Solution Manual for Active Learning Guide 1st Edition Heuvelen Gentile Heuvelen 032186445X

9780321864451

Full link download
Solution Manual:
https://testbankpack.com/p/solution-
manual-for-active-learning-guide-1st-edition-heuvelen-gentile-heuvelen-
$032186445 x-9780321864451 /$

2 ㅁㅁ

Kinematics
Tullatadu.
2.1 Quantitative Concept Building and Testing

EQUIPMENT

u Two constant-motion cars that move at different constant speeds (slower with one battery or faster with two batteries)
O Sugar packets or other small objects that won't bounce
Metersticks
Watch with a second hand
\square Fancart
O Metal track
o Motion detector
o Computer
o Stopwatch
\square Pulleys
o Strings
\square Small block of about $30-50 \mathrm{~g}$

The table indicates your position along the path at different clock readings.
Clock reading $\mathbf{t}(\mathrm{s}) \quad$ Position $\mathbf{x}(\mathrm{m})$

$$
\begin{array}{lr}
\mathbf{t}=0 & \mathrm{x} \%=640 \\
t,=20 & x,=500 \\
l=40 & \mathrm{X}=360 \\
t=60 & \mathrm{x}^{\%},=220 \boldsymbol{t}=
\end{array}
$$

80

$$
\mathrm{X},=80
$$

$t=100$
$x,=60$
$t,=120$
$x \phi=-200$
a. Write everything you can about the bike ride and indicate any pattern in the data.

Every 20 seconds the position changed by 140 meters.

1a+6l Eoe: laO

$1 \% 46$ dilate: 240%
b. Construct a position-versus-clock reading graph for the bike trip.

c. Write a function $x()$ of the graph in part b .

$$
\begin{aligned}
& x(t)=m t+b \\
& x(t)=-7 \frac{m}{s}=+640 \mathrm{~m}
\end{aligned}
$$

d. What is the physical meaning of the slope of the function and the intercept on the vertical x axis? Explain what it means if these quantities are positive or negative.

- Slope describes hour mure the position changes per unit of time.
- X-intescept +le rime
>>ea Y-O.
2.1.2 Observe and describe In the table, we provide data describing a glider moving on an air track.

Clock reading $t(\mathrm{~s}) \quad$ Position $x(\mathrm{~m})$

$\mathrm{t},=0.000$	$\mathrm{x} \%=0.01 \mathrm{t}$,
$=0.133$	$x,=0.07$
$\mathrm{t},=0.267$	$x,=0.13$
$\mathrm{t},=0.400$	$X=0.20$
$\mathrm{t},=0.533$	$\mathrm{x},=0.26 t$,
$=0.667$	$x,-0.33$

$\mathrm{t},=0.800 \quad \mathrm{x},=0.39$
a. Create a position-versus-clock reading graph using the data. Explain the meaning of the slope of the graph.

b. What common name could you use for the slope?

Velocity or speed
c. Use the graph from part a to write a mathematical function that gives the position of the glider as a function of the clock reading.

$$
x(t)=0.01 n+\left(0.45 \frac{m}{s}\right) t
$$

d. Would the answers be different if data were taken for the back of the glider?

Yes, the val position would be different
+keceAe the x-axis intercept: oo td be different.
2.1.3 Analyze The figure at the right shows a velocity • $\quad v(\mathrm{~m} / \mathrm{s})$ versus-clock reading graph that represents the motion of a bicycle modeled as a point particle moving along a straight bike path. The positive direction of the coordinate axis is toward the east

a. Use the graph to estimate the bike's displacement from a clock reading of 10 s to a clock reading of 15 s . Explain.

$$
\begin{aligned}
t=10 \mathrm{~s} & \rightarrow x=v \cdot t=4 \frac{\mathrm{~m}}{\mathrm{~s}} \cdot 10 \mathrm{~s}=40 \mathrm{~m} \\
t=15 \mathrm{~s} & \rightarrow x=4 \frac{\mathrm{~s}}{\mathrm{~s}} \cdot 15 \mathrm{~s}=60 \mathrm{~m} \\
d= & x_{f}-x_{i}=60 \mathrm{~m}-40 \mathrm{~m}=2+0 \mathrm{cr} .
\end{aligned}
$$

b. Use the graph to estimate its displacement from a clock reading of 0 s to 20 s .

$$
\begin{aligned}
& \mathbf{t}-=-x-\mathbf{O}+ \\
& \mathbf{t}=\mathbf{O}->Y-\mathbf{O} \% \\
& d=X_{f}-X_{i}=80 \mathrm{~m}-0 \mathrm{~m}=80 \mathrm{~m}
\end{aligned}
$$

c. Formulate a general rule for using a velocity-versus-clock reading graph to determine an object's displacement during some time interval if the object is moving at constant velocity.

$$
\begin{aligned}
& d=x_{f}-x_{i}=v_{i} \cdot v_{t}=v\left(t_{i}-t_{i}\right)=v \Delta t \\
& \text { also, } 0=\text { ares urider carve. during time interval. }
\end{aligned}
$$

2.1.4 Predict and test Gather two motorized cars.

a. For car A, use sugar packets, a meterstick, and a watch with a second hand to design an experiment to decide if the car moves with constant velocity, If it does, determine the magnitude of the velocity (the car's speed). Make a data table to record your measurements,

$$
\begin{aligned}
& \text { Drop sugar packets at the position ai the in } f \text {, couCh clock }
\end{aligned}
$$

$$
\begin{aligned}
& x-\mathbf{O}+(0.2=\boldsymbol{z} \\
& V=0.20 \text { ir }
\end{aligned}
$$

b. For car B, use the same equipment as in part a to design an experiment to decide if this car moves with constant velocity If it does, determine the magnitude of the velocity (the car's speed).

$t \&)$	$*(\sigma$
0	o
1	0.40
a	0.72
3	$1: 19$
!.	$1:(e$
sT	32.90
c	$a-1$

$$
\begin{gathered}
X C=0+/ 6.5 ? 4 \\
\mathrm{~V}-0.40^{\prime \prime}
\end{gathered}
$$

c. Fill in the table that follows to make your prediction of where the two cars will meet if you release them 2.0 m apart and moving straight toward each other. To make a prediction, use your knowledge of the cars' speeds gathered from parts a and b and the relationship between the initial state, velocity, time elapsed, and the final state of an object.

Experiment

- Car A
- Car B
- Write the position-versus•
- Choose the origin and write $x(t)$ functions.

car

t@:	Y re
0	2.00
1	$!. t 00$
2	$1 . a 0$
3	0.0
1.1	0.400
s	$0.0 c$

- Predict where the cars will meet.
- Perform the experiment; record the meeting loca• dion and compare it to your prediction.

2.1.5 Observe and analyze You place a cart on a smooth metal track tilted at a 10° horizontal angle.
 The data table provided records the position of the front of the cart at different times. The x axis points along the track.

Clock reading $t(\mathrm{~s})$	Position $x(\mathbf{m})$
$t,=0.00$	$x \neq 0.00$
$\mathbf{t}=0.50$	$\mathrm{x},=0.21$
$t,=1.00$	$\mathrm{x}=1.91$
$t,=1.50$	$\mathrm{x},=3.40$
$\mathrm{t},=2.00$	$x,=5.31$
$t,=2.50$	

a. Draw a motion diagram for the cart; consider the cart as a particle.

b. Draw a position-versus-clock reading graph for the cart. Discuss whether the graph resembles a position-versus-clock

c. Calculate the average velocity for the cart for each time interval and fill in the table that follows.

- Time interval $A t=t,-t_{-}$

Displacement $A x=x,-\mathrm{x},-$

0.21
O.s0

0.So

$$
0.50
$$

0.64

- Average velocity =

1.28

$$
2.12
$$

$$
2-\not \subset
$$

$$
3.82
$$

d. Plot this average velocity on a velocity-versus-clock reading graph. The clock reading coordinate for each average veloce

e. Discuss the shape of the graph: How does the speed change as time elapses? Suggest a name for the slope of the graph.

$$
\begin{aligned}
& \text { The graph is a straight line so the velocity } \\
& \text { changes ot a constart rate }
\end{aligned}
$$

Soag@lle nome for the Sip : facelertion
f. Write an equation for the velocity as a function of a clock reading that is consistent with the graph line, Discuss how your equation would change if you started observing the cart when it was already moving down the same inclined plane. Discuss how the equation would change if the cart was slowing down instead of speeding up. How would it change if it was moving in a different direction?

$$
V(t)=0+\left(1.7 \frac{\mathrm{~ms}}{\mathrm{~s}}\right) t
$$

- Jd ts e slotael ogicá 4. , \ c az d +he

Le. $v=$ Lace C^{+}
o ld be
2.1.6 Derive Use the method developed in Activity 2.I. 3 to find a relationship between the displace • ment of the cart described in Activity 2.1.5 during some time interval, its velocity at the beginning of this interval, its acceleration, and the length of the time interval. Start by drawing a velocity-versus£lock reading graph and examining the area under the graph line.

Bt
2.1.7 Analyze Assemble a fan cart on a metal track, a motion detector connected to a computer, a meterstick, and tstöpatch. The cart is kifown to move with constant acceleration, but the acceleration is not known. Start the fan cart at rest on one end of the level track.

$$
\Delta x=V_{i} t+\frac{1}{2} a t^{2}
$$

c. Then use the motion detector to measure the acceleration.

$$
\chi=0.59 \therefore \mathrm{~m} / \mathrm{s}^{2}
$$

d. Compare the results and account for the differences. Think of the assumptions that you made and experimental uncere tainties as a result of your equipment.

$$
\begin{aligned}
& \text { Te \&+frecce b'ore<< Ae rcssocd oni calclad vle, } \\
& \text { is within the limits of experimental uncertianties }
\end{aligned}
$$

2.1.8 Predict and test Place a low-friction cart on a long, smooth table (or you can place a cart on a metal track). Assemble a motion detector connected to a computer, a pulley, a string going over the pulley con• nected to the cart on one end (see the illustration at the right) and to a small hanging block (an object of about $30-50 \mathrm{~g}$) on the other end. Collect a meterstick and a watch with a second hand.

a. Use the motion detector to find the acceleration of the cart after the hanging block is released. Record it here.

b. Now place a toy motorized car on the right end of the table (you now know its constant speed from Activity 2.1.4). PreP dict where the car and the cart will meet on the table if you face them directly opposite each other and then release them simultaneously. Use the position-versus-time relationship for constant-velocity motion and for constant-acceleration motion to help you make your prediction.

$$
\begin{aligned}
& \text { Motion mode } \ \text { le } \mathbf{l}^{2}+\quad X=, \quad \mathbf{e t}^{2} \\
& \text { Motion size } \quad \text { cos: } Y=X_{l}-v t \\
& \text { tee cons rant }\left(x_{c}, t_{c}\right) \text { using model a" motion }
\end{aligned}
$$

c. After you make your prediction, release the car and the cart and test your prediction. Do the results support your predic• dion in part b within experimental uncertainties? Explain carefully.

$$
\begin{aligned}
& \text { Student: test precision with } \\
& \text { experiment. }
\end{aligned}
$$

2.1.9 Analyze The data recorded in the completed table are a record of the up and down motion of the center of a ball thrown up into the air (they axis points up).

Fill in the table that follows.

- Sketch a motion diagram for the ball modeled as a particle.
 clock reading graph.
- Draw a position-versus• clock reading graph .

Use the velocity-versus• Use the velocity-versus• clock reading to determine clock reading to determine the ball's acceleration at the distance that the ball the top of its trajectory traveled during the trip from clock reading 0.000 to 0.800 s .

Find its slope. What do you call this slope?

See $=-0.2 \ll 1$
his "s +ie acceleral n

$V_{\text {top }}=0 \mathrm{~m} / \mathrm{s}$

Can you reconcile these two answers?

the di lace krauelel lu + te object. Space tAke to tcaa)es ar< Osqreak, i+ is only eccssary \#, \&la lo \ф + le ocea efl one cad COble is

$$
\left.\left.r-2<>-20_{i}(05) 02\right)\right)
$$

¥: \to <
yes_it is possible ts hove zero veloce d o-on-zero dareflécakio. Toe louis velocity is ajsy:
+tree-1 Eco, th

V1oe.k pe >s
sic ever a4'ee ~ po ${ }^{\circ} \cdot->$
s Ke are Sous Os +e
co 9 zero, e lope re+a5
2.1.10 Summarize Analyze the information in the table below and complete the empty cells to sum• marize your knowledge of motion with constant velocity and with constant acceleration, using differ• ent representations of motion.

- Describe the motion.
- In words, providing an
example

- With a graph of acceleration-versus-clock reading

- Mathematically as a(t)

$$
a(t)=0
$$

$$
a(t)=\mathrm{const}
$$

2.2 Quantitative Reasoning

EQUIPMENT

Track
o Low-friction cart
o Stopwatch
u Meterstick
o Cotton balls

Problem-Solving Strategy: Kinematics Problems

PICTURE AND TRANSLATE

- Sketch the situation described in the problem.
- Include a coordinate system and indicate the origin on the sketch.
- Write the known and relevant information as physical quantities on the sketch.

SIMPLIFY

- Decide if you can consider a moving object as a particle.
- Decide whether you have enough information to consider this as motion with constant velocity or with constant acceleration.

REPRESENT PHYSICALLY

- Decide what physical representation is helpful to solve the problem.
- Draw a motion diagram or if appropriate an $x(t)$, $\mathrm{v}(\mathrm{t})$, and/or $a(t)$ graph.

REPRESENT MATHEMATICALLY

- Use your physical representation to construct mathematical representations of the process. Be sure to consider the signs of the velocity and acceleration.

SOLVE AND EVALUATE

- Solve the equations and evaluate the results to see if they are reasonable, To assess for reason• ableness, check the units, limiting cases, and the magnitude of the unknown quantity and make sure they make intuitive sense.
2.2.1 Represent and reason A car moves west at $40 \mathrm{~m} / \mathrm{s}$ on a straight highway. The car's motion at the time we start describing it is presented in the illustration below using three different reference frames. Note the description in the first reference frame. Answer the following questions.

a. Who is the car's velocity in the two other reference frames?

$$
\text { Reference frame } 3: V=-40 \mathrm{~m} / \mathrm{s}
$$

b, A bicycle moves east at constant speed on the same straight road. The bicycle's motion is described in the illustration below at one particular time using one coordinate system. Describe the bicycle's location and velocity at the same time, using the last two coon nate systems shown in the illustration for part a.

Reference frame 2: $x_{0}=100 \mathrm{~m}, V=-10 \mathrm{~m} / \mathrm{s}$
Reference frame 3: $X_{0}=0, V=10 \mathrm{~m} / \mathrm{s}$

2-18 CHAPTER TWO KINEMATICS

c. A motorcyclist rides west on the same road at constant speed. Her motion is depicted in the illustration below at one particular time using one coordinate system. Describe her location and velocity at the same time, using the last two coordinate systems given in part a.

$$
\begin{array}{ll}
r f 2: & x_{0}=-300 \mathrm{~m}, \\
v_{1}=15 \mathrm{~m} / \mathrm{s} \\
r f 3: & x_{0}=400 \mathrm{~m}, \\
v_{0} & =-15 \mathrm{~m} / \mathrm{s}
\end{array}
$$

2.2.2 Picture and translate The driver of a car moving east at speed vo sees a red light in front of him and hits the brakes after a short reaction-time interval. The car slows down at a rate of $a \bullet \mathrm{~A}$ typical reaction time is 0.8 s . The situation is represented in the picture below. Note the details in the illustration.

a. Where is the origin of the reference frame?

$$
\begin{aligned}
& t=0 \\
& x=0
\end{aligned}
$$

b. What information given in the problem is missing from the illustration? Add it to the illustration.
2.2.3 Picture and translate Assume Jabari is running at a constant speed vo, trying to catch a bus that starts at rest and moves with the acceleration as.
a. The illustration below represents when and where Jabari catches the bus. Note the details in the illustration.

b. What is the reference frame used in the illustration?

c. What information given in the problem is missing from the illustration? Add it to the illustration.
2.2.4 Represent and reason An apple falls from a tree, starting a distance of 2.0 m from the top of the grass. While falling, the apple has a downward acceleration of $9.8 \mathrm{~m} / \mathrm{s}^{2}$. As the apple sinks into the grass, its speed decreases, until it finally stops after sinking 0.050 m into the grass. Represent this situa• tion with a picture, using the techniques from Activities 2.2.1 through 2.2.3.

2.2.5 Represent and reason Truck A, starting at rest, moves faster and taster toward the east so that its speed increases by 3.0 mis each second. At the same time that truck A begins to move, car $B, 200 \mathrm{~m}$ east of truck A and moving at speed $16 \mathrm{~m} / \mathrm{s}$ toward the east, begins to slow down by 1.0 mis each second.

Fill in the table that follows, using a different description for each coordinate axis shown.

- Indicate the value of the initial velocity:

-Truc kA

(coordinate system b)

- Car B
(coordinate system a)

$$
x_{0}=200 \mathrm{~m}
$$

- Car B (coordinate system b)

$$
x_{b}=0
$$

- Car B

 (coordinate system a)

- Car B (coordinate system b)

$$
V_{b}=16 \mathrm{~m} / \mathrm{s}
$$

2.2.6 Represent and reason The motion diagrams in the illustrations represent the motion of differ int objects modeled as particles. The arrows are velocity arrows.

A different coordinate axis is provided in each situation. An open circle indicates the location of interest.
a. Draw acceleration arrows on each diagram above.
b. Fill in the table that follows. Be sure to make your choices relative to the coordinate axis shown in each motion diagram.

- Describe the motion in words.

- Determine the $\operatorname{sign}(+, 0$, or --) of the position.

- Determine the $\operatorname{sign}(+, 0$, or) of the velocity.

- Determine the $\operatorname{sign}(+, 0$, or -) of the acceleration

Location I:

a
Location (4)

2.2.7 Represent and reason A stoplight turns yellow when you are 20 m from the edge of the inter• section. Your car is traveling at $12 \mathrm{~m} / \mathrm{s}$. After you hit the brakes, your car's speed decreases at a rate of 6.0 mis each second . Fill in the table that follows. (Ignore the reaction time needed to bring your-footV_{0} ir ofimulise floor to 橧 brake pedal.)

soncuaclotion

- Write $\mathrm{x}(\mathrm{t})$ and $\mathrm{v}(\mathrm{t})$
expressions

$$
X_{\sigma+(s-4(5)}
$$

$$
v @-(25)-(5) \phi
$$

2.2.8 Represent and reason You ride your bike west at a speed of 8.0 miss. Your friend, 400 m east of you, is riding her bike west at a speed of 12 mis .
a. Fill in the table that follows. (Consider the bikes as particles.)

PICTURE AND TRANSLATE

- Draw a sketch of the initial situation and choose a coordinate system to describe the motion of both bikes.

REPRESENT PHYSICALLY

- Draw a motion diagram for each bike.

REPRESENT MATHEMATICALLY

- Construct equations that describe the positions of each bicycle as a function of time.

$$
\begin{aligned}
& \text { BiM) } 4=X,+V E \quad \underline{B i x(n)}=X,+V \mathbb{L} \\
& \ll=(2) \phi \quad x \ll)--0 a>(35) \%
\end{aligned}
$$

SOLVE AND EVALUATE

- Use the equations to determine when the bicycles are at the same position. Does your result make intuitive sense?

$$
\begin{aligned}
& \mathrm{Y},=¥ \quad \text { Yes, beco9se ry } \\
& {\left[\begin{array}{ll}
(3) t=-n \mathrm{O} .5 t & \text { Tend ir +rue' } Z a \\
4 c 0=(a 3) t-Z) & \text { is Cake }+ \text { ksıl }\}
\end{array}\right.} \\
& \operatorname{co} \text {-(\$) be foo <csdls !s } \\
& 4
\end{aligned}
$$

$$
\begin{aligned}
& +6 \\
& \frac{400 m}{4 \frac{m}{s}}=t \\
& \frac{1}{t}=100 \mathrm{sec}
\end{aligned}
$$

After you fill in the table, complete the following:
$\$ \sim / \sim \sim$ Draw a position-versus-clock $\mathrm{r} \sim$ din - ph for each bicycle using the same set of axes.

c. Are the slopes of the two lines and their initial values consistent with the actual motion and the coordinate system used to describe the motion?

es

d. Does the appearance of the graph correspond to the calculated answer for the time when the bicycles are at the same position? Explain.

$$
\begin{aligned}
& \text { U@, the 1<e ik<sec a he po nt }(100,00) 5 \% \\
& +e \text { clock radire ot Ie ion } 4 \text { tAke } i \nless e c s e c k r n \\
& \text { is } 100 \text { seconds. }
\end{aligned}
$$

e. Draw a velocity-versus-time graph with lines representing the velocity of each bicycle.

f. Are the signs consistent with the word description of the motion?

```
veS, I rae pssiwe vlo\ becsose ke on\is
    * <r ke posty Y-Adrecna
```

2.2.9 Represent and reason An object moves horizontally. The equations below represent its motion mathematically. Fill in the table that follows to indicate actual motion that these two equations together might describe.
a. $v=+20 \mathrm{~m} / \mathrm{s}+(-2 \mathrm{~m} / \mathrm{s})$
b. $r=-200 \mathrm{~m}+(+20 \mathrm{~m} / \mathrm{s}) \mathrm{t}+(1 / 2)(-2 \mathrm{~m} / \mathrm{s})^{2}$

- Describe the motion in words.

$$
\begin{aligned}
& 1_{0}=20 \mathrm{~m} / \mathrm{s} \\
& a=-2 \mathrm{~m} / \mathrm{s}^{2} \\
& X_{0}=-200 \mathrm{~m}
\end{aligned}
$$

d cos is op0coach. S
st +rale at ôotrff: 200 meters be!'re the oaSt it begins to slow down af 0 , call $a^{\circ} 0-\left\{_{2}\right.$

- Sketch the process.
- Draw a motion diagram.
- Draw a position-versus-time graph

Draw a velocity-versus-time graph.

- Determine when and where the object will stop.

$$
\begin{aligned}
& v=20 \mathrm{~m} / \mathrm{s}-2 \frac{\pi}{s} t \\
& 0=20 \frac{\pi}{3}-2 \frac{\mathrm{~m}}{\mathrm{~s} t} t \\
& t=5
\end{aligned}
$$

$$
\begin{gathered}
X--20 \Theta-(0 ?) \mathrm{e}-(23 \Psi \\
Y=-200 \%+(36 ;) 16,-1 £\left(s^{*}\right. \\
X=-100 \mathrm{~m}
\end{gathered}
$$

2.2.10 Regular problem While traveling in your car at $24 \mathrm{~m} / \mathrm{s}$, you find that traffic has stopped 50 m in front of you. Will you smash into the back of the car stopped in front ofyou? Your reaction time is 0.80 s and the magnitude of the car acceleration is $8.0 \mathrm{~m} / \mathrm{s}$ after the brakes have been applied. List all the assumptions you make.

\%ce

$$
\begin{aligned}
Y= & X ;+V \mathbf{t} \\
& -S O,-(33 . z) \quad Y_{\text {op }}
\end{aligned}
$$

fssopg $+2 \mathbf{O}$
$\boldsymbol{\&}$ - s red -led as
o poi gsce

1) $R e \lll \mathrm{e} 63, s$ s $\mathrm{Co}: a^{\prime}$ ace she des.r past

2) $L S<$

```
bccoose I cs slow-
O @? k ho* 4aф
re 3 s&4er8. + go 4.. -2/. 4 O],
```

-Hi is $S_{\ll e l 《 c s} \%$ +He eft $\mathrm{R}+e$ slppd cor=, I || ceca.
2.2.11 Regular problem Your summer job is with an automobile accident avoidance research team. The system they are investigating sends out infrared radiation from an avoidance device in the car. The infrared signal reflects from an object in front of the car and returns to the avoidance device. The device measures the time delay and is able to process the signal in 0.010 s . If a hazard is indicated, the signal causes the car's brakes to be applied in another 0.060 s . The car can slow to a stop with an acceleration of $8.0 \mathrm{~m} / \mathrm{s}^{2}$. Determine the shortest distance to a stationary object on the freeway that can be avoided with

$$
-j g-\mathrm{res}>=\mathrm{Eks} \mathrm{I}^{\prime \prime} \longrightarrow \text { we, re @adler } i t \% \text { H pats }
$$

this device if the car is traveling at 28 is (63 mph). Infrared radiation travels at a speed of $3.0 \times 10 \mathrm{~m} / \mathrm{s}$.

$$
\begin{aligned}
& \text { V,- } V^{*} \text { - } 2 A x
\end{aligned}
$$

$$
\begin{aligned}
& \text { u? } \\
& \text { Y-4H?\% } \\
& \mathrm{K},=\mathrm{X},+{ }^{+} \mathbf{V} \mathbf{t} \\
& \text { so.@. = , - ? (0S) } \\
& ¥,- \text { - } \% \\
& X,=X,+V t \text {, } \\
& \$ 09 .)_{-}(-2 s ?(3) \\
& \mathrm{Y},=\$ 0 . \%
\end{aligned}
$$

2-30 CHAPTER TWO KINEMATICS
Brake problem into two ports, distance traveled during reacinon time, and the distance trametied while braking
shopped
cor:

$$
u=8 \mathrm{~m} / \mathrm{s}^{2}
$$

$$
V_{0}=-24 \mathrm{cmis}
$$

x_{1}

$$
x_{1}=30.8 \mathrm{~m}
$$

na man and

\square
\square
\square

\square
\square

\qquad
(4) Solve for x_{0}

Assume: IR signal travels $2 x_{1}$

$$
t_{I Q}=\frac{2 X_{1}}{V_{I R}}=\frac{2(50.96 \mathrm{~m})}{3 \times 10^{8 \mathrm{~m} / \mathrm{s}}}=3.4 \times 10^{-7} \mathrm{~s}
$$

\square r
2.2.12 Regular problem During a heated conversation, you step backward off a $1.2-\mathrm{m}$ ledge. You land stiff-legged and stop in 0.020 m . Determine your speed just before reaching the floor and your acceleration while stopping. What assumptions did you make? Can you model yourself as a particle to solve this problem?

> Te vk.iecl is (dele s $\{\langle i z$ gee.

V

2.2.13 Regular problem The fuel in a bottle rocket burns for 2.0 s . Wi le burning, the rocket moves upward with an acceleration of $30 \mathrm{~m} / \mathrm{s}^{2}$.

a. What is the vertical distance traveled while the fuel is still burning, and how fast is it traveling at the end of le burn?

. <

- V"-2003)X_31005

$$
{ }^{1} \mathrm{~S}
$$

b. After the fuel stops burning, the rocket continues upward but with a velocity decreasing at a rate of about $10 \mathrm{~m} / \mathrm{S}$. Estimate the maximum height that the rocket reaches. What assumptions have you made while working through this problem?

$$
A^{-} \quad S_{-} \quad 7 \mathrm{e}^{\prime-}=10_{3 "}
$$

1.2 m (1) Specd conore reachina f loor

Assumptions:

(2) Acceleration while stopping CHAPTER Two kinemais 2-31

$$
A=\frac{0-\left(4.85 \frac{\mathrm{~m}}{3}\right)^{2}}{2(0.02 \mathrm{~m})}=-588 \mathrm{~m} / \mathrm{s}^{2}
$$

I foond the acceleration while stoppina to be
 - -3

\square
\qquad -

$$
y_{\max }=y_{1}+y_{2}=60 \mathrm{~m}+180 \mathrm{~m}=240 \mathrm{~m}
$$

2.2.14 Regular problem While concentrating on catching the football, a wide receiver on a football team runs into the goalpost. He was originally moving at $10.0 \mathrm{~m} / \mathrm{s}$ and bounced back at 2.0 mis . A video of the collision indicates that it lasted 0.020 s . Determine the acceleration of the receiver during the collision. Indicate any assumptions you made. How will you model the receiver to solve the problem?

2.2.15 Evaluate the solution

The problem: A firefighter slides a distance of 2.0 mat increasing speed for 2.0 s down a firepole (she holds on so she doesn't move too fast at the bottom). She bends her knees at the bottom and stops in 0.10 m . Determine her speed at the end of the slide and just before she contacts the floor. What is her acceleration while stopping?
Proposed solution:
$v=v \%+a t=0+(9.8 \mathrm{~m} / \mathrm{s})(2.0 \mathrm{~s})=19.6 \mathrm{~m} / \mathrm{s}$
$a=(-\mathrm{V}) / 2(\mathrm{x}--\mathrm{x} / \mathrm{c})=[\mathrm{O}-(19.6 \mathrm{~m} / \mathrm{s})] / 2(0.10 \mathrm{~m})=-1920.8 \mathrm{~m} / \mathrm{s}$?
a. Identify any errors in the solution.
$\mathrm{Tl}_{6}^{\%}$ ©fiers oeelacokisn was 61 •, \mathbf{Z}. er overage Sped as (2)/(a- " 1 "1, Assons comsat accelerskion, $\operatorname{ker}\left\{\subset 1\right.$ speed oct $\odot 2^{\prime \prime} /, S \%$ the accelecason akiie $a=\frac{-\operatorname{tepp}\left(00_{9}-y_{0}^{a}\right)}{2\left(x-x_{0}\right)}=\frac{-(2 \mathrm{~s} 2)]}{O-20 \mathrm{~m} / \mathrm{s}^{2}}$

$$
2(-0.10 \gg
$$

2-32 CHAPTER TWO KINEMATICS
b. Provide a corrected solution if there are errors.

Acceleration while stopping:

$$
a=\frac{v_{1}^{2}-V^{z}}{2\left(-z_{-}\right.}=\frac{0-\left(-20 \frac{\mathrm{~m}}{\mathrm{~s}}\right)^{2}}{2(-0.10 \mathrm{~m})}=20 \mathrm{~m} / \mathrm{s}^{2}
$$

2.2.16 Evaluate the solution

The problem: You are driving at 20 wis and slam on the brakes to avoid a goose walking across the road. You stop in 1.2 s . How far did you travel after hitting the brakes?
Proposed solution:

$$
\left(\mathrm{x}-\mathrm{x}^{\gamma} / \mathrm{c}\right)=v i=(20 \mathrm{~m} / \mathrm{s})(1.2 \mathrm{~s})=24 \mathrm{~m}
$$

a. Identify any missing steps and/or errors in the solution.

]
b. Provide a corrected solution if there are missing steps and/or errors.

$$
\left(x-x_{0}\right)=\bar{v}_{t}=(10 \mathrm{~m} / \mathrm{s})(1.2 \mathrm{~s})=12 \mathrm{~m}
$$

$$
\begin{aligned}
& \frac{205_{+} \mathrm{O}}{2}=10 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

2.2.17 Design an experiment You have a track tilted at a small angle, a toy car (not motorized), a stopwatch, and a meterstick.
a. Describe in detail an experiment that you can use to determine if the car moves at constant speed, constant acceleration, or changing acceleration along the track.

b. Sketch the-apparatts. Write on the sketeh-what you-will measure and what you wil'calculate. CO»Ste»t>accelercrt \bar{z}.

(ब)
c. List experimental uncertainties and how you-will minimize them.

Tee Me once - g in boll qua. lies <e ea\$oG, +le di<lance. ow e clock (eedo. e on wwinize ike by performing many trails.
d. Perform the experiment; record the data in a table and use a best-fit function for the data to make a judgment.
Students should perform the experiment an rove their data.
e. Write your judgment about the car's motion.

Te data. suppoc 1 +le Cooslant acelecotea Ode $\$<i 5 \mathbf{a}$.

2.2.18 Design an experiment You have a cotton ball, a stopwatch, and a meterstick.
a. Describe in detail an experiment that you can perform to determine whether the cotton ball falls with constant accelera• dion or changing acceleration.
 be o thegtec He plot 1 e godrisn uk kcae., and the Vekc e. Ace. Un co <ale R£@teal geliclias $K r e a^{h}$ CSS) Ie 49ype > <ism.
tumamoctum

c. Write the physical quantities that you will measure and the quantities that you will calculate.

Te compler usll casocc pesidis on clock reading. Te computer \Longleftrightarrow calcololc: $\mathbf{1}+\mathrm{s}$, using the daIs. allecAe~
d. List experimental uncertainties and how you will minimize them.

TWice acre uncertainties in the pos\#ion On clos< reading voes Cold' Te Giiksize them we can increase le nusooc 1, estlec Its So that more data is token.

e. Perform the experiment, record the data in a table and use a best-fit function for the data to make a judgment.
students will f, the experiment and include their dado co
\qquad
f. Write your judgment -about the ball's-metien.--

