Solutions Manual for Introduction to Management Science 11th Edition Taylor 01327519179780132751919 Full Link Download: Test Bank:
 https://testbankpack.com/p/test-bank-for-introduction-to-management-science-11th-edition-taylor-0132751917-
 9780132751919/
 Solution Manual:

https://testbankpack.com/p/solutions-manual-for-introduction-to-management-science-11th-edition-taylor-0132751917-9780132751919/

Chapter Two: Linear Programming: Model Formulation and Graphical Solution

PROBLEM SUMMARY

1. Maximization (1-28 continuation), graphical solution
2. Maximization, graphical solution
3. Minimization, graphical solution
4. Sensitivity analysis (2-3)
5. Minimization, graphical solution
6. Maximization, graphical solution
7. Slack analysis (2-6)
8. Sensitivity analysis (2-6)
9. Maximization, graphical solution
10. Slack analysis (2-9)
11. Maximization, graphical solution
12. Minimization, graphical solution
13. Maximization, graphical solution
14. Sensitivity analysis (2-13)
15. Sensitivity analysis (2-13)
16. Maximization, graphical solution
17. Sensitivity analysis (2-16)
18. Maximization, graphical solution
19. Sensitivity analysis (2-18)
20. Maximization, graphical solution
21. Standard form (2-20)
22. Maximization, graphical solution
23. Standard form (2-22)
24. Maximization, graphical solution
25. Constraint analysis (2-24)
26. Minimization, graphical solution
27. Sensitivity analysis (2-26)
28. Sensitivity analysis (2-26)
29. Sensitivity analysis (2-22)
30. Minimization, graphical solution
31. Minimization, graphical solution
32. Sensitivity analysis (2-31)
33. Minimization, graphical solution
34. Maximization, graphical solution
35. Maximization, graphical solution
36. Sensitivity analysis (2-34)
37. Minimization, graphical solution
38. Maximization, graphical solution
39. Maximization, graphical solution
40. Sensitivity analysis (2-38)
41. Maximization, graphical solution
42. Sensitivity analysis (2-40)
43. Maximization, graphical solution
44. Sensitivity analysis (2-42)
45. Minimization, graphical solution
46. Sensitivity analysis (2-44)
47. Maximization, graphical solution
48. Sensitivity analysis (2-46)
49. Maximization, graphical solution
50. Sensitivity analysis (2-48)
51. Maximization, graphical solution
52. Minimization, graphical solution
53. Minimization, graphical solution
54. Sensitivity analysis (2-53)
55. Minimization, graphical solution
56. Sensitivity analysis (2-55)
57. Maximization, graphical solution
58. Minimization, graphical solution
59. Sensitivity analysis (2-52)
60. Maximization, graphical solution
61. Sensitivity analysis (2-54)
62. Multiple optimal solutions
63. Infeasible problem
64. Unbounded problem

PROBLEM SOLUTIONS

1. a) $x_{1}=$ \# cakes
$x_{2}=\#$ loaves of bread maximize $Z=\$ 10 x_{1}+6 x_{2}$ subject to

$$
\begin{aligned}
3 x_{1}+8 x_{2} & \leq 20 \text { cups of flour } \\
45 x_{1}+30 x_{2} & \leq 180 \text { minutes } \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

b)

$\begin{array}{llllllll}0 & 2 & 4 & 6 & 8 & 10 & 12 & 14\end{array}$
2. a) Maximize $Z=6 x_{1}+4 x_{2}$ (profit, $\$$)
subject to

$$
\begin{aligned}
10 x_{1}+10 x_{2} & \leq 100(\text { line } 1, \mathrm{hr}) \\
7 x_{1}+3 x_{2} & \leq 42(\text { line } 2, \mathrm{hr}) \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

b)

3. a) Minimize $Z=.05 x_{1}+.03 x_{2}(\operatorname{cost}, \$)$ subject to

$$
\begin{aligned}
8 x_{1}+6 x_{2} & \geq 48(\text { vitamin } \mathrm{A}, \mathrm{mg}) \\
x_{1}+2 x_{2} & \geq 12(\text { vitamin } \mathrm{B}, \mathrm{mg}) \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

b)

$\begin{array}{lllllllll} & & & & & & & & C \\ x_{1}\end{array}$
4. The optimal solution point would change from point A to point B, thus resulting in the optimal solution
$x_{1}=12 / 5 \quad x_{2}=24 / 5 \quad Z=.408$
5. a) Minimize $Z=3 x_{1}+5 x_{2}(\operatorname{cost}, \$)$ subject to

$$
\begin{aligned}
10 x+2 x & \geq 20(\text { nitrogen, oz) } \\
6 x_{1}^{1}+6 x_{2}^{2} & \geq 36(\text { phosphate }, \text { oz }) \\
x_{2} & \geq 2(\text { potassium }, \mathrm{oz}) \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

b)

6. a) Maximize $Z=400 x_{1}+100 x_{2}$ (profit, $\$$) subject to

$$
\begin{aligned}
8 x_{1}+10 x_{2} & \leq 80 \text { (labor, hr) } \\
2 x_{1}+6 x_{2} & \leq 36 \text { (wood) } \\
x_{1} & \leq 6(\text { demand, chairs) } \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

b)

7. In order to solve this problem, you must substitute the optimal solution into the resource constraint for wood and the resource constraint for labor and determine how much of each resource is left over.

Labor

$$
\begin{aligned}
8 x_{1}+10 x_{2} & \leq 80 \mathrm{hr} \\
8(6)+10(3.2) & \leq 80 \\
48+32 & \leq 80 \\
80 & \leq 80
\end{aligned}
$$

There is no labor left unused.

Wood

$$
\begin{aligned}
2 x_{1}+6 x_{2} & \leq 36 \\
2(6)+6(3.2) & \leq 36 \\
12+19.2 & \leq 36 \\
31.2 & \leq 36 \\
36-31.2 & =4.8
\end{aligned}
$$

There is 4.8 lb of wood left unused.
8. The new objective function, $Z=400 x_{1}+$ $500 x_{2}$, is parallel to the constraint for
labor, which results in multiple optimal solutions. Points $B\left(x_{1}=30 / 7, x_{2}=32 / 7\right)$ and $C\left(x_{1}=6, x_{2}=3.2\right)$ are the alternate optimal solutions, each with a profit of \$4,000.
9. a) Maximize $Z=x_{1}+5 x_{2}$ (profit, $\$$) subject to
$5 x_{1}+5 x_{2} \leq 25$ (flour, lb)
$2 x_{1}+4 x_{2} \leq 16$ (sugar, lb)

$$
\begin{aligned}
x_{1} & \leq 5(\text { demand for cakes }) \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

b)

10. In order to solve this problem, you must substitute the optimal solution into the resource constraints for flour and sugar and determine how much of each resource is left over.

Flour

$$
\begin{aligned}
5 x_{1}+5 x_{2} & \leq 25 \mathrm{lb} \\
5(0)+5(4) & \leq 25 \\
20 & \leq 25 \\
25-20 & =5
\end{aligned}
$$

There are 5 lb of flour left unused.

$$
\begin{aligned}
& \text { Sugar } \\
& \begin{aligned}
2 x_{1}+4 x_{2} & \leq 16 \\
2(0)+4(4) & \leq 16 \\
16 & \leq 16
\end{aligned}
\end{aligned}
$$

There is no sugar left unused.
11.

12. a) Minimize $Z=80 x+50 x(\operatorname{cost}, \$)$
b)
b) subject to
$3 x_{1}+x_{2} \geq 6$ (antibiotic 1, units)
$x_{1}+x_{2} \geq 4$ (antibiotic 2 , units)

$$
\begin{aligned}
2 x_{1}+6 x_{2} & \geq 12 \text { (antibiotic } 3, \text { units) } \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

b)

13. a) Maximize $Z=300 x_{1}+400 x_{2}$ (profit, $\$$) subject to

$$
\begin{aligned}
3 x_{1}+2 x_{2} & \leq 18(\text { gold, oz }) \\
2 x_{1}+4 x_{2} & \leq 20(\text { platinum, oz }) \\
x_{2} & \leq 4 \text { (demand, bracelets) } \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

b)

$\begin{array}{llllllll}0 & 2 & 4 & 6 & 8 & 10 & 12 & 14\end{array}$
14. The new objective function, $Z=300 x_{1}+$ $600 x_{2}$, is parallel to the constraint line for platinum, which results in multiple
optimal solutions. Points $B\left(x_{1}=2, x_{2}=4\right)$ and $C\left(x_{1}=4, x_{2}=3\right)$ are the alternate optimal solutions, each with a profit of $\$ 3,000$.

The feasible solution space will change. The new constraint line, $3 x_{1}+4 x_{2}=20$, is parallel to the existing objective function. Thus, multiple optimal solutions will also
15. a) Optimal solution: $x_{1}=4$ necklaces, $x_{2}=3$ bracelets. The maximum demand is not achieved by the amount of one bracelet.
corresponds to no bracelets being produced must be on the x_{1} axis where $x_{2}=$ 0 . This is point D on the graph. In order for point D to be optimal, the objective function "slope" must change such that it is equal to or greater than the slope of the constraint line, $3 x_{1}+2 x_{2}=18$.
Transforming this constraint into the form $y=a+b x$ enables us to compute the slope:

$$
\begin{aligned}
2 x_{2} & =18-3 x_{1} \\
x_{2} & =9-3 / 2 x_{1}
\end{aligned}
$$

From this equation the slope is $-3 / 2$. Thus, the slope of the objective function must be at least $-3 / 2$. Presently, the slope of the objective function is $-3 / 4$:

$$
\begin{aligned}
400 x_{2} & =Z-300 x_{1} \\
x_{2} & =Z / 400-3 / 4 x_{1}
\end{aligned}
$$

The profit for a necklace would have to increase to $\$ 600$ to result in a slope of $-3 / 2$:

$$
\begin{aligned}
400 x_{2} & =Z-600 x_{1} \\
x_{2} & =Z / 400-3 / 2 x_{1}
\end{aligned}
$$

However, this creates a situation where both points C and D are optimal, ie., multiple optimal solutions, as are all points on the line segment between C and D.
16. a) Maximize $Z=50 x_{1}+40 x_{2}$ (profit, $\$$) subject to

$$
\begin{aligned}
3 x_{1}+5 x_{2} & \leq 150(\text { wool }, \mathrm{yd}) \\
10 x_{1}+4 x_{2} & \leq 200(\text { labor, } \mathrm{hr}) \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

b)

$$
A: x_{1}=0
$$

be
rnate
pres
ent
in
this
sce
nari
o.

The
alte

17. The feasible solution space changes from the area $O A B C$ to $O A B^{\prime} C^{\prime}$, as shown on the following graph.
x_{2}

The extreme points to evaluate are now A, B^{\prime}, and C^{\prime}.

$$
\begin{array}{rlrl}
A: & x_{1} & =0 \\
x_{2} & =30 \\
* B^{\prime}: \quad Z & =1,200 \\
& x_{1} & =15.8 \\
x_{2} & =20.5 \\
& Z & =1,610 \\
C^{\prime}: \quad & x_{1} & =24 \\
& x_{2} & =0 \\
& Z & =1,200
\end{array}
$$

Point B^{\prime} is optimal
18. a) Maximize $Z=23 x_{1}+73 x_{2}$ subject to

$$
\begin{aligned}
x_{1} & \leq 40 \\
x_{2} & \leq 25 \\
x_{1}+4 x_{2} & \leq 120 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

b)

19. a) No, not this winter, but they might after they recover equipment costs, which should be after the $2^{\text {nd }}$ winter.
b) $x_{1}=55$
$x_{2}=16.25$
$Z=1,851$
No, profit will go down
c) $x_{1}=40$
$x_{2}=25$
$Z=2,435$
Profit will increase slightly
d) $x_{1}=55$
$x_{2}=27.72$
$Z=\$ 2,073$
Profit will go down from (c)
20.

21. Maximize $Z=1.5 x+x+0 s+0 s+0 s$ subject to

$$
\begin{array}{r}
x_{1}+s_{1}=4 \\
x_{2}+s_{2}=6 \\
x_{1}+x_{2}+s_{3}=5 \\
x_{1}, x_{2} \geq 0 \\
\text { A: } s_{1}=4, s_{2}=1, s_{3}=0 \\
\begin{array}{c}
c \text { optimal, } \\
x_{1}=40 \\
x_{2}=20 \\
2=2,380
\end{array}
\end{array}
$$

22.

B: $s_{1}=0, s_{2}=5$,
$s_{3}=0$
C: $s_{1}=0, s_{2}=6$,

$$
s_{3}=1
$$

$\begin{array}{lllllllllllll}0 & 10 & 20 & 30 & 40 & 50 & 60 & 70 & 80 & 90 & 100 & 110 & 120^{x_{1}}\end{array}$

| C | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 0 | 2 | 4 | 6 | 8 | 10 | 12 | 14 | 18 | $20^{x_{1}}$ |
| 16 | | | | | | | | | |

23. Maximize $Z=5 x_{1}+8 x_{2}+0 s_{1}+0 s_{3}+0 s_{4}$ subject to

$$
\begin{aligned}
3 x_{1}+5 x_{2}+s_{1} & =50 \\
2 x_{1}+4 x_{2}+s_{2} & =40 \\
x_{1}+s_{3} & =8 \\
x_{2}+s_{4} & =10 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

A: $s_{1}=0, s_{2}=0, s_{3}=8, s_{4}=0$
B: $s_{1}=0, s_{2}=3.2, s_{3}=0, s_{4}=4.8$
C: $s_{1}=26, s_{2}=24, s_{3}=0, s_{4}=10$
24.

25. It changes the optimal solution to point A ($x_{1}=8, x_{2}=6, Z=112$), and the constraint, $x_{1}+x_{2} \leq 15$, is no longer part of the solution space boundary.
26. a) Minimize $Z=64 x_{1}+42 x_{2}$ (labor cost, $\$$) subject to

$$
\begin{aligned}
16 x_{1}+12 x_{2} & \geq 450 \text { (claims) } \\
x_{1}+x_{2} & \leq 40 \text { (workstations) } \\
0.5 x_{1}+1.4 x_{2} & \leq 25 \text { (defective claims) } \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

b)

27. Changing the pay for a full-time claims processor from $\$ 64$ to $\$ 54$ will change the solution to point A in the graphical solution where $x_{1}=28.125$ and $x_{2}=0$, i.e., there will be no part-time operators. Changing the pay for a part-time operator from $\$ 42$ to $\$ 36$ has no effect on the number of full-time and part-time operators hired, although the total cost will be reduced to $\$ 1,671.95$.
28. Eliminating the constraint for defective claims would result in a new solution, $x_{1}=0$ and $x_{2}=37.5$, where only part-time
operators would be hired.
29. The solution becomes infeasible; there are not enough workstations to handle the increase in the volume of claims.
30.

31.

32. The problem becomes infeasible.

33.

$$
\begin{array}{llllllll}
& \text { space } & B & & & & \\
& 2 & 4 & 6 & 8 & 10 & 12 & 14^{x_{1}}
\end{array}
$$

34.

-8
35.
x_{2}

36. a) Maximize $Z=\$ 4.15 x_{1}+3.60 x_{2}$ (profit, $\$$) subject to

$$
\begin{aligned}
& x_{1}+x_{2} \leq 115 \text { (freezer space, gals.) } \\
& 0.93 x_{1}+0.75 x_{2} \leq 90 \text { (budget, \$) } \\
& \underline{x}_{1} \underline{2} \text { or } x{ }_{1}-x_{2} \geq 0 \text { (demand) } \\
& x_{2} \geq{ }_{1} \quad
\end{aligned}
$$

$$
x_{1}, x_{2} \geq 0
$$

b)

37. No additional profit, freezer space is not a binding constraint.
38. a) Minimize $Z=200 x_{1}+160 x_{2}($ cost,$\$)$ subject to
$6 x_{1}+2 x_{2} \geq 12($ high-grade ore, tons $)$
$2 x_{1}+2 x_{2} \geq 8($ medium-grade ore, tons $)$

$$
\begin{aligned}
4 x_{1}+12 x_{2} & \geq 24 \text { (low-grade ore, tons) } \\
x, x & \geq 0
\end{aligned}
$$

b)

2					Point B is optimal						
0	2	4	6	8	10	12	14				

39. a) Maximize $Z=800 x_{1}+900 x_{2}$ (profit, $\$$) subject to

$$
\begin{aligned}
2 x_{1}+4 x_{2} & \leq 30 \text { (stamping, days) } \\
4 x_{1}+2 x_{2} & \leq 30 \text { (coating, days) } \\
x_{1}+x_{2} & \geq 9 \text { (lots) } \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

b)

$$
\begin{array}{lllllllll}
0 & 2 & 4 & 6 & 8 & 10 & 12 & 14 & 16^{x_{1}}
\end{array}
$$

40. a) Maximize $Z=30 x_{1}+70 x_{2}$ (profit, $\$$)
subject to

$$
\begin{aligned}
4 x_{1}+10 x_{2} & \leq 80(\text { assembly, hr) } \\
14 x_{1}+8 x_{2} & \leq 112 \text { (finishing, } \mathrm{hr}) \\
x_{1}+x_{2} & \leq 10 \text { (inventory, units) } \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

b)

41. The slope of the original objective function is computed as follows:

$$
Z=30 x_{1}+70 x_{2}
$$

The slope of the new objective function is computed as follows:

$$
\begin{aligned}
Z & =90 x_{1}+70 x_{2} \\
70 x_{2} & =Z-90 x_{1} \\
x_{2} & =Z / 70-9 / 7 x_{1} \\
\text { slope } & =-9 / 7
\end{aligned}
$$

The change in the objective function not only changes the Z values but also results in a new solution point, C. The slope of the new objective function is steeper and thus changes the solution point.
$A: \quad x_{1}=0$
$C: \quad x_{1}=5.3$
$x=8$
$x=4.7$
$Z \quad 2=560$
$Z_{Z}^{2}=806$
B: $\quad x_{1}=3.3$
D: $\quad x_{1}=8$
$x=6.7$
$x=0$
$Z^{2}=766$
$Z^{2}=720$
42. a) Maximize $Z=9 x_{1}+12 x_{2}$ (profit, $\$ 1,000 \mathrm{~s}$) subject to

$$
\begin{aligned}
4 x_{1}+8 x_{2} & \leq 64 \text { (grapes, tons) } \\
5 x_{1}+5 x_{2} & \leq 50(\text { storage space, yd }) \\
15 x_{1}+8 x_{2} & \leq 120(\text { processing time, hr) } \\
x_{1} & \leq 7(\text { demand, Nectar) } \\
x_{2} & \leq 7(\text { demand, Red }) \\
x_{1}, x_{2} & \leq 0
\end{aligned}
$$

b)
x_{2}

$$
\begin{aligned}
70 x_{2} & =Z-30 x_{1} \\
x_{2} & =Z / 70-3 / 7 x_{1} \\
\text { slope } & =-3 / 7
\end{aligned}
$$

43. a) $15(4)+8(6) \leq$

120 hr
$60+48 \leq 120$
$108 \leq 120$
$120-108=12 \mathrm{hr}$ left unused
b) Points C and D would be eliminated and a new optimal solution point at $x_{1}=5.09, x_{2}$ $=5.45$, and $Z=111.27$ would result.
44. a) Maximize $Z=.28 x_{1}+.19 x_{2}$

$$
\begin{aligned}
x_{1}+x_{2} & \leq 96 \mathrm{cans} \\
\frac{x_{2}}{x_{1}} & \geq 2 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

b)

45. The model formulation would become, maximize $Z=\$ 0.23 x_{1}+0.19 x_{2}$ subject to

$$
\begin{aligned}
x_{1}+x_{2} & \leq 96 \\
-1.5 x_{1}+x_{2} & \geq 0 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

The solution is $x_{1}=38.4, x_{2}=57.6$, and $Z=\$ 19.78$
The discount would reduce profit.
46. a) Minimize $Z=\$ 0.46 x_{1}+0.35 x_{2}$ subject to

$$
\begin{aligned}
.91 x_{1}+.82 x_{2} & =3,500 \\
x_{1} & \geq 1,000 \\
x_{2} & \geq 1,000 \\
.03 x_{1}-.06 x_{2} & \geq 0 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

b)

$\begin{array}{lllllllllll}0 & 500 & 1000 & 1500 & 2000 & 2500 & 3000 & 3500 & 4000 & 4500 & 5000\end{array}$
47. a) Minimize $Z=.09 x_{1}+.18 x_{2}$ subject to

$$
\begin{aligned}
.46 x_{1}+.35 x_{2} & \leq 2,000 \\
x_{1} & \geq 1,000 \\
x_{2} & \geq 1,000 \\
.91 x_{1}-.82 x_{2} & =3,500 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

$$
\begin{array}{lllllllllll}
0 & 500 & 1000 & 1500 & 2000 & 2500 & 3000 & 3500 & 4000 & 4500 & 5000 \\
X_{1}
\end{array}
$$

b) $477-445=32$ fewer defective items
48. a) Maximize $Z=\$ 2.25 x_{1}+1.95 x_{2}$ subject to

$$
\begin{aligned}
& 8 x_{1}+6 x_{2} \leq 1,920 \\
& 3 x_{1}+6 x_{2} \leq 1,440
\end{aligned}
$$

b)

$$
\begin{array}{lllllllllll}
100 \\
50 & & \text { C } \\
0 & 50 & 100 & 150 & 200 & 250 & 300 & 350 & 400 & 450 & 500 \\
& & & & & & \\
X_{1}
\end{array}
$$

49. A new constraint is added to the model in

$$
\frac{x_{1}}{x_{2}} \geq 1.5
$$

The solution is $x_{1}=160, x_{2}=106.67$, $Z=\$ 568$

50. a) Maximize $Z=400 x_{1}+300 x_{2}$ (profit, $\$$)
subject to

$$
\begin{aligned}
x_{1}+x_{2} & \leq 50(\text { available land, acres) } \\
10 x_{1}+3 x_{2} & \leq 300 \text { (labor, hr) }
\end{aligned}
$$

b)

\[

\]

51. The feasible solution space changes if the fertilizer constraint changes to $20 x_{1}+$
$20 x_{2} \leq 800$ tons. The new solution space is $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$. Two of the constraints now have no effect.

The new optimal solution is point C^{\prime} :

$$
\begin{aligned}
& A^{\prime}: \quad x_{1}=0 \\
& x_{2}=37 \\
& Z=11,100 \\
& \text { * } C^{\prime}: x_{1}=25.71 \\
& x_{2}=14.29 \\
& Z=14,571 \\
& B^{\prime}: x_{1}=3 \\
& D^{\prime}: x_{1}=26 \\
& \begin{array}{l}
x_{2}=37 \\
Z=12,300
\end{array} \\
& x_{2}=0 \\
& Z=10,400
\end{aligned}
$$

52. a) Maximize $Z=\$ 7,600 x_{1}+22,500 x_{2}$ subject to

$$
\begin{aligned}
x_{1}+x_{2} & \leq 3,500 \\
x_{2} /\left(x_{1}+x_{2}\right) & \leq .40
\end{aligned}
$$

$$
\begin{aligned}
8 x_{1}+20 x_{2} & \leq 800 \text { (fertilizer, tons) } \\
x_{1} & \leq 26 \text { (shipping space, acres) } \\
x_{2} & \leq 37 \text { (shipping space, acres) } \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

53. a) Minimize $Z=\$(.05)(8) x_{1}+(.10)(.75) x_{2}$ subject to

$$
\begin{aligned}
5 x_{1}+x_{2} & \geq 800 \\
\frac{5 x_{1}}{x_{2}} & =1.5 \\
8 x_{1}+.75 x_{2} & \leq 1,200 \\
x_{1}, x_{2} & \geq 0 \\
x_{1} & =96 \\
x_{2} & =320
\end{aligned}
$$

$$
Z=\$ 62.40
$$

b)

54. The new solution is

$$
\begin{aligned}
x_{1} & =106.67 \\
x_{2} & =266.67 \\
Z & =\$ 62.67
\end{aligned}
$$

If twice as many guests prefer wine to beer, then the Robinsons would be approximately 10 bottles of wine short and they would have approximately 53 more bottles of beer than they need. The waste is more difficult to compute. The model in problem 53 assumes that the Robinsons are ordering more wine and beer than they need, i.e., a buffer, and thus there logically would be some waste, i.e., 5% of the wine and 10% of the beer. However, if twice as many guests prefer wine, then there would logically be no waste for wine but only for beer. This amount "logically" would be the waste from 266.67 bottles, or $\$ 20$, and the amount from the additional 53 bottles, $\$ 3.98$, for a total of $\$ 23.98$.
55. a) Minimize $Z=3700 x_{1}+5100 x_{2}$ subject to

$$
\begin{array}{r}
x+x_{2}=45 \\
\left(32 x_{1}+14 x_{2}\right) /\left(x_{1}+x_{2}\right) \leq 21
\end{array}
$$

b)

56. a) No, the solution would not change
b) No, the solution would not change
c) Yes, the solution would change to China $\left(x_{1}\right)=22.5$, Brazil $\left(x_{2}\right)=22.5$, and $Z=\$ 198,000$.
57. a) $x_{1}=\$$ invested in stocks
$x_{2}=\$$ invested in bonds
maximize $Z=\$ 0.18 x_{1}+0.06 x_{2}$ (average annual return)
subject to

$$
x_{1}+x_{2} \leq \$ 720,000 \text { (available funds) }
$$

$x_{1} /\left(x_{1}+x_{2}\right) \leq .65$ (\% of stocks)
$.22 x_{1}+.05 x_{2} \leq 100,000$ (total possible loss)

$$
x_{1}, x_{2} \geq 0
$$

b)

58. $x_{1}=$ exams assigned to Brad
$x_{2}=$ exams assigned to Sarah minimize $Z=.10 x_{1}+.06 x_{2}$ subject to

$$
\begin{aligned}
x_{1}+x_{2} & =120 \\
x_{1} & \leq(720 / 7.2) \text { or } 100 \\
x_{2} & \leq 50(600 / 12) \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

59. If the constraint for Sarah's time became $x_{2} \leq 55$ with an additional hour then the solution point at A would move to $x_{1}=65, x_{2}=55$ and $Z=9.8$. If the
constraint for Brad's time became $x_{1} \leq$ 108.33 with an additional hour then the solution point (A) would not change. All of Brad's time is not being used anyway so assigning him more time would not have an effect.
One more hour of Sarah's time would reduce the number of regraded exams from 10 to 9.8 , whereas increasing Brad by one hour would have no effect on the solution. This is actually the marginal (or dual) value of one additional hour of labor, for Sarah, which is 0.20 fewer regraded exams, whereas the marginal value of Brad's is zero.
60. a) $x_{1}=$ \# cups of Pomona
$x_{2}=\#$ cups of Coastal
Maximize $Z=\$ 2.05 x_{1}+1.85 x_{2}$ subject to
$16 x_{1}+16 x_{2} \leq 3,840$ oz or ($30 \mathrm{gal} . \times$ $128 \mathrm{oz})$
$(.20)(.0625) x+(.60)(.0625) x \leq 6 \mathrm{lbs}$.
Colombian ${ }^{1}$
(.35)(.0625) $x_{1}+(.10)(.0625) x_{2} \leq 6 \mathrm{lbs}$.

Kenyan
(.45)(.0625) $x_{1}+(.30)(.0625) x_{2} \leq 6 \mathrm{lbs}$.

Indonesian

$$
\begin{aligned}
& x_{2} / x_{1}=3 / 2 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

2-12
b) Solution:

$$
\begin{aligned}
& x_{1}=87.3 \mathrm{cups} \\
& x_{2}=130.9 \mathrm{cups} \\
& Z=\$ 421.09
\end{aligned}
$$

61. a) The only binding constraint is for Colombian; the constraints for Kenyan and Indonesian are nonbinding and there are already extra, or slack, pounds of these coffees available. Thus, only getting more Colombian would affect the solution.

One more pound of Colombian would increase sales from $\$ 421.09$ to $\$ 463.20$.
Increasing the brewing capacity to 40 gallons would have no effect since there is already unused brewing capacity with the optimal solution.
b) If the shop increased the demand ratio of Pomona to Coastal from 1.5 to 1 to 2 to 1 it would increase daily sales to $\$ 460.00$, so the shop should spend extra on advertising to achieve this result.
62.

63.

64.

2-13

CASE SOLUTION: METROPOLITAN POLICE PATROL

The linear programming model for this case problem is

Minimize $Z=x / 60+y / 45$
subject to

$$
\begin{aligned}
2 x+2 y & \geq 5 \\
2 x+2 y & \leq 12 \\
y & \geq 1.5 x \\
x, y & \geq 0
\end{aligned}
$$

The objective function coefficients are determined by dividing the distance traveled, i.e., $x / 3$, by the travel speed, i.e.,

20 mph . Thus, the x coefficient is $x / 3 \div$ 20 , or $x / 60$. In the first two constraints, $2 x+2 y$ represents the formula for the
perimeter of a rectangle.

The graphical solution is displayed as follows.

The optimal solution is $x=1, y=1.5$, and $Z=0.05$. This means that a patrol sector is 1.5 miles by 1 mile and the response time is 0.05 hr , or 3 min .

CASE SOLUTION: "THE POSSIBILITY" RESTAURANT

The linear programming model formulation is

Maximize $=Z=\$ 12 x_{1}+16 x_{2}$ subject to

The graphical solution is shown as follows.

Changing the objective function to $Z=\$ 16 x+16 x$ would result in multiple optimal solutions, the end points being B and
C. The profit in each case would be $\$ 960$.
Changing the constraint from
$.90 x_{2}-.10 x_{1} \geq 0$ to $.80 x_{2}-.20 x_{1} \geq 0$ has no effect on the solution.

CASE SOLUTION: ANNABELLE INVESTS IN THE MARKET

$x_{1}=$ no. of shares of inde x fund $x_{2}=$ no. of shares of internet stock fund

Maximize $Z=(.17)(175) x_{1}+(.28)(208) x_{2}$

$$
=29.75 x_{1}+58.24 x_{2}
$$

subject to

$$
\begin{aligned}
& 175 x_{1}+208 x_{2}=\$ 120,000 \\
& \frac{x_{1}}{x_{2}} \geq .33 \\
& \frac{x_{2}}{x_{1}} \leq 2 \\
& x_{1}, x_{2}>0 \\
& x_{1}=203 \\
& x_{2}=406 \\
& \mathrm{Z}=\$ 29,691.37 \\
& \begin{array}{l}
\text { Eliminating the } \\
\text { constraint }
\end{array} \quad \frac{x_{2}}{x_{1}} \geq .33 \\
& .25 x_{1}+.50 x_{2} \leq 20 \\
& x_{1} / x_{2} \geq 3 / 2 \text { or } 2 x_{1}-3 x_{2} \geq 0
\end{aligned}
$$

$$
x_{2} /\left(x_{1}+x_{2}\right) \geq .10 \text { or } .90 x_{2}-.10 x_{1} \geq 0
$$

$$
x_{1} x_{2} \geq 0
$$

will have no effect on the solution.
Eliminating the constraint $\frac{x}{x_{2}} \leq 2$
will change the solution to $x_{1}=149$, $x_{2}=451.55, Z=\$ 30,731.52$.

Increasing the amount available to invest (i.e., $\$ 120,000$ to $\$ 120,001$) will increase profit from $Z=\$ 29,691.37$ to
$Z=\$ 29,691.62$ or approximately $\$ 0.25$. Increasing by another dollar will increase profit by another $\$ 0.25$, and increasing the amount available by one more dollar will again increase profit by $\$ 0.25$. This
indicates that for each extra dollar invested a return of $\$ 0.25$ might be expected with this investment strategy.
Thus, the marginal value of an extra dollar to invest is $\$ 0.25$, which is also referred to as the "shadow" or "dual" price as described in Chapter 3.

