e 327 " dx
zy
= T (x)ed "X dx
g
= fr(=E)e 12mU8dE | et & = —x
AN,
f(&)e 127U5dg, since £ (—x) = f(x)and f(x) is real

—oo

= F(Qu).

19
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(b) Similarly, assuming f(x) is real and f (x) = —f(—X),
Z
Fr) = Fr(-geizmid
g

—F(&)e 12™Ude, since f(—x) = —F(X)

— 0o

= —-F(u).

Solution 2.15
In deriving the symmetric property F *(u) = F (u), we used the fact that f(x) is real. If f(x) is a complex signal,
we have T*(—&) = £*(&) instead of £*(—&) = F(&). Therefore,
Z o
F(x)eIZmUx " dx
g
r(=8)eI2mUedE, et & = —x
g
f*(é)e—jZn'uédé’

— O

= F{f" (0}

F(u)

Solution 2.16

(a) Conjugate property: Fo(f*)(u,v) = F *(-u, —v).
Z,Z

oo “~ oo

f* (X, y)e—j 2 (UX+Vvy) dx dy

F2(f")(u,v)

AN AN
— f(X, y)ej 2 (UX+Vvy) dx dy

*

— OO — OO

Z o Z o «
= f(X, y)e_j 2r[(—u)x+(—V)y] dx dy
= [F(-u, -V
= F*(-u,—-v).

Conjugate symmetry property: If f(x,y) isreal, F (u, v) = F*(-u, —Vv). Since f(x,y) isreal, f*(X,y) =
f(x,y). Therefore,
Fo(-u,—v) = Fo{f" (X, y)} = Fo{f(X,¥)} = F(u, v).
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(b) Scaling property: Fo(f2®)(u, v) =

F2(f*®)(u,v)

i F2(f) 4% -
Z.,2

oo = oo

f (ax, by)e 32 (X*+vY) gy dy

— o — o

Z 27

oo = oo

f(aX, by)e—j2n[u(ax)/a+v(by)/b] l d(aX) d(by)

—o0o, —co ab
Z o Z
1 (o) (o)

L £(p, q)ei2xlW/aP+/0)] 4 g

(c) Convolution property: Fo(f *g)(u, v) = F2(g)(u, V) - Fo(f)(u, v).

Fa(f +g)(u, v) =

z

(e e}

z

FEMX — &y —mdedy e 12HEXT Wy dy.

—oco —oo —oco —oo

Interchange the order of integration to yield

Fo(fxg)(u, v) =

z

(e e}

z

(&) g(x =&y —n)e I Wdxdy  dedn

—0o0 —oo —oco —oo

4

oo

4

- Z.Z
L(R)) gx —&y—m)

oo

—oco —oo —oco —oo

4

oo

4

e i 2rluC=O+vly—mlg-i2n(UErvm gy dy  dg dn
Z 7z

oo oo

f(&, n)e_j 2r(ug-+vn) g(X - E.vl y-— T])

oo

—oco —oo —co —oco

— oo — oo

e=i2nluC=*+vy-mlgx dy ¢ dn

(g, me iznssm 9(p, Qe 2P dpdg g dn

(g, n)e 12r U YIF, (g)(u, v) dé dn
zZ,.Z.,

F2(9)(u,v) - T T

21
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F(g e 2SI de dn

Fa(fxg)(u,v) = F2(9)(u,V) - Fo(f)(u, v).

22
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(d) Product property: Fo(fg)(u,v) = F (u, v) * G(u, v).

zZ.7.
Fz(fg)(u, V) = f(X' Y)g(X, y)e—jZn(ux+vy) dx dy
2wl ZooZo
= G(E, n)el 2 &Y e dny F(x, y)e 32w+ dy dy
ZoZc ZowZeo
= G m)
ZoZc ZowZe
= G(& m)
z.7.
= G(E MF (u =& v —n)dédn

= F_(u, v)_* G(u, v).

Solution 2.17

f(X, y)ej2n(x§+yn)e—j2n(ux+vy) dxdy dé dﬂ

f(x, y)e 127lu=ax+(v—myl gy dy dé dn

23

Since both the rect and sinc functions are separable, it is sufficient to show the result for 1-D rectand sinc functions.

A 1-D rect function is O 1
01 for|x| < 5
rect(x) =

=0, mm>%
Z &

F {rect(x)} rect(x)e 127X dx
Za i
— e—jZnude
—-1/2
172 z 1/2
= cos(2rux)dx — j
—-1/2 —-1/2

sin(2rux)dx,

= cos(2rux)dx
—-1/2

sin(zu)
U
= sinc(u) .

Therefore, we have F {sinc(x)} = rect(u). Using Parseval’s Theorem, we have
Z 27

oo “~ oo

Eow = krect(x, y)k?dx dy

Z_1/2 Z_ 1/2
= dx dy

—1/2 —1/2
=1

el = cosh + jsin@
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For the sinc function, P, = 0, because E.. is finite.

Solution 2.18
Since the signal is separable, we have

F[f(x,y)] = Fip[sin(2rax)]Fip[cos(2rby)]

Fiolsin@ra)] = 5 [(u —2) ~3(u +a)] |
Fio[cos(2nby)] = 2 [3(v ~ b)+ (v + b)]
So,
FIFOOY] = 4 (U= )3 —b) = 3(u + 2)3(v =b) +3(u = &)3(v +b) = 3(u +a)o(v +b)].

Now we need to show that 3(u)a(v) = d(u, v) (in a generalized way):

d(ud(v) =0, foru=0,orv=0

Therefore,
VAR Z o Zo Z o
f(u,v)d(u)d(v)dudv = f(u,v)d(u)du &(v)dv = f(0,v)3(v)dv = f(0,0).

Based on the argument above 5(u)é(v) = 3(u, v), and
F[f(x,y)] = %[S(U—a,v—b)—S(u +a,v—Db)+é(u—av+b)—-3u-+a v+b)].
The above solution can also be obtained by using the relationship:

sin(2rax) cos(2rxby) = % [sin(2r(ax — by)) + sin(2x(ax + by))] .

Solution 2.19
A function f (X, y) can be expressed in polar coordinates as:

f(x,y) = f(rcos9,rsin0) = f(r,0).

Ifitis circularly symmetric, we have f,(r, 0) is constant for fixed r. The Fourier transform of f (X, y) is defined as:
Z 27

F(uv) = f(x,y)e I+ YW gy dy
Z 2o
— fp(r e)e—jZTC(UI’COS O+vr sin G)rdr de
A0 z,

fp(r, e) e—j21-c(ur cos O+vr sin e)de rdr.
0

24
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Letting u = g cos ¢ and v = g sin ¢, the above equation becomes:
YA oo z 2n
F(uv)= fo(r, 0) g12mareose=0qg rdr .
0 0

Since F (u, v) is also circularly symmetric, it can be written as Fq (0, ¢) and is constant for fixed g. In particular,

Fq (9, 0) = Fq(q, ©/2), and therefore
VA ©o z 21t

Fo(@.9) =Fq(q.n/2) = fp(r,6) e 2marsin 049 rdr .
0 0

Now we will show that (2.108) holds.
z 2 i ) z 21 z 2r
g iZmarsin 04 — cos(2rqr sin 0)do — j sin(2nqr sin )
0 0 0
Z T
2 cos(2rqr sin 6)do
0

1

= 2ndo(2nqr) .

Equality 1 holds because cos(—6) = cos(0), and sin(6) = — sin(0).
Based on the above derivation, we have proven (2.108).

Solution 2.20
The unit disk is expressed as f(r) = rect(r) and its Hankel transform is
Z
F(Q = 2xn f(r)Jo(2nqr)rdr
ZO
= 2=n rect(r)Jo(2nqr)rdr

0

z 1/2

2n Jo(2rgr)rdr .
0

Now apply the following change of variables

s = 2uqr,
S

r - ’
2nq

dar = E
2nq

to yleld
F q = ! s)sd
( ) anz o JO( ) S.
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From mathematical tables, we note that

Z X
Jo()d = xJ(X).
0
Therefore,
_ Jﬂng!
= jinc(q).

TRANSFER FUNCTION
Solution 2.21

(@) The impulse response function is shown in Figure S2.1.

/ ;\‘ \‘\\1 [
i
A,

fra i
i g
"\ “\\‘“m\ iy

o)
S
i 1,““\\“\

Figure S2.1 Impulse response function of the system. See Problem 2.21(a).

(b) The transfer function of the function is the Fourier transform of the impulse response function:

H(u, v) = F{h(x,y)}
F{e ™"}F {e~™"/*}  since h(x, y) is separable
2g—m(u?+4v ?)

26
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Solution 2.22

(@) The 1D profile of the bar phantom is:

1 k=1 k+1
W=X<=< w
f(x) = 2 2 ,
0, k-;—lw <=x < k-53w

where K is an integer. The response of the system to the bar phantom is:
Z
g(x) =) *1(x) = F(x=9IE)dE .

At the center of the bar, we have

Z o
9(0) = (0 -9I(E)dE
z w/2
= cos(a&)dé
—w/2
2 oaw
= 3 sin,,
At the point halfway between two adjacent bars, we have
Z o
gw) = f(w —9)I(E)de
z w/2 z w+nt/2a
= cos(a&)dg + cos(a&)dg
w—m/2a 3w/2
w/2
= 2 cos(ag)dg
w—m/2a
h aw . ol
= ~— sin _— —=sin aw —
a 2 2

(b) From the line spread function alone, we cannot tell whether the system is isotropic. The line spread function is a
“projection” of the PSF. During the projection, the information along the y direction is lost.

(c) Since the system is separable with h(x, y) = hip(X)hip(y), we know that
z

(o]

1(x) h(x, y)dy

—eo 7

= hip(X) hip(y)dy .

—oo
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Reo
Therefore hip(X) = cl(x) where 1/c = ___ hip(y)dy. Hence,

Z o
l/c = cl(y)dy ,
z /20
1/c? = cos(ay)dy ,
—7n/20
1/c? = 2a.
Therefore, 0
% cos(ax) cos(ay) |ax| < /2 and |ay| < n/2
h(x,y)= 2
) otherwise

The transfer function is

HW v = Eaofhpay)}
— h(X, y)ej27'cuxdx ej2n:uydy
Z. Z
= hip(X)hip(y)el?™dx el2™Ydy
o Zx
= hip(X)el?™dx  hyp(y)el ™Y dy
7z T Z
= hip ()™ dx  hyp(y)elZ*WVdy
= Hip(UWHip(V),
which is also separable with H(u, v) = Hyp(u)H1p (V). We have
r_
(04
Hip = §F1D{|(X)}
Y n o
= EFlD{cos(ax)} *Fip rect —
r?h .oz R i
= 5 sinc a(u —a/2n) +sinc =y + o/2n)
o
Therefore, the transfer function is
N i
Hu v) = 7 sinc Tw-o/2n) +sinc = (u+a/2n)
o (04
h i

sinc ;—‘ (v — a/21) +sinc (f (v + a/2n)

APPLICATIONS, EXTENSIONS AND ADVANCED TOPICS
Solution 2.23
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(a) The system is separable because h(x, y) = e~ (XI+IYD = g=Ixlg=Ivl,
(b) The system is not isotropic since h(x, y) is not a function of r = px2 +y2,

Additional commentstn easy check istopluginx =1,y =landx =0,y = 2into H(x, y). By noticing
that h(1, 1) = h(0, 2), we can conclude that h(x, y) is not rotationally invariant, and hence not

isotropic.

Isotropy is rotational symmetry around the origin, not just symmetry about a few axes, e.g., the x- and

y-axes. h(x, y) = e~(XI*I¥D) js symmetric about a few lines, but it is not rotationally invariant.

When we studied the properties of Fourier transform, we learned that if a signal is isotropic then its Fourier transform
has a certain symmetry. Note that the symmetry of the Fourier transform is only a necessary, but not sufficient, condition
for the signal to be isotropic.

(c) The response is

g y) = bix Y= Fxy)
= hE mf(x—=¢&y—m)d&dn
VAN AN
= e~ (EI+IMDF(x — £)dE dn
VAN
= g (XI+D g
oz
e e_lxl e_lnldn
Z% Z.
= e ehdn + e dn
—oo 0
= 2e M,
(d) The response is
glx,y) =

Bx, ¥) * £(x,y)
= h(& Mf(x — &y —mn)d&dn

VARV APS

= e (EI+IDE(x — & —y +1)dE dn
zZy Tz

= el eTll(x —g—y+m)dg dn
s T

= e_lnle_lx_y+n|dn i

1. Now assume X — y < 0, then x — y +n < n. The range of integration in the above can be divided into three
parts (see Fig. S2.2):

.M € (—0,0). Inthisinterval, x —y +n<n<0.n|=-n,|x=y+n|=-(X-Yy +n);
Il.n €[0,—(X—1y¥)). Inthisinterval, x —y +n<0<n.n|=n,|x—-y+n|=-(X-y+n);
. € [-(X —y), ). Inthisinterva, 0 = X —y+n<n.In|=n,|X—-y+n|=X—-y+n.
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Xy Xy Xy
0 -(x-y)

Figure S2.2 For x —y < 0 the integration interval (—oo,o0) can be partitioned into three segments. See Prob-
lem 2.23(d).

Based on the above analysis, we have:

Z o
gix,y) = e—lﬂle—IX—)/“LTlldn
Zo Z —(x-y) Z o
= e—(InI+IX—y+n|)dn + e~ (nl+Ix=y+nl) 4 e~ (Inl+[x=y+n[)
—oo 0 —(x=y)
Zo Z —(x-y) Z o
— ex—y+2ndn+ ex—ydn + e—(x—y+2n)dn
—° 0 —(x=y)
1 1

= ST - (X =YY+ e
= [1-(x -yl

2. Forx —y = 0,n < x —y + . The range of integration inthe above can be divided into three parts (see
Fig. S2.3):

Xy Xy Xy

-(x-y) 0

Figure S2.3 For x —y > 0 the integration interval (—oo,c0) can be partitioned into three segments. See Prob-
lem 2.23(d).

I.nE€ (-0, —(X—V)). Inthisinterval n <X —y+n<0.|n|=—, [ X—-y+n|=-(X-y+1n);
I.n€[—-(x—=1y),0). Inthisinterval, n <0 =X —y+mn. n|=-n, |[X—y+n|=Xx—-y+n;

I1l.n € [0,00). Inthisinterval, 0 s n<X—-y+n.n=n|X-y+n|=x—-y+n.

Based on the above analysis, we have:

Z
Z —(x-y) Z o ‘e
= e~ (nl+P=y+nb gy + e (nl+Ix=y+nl) g~ (Inl+Ix=y+nl)
—oo —(x=y) 0
Z —(x-y) Zo Z o
= eX—Y+2Tldn + e_(x_y)dn + e_(x_y+2n)dn
—oo —(x=y) 0

% =0 4 (x —y)e= W 4 ge—(x—y)

= [L+(x—y)le ¢,
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Based on the above two steps, we have:

g(x, y) = (1 + |x —y[)e” VI

Solution 2.24

(a) Yes, itisshift invariant because its impulse response depends on x — &.

(b) By linearity, the output is

—(x+1)2 —(x2 —(x—1)2
gx) =e 2z +e 2 +e z .

Solution 2.25

(a) The impulse response of the filter is the inverse Fourier transform of H(u), which can be written as

u
H(u) =1 —rect 20,

Using the linearity of the Fourier transform and the Fourier transform pairs

F{B@Oy = 1,
F {sinc(t)} = rect(u),
we have
h() = F™{H(u)}

d(t) — 2Uq sinc(2Ugt) .

(b) The system response to f(t) = c is 0, since f(t) contains only a zero frequency component while h(t)
passes only high frequency components. Formal proof:

f(0) « h()

£ () * [5(t) — 2Up sinc(2Uot)]
= £(1) 5, 2U0f (1) * sinc(2Uot)

= c-—¢C 2Uq sinc(2Upt)dt
g

= c—¢C sinc(t )dt

—oo

27
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The system response to f(t) =

1, t=0
0, t<O

is

f(t) = h(t) (1) = [8(t) — 2Uqg sinc(2Uqt)]
= f(t) — 2Uof (1) = sinc(2Uopt)
Z o
= f(t)- T (x)2Uq sinc(2Uq(t — x))dx
g
= f(@)- 2Ug sinc(2Uq(t — x))dx
2
= f()+ 2Uq sinc(2Uq(y))dy
Z,
= f(t)- 2Ug sinc(2Uq(y))dy
0 Zg Z,
01— 2Ugsinc(2Ug(y))dy +  2Ugsinc(2Ug(y))dy t<0
—oco t
- 0 VA 0 Zy
0
1- 2Uq sinc(2Uq(y))dy — 2Ugsinc(2Up(y))dy t=>0
—co 0
- Z,
——+ 2Uq sinc(2Up(y))dy t<o0
02
= . z .
1
do1- ,—  2Upsinc(2Uo(y))dy t>0
0
g %o
-+ 2Ug sinc(2Up(y))dy t<0
02
0 Zy
5 2Uq sinc(2Up(y))dy t>0
0

28
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Solution 2.26
(@) The rect function is defined as
() = 1, |[tfj=1/2
rect(t) = 0, otherwise
So we have
rect t _ 1, |t=T/2
T 0, otherwise
and
t+ 0.75T 1, [t+0.75T|<T/4
rect 0.5T - 0, otherwise
Therefore,
'z -UT, -T<t<-T/2
h(t) = UT, -T/2<t<T/2
O= —ur, 12<t<T
0, otherwise
The impulse response is plotted in Fig. S2.4.
h({t)
1/T
-T -172 172 r
t
-1T

Figure S2.4 _The impulse response h(t). See Problem 2.26(a).
The absolute integral of h(t) is - |h(t)|2dt = 2/T . So The system is stable when T

not causal, since h(t) = 0 for —T <t < 0.

(b) The response of the system to a constant signal f(t) = c is

> 0. The system is

VAN Z o
gy =f@®)*h(t) = f(t—1t)h(tr )dt =c¢ h(t)dt =0.
(c) The response of the system to the unit step function is
Z Z,
gy =f@®)=h() = f(t— t)h(t)dt = h(t )dt
O
0, t<-T
Ut¢T-1, -T<t<-T/2
gy=  uT, —T2<t<T/2
- =T +1, T/2<t<T
-0, t>T

The response of the system to the unit step signal is plotted in Figure S2.5.

29
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Solution 2.26
g(0)
1/2
-7 =772 72 r
1
-1/2

Figure S2.5 The response of the system to the unit step signal. See Problem 2.26(c).

(d) The Fourier transform of a rect function is a sinc function (see Problem 2.17). By using the properties of the
Fourier transform (scaling, shifting, and linearity), we have

F {h(t)}
—0.57127u(=0.75T) gjnc(0.5uT ) + sinc(uT ) — 0.5~ 327U(0-75T) gjnc(0.5uT )
sinc(uT ) — cos(1.5xuT ) sinc(0.5uT ) .

H(u)

(e) The magnitude spectrum of h(t) is plotted in Figure S2.6.

1.4

1.2

0.4 ‘:"

0.2

Figure S2.6 The magnitude spectrum of h(t). See Problem 2.26(e).

(f) From the calculation inpart (d) and the plot in part (c), it can be seen that |[H(0)] = 0. So the output of the system
does not have a DC component. The system is not a low pass filter. The system is not a high-pass filter since it also
filters out high frequency components. As T — 0, the pass band of the system moves to higher frequencies, and the
system tends toward a high-pass filter.
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Solution 2.27

(a) The inverse Fourier transform of H (%) is

h(r)

E"H{H()}

= H (%)l 2= o
ze

— |%|ej an%d%

—%g
%o z 0

= %eJ Zﬂr%d% _ %ej 2nr%d%
0 —%o
i { i 0
— %eJanAzd%_'_ %eJand%
0
Zo%o z %o

— %ej 2nr%d% + %e—j 271:r%d%

0
ZO%O

— % ej2nr%+e—j2nr% d%
% %0
= 2 % cos(2mr%)d%
0

" ; z #
o si o) "o %o oi 0

- % sin(27tr%) _ sm(ZnM)d%
2nr %=0 0 2nr

Y%sin(2mro) . cos(2mrh) o

22
2nr Aner %=0
1

= 5gpz [C0S(2riko) + 2nrtko sin(2mrtho) — 1] .

(b) The response of the filter is g(r) = f(r) = h(r), hence G(%) = F (%)H (%). i) A constant function f (r) = ¢

has the Fourier transform
F (%) = cd(%).

The transfer function of a ramp filter hasa value zero at% = 0. So the system response has the Fourier
transform
G(%) =0.

31

Therefore, the responses of a ramp filter to a constant function is g(r) = 0. ii) The Fourier transform of a sinusoid

function f (r) = sin(wr) is
h i
1 ® [0)
0y = — 0 — —) — 0 -
F (%) 2j 0h—, ) =3+, ) .

Hence,
0 h

L e e
G%) = 4nuj 5 2n o 2n 0=

0 otherwise
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Solution 2.27

Therefore, the response of a ramp filter to a sinusoid function is

O
o®

g(r) = 2
-0 otherwise

sin(owr) % = o

Solution 2.28
Suppose the Fourier transform of f(x,y) is F (u, v). Using the scaling properties, we have that the Fourier
transform of f (ax, by) is ﬁIF £, % - The output of the system is

1 uvy
X, = F ,
g(x,y) @bl ath U
= Tl TV iy

ab ab
N—
= 1 F (&, 1)ed 22EE0D1-) |a | dE dn .

bl oo oo

Given the inverse Fourier transform

f(x,y) = F (u, v)el 2@+ W gy dv
we have 27
F (&, n)ed 27 @S(=0+=Y) | ab|dedn = |ab|F(—ax, —by).

Therefore, g(x, y) = f(—ax, —by) is ascaled and inverted replica of the input.

Solution 2.29
The Fourier transform of the signal (X, y) and the noise n(x, y) are:
F(uv) = FA{f(xy)}
= |ab|F {sinc(ax, by)}
1 uyv
= |ab] " rect = T
1301 ap " A b
— uyv
= rect a b

1, |x]<|a]/2and |y| < |b|/2
0, otherwise

E(u v) = F{nxy)}
= %[S(U—A,V—B) +38(u+A,v+B)].

Using the linearity of Fourier transform, the Fourier transform of the measurements g(x, y) is

G(u, v) =rect +21[8(u—A,v—B)+8(u+A,v+B)],

D=

v
'b
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which is plotted in Figure S2.7. In order for an ideal low pass filter to recover f (X, y), the cutoff frequencies of the

1/28(u-A,v-B)

rect(u/a,v/b), B

1/28(utA,v+B) al2 4 u

Figure S2.7 The Fourier transform of g(x, y). See Problem 2.29.
filter must satisfy
[al/2<U < Aand |b|/2<V <B.

The Fourier transform of h(x, y) isrect < ,;* 5 therefore, the impulse response is
n o

h(x, y) = F™1 rect 4 ,—V =4UYV sinc(2U x) sinc(2Vy) .
2U 2v

For given a and b, we need A > |a|/2 and B > |b|/2. Otherwise we cannot find an ideal low pass filter to exactly recover
f(x,y).

Solution 2.30

(@) The continuous Fourier transform of a rect function is a sinc function. Using the scaling property of the
Fourier transform, we have:

G(u) = F1p{g(X)} = 2sinc(2u).
A sinc function, sinc(x), is shown in Figure 2.4(b).

(b) If the sampling period is Ax, = 1/2, we have

1, -2=m<?2

gi(m) =g(m/2) = 0, otherwise

ItsDTFT is

Gi(w) = Fprer{g1(m)}
ej2m + ej(u + 1ej0m + e—jm + 2e—j2m

1+ 2cos(w) + 2cos(2wm) .

The DTFT of g;(m) isshown in Figure S2.8.
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which is plotted in Figure S2.7. In order for an ideal low pass filter to recover f (X, y), the cutoff frequencies of the

Figure S2.8 The DTFT gi(m). See Problem 2.30(b).

Figure S2.9 The DTFT g2(m). See Problem 2.30(c).

(c) If the sampling period is Ax, = 1, we have

1, -1=m=<l1

%M =9M = 4" oherwise
ItsDTFT is
G2(0) = Fprrr{g2(m)}
= o0+ 100 40
= 1+2cos(w).

The DTFT of g,(m) isshown in Figure S2.9.
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(d) The discrete version of signal g(x) can be written as
gi(m) =g(x - mAx;), m= -oco,---,-1,0,1,:-+,+00 .

The DTFT of g1(m) is

Gi(w) Forer{g1(m)}

x )
= ga(m)e M
m=—oco
> )
= g(mAx)e~4em
VAN

= Q(X)Ss(x, AXl)e_jm NSNS

—oo

In the above, ds(X; Ax1) is the sampling function with the space between impulses equal to Ax,. Because of the
sampling function, we are able to convert the summation into integration. The last equation in the above is the continuous
Fourier transform of the product of g(x) and ds(X; Ax1) evaluated asu = w/(2wAX,). Using the product property
of the continuous Fourier transform, we have:

Ga(o) F{g()} * F{8s(X; AX1)} =0/ 2nax:)

= G(u) * comb(qu1)|u:m,(2mxl).

The convolution of G(u) and comb(uAX;) is to replicate G(u) tou = k/AX;. Sinceu = w/(2nAX;),
G1(w) is periodic with period Q = 2.

(e) The proof is similar to that for the continuous Fourier transform:

Fprer{X(m) *y(m)} = FprFr {€<(m) *y(m)}
e D
= Forrr x(m —n)y(n)
x @ X
= g~dom x(m —n)y(n)
g #
XX > i
= e 1°Mx(m—-n) y(n)
> o» #
= emion T emiokx(k) y(n)
n=-—oco k=—co
(letk =m —n)
>
= e " Fprer{x(m)}y(n)

= Fprer{X(M)}Fprer{y(m)}.
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(f) First we evaluate the convolution of g;(m) with go(m):
O

3, -1=m=1
g1(m) *gz(m) = ) i i i;zg
. 0, otherwise
Then by direct computation, we have
Forer{g1(M) * g2(m)} = 3+ 3 x2cos(w) +2 x 2c0s(2w) + 2 cos(3w)

= 3+ 6cos(w) +4cos(2w) + 2cos(3m) .
On the other hand, we have

Forrr{g1(m)} = 1 + 2cos(w) + 2 cos(20)

and
Forrr{g2(m)} =1+ 2cos(w) .
So, the product of the DTFT’s of g:(m) and go(m) is

Forer{0u(M)}Forer{g2(m)} = [1+ 2cos(w)][1+ 2 cos(w) +2cos(2w)]
= 1+ 4cos(w) +2cos(2mw)
+4 cos?(0) + 4cos(w) cos(2w)
= 1+ 4cos(w) + 2cos(2w)

+a 1+ 035(203) + 4COS((D) 2005(3(»)

= 3+ 6cos(w) +4cos(2mw) + 2cos(3wm) .
Therefore,

Forer{g1(m) * g2(M)} = Fporer{91(M)}Forrr{g2(M)}.



