Test Bank for Introduction to Programming with C++ 4th Edition Diane Zak 0619217111 9780619217112

Full link download

Test Bank:

https://testbankpack.com/p/test-bank-for-introduction-to-programming-with-c-4thedition-diane-zak-0619217111-9780619217112/

Solution Manual:

https://testbankpack.com/p/solution-manual-for-introduction-to-programmingwith-c-4th-edition-diane-zak-0619217111-9780619217112/

Chapter 2 Beginning the Problem-Solving Process

True/False

Indicate whether the statement is true or false.

- _____ 1. A computer program is considered to be a solution to a problem, but one that is implemented with a computer.
- 2. The purpose of analyzing a problem is to determine the goal of solving the problem, and the items that are needed to achieve that goal.
- 3. When analyzing a problem, you always search first for the input, and then for the output.
- 4. When planning the algorithm, you must create both a flowchart and pseudocode.
- 5. A problem can have more than one solution.
- 6. Though you may have solved a problem similar to the one you are solving now, you should avoid using that problem's algorithm to solve the current problem.
- 7. You can desk-check an algorithm using its pseudocode but not its flowchart.
- 8. Most algorithms end with an instruction to print, display, or store the output items.
- 9. Pseudocode is a standardized language for writing algorithms.
- _____ 10. It is a good practice to be consistent when referring to the input, output, and processing items in the IPO chart.
- 11. The final step in the problem-solving process is to implement the program.
- 12. As a programmer, it is important to distinguish between information that truly is missing in the problem specification, and information that simply is not stated, explicitly, in the problem specification.
- _____ 13. After the instruction to enter the input items, you usually provide instructions to process those items, typically by performing some calculations on them, to achieve the problem's required results.
- 14. Let's say you have not solved a similar problem to the one you are working on and you cannot find a portion of an existing algorithm that you can use. You can reasonably conclude that not enough

information is present in the problem specification for you to solve it.

- 15. You can use a desk-check table to help you desk-check an algorithm. The table should contain one column for each input item shown in the IPO chart, but, to avoid confusion, should not contain any columns for the output items.
- 16. The term "data-checking" means that you use pencil and paper, along with sample data, to walk through each of the steps in the algorithm manually, just as if you were the computer.
- 17. When the programmer is satisfied that the algorithm is correct, he or she then translates the algorithm into a language that the computer can understand. Programmers refer to this step as tracing the algorithm.
- 18. Most algorithms begin with an instruction that enters the input items into the computer.
- _____ 19. During the planning step, programmers write the steps that will transform the input into the output.
- _____ 20. As with the output, the input typically is stated as nouns and adjectives in the problem specification.
- 21. Before you begin the desk-check, you first choose a set of sample data for the output values.

- _ 22. Pseudocode is a tool programmers use to help them test an algorithm.
- _____ 23. Algorithms use standardized symbols to show the steps the computer needs to take to accomplish the program's goal.
- _____ 24. After analyzing the problem, you start planning an algorithm.
- _____ 25. Asymmetric data is data that the program is not expecting the user to enter.

Multiple Choice

Identify the choice that best completes the statement or answers the question.

26. The first step in solving a familiar problem is t	othe problem.					
a. minimize	c. deconstruct					
b. analyze	d. transform					
27. Which of the following is the correct order of the	e problem solving process, from the first to the last?					
a. review, plan, implement, modify, evaluate						
b. review, plan, evaluate, implement, modify						
c. plan, review, implement, evaluate, modify						
d. plan, implement, evaluate, review, modify						
28. A coded algorithm is called a						
a. calculator	c. solution					
b. program	d. processor					
29. Programmers refer to the goal as the, and	the items needed to achieve the goal as the					
a. input, output	c. growth, seed					
b. output, input	d. seed, growth					
30. An algorithm is						
a. a group of unrelated problems joined toget	her to form a cluster					
b. a complete analysis of the problem and the	possible solutions					
c. the necessary input for solving a problem						
d. a set of step-by-step instructions that trans	forms the problem's input into its output					
31. Aitem represents an intermediate value th	at the algorithm uses when transforming the input into	the				
output.						
a. temp	c. processing					
b. variable	d. passover					
<u>32</u> . In programming terms, a numbered list of step	s is called					
a. pseudocode	c. desk-checking					
b. code	d. precode					
33. A(n)uses symbols to show the steps the	computer needs to take to accomplish the program's g	oal.				
a. algorithm	c. diagram					
b. hierarchy chart	d. flowchart					
34. The different symbols in a flowchart are conne	cted with lines called					
a. connectors	c. flowlines					
b. markers	d. pointers					
35. The oval symbol in a flowchart is called the	symbol.					
a. start/stop	c. intermediary					
b. input/output	d. terminal					
36. The rectangles in a flowchart are called symbols.						
a. intermediary	c. process					
b. terminal	d. space					

 37. Yo	u analyze the problem to determine the goal	of s	olving the problem, that is, the
a.	input	c.	answer
b.	algorithm	d.	output
 38. The	e input and output typically are stated as	ar	ndin the problem specification.
a.	nouns, adjectives	c.	adverbs, nouns
b.	verbs, adjectives	d.	adverbs, verbs
 39. Pro	ogrammers use a(n) chart to organize a	and	summarize the results of a problem analysis.
a.	IPO	c.	I/O
b.	hierarchy	d.	PPO
 40. The	estep is the most difficult of the proble	em-s	solving steps, primarily because most problem
spe	cifications contain either too much informat	ion	or too little information.
a.	analysis	c.	review
b.	plan	d.	implement
 41. Giv	ving directions to someone, and writing down	eac	ch direction on paper in your own words is an example
of_			
a.	a flowchart	С.	an IPO chart
b.	pseudocode	a.	an input
 42. The	e input/output symbol in a flowchart is repre	sent	ed by a
a.	circle	C.	triangle
D.	square	а.	parallelogram
 43.	data is data that the programmer is expect	ing	the user to enter.
а. ь		С.	
D.		u.	
 44. Du	ring thestep, programmers write the st	eps	that will transform the input into the output.
a. h	nlonning	с. а	eveluete
U.	plaining	u.	evaluate
 43.		ngu	Coding
a. b	Loading	с. d	Debugging
0. 46 Doi	for you have the dask shock you first sho	u.	a set of semple data for the values
 40. Del	input		terminal
a. b	nrocessing	c. d	output
17 Vo	y can draw an IPO chart by hand or by using	u. tho	facture in a Word processor
 47.10	IPO		table
a. b	chart	d.	draw
18 In 1	response to the question "What is your hour!	u. V ra	te" a user of a program enters \$10,000 A good
 nro	ogram should treat this as	y Ia	te, a user of a program enters \$10,000. A good
a.	valid data	c.	unreasonable data
b.	invalid data	d.	unethical data
49 Th	e question "What information will the comp	iter	need to know to print display or store the output
 iter	ns?" will help you determine the	ater	nood to know to print, display, or store the output
a.	input <u> </u>	c.	processing
b.	output	d.	algorithm
50. De	sk-checking, also called , means that vo	ou us	se pencil and paper, along with sample data, to walk
 thr	ough each of the steps in an algorithm manual	ally.	just as if you were the computer.
a.	pencil pushing	c.	table-top checking
b.	hand-verification	d.	hand-tracing

ch02 Answer Section

TRUE/FALSE

1. ANS: T	PTS:	1	REF: 39
2. ANS: T	PTS:	1	REF: 40
3. ANS: F	PTS:	1	REF: 40
4. ANS: F	PTS:	1	REF: 46
5. ANS: T	PTS:	1	REF: 46
6. ANS: F	PTS:	1	REF: 46
7. ANS: F	PTS:	1	REF: 49
8. ANS: T	PTS:	1	REF: 44
9. ANS: F	PTS:	1	REF: 45
10. ANS: T	PTS:	1	REF: 45
11. ANS: F	PTS:	1	REF: 40
12. ANS: T	PTS:	1	REF: 42
13. ANS: T	PTS:	1	REF: 43
14. ANS: F	PTS:	1	REF: 48
15. ANS: F	PTS:	1	REF: 49
16. ANS: F	PTS:	1	REF: 40
17. ANS: F	PTS:	1	REF: 40
18. ANS: T	PTS:	1	REF: 43
19. ANS: T	PTS:	1	REF: 54
20. ANS: T	PTS:	1	REF: 41
21. ANS: F	PTS:	1	REF: 49
22. ANS: F	PTS:	1	REF: 45
23. ANS: F	PTS:	1	REF: 45
24. ANS: T	PTS:	1	REF: 43
25. ANS: F	PTS:	1	REF: 51

MULTIPLE CHOICE

26. ANS: B	PTS:	1	REF: 38
27. ANS: C	PTS:	1	REF: 39
28. ANS: B	PTS:	1	REF: 40
29. ANS: B	PTS:	1	REF: 40
30. ANS: D	PTS:	1	REF: 43
31. ANS: C	PTS:	1	REF: 44
32. ANS: A	PTS:	1	REF: 45
33. ANS: D	PTS:	1	REF: 45
34. ANS: C	PTS:	1	REF: 46
35. ANS: A	PTS:	1	REF: 46
36. ANS: C	PTS:	1	REF: 46
37. ANS: D	PTS:	1	REF: 40
38. ANS: A	PTS:	1	REF: 41

39. ANS:	А	PTS:	1	REF:	41
40. ANS:	А	PTS:	1	REF:	42
41. ANS:	В	PTS:	1	REF:	45
42. ANS:	D	PTS:	1	REF:	46
43. ANS:	В	PTS:	1	REF:	51
44. ANS:	В	PTS:	1	REF:	54
45. ANS:	С	PTS:	1	REF:	54
46. ANS:	А	PTS:	1	REF:	49
47. ANS:	С	PTS:	1	REF:	41
48. ANS:	В	PTS:	1	REF:	51
49. ANS:	А	PTS:	1	REF:	41
50. ANS:	D	PTS:	1	REF:	40