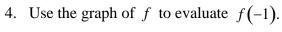
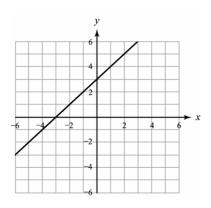
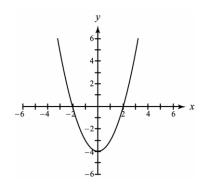
Test Bank for Intermediate Algebra with Applications and Visualization 3rd Edition Rockswold Krieger 0321500032 9780321500038

Full link download


Test Bank:

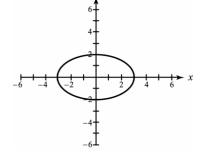

https://testbankpack.com/p/test-bank-for-intermediate-algebra-with-applicationsand-visualization-3rd-edition-rockswold-krieger-0321500032-9780321500038/

Solution Manual:

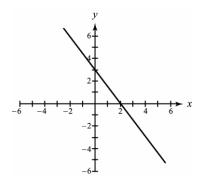

https://testbankpack.com/p/solution-manual-for-intermediate-algebra-withapplications-and-visualization-3rd-edition-rockswold-krieger-0321500032-9780321500038/

Chapter 2, Test Form A Name:	
1. Evaluate $f(-2)$ if $f(x) = 4 - 3x^2$.	1
2. Write a symbolic representation (formula) for a function <i>S</i> that calculates the number of seconds in <i>x</i> minutes. Evaluate $S(4)$ and interpret your result.	2
3. Sketch a graph of $f(x) = x^2 - 2$.	3. y

5. Determine the domain and range of f.



4. _____

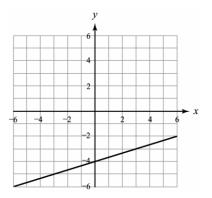

 $\blacktriangleright x$

7._____

- 7. Determine whether the graph represents a function.

- 8. Find the domain of $f(x) = \frac{3}{4}x + 7$.
- 9. Find the slope and *y*-intercept of the graph of $y = 3x \frac{5}{2}$.
- 10. Find the slope of the line passing through $\left(\frac{1}{2}, -2\right)$ and $\left(0, -3\right)$.
- 11. Determine the slope of the line shown in the graph.

8._____ 9._____ 10._____


- 13. Write the slope-intercept form of the line passing through13.(1,3) and $(\frac{1}{2},1)$.
- 14. Let f be a linear function. Find the slope of the graph of f.

	x	-4	-2	-1	0	1
f	f(x)	-6	0	3	6	9

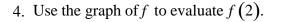
15. Let *f* be a linear function. Find the *x*- and *y*-intercepts of the graph of *f*.

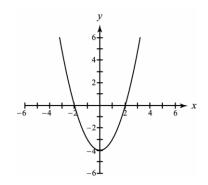
x	-2	0	1	2	3
f(x)	8	4	2	0	-2

- 16. Give the slope-intercept form of a line parallel to 16. ______ y = 5 - 4x, passing through $(\frac{1}{2}, 1)$.
- 17. Find the slope-intercept form for the line shown in the graph. 17.

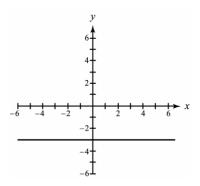
14.

15.

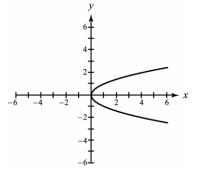

19. Find an equation of the vertical line passing through the point $\left(\frac{1}{2}, -\frac{3}{4}\right)$.


19._____

20. Find an equation of the horizontal line passing through the point $\left(-\frac{2}{3},1\right)$.


- 1. Evaluate f(-2) if f(x) = -3x + 1.
- 2. Write a symbolic representation (formula) for a function C that calculates the cost of x gallons of gasoline at \$2.50 per gallon. Evaluate C(10) and interpret your result.
- 3. Sketch a graph of f(x) = x+3.

5. Determine the domain and range of f.

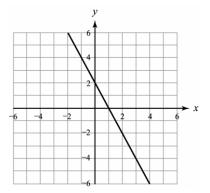

4.

- 6. A function f is represented verbally by "Cube the input x and then subtract 4." Give a symbolic representation of f.
- 7. Determine whether the graph represents a function.

- 8. Find the domain of $f(x) = \sqrt{x-5}$.
- 9. Find the slope and *y*-intercept of the graph of y = 2x 3.
- 10. Find the slope of the line passing through (1,3) and $(\frac{1}{2},1)$.
- 11. Determine the slope of the line shown in the graph.

2

- 6. _____
 - 7._____


- 13. Write the slope-intercept form of the line passing through 13. ______ the points $\left(\frac{3}{2}, 2\right)$ and $\left(1, \frac{1}{2}\right)$.
- 14. Let *f* be a linear function. Find the slope of the graph of *f*.

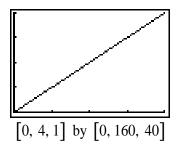
x	-2	0	2	3	4
f(x)	6	4	2	1	0

15. Let *f* be a linear function. Find the *x*- and *y*-intercepts of the graph of *f*.

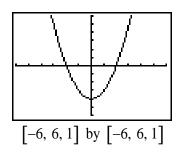
x	-2	-1	0	1	2
f(x)	9	6	3	0	-3

- 16. Give the slope-intercept form of a line perpendicular to $y = -\frac{3}{5}x 2$, passing through (6, -2).
- 17. Find the slope-intercept form for the line shown in the graph. 17. _____

15	
-	
16. <u>-</u>	

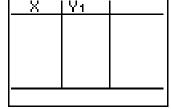

14.

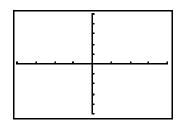
19. Find an equation of the vertical line passing through the point $\left(-\frac{2}{3},1\right)$.

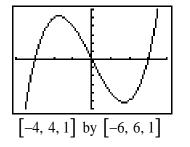

19._____

20. Find an equation of the horizontal line passing through the point $\left(\frac{3}{2}, -\frac{1}{2}\right)$.

C	hapter 2, Test Form C Name:	
1.	For the years 1890 to 1960, the median age for a man's first marriage can be modeled by $f(x) = -0.0492x + 119.1$, where x is the year. Find the median age in 1930. Round answer to the nearest year.	1
2.	The median price of a single-family home during the years 1990 to 2000 can be approximated by $P(x) = 5421x + 89,000$, where $x = 0$ corresponds to the year 1990 and $x = 10$ corresponds to the year 2000. Find the median price of a single-family home in 1998.	2
3.	Use your graphing calculator to graph $f(x) = -3x + 5$.	3. [-6, 6, 1] by [-6, 6, 1]
4.	Susan begins driving along a country road at a rate of 40 mph. The graph illustrates the distance from her place of origin after t hours. How far has Susan traveled after 3 hours?	4

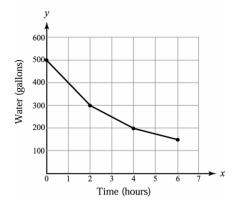

5. Determine the domain and range of f.




6. A function *f* is represented verbally by "Square the input *x* and then subtract 4." Give symbolic, numerical and graphical representations of *f*. Let x = -3, -2, -1, ..., 3

in the numerical representation (table) and let $-4 \le x \le 4$ for the graph.

6._____


- 8. Find the domain of f(x) = x 2.5.
- 9. The monthly cost of operating a car can be modeled by the linear function C(x) = 0.39x + 395, where x represents the number of miles driven.
 - (a) Find the slope of the graph of the function. What does the slope represent?
 - (b)Find the *y*-intercept of the graph of the function. What does the *y*-intercept represent?
- 10. In 1994, tuition and fees at a public four-year college were \$2125. In 1997, tuition and fees increased to \$2689. What was the average yearly increase in fees from 1994 to 1997?

10.

9. (a)_____

(b)____

11. The graph represents the amount of water (in gallons) remaining in a tank after *t* hours. At what rate was water being drained from the tank when $2 \le t \le 4$?

- 12. Write the slope-intercept form of a line with *x*-intercept 1.29 and *y*-intercept -2.58.
- 13. On Labor Day 2000, there were 24.8 travelers (in millions). On Labor Day 2004, there were 29.2 travelers (in millions). Let *x* represent the number of years since 2000. Write the slope-intercept equation of the line that passes through (0, 24.8) and (4, 29.2).
- 14. The following table shows equivalent temperatures in degrees Celsius and degrees Fahrenheit. This data can be modeled by a linear function. Use your graphing calculator to find the slope of the graph of that function.

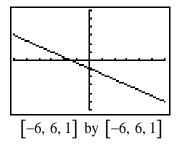
С	-40°	0°	15°	35°	100°
F	-40°	32°	59°	95°	212°

- 15. (a) Find the *y*-intercept of the graph of the linear function modeled in #14.
 - (b) What does the *y*-intercept represent?
- 16. Give the slope-intercept form of a line parallel to y = 1.28x 7.18, passing through (2, 3.17).

 12.

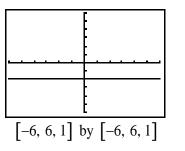
).
 13.

).
 14.


 14.

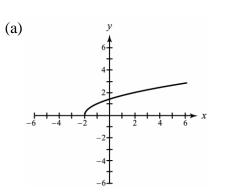
 15. (a)

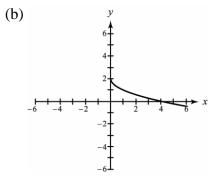
 (b)

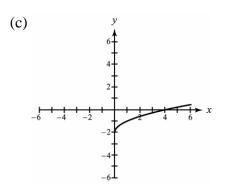

 16.

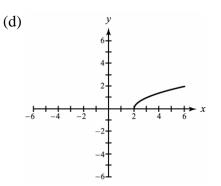
17. Find the slope-intercept form for the line shown in the graph. 17.

- 19. Find an equation of the horizontal line in the graph.

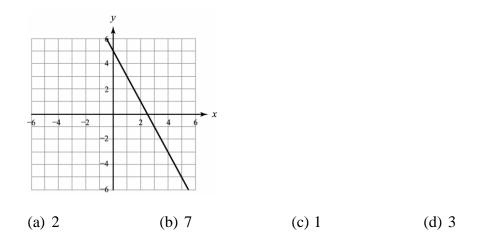




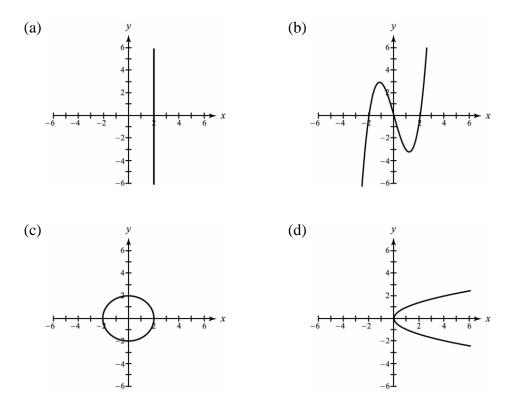

20. From 1980 to 1997, the number of U.S. marriages (in millions) could be modeled by f(x) = 2.4, where *x* represents the years since 1980. Estimate the number of marriages in 1986.


Chapter 2, Test	Form D	Nam	e:	
1. Evaluate $f(-3)$	3) if $f(x) = -x^2 + 2$.			1
(a) 11	(b) -7	(c) -11	(d) -1	
2. Evaluate $f(2)$) if $f(x) = -5x + 6$.			2
(a) -4	(b) -16	(c) 16	(d) 4	

3. Sketch a graph of $f(x) = \sqrt{x} - 2$.



4. Use the graph of f to evaluate f(1).


5. Determine the range of f.

(a) $-4 \le y \le 2$ (b) $-2 \le y \le 2$ (c) $y \ge -4$ (d) all real numbers

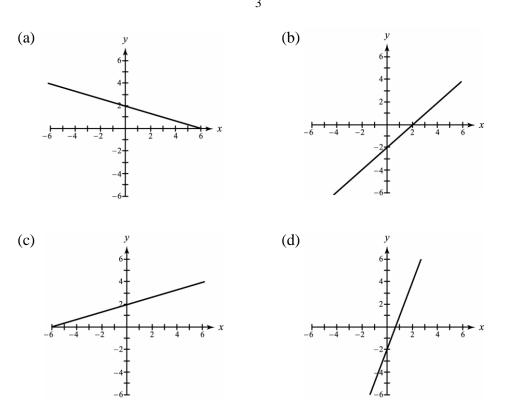
- 6. A function *f* is represented verbally by "Cube the input *x* and then add 4."6. _____Give a symbolic representation of *f*.
 - (a) $f(x) = \sqrt[3]{x+4}$ (b) $f(x) = x^3 + 4$
 - (c) $f(x) = x^3 + 64$ (d) $f(x) = (x+4)^3$

4. _____

7. Determine which graph represents a function.

- 8. Find the domain of $f(x) = -\frac{2x}{x+4}$.
 - (a) $x \neq -4$ (b) $x \le 4$ (c) $x \neq 0$ (d) $x \ge 0$
- 9. Find the slope and *y*-intercept of the graph of the linear equation $y = 3x \frac{5}{2}$.
 - (a) $m = 3; \left(\frac{5}{6}, 0\right)$ (b) $m = -\frac{1}{3}; \left(-\frac{5^2}{6}, 0\right)$ (c) $m = -\frac{1}{3}; \left(0, \frac{5}{6}\right)$ (d) $m = 3; \left(0, -\frac{5}{2}\right)$

10. Find the slope of the line passing through $\left(\frac{3}{2}, 2\right)$ and $\left(1, \frac{1}{2}\right)$.


(a) 1 (b) 3 (c) $\frac{1}{3}$ (d) -1

7._____

8._____

10. _____

9

- 12. Write the slope-intercept form of the line with *x*-intercept 3 and *y*-intercept $\frac{3}{4}$. 12. _____ (a) $y = -\frac{1}{4}x + 3$ (b) y = 4x - 12 (c) $y = -\frac{1}{4}x + \frac{3}{4}$ (d) y = 4x + 3
- 13. Find the slope-intercept form of the line passing through $\left(\frac{1}{2}, -2\right)$ and $\left(0, -3\right)$. 13. _____

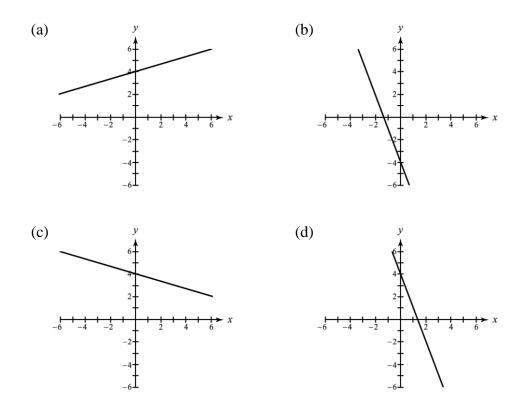
(a)
$$y = \frac{1}{2}x + \frac{5}{4}$$
 (b) $y = \frac{1}{2}x - 3$ (c) $y = 2x - 3$ (d) $y = 2x + 1$

14. Let f be a linear function. Find the slope of the graph of f.

x -20 1 2 4 2 0 8 4 -4 y (a) −2 (b) 4 (c) -4 (d) 2

11. Determine which line has a slope of $\frac{1}{3}$.

11. _____


15. Let f be a linear function. Find the x- and y-intercepts of the graph of f.

x	-4	-2	-1	0	1
у	-6	0	3	6	9

- (a) x int : (0, 6) (b) x int : (0, -2) (c) x int : (6, 0) (d) x int : (-2, 0)y - int : (-2, 0) y - int : (6, 0) y - int : (0, -2) y - int : (0, 6)

(a)
$$y = -\overline{3}x + 3$$
 (b) $y = \frac{2}{3}x - \frac{17}{3}$ (c) $y = \frac{3}{2}x - 7$ (d) $y = -\overline{3}x - 3$

17. Find the graph of the linear equation y = -3x + 4.

18. Find the equation of a line that passes through the origin and is perpendicular 18.______to the line given in #17.

(a)
$$y = -3x$$
 (b) $y = \frac{1}{2}x$ (c) $x = \frac{-3y+4}{3}$

15. _____

(d)
$$y = \frac{1}{x} + 4$$

19. Find an equation of the vertical line passing through the point $\left(\frac{3}{2}, -\frac{1}{2}\right)$. 19. _____

(a)
$$\frac{3}{2}x - \frac{1}{2}y = 0$$
 (b) $x = \frac{3}{2}$ (c) $y = -\frac{1}{2}$ (d) $y = \frac{3}{2}x - \frac{1}{2}$

20. Find an equation of the horizontal line passing through the point $\left(\frac{1}{2}, -\frac{3}{4}\right)$. 20. _____

(a)
$$y = -\frac{4}{2}$$
 (b) $y = \frac{1}{2}x - \frac{3}{4}$ (c) $x = \frac{1}{2}$ (d) $\frac{1}{2}x - \frac{3}{4}y = 0$