# Solution Manual for Algebra and Trigonometry 4th Edition Stewart Redlin Watson 1305071743 9781305071742

Full link download

Solution Manual:

https://testbankpack.com/p/solution-manual-for-algebra-and-trigonometry-4th-edition-stewart-redlin-watson-1305071743-9781305071742/

# **CONTENTS**

¥ **PROLOGUE:** Principles of Problem Solving 1

| CHAPTER <b>P</b> | Prerequisites                                          | 3  |
|------------------|--------------------------------------------------------|----|
| P.1              | Modeling the Real World with Algebra 3                 |    |
| P.2              | Real Numbers 4                                         |    |
| P.3              | Integer Exponents and Scientific Notation 9            |    |
| P.4              | Rational Exponents and Radicals 14                     |    |
| P.5              | Algebraic Expressions 18                               |    |
| P.6              | Factoring 22                                           |    |
| P.7              | Rational Expressions 27                                |    |
| P.8              | Solving Basic Equations 34                             |    |
| P.9              | Modeling with Equations 39                             |    |
|                  | Chapter P Review 45                                    |    |
|                  | Chapter P Test 51                                      |    |
| ¥                | <b>FOCUS ON MODELING:</b> Making the Best Decisions 54 |    |
| CHAPTER <b>1</b> | EQUATIONS AND GRAPHS                                   | 57 |
| 1.1              | The Coordinate Plane 57                                |    |
| 1.2              | Graphs of Equations in Two Variables; Circles 65       |    |
| 1.3              | Lines 79                                               |    |
| 1.4              | Solving Quadratic Equations 90                         |    |
| 1.5              | Complex Numbers 98                                     |    |
| 1.6              | Solving Other Types of Equations 101                   |    |
| 1.7              | Solving Inequalities 110                               |    |
| 1.8              | Solving Absolute Value Equations and Inequalities 129  |    |
| 1.9              | Solving Equations and Inequalities Graphically 131     |    |
| 1.10             | Modeling Variation 139                                 |    |
|                  | Chapter 1 Review 143                                   |    |
|                  | Chapter 1 Test 161                                     |    |

| ¥                | FOCOS ON MODELING: Fitting Lines to Data 103                        |     |
|------------------|---------------------------------------------------------------------|-----|
| CHAPTER 2        | FUNCTIONS                                                           | 169 |
| 2.1              | Functions 169                                                       |     |
| 2.2              | Graphs of Functions 178                                             |     |
| 2.3              | Getting Information from the Graph of a Function 190                |     |
| 2.4              | Average Rate of Change of a Function 201                            |     |
| 2.5              | Linear Functions and Models 206                                     |     |
| 2.6              | Transformations of Functions 212                                    |     |
| 2.7              | Combining Functions 226                                             |     |
| 2.8              | One-to-One Functions and Their Inverses 234<br>Chapter 2 Review 243 |     |
|                  | Chapter 2 Test 255                                                  |     |
| ¥                | <b>FOCUS ON MODELING:</b> Modeling with Functions 259               |     |
| CHAPTER <b>3</b> | POLYNOMIAL AND RATIONAL FUNCTIONS                                   | 267 |
| 3.1              | Quadratic Functions and Models 267                                  |     |
| 3.2              | Polynomial Functions and Their Graphs 276                           |     |
| 3.3              | Dividing Polynomials 291                                            |     |
| 3.4              | Real Zeros of Polynomials 301                                       |     |
| 3.5              | Complex Zeros and the Fundamental Theorem of Algebra 334            |     |
| 3.6              | Rational Functions 344                                              |     |
|                  | Chapter 3 Review 377                                                |     |
|                  | Chapter 3 Test 395                                                  |     |
| ¥                | <b>FOCUS ON MODELING:</b> Fitting Polynomial Curves to Data 398     |     |
| CHAPTER <b>4</b> | EXPONENTIAL AND LOGARITHMIC FUNCTIONS                               | 401 |
| 4.1              | Exponential Functions 401                                           |     |
| 4.2              | The Natural Exponential Function 409                                |     |
| 4.3              | Logarithmic Functions 414                                           |     |
| 4.4              | Laws of Logarithms 422                                              |     |
| 4.5              | Exponential and Logarithmic Equations 426                           |     |

| 4.6                                    | Modeling with Exponential Functions 433                                                                                                                                                                                                                                                                                          |            |
|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| 4.7                                    | Logarithmic Scales 438                                                                                                                                                                                                                                                                                                           |            |
|                                        | Chapter 4 Review 440                                                                                                                                                                                                                                                                                                             |            |
|                                        | Chapter 4 Test 448                                                                                                                                                                                                                                                                                                               |            |
| ¥                                      | <b>FOCUS ON MODELING:</b> Fitting Exponential and Power Curves to Data 450                                                                                                                                                                                                                                                       |            |
| CHAPTER <b>5</b>                       | TRIGONOMETRIC FUNCTIONS: RIGHT TRIANGLE APPROACH                                                                                                                                                                                                                                                                                 | 455        |
| 5.1                                    | Angle Measure 455                                                                                                                                                                                                                                                                                                                |            |
| 5.2                                    | Trigonometry of Right Triangles 459                                                                                                                                                                                                                                                                                              |            |
| 5.3                                    | Trigonometric Functions of Angles 464                                                                                                                                                                                                                                                                                            |            |
| 5.4                                    | Inverse Trigonometric Functions and Right Triangles 468                                                                                                                                                                                                                                                                          |            |
| 5.5                                    | The Law of Sines 471                                                                                                                                                                                                                                                                                                             |            |
| 5.6                                    | The Law of Cosines 476                                                                                                                                                                                                                                                                                                           |            |
|                                        | Chapter 5 Review 481                                                                                                                                                                                                                                                                                                             |            |
|                                        | Chapter 5 Test 486                                                                                                                                                                                                                                                                                                               |            |
| ¥                                      | FOCUS ON MODELING: Surveying 536                                                                                                                                                                                                                                                                                                 |            |
|                                        |                                                                                                                                                                                                                                                                                                                                  |            |
| CHAPTER <b>6</b>                       | TRIGONOMETRIC FUNCTIONS: UNIT CIRCLE APPROACH                                                                                                                                                                                                                                                                                    | 491        |
| CHAPTER <b>6 6.1</b>                   | TRIGONOMETRIC FUNCTIONS: UNIT CIRCLE APPROACH  The Unit Circle 491                                                                                                                                                                                                                                                               | 491        |
|                                        | -                                                                                                                                                                                                                                                                                                                                | 491        |
| 6.1                                    | The Unit Circle 491                                                                                                                                                                                                                                                                                                              | 491        |
| 6.1<br>6.2                             | The Unit Circle 491 Trigonometric Functions of Real Numbers 495                                                                                                                                                                                                                                                                  | 491        |
| 6.1<br>6.2<br>6.3                      | The Unit Circle 491 Trigonometric Functions of Real Numbers 495 Trigonometric Graphs 500                                                                                                                                                                                                                                         | 491        |
| 6.1<br>6.2<br>6.3<br>6.4               | The Unit Circle 491 Trigonometric Functions of Real Numbers 495 Trigonometric Graphs 500 More Trigonometric Graphs 511                                                                                                                                                                                                           | 491        |
| 6.1<br>6.2<br>6.3<br>6.4<br>6.5        | The Unit Circle 491 Trigonometric Functions of Real Numbers 495 Trigonometric Graphs 500 More Trigonometric Graphs 511 Inverse Trigonometric Functions and Their Graphs 519                                                                                                                                                      | 491        |
| 6.1<br>6.2<br>6.3<br>6.4<br>6.5        | The Unit Circle 491 Trigonometric Functions of Real Numbers 495 Trigonometric Graphs 500 More Trigonometric Graphs 511 Inverse Trigonometric Functions and Their Graphs 519 Modeling Harmonic Motion 521                                                                                                                         | 491        |
| 6.1<br>6.2<br>6.3<br>6.4<br>6.5        | The Unit Circle 491 Trigonometric Functions of Real Numbers 495 Trigonometric Graphs 500 More Trigonometric Graphs 511 Inverse Trigonometric Functions and Their Graphs 519 Modeling Harmonic Motion 521 Chapter 6 Review 527                                                                                                    | 491        |
| 6.1<br>6.2<br>6.3<br>6.4<br>6.5<br>6.6 | The Unit Circle 491 Trigonometric Functions of Real Numbers 495 Trigonometric Graphs 500 More Trigonometric Graphs 511 Inverse Trigonometric Functions and Their Graphs 519 Modeling Harmonic Motion 521 Chapter 6 Review 527 Chapter 6 Test 534                                                                                 | 491<br>541 |
| 6.1<br>6.2<br>6.3<br>6.4<br>6.5<br>6.6 | The Unit Circle 491 Trigonometric Functions of Real Numbers 495 Trigonometric Graphs 500 More Trigonometric Graphs 511 Inverse Trigonometric Functions and Their Graphs 519 Modeling Harmonic Motion 521 Chapter 6 Review 527 Chapter 6 Test 534 FOCUS ON MODELING: Fitting Sinusoidal Curves to Data 487                        |            |
| 6.1<br>6.2<br>6.3<br>6.4<br>6.5<br>6.6 | The Unit Circle 491 Trigonometric Functions of Real Numbers 495 Trigonometric Graphs 500 More Trigonometric Graphs 511 Inverse Trigonometric Functions and Their Graphs 519 Modeling Harmonic Motion 521 Chapter 6 Review 527 Chapter 6 Test 534 FOCUS ON MODELING: Fitting Sinusoidal Curves to Data 487  ANALYTIC TRIGONOMETRY |            |

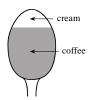
| 7.4               | Basic Trigonometric Equations 567                          |     |
|-------------------|------------------------------------------------------------|-----|
| 7.5               | More Trigonometric Equations 571                           |     |
|                   | Chapter 7 Review 578                                       |     |
|                   | Chapter 7 Test 584                                         |     |
| ¥                 | <b>FOCUS ON MODELING:</b> Traveling and Standing Waves 586 |     |
| CHAPTER 8         | POLAR COORDINATES AND PARAMETRIC EQUATIONS                 | 589 |
| 8.1               | Polar Coordinates 589                                      |     |
| 8.2               | Graphs of Polar Equations 593                              |     |
| 8.3               | Polar Form of Complex Numbers; De Moivre's Theorem 600     |     |
| 8.4               | Plane Curves and Parametric Equations 612                  |     |
|                   | Chapter 8 Review 623                                       |     |
|                   | Chapter 8 Test 630                                         |     |
| ¥                 | <b>FOCUS ON MODELING:</b> The Path of a Projectile 631     |     |
| CHAPTER <b>9</b>  | VECTORS IN TWO AND THREE DIMENSIONS                        | 635 |
| 9.1               | Vectors in Two Dimensions 635                              |     |
| 9.2               | The Dot Product 641                                        |     |
| 9.3               | Three-Dimensional Coordinate Geometry 644                  |     |
| 9.4               | Vectors in Three Dimensions 646                            |     |
| 9.5               | The Cross Product 649                                      |     |
| 9.6               | Equations of Lines and Planes 652                          |     |
|                   | Chapter 9 Review 654                                       |     |
|                   | Chapter 9 Test 658                                         |     |
| ¥                 | FOCUS ON MODELING: Vector Fields 659                       |     |
| CHAPTER <b>10</b> | SYSTEMS OF EQUATIONS AND INEQUALITIES                      | 663 |
| 10.1              | Systems of Linear Equations in Two Variables 663           |     |
| 10.2              | Systems of Linear Equations in Several Variables 670       |     |
| 10.3              | Partial Fractions 678                                      |     |
| 10.4              | Systems of Nonlinear Equations 689                         |     |
| 10.5              | Systems of Inequalities 696                                |     |

Chapter 10 Review 709

|            | Chapter 10 Test 717                                  |     |
|------------|------------------------------------------------------|-----|
| ¥          | <b>FOCUS ON MODELING:</b> Linear Programming 720     |     |
|            |                                                      |     |
| CHAPTER 11 | MATRICES AND DETERMINANTS                            | 729 |
| 11.1       | Matrices and Systems of Linear Equations 729         |     |
| 11.2       | The Algebra of Matrices 740                          |     |
| 11.3       | Inverses of Matrices and Matrix Equations 748        |     |
| 11.4       | Determinants and Cramer's Rule 758                   |     |
|            | Chapter 11 Review 772                                |     |
|            | Chapter 11 Test 782                                  |     |
| ¥          | FOCUS ON MODELING: Computer Graphics 785             |     |
|            |                                                      |     |
| CHAPTER 12 | CONIC SECTIONS                                       | 789 |
| 12.1       | Parabolas 789                                        |     |
| 12.2       | Ellipses 794                                         |     |
| 12.3       | Hyperbolas 803                                       |     |
| 12.4       | Shifted Conics 810                                   |     |
| 12.5       | Rotation of Axes 822                                 |     |
| 12.6       | Polar Equations of Conics 834                        |     |
|            | Chapter 12 Review 842                                |     |
|            | Chapter 12 Test 856                                  |     |
| ¥          | <b>FOCUS ON MODELING:</b> Conics in Architecture 858 |     |
| CHAPTER 13 | SEQUENCES AND SERIES                                 | 861 |
| 13.1       | Sequences and Summation Notation 861                 |     |
| 13.2       | Arithmetic Sequences 866                             |     |
| 13.3       | Geometric Sequences 871                              |     |
| 13.4       | Mathematics of Finance 879                           |     |
| 13.5       | Mathematical Induction 883                           |     |
| 13.6       | The Binomial Theorem 892                             |     |
|            | Chapter 13 Review 896                                |     |
|            |                                                      |     |

|                   | Chapter 13 Test 903                                             |     |
|-------------------|-----------------------------------------------------------------|-----|
| ¥                 | <b>FOCUS ON MODELING:</b> Modeling with Recursive Sequences 904 |     |
| CHAPTER <b>14</b> | COUNTING AND PROBABILITY                                        | 907 |
| 14.1              | Counting 907                                                    |     |
| 14.2              | Probability 914                                                 |     |
| 14.3              | Binomial Probability 922                                        |     |
| 14.4              | Expected Value 927                                              |     |
|                   | Chapter 14 Review 929                                           |     |
|                   | Chapter 14 Test 935                                             |     |
| ¥                 | <b>FOCUS ON MODELING:</b> The Monte Carlo Method 936            |     |
|                   | APPENDIXES                                                      | 939 |
| Α                 | Geometry Review 939                                             |     |
| В                 | Calculations and Significant Figures 940                        |     |
| С                 | Graphing with a Graphing Calculator 941                         |     |

### PROLOGUE: Principles of Problem Solving


- **1.** Let r be the rate of the descent. We use the formula time  $\Box$   $\frac{\text{distance}}{\text{rate}}$ ; the ascent takes  $\frac{1}{15}$  h, the descent takes  $\frac{1}{r}$  h, and the total trip should take  $\frac{2}{30}$   $\Box$   $\frac{1}{15}$  h. Thus we have  $\frac{1}{15}$   $\Box$   $\frac{1}{r}$   $\Box$   $\frac{1}{15}$   $\Box$  0, which is impossible. So the car cannot go fast enough to average 30 mi/h for the 2-mile trip.
- 2. Let us start with a given price P. After a discount of 40%, the price decreases to  $0 \square 6P$ . After a discount of 20%, the price decreases to  $0 \square 8P$ , and after another 20% discount, it becomes  $0 \square 8 \square 0 \square 8P \square \square 0 \square 64P$ . Since  $0 \square 6P \square 0 \square 64P$ , a 40% discount is better.
- **4.** By placing two amoebas into the vessel, we skip the first simple division which took 3 minutes. Thus when we place two amoebas into the vessel, it will take  $60 \square 3 \square 57$  minutes for the vessel to be full of amoebas.
- **5.** The statement is false. Here is one particular counterexample:

Player A Player B

First half 1 hit in 99 at-bats: average  $\Box \frac{1}{99}$  0 hit in 1 at-bat: average  $\Box \frac{0}{1}$ Second half 1 hit in 1 at-bat: average  $\Box \frac{1}{1}$  98 hits in 99 at-bats: average  $\Box \frac{98}{99}$ Entire season 2 hits in 100 at-bats: average  $\Box \frac{2}{100}$  99 hits in 100 at-bats: average  $\Box \frac{99}{100}$ 

**6.** *Method 1:* After the exchanges, the volume of liquid in the pitcher and in the cup is the same as it was to begin with. Thus, any coffee in the pitcher of cream must be replacing an equal amount of cream that has ended up in the coffee cup.

Method 2: Alternatively, look at the drawing of the spoonful of coffee and cream mixture being returned to the pitcher of cream. Suppose it is possible to separate the cream and the coffee, as shown. Then you can see that the coffee going into the cream occupies the same volume as the cream that was left in the coffee.



*Method 3 (an algebraic approach):* Suppose the cup of coffee has y spoonfuls of coffee. When one spoonful of cream is added to the coffee cup, the resulting mixture has the following ratios:  $\frac{\text{cream}}{\text{mixture}} \Box \frac{1}{y \Box 1}$  and  $\frac{\text{coffee}}{\text{mixture}} \Box \frac{y}{y \Box 1}$ .

So, when we remove a spoonful of the mixture and put it into the pitcher of cream, we are really removing  $\frac{1}{y \Box 1}$  of a spoonful of cream and  $\frac{y}{y \Box 1}$  spoonful of coffee. Thus the amount of cream left in the mixture (cream in the coffee) is

- $1 \Box \frac{1}{y \Box 1} \Box \frac{\overline{y}}{y \Box 1}$  of a spoonful. This is the same as the amount of coffee we added to the cream.
- 7. Let r be the radius of the earth in feet. Then the circumference (length of the ribbon) is  $2 \square r$ . When we increase the radius by 1 foot, the new radius is  $r \square 1$ , so the new circumference is  $2 \square \square r \square 1 \square$ . Thus you need  $2 \square \square r \square 1 \square \square 2 \square r \square 2 \square$  extra feet of ribbon.

### 2 Principles of Problem Solving

| 8. | The north pole is such a point. And there are others: Consider a point $a_1$ near the south pole such that the parallel passing                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |
|----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|
|    | through $a_1$ forms a circle $C_1$ with circumference exactly one mile. Any point $P_1$ exactly one mile north of the circle $C_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |  |  |
|    | along a meridian is a point satisfying the conditions in the problem: starting at $P_1$ she walks one mile south to the point $a_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |  |
|    | on the circle $C_1$ , then one mile east along $C_1$ returning to the point $a_1$ , then north for one mile to $P_1$ . That's not all. If a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |
|    | point $a_2$ (or $a_3$ , $a_4$ , $a_5$ , $\square$ $\square$ $\square$ ) is chosen near the south pole so that the parallel passing through it forms a circle $C_2$ ( $C_3$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |  |
|    | $C_4$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |  |  |
|    | $C_5$ , $\square$ $\square$ ) with a circumference of exactly $\stackrel{1}{\circ}$ mile ( $\stackrel{1}{\circ}$ mi, $\stackrel{1}{$ |  |  |  |  |  |  |  |
|    | of $a_2$ $(a_3, a_4, a_5, \square \square \square)$ along a meridian satisfies the conditions of the problem: she walks one mile south from $P_2$ $(P_3, \dots, P_2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |  |
|    | $P_4, P_5, \square \square \square$ ) arriving at $a_2$ ( $a_3, a_4, a_5, \square \square \square$ ) along the circle $C_2$ ( $C_3, C_4, C_5, \square \square \square$ ), walks east along the circle for                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
|    | one mile thus traversing the circle twice (three times, four times, five times, $\square \square \square$ ) returning to $a_2$ ( $a_3$ , $a_4$ , $a_5$ , $\square \square \square$ ), and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
|    | then walks north one mile to $P_2$ ( $P_3$ , $P_4$ , $P_5$ , $\square \square \square$ ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |  |
|    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |  |

# **PREREQUISITES**

#### P.1 MODELING THE REAL WORLD WITH ALGEBRA

| 1. | Using this model | we find that | $t$ if $S \square$ | 12. L | $\Box 4S \Box 4$ | $\Box 12\Box \Box 48.$ | Thus, 12 sheet | have 48 legs. |
|----|------------------|--------------|--------------------|-------|------------------|------------------------|----------------|---------------|

- **2.** If each gallon of gas costs \$3 $\square$ 50, then x gallons of gas costs \$3 $\square$ 5x. Thus,  $C \square 3 \square 5x$ .
- **3.** If x = \$120 and T = 0 = 06x, then T = 0 = 06 = 120 = 7 = 2. The sales tax is \$7 = 20.
- **4.** If x = 62,000 and T = 0 = 005x, then T = 0 = 005 = 62,000 = 310. The wage tax is \$310.
- **5.** If  $\Box$  70, t  $\Box$  3 $\Box$ 5, and d  $\Box$   $\Box$ t, then d  $\Box$  70  $\Box$  3 $\Box$ 5  $\Box$  245. The car has traveled 245 miles.

**6.** 
$$V \square \square r^2 h \square \square 3^2 \square 5 \square \square 45 \square \square 141 \square 4 \text{ in}^3$$

7. (a) 
$$M \square \frac{N}{G} \square \frac{240}{8} \square 30$$
 miles/gallon  
175  $\frac{175}{G} \square G \square \frac{175}{25} \square 7$  gallons

**(b)** 25 
$$\square$$
  $G$   $\square$   $G$   $\square$  7 gallons

**9.** (a) 
$$V \square 9 \square 5S \square 9 \square 5 \ \ 4 \text{ km}^3 \ \ \square 38 \text{ km}^3$$

**(b)** 
$$19 \text{ km}^3 \square 9\square 5S \square S \square 2 \text{ km}^3$$

11. (a)

| Depth (ft) | Pressure (lb/in <sup>2</sup> )                                 |
|------------|----------------------------------------------------------------|
| 0          | 0□45 □0□ □ 14□7 □                                              |
| 10         | 14□7                                                           |
| 20         | 0□45 □10□ □ 14□7 □<br>19□2                                     |
| 30         | $0 \square 45 \square 20 \square \square 14 \square 7 \square$ |
| 40         | 23 🗆 7                                                         |
| 50         | 0□45 □30□ □ 14□7 □                                             |
| 60         | 28□2                                                           |

| 8. | (a) | T | □ 70 | 003 <i>h</i> | □ 7 | ′0 □ | 0 🗆 0 | 03 [ | □150 | 00 |  |
|----|-----|---|------|--------------|-----|------|-------|------|------|----|--|
|    |     |   |      | 65□          | 5   | F    |       |      |      |    |  |

**(b)** 64 
$$\square$$
 70  $\square$  0 $\square$ 003 $h$   $\square$  0 $\square$ 003 $h$   $\square$  6  $\square$   $h$   $\square$  2000 ft

**10.** (a) 
$$P = 0 = 066s^3 = 0006 = 12^3 = 103 = 7 \text{ hp}$$

**(b)** 
$$7 \square 5 \square 0 \square 06s^3 \square s^3 \square 125$$
 so  $s \square 5$  knots

**(b)** We know that  $P \square 30$  and we want to find d, so we solve the

equation 30 
$$\square$$
  $\square$   $\square$   $\square$  15 $\square$ 3  $\square$  0 $\square$ 45 $d$   $\square$ 

$$d = \frac{15 - 3}{0 - 45} = 34 - 0$$
. Thus, if the pressure is 30 lb/in<sup>2</sup>, the depth is 34 ft.

12. (a)

| Population | Water use (gal)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| 0          | 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |
| 1000       | 40 □ 1000 □ □                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |
| 2000       | 40,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 3000       | 40 □2000 □ □<br>80,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |  |
| 4000       | , and the second |  |
| 5000       | 40 □3000 □ □<br>120,000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |

**(b)** We solve the equation  $40x \square 120,000 \square$ 

$$x \Box \frac{120,000}{40} \Box 3000$$
. Thus, the population is about 3000.

- **13.** The number N of cents in q quarters is  $N \square 25q$ .
- **14.** The average *A* of two numbers, *a* and *b*, is  $A \Box \frac{a \Box b}{2}$ .
- **15.** The cost C of purchasing x gallons of gas at \$3  $\square$  50 a gallon is  $C \square 3 \square 5x$ .
- **16.** The amount T of a 15% tip on a restaurant bill of x dollars is  $T \square 0 \square 15x$ .
- **17.** The distance d in miles that a car travels in t hours at 60 mi/h is d = 60t.

| 4                  | CHAPTER P Prerequisites                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | SECTION P.2 The Real Numbers 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 18.                | The speed r of a boat that travels d miles in 3 hours is $r \Box \frac{d}{3}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                    | . (a) \$12 \( \text{3} \) \( \text{\$\square} \) \( \text{12} \( \text{\$\square} \) \( \te |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 17.                | (b) The cost $C$ , in dollars, of a pizza with $n$ toppings is $C \square 12 \square n$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                    | (c) Using the model $C \square 12 \square n$ with $C \square 16$ , we get $16 \square 12 \square n \square n \square 4$ . So the pizza has f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | our toppings                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 20                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 20.                | daily days cost miles                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                    | (a) $3 \square 30 \square \square 280 \square 0 \square 10 \square \square 90 \square 28 \square \$118$<br>(b) The cost is $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                    | •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                    | (c) We have $C \square 140$ and $n \square 3$ . Substituting, we get $140 \square 30 \square 3 \square \square 0 \square 1m \square 140 \square 90 \square 1m$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $0 \square 1m \square 50 \square 0 \square 1m \square$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                    | $m  \Box  500$ . So the rental was driven 500 miles.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 21.                | . (a) (i) For an all-electric car, the energy cost of driving x miles is $C_e \square 0 \square 04x$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                    | (ii) For an average gasoline powered car, the energy cost of driving x miles is $C_g \square 0 \square 12x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                    | (b) (i) The cost of driving 10,000 miles with an all-electric car is $C_e \square 0 \square 04 \square 10,000 \square \square \$4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 00.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                    | (ii) The cost of driving 10,000 miles with a gasoline powered car is $C_g \square 0 \square 12 \square 10,000 \square$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | □ \$1200.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 22.                | . (a) If the width is 20, then the length is 40, so the volume is $20 \square 20 \square 40 \square 16,000 \text{ in}^3$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                    | <b>(b)</b> In terms of width, $V \square x \square 2x \square 2x^3$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 23.                | (a) The GPA is $\frac{4a \Box 3b \Box 2c \Box 1d \Box 0f}{a \Box b \Box c \Box d \Box f} \Box \frac{4a \Box 3b \Box 2c \Box d}{a \Box b \Box c \Box d \Box f}.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                    | ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                    | <b>(b)</b> Using $a \square 2 \square 3 \square 6$ , $b \square 4$ , $c \square 3 \square 3 \square 9$ , and $d \square f \square 0$ in the formula from part (a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ), we find the GPA to be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                    | $4 \square 6 \square 3 \square 4 \square 2$ 54 $2 \square 84$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                    | ⊔9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                    | $\phantom{aaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaa$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| P.:                | 2 THE REAL NUMBERS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 1.                 | . (a) The natural numbers are $\Box 1 \Box 2 \Box 3 \Box \Box \Box \Box \Box$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                    | (b) The numbers $\Box$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                    | (a) Any irreducible fraction $p$ with a $\square$ 1 is retical but is not an integer Examples: $\beta$ $\square$ 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                    | (c) Any irreduction with $q - 1$ is rational but is not an integer. Examples: $q - 1$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 1729 .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                    | (b) The numbers $\Box \Box \Box$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\frac{1729}{23}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                    | (d) Any number which cannot be expressed as a ratio $\frac{p}{q}$ of two integers is irrational. Examples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\frac{1729}{23}$ . are $2$ , $3$ , $0$ , and $e$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2                  | (d) Any number which cannot be expressed as a ratio $\frac{p}{q}$ of two integers is irrational. Examples                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\frac{1729}{23}$ . are $2$ , $3$ , $0$ , and $e$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2.                 | (d) Any number which cannot be expressed as a ratio $\frac{p}{q}$ of two integers is irrational. Examples 2. (a) $ab \Box ba$ ; Commutative Property of Multiplication                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\frac{1729}{23}$ . are $2$ , $3$ , $0$ , and $e$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2.                 | (d) Any number which cannot be expressed as a ratio $\frac{p}{q}$ of two integers is irrational. Examples 2. (a) $ab \Box ba$ ; Commutative Property of Multiplication                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\frac{1729}{23}$ . are $2$ , $3$ , $0$ , and $e$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 2.                 | (d) Any number which cannot be expressed as a ratio $\frac{p}{q}$ of two integers is irrational. Examples a. (a) $ab \Box ba$ ; Commutative Property of Multiplication  (b) $a \Box \Box b \Box c \Box \Box \Box a \Box b \Box c$ ; Associative Property of Addition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\frac{1729}{23}$ . are $2$ , $3$ , $0$ , and $e$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                    | (d) Any number which cannot be expressed as a ratio $\frac{p}{q}$ of two integers is irrational. Examples $a$ . (a) $ab \Box ba$ ; Commutative Property of Multiplication  (b) $a \Box \Box b \Box c \Box \Box a \Box b \Box c$ ; Associative Property of Addition  (c) $a \Box b \Box c \Box \Box ab \Box ac$ ; Distributive Property                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | are $2$ , $3$ , $3$ , and $e$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 3.                 | (d) Any number which cannot be expressed as a ratio $\frac{p}{q}$ of two integers is irrational. Examples a. (a) $ab \Box ba$ ; Commutative Property of Multiplication  (b) $a \Box \Box b \Box c \Box \Box \Box a \Box b \Box c$ ; Associative Property of Addition                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | are $2$ , $3$ , $3$ , and $e$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 3.                 | (d) Any number which cannot be expressed as a ratio $\frac{p}{q}$ of two integers is irrational. Examples $c$ . (a) $ab \Box ba$ ; Commutative Property of Multiplication  (b) $a \Box b \Box c \Box \Box a \Box b \Box c$ ; Associative Property of Addition  (c) $a \Box b \Box c \Box \Box ab \Box ac$ ; Distributive Property  The set of numbers between but not including 2 and 7 can be written as (a) $\Box x \Box z \Box x \Box z \Box z$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | are $2$ , $3$ , $3$ , and $e$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 3.                 | (d) Any number which cannot be expressed as a ratio $\frac{p}{q}$ of two integers is irrational. Examples a. (a) $ab \Box ba$ ; Commutative Property of Multiplication  (b) $a \Box b \Box c \Box \Box a \Box b \Box c$ ; Associative Property of Addition  (c) $a \Box b \Box c \Box \Box ab \Box ac$ ; Distributive Property  The set of numbers between but not including 2 and 7 can be written as (a) $\Box x \Box z \Box x \Box z $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | are $2$ , $3$ , $4$ , and $4$ .  -  a interval notation, or <b>(b)</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 3. □<br>4.<br>5.   | (d) Any number which cannot be expressed as a ratio $\frac{p}{q}$ of two integers is irrational. Examples $a$ . (a) $ab \   \ ba$ ; Commutative Property of Multiplication  (b) $a \   \ b \   \ c \   \   \ a \   \ b \   \ c$ ; Associative Property of Addition  (c) $a \   \ b \   \ c \   \   \ ab \   \ ac$ ; Distributive Property  The set of numbers between but not including 2 and 7 can be written as (a) $\   \ x \   \ 2 \   \ x \   \ 7 \   \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \ r \   \  $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | are $\Box 2$ , $\Box 3$ , $\Box$ , and $e$ .  -  a interval notation, or <b>(b)</b> $x \Box$ is always <i>positive</i> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3. □ 4. 5. □       | (d) Any number which cannot be expressed as a ratio $\frac{p}{q}$ of two integers is irrational. Examples $a$ . (a) $ab \Box ba$ ; Commutative Property of Multiplication  (b) $a \Box b \Box c \Box \Box a \Box b \Box c$ ; Associative Property of Addition  (c) $a \Box b \Box c \Box \Box ab \Box ac$ ; Distributive Property  The set of numbers between but not including 2 and 7 can be written as (a) $\Box x \Box z \Box x \Box z $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | are $\Box 2$ , $\Box 3$ , $\Box$ , and $e$ .  -  a interval notation, or <b>(b)</b> $x \Box$ is always <i>positive</i> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3. □ 4. 5. □       | (d) Any number which cannot be expressed as a ratio $\frac{p}{q}$ of two integers is irrational. Examples $a$ . (a) $ab \Box ba$ ; Commutative Property of Multiplication  (b) $a \Box b \Box c \Box \Box a \Box b \Box c$ ; Associative Property of Addition  (c) $a \Box b \Box c \Box \Box ab \Box ac$ ; Distributive Property  The set of numbers between but not including 2 and 7 can be written as (a) $\Box x \Box z \Box x \Box z $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | are $\Box 2$ , $\Box 3$ , $\Box$ , and $e$ .  -  a interval notation, or <b>(b)</b> $x \Box$ is always <i>positive</i> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 3. □ 4. 5. □       | (d) Any number which cannot be expressed as a ratio $\frac{p}{q}$ of two integers is irrational. Examples $a$ . (a) $ab \Box ba$ ; Commutative Property of Multiplication  (b) $a \Box b \Box c \Box \Box ab \Box c$ ; Associative Property of Addition  (c) $a \Box b \Box c \Box \Box ab \Box ac$ ; Distributive Property  The set of numbers between but not including 2 and 7 can be written as (a) $\Box x \Box z \Box x \Box z $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | are $2$ , $3$ , $4$ , and $4$ .  -  a interval notation, or <b>(b)</b> $x$ is always <i>positive</i> . $x$ is and $x$ is $x$ in $x$ is $x$ is $x$ is $x$ is $x$ is $x$ in $x$ is $x$ is $x$ in $x$ i |
| 3. □ 4. 5. □       | (d) Any number which cannot be expressed as a ratio $\frac{p}{q}$ of two integers is irrational. Examples $a$ . (a) $ab \Box ba$ ; Commutative Property of Multiplication  (b) $a \Box b \Box c \Box \Box a \Box b \Box c$ ; Associative Property of Addition  (c) $a \Box b \Box c \Box \Box ab \Box ac$ ; Distributive Property  The set of numbers between but not including 2 and 7 can be written as (a) $\Box x \Box z \Box x \Box z $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | are $2$ , $3$ , $4$ , and $4$ .  -  a interval notation, or <b>(b)</b> $x$ is always <i>positive</i> . $x$ is and $x$ is $x$ in $x$ is $x$ is $x$ is $x$ is $x$ is $x$ in $x$ is $x$ is $x$ in $x$ i |
| 3. □ 4. 5. □ 6.    | (d) Any number which cannot be expressed as a ratio $\frac{p}{q}$ of two integers is irrational. Examples $a$ . (a) $ab \Box ba$ ; Commutative Property of Multiplication  (b) $a \Box b \Box c \Box \Box ab \Box c$ ; Associative Property of Addition  (c) $a \Box b \Box c \Box \Box ab \Box ac$ ; Distributive Property  The set of numbers between but not including 2 and 7 can be written as (a) $\Box x \Box z \Box x \Box z $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | are $2$ , $3$ , $4$ , and $4$ .  -  a interval notation, or <b>(b)</b> $x$ is always <i>positive</i> . $x$ is and $x$ is $x$ in $x$ is $x$ is $x$ is $x$ is $x$ is $x$ in $x$ is $x$ is $x$ in $x$ i |
| 3. □ 4. 5. □ 6.    | (d) Any number which cannot be expressed as a ratio $\frac{p}{q}$ of two integers is irrational. Examples $a$ . (a) $ab \   ba$ ; Commutative Property of Multiplication  (b) $a \   b \   c \   ab \   ac$ ; Commutative Property of Addition  (c) $a \   b \   c \   ab \   ac$ ; Distributive Property  The set of numbers between but not including 2 and 7 can be written as (a) $\   x \   2 \   x \   7 \  $ in interval notation.  The symbol $\   x \   $ stands for the $absolute\ value\ $ of the number $x$ . If $x$ is not 0, then the sign of $\   $ The distance between $a$ and $b$ on the real line is $a \   a \   b \   a \   ab \   ab$                                                                                   | are $2$ , $3$ , $3$ , and $e$ .  -  a interval notation, or <b>(b)</b> $x$ is always <i>positive</i> . $x$ is and $x$ is $x$ in $x$ is $x$ in $x$ is $x$ is $x$ is $x$ in $x$ is $x$ in $x$ i |
| 3. □ 4. 5. □ 6. 7. | (d) Any number which cannot be expressed as a ratio $\frac{p}{q}$ of two integers is irrational. Examples $a$ . (a) $ab \   ba$ ; Commutative Property of Multiplication  (b) $a \   b \   c \   a \   b \   c$ ; Associative Property of Addition  (c) $a \   b \   c \   ab \   ac$ ; Distributive Property  The set of numbers between but not including 2 and 7 can be written as (a) $\   x \   2 \   x \   7 \   ir$ in interval notation.  The symbol $\   x \   $ stands for the $absolute\ value\ $ of the number $x$ . If $x$ is not 0, then the sign of $\   $ The distance between $a$ and $b$ on the real line is $a \   a \   b \   a \   b \   a \   a \   b \   a \   a \   b \   a \   a \   b \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   a \   $                                                                                    | are $2$ , $3$ , $3$ , and $e$ .  -  a interval notation, or <b>(b)</b> $x$ is always <i>positive</i> . $x$ is and $x$ is $x$ in $x$ is $x$ is $x$ is $x$ is $x$ in $x$ is $x$ in $x$ is $x$ in $x$ i |

- 9. (a) Natural number: 100
  - **(b)** Integers: 0, 100,  $\Box 8$
  - (c) Rational numbers:  $\Box 1 \Box 5, 0, \frac{5}{2}, 2 \Box 71, 3 \Box 14, 100,$
  - (d) Irrational numbers:  $\Box \overline{7}$ ,  $\Box \Box$
- 11. Commutative Property of addition
- 13. Associative Property of addition
- **15.** Distributive Property
- 17. Commutative Property of multiplication
- **19.**  $x \Box 3 \Box 3 \Box x$  $\boldsymbol{x}$
- **21.**  $4 \square A \square B \square \square 4A \square 4B$
- **23.**  $3 \square x \square y \square \square 3x \square 3y$
- **25.**  $4 \square 2m \square \square \square 4 \square 2\square m \square 8m$  $\Box\Box$ 6
- **29.** (a)  $^3 \Box ^4 \Box ^9 \Box ^8 \Box ^{17}$ TO T5 30 30 30
  - **(b)**  $^1 \square ^1 \square ^5 \square ^4 \square ^9$  $\overline{4}$   $\overline{5}$   $\overline{20}$   $\overline{20}$   $\overline{20}$
- 31. (a)  $\begin{bmatrix} 2 & 6 & 3 & 2 & 6 & 2 & 3 & 4 & 1 \\ 3 & 3 & 2 & 3 & 3 & 2 \\ (b) & 3 & 1 & 1 & 4 & 12 & 1 & 5 & 4 & -13 & 1 \end{bmatrix}$
- **33.** (a)  $2 \square 3 \square 6$  and  $2 \square 7 \square 7$ , so  $3 \square 7$ 

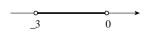
  - **(b)** □6 □ □7
  - (c)  $3\Box 5\Box_{7}^{7}$
- **35.** (a) False
  - (b) True

- **10.** (a) Natural number:  $\overline{\phantom{a}}$   $\overline{\phantom{a}}$   $\overline{\phantom{a}}$   $\overline{\phantom{a}}$   $\overline{\phantom{a}}$   $\overline{\phantom{a}}$   $\overline{\phantom{a}}$   $\overline{\phantom{a}}$   $\overline{\phantom{a}}$ 
  - **(b)** Integers:  $\Box 500$ ,  $\Box \overline{16}$ ,  $\Box \frac{20}{5} \Box \Box \Box 4\Box$
  - (c) Rational numbers:  $1 \square 3$ ,  $1 \square 3333 \square \square \square$ ,  $5 \square 34$ ,  $\square 500$ , 1
    - $\Box$   $\overline{16}$ ,  $^{246}$ ,  $\Box$   $^{20}$
  - $\overline{579}$   $\overline{5}$  (d) Irrational number:  $\overline{5}$
- 12. Commutative Property of multiplication
- **14.** Distributive Property
- **16.** Distributive Property
- **18.** Distributive Property
- **20.**  $7 \Box 3x \Box \Box \Box 7 \Box 3\Box$ 
  - **22.**  $5x \square 5y \square 5 \square x \square$
- **24.**  $\Box a \Box b \Box 8 \Box 8a \Box y \Box \Box 8y$ 
  - **26.** <sup>4</sup> □□6y□ □ <sup>□</sup> <sup>4</sup>
  - 3
- **28.**  $\Box 3a \Box \Box b \Box \overline{c} \Box 2d \Box \Box 3ab \Box 3ac \Box 6ad$
- **30.** (a)  $\stackrel{2}{=} \square^{3} \square^{10} \square^{9} \square^{1}$ 3 5 15 15 15
  - **(b)**  $1 \,\Box^{5} \,\Box^{1} \,\Box^{24} \,\Box^{15} \,\Box^{4} \,\Box^{35}$
- - $\overline{10} \square \overline{15} \quad \overline{10} \square \overline{5} \quad \overline{10} \square \overline{5}$
- **34.** (a)  $3 \Box^{-2} \Box 2$  and  $3 \Box 0 \Box 67 \Box 2 \Box 01$ , so  $^2 \Box 0 \Box 67$ 
  - **(b)**  $\frac{2}{3} \Box \Box 0 \Box 67$
  - (c)  $\square 0 \square 67 \square \square \square \square 0 \square 67 \square$
- **36.** (a) False: ☐ 1 ☐ 73205 ☐ 1 ☐ 7325.
  - (b) False

**6** CHAPTER P Prerequisites SECTION P.2 The Real Numbers **6** 

**42.** (a) *B*  $\square$  *C*  $\square$   $\square$ 2 $\square$ 4 $\square$ 6 $\square$ 7 $\square$ 8 $\square$ 9 $\square$ 10 $\square$ 

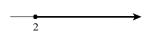
 37. (a) True
 (b) False
 38. (a) True
 (b) True


 39. (a)  $x \Box 0$  (b)  $t \Box 4$  40. (a)  $y \Box 0$  (b)  $z \Box 1$  

 (c)  $a \Box \Box$  (d)  $\Box 5 \Box x \Box \frac{1}{3}$  (e)  $b \Box 8$  (d)  $0 \Box \Box \Box 17$ 

(e)  $\Box p \Box 3 \Box \Box 5$  (e)  $\Box y \Box \Box \Box \Box 2$ 

**41.** (a) *A*  $\square$  *B*  $\square$   $\square$ 1 $\square$ 2 $\square$ 3 $\square$ 4 $\square$ 5 $\square$ 6 $\square$ 7 $\square$ 8 $\square$ 


- **43.** (a) *A*  $\square$  *C*  $\square$   $\square$ 1 $\square$ 2 $\square$ 3 $\square$ 4 $\square$ 5 $\square$ 6 $\square$ 7 $\square$  $8\square 9\square 10\square$ 
  - **(b)**  $A \square C \square \square 7 \square$
- **45.** (a)  $B \square C \square \square x \square x \square 5 \square$ 
  - **(b)**  $B \square C \square \square x \square \square 1 \square x \square 4 \square$
- **47.**  $\square \square 3 \square 0 \square \square \square x \square \square 3 \square x \square 0 \square$

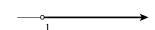


**49.**  $[2 \square 8 \square \square \square x \square 2 \square x \square 8 \square$ 

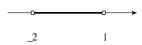


**51.**  $[2 \square \square \square \square \square x \square x \square]$ 




**53.**  $x \square 1 \square x \square \square \square \square \square \square \square$ 

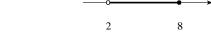



**55.**  $\Box 2 \Box x \Box 1 \Box x \Box \Box \Box \Box \Box \Box \Box$ 

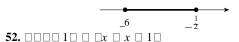


**57.**  $x \square \square 1 \square x \square \square \square 1 \square$ 




- **59.** (a) [□3□5] (b) □□3□5]
- **61.** □ □ 2 □ 0 □ □ □ □ 1 □ 1 □ □ □ □ 2 □






**65.** □□□□□4□□<u>□4□□□</u>

- **44.** (a)  $A \square B \square C \square \square 1 \square 2 \square 3 \square 4 \square 5 \square 6 \square 7 \square 8 \square 9 \square 10 \square$ 
  - **(b)**  $A \square B \square C \square \emptyset$
- **46.** (a)  $A \square C \square \square x \square \square 1 \square x \square 5 \square$ 
  - **(b)**  $A \square B \square \square x \square \square 2 \square x \square 4\square$
- **48.**  $\square 2 \square 8$ ]  $\square \square x \square 2 \square x \square 8 \square$



**50.** 6 □ □ 1 □ □ x □ □ 6 □ x □ □



- **54.**  $1 \square x \square 2 \square x \square [1 \square 2]$
- **56.**  $x \square \square 5 \square x \square [\square 5 \square \square \square$



**58.**  $\Box$  5  $\Box$  x  $\Box$  2  $\Box$  x  $\Box$   $\Box$   $\Box$  5  $\Box$  2  $\Box$ \_5

- **60.** (a) [0 □ 2 □ (b) □□2□0] **62.** □ □2 □ 0 □ □ □1 □ □ □ □1 □ 0 □

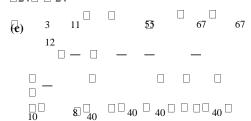
CHAPTER P Prerequisites SECTION P.2 The Real Numbers **8** 

**66.** □□□□ 6] □ □2□ 10□ □ □2□ 6]

**67.** (a) □100□ □

100

- **(b)** □□73□ □
- **69.** (a) □□□6□ □□4□□ □ □6 □ 4□ □ □2□ □ 2


**71.** (a) 11. 12. 16. 1



**73.** □ □ □ 2 □ □ 3 □ □ □ □ 5 □ □ 5

**75.** (a) □17 □ 2□ □

**(b)** □21 □ □□3□□ □ □21 □ 3□ □ □24□ □ 24



68. (a) 5 | 5 | 0 | 5 | 5 | 5, since 5 | 5.

- **(b)**  $\Box 10 \Box \Box \Box \Box 10 \Box \Box$ , since  $10 \Box \Box$ .

**(b)** □□38 □ □□57□□ □ □□38 □ 57□ □ □19□ □ 19.

- 77. (a) Let  $x \square 0 \square 777 \square \square \square$ . So  $10x \square 7 \square 7777 \square \square \square \square x \square 0 \square 7777 \square \square \square \square 9x \square 7$  Thus,  $x \square 7$ .
  - (b) Let  $x \square 0 \square 2888 \square \square \square$ . So  $100x \square 28 \square 8888 \square \square \square \square 10x \square 2 \square 8888 \square \square \square \square 90x \square 26_{90}$ Thu $_{55}x \square ^{26} \square ^{13}$ .
  - (c) Let x = 0 = 575757 = 0. So 100x = 57 = 57577 = 0. So 100x = 57 = 57577 = 0. So 100x = 57 = 577 = 0.
- **78.** (a) Let  $x \square 5 \square 2323 \square \square \square$ . So  $100x \square 523 \square 2323 \square \square \square \square 1x \square 5 \square 2323 \square \square \square \square 99x \square 518 <math>\overline{gg}$  hus,  $x \square 518$ .
  - **(b)** Let  $x \square 1 \square 3777 \square \square \square$ . So  $100x \square 137 \square 7777 \square \square \square \square 10x \square 13 \square 7777 \square \square \square \square 90x \square 124 <math>\frac{1}{90}$  hus  $\frac{1}{43} \square 124 \square 62$ .
  - (c) Let x \( \text{2} \) 1057 \( \text{10} \) 1057 \( \text{10} \) 2 \( \text{13535} \) \( \text{10} \) \( \text{10} \) 990x \( \text{2114. Thus, } x \) \( \text{2114. Thus, } x \) 990 \( \text{495} \)

**79.** □ □ 3, so □ □ □ 3□

**80.** 2 \( \bar{1}\), so \( \bar{1}\) \( \bar{2}\) \( \bar{1}\) \( \bar{2}\) \( \bar{2}\) \( \bar{2}\)

- **81.**  $a \square b$ , so  $\square a \square b \square \square \square a \square b \square \square b \square a$ .
- **82.**  $a \square b \square \square a \square b \square \square a \square b \square b \square a \square 2b$

**83.** (a)  $\Box a$  is negative because a is positive.

CHAPTER P Prerequisites (b) bc is positive because the product of two negative numbers is positive. (c)  $a \square ba \square \square b\square$  is positive because it is the sum of two positive numbers. (d)  $ab \square ac$  is negative: each summand is the product of a positive number and a negative number, and the sum of two negative numbers is negative. **84.** (a)  $\Box b$  is positive because b is negative.

SECTION P.2 The Real Numbers

**(b)**  $a \square bc$  is positive because it is the sum of two positive numbers.

(c)  $c \square a \square c \square \square a \square$  is negative because c and  $\square a$  are both

negative. (d)  $ab^2$  is positive because both a and  $b^2$  are positive.

85. Distributive Property

10

86.

11

| Day       | $T_O$ | $T_G$ | $T_O \square T_G$ | $\Box T_O \Box T_G$ |
|-----------|-------|-------|-------------------|---------------------|
| Sunday    | 68    | 77    | □9                | 9                   |
| Monday    | 72    | 75    | □3                | 3                   |
| Tuesday   | 74    | 74    | 0                 | 0                   |
| Wednesday | 80    | 75    | 5                 | 5                   |
| Thursday  | 77    | 69    | 8                 | 8                   |
| Friday    | 71    | 70    | 1                 | 1                   |
| Saturday  | 70    | 71    | □1                | 1                   |

 $T_O \ \Box \ T_G$  gives more information because it tells us which city had the higher temperature.

| 87. | <ul> <li>(a) When L □ 60, x □ 8, and y □ 6, we have L □ 2 □ x □ y □ □ 60 □ 2 □ 8 □ 6□ □ 60 □ 28 □ 88. Because 88 □ 108 the post office will accept this package.</li> <li>When L □ 48, x □ 24, and y □ 24, we have L □ 2 □ x □ y □ □ 48 □ 2 □ 24 □ 24 □ 48 □ 96 □ 144, and since 144 □ 108, the post office will <i>not</i> accept this package.</li> <li>(b) If x □ y □ 9, then L □ 2 □ 9 □ 9 □ □ 108 □ L □ 36 □ 108 □ L □ 72. So the length can be as long as 72 in. □ 6 ft.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 88. | Let $x 	ext{ } 	ext{ $ |
|     | of two rational numbers are again rational numbers. However the product of two irrational numbers is not necessarily irrational; for example, $2 \square 2 \square 2$ , which is rational. Also, the sum of two irrational numbers is not necessarily irrational; for example, $2 \square 2 \square 0$ which is rational.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 89. | $1 \ \Box \ \overline{2}$ is irrational. If it were rational, then by Exercise 6(a), the sum $2 \ \Box \ \overline{2}$ $\Box \ \Box \ \overline{2}$ would be rational, but $2 \ \Box \ \overline{2}$ this is not the case. Similarly, $\frac{1}{2} \ \Box \ \overline{2}$ is irrational.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|     | <ul> <li>(a) Following the hint, suppose that r □ t □ q, a rational number. Then by Exercise 6(a), the sum of the two rational numbers r □ t and □r is rational. But □r □ t □ □ □ r □ t, which we know to be irrational. This is a contradiction, and hence our original premise—that r □ t is rational—was false.</li> <li>(b) r is rational, so r □ a/b for some integers a and b. Let us assume that rt □ q, a rational number. Then by definition,</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|     | $q \Box \frac{c}{d}$ for some integers $c$ and $d$ . But then $rt \Box q \Box \frac{a}{b} \Box \frac{c}{d}$ , whence $t \Box \frac{bc}{ad}$ , implying that $t$ is rational. Once again we have arrived at a contradiction, and we conclude that the product of a rational number and an irrational number is irrational.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 90. | r 1 2 10 100 1000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

| х             | 1 | 2 | 10 | 100 | 1000 |
|---------------|---|---|----|-----|------|
| 1             | 1 | 1 | 1  | 1   | 1    |
| $\frac{1}{X}$ | 1 | 2 | 10 | 100 | 1000 |

As x gets large, the fraction  $1 \square x$  gets small. Mathematically, we say that  $1 \square x$  goes to zero.

| х                        | 1 | 0□5                                | 0 🗆 1                             | 0□01                                  | 0□001                          |
|--------------------------|---|------------------------------------|-----------------------------------|---------------------------------------|--------------------------------|
| $\frac{1}{\overline{x}}$ | 1 | $\frac{1}{0\square 5}$ $\square$ 2 | $\frac{1}{0\square 1} \square 10$ | $\frac{1}{0\square 01}$ $\square$ 100 | $\frac{1}{0.001} \square 1000$ |

As x gets small, the fraction  $1 \square x$  gets large. Mathematically, we say that  $1 \square x$  goes to infinity.

| 91. | (a)          | Construct the number $\frac{1}{2}$ on the number line by transferring the length of the hypotenuse of a right triangle with legs of                                                                                                                                                                                                                         |
|-----|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |              | length 1 and 1.                                                                                                                                                                                                                                                                                                                                             |
|     | (b)          | Construct a right triangle with legs of length 1 and 2. By the Pythagorean Theorem, the length of the hypotenuse is                                                                                                                                                                                                                                         |
|     | (c)          | Construct a right triangle with legs of length $2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 $                                                                                                                                                                                                                                                                     |
|     |              | the length of the hypotenuse is $\begin{bmatrix} 2 & 2^2 & 6 \end{bmatrix}$ . Then $\begin{bmatrix} 1 & 1 & 1 & 1 \\ & 1 & 1 & 1 & 1 \\ & & & &$                                                                                                                                                                                                            |
|     |              | transfer the length of the hypotenuse to the number line.                                                                                                                                                                                                                                                                                                   |
| 92. | (a)          | Subtraction is not commutative. For example, $5 \square 1 \square 1 \square 5$ .                                                                                                                                                                                                                                                                            |
|     | <b>(b)</b>   | Division is not commutative. For example, $5 \square 1 \square 1 \square 5$ .                                                                                                                                                                                                                                                                               |
|     | (c)          | Putting on your socks and putting on your shoes are not commutative. If you put on your socks first, then your shoes the result is not the same as if you proceed the other way around.                                                                                                                                                                     |
|     | ( <b>d</b> ) | Putting on your hat and putting on your coat are commutative. They can be done in either order, with the same result.                                                                                                                                                                                                                                       |
|     | (e)          | Washing laundry and drying it are not commutative.                                                                                                                                                                                                                                                                                                          |
|     | <b>(f)</b>   | Answers will vary.                                                                                                                                                                                                                                                                                                                                          |
|     | _            | Answers will vary.                                                                                                                                                                                                                                                                                                                                          |
| 93. | Ans          | swers will vary.                                                                                                                                                                                                                                                                                                                                            |
| 94. | (a)          | If $x \square 2$ and $y \square 3$ , then $\square x \square y \square \square 2 \square 3 \square \square 5 \square 05$ and $\square x \square \square 0y \square \square 2 \square 05$ $\square 5$ .  If $x \square 02$ and $y \square 03$ , then $\square x \square y \square 02$ $\square 05$ $\square 05$ $\square 05$ and $\square 05$ $\square 05$ . |
|     |              | If $x \square \square 2$ and $y \square 3$ , then $\square x \square y \square \square \square \square 2 \square 3 \square \square 1$ and $\square x \square \square \square y \square \square 5$ .                                                                                                                                                         |
|     |              | In each case, $\Box x \Box y \Box \Box x \Box \Box y \Box$ and the Triangle Inequality is satisfied.                                                                                                                                                                                                                                                        |
|     | (b)          | Case 0: If either $x$ or $y$ is 0, the result is equality, trivially.                                                                                                                                                                                                                                                                                       |
|     |              | Case 1: If x and y have the same sign, then $\Box x \Box y \Box \Box x \Box y \Box$ if x and y are positive $\Box \Box x \Box y \Box$ if x and y are                                                                                                                                                                                                        |
|     |              | negative                                                                                                                                                                                                                                                                                                                                                    |
|     |              | Case 2: If $x$ and $y$ have opposite signs, then suppose without loss of generality that $x \square 0$ and $y \square 0$ . Then $\square x \square y \square \square \square x \square y \square \square \square x \square \square y \square$ .                                                                                                             |

## P.3 INTEGER EXPONENTS AND SCIENTIFIC NOTATION

| 1. | Using exponential | notation we can wr | ite the prod | luct 5 🗌 | 5 🗆 5 🗆 | $5 \square 5 \square 5$ as $5^{\circ}$ . |
|----|-------------------|--------------------|--------------|----------|---------|------------------------------------------|
|----|-------------------|--------------------|--------------|----------|---------|------------------------------------------|

- 2. Yes, there is a difference: \$\int 5 \int 4 \cdot 0.5 \int 0.5 \cdot 0.5 \
- 3. In the expression  $3^4$ , the number 3 is called the *base* and the number 4 is called the *exponent*.
- **4.** When we multiply two powers with the same base, we *add* the exponents. So  $3^4 \square 3^5 \square 3^9$ .
- **5.** When we divide two powers with the same base, we *subtract* the exponents. So  $\frac{3^5}{3^2} \square 3^3$ .
- **6.** When we raise a power to a new power, we *multiply* the exponents. So  $3^4 \Box_2 \Box_3 3^8$ .

7. (a) 
$$2^{\Box \Box} \sqcup \frac{1}{2}$$

**(b)** 
$$2^{\square 3} \sqcup \frac{1}{8}$$

**(b)** 
$$2^{\square 3} \sqcup \frac{1}{8}$$
 **(c)**  $\frac{1}{2}^{\square \square} \square 2$ 

(d) 
$$\frac{1}{2^{\square 3}} \square 2^3 \square 8$$

8. Scientists express very large or very small numbers using *scientific* notation. In scientific notation, 8,300,000 is  $8\square 3 \square 10^6$ 

9. (a) No, 
$$\frac{2}{3}$$
  $\frac{2}{3}$   $\frac{2}{3}$   $\frac{2}{2}$   $\frac{2}{4}$   $\frac{2}{54}$ 

(b) Yes, 
$$\Box 5\Box^4 \Box 625$$
 and  $\Box 5^4 \Box 625$ .

(b) No, 
$$\Box 2^3 \Box_3 \Box 8x^{12}.$$

11. (a) 
$$\Box 2^6 \Box \Box 64$$
 (c)

**(b)** 
$$\square \square 2 \square^6 \square 64$$

$$\begin{array}{c|c}
 & 1 \\
\hline
 & 5 \\
\hline
 & 0 \\
\hline
 &$$

**(b)** 
$$\Box 5^3 \Box \Box 125$$

(c) 
$$\frac{2}{5} \Box_2 \Box \frac{\Box \Box 5 \Box^2 \Box 2 \Box^2}{5^2} \Box_4^2$$

13. (a) 
$$\frac{1}{5} \frac{1}{3} = 2^{-1} = \frac{1}{2}$$

**(b)** 
$$\frac{2^{\Box 3}}{3^0} \Box \frac{1}{2^3} \Box \frac{1}{8}$$

(c) 
$$\frac{1}{4}$$
  $\Box$   $\Box$   $\Box$   $\Box$   $\Box$  4<sup>2</sup>  $\Box$  16

14. (a) 
$$\Box 2^{\Box 3} \Box \Box \Box 2\Box^{0} \Box \Box \Box \Box \Box \Box$$
 (b)  $\Box 2^{3} \Box \Box \Box 2\Box^{0} \Box \Box 2^{3} \Box \Box 8$ 

(b) 
$$\Box 2^3 \Box \Box \Box 2\Box^0 \Box \Box 2^3 \Box \Box 8$$

 $3 \qquad \square \square 2 \square^3$ 

$$2^3$$

**(b)** 
$$3^2 \Box 3^0 \Box 3^2 \Box 9$$

(c) 
$$\Box 2^6 \Box 64$$

**16.** (a) 
$$3^8 \square 3^5 \square 3^{13} \square 1,594,323$$
  $\square \square \square \square \square \square$ 

**(b)** 
$$6^0 \square 6 \square 6$$

(c) 
$$_2 \Box 5^8 \Box 390,625$$

**17.** (a) 
$$5^4 \Box 5^{\Box 2} \Box 5^2 \Box 25$$
 (b)

**15.** (a)  $5^3 \square 5 \square 5^4 \square 625$ 

$$\frac{10^7}{10^4} \perp 10^3 \perp 1000$$

(c) 
$$\frac{3^2}{3^4} \Box \frac{1}{3^2} \Box \frac{1}{9}$$

**18.** (a) 
$$3^{\square 3} \square 3^{\square 1} \square 3^{\square 4} \square \frac{1}{3^4} \square \frac{1}{81}$$
 (b)  $\frac{5^4}{5} \square 5^3 \square 125$ 

**(b)** 
$$\frac{5^4}{5} \sqcup 5^3 \sqcup 125$$

(c) 
$$\frac{7^2}{7^5} \Box \frac{1}{7^3} \Box \frac{1}{343}$$

**19.** (a) 
$$x^2x^3 \sqcap x^{2\square 3} \sqcap x^4$$

**19.** (a) 
$$x^2x^3 \Box x^{2\Box 3} \Box x^5$$
 (b)  $\Box x^2 \Box \Box \Box \Box \Box x^6$  (c)  $t^{\Box 3}t^5 \Box t^{\Box 3\Box 5} \Box t^2$ 

(c) 
$$t^{\square 3}t^{5} \sqcap t^{\square 3} \sqcap t^{2}$$

**20.** (a) 
$$y^5 \Box y^2 \Box y^{5\Box 2} \Box y^7$$

**(b)** 
$$\Box 8x \Box^2 \Box 8^2x^2 \Box 64x^2$$

(c) 
$$x^4x^{\Box 3} \Box x^{4\Box 3} \Box x$$

**21.** (a) 
$$x^{\Box 5} \Box x^3 \Box x^{\Box 5\Box 3} \Box x^{\Box 2} \Box \frac{1}{x^2}$$
 (b)  $\Box^{\Box 2} \Box^{\Box 4} \Box^5 \Box \Box^{\Box 2} \Box^{\Box 4} \Box^5 \Box \Box^{\Box 1} \Box \frac{1}{\Box}$ 

**(b)** 
$$\Box^2\Box^4\Box^5$$
  $\Box$   $\Box^2\Box^4\Box^5$   $\Box$   $\Box^1$   $\Box$   $\frac{1}{\Box}$ 

(c) 
$$\frac{y^{10}y^0}{y^7} \sqcup y^{10\Box 0\Box 7} \sqcup y^3$$

(b) 
$$\square^{2}\square^{4}\square^{5}$$
  $\square$   $\square^{2}\square^{4}\square^{5}$   $\square$   $\square^{1}$   $\square$   $\square$ 

**22.** (a) 
$$y^2 \Box y^{\Box 5} \Box y^{2\Box 5} \Box y^{\Box 3} \Box^{y^{3}}$$

22. (a) 
$$y^2 \Box y^{\Box 5} \Box y^{2\Box 5} \Box y^{\Box 3} \Box^{y\overline{3}}$$
 (b)  $z^5 z^{\Box 3} z^{\Box 4} \Box z^{5\Box 3\Box 4} \Box z^{\Box 2} \Box \frac{1}{z^2}$  (c)  $\frac{x^6}{x^{10}} \Box x^{6\Box 10} \Box x^4$ 

**23.** (a) 
$$\frac{a^9a^{\square 2}}{a} \square a^{9\square 2\square 1} \square a^6$$
 (b)  $\frac{a^2a^4}{a^2} \square \frac{1}{a^2} \square \frac{1}{a^6} \square a^{6\square 3} \square a^{18}$ 

(c) 
$$\Box 2x \Box^2 \ 5x^6 \ \Box \ 2^2x^2 \Box 5x^6 \ \Box \ 20x^{2\Box 6} \ \Box \ 20x^8$$

(c) 
$$3z^2$$
  $2z^3$   $54z^6$   $54z^9$   $2z^3$   $2z^3$   $2z^3$   $2z^3$   $2z^3$   $2z^3$   $2z^3$   $2z^3$   $2z^3$ 

**(b)** 
$$2a^2b^{\Box 1}$$
  $3a^{\Box 2}b^2$   $\Box$   $2 \Box 3a^{2\Box 2}b^{\Box 1\Box 2} \Box 6b$ 

(c) 
$$4y^2$$
  $x^4$   $2x^4$   $4y^2x^4$   $4x^2x^4$   $4x^2x^2$   $4x^2x^4$   $4x^2x^2$   $4x^2x^2$   $4x^2x^2$   $4x^2x^2$   $4x^2x^2$   $4x^2x^2$   $4x^2x^2$   $4x^2x^2$   $4x^2x^2$   $4x^2$   $4$ 

$$(\mathbf{c}) \begin{bmatrix} \mathbf{8}x^7 y^2 & \mathbf{3}2x^7 y^$$

**(b)** 
$$\frac{1}{x^{\square}} \square x^{2\square\square\square5\square} y^{\square1} \square x^7 y^{\square1} \square$$

(c) 
$$\frac{x^2y}{3} \Box_3 \Box \frac{x^2\Box y^3}{3^3} \Box \frac{x^6y^3}{27}$$

**28.** (a) 
$$5x^{\Box 4}y^3$$
  $\Box$   $5x^{\Box 4}y^3$   $\Box$   $0x^{\Box 4}y^3$   $\Box$ 

**(b)** 
$$\frac{y^{\square 2}z^{\square 3}}{y^{\square 1}} \square \frac{y}{y^2z^3} \square \frac{1}{yz^3}$$

(c) 
$$\frac{a^3b^{\square 2}}{b^3}^{\square 2} \square \frac{a^6b^{\square 4}}{b^6} \square \frac{a^6}{b^{\square 4}}$$

(c) 
$$x^2$$
  $y^2$   $y^2$ 

1

30. (a) 
$$x^{-2}$$
  $\frac{y^4}{x^2}$   $\frac{x^2}{y^4}$   $\frac{x^6}{y^{12}}$ 

**31.** (a) 
$$\frac{3x^{\Box 2}y^5}{9x^{\Box 3}y^2} \Box \frac{xy^3}{3}$$

**(b)** 
$$\frac{2x^3y^{\square}}{y^2} \stackrel{\square}{=} \frac{2x^3}{y^3} \stackrel{\square}{=} \frac{y^3}{2^2x^3} \stackrel{\square}{=} \frac{y^6}{4x^6}$$

(c) 
$$\frac{y^{-1}}{y^{-2}} = \frac{3x^{-3}}{y^{-2}} = \frac{x^4y^5}{y^{-2}} = \frac{x^4y^5}{y^{-2}} = \frac{y^2}{y^2} =$$

32. (a) 
$$\frac{\frac{1}{2}a^{\Box 3}b^{\Box 4}}{\frac{2a^{\Box 5}b^{\Box 1}}{\Box}} \Box \frac{\frac{1}{2}\Box a}{2} \Box a^{\Box 3} \Box b^{\Box 4} \Box a^{\Box 4} a^{b} \Box a^{2}$$

**36.** (a)  $129,540,000 \square 1 \square 2954 \square 10^8$ 

**(b)**  $7.259.000.000 \square 7 \square 259 \square 10^9$ 

(c)  $0 \square 0000000014 \square 1 \square 4 \square 10^{\square 9}$ 

**(d)**  $0 \square 0007029 \square 7 \square 029 \square 10^{\square 4}$ 

**38.** (a)  $7\Box 1 \Box 10^{14} \Box 710,000,000,000,000$ 

**(b)**  $6 \square 10^{12} \square 6,000,000,000,000$ 

**(d)**  $6 \square 257 \square 10^{\square 10} \square 0 \square 00000000006257$ 

(c)  $8 \square 55 \square 10^{\square 3} \square 0 \square 00855$ 

**(b)** 
$$\frac{x^2y}{5x^4} \Box \Box \Box \frac{5x^4}{x^2y} \Box \frac{5x^2}{y} \Box \frac{5x^2}{y} \Box \frac{25x^4}{y^2}$$

(c) 
$$\begin{bmatrix} 2y^{\Box 1}z^{\Box \Box \Box \Box} & y & \Box_2 & \Box_2 & \Box_{\Box \Box} & y^2 & \Box\\ \hline z^2 & \overline{3z^2} & \Box & \overline{yz} & \overline{9z^4} & \Box & \overline{18z^3} \\ \hline 33. (a) & b^3 & 3^{\Box a}b^{\Box 3} & \overline{3a} & \overline{3$$

33. (a) 
$$\frac{3a}{b^3} \stackrel{\square}{\longrightarrow} 3 \stackrel{\square}{\longrightarrow} a \stackrel{\square}{\longrightarrow} b \stackrel{\square}{\longrightarrow} \stackrel{\square}{\longrightarrow} \frac{b^3}{3a}$$

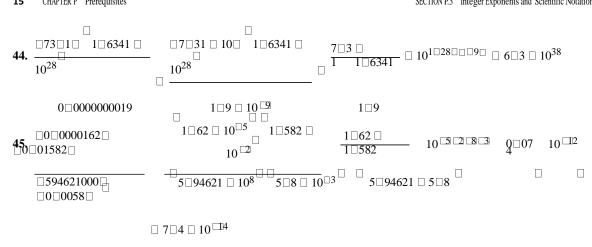
(b) 
$$\frac{q \, \overline{\hspace{0.1cm}} r \, \overline{\hspace{0.1cm}} s \, \overline{\hspace{0.1cm}}}{r \, \overline{\hspace{0.1cm}} s \, q \, \overline{\hspace{0.1cm}}} \, \overline{\hspace{0.1cm}} \, \frac{s^3}{q^{7}r^4}$$

34. (a) 
$$\frac{25t^{10}}{5s\Box t}$$
  $s^2\Box 2\Box 1\Box 1\Box 2\Box t$  4  $\Box 2\Box 1\Box 2\Box 5$   $s^6$ 

(b) 
$$\frac{xy}{x^2y^3z^{-4}}$$
  $\frac{x^3y^{15}}{y^2z^{-3}}$   $\frac{x^3y^{15}}{z^3}$ 

| <b>35.</b> (a) 69,300,000 □ 6□93 | □ 10′ |
|----------------------------------|-------|
|----------------------------------|-------|

- **(b)**  $7,200,000,000,000 \square 7 \square 2 \square$ 
  - $10^{12}$  (c)  $0\Box 000028536 \Box 2\Box 8536 \Box$
  - $10^{\Box 5}$  (**d**)  $0\Box 0001213 \Box 1\Box 213 \Box$


10 4

- **37.** (a)  $3\Box 19 \Box 10^5 \Box 319,000$ 
  - **(b)**  $2\Box 721 \Box 10^8 \Box 272,100,000$
  - (c)  $2 \square 670 \square 10^{\square 8} \square 0 \square 00000002670$
  - **(d)**  $9 \square 999 \square 10^{\square 9} \square 0 \square 000000009999$
- **39.** (a)  $5,900,000,000,000 \text{ mi} \square 5\square 9 \square 10^{12}$
- - (c) 33 billion billion molecules  $\square$  33  $\square$  10<sup>9</sup>  $\square$  10<sup>9</sup>  $\square$  3 $\square$ 3  $\square$  10<sup>19</sup> molecules
- **40.** (a) 93,000,000 mi  $\square$  9 $\square$ 3  $\square$  10<sup>7</sup> mi

  - (c) 5,970,000,000,000,000,000,000,000 kg  $\Box$  5 $\Box$  97  $\Box$  10^24 kg  $\Box$
- **41.** 7 \( \text{7} \) \( \text{1} \) \( \text{1} \) \( \text{1} \) \( \text{2} \) \( \text{1} \) \( \text{1} \) \( \text{2} \) \( \text{1} \) \( \text{2} \) \( \text{2} \) \( \text{1} \) \( \text{2} \) \( \text{2} \) \( \text{1} \) \( \text{2} \
- **42.**  $1 \square 062 \square 10^{24} \square 8 \square 61 \square 10^{19} \square 1 \square 062 \square 8 \square 61 \square 10^{24} \square 10^{19} \square 9 \square 14 \square 10^{43}$

|     | 1 □295643 □<br>10 <sup>9</sup> |                | 1□29564 | 9 1  | 7 6             | 19 | 1        |
|-----|--------------------------------|----------------|---------|------|-----------------|----|----------|
| 43. | □<br>3□610 10□17□              | $\square 10^6$ | 2□511   | □ 10 | □ □ 0□1429 □ 10 |    | 429 □ 10 |

□ 2□511 3□610 



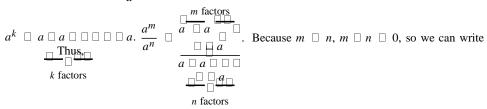
16

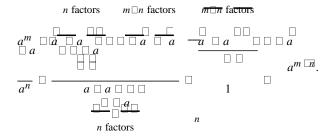
| 46.         | 3 542                             | 10 6 0                                   | 3□542 <sub>□</sub>                              | 10 54 -                                | 87747 <u> </u>                               | 9 □ 10 <sup>□5</sup>                  | 4□48 □ 3□19 □                            | □ 10 <sup>□4</sup> | □ 10□102              | □ 3□19 □ 10             | ) <sup>□106</sup> |
|-------------|-----------------------------------|------------------------------------------|-------------------------------------------------|----------------------------------------|----------------------------------------------|---------------------------------------|------------------------------------------|--------------------|-----------------------|-------------------------|-------------------|
|             | 5 05 0<br>10 <sup>4</sup>         |                                          | ]5□05 □<br>] <sup>12</sup>                      | 10 2                                   | 75103767                                     | 7□10                                  |                                          |                    |                       |                         |                   |
| <b>4</b> 7. | □ 10                              | Ī <sub>0</sub> □ , □                     | whereas                                         | □ 10                                   | 10 🗆                                         | □ 10 □ 1<br>10                        |                                          | ] 10 .             | . So 10 is            | s closer to 10          | than              |
|             | 10 <sup>5</sup> 10 <sup>5</sup> 5 | 10<br>50                                 | [<br>1<br>[                                     | 10 <sup>10</sup>                       | 100                                          | 100                                   | 100                                      | 50                 | 10                    | :                       | 50                |
|             | $10^{100}$ is to 1                | 10 <sup>101</sup> .                      |                                                 |                                        |                                              |                                       |                                          |                    |                       |                         |                   |
| 48.         | (a) $b^5$ is ne                   | gative since                             | a negative                                      | e number rai                           | sed to an                                    | odd power is                          | negative.                                |                    |                       |                         |                   |
|             | -                                 | ositive since                            | _                                               |                                        |                                              | -                                     | -                                        |                    |                       |                         |                   |
|             |                                   |                                          |                                                 |                                        |                                              |                                       | itive 🗆 🗆 positiv                        | e□□n               | egative□ w            | hich is negati          | ve.               |
|             |                                   | $\Box a$ is negated $\Box a$ is negated. |                                                 |                                        |                                              |                                       |                                          |                    |                       |                         |                   |
|             |                                   |                                          |                                                 |                                        |                                              |                                       |                                          |                    |                       |                         |                   |
|             | (f) $\frac{a^{-6}}{b^{6}c^{6}}$   | negative                                 | 3                                               |                                        | ative 🗆                                      | \( \text{\text{\text{\text{pos}}}} \) | gative sitive which is                   | negativ            | ve.                   |                         |                   |
|             |                                   | □negative[]negative[]6                   |                                                 | ⊔pos<br>□positiv                       | sitive⊔<br>⁄e□                               |                                       |                                          |                    |                       |                         |                   |
|             |                                   | negative                                 |                                                 | •                                      |                                              |                                       |                                          |                    |                       |                         |                   |
|             | 25,400,000,                       | 000,000 mile                             | es away.                                        |                                        |                                              |                                       | □ 5□9 □ 10 <sup>12</sup>                 | 2 🗆 2              | □54 □ 10 <sup>1</sup> | <sup>3</sup> miles away | or                |
| 50.         | 9□3 □ 10                          | mi □ 186□ (                              | $000^{\frac{\text{mi}}{0}} \square t \text{ s}$ | $S \square t \square 9 \square 10^{2}$ | 3 ⊔<br>' s                                   | □ 500 s □ 8                           | $\frac{1}{3}$ min.                       |                    |                       |                         |                   |
|             |                                   |                                          | S                                               | 18                                     | 6□                                           |                                       |                                          |                    |                       |                         |                   |
|             |                                   |                                          |                                                 | 00                                     |                                              |                                       |                                          | ٦                  |                       |                         |                   |
| 51.         | Volume □ □                        | ∃average der                             | oth□ □are                                       |                                        | 7 □ 10 <sup>3</sup> n                        | □ □                                   | $\frac{10^3 \text{ liters}}{\text{m}^3}$ | 」<br>□ 1□          | $133 \square 10^{21}$ | liters                  |                   |
| 10l         | $\frac{4}{\text{m}^2}$            | average dep                              | , and date                                      | <b></b>                                | , = 10 11                                    | 300                                   | m <sup>3</sup>                           |                    | 10                    | 11015                   |                   |
| 10          | m                                 |                                          |                                                 |                                        |                                              |                                       |                                          |                    |                       |                         |                   |
|             |                                   |                                          |                                                 |                                        | 1□674                                        |                                       |                                          |                    |                       |                         |                   |
| 52.         | Each person                       | s share is ec                            | malto —                                         | opulation                              | 1013                                         | □ \$5                                 | 52,900.                                  |                    |                       |                         |                   |
|             |                                   |                                          |                                                 |                                        | $\Box \frac{10^{18}}{3\Box 16^{4}}$ $10^{8}$ | 4 🗆                                   |                                          |                    |                       |                         |                   |
| = 2         | Th                                | £11-                                     | - :1                                            |                                        | 106                                          |                                       |                                          |                    |                       |                         |                   |
| 33.         | The number                        | r of molecule                            | liters                                          |                                        |                                              |                                       | □ 6□02 [                                 | ¬ 1023             |                       |                         |                   |
|             |                                   |                                          | nters                                           | moiecu                                 | ies                                          | 3                                     | 6□02□                                    | <u> 10−3</u>       |                       | 27                      |                   |
|             |                                   | □volume□                                 | 1 [                                             | □ 22□4                                 |                                              |                                       |                                          |                    | □ 4□03 □              | ∃ 10                    |                   |
|             |                                   | $m^3$                                    |                                                 |                                        | 10                                           | 5 🗆 10 🗆 3 🗆                          | 22 [<br>4                                |                    | - 1005                | 3 10                    |                   |
|             |                                   | m <sup>3</sup>                           |                                                 | liters                                 |                                              |                                       | 1                                        | 137                |                       |                         |                   |
| 54          | (a)                               |                                          | Person                                          | Weight                                 | H                                            | eight                                 | BMI $\square$ 703 $\frac{1}{H}$          | $\frac{1}{H^2}$    | Result                |                         |                   |
| <b>- T•</b> | ( <b>4</b> )                      |                                          | Brian                                           | 295 lb                                 | 5 ft 10 i                                    | n. 🗆 70 in.                           | 42□3                                     | (                  | obese                 |                         |                   |
|             |                                   |                                          | Linda                                           | 105 lb                                 |                                              | n. □ 66 in.                           | 16 <u>□</u> 9                            |                    | underweigh            | t                       |                   |
|             |                                   |                                          | Larry                                           | 220 lb                                 |                                              | n. □ 76 in.                           | 26 □ 7<br>20 □ 1                         |                    | overweight            |                         |                   |
|             |                                   |                                          | Helen                                           | 110 lb                                 | 5 ft 2 i                                     | n. □ 62 in.                           | 20⊔1                                     | 1                  | normal                |                         |                   |

(b) Answers will vary.

55.

17


**56.** Since  $10^6 \square 10^3 \square 10^3$  it would take 1000 days  $\square 2 \square 74$  years to spend the million dollars.


Since  $10^9 \square 10^3 \square 10^6$  it would take  $10^6 \square 1,000,000$  days  $\square 2739 \square 72$  years to spend the billion dollars.

18

**57.** (a) 
$$\frac{18^5}{9^5} \Box \frac{\Box}{18}^{\Box 5} \Box 2^5 \Box 32$$

- **(b)**  $20^6 \square \square 0 \square 5 \square^6 \square \square 20 \square 0 \square 5 \square^6 \square 10^6 \square 1,000,000$
- **58.** (a) We wish to prove that  $\frac{a^m}{a^n} \square a^{m \square n}$  for positive integers  $m \square n$ . By definition,





**(b)** We wish to prove that  $\begin{bmatrix} \Box \underline{a} \\ b \end{bmatrix}^n \Box \begin{bmatrix} a \\ b^n \end{bmatrix}$  for positive integers  $m \Box n$ . By definition,

**59.** (a) We wish to prove that  $\frac{\underline{a}}{\underline{b}}$  By definition, and using the result from Exercise 58(b),

b 
$$\overline{b^n}$$

$$\underline{a^{\square n}} \quad \underline{b^m} \qquad \underline{a^{\square n}} \quad \underline{\frac{1}{a^n}} \quad \underline{1} \quad \underline{b^m} \quad \underline{b^m}$$
(b) We wish to prove that  $\underline{b^{\square m}} \quad \underline{a^n}$ . By definition,  $\underline{b^{\square m}} \quad \underline{\frac{1}{b^m}} \quad \underline{a^n} \quad \underline{0} \quad \underline{a^n} \quad \underline{a^n}$ .

### P.4 RATIONAL EXPONENTS AND RADICALS

- **1.** Using exponential notation we can write  $\frac{1}{5}$   $\overline{5}$  as  $5^{1}$   $\boxed{3}$ .

2. Using radicals we can write 
$$5^{1\square 2}$$
 as  $5$ .

3. No.  $5^2 \square 5^2 \square 5^2 \square 5$ 



**4.** 
$$\begin{bmatrix} 4^1 & 2^3 & 3 & 3 \\ 4^1 & 2^3 & 2^3 & 3 \end{bmatrix} = 64^1 \begin{bmatrix} 2 & 3 \\ 64^1 \end{bmatrix} = 8$$

**5.** Because the denominator is of the form a, we multiply numerator and denominator by a:  $\frac{1}{3}$   $\frac{1}{3}$   $\frac{1}{3}$   $\frac{3}{3}$   $\frac{3}{3}$ .

| <b>6.</b> $5^{1 \square 3} \square 5^{2 \square 3} \square 5^1 \square 5$ | П                                      |
|---------------------------------------------------------------------------|----------------------------------------|
| <b>7.</b> No. If <i>a</i> is negative, then                               | $\overline{4a^2} \square \square 2a$ . |

13. 
$$\begin{bmatrix} 5 \\ \overline{5^3} & 5^3 \\ 2 \end{bmatrix} = 5^3$$

14. 
$$\Box 2^{\Box 3} \Box 2 \Box \frac{1}{2^3} \Box \Box_8^1$$

- **15.**  $a^2 \Box 5 \Box 5 \overline{a^2}$
- **17.**  $\int_{3}^{\sqrt{3}} \overline{y^{4}} \, \Box \, y^{4 \, \Box 3}$
- 19. (a)  $\Box \overline{16} \Box \Box \overline{4^2} \Box 4$ 
  - (b)  $\begin{bmatrix} \frac{1}{4} \overline{16} & 2^4 & 2 \\ \hline 1 & \frac{1}{4} & \frac{1}{1} \end{bmatrix}$
  - (c) <sup>4</sup>  $\frac{2}{16}$  2  $\frac{2}{5}$   $\frac{1}{2}$
- **21.** (a)  $3^{\frac{1}{3}} \overline{16} \square 3 \quad 2 \square 2^{3} \square 6^{3} 2^{3} \square 6^{3}$ 
  - **(b)**  $\frac{\Box}{81}$   $\Box$   $\frac{\Box}{81}$   $\Box$   $\frac{\Box}{81}$   $\Box$   $\frac{2}{9}$   $\Box$   $\frac{2}{3}$
  - (c)  $\frac{27}{27} \Box \frac{3 \ 3^2}{2^2} \Box \frac{3^3}{2}$
- **23.** (a) 7 28 0 7 0 28 0 196 0 14
  - **(b)**  $\frac{\square}{48}$   $\square$   $\frac{\square}{3}$   $\square$   $\frac{\square}{16}$   $\square$  4
  - (c)  $^{4}\overline{24} ^{4}\overline{54} \cup ^{4}24 \cup 54$   $^{4}1296 \cup 6$
- **25.** (a)  $\frac{216}{6}$   $\square$   $\frac{216}{6}$   $\square$  36  $\square$  6
  - **(b)**  $^{\int_{3}^{1}} \overline{2}^{\int_{3}^{1}} \overline{32} \, \, \Box \, ^{\int_{3}^{1}} \overline{64} \, \, \Box \, 4$
  - (c)  $\begin{array}{c|c} & \frac{1}{2} & \overline{1} & \overline{1} & \overline{1} & 1 & \underline{1} \\ & 4 & 4 & \overline{64} & \overline{1} & 4 & \overline{256} & \overline{14} & \overline{256} & \overline{14} \end{array}$
- 27.  $\begin{bmatrix} 4 \\ \overline{x^4} \\ \Box x \\ \Box \end{bmatrix}$
- **29.**  $\begin{bmatrix} 5 & 32y^6 \\ 1 & 32y^6 \end{bmatrix} \begin{bmatrix} 5 & 2^5y^6 \\ 1 & 2^5 \end{bmatrix} \begin{bmatrix} 5 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 5 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 5 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 7 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 7 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 7 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 7 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 7 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 7 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 7 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 7 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 7 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 7 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 7 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 7 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 7 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 7 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 7 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 7 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 7 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 7 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 7 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 7 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 7 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 7 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 7 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 7 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 7 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 7 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 7 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 7 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 7 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 7 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 7 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 7 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 7 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 7 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 7 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 7 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 7 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 7 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 7 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 7 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 7 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 7 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 7 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 7 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 7 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 7 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 7 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 7 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 7 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 7 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 7 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 7 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 7 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 7 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 7 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 7 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 7 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 7 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 7 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 7 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 7 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 7 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 7 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 7 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 7 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 7 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 7 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 7 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 7 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 7 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 7 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 7 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 7 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 7 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 7 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 7 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 7 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 7 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 7 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 7 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 7 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 7 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 7 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 7 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 7 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 7 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 7 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 7 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 7 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 7 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 7 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 7 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 7 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 7 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 7 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 7 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 7 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 7 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 7 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 7 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 7 & 7 \\ 1 & 2y \end{bmatrix} \begin{bmatrix} 7 & 7 \\ 1$

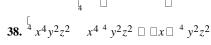
- **16.**  $\frac{1}{\sqrt{x^5}} \Box \frac{1}{x^5 \Box 2} \Box x \Box 3 \Box 2$
- $18. y \stackrel{\square}{=} \frac{1}{y^5 \stackrel{\square}{=}} \stackrel{\square}{=} \frac{1}{y^5}$
- **20.** (a)  ${}^{\square}64 \square {}^{\square}8^2 \square 8$ 
  - (b)  $\begin{bmatrix} 3 & 1 & 1 & 1 \\ 3 & 1 & 1 & 1 \end{bmatrix}$   $\begin{bmatrix} 1 & 1 & 1 \\ 3 & 1 & 1 \end{bmatrix}$   $\begin{bmatrix} 1 & 1 & 1 \\ 3 & 1 & 1 \end{bmatrix}$   $\begin{bmatrix} 1 & 1 & 1 \\ 3 & 1 & 1 \end{bmatrix}$
- **22.** (a)  $2^{3}\overline{8}1 \square 2 \quad 3 \square 3^{3} \square 6^{-3} 3$ 
  - (b)  $=\frac{12}{\overline{25}} \square \frac{\square}{5} \square 2^2 \square 3 \square 5$
  - (c)  $\frac{18}{18} \, \Box \, \frac{2 \, 3^2}{2 \, 3^2} \, \Box \, \frac{3 \, 2}{2} \, \Box \,$
- **24.** (a) 12 24 | 12 | 24 | 288 | 2 | 12<sup>2</sup> | 12 2
  - (b)  $\frac{\Box \overline{54}}{6} \Box \frac{54}{6} \Box ^{\Box} 9 \Box 3$
  - (c)  ${}^{5}_{3}$  15  ${}^{5}_{3}$  75  $\Box$   ${}^{5}_{3}$   $\overline{15}$   $\Box$  75  ${}^{5}_{3}$   $\overline{1125}$   $\Box$   ${}^{5}_{3}$   $\overline{125}$   $\Box$   $\Box$  5  ${}^{5}_{3}$   $\overline{9}$
- 26. (a)  $\begin{bmatrix} 5 & \overline{1} & 5 & \overline{1} \\ \hline 0 & \overline{1} & 5 & \overline{1} \end{bmatrix}$   $\begin{bmatrix} 5 & \overline{1} & 1 \\ \hline 0 & \overline{1} \end{bmatrix}$   $\begin{bmatrix} 5 & \overline{1} & 1 \\ \hline 0 & \overline{32} \end{bmatrix}$  2

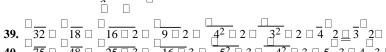
  - (c)  $\frac{\frac{1}{3}}{\frac{4}{108}} \Box \frac{\frac{1}{3}}{\frac{4}{108}} \Box \frac{\frac{1}{3}}{\frac{1}{27}} \Box \frac{\frac{1}{3}}{\frac{1}{377}} \Box \frac{\frac{1}{3}}{\frac{1}{3}}$
- 28.  $\begin{bmatrix} & & & & \\ & x^{10} & & & \\ & & & & \end{bmatrix}$
- **30.**  $8a^5 \Box 2^3a^3a^2 \Box 2a a^2$

\_\_\_\_

**31.** 
$$\left[\frac{1}{4} \frac{1}{16x^8} \right]^{\frac{1}{4}} 2^{4x^8} \Box 2x^2$$

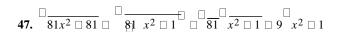
32. 
$$\begin{bmatrix} 3 \\ x^3 \\ y^6 \end{bmatrix} \begin{bmatrix} x^3 \\ x^6 \end{bmatrix} = xy^2$$


34. 
$$x^4y^4 \Box x^4 \Box x^4 \Box x^2y^2$$


**35.** 
$$\Box \overline{36r^2t^4} \Box \Box \Box \Box \Box \Box \Box \Box c^2 \Box 6 \Box r \Box t^2$$
 **36.**

$$\begin{array}{c}
\overline{4} \\
48a^7b^4
\end{array} \square 
\begin{array}{c}
4 \\
2^4a^4b^4
\end{array} \square 3a^3
\square 2$$

$$\begin{array}{c}
4 \\
\overline{3a^3}
\end{array}$$


37. 
$$64x^{6} \square 8_{x^{3}} \square 2 \square x \square$$





**45.** 
$$\begin{bmatrix} \frac{1}{3} \overline{x^4} & \frac{1}{5} & \overline{8x} & \frac{1}{5} \\ \overline{x^3} x & \frac{1}{5} & 2^3 x & \frac{1}{5} & x & 2^{\frac{1}{3}} x & \frac{1}{5} \\ \overline{x} & \frac{1}{5} & x & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \\ \overline{x} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \\ \overline{x} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \\ \overline{x} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \\ \overline{x} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \\ \overline{x} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \\ \overline{x} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \\ \overline{x} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \\ \overline{x} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \\ \overline{x} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \\ \overline{x} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \\ \overline{x} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \\ \overline{x} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \\ \overline{x} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \\ \overline{x} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \\ \overline{x} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \\ \overline{x} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \\ \overline{x} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \\ \overline{x} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \\ \overline{x} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \\ \overline{x} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \\ \overline{x} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \\ \overline{x} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \\ \overline{x} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \\ \overline{x} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \\ \overline{x} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \\ \overline{x} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \\ \overline{x} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \\ \overline{x} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \\ \overline{x} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \\ \overline{x} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \\ \overline{x} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \\ \overline{x} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \\ \overline{x} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} & \frac{1}{5} \\$$

**46.** 
$$\sqrt[5]{2y^4} \cap \sqrt[5]{2y} \cap \sqrt$$



**48.** 
$$\begin{picture}(20,0) \put(0,0){\line(1,0){100}} \put(0,0){\line(1,$$

**49.** (a) 
$$16^{1\Box 4} \Box 2$$

(c) 
$$9^{\Box 1\Box 2} \quad \frac{1}{9^{1\Box 2}} \quad \Box \frac{1}{3}$$

**50.** (a) 
$$27^{1\square 3} \square 3$$

**(b)** 
$$\Box \Box 8\Box^{1\Box 3} \Box \Box 2$$

$$(c)_{\begin{array}{c} 1 \\ 1 \\ \hline 1 \\ \hline 3 \\ \hline 8 \\ \end{array}} \quad \Box \quad \Box \frac{1}{2}$$

**51.** (a) 
$$32^{2\Box 5}$$
  $\Box$  2  $\Box$   $2^2$   $\Box$  4

(c) 
$$\begin{bmatrix} 16 \\ 0 \\ \frac{3}{81} \end{bmatrix} \qquad \begin{bmatrix} \frac{2}{3} \\ \frac{2}{3} \end{bmatrix} \begin{bmatrix} \frac{8}{27} \end{bmatrix}$$

**52.** (a) 
$$125^{2\square 3} \square 5^2 \square 25$$

(c) 
$$27^{\square 4 \square 3} \, \square \, 3^{\square 4} \, \square \, 81$$

**53.** (a) 
$$5^{2 \square 3} \square 5^{1 \square 3} \square 5^{2 \square 3 \square 1 \square 3} \square 5^{1} \square 5$$
  $3^{3 \square 5} \square 3^{3 \square 5 \square 2 \square 5} \square 5^{2} \square 5$  (c)  $4^{2 \square 3} \square 4^{2 \square 1 \square 3 \square 3} \square 4$ 

$$\frac{3^3 \, \square}{3^2 \, \square} \, \square \, 3^3 \, \square \, 5 \, \square \, 2 \, \square \, 5 \, \square \, \boxed{5}$$

(c) 
$$\sqrt[3]{4}$$
  $\sqrt[3]{4}$   $\sqrt[3]{4}$ 

**54.** (a) 
$$3^{2}$$
  $\bigcirc$   $3^{12}$   $\bigcirc$   $3^{2}$   $\bigcirc$   $3^{2}$   $\bigcirc$   $1^{2}$   $\bigcirc$   $1^{2}$ 

(c) 
$$\begin{bmatrix} 5\overline{6} & \boxed{0} & 6 & \boxed{5} & \boxed{0} \end{bmatrix}$$

**57.** When  $x \square 3$ ,  $y \square 4$ ,  $z \square \square 1$  we have

**58.** When  $x \square 3$ ,  $y \square 4$ ,  $z \square \square 1$  we have  $\square xy \square^{2z} \square \square 3 \square 4 \square^{2} \square \square^{1} \square \square 1 \frac{2}{744} \square \square 1$ .

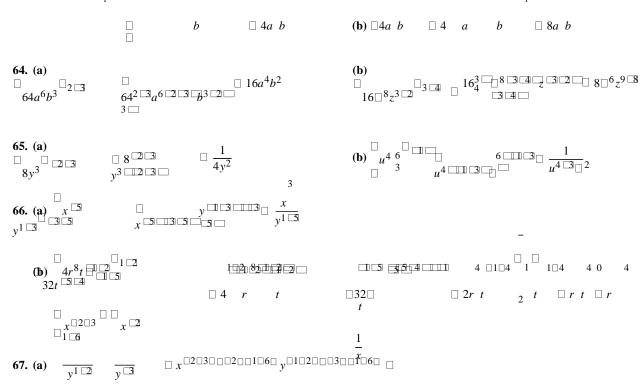
**59.** (a) 
$$x^3 \Box x^{5\Box 4} \Box x^{3\Box 4\Box 5\Box 4} \Box x^2$$

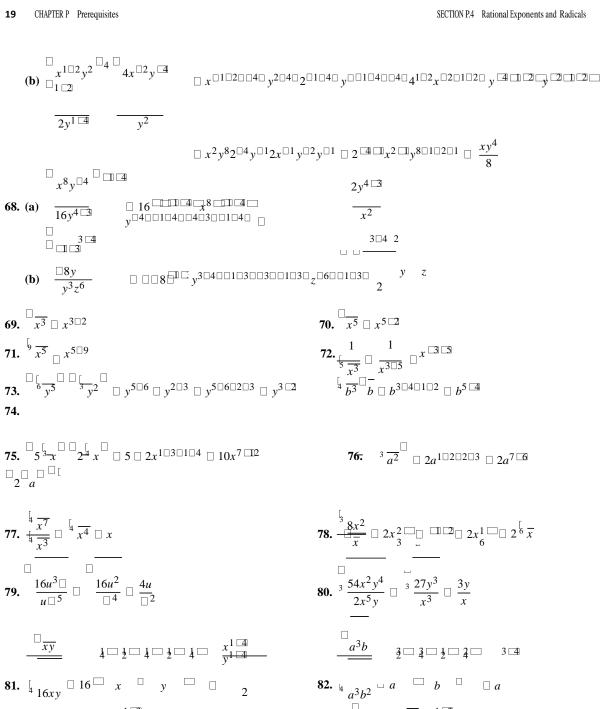
**(b)** 
$$y^{2\Box 3}y^{4\Box 3} \Box y^{2\Box 3\Box 4\Box 3} \Box y^2$$

**60.** (a) 
$$r^{1} \Box 6r^{5} \Box 6 \Box r^{1} \Box 6\Box 5\Box 6 \Box r$$

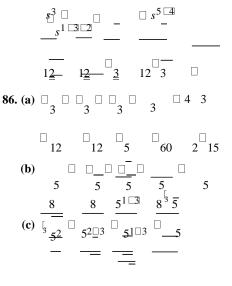
**(b)** 
$$a^{3\Box 5}a^{3\Box 10} \Box a^{3\Box 5\Box 3\Box 10} \Box a^{9\Box 10}$$

61. (a) 
$$\frac{1}{3}$$
  $\frac{3}{3}$  5


$$\frac{a^5}{2a^3} \stackrel{3}{=} 2 \stackrel{3}{=} 2 \stackrel{1}{=} 13 \stackrel{1}{=} \stackrel{1}{$$


) 
$$x^3 = 0$$
  
 $x^7 = 0$   $x^5 = 0$   
**(b)**

**(b)** 
$$a^{1\square 4}$$
  $\square 2 a$   $\square 8a$ 


62. (a) 
$$x^{3} = \frac{x^{3}}{x^{7}} = \frac{1}{(b)} x^{30407040504} = x^{5} = \frac{1}{(b)} x^$$

**63.** (a) 
$$_{8a^6b^3}$$
  $_{2}$   $_{2}$   $_{3}$   $_{2}$   $_{3}$ 





83. 
$$\frac{3}{y}$$
  $\frac{1}{y}$   $\frac{1}{y}$ 



87. (a) 
$$\bigoplus_{\overline{5x}} \square \bigoplus_{\overline{5x}} \square \bigoplus_{\overline{5x}} \square \longrightarrow_{\overline{5x}} \square$$

1 1 
$$x^{\frac{1}{3}} \overline{x^2}$$
  $x^{\frac{1}{3}} x^2$ 

**89.** (a) 
$$\frac{1}{3} \frac{1}{x} \Box \frac{1}{3} \frac{1}{x} \Box \frac{1}{3} \frac{1}{x^2} \Box \frac{1}{x}$$

$$\begin{bmatrix} s & s & 3t & 3st \end{bmatrix}$$

**88.** (a) 
$$3t \quad 3t \quad 3t \quad 3t \quad 3t$$

$$a \qquad a \qquad b^2 \qquad ab^2 \qquad$$

(b) 
$$\frac{1}{\overline{b^2}} \square \frac{1}{\overline{b^1 \square 3}} \square \frac{1}{b^2 \square 3} \square b$$

(c) 
$$\frac{1}{c^3 \, \Box} \, \Box \, \frac{1}{c^3 \, \Box} \, \frac{c^2 \, \Box}{c^2 \, \Box} \, \Box \frac{c^2 \, \Box}{c} - -$$

1 1 
$$\frac{1}{3}x$$
  $\frac{1}{3}x$ 

90. (a) 
$$\frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3}} = \frac{1}{\sqrt{3$$

(b) 
$$\begin{bmatrix} x^3 & 1 & 1 & 1 \\ x^3 & 1 & 1 \end{bmatrix}$$

(c) 
$$\begin{bmatrix} x_1 & x_2 & x_3 & x_4 & x_4$$

$$\Box \frac{\sqrt[5]{x^2}}{x^3 \overline{x^3}} \Box \frac{\sqrt[5]{x^2}}{x^2}$$

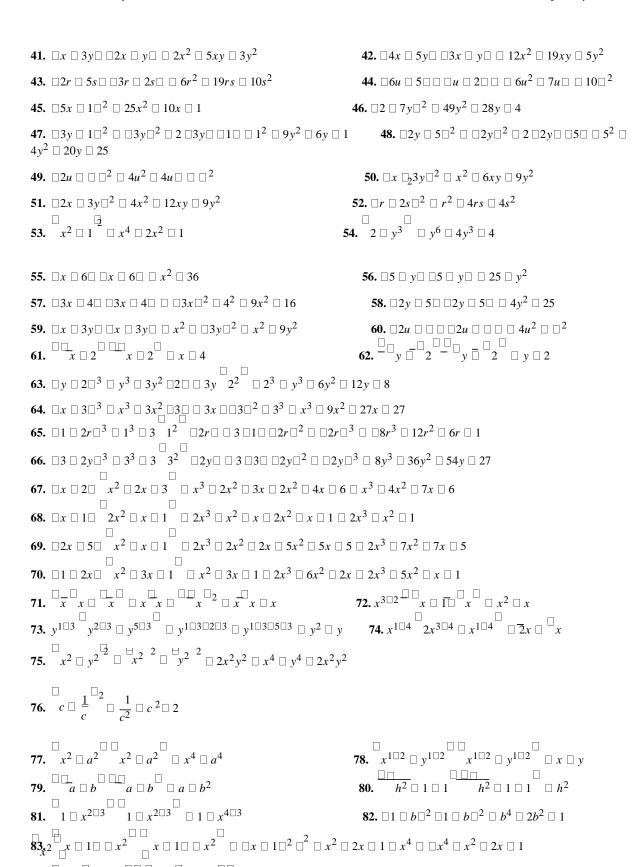
| <b>91.</b> (                 | (a)<br>[b)                | Sin | $\operatorname{ace} \frac{1}{2} \square \frac{1}{3}.$ $1 \square 2 \square 2$ | , $2^{1\square 2}$ $\square$  | 2 <sup>1</sup> <sup>-3</sup> .  1                                           | $2^{\Box 1\Box 3}$ . Since $\Box$                      | ] 1 🗇 | $\Box^1$ , we have                                                       | _ <u>1</u><br>_1 □2 |                                                       | 3                                 |                        |                        |                       |
|------------------------------|---------------------------|-----|-------------------------------------------------------------------------------|-------------------------------|-----------------------------------------------------------------------------|--------------------------------------------------------|-------|--------------------------------------------------------------------------|---------------------|-------------------------------------------------------|-----------------------------------|------------------------|------------------------|-----------------------|
| <b>92.</b><br>7 <sup>2</sup> | <b>(a)</b>                | We  | find a cor                                                                    | nmon ro                       | ot: 7 <sup>1 □4</sup> □                                                     |                                                        | 112   | 343 <sup>1□12</sup> ; 4 <sup>1□</sup> 4 <sup>4</sup>                     |                     | 1                                                     | □12<br>□ 2                        | 56 <sup>1□12</sup> . : | So 7 <sup>1□4</sup> □  | ∃ 4 <sup>1 ⊑3</sup> . |
|                              | <b>(b)</b> 5 <sup>2</sup> |     |                                                                               | nmon ro                       | ot: \( \bar{5} \subset \simeq \)                                            | 5 <sup>1□3</sup> □ 5 <sup>2□6</sup> □                  | l     | 1 □ 6<br>□ 25 <sup>1 □ 6</sup> ;                                         | 3<br>3<br>3         | $\square_{3}^{3}$ $\square_{3}^{3}$ $\square_{3}^{3}$ | □6 □                              | 1 🗖                    | 27 <sup>1□6</sup> . So | o                     |
|                              |                           | 3 5 | $\overline{3} \square \square \overline{3}$ .                                 |                               |                                                                             |                                                        |       | 1 mile                                                                   |                     |                                                       |                                   |                        |                        |                       |
|                              |                           |     |                                                                               |                               |                                                                             | gives 1135 ft   00021500000000000000000000000000000000 |       |                                                                          |                     |                                                       |                                   |                        |                        |                       |
|                              |                           | 250 | 00 🗆 15 <i>d</i>                                                              | $\Box d \Box 5$               | $\frac{00}{3}$ $\Box$ 167 f                                                 |                                                        |       |                                                                          |                     |                                                       |                                   |                        |                        |                       |
|                              |                           | □16 | □25□98□                                                                       | □ 14□18                       | 3.                                                                          | □0□38 □3400□<br>he sailboat quali                      |       |                                                                          | □ 18                | 8□0□38 □58                                            | □31□□                             | 3 □8□66                |                        |                       |
|                              | <b>(b)</b>                |     |                                                                               |                               |                                                                             | ile sanboat quan<br>′ □ 600. Substi                    |       |                                                                          | ) [ <i>6</i>        | 5                                                     | 1□2 □ 2                           | <00□1                  | □3 □ 16                |                       |
|                              | (D)                       |     |                                                                               |                               |                                                                             | $\Box$ 600. Substitution $16 \Box 0 \Box 38A^{10}$     |       |                                                                          |                     |                                                       |                                   |                        |                        |                       |
|                              |                           |     |                                                                               |                               |                                                                             | sible sail is 3292                                     |       | 3000 10 10                                                               | 0_5                 | 011 - 21                                              | _00 _ 1                           |                        | 7 - 50 - 7             | : 1                   |
| 96.                          | (a)                       |     |                                                                               |                               |                                                                             | $75^{20}$ get $V \square 1 \square 486$                |       | $ \begin{array}{c c} 0 & 050^1 & 2 \\ \hline 1^2 & 0 & 040 \end{array} $ | 17□3                | 707 ft/s.                                             |                                   |                        |                        |                       |
|                              | (b)                       | Sir | ice the vol                                                                   | ume of tl                     | he flow is V                                                                | $I \square A$ , the canal                              | disch | narge is 17□70                                                           | 7 🗆 1               | 75 □ 1328□0                                           | $\mathrm{ft}^3\square\mathrm{s}.$ |                        |                        |                       |
| 97.                          | (a)                       |     |                                                                               |                               | ī                                                                           | 1                                                      | -     |                                                                          | 1                   |                                                       |                                   |                        | _                      |                       |
|                              |                           |     |                                                                               | n                             | 1                                                                           | 2                                                      |       | 5                                                                        | - 11                | 10                                                    | 21□10                             | 100                    | _                      |                       |
|                              |                           | So  | when n ge                                                                     | $\frac{2^1}{\text{ts large}}$ | $2^{1\square 1} \underset{\text{2}}{\square} 2^{1\square n} \text{ decree}$ | $2  2^{1\square 2}  \square$ eases toward 1.           |       | 21 🗆 🗆                                                                   | 211                 | □10 □                                                 | 21110                             | 0 🗌                    |                        |                       |
|                              | <b>(b)</b>                |     |                                                                               |                               | 1                                                                           | 2                                                      |       | 5                                                                        |                     | 10                                                    |                                   |                        | 100                    |                       |
|                              |                           |     | n                                                                             | n                             | 1 🗇                                                                         |                                                        |       | U 1 [5]                                                                  |                     | □.□1□10                                               |                                   | U U1                   |                        |                       |
|                              |                           |     | 2                                                                             | 2                             | □ 0□5                                                                       | $\frac{1}{2}$ $\boxed{\Box}$ $0\Box$                   | 707   | $\frac{1}{2}$ $0\Box$                                                    | 871                 | 2                                                     | 0□933                             | 2                      | □ 0□9                  | 193                   |
|                              |                           | So  | when n oe                                                                     | ets large                     | $\Box_{\underline{1}}\Box_{1\Box n}$                                        | increases toward                                       | 11    |                                                                          |                     |                                                       |                                   |                        |                        |                       |

## P.5 ALGEBRAIC EXPRESSIONS

|    |              | . 1                      |                                |                    |                   |              |               |              |
|----|--------------|--------------------------|--------------------------------|--------------------|-------------------|--------------|---------------|--------------|
| 1. | (a) $2x^{2}$ | $\Box \frac{1}{2}x \Box$ | $\frac{3}{3}$ is a polynomial. | (The constant tern | n is not an integ | ger, but all | exponents are | e integers.) |
|    | ` /          |                          | ¬                              | `                  |                   | ,            | 1             | υ,           |

**(b)** 
$$x^2 \Box \frac{1}{2} \Box 3^{\square} \overline{x} \Box x^2 \Box \frac{1}{2} \Box 3x^{1\square 2}$$
 is not a polynomial because the exponent  $\frac{1}{2}$  is not an integer

(b) 
$$x^2 \Box \frac{1}{2} \Box 3^{\Box} \overline{x} \Box x^2 \Box \frac{1}{2} \Box 3x^{1\Box 2}$$
 is not a polynomial because the exponent  $\frac{1}{2}$  is not an integer.  
(c)  $\frac{1}{x^2 \Box 4x \Box 7}$  is not a polynomial. (It is the reciprocal of the polynomial  $x^2 \Box 4x \Box 7$ .)


- (d)  $x^5 \square 7x^2 \square x \square 100$  is a polynomial. (e)  $\sqrt[5]{8x^6 \square 5x^3 \square 7x \square 3}$  is not a polynomial. (It is the cube root of the polynomial  $8x^6 \square 5x^3 \square 7x \square 3$ .)
- (f)  $3x^4 = 5x^2 = 15x$  is a polynomial. (Some coefficients are not integers, but all exponents are integers.)

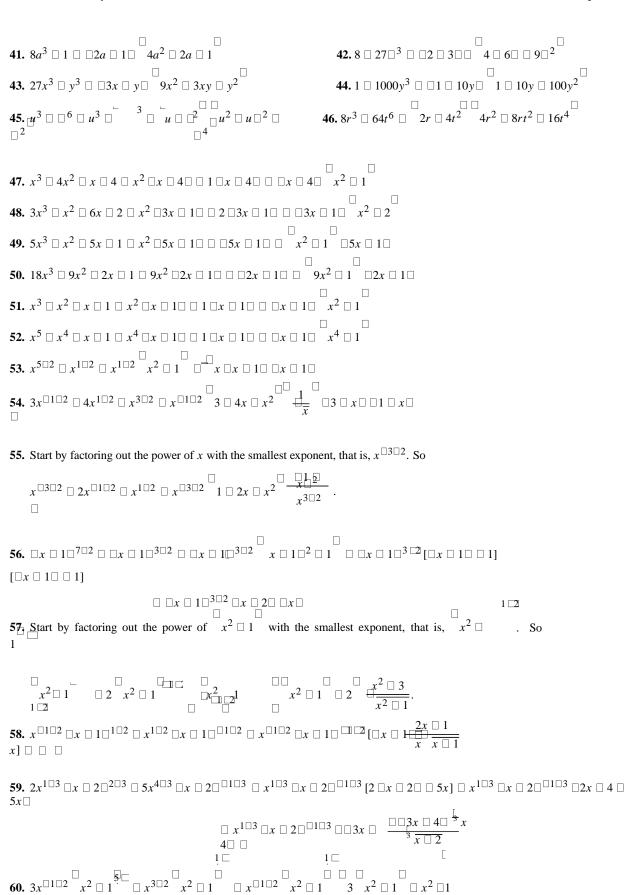
| 2.         | To add polynomials we add <i>like</i> terms. So $3x^2 \Box 2x \Box 4 \Box 8x^2 \Box x \Box 1 \Box \Box 3 \Box 8 \Box x^2 \Box \Box 2 \Box$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $110 \times 0.04 \times 10.011 \times 2.0 \times 0.5$                                                                          |  |  |  |  |  |  |
|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| 3.         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                |  |  |  |  |  |  |
| ٠.         | . To subtract polynomials we subtract <i>like</i> terms. So $2x^3 \square 9x^2 \square x \square 10 \square x^3 \square x^2 \square 6x \square 8 \square 2 \square 11 \square x^3 \square 99 \square 11 \square x^2 \square 11 \square 6 \square x \square 10 \square 8 \square x^3 \square 8x^2 \square$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                |  |  |  |  |  |  |
|            | $5x \square 2$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                |  |  |  |  |  |  |
| 1          | We use FOIL to multiply two polynomials: $\Box x \Box 2 \Box \Box x \Box 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $0.0 \times 0 \times 0 \times 0.3 \times 0.2 \times 0.2 \times 0.3 \times 0.2 \times 0.6$                                      |  |  |  |  |  |  |
|            | The Special Product Formula for the "square of a sum"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                |  |  |  |  |  |  |
| ٠.         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                |  |  |  |  |  |  |
| 6.         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | d difference of terms" is $\Box A \Box B \Box \Box A \Box B \Box \Box A^2 \Box B^2$ . So                                       |  |  |  |  |  |  |
| 7          | (a) No, $\Box x \Box 5\Box^2 \Box x^2 \Box 10x \Box 25 \Box x^2 \Box 25$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                |  |  |  |  |  |  |
| •          | (b) Yes, if $a \square 0$ , then $\square x \square a \square^2 \square x^2 \square 2ax \square a^2$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                |  |  |  |  |  |  |
| 8.         | (a) Yes, $\Box x \Box 5 \Box \Box x \Box 5 \Box \Box x^2 \Box 5x \Box 5x \Box 25 \Box x^2 \Box $ | 25.                                                                                                                            |  |  |  |  |  |  |
|            | <b>(b)</b> Yes, if $a \square 0$ , then $\square x \square a \square \square x \square a \square \square x^2 \square ax \square ax$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                |  |  |  |  |  |  |
| 9.         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>10.</b> Trinomial, terms $\Box 2x^2$ , $5x$ , and $\Box 3$ , degree 2                                                       |  |  |  |  |  |  |
| 11.        | Monomial, term $\square 8$ , degree 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>12.</b> Monomial, term $\frac{1}{2}x^7$ , degree 7                                                                          |  |  |  |  |  |  |
| 13.        | Four terms, terms $x$ , $\Box x^2$ , $x^3$ , and $\Box x^4$ , degree 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | <del>_</del>                                                                                                                   |  |  |  |  |  |  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                |  |  |  |  |  |  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                |  |  |  |  |  |  |
| ١7.        | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\square \exists x \square ] \square \square \exists \exists \square \exists x^2 \square \exists x$                            |  |  |  |  |  |  |
| □ 3        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                |  |  |  |  |  |  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                |  |  |  |  |  |  |
| 18.        | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\square \square 3x \square 5x \square \square \square 1 \square 4 \square \square x^2 \square 2x \square 3$                   |  |  |  |  |  |  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                |  |  |  |  |  |  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                |  |  |  |  |  |  |
|            | $3 \square x \square 1 \square \square 4 \square x \square 2 \square \square 3x \square 3 \square 4x \square 8 \square 7x \square 5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                |  |  |  |  |  |  |
| 20.        | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 03<br>□                                                                                                                        |  |  |  |  |  |  |
| 21.        | $5x^3 \square 4x^2 \square 3x \square x^2 \square 7x \square 2 \square 5x^3 \square 4x^2 \square x^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                           |  |  |  |  |  |  |
| 22.        | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | $\exists x^2 \Box 6x \Box 3 \Box x^2 \Box 6x \Box 17$                                                                          |  |  |  |  |  |  |
| 23.        | $2x \square x \square 1 \square \square 2x^2 \square 2x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>24.</b> $3y \square 2y \square 5\square \square 6y^2 \square 15y$                                                           |  |  |  |  |  |  |
| 25.        | $x^2 \square x \square 3 \square \square x^3 \square 3x^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>26.</b> $\Box y  y^2 \Box 2  \Box \ \Box y^3 \Box 2y$                                                                       |  |  |  |  |  |  |
|            | $2 \square 2 \square 5t \square \square t \square t \square t \square 10 \square \square 4 \square 10t \square t^2 \square 10t \square t^2 \square 4$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <b>28.</b> $5 \square 3t \square 4 \square \square 2t \square t \square 3 \square \square \square 2t^2 \square 21t \square 20$ |  |  |  |  |  |  |
| 29.        | $r$ $r^2 \square 9 \square 3r^2 \square 2r \square 1 \square \square r^3 \square 9r \square 6r^3 \square$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | <b>30.</b> $\Box^3$ $\Box$                                      |  |  |  |  |  |  |
| $3r^2$     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                |  |  |  |  |  |  |
|            | $\Box 7r^3 \Box 3r^2 \Box 9r$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                |  |  |  |  |  |  |
|            | $x^{2}  2x^{2}  x  x  x^{3}  x^{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 32. $3x^3  x^4 \ \Box \ 4x^2 \ \Box \ 5  \Box \ 3x^7 \ \Box \ 12x^5 \ \Box \ 15x^3$                                            |  |  |  |  |  |  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                |  |  |  |  |  |  |
| <b>33.</b> |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>34.</b> $\Box 4 \Box x \Box \Box 2 \Box x \Box \Box 8 \Box 4x \Box 2x \Box x^2 \Box x^2 \Box 6x \Box$                       |  |  |  |  |  |  |
| 35.        | $\square s \square 6 \square \square 2s \square 3 \square \square 2s^2 \square 3s \square 12s \square 18 \square 2s^2 \square 15s \square 3s$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 18 <b>36.</b> $\Box 2t \Box 3 \Box \Box t \Box 1 \Box \Box 2t^2 \Box 2t \Box 3t \Box 3 \Box 2t^2 \Box t \Box 3$                |  |  |  |  |  |  |

**37.**  $\Box 3t \Box 2\Box \Box 7t \Box 4\Box \Box 21t^2 \Box 12t \Box 14t \Box 8 \Box 21t^2 \Box 26t \Box 8$  **38.**  $\Box 4s \Box 1\Box \Box 2s \Box 5\Box \Box 8s^2 \Box 18s \Box 5$ 

**20** CHAPTER P Prerequisites SECTION P.5 Algebraic Expressions **20** 

**39.**  $\Box 3x \Box 5\Box \Box 2x \Box 1\Box \Box 6x^2 \Box 10x \Box 3x \Box 5 \Box 6x^2 \Box 7x \Box 5$  **40.**  $\Box 7y \Box 3\Box \Box 2y \Box 1\Box \Box 14y^2 \Box 13y \Box 3$ 




**84.**  $x \square 2 \square x^2 \qquad x \square 2 \square x^2 \qquad \square \square x^4 \square 3x^2 \square 4$ 

**85.**  $\Box 2x \Box y \Box 3 \Box \Box 2x \Box y \Box 3 \Box \Box \Box 2x \Box y \Box^2 \Box 3^2 \Box 4x^2 \Box 4xy \Box y^2 \Box 9$ 

| 86. | $\Box x$     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-----|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 87. | (a)          | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     | ( <b>b</b> ) | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 88. | LH:          | S $\Box$ $a^2 \Box$ $b^2$ $c^2 \Box$ $d^2$ $\Box$ $a^2c^2 \Box$ $a^2d^2 \Box$ $b^2c^2 \Box$ $b^2d^2$ $\Box$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 89. |              | The height of the box is $x$ , its width is $6 \square 2x$ , and its length is $10 \square 2x$ . Since Volume $\square$ height $\square$ width $\square$ length, we have $V \square x \square 6 \square 2x \square \square 10 \square 2x \square$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|     | <b>(b)</b>   | $V \square x \ 60 \square 32x \square 4x^2 \ \square 60x \square 32x^2 \square 4x^3$ , degree 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|     | (c)          | When $x \square 1$ , the volume is $V \square 60 \square 1 \square \square 32 \square 1^2 \square 4 \square 1^3 \square 32$ , and when $x \square 2$ , the volume is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|     |              | $V \square 60 \square 2 \square \square 32 \stackrel{\square}{2^2} \square 4 \stackrel{\square}{2^3} \square 24.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 90. |              | The width is the width of the lot minus the setbacks of 10 feet each. Thus width $\Box x \Box 20$ and length $\Box y \Box 20$ . Since Area $\Box$ width $\Box$ length, we get $A \Box \Box x \Box 20 \Box \Box y \Box 20 \Box$ . $A \Box \Box x \Box 20 \Box \Box y \Box 20 z $ |
|     |              | For the $100 \square 400$ lot, the building envelope has $A \square \square 100 \square 20\square \square 400 \square 20\square \square 80 \square 380\square \square 30,400$ . For the $200 \square$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|     |              | 200, lot the building envelope has $A \square \square 200 \square 20 \square \square 200 \square 20 \square \square 180 \square 180 \square \square 32,400$ . The 200 $\square$ 200 lot has a larger building envelope.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 91. | (a)          | $A \square 2000 \square 1 \square r \square^3 \square 2000 \square 1 \square 3r \square 3r^2 \square r^3 \square 2000 \square 6000r \square 6000r^2 \square 2000r^3$ , degree 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|     | <b>(b)</b>   | Remember that % means divide by 100, so $2\% \square 0\square 02$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|     |              | Interest rate $r = 2\% = 3\% = 4 \Box 5\% = 6\% = 10\%$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|     |              | Amount A \$2122 \( \preceq 42 \) \$2185 \( \preceq 45 \) \$2282 \( \preceq 33 \) \$2382 \( \preceq 03 \) \$2662 \( \preceq 00 \)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 92. | (a)          | $P \square R \square C \square 50x \square 0\square 05x^2 \square 50 \square 30x \square 0\square 1x^2 \square 50x \square 0\square 05x^2 \square 50 \square 30x \square 0\square 1x^2 \square 00\square 05x^2 \square 20x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| □ 5 |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     | (b)          | The profit on 10 calculators is $P \square 0 \square 05 10^2 \square 20 \square 10 \square \square 50 \square \$155$ . The profit on 20 calculators is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|     | (0)          | P $\Box$ 0 $\Box$ 05 20 $^2$ $\Box$ 20 $\Box$ 20 $\Box$ 50 $\Box$ \$370 .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 93. |              | When $x \Box 1$ , $\Box x \Box 5\Box^2 \Box \Box 1 \Box 5\Box^2 \Box 36$ and $x^2 \Box 25 \Box 1^2 \Box 25 \Box 26$ . $\Box x \Box 5\Box^2 \Box x^2 \Box 10x \Box 25$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 94. | ` /          | The degree of the product is the sum of the degrees of the original polynomials.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|     | <b>(b)</b>   | The degree of the sum could be lower than either of the degrees of the original polynomials, but is at most the largest of the degrees of the original polynomials.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|     | ( <b>c</b> ) | Product: $2x^3 \Box x \Box \qquad 2x^3 \Box x \Box 7 \qquad \Box 4x^6 \Box 2x^4 \Box 14x^3 \Box 2x^4 \Box x^2 \Box 7x \Box 6x^3 \Box 3x \Box 21$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|     |              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     |              | Sum: $2x^3 \square x \square 3$ $\square$ $2x^3 \square x \square 7$ $\square$ 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

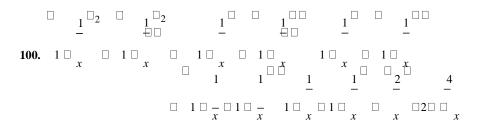
## P6 FACTORING

| 1.' | J PACTORINO                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|
|     | The polynomial $2x^5 \Box 6x^4 \Box 4x^3$ has three terms: 2                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
| 2.  | <b>2.</b> The factor $2x^3$ is common to each term, so $2x^5 \Box 6x^4 \Box 4x^3 \Box 2x^3 x^2 \Box 3x \Box 2$ .                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
|     | [In fact, the polynomial can be factored further as $2x^3 \Box x \Box 2 \Box \Box x \Box 1 \Box$ .]                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
| 3.  | To factor the trinomial $x^2 \Box 7x \Box 10$ we look for tw and 2, so the trinomial factors as $\Box x \Box 5 \Box \Box x \Box 2 \Box$                                                | To integers whose product is 10 and whose sum is 7. These integers are 5 $\Box$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
| 4.  |                                                                                                                                                                                        | $x \square 1 \square^2 \square x \square x \square 1 \square^2$ is $\square x \square 1 \square^2$ , and the expression factors as                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| _   | $4 \square x \square 1 \square^2 \square x \square x \square 1 \square^2 \square x \square 1 \square^2 \square 4 \square x \square$ The Special Featuring Features for the "difference | e of squares" is $A^2 \square B^2 \square \square A \square B \square \square A \square B \square$ . So                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
| ٥.  | The Special Factoring Formula for the difference $4x^2 \square 25 \square \square 2x \square 5 \square \square 2x \square 5 \square$ .                                                 | e of squares is $A \cup B \cup A \cup B \cup B$ |  |  |  |  |  |
| 6.  | The Special Factoring Formula for a "perfect square                                                                                                                                    | " is $A^2 \square 2AB \square B^2 \square \square A \square B \square^2$ . So $x^2 \square 10x \square 25 \square \square x \square 5 \square^2$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |
| 7.  | $5a \square 20 \square 5 \square a \square 4 \square$                                                                                                                                  | <b>8.</b> $\Box 3b$ $\Box$ 12 $\Box$ $\Box 3$ $\Box b$ $\Box$ 4 $\Box$ $\Box$ 3 $\Box \Box b$ $\Box$ 4 $\Box$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |  |  |  |  |  |
| 9.  | $ \Box 2x^3 \Box x \Box \Box x \ 2x^2 \Box 1 $                                                                                                                                         | <b>10.</b> $3x^4 \square 6x^3 \square x^2 \square x^2 \square 3x^2 \square 6x \square 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
|     | $2x^2y \ \Box \ 6xy^2 \ \Box \ 3xy \ \Box \ xy \ \Box 2x \ \Box \ 6y \ \Box \ 3\Box$                                                                                                   | <b>12.</b> $\Box 7x^4y^2 \Box 14xy^3 \Box 21xy^4 \Box 7xy^2 \Box x^3 \Box 2y \Box 3y^2 \Box$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
| Ш   |                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
|     |                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
|     | $y \square y \square 6 \square \square 9 \square y \square 6 \square \square y \square 6 \square \square y \square 9 \square$                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
|     |                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
| 15. | $x^2 \square 8x \square 7 \square \square x \square 7 \square \square x \square 1 \square$                                                                                             | <b>16.</b> $x^2 \square 4x \square 5 \square \square x \square 5 \square \square x \square 1 \square$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |
| 17. | $x^2 \square 2x \square 15 \square \square x \square 5 \square \square x \square 3 \square$                                                                                            | <b>18.</b> $2x^2 \square 5x \square 7 \square \square x \square 1 \square \square 2x \square 7 \square$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |  |  |  |  |  |
| 19. | $3x^2 \square 16x \square 5 \square \square 3x \square 1 \square \square x \square 5 \square$                                                                                          | <b>20.</b> $5x^2 \Box 7x \Box 6 \Box \Box 5x \Box 3 \Box \Box x \Box 2 \Box$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
|     | $\square 3x \ \square \ 2\square^2 \ \square \ 8 \ \square 3x \ \square \ 2\square \ \square \ 12 \ \square \ [\square 3x \ \square \ 2\square \ \square \ 2$                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
|     | $2 \square a \square b \square^2 \square 5 \square a \square b \square \square 3 \square [\square a \square b \square \square 3][$                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |  |  |  |  |  |
| 23. | $x^2 \square 25 \square \square x \square 5 \square \square x \square 5 \square$                                                                                                       | <b>24.</b> $9 \square y^2 \square \square 3 \square y \square \square 3 \square y \square$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |
| 25. | $49 \square 4z^2 \square \square 7 \square 2z \square \square 7 \square 2z \square$                                                                                                    | <b>26.</b> $9a^2 \square 16 \square \square 3a \square 4\square \square 3a \square 4\square$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |  |  |  |  |  |
|     | $16y^2 \square z^2 \square \square 4y \square z \square \square 4y \square z \square$                                                                                                  | <b>28.</b> $a^2 \square 36b^2 \square \square a \square 6b \square \square a \square 6b \square$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |  |  |  |  |  |
| 29. | $ \square x \square 3 \square^2 \square y^2 \square \square \square x \square 3 \square \square y \square \square x \square 3 \square \square $                                        | $\begin{bmatrix} y & \Box & \Box & x & \Box & y & \Box & 3 \Box & \Box & x & \Box & y & \Box & 3 \Box \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |
| 30. | $x^2 \square \square y \square 5\square^2 \square \square x \square \square y \square 5\square \square x \square \square y \square 5$                                                  | $5\Box$ $\Box$ $\Box$ $x$ $\Box$ $y$ $\Box$ $5\Box$ $\Box$ $x$ $\Box$ $y$ $\Box$ $5\Box$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |  |  |  |  |  |
| 31. | $x^2 \square 10x \square 25 \square \square x \square 5\square^2$                                                                                                                      | <b>32.</b> 9 $\square$ 6y $\square$ y <sup>2</sup> $\square$ $\square$ 3 $\square$ y $\square$ <sup>2</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |  |  |  |  |  |
| 33. | $z^2 \square 12z \square 36 \square \square z \square 6\square^2$                                                                                                                      | <b>34.</b> $\square^2$ $\square$ 16 $\square$ $\square$ 64 $\square$ $\square$ $\square$ 8 $\square^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |
| 35. | $4t^2 \square 20t \square 25 \square \square 2t \square 5\square^2$                                                                                                                    | <b>36.</b> $16a^2 \square 24a \square 9 \square \square 4a \square 3\square^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |
|     | $9u^2 \square 6u \square \square^2 \square \square 3u \square \square^2$                                                                                                               | <b>38.</b> $x^2 \square 10xy \square 25y^2 \square \square x \square 5y\square^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |
| 39. | $x^3 \square 27 \square \square x \square 3 \square                           $                                                                                                        | <b>40.</b> $y^3 \square 64 \square \square y \square 4 \square \square y^2 \square 4y \square 16$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |



CHAPTER P Prerequisites 24

**64.**  $5ab \square 8abc \square ab \square 5 \square 8c \square$ 


**61.**  $12x^3 \square 18x \square 6x \stackrel{\square}{2}x^2 \square 3$ 

**63.**  $6y^4 \Box 15y^3 \Box 3y^3 \Box 2y \Box 5\Box$ 

**62.**  $30x^3 \Box 15x^4 \Box 15x^3 \Box 2 \Box x \Box$ 

**65.**  $x^2 \square 2x \square 8 \square \square x \square 4 \square \square x \square 2 \square$ **66.**  $x^2 \square 14x \square 48 \square \square x \square 8\square \square x \square 6\square$  25 CHAPTER P Prerequisites SECTION P.6 Factoring 25

| 67.              | $y^2 \square 8y \square 15 \square \square y \square 3 \square \square y \square 5 \square$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | <b>68.</b> $z^2 \square 6z \square 16 \square \square z \square 2 \square \square z \square 8 \square$                                                                                              |
|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  | $2x^2 \Box 5x \Box 3 \Box \Box 2x \Box 3\Box \Box x \Box 1\Box$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <b>70.</b> $2x^2 \Box 7x \Box 4 \Box \Box 2x \Box 1 \Box \Box x \Box 4 \Box$                                                                                                                        |
| 71.              | $9x^2 \square 36x \square 45 \square 9 \xrightarrow{\square} x^2 \square 4x \square 5 \xrightarrow{\square} \square 9 \square x \square 5 \square \square x \square 1 \square$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>72.</b> $8x^2 \square 10x \square 3 \square \square 4x \square 3 \square \square 2x \square 1 \square$                                                                                           |
| 73.              | $6x^2 \Box 5x \Box 6 \Box \Box 3x \Box 2\Box \Box 2x \Box 3\Box$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>74.</b> $6 \square 5t \square 6t^2 \square \square 3 \square 2t \square \square 2 \square 3t \square$                                                                                            |
| 75.              | $x^2 \square 36 \square \square x \square 6 \square \square x \square 6 \square$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>76.</b> $4x^2 \square 25 \square \square 2x \square 5 \square \square 2x \square 5 \square$                                                                                                      |
| 77.              | $49 \square 4y^2 \square \square 7 \square 2y \square \square 7 \square 2y \square$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>78.</b> $4t^2 \square 9s^2 \square \square 2t \square 3s \square \square 2t \square 3s \square$                                                                                                  |
| 79.              | $t^2 \square 6t \square 9 \square \square t \square 3 \square^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | <b>80.</b> $x^2 \square 10x \square 25 \square \square x \square 5 \square^2$                                                                                                                       |
| 83.              | $t^3 \square 1 \square \square t \square 1 \square                       $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>82.</b> $r^2 \square 6rs \square 9s^2 \square \square r \square 3s \square^2$                                                                                                                    |
| 84.              | $x^3 \square 27 \square x^3 \square 3^3 \square \square x \square 3 \square x^2 \square 3x \square 9$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                     |
|                  | $8x^3 \square 125 \square \square 2x \square^3 \square 5^3 \square \square 2x \square 5\square $ $\square 2x \square^2 \square \square 2x \square 15\square $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                     |
| 86.              | $125 \square 27y^3 \square 5^3 \square \square 3y\square^3 \square \square 5 \square 3y\square \square 5^2 \square 5 \square 3y\square \square \square$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\exists 3y \Box^2 \Box \Box \exists 3y \Box 5\Box \Box 9y^2 \Box 15y \Box 25\Box$                                                                                                                  |
| 87.              | $x^3 \square 2x^2 \square x \square x \stackrel{\square}{x} x^2 \square 2x \square 1 \stackrel{\square}{} \square x \square x \square 1 \square^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                     |
| 88.              | $3x^3 \square 27x \square 3x  x^2 \square 9  \square 3x \square x \square 3\square \square x \square 3\square$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                     |
| 89.              | $x^4 \ \square \ 2x^3 \ \square \ 3x^2 \ \square \ x^2 \ \square \ 2x \ \square \ 3 \ \square \ x^2 \ \square x \ \square \ 1 \square \ \square x \ \square \ 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                     |
| 90.              | $3\square^5\square5\square^4\square2\square^3\square\square^33\square^2\square5\square\square2\square\square^3\square^3\square3\square\square1\square$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ] [ ] 2 [                                                                                                                                                                                           |
| 91.              | $x^4y^3 \square x^2y^5 \square x^2y^3 \square x^2 \square y^2 \square x^2y^3 \square x \square y \square \square x \square y \square$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                     |
| 92.              | $18y^3x^2 \square 2xy^4 \square 2xy^3 \square 9x \square y\square$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | _                                                                                                                                                                                                   |
|                  | $x_{0}^{6} \square 8y^{3} \square \qquad \begin{array}{ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                     |
|                  | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 2 <sup>0</sup> H                                                                                                                                                                                    |
| <b>94.</b> $b^2$ | $3 \qquad \qquad \Box$ $27a^3 \Box b^6 \Box \Box 3a\Box^3 \Box \qquad \Box \Box 3a\Box b^2 \qquad \exists 3a \exists^2 \Box \Box 3a\Box b^2 \qquad b^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $b^2 \square \square \square 3a \square b^2 \square 9a^2 \square 3ab^2 \square b^4$                                                                                                                 |
| 95.              | $y^3 \square 3y^2 \square 4y \square 12$ $\square y^3 \square 3y^2 \square \square \square 4y \square 12 \square \square$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                     |
|                  | □ □y □ 3 □ □y □ 2 □ □y □ 2 □ (fac                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                     |
|                  | $y^3$ $\bigcirc$ $y^2$ $\bigcirc$ $y$ $\bigcirc$ $1$ $\bigcirc$ $y^2$ $\bigcirc$ $y$ $\bigcirc$ $1$ $\bigcirc$ $1$ $\bigcirc$ $y$ $\bigcirc$ $1$ $\bigcirc$ $\bigcirc$ $y^2$ $\bigcirc$ $1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                     |
|                  | $3x^3 \square x^2 \square 12x \square 4 \square 3x^3 \square 12x \square x^2 \square 4 \square 3x  x^2 \square 4 \square 12x $ | $\begin{bmatrix} x^2 & 4 \end{bmatrix} = \begin{bmatrix} 3x & 1 \end{bmatrix} = \begin{bmatrix} x^2 & 4 \end{bmatrix} = \begin{bmatrix} 3x & 1 \end{bmatrix} = \begin{bmatrix} x & 2 \end{bmatrix}$ |
|                  | (factor by grouping)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                     |
| 98.              | $9x^3 \square 18x^2 \square x \square 2 \square 9x^2 \square x \square 2 \square \square x \square 2 \square \square 9x^2 \square$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $\begin{matrix} \square \\ 1 & \square x \ \square \ 2 \square \ \square \ \square 3x \ \square \ 1 \square \ \square 3x \ \square \ 1 \square \ \square x \ \square \ 2 \square \end{matrix}$      |
| 99.              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\square \square a \square b \square ] \square \square 2b \square \square 2a \square \square 4ab$                                                                                                   |



- **101.**  $x^2 \ x^2 \ \Box \ 1 \ \Box \ 9 \ x^2 \ \Box \ 1 \ \Box \ x^2 \ \Box \ 1 \ x^2 \ \Box \ 9 \ \Box \ \Box \ x \ \Box \ 1 \ \Box \ x \ \Box \ 3 \ \Box \ x \ \Box \ 3 \ \Box$
- $\textbf{103.} \ \, \square x \ \square \ 1 \square \ \square x \ \square \ 2 \square^2 \ \square \ x \ \square \ 1 \square^2 \ \square x \ \square \ 2 \square \ \square \ \square x \ \square \ 1 \square \ \square x \ \square \ 2 \square \ \square \ \square x \ \square \ 2 \square \ \square \ \square x \ \square \ 1 \square \ \square x \ \square \ 2 \square$

$$\square \ x \square x \square 1 \square \square 1 \square^2 \square x \square x$$
$$\square 1 \square$$

- **105.**  $y^4 \square y \square 2 \square^3 \square y^5 \square y \square 2 \square^4 \square y^4 \square y \square 2 \square^3 \square 1 \square \square y \square y \square 2 \square \square \square y^4 \square y \square 2 \square^3 \square y^2 \square 2 y \square 1 \square y^4 \square y \square 2 \square^3 \square y \square 1 \square^2$
- **107.** Start by factoring  $y^2 \square 7y \square 10$ , and then substitute  $a^2 \square 1$  for y. This gives

- 108.  $a^2 \Box 2a \Box 2 \Box 2a \Box 2a \Box 3 \Box a^2 \Box 2a \Box 3 \Box a^2 \Box 2a \Box 1 \Box a^2 \Box 2a \Box 3 \Box a^2 \Box 2a \Box 1 \Box a^2 \Box 2a \Box 3 \Box a^2 \Box 2a \Box 1 \Box a \Box 3 \Box a \Box 1 \Box^2$
- **109.**  $3x^2 \Box 4x \Box 12\Box^2 \Box x^3 \Box 2\Box \Box 4x \Box 12\Box \Box 4\Box \Box x^2 \Box 4x \Box 12\Box [3 \Box 4x \Box 12\Box \Box x \Box 2\Box \Box 4\Box] \Box 4x^2 \Box x \Box 3\Box \Box 12x \Box 36 \Box 8x \Box$

- 112.  $^1$   $\square x \square 6 \square ^{\square 2 \square 3}$   $\square 2x \square 3 \square ^2$   $\square \square x \square 6 \square ^{\square 1 \square 3}$   $\square 2 \square \square 2x$   $\square 3 \square \square 2 \square \square 1$   $\square x \square 6 \square ^{\square 2 \square 3}$   $\square 2x$   $\square 3 \square \square 2x$   $\square 3 \square \square 2x$   $\square 3 \square \square 2x$

27 CHAPTER P Prerequisites SECTION P.6 Factoring 27

| 115. | The volume of the shell is the difference between the volumes of the outside cylinder (with radius $R$ ) and the inside cylinder                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|      | (with radius $r$ ). Thus $V \square \square R^2h \square \square r^2h \square \square R^2\square r^2 h \square \square R \square r \square R \square r \square h \square R \square r \square h \square R \square r \square$ . The $2\square \square$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|      | average radius is $\frac{R \square r}{2}$ and $2 \square \qquad \stackrel{R \square r}{2}$ is the average circumference (length of the rectangular box), $h$ is the height, and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      | $R \square r$ is the thickness of the rectangular box. Thus $V \square \square R^2h \square \square r^2h \square 2\square$ $\frac{R \square r}{2} \square h \square \square R \square r \square \square 2\square \square$ average                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|      | radius □ □ □height □ □thickness □ ← →                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      | h h h thickness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 116. | (a) Mowed portion $\Box$ field $\Box$ habitat  (b) Using the difference of squares, we get $b^2 \Box \Box b \Box 2x \Box^2 \Box [b \Box b \Box 2x \Box] [b \Box b \Box x \Box] \Box 2x \Box 2b \Box 2x \Box 4x \Box b \Box x \Box$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 117. | (a) $528^2 \square 527^2 \square 0528 \square 527 \square 0528 \square 527 \square 01 \square 1055 \square 01055$<br>(b) $122^2 \square 120^2 \square 0122 \square 120 \square 0122 \square 120 \square 0122 \square 0100 \square 01000 \square 01000 \square 010000 \square 0100000 \square 010000 \square 010000 \square 0100000 \square 010000 \square 010000 \square 010000 \square 0100000 \square 010000 \square 0100000 \square 010000 \square 010000 \square 010000 \square 010000 \square 010000 \square 010000 \square 0100000 \square 010000 \square 0100000 \square 010000 \square 010000 \square 010000 \square 010000 \square 010000 \square 010000 \square 0100000 \square 010000 \square 0100000 \square 010000 \square 0100000 \square 0100000000$ |
| 118. | (a) 501 \  499 \  \  500 \  1 \  \  500 \  1 \  \  500 <sup>2</sup> \  1 \  \  250,000 \  \  1 \  249,999<br>(b) 79 \  61 \  \  70 \  9 \  \  70 \  9 \  \  70 <sup>2</sup> \  9 <sup>2</sup> \  4900 \  81 \  4819<br>(c) 2007 \  1993 \  \  2000 \  7 \  \  2000 \  7 \  \  2000 <sup>2</sup> \  7 <sup>2</sup> \  4,000,000 \  49 \  3,999,951                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 119. | (a) $A^4 \ \Box B^4 \ \Box A^2 \ \Box B^2 \ A^2 \ \Box B^2 \ \Box A \ \Box B \ \Box A^2 \ \Box B^2 \ \Box A^3 \ \Box B^3 \ A^3 \ \Box B^3 \ (difference of squares)$ $\Box \ \Box \ A \ \Box \ B \ \Box \ A^2 \ \Box \ A \ B \ \Box \ A^2 \ \Box \ A \ B \ \Box \ B^2 \ (difference and sum of cubes)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      | (b) $12^4 \Box 7^4 \Box 20,736 \Box 2,401 \Box 18,335; 12^6 \Box 7^6 \Box 2,985,984 \Box 117,649 \Box 2,868,335$<br>(c) $18,335 \Box 12^4 \Box 7^4 \Box \Box 12 \Box 7 \Box \Box 12 \Box 7 \Box 12^2 \Box 7^2 \Box 5 \Box 19 \Box \Box 144 \Box 49 \Box 5 \Box 19 \Box \Box 193 \Box$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      | $2,868,335 \ \square \ 12^6 \ \square \ 7^6 \ \square \ \square 12 \ \square \ 7\square \ \square 12^2 \ \square \ 12 \ \square 7\square \ \square \ 12^2 \ \square \ 12^2 \ \square \ 12^2 \ \square \ 12^2 \ \square \ 12 \ \square 7\square \ \square \ 7^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      | □ 5 □19□ □144 □ 84 □ 49□ □144 □ 84 □ 49□ □ 5 □19□<br>□277□ □109□                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 120. | (a) $\Box A \Box 1 \Box \Box A \Box 1 \Box \Box A^2 \Box A \Box A \Box 1 \Box A^2 \Box 1$<br>$\Box A \Box 1 \Box A^2 \Box A \Box 1 \Box \Box A^3 \Box A^2 \Box A \Box A \Box 1 \Box A^3 \Box 1$<br>$\Box A \Box 1 \Box A^3 \Box A^2 \Box A \Box 1 \Box \Box A^4 \Box A^3 \Box A^2 \Box A \Box A \Box 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|      | (b) We conjecture that $A^5 \Box 1 \Box \Box A \Box 1 \Box A^4 \Box A^3 \Box A^2 \Box A \Box 1$ . Expanding the right-hand side, we have                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|      | our conjecture. Generally, $A^n \Box 1 \Box \Box A \Box 1 \Box A^{n \Box 1} \Box A^{n \Box 2} \Box \Box \Box \Box A \Box 1$ for any positive integer $n$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

| 121. | (a) |
|------|-----|
|------|-----|

| $A \square 1$               | $A^2 \square A \square 1$   | $A^3 \square A^2 \square A \square 1$   |
|-----------------------------|-----------------------------|-----------------------------------------|
| $\square$ $A$ $\square$ $1$ | $\square$ $A \square 1$     | $\Box$ $A \Box 1$                       |
| $\Box A \Box 1$             | $\Box A^2 \Box A \Box 1$    | $\Box A^3 \Box A^2 \Box A \Box 1$       |
| $A^2 \square A$             | $A^3 \square A^2 \square A$ | $A^4 \square A^3 \square A^2 \square A$ |
| $A^2 \qquad \Box 1$         | $A^3 \qquad \Box 1$         | $A^4$                                   |

(b) Based on the pattern in part (a), we suspect that  $A^5 \Box 1 \Box \Box A \Box 1 \Box A^4 \Box A^3 \Box A^2 \Box A \Box 1$ . Check:

The general pattern is  $A^n \Box 1 \Box \Box A \Box 1 \Box A^{n\Box 1} \Box A^{n\Box 2} \Box \Box \Box \Box A^2 \Box A \Box 1$ , where *n* is a positive integer.

## RATIONAL EXPRESSIONS

- 1. (a)  $\frac{3x}{x^2 \Box 1}$  is a rational expression.
  - (b)  $\frac{x 1}{2x 3}$  is not a rational expression. A rational expression must be a polynomial divided by a polynomial, and the

numerator of the expression is  $\frac{\Box}{x \Box 1}$ , which is not a polynomial.

- (c)  $\frac{x \square x^2 \square 1}{x \square 3} \square \frac{x^3 \square x}{x \square 3}$  is a rational expression.
- 2. To simplify a rational expression we cancel factors that are common to the numerator and denominator. So, the expression  $\frac{\square x \ \square \ 1 \ \square \ x \ \square}{\square x \ \square \ 3 \ \square \ x \ \square} \stackrel{2}{\square} \text{simplifies to} \frac{x \ \square \ 1}{x \ \square \ 3}.$

3. To multiply two rational expressions we multiply their numerators together and multiply their denominators together. So

- **4.** (a)  $\frac{1}{x} \Box \frac{2}{\Box x \Box} \Box \frac{x}{\Box x \Box}$  has three terms.
  - **(b)** The least common denominator of all the terms is  $x \square x \square 1 \square^2$ .

(b) The least common denominator of all the terms is 
$$x \square x \square 1 \square^2$$
.

(c)  $\frac{1}{x} \square \frac{2}{\square x \square} \square \frac{x}{\square x \square} \square \frac{x}{\square x \square} \square \frac{2x \square x}{x \square x \square} \square \frac{x}{\square x \square} \square \frac{2x \square x}{\square x \square} \square \frac{x}{\square x \square} \square \frac{x}{\square x \square} \square \frac{x}{\square x \square} \square \frac{x}{\square x \square} \square^2$ 

**5.** (a) Yes. Cancelling 
$$x \Box 1$$
, we have  $\frac{x \Box x \Box 1 \Box}{\Box x \Box 1 \Box^2} \Box \frac{x}{x \Box 1}$ 

- **(b)** No;  $\Box x \Box 5\Box^2 \Box x^2 \Box 10x \Box 25 \Box x^2 \Box 25$ , so  $x \Box 5 \Box x^2 \Box 10x \Box 25 \Box x^2 \Box 25$ .
- **6.** (a) Yes,  $\frac{3 \square a}{3} \square \frac{\underline{3}}{3} \square \frac{\underline{a}}{3} \square 1 \square \frac{\underline{a}}{3}$ .
  - (b) No. We cannot "separate" the denominator in this way; only the numerator, as in part (a). (See also Exercise 101.)
- **7.** The domain of  $4x^2 \square 10x \square 3$  is all real numbers.
- **8.** The domain of  $\Box x^4 \Box x^3 \Box 9x$  is all real numbers.

- **9.** Since  $x \square 3 \square 0$  we have  $x \square 3$ . Domain:  $\square x \square x \square 3 \square$
- **10.** Since  $3t \square 6 \square 0$  we have  $t \square \square 2$ . Domain:  $\square t \square t \square$
- **11.** Since  $x \square 3 \square 0$ ,  $x \square \square 3$ . Domain:  $\square x \square x \square \square 3$
- **12.** Since  $x \square 1 \square 0$ ,  $x \square 1$ . Domain:  $\square x \square x \square 1$
- **13.**  $x^2 \square x \square 2 \square \square x \square 1 \square \square x \square 2 \square \square 0 \square x \square \square 1$  or 2, so the domain is  $\square x \square x \square \square 1 \square 2 \square$ .
- **14.**  $2x \square 0$  and  $x \square 1 \square 0 \square x \square 0$  and  $x \square \square 1$ , so the domain is  $\square x \square x \square 0 \square$ .
- 15.  $\frac{5 \ | \ x \ | \ 3 \ | \ 2x \ |}{1 \ |}$   $\frac{5 \ | \ x \ | \ 3 \ | \ 2x \ |}{1 \ |}$   $\frac{2x \ |}{1}$   $\frac{4 \ | \ x^2 \ |}{1}$   $\frac{4 \ | \ x \ |}{1}$   $\frac{1 \ |}{1}$   $\frac{x \ |}{1}$ 
  - $12 \,\square x \,\square \, 2\square \,\square x \,\square \qquad 12 \,\square x \,\square \, 2\square \,\square x \,\square \qquad 3 \,\square x \,\square \, 2\square$
- 17.  $\frac{x \square 2}{x^2 \square 4} \square \frac{x \square 2}{\square x \square 2 \square \square x \square 2 \square 2 \square x \square 2} \frac{1}{x \square 2}$

- 18.  $\frac{x^2 \square x \square 2}{x^2 \square 1} \square \frac{\square x \square 2 \square \square x \square}{\square x \square 1 \square \square x \square 1} \frac{x \square 2}{x \square 1}$
- 19.  $\frac{x^2 \square 5x \square 6}{x^2 \square 8x \square 15} \square \frac{\square x \square 2 \square \square x \square}{3 \square} \frac{x \square 2}{x \square 5}$
- **20.**  $\frac{x^2 \square x \square 12}{x^2 \square 5x \square 6} \square \frac{\square x \square 4 \square \square x \square}{\square x \square 2 \square \square x \square 3 \square} x \square 4$
- 21.  $\frac{y^2 \square y}{y^2 \square 1}$   $\frac{y \square y \square}{\square y \square 1 \square y \square 1 \square}$   $\frac{y}{y \square 1}$
- 22.  $\frac{y^2 \square 3y \square 18}{2y^2 \square 7y \square 3} \square \frac{\square y \square 6 \square \square y \square}{\square 2y \square 1 \square \square y \square} \square \frac{y \square 6}{2y \square 1}$
- 23.  $\frac{2x^3 \square x^2 \square 6x}{\square x^2 \square 6x} \square \frac{x \square 2x^2 \square x \square 6}{\square x \square 2x \square 3} \square \frac{x \square 2x \square 3}{\square x \square} \square \frac{x \square 2x \square 3}{\square x \square} \square$
- 24.  $\frac{1 \odot x^2}{}$

- 26.  $\frac{x^2 \square 25}{x^2 \square 16}$   $\frac{x \square 4}{x \square 5}$   $\frac{\square x \square 5 \square \square x \square}{\square x \square 4 \square x \square}$   $\frac{x \square 4}{x \square 5}$   $\frac{x \square 5}{x \square 4}$
- 27.  $\frac{x^2 \square 2x \square 15}{x^2 \square 25} \quad \frac{x \square 5}{x \square 2} \quad \frac{\square x \square 5 \square \square x \square 3 \square x}{\square x \square 5 \square x \square 5 \square x \square 5 \square x} \quad \frac{x \square 3}{x \square 2}$
- $\mathbf{28.} \ \frac{x^2 \square 2x \square 3}{x^2 \square 2x \square 3} \ \frac{3 \square x}{3 \square x} \ \square \frac{\square x \square 3 \square \square x \square}{\square \square \square \square \square \square \square} \ \square \frac{3 \square}{\square x \square 3} \ \square \frac{1 \square$
- **29.**  $t \square 3 \square \underbrace{t \square 3}_{\square} \square \underbrace{t \square 3}_{\square} \square \underbrace{1}_{\square} 3 \square \underbrace{1}_{\square}$

30. 
$$\frac{x^2 \square x \square 6}{x^2 \square 2x} \quad \frac{x^3 \square x^2}{x^2 \square 2x \square 3} \quad \frac{\square x \square 3 \square \square x \square}{2 \square} \quad \frac{x^2 \square x \square}{\square x \square 2 \square} \quad \frac{1}{\square} \quad x$$

31. 
$$\frac{x^2 \Box 7x \Box 12}{x^2 \Box 3x \Box 2} \xrightarrow{x^2 \Box 5x \Box 6} \xrightarrow{\Box x \Box 3\Box \Box x \Box} \xrightarrow{\exists x \Box 2\Box \Box x \Box} \xrightarrow{x \Box 4} \xrightarrow{x \Box 1 \Box x \Box} \xrightarrow{\exists x \Box 3\Box \Box x \Box} \xrightarrow{x \Box 4} \xrightarrow{x \Box 1}$$

32. 
$$\frac{x^2 \square 2xy \square y^2}{x^2 \square y^2} \square \frac{2x^2 \square xy \square y^2}{x^2 \square xy \square 2y^2} \square \frac{\square x \square y \square \square x \square}{y \square} y \square y \square y \square \square x \square y \square 2x \square}{\square x \square y \square x \square} \square \frac{2x \square y}{x \square 2y}$$

35. 
$$\frac{x \mid 1}{\frac{x}{x^2 \mid 2x \mid 1}} \mid \frac{x^3}{x \mid 1} \mid \frac{x^2 \mid 2x \mid 1}{x} \mid \frac{x^3 \mid x \mid 1 \mid |x|}{x} \mid \frac{x^2 \mid 2x \mid 1}{x} \mid \frac{x^3 \mid x \mid 1 \mid |x|}{x} \mid \frac{x^2 \mid x \mid 1 \mid |x|}{x} \mid \frac$$

36. 
$$x^2 \square 1$$
  $2x \square 3x \square 2$   $x \square x \square 2$   $\overline{\square x \square 2 \square \square 2x \square}$   $\square x \square 1 \square \square x \square$   $x \square 2$ 

37. 
$$\frac{x\Box}{yz} \Box \frac{x}{y} \Box z \Box \frac{x}{z}$$

38. 
$$\frac{yz}{y \square} \square x \square \frac{y}{z} \square \frac{\overline{x}}{1} \square \overline{z} y \square \frac{xz}{y}$$

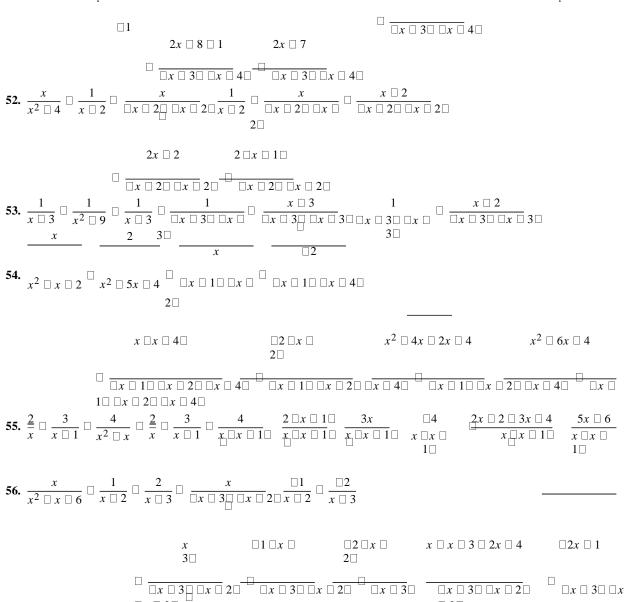
**39.** 
$$1 \square \frac{1}{x \square 3} \square \frac{x \square 3}{x \square 3} \square \frac{1}{x \square 3} \square \frac{x \square 4}{x \square 3}$$

**40.** 
$$\frac{3x \square 2}{x \square 1} \square 2 \square \frac{3x \square 2}{x \square 1} \square \frac{2 \square x \square}{x \square 1} \square \frac{3x \square 2 \square 2x \square 2}{x \square 1} \square \frac{x \square 4}{x \square 1}$$

41. 
$$\frac{1}{x \odot 5} \odot \frac{2}{x \odot 3} \odot \frac{x \odot 3}{\Box x \odot 5 \odot x} \odot \frac{2 \odot x \odot}{\Box x \odot 5 \odot x} \odot \frac{x \odot 3 \odot 2x \odot 10}{\Box x \odot 5 \odot x} \odot \frac{3x \odot 7}{\Box x \odot 5 \odot x} \odot \frac{1}{3 \odot} \frac{3 \odot}{x \odot 1} \odot \frac{3}{3 \odot} \frac{3}{2x} \odot \frac{3}{2x}$$

**42.** 
$$x = 1 = \frac{1}{x = 1} = \frac$$

**44.** 
$$\frac{x}{x \Box 4} \Box \frac{3}{x \Box 6} \Box \frac{x \Box x \Box 6 \Box}{\Box x \Box 4 \Box x \Box} \Box \frac{\Box 3 \Box x \Box}{\Box x \Box 4 \Box x \Box} \Box \frac{x^2 \Box 6x \Box 3x \Box 12}{\Box x \Box 4 \Box \Box x \Box} \Box \frac{x^2 \Box 3x \Box 12}{\Box x \Box 4 \Box \Box x \Box} 6 \Box$$


45. 
$$\frac{5}{2x \square 3} \square \frac{3}{\square 2x \square} \square \frac{5}{\square 2x \square} \square \frac{3}{\square 2x \square} \square \frac{3}{\square 2x \square} \square \frac{3}{\square 2x \square} \square \frac{10x \square 15 \square 3}{\square 2x \square} \square \frac{10x \square 15 \square 3}{\square 2x \square} \square \frac{10x \square 18}{\square 2x \square} \square \frac{2 \square 5x \square 9 \square}{\square 2x \square 3 \square^2}$$

**47.** 
$$u \Box 1 \Box \frac{u}{u \Box 1} \Box \Box u \Box 1 \Box \Box u \Box \Box \frac{u}{u \Box 1} \Box \frac{u^2 \Box 2u \Box 1 \Box u}{u \Box 1} \Box \frac{u^2 \Box 3u \Box 1}{u \Box 1}$$

**48.** 
$$\frac{2}{a^2} \Box \frac{3}{ab} \Box \frac{4}{b^2} \Box \frac{2b^2}{a^2b^2} \Box \frac{3ab}{a^2b^2} \Box \frac{4a^2}{a^2b^2} \Box \frac{2b^2 \Box 3ab \Box 4a^2}{a^2b^2}$$

**49.** 
$$\frac{1}{x^2} \Box \frac{1}{x^2 \Box x} \Box \frac{1}{x^2} \Box \frac{1}{x \Box x} \Box 1 \Box \frac{x \Box 1}{x^2 \Box x \Box 1} \Box \frac{x}{x^2 \Box x \Box 1} \Box \frac{x}{x^2 \Box x \Box 1} \Box \frac{2x \Box 1}{x^2 \Box x \Box}$$

**50.** 
$$\frac{1}{x} \Box \frac{1}{x^2} \Box \frac{1}{x^3} \Box \frac{x^2}{x^3} \Box \frac{x}{x^3} \Box \frac{1}{x^3} \Box \frac{x^2 \Box x \Box 1}{x^3}$$



$$57. \ \frac{1}{x^2 \,\square\, 3x \,\square\, 2} \,\square\, \frac{1}{x^2 \,\square\, 2x \,\square\, 3} \,\square\, \frac{1}{\square x \,\square\, 2\square\, \square x \,\square\, 1\square} \frac{1}{\square x \,\square\, 3\square\, \square x \,\square}$$

 $x \square 3$ 

 $\square \square x \square$ 

 $x \square 3 \square x \square 2$ 

**58.** 
$$\frac{1}{x \Box 1} \Box \frac{2}{\Box x \Box} \Box \frac{3}{x^2 \Box 1} \Box \frac{1}{x \Box 1} \Box \frac{\Box 2}{\Box x \Box} \Box \frac{3}{\Box x \Box 1 \Box \Box x \Box 1 \Box}$$

 $\square x \ \square \ 1 \square \ \square x \ \square \qquad \qquad \square 2 \ \square x \ \square \qquad \qquad \qquad 3 \ \square x \ \square \ 1 \ \square$ 

59. 
$$\begin{array}{c|c}
1 & \frac{1}{x} & x & 1 & \frac{1}{x} \\
\hline
 & x & 1 & \frac{1}{x} & x & 1 \\
\hline
 & x & 1 & 2
\end{array}$$

$$\frac{3}{y} \square 1 \qquad \frac{}{y} \quad \frac{3}{3} \square 1 \qquad 3 \square y$$

$$1 \square \frac{1}{x \square 2} \qquad \square x \square \qquad 1 \square \frac{1}{x \square 2} \qquad \square x \square 2 \square \qquad x \square 1$$

62. 
$$\frac{1 \square \frac{1}{c \sqcup 1}}{1 \square \frac{1}{c \sqcup 1}} \square \frac{c \square 1 \square 1}{c \square 1 \square 1} \square \frac{c}{c \square 2}$$





$$y \square \frac{1}{x}$$
  $xy$   $y \square \frac{1}{x}$   $xy$   $y$   $y$   $y$   $y$   $y$   $y$ 

$$\underline{x \square \frac{\underline{y}}{x}} \quad \underline{xy x \square \frac{\underline{y}}{x}} \quad \underline{x^2y \square y^2} \quad \underline{y y \square x^2}$$

$$\overline{x^2} \quad \overline{y^2} \quad \overline{x^2 y^2}$$

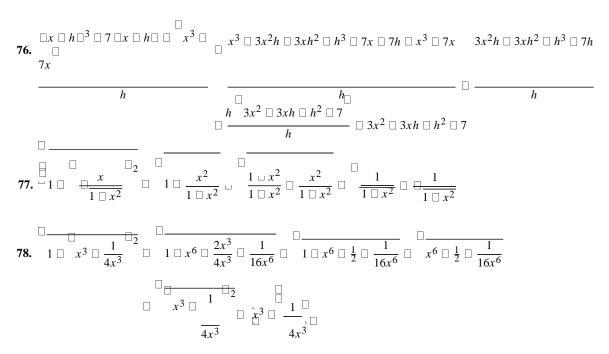
numerator and denominator by the common denominator of both the numerator and denominator, in this case  $x^2y^2$ :

$$\overline{x^2} \Box \overline{y^2} \qquad \overline{x^2} \Box \overline{y^2}$$

y 
$$\underline{y}$$
  $\underline{xy}$   $\underline{xy^2}$   $\underline{x}$   $\underline{x^2}$   $\underline{x}$   $\underline{xy^2}$   $\underline{xy^2}$   $\underline{xy^2}$   $\underline{xy^2}$   $\underline{xy^2}$   $\underline{xy^2}$ 

69. 
$$x^{\Box 1} \Box y^{\Box 1} \Box \underline{1} \underline{1} \Box y \qquad x \qquad x^{2}y^{2} \Box y \Box x \qquad x^{2}y^{2} \Box y \Box \qquad xy$$

70. 
$$\frac{x^{\Box 1} \Box y^{\Box}}{\Box x \Box y^{\Box \Box}} = \frac{\frac{1}{x} \Box \frac{1}{y}}{\frac{1}{x \Box y}} \Box \frac{\frac{1}{x} \Box \frac{1}{y}}{\frac{1}{x \Box y}} \Box \frac{xy \Box x \Box}{y \Box} \underbrace{y \Box x \Box y \Box x \Box x \Box}_{y \Box}$$


$$\Box \xrightarrow{xy \Box y^2 \Box x^2 \Box xy} \Box \xrightarrow{x^2 \Box 2xy \Box y^2} \Box \xrightarrow{y \Box^2} xy$$

71. 
$$1 \Box \frac{1}{1 \Box \frac{1}{x}} \Box 1 \Box \frac{x}{x \Box 1} \Box \frac{x \Box 1 \Box x}{x \Box 1} \Box \frac{1}{1 \Box x}$$

72. 
$$1 \bigcirc \frac{1}{1 \cup \frac{1}{1 \bigcirc x}} \bigcirc 1 \bigcirc \frac{1 \bigcirc x}{\bigcirc 1 \xrightarrow{x \bigcirc 1}} \bigcirc 1 \bigcirc \frac{x \bigcirc 1}{x \bigcirc 2} \bigcirc \frac{x \bigcirc 2 \bigcirc x \bigcirc 1}{x \bigcirc 2} \bigcirc \frac{2x \bigcirc 3}{x \bigcirc 2}$$

74. In calculus it is necessary to eliminate the h in the denominator, and we do this by rationalizing the numerator:

$$\frac{h}{h^2 \square x \square h \square^2} \qquad \frac{h^2 \square x \square h \square^2}{h^2 \square x \square h \square^2} \qquad \frac{n^2 \square x \square h \square^2}{h^2 \square x \square h \square^2}$$



82. 
$$x^2$$
  $x^2$   $x^2$ 

**88.** 
$$\Box \frac{1}{\overline{x} \Box 1} \Box \Box \frac{1}{\overline{x} \Box 1} \Box \frac{\overline{x} \Box 1}{\overline{x} \Box 1} \Box \frac{\overline{x} \Box 1}{\overline{x} \Box 1}$$

\_ \_

89. 
$$\frac{-y}{3 \cdot y} = \frac{-y}{3 \cdot y} = \frac{y}{3 \cdot$$

96. 
$$\begin{bmatrix} - & \begin{bmatrix} - & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} & \begin{bmatrix} x & \\ x & 1 \end{bmatrix} &$$

97. (a) 
$$R \Box \frac{1}{1 - 1} \Box \frac{1}{1 - 1} \Box \frac{R_1 R_2}{R_1} \Box \frac{R_1 R_2}{R_2 \Box R_1}$$

$$R_2 \Box R_1 \Box R_2 \Box R_1 \Box R_2$$

(b) Substituting  $R_1 \square 10$  ohms and  $R_2 \square 20$  ohms gives  $R \square \frac{}{\square \square 10} \square \square 6 \square 7$  ohms.  $\square 20 \square \square 30$ 

**98.** (a) The average cost 
$$A \square \frac{\text{Cost}}{\text{number of shirts}} \square \frac{500 \square 6x \square 0 \square 01x^2}{x}$$
.

99.

|                                                                                                  | х                               | 2□80 | 2□90 | 2□95            | 2□99            | 2□999 | 3 | 3□001 | 3□01 | 3□05           | 3□10 | 3□20 |      |
|--------------------------------------------------------------------------------------------------|---------------------------------|------|------|-----------------|-----------------|-------|---|-------|------|----------------|------|------|------|
| From the tab                                                                                     | $\frac{x^2 \Box 9}{x^2 \Box 3}$ | 5□80 | 5□90 | 5 □ <b>9</b> 25 | _ <b>5</b> 5_99 | 5□999 | ? | 6□001 | 6□01 | 6□05<br>We sim | 6□10 | 6□20 | ion: |
| From the table, we see that the expression $\begin{array}{c ccccccccccccccccccccccccccccccccccc$ |                                 |      |      |                 |                 |       |   |       |      |                |      |      |      |

$$\frac{x^2 \square 9}{x \square 3} \square \frac{3 \square x \square 3 \square x \square}{x \square 3} \square x \square 3$$
. Clearly as  $x$  approaches 3,  $x \square 3$  approaches 6. This explains the result in the table.

**100.** No, squaring 
$$\bigoplus_{\overline{X}}$$
 changes its value by a factor of  $\bigoplus_{\overline{X}}$ 

101. Answers will vary.

| Algebraic Error                                                                                             | Counterexample                                                                                         |
|-------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|
| $\frac{1}{a} \sqcup \frac{1}{b} \sqcup \frac{1}{a \square b}$                                               | $\frac{1}{2} \square \frac{1}{2} \square \frac{1}{2 \square 2}$                                        |
| $ \begin{array}{c c} \Box a \Box b \Box^2 \Box a^2 \Box \\ b_1^2 \end{array} $                              | $\frac{1}{5^2 \square 12^2} \square 1^2 \square 3^2$ $\frac{1}{5^2 \square 12^2} \square 5 \square 12$ |
| $ \begin{array}{c c} a^2 \square b^2 \square a \square b \\ \hline a \square b \\ a \end{array} $           | $egin{array}{cccc} 2 & \Box & 6 & & & \\ 2 & & \Box & 6 & & \\ 1 & & & \Box & 1 & & \\ \end{array}$    |
| $ \begin{array}{cccc} \hline a & 1 \\ a & b & \overline{b} \\ \hline a^m & a^m & \overline{a} \end{array} $ | $ \begin{array}{c c} 1 & 1 \\ \hline 3^5 & 3^5 \\ \hline 3^2 & 3^5 \end{array} $                       |

102. (a) 
$$\frac{5 \Box a}{5} \Box \frac{5}{5} \Box \frac{a}{5} \Box 1 \Box \frac{a}{5}$$
, so the statement is true.

$$x \square 1$$
 5  $\square 1$  6

**(b)** This statement is false. For example, take  $x \square 5$  and  $y \square 2$ . Then LHS  $\square \frac{}{y \square 1} \square \frac{}{2 \square 1} \square \frac{}{3} \square 2$ , while

RHS  $\Box \frac{x}{y} \Box \frac{5}{2}$ , and  $2 \Box \frac{5}{2}$ .

(c) This statement is false. For example, take  $x \square 0$  and  $y \square 1$ . Then LHS  $\square \frac{x}{x \square y} \square \frac{0}{0 \square 1} \square 0$ , while

RHS  $\Box$   $\frac{1}{1 \Box y} \Box$   $\frac{1}{1 \Box 1} \Box$   $\frac{1}{2}$ , and  $0 \Box$   $\frac{1}{2}$ .

| (d) This statement is false. For example, take $x 	ext{ } 	ex$      |  |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| RHS $\Box \frac{2a}{2b} \Box \frac{2}{2} \Box 1$ , and $2 \Box 1$ .  (e) This statement is true: $\Box a \Box a \Box \Box \Box a \Box \Box \Box \Box a \Box \Box \Box \Box \Box \Box $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |  |  |  |  |  |  |
| (f) This statement is false. For example, take $x \square 2$ . Then LHS $\square \frac{2}{4 \square x} \square \frac{2}{4 \square 2} \square \frac{2}{6} \square \frac{1}{3}$ , while                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |
| RHS $\Box$ $\frac{1}{2}$ $\Box$ $\frac{2}{x}$ $\Box$ $\frac{1}{2}$ $\Box$ $\frac{2}{2}$ $\Box$ $\frac{3}{2}$ , and $\frac{1}{3}$ $\Box$ $\frac{3}{2}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |
| It was a should be smallest associated with a significant of the signi      |  |  |  |  |  |  |
| It appears that the smallest possible value of $x \square \frac{1}{x}$ is 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |
| (b) Because $x \square 0$ , we can multiply both sides by $x$ and preserve the inequality: $x \square \frac{1}{x} \square 2 \square x \square x \square \frac{1}{x} \square 2x \square$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |
| $x^2 \Box 1 \Box 2x \Box x^2 \Box 2x \Box 1 \Box 0 \Box \Box x \Box 1 \Box^2 \Box 0$ . The last statement is true for all $x \Box 0$ , and because each step is reversible, we have shown that $x \Box \frac{1}{x} \Box 2$ for all $x \Box 0$ .  P.8 SOLVING BASIC EQUATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |
| <ol> <li>Substituting x □ 3 in the equation 4x □ 2 □ 10 makes the equation true, so the number 3 is a <i>solution</i> of the equation.</li> <li>Subtracting 4 from both sides of the given equation, 3x □ 4 □ 10, we obtain 3x □ 4 □ 10 □ 4 □ 3x □ 6. Multiplying by ¹, we have ¹ □ 3x □ □ ¹ □ 6□ □ x □ 2, so the solution is x □</li> </ol>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |
| <b>3.</b> (a) $\frac{x}{2} \Box 2x \Box 10$ is equivalent to $\frac{5}{2}x \Box 10 \Box 0$ , so it is a linear equation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
| <b>(b)</b> $\frac{2}{x} \Box 2x \Box 1$ is not linear because it contains the term $\frac{2}{x}$ , a multiple of the reciprocal of the variable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |
| (c) $x \square 7 \square 5 \square 3x \square 4x \square 2 \square 0$ , so it is linear.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
| <b>4.</b> (a) $x \Box x \Box 1 \Box \Box 6 \Box x^2 \Box x \Box 6$ is not linear because it contains the square of the variable. (b) $x \Box z \Box x$ is not linear because it contains the square root of $x \Box z$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |  |  |  |  |  |  |
| (c) $3x^2 \Box 2x \Box 1 \Box 0$ is not linear because it contains a multiple of the square of the variable.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |  |  |  |  |  |  |
| <b>5.</b> (a) This is true: If $a \square b$ , then $a \square x \square b \square x$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |
| (b) This is false, because the number could be zero. However, it is true that multiplying each side of an equation by a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |  |  |  |  |  |  |
| nonzero number always gives an equivalent equation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |
| (c) This is false. For example, $\Box 5 \Box 5$ is false, but $\Box \Box 5 \Box^2 \Box 5^2$ is true.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |  |  |  |  |  |  |
| <b>6.</b> To solve the equation $x^3 	ext{ } 	ext{$ |  |  |  |  |  |  |
| <ul> <li>x □ □2 is not a solution.</li> <li>(b) When x □ 2, LHS □ 4 □ □2 □ □ 7 □ 8 □ 7 □ 15 and RHS □ 9 □2 □ □ 3 □ 18 □ 3 □ 15. Since LHS □ RHS, x □ 2 is a solution.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |  |  |  |  |  |  |

**8.** (a) When  $x \square \square 1$ , LHS  $\square 2 \square 5 \square \square 1 \square \square 2 \square 5 \square 7$  and RHS  $\square 8 \square \square \square 1 \square \square 7$ . Since LHS  $\square$  RHS,  $x \square \square 1$  is a

**(b)** When  $x \square 1$ , LHS  $\square 2 \square 5 \square 1 \square \square 2 \square 5 \square \square 3$  and RHS  $\square 8 \square \square 1 \square \square 9$ . Since LHS  $\square$  RHS,  $x \square 1$  is not a solution.

| <b>9.</b> (a) When <i>x</i> □ 2, LHS □ 1 □ [2 □ □3 □ □2□□] □ 1 0. Since                                                                                                                                                                                                         | □ [2 □ 1] □ 1 □ 1 □ 0 and RHS □ 4 □2□ □ □6 □ □2□□ □ 8 □ 8 □                                                                         |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
| LHS $\square$ RHS, $x \square 2$ is a solution.                                                                                                                                                                                                                                 |                                                                                                                                     |
| □ 10 □ 6.                                                                                                                                                                                                                                                                       | □ [2 □ □□1□] □ 1 □3 □ □2 and RHS □ 4 □4□ □ □6 □ □4□□ □ 16                                                                           |
| Since LHS $\square$ RHS, $x \square 4$ is not a solution.                                                                                                                                                                                                                       |                                                                                                                                     |
| <b>10.</b> (a) When $x \square 2$ , LHS $\square \stackrel{1}{\square} \square \stackrel{1}{\square} \square \stackrel{1}{\square} \square \stackrel{1}{\square} \square \stackrel{1}{\square} \square \stackrel{1}{\square}$                                                   | $\Box$ $\Box$ 1 and RHS $\Box$ 1. Since LHS $\Box$ RHS, $x$ $\Box$ 2 is a solution.                                                 |
| <b>(b)</b> When $x \square 4$ the expression $\frac{1}{4 \square 4}$ is not defined,                                                                                                                                                                                            | so $x \sqcup 4$ is not a solution.                                                                                                  |
| 11. (a) When $x \square \square 1$ . LHS $\square 2 \square \square 1 \square^{1 \square 3} \square 3 \square 2 \square \square 1$                                                                                                                                              | $1 \square \square 3 \square \square 2 \square 3 \square \square 5$ . Since LHS $\square 1, x \square \square 1$ is not a solution. |
| (b) When $x \square 8$ LHS $\square 2 \square 8 \square^{1 \square 3} \square 3 \square 2 \square 2 \square 2 \square 3$                                                                                                                                                        |                                                                                                                                     |
| <b>12.</b> (a) When $x \Box 4$ , LHS $\Box \frac{4^{3\Box 2}}{4 \Box 6} \Box \frac{2^3}{\Box 2} \Box \frac{8}{\Box 2} \Box \Box 4$                                                                                                                                              | and RHS $\square$ $\square$ 4 $\square$ 8 $\square$ $\square$ 4. Since LHS $\square$ RHS, $x$ $\square$ 4 is a solution.            |
| $8^3 \square 2$ $2^3 2$ $2^9 \square 2$                                                                                                                                                                                                                                         | 7 🖸                                                                                                                                 |
| <b>(b)</b> When $x \square 8$ , LHS $\square {8 \square 6} \square {} \square {} 2$ solution.                                                                                                                                                                                   | $\square$ 2 and RHS $\square$ $\square$ 8 $\square$ 8 $\square$ 0. Since LHS $\square$ RHS, $x$ $\square$ 8 is not a $\square$      |
| 13. (a) When $x \Box 0$ , LHS $\Box \frac{0 \Box a}{0 \Box b} \Box \frac{\underline{a}}{\Box b} \Box \frac{\underline{a}}{b} \Box$ RHS.                                                                                                                                         | So $x \square 0$ is a solution.                                                                                                     |
| <b>(b)</b> When $x \Box b$ , LHS $\Box \frac{b \Box a}{b \Box b} \Box \frac{b \Box a}{0}$ is not define                                                                                                                                                                         | ed, so $x \square b$ is not a solution.                                                                                             |
| $\underline{\underline{b}} \qquad \qquad \Box \underline{\underline{b}} \qquad \qquad \Box \underline{\underline{b}} \qquad \qquad \Box \underline{\underline{b}} \qquad \qquad 1  2$ <b>14.</b> (a) When $x \square_2$ , LHS $\square_2$ $\square_2$ $\square_4$ $b \square_2$ |                                                                                                                                     |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                            | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                |
|                                                                                                                                                                                                                                                                                 |                                                                                                                                     |
| (b) When $x \square_b$ , LHS $\square_b \square_b \square_4 \square_4 \square_b$                                                                                                                                                                                                | $b^2 \square 1 \square 4$ , so $x \square b$ is not a solution.                                                                     |
| <b>15.</b> $5x \square 6 \square 14 \square 5x \square 20 \square x \square 4$                                                                                                                                                                                                  | <b>16.</b> $3x \square 4 \square 7 \square 3x \square 3 \square x \square 1$                                                        |
| 17. $7 \square 2x \square 15 \square 2x \square \square 8 \square x \square \square 4$                                                                                                                                                                                          | <b>18.</b> $4x \square 95 \square 1 \square 4x \square 96 \square x \square 24$                                                     |
| <b>19.</b> $\frac{1}{2}x \Box 7 \Box 3 \Box \frac{1}{2}x \Box \Box 4 \Box x \Box \Box 8$                                                                                                                                                                                        | <b>20.</b> 2 $\Box$ $\frac{1}{3}$ $\Box$ $\Box$ 4 $\Box$ $\frac{1}{23}$ $\Box$ $\Box$ 6 $\Box$ $x$ $\Box$ $\Box$ 18                 |
| <b>21.</b> $\Box 3x \Box 3 \Box 5x \Box 3 \Box 0 \Box 8x \Box x \Box 0$                                                                                                                                                                                                         | <b>22.</b> $2x \square 3 \square 5 \square 2x \square 4x \square 2 \square x \square \frac{1}{2}$                                   |
| 22 7                                                                                                                                                                                                                                                                            | 34 10 0 0 0 4 0 0 2 0 2 0 0 0 0                                                                                                     |
| <b>23.</b> $7x \square 1 \square 4 \square 2x \square 9x \square 3 \square x \square \frac{1}{3}$                                                                                                                                                                               | <b>24.</b> $1 \square x \square x \square 4 \square \square 3 \square 2x \square x \square \square_2$                               |
| <b>25.</b> $\Box x \Box 3 \Box 4x \Box 3 \Box 5x \Box x \Box \frac{3}{5}$                                                                                                                                                                                                       | <b>26.</b> $2x \square 3 \square 7 \square 3x \square 5x \square 4 \square x \square {}^4{}_{\overline{5}}$                         |
| <b>27.</b> $\frac{x}{3} \Box 1 \Box \frac{5}{3}x \Box 7 \Box x \Box 3 \Box 5x \Box 21 \Box 4x \Box \Box 24 \Box 28. \frac{2}{5}x \Box 1 \Box \frac{3}{10}x \Box 3 \Box 4x \Box 10 \Box 3x \Box 30 \Box x \Box 40$                                                               | $x \square \square 6$                                                                                                               |

**29.**  $2 \square 1 \square x \square \square 3 \square 1 \square 2x \square \square 5 \square 2 \square 2x \square 3 \square 6x \square 5 \square 2 \square 2x \square 8 \square 6x \square 96 \square 8x \square x \square <math> \square^{3}_{4}$ 

 $\textbf{30.} \ \ 5 \ \square x \ \square \ 3 \square \ \square \ 9 \ \square \ \square 2 \square x \ \square \ 2 \square \ \square \ 1 \ \square \ 5x \ \square \ 15 \ \square \ 9 \ \square \ \square 2x \ \square \ 4 \ \square \ 1 \ \square \ 5x \ \square \ 24 \ \square \ \square \ 2x \ \square \ 3 \ \square \ 7x \ \square \ \square \ 21 \ \square \ x \ \square \ \square \ 3$ 

CHAPTER P Prerequisites

SECTION P.8 Solving Basic Equations

| 31.        | $ \begin{smallmatrix} \square \\ 4 \end{smallmatrix} y \mathbin{\square} \begin{smallmatrix} 1 \\ 2 \end{smallmatrix} \square y \mathbin{\square} 6 \mathbin{\square} 5 \mathbin{\square} y \mathbin{\square} \square 4y \mathbin{\square} 2 \mathbin{\square} y \mathbin{\square} 30 \mathbin{\square} 6y \mathbin{\square} 3y \mathbin{\square} 2 \mathbin{\square} 30 \mathbin{\square} 6y \mathbin{\square} 9y \mathbin{\square} 32 \mathbin{\square} y \mathbin{\square} \frac{32}{9} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|            | $r \ \square \ 2 \ [1 \ \square \ 3 \ \square 2r \ \square \ 4 \ \square] \ \square \ 61 \ \square \ r \ \square \ 2 \ \square \ 11 \ \square \ 61 \ \square \ r \ \square \ 12r \ \square \ 22 \ \square \ 61 \ \square \ 13r \ \square \ 39 \ \square \ 12r \ \square$ |
|            | $r \square 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 33.        | $x \square \frac{1}{3}x \square \frac{1}{2}x \square 5 \square 0 \square 6x \square 2x \square 3x \square 30 \square 0$ (multiply both sides by 6) $\square x \square 30$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <b>34.</b> | $\begin{smallmatrix}2&y&\Box&1&\Box y&\Box&3\Box&\end{smallmatrix} \begin{smallmatrix}y&\Box&1&\\ &\Box&8y&\Box&6&\Box y&\Box&3\Box&\Box&3&\Box y&\Box&1\Box&\Box&8y&\Box&6y&\Box&18&\Box&3y&\Box&3&\Box&14y&\Box&18&\Box&3y&\Box&3&\Box&11y&\Box&21\\ \end{smallmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|            | $\overline{3}$ $\overline{2}$ $\overline{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|            | $\Box y \Box \frac{21}{\Pi}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

**35.**  $2x \square \frac{x}{2} \square \frac{x \square 1}{4} \square 6x \square 8x \square 2x \square x \square 1 \square 24x \square 7x \square 1 \square 24x \square 1 \square 17x \square x \square _{17}$ 

**36.** 
$$3x \square \frac{5x}{2} \square \frac{x \square 1}{3} \square \frac{1}{6} \square 18x \square 15x \square 2 \square x \square 1 \square 1 \square 3x \square 2x \square 1 \square x \square 1$$

**37.**  $\Box x \Box 1 \Box \Box x \Box 2 \Box \Box x \Box 2 \Box \Box x \Box 3 \Box \Box x^2 \Box x \Box 2 \Box x^2 \Box 5x \Box 6 \Box x \Box 2 \Box \Box 5x \Box 6 \Box 6x \Box 8 \Box * \Box 4$ 

**38.** 
$$x \square x \square 1 \square \square \square x \square 3 \square^2 \square x^2 \square x \square x^2 \square 6x \square 9 \square x \square 6x \square 9 \square \square 5x \square 9 \square x \square \square \frac{9}{5}$$

**39.**  $\Box x \Box 1 \Box \Box 4x \Box 5 \Box \Box \Box 2x \Box 3 \Box^2 \Box 4x^2 \Box x \Box 5 \Box 4x^2 \Box 12x \Box 9 \Box x \Box 5 \Box \Box 12x \Box 9 \Box 13x \Box 14 \Box x <math>\frac{\Box}{\Box 3}$  14

**40.** 
$$\Box t \Box 4\Box^2 \Box \Box t \Box 4\Box^2 \Box 32 \Box t^2 \Box 8t \Box 16 \Box t^2 \Box 8t \Box 16 \Box 32 \Box \Box 16t \Box 32 \Box t \Box \Box 2$$

**42.** 
$$\frac{2}{x} \square 5 \square \frac{6}{x} \square 4 \square 2 \square 5x \square 6 \square 4x \square \square 4 \square 9x \square \square_9 \stackrel{\text{d}}{=} x$$

**43.**  $\frac{2x \Box 1}{x \Box 2} \Box \frac{4}{5} \Box 5 \Box 2x \Box 1 \Box \Box 4 \Box x \Box 2 \Box \Box 10x \Box 5 \Box 4x \Box 8 \Box 6x \Box 13 \Box x \Box \frac{13}{6}$ 

44. 
$$\frac{2x \square 7}{2x \square 4} \square \frac{7}{3} \square \square 2x \square 7 \square 3 \square 2 \square 2x \square 4 \square$$
 (cross multiply)  $\square 6x \square 21 \square 4x \square 8 \square 2x \square 29 \square x \square \frac{7}{2}$ 

**45.**  $\frac{2}{t \Box 6} \Box \frac{3}{t \Box 1} \Box 2 \Box t \Box 1 \Box \Box 3 \Box t \Box 6 \Box$  [multiply both sides by the LCD,  $\Box t \Box 1 \Box t \Box 6 \Box$ ]  $\Box 2t \Box 2 \Box 3t \Box 18 \Box \Box 20$ 

 $\Box 3x \Box \Box 13 \Box x \Box \frac{13}{3}$ 

**48.**  $\frac{12x \ \Box \ 5}{6x \ \Box \ 3} \ \Box \ 2 \ \Box \ \frac{5}{x} \ \Box \ \Box 12x \ \Box \ 5 \ \Box \ x \ \Box \ 2x \ \Box 6x \ \Box \ 3 \Box \ \Box \ 5 \ \Box 6x \ \Box \ 3 \Box \ \Box \ 12x^2 \ \Box \ 5x \ \Box \ 12x^2 \ \Box \ 6x \ \Box \ 30x \ \Box \ 15 \ \Box$ 

$$12x^2 \square 5x \square 12x^2 \square 24x \square 15 \square 19x \square \square15 \square x \square \square_{19}$$

**49.**  $\frac{1}{z} \Box \frac{1}{2z} \Box \frac{1}{5z} \Box \frac{10}{z \Box 1} \Box 10 \Box z \Box 1 \Box \Box 5 \Box z \Box 1 \Box \Box 2 \Box z \Box 1 \Box \Box 10 \Box 10z \Box$  [multiply both sides by  $10z \Box z \Box 1 \Box$ ]

 $3 \square z \square 1 \square \square 100z \square 3z \square 3 \square 100z \square 3 \square 97z \square \frac{3}{97} \square z$ 

**50.**  $\frac{1}{3 \square t} \square \frac{4}{3 \square t} \square \frac{15}{9 \square t^2} \square 0 \square \square 3 \square t \square \square 4 \square 3 \square t \square \square 15 \square 0 \square 3 \square t \square 12 \square 4t \square 15 \square 0 \square 3t \square 30 \square 0 \square \square 3t \square 30$ 

**51.**  $\frac{x}{2x \sqcup 4} \sqcup 2 \sqcup \frac{1}{x \sqcup 2} \sqcup x \sqcup 2 \sqcup 2x \sqcup 4 \sqcup 2$  [multiply both sides by  $2 \sqcup x \sqcup 2 \sqcup 3x \sqcup 4x \sqcup 8 \sqcup 2 \sqcup 3x \sqcup 6 \sqcup x \sqcup 2$ .

But substituting  $x \square 2$  into the original equation does not work, since we cannot divide by 0. Thus there is no solution.

**52.** 
$$\frac{1}{x \square 3} \square \frac{5}{x^2 \square 9} \square \frac{2}{x \square 3} \square \square x \square 3 \square \square 5 \square 2 \square x \square 3 \square \square x \square 2 \square 2x \square 6 \square x \square \square 4$$

 $\Box x \Box \Box 4$ . But substituting  $x \Box \Box 4$  into the original equation does not work, since we cannot divide by 0. Thus, there is

no solution. 54. 
$$\frac{1}{x} \square \frac{2}{2x \square 1}$$

| $\Box$ $\Box 2x$ | $ \begin{array}{ccc} \square \ 1 \square \ \square \ 2 \\ \square x \square \ \square \ 1 \end{array} $                     | $\Box$ 1 $\Box$ 1. This is an | identity for $x \square 0$ and $x \square \square_2$ , so the solutions are |  |  |  |  |  |  |
|------------------|-----------------------------------------------------------------------------------------------------------------------------|-------------------------------|-----------------------------------------------------------------------------|--|--|--|--|--|--|
|                  | all real numbers except 0 and $\Box \frac{1}{2}$ .                                                                          |                               |                                                                             |  |  |  |  |  |  |
| 55.              | $S. x^2 \square 25 \square x \square \square 5$                                                                             |                               |                                                                             |  |  |  |  |  |  |
| 56.              | <b>6.</b> $3x^2 \Box 48 \Box x^2 \Box 16 \Box x \Box \Box 4$<br><b>7.</b> $5x^2 \Box 15 \Box x^2 \Box 3 \Box x \Box \Box 3$ |                               |                                                                             |  |  |  |  |  |  |
| 57.              | <b>57.</b> $5x^2 \square 15 \square x^2 \square 3 \square x \square \square $                                               |                               |                                                                             |  |  |  |  |  |  |

| <b>58.</b> $x^2 \square 1000 \square x \square \square \square 1000 \square 110 \square 10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>59.</b> $8x^2 \Box 64 \Box 0 \Box x^2 \Box 8 \Box 0 \Box x^2 \Box 8 \Box x \Box \Box $ $8 \Box \Box 2 \overline{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <b>60.</b> $5x^2 \square 125 \square 0 \square 5$ $x^2 \square 25$ $\square 0 \square x^2 \square 25 \square x \square \square 5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| <b>61.</b> $x^2 \Box 16 \Box 0 \Box x^2 \Box \Box 16$ which has no real solution.<br><b>62.</b> $6x^2 \Box 100 \Box 0 \Box 6x^2 \Box \Box 100 \Box x^2 \Box \Box 0$ which has no real solution.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <b>62.</b> $6x^2 \square 100 \square 0 \square 6x^2 \square \square 100 \square x^2 \square \frac{50}{3}$ which has no real solution. <b>63.</b> $\square x \square 3 \square^2 \square 5 \square x \square 3 \square \square 5 \square 5 \square x \square 3 \square 5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| <b>65.</b> $x^3 \Box 27 \Box x \Box 27^{1\Box 3} \Box 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <b>66.</b> $x^5 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| If $x \Box 2 \Box 0$ , then $x \Box \Box 2$ . The solutions are $\Box 2$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 68. $64x^6 \square 27 \square x^6 \square \square 1 \square 6$ $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 69. $x^4 \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <b>72.</b> $\Box x \Box 1\Box^4 \Box 16 \Box 0 \Box \Box x \Box 1\Box^4 \Box \Box 16$ , which has no real solution.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <b>73.</b> $3 \square x \square 3 \square^3 \square 375 \square \square x \square 3 \square^3 \square 125 \square \square x \square 3 \square \square 125^{1 \square 3} \square 5 \square x \square 3 \square 5 \square 8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <b>74.</b> $4 \square x \square 2 \square^5 \square 1 \square \square x \square 2 \square^5 \not= 1 \square x \square 2 \square \frac{5}{4} \stackrel{1}{1} \square x \square 2 \square \frac{5}{4} \stackrel{1}{1} \square x \square 2 \square \frac{5}{4} \stackrel{1}{1}$ <b>75.</b> $\sqrt[5]{x} \square 5 \square x \square 5^3 \square 125$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $3  \boxminus  3 \qquad \qquad \square  \square_1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <b>76.</b> $x^{4 \ \square 3} \ \square \ 16 \ \square \ 0 \ \square \ x^{4 \ \square 3} \ \square \ 16 \ \square \ 2^{4} \ \square $ $\square \ 2^{12} \ \square \ x^{4} \ \square \ 2^{12} \ \square \ x \ \square \ 2^{12} \ \square \ x^{2} \ \square \ 2^{2} \ \square \ 2^{2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 77. $2x^{5 	ext{ } 	e$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 3 🖂 🖯 3 🖂                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <b>78.</b> $6x_{-}^{2\square 3}$ $\square$ 216 $\square$ 0 $\square$ 6 $x^{2\square 3}$ $\square$ 216 $\square$ $x^{2\square 3}$ $\square$ 36 $\square$ $\square$ 6 $\square$ 7 $\square$ 7 $\square$ 7 $\square$ 8 $\square$ 9 $\square$ |
| <b>79.</b> 3 \( \text{0} \) 2x \\ \text{1} \( \text{48} \) \\ \text{10} \( \text{9} \) \\ \text{2} \\ \text{3} \( \text{1} \) \\ \text{3} \( \text{1} \) \\ \text{1} \\ \text{61} \\ \text{1} \\ \text{61} \\                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| <b>80.</b> $8 \square 36 \square 0 \square 95x \square 9 \square 97 \square 00 \square 95x \square 1 \square 61 \square                            $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\begin{smallmatrix} 5\\ 5\\2 \end{smallmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| <b>81.</b> $2 \Box 15x \Box 4 \Box 63 \Box x \Box 1 \Box 19 \Box 1 \Box 15x \Box 5 \Box 82 \Box x \Box 1 \Box 19 \Box 5 \Box 06$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |

CHAPTER P Prerequisites

| 82.               | 3□95□                                                                          | $x\Box$           | 2□32x                    | 2 🗆 00      | 1∭95            | 3□32፳ 3                 | $\frac{1}{32}$                                                        | 0□59               |                          |                           |                                                      |           |
|-------------------|--------------------------------------------------------------------------------|-------------------|--------------------------|-------------|-----------------|-------------------------|-----------------------------------------------------------------------|--------------------|--------------------------|---------------------------|------------------------------------------------------|-----------|
|                   | $3\square 16\square 03x\square x$                                              |                   | 4□63□ □                  | ] 4□19 □    | x □ 7□24        | 1□ □ 3□10               | 5 <i>x</i> □ 14□63 □                                                  | ] 4□19 <i>x</i> □  | 30□34 □                  | 44□97 □                   | $\frac{44\square 97}{1\square 03} \square 43\square$ | 66        |
| <b>84.</b><br>4□3 |                                                                                | $x \square$       | 4□06□ □                  | □ 2□27 □    | $0\Box 11x\Box$ | $\Box 2\Box 14x \Box$   | 8□6684 □ 2                                                            | □27 □ 0□1          | $11x \square 2\square 2$ | $25x \square 10\square 9$ | 9584 □ x □ 4□                                        | 8704 □    |
| 85.               | $ \frac{0 \square 26x}{3 \square 03} $ $ 2 \square 4 $ $ \frac{7 \square}{7} $ | 3 □<br>4 <i>x</i> | □94<br>- □ 1□7<br>7□27 □ |             | 6x □ 1□9        | 94 □ 1□76               | 5 🗆 3 🗆 03 🗆 2 🗆                                                      | ]44 <i>x</i> □ □ 0 | )□26 <i>x</i> □ 1        | □94 □ 5□                  | ]33 □ 4□29x □                                        | ] 4□55x □ |
|                   | $x \square _{4\square}$                                                        | 55                | □ 1□60                   |             |                 |                         |                                                                       |                    |                          |                           |                                                      |           |
| 86.               | $ \frac{1 \square 73.}{2 \square 12} $ $ 3 \square 20 \square $                | -x                | ] 1□51 □                 | $1\Box 73x$ | □ 1□51 □        | $ 2\square 12\square x$ | $\Box$ | 3 □ 20 □ 1         | $1\Box 51x \Box 0$       | $0\square 22x$ $\square$  | $\frac{3\square 2}{0} \square 14\square 55$          | ;         |

**87.** 
$$r \square \frac{12}{M} \square M \square \frac{12}{r}$$

**88.** 
$$\Box d \sqcup rTH \sqcup T \sqcup \frac{\Box d}{rH}$$

**89.** 
$$PV \square nRT \square R \square \frac{1}{nT}$$

90. 
$$F \square G \xrightarrow{mM} \square Fr^2$$

$$P \square 2l$$

**91.** 
$$P \square 2l \square 2\square \square 2\square \square P \square 2l \square \square \square \square$$

**92.** 
$$\frac{1}{R} \Box \frac{1}{R_1} \Box \frac{1}{R_2} \Box R_1 R_2 \Box RR_2 \Box RR_1 \text{ (multiply both sides by the LCD, } RR_1 R_2 \text{)}.$$
 Thus  $R_1 R_2 \Box RR_1 \Box RR_2 \Box RR_1 \Box RR_2 \Box RR_2 \Box RR_1 \Box RR_2 \Box R$ 

**93.** 
$$V \square \frac{1}{3} \square r^2 h \square r^2 \square \frac{3V}{\square h} \square r \square \square \frac{\overline{3V}}{\square h}$$

$$\underline{mM}$$
 2  $\underline{mM}$   $\underline{mM}$ 

94. 
$$F \square G \xrightarrow{r^2} \square r \square G \xrightarrow{F} \square r \square \square G \xrightarrow{g} G$$

95. 
$$V \Box \frac{4}{3} \Box r^3 \Box r^3 \Box \frac{3V}{4\Box} \Box r \Box \frac{3}{3} \frac{3V}{4\Box}$$

$$\begin{array}{c|c}
\Box x & \Box \frac{a & \Box 1}{a^2 & \Box a & \Box 1} \\
ax & \Box b
\end{array}$$

$$99. \quad {}_{cx \ \square \ d} \ \square \ 2 \ \square \ ax \ \square \ b \ \square \ 2 \ \square \ cx \ \square \ d \ \square \ ax \ \square \ b \ \square \ 2 cx \ \square \ 2 d \ \square \ b \ \square \ a \ \square \ 2 c \ \square \ 2 d \ \square \ b \ \square \ a \ \square \ 2 c \ \square \ a \ \square \ 2 c \ \square \ a \ \square \ 2 c \ \square \ a \ \square \ 2 c \ \square \ a \ \square \ 2 c \ \square \ a \ \square \ 2 c \ \square \ a \ \square \ 2 c \ \square \ a \ \square \ 2 c \ \square \ a \ \square \ 2 c \ \square \ a \ \square \ 2 c \ \square \ a \ \square \ 2 c \ \square \ a \ \square \ 2 c \ \square \ a \ \square \ 2 c \ \square \ a \ \square \ 2 c \ \square \ a \ \square \ 2 c \ \square \ a \ \square \ 2 c \ \square \ a \ \square \ 2 c \ \square \ a \ \square \ 2 c \ \square \ a \ \square \ 2 c \ \square \ a \ \square \ 2 c \ \square \ a \ \square \ 2 c \ \square \ a \ \square \ 2 c \ \square \ a \ \square \ 2 c \ \square \ a \ \square \ 2 c \ \square \ a \ \square \ 2 c \ \square \ a \ \square \ 2 c \ \square \ a \ \square \ 2 c \ \square \ a \ \square \ 2 c \ \square \ a \ \square \ 2 c \ \square \ a \ \square \ 2 c \ \square \ a \ \square \ 2 c \ \square \ a \ \square \ 2 c \ \square \ a \ \square \ 2 c \ \square \ a \ \square \ 2 c \ \square \ a \ \square \ 2 c \ \square \ a \ \square \ 2 c \ \square \ a \ \square \ 2 c \ \square \ a \ \square \ 2 c \ \square \ a \ \square \ 2 c \ \square \ a \ \square \ 2 c \ \square \ a \ \square \ 2 c \ \square \ a \ \square \ 2 c \ \square \ a \ \square \ 2 c \ \square \ a \ \square \ 2 c \ \square \ a \ \square \ 2 c \ \square \ a \ \square \ 2 c \ \square \ a \ \square \ 2 c \ \square \ a \ \square \ 2 c \ \square \ a \ \square \ 2 c \ \square \ a \ \square \ 2 c \ \square \ a \ \square \ 2 c \ \square \ a \ \square \ 2 c \ \square \ a \ \square \ 2 c \ \square \ a \ \square \ 2 c \ \square \ a \ \square \ 2 c \ \square \ a \ \square \ 2 c \ \square \ a \ \square \ 2 c \ \square \ a \ \square \ 2 c \ \square \ a \ \square \$$

100. 
$$\frac{a \Box 1}{b} \Box \frac{a \Box 1}{b} \Box \frac{b \Box 1}{a} \Box a \Box a \Box 1 \Box \Box a \Box a \Box 1 \Box \Box b \Box b \Box 1 \Box \Box a^2 \Box a \Box a^2 \Box a \Box b^2 \Box b \Box 2a \Box b^2 \Box b \Box$$

**101.** (a) The shrinkage factor when 
$$\Box$$
 250 is  $S$   $\Box$   $\frac{0 \Box 032 \Box 250 \Box \Box}{2 \Box 5}$   $\Box$   $\frac{8 \Box 2 \Box 5}{10,000} \Box$   $0 \Box 00055$ . So the beam shrinks

 $0\square 00055 \square 12\square 025 \square 0\square 007$  m, so when it dries it will be  $12\square 025 \square 0\square 007 \square 12\square 018$  m long.

(b) Substituting 
$$S \ \square \ 0 \square 00050$$
 we get  $0 \square 00050$   $\boxed{\begin{array}{c} 0 \square 032 \square \ \square \\ \hline 2 \square 5 \\ \hline 10,000 \\ \end{array}} \ \square \ 5 \ \square \ 0 \square 032 \square \ \square \ 2 \square 5 \ \square \ 7 \square 5 \ \square \ 0 \square 032 \square \ \square$ 

$$\Box$$
  $\Box$   $\overline{0\Box 03}2$   $\Box$  234 $\Box$ 375. So the water content should be 234 $\Box$ 375 kg/m .

**102.** Substituting 
$$C \square 3600$$
 we get  $3600 \square 450 \square 3 \square 75x \square 3150 \square 3 \square 75x \square x \square \overline{3 \square 75} \square 840$ . So the toy manufacturer can manufacture 840 toy trucks.

**103.** (a) Solving for 
$$\square$$
 when  $P \square 10,000$  we get  $10,000 \square 15 \square 6 \square^3 \square \square^3 \square 641 \square 02 \square \square \square 8 \square 6 \text{ km/h}$ .

**(b)** Solving for 
$$\square$$
 when  $P$   $\square$  50,000 we get 50,000  $\square$  15 $\square$ 6 $\square$ 3  $\square$   $\square$ 3 205 $\square$ 13  $\square$   $\square$  14 $\square$ 7 km/h.

42 CHAPTER P Prerequisites SECTION P.8 Solving Basic Equations 42

104. Substituting F = 300 we get 300 = 0 = 3x<sup>3-4</sup> = 1000 = 10<sup>3</sup> = x<sup>3-4</sup> = x<sup>1-4</sup> = 10 = x = 10<sup>4</sup> = 10,000 lb.

105. (a) 3 = 0 = k = 5 = k = 0 = k = 1 = k = 5 = k = 1 = 2k = 6 = k = 3

**(b)**  $3 \square 1 \square \square k \square 5 \square k \square 1 \square \square k \square 1 \square 3 \square k \square 5 \square k \square 1 \square k \square 2 \square 1 \square k \square 3$ 

(c)  $3 \square 2 \square \square k \square 5 \square k \square 2 \square \square k \square 1 \square 6 \square k \square 5 \square 2k \square k \square 1 \square k \square 1 \square k \square 1 . x \square 2$  is a solution for every value of k. That is,  $k \square 2$  is a solution to every member of this family of equations.

**106.** When we multiplied by x, we introduced  $x \square 0$  as a solution. When we divided by  $x \square 1$ , we are really dividing by 0, since  $x \square 1 \square x \square 1 \square 0$ .

concentration is  $\frac{25}{3 \square x}$ .

39

### P.9 MODELING WITH EQUATIONS

| 1.          | An equation modeling a real-world situation can be used to help us understand a real-world problem using mathematical methods. We translate real-world ideas into the language of algebra to construct our model, and translate our mathematical |  |  |  |  |  |  |  |  |
|-------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|
|             | results back into real-world ideas in order to interpret our findings.                                                                                                                                                                           |  |  |  |  |  |  |  |  |
| 2.          | In the formula $I \square Prt$ for simple interest, $P$ stands for <i>principal</i> , $r$ for <i>interest rate</i> , and $t$ for <i>time (in years)</i> .                                                                                        |  |  |  |  |  |  |  |  |
| 3.          | <b>3.</b> (a) A square of side x has area $A \square x^2$ .                                                                                                                                                                                      |  |  |  |  |  |  |  |  |
|             | <b>(b)</b> A rectangle of length $l$ and width $\square$ has area $A \square l \square$ .                                                                                                                                                        |  |  |  |  |  |  |  |  |
|             | (c) A circle of radius $r$ has area $A \square \square r^2$ .                                                                                                                                                                                    |  |  |  |  |  |  |  |  |
| <b>4.</b> 5 | Balsamic vinegar contains 5% acetic acid, so a 32 ounce bottle of balsamic vinegar contains $32 \square 5\% \square 32 \square 1 \square 6$ ounces                                                                                               |  |  |  |  |  |  |  |  |
|             | of acetic acid.                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |  |
| 5.          | A painter paints a wall in x hours, so the fraction of the wall she paints in one hour is $\frac{1 \text{ wall}}{x \text{ hours}} \Box \frac{1}{x}$ .                                                                                            |  |  |  |  |  |  |  |  |
|             | d $rt$ $d$ $d$ $rt$ $d$                                                                                                                                                                                                                          |  |  |  |  |  |  |  |  |
| 6.          | $ d  rt \qquad d \qquad d  \tau t \qquad d $ Solving $d \ \Box \ rt$ for $r$ , we find $\frac{d}{t} \ \Box \ \frac{d}{t} \ \Box \ r \ \Box \ r$ . Solving $d \ \Box \ rt$ for $t$ , we find $r \ \Box \ r \ \Box \ t \ \Box \ r$ .               |  |  |  |  |  |  |  |  |
|             |                                                                                                                                                                                                                                                  |  |  |  |  |  |  |  |  |
| 7.          | If $n$ is the first integer, then $n \square 1$ is the middle integer, and $n \square 2$ is the third integer. So the sum of the three consecutive                                                                                               |  |  |  |  |  |  |  |  |
|             | integers is $n \square \square n \square 1 \square \square \square n \square 2 \square \square 3n \square 3$ .                                                                                                                                   |  |  |  |  |  |  |  |  |
| 8.          | If $n$ is the middle integer, then $n \square 1$ is the first integer, and $n \square 1$ is the third integer. So the sum of the three consecutive                                                                                               |  |  |  |  |  |  |  |  |
|             | integers is $\Box n \Box 1 \Box \Box n \Box 1 \Box \Box 3n$ .                                                                                                                                                                                    |  |  |  |  |  |  |  |  |
| 9.          | If <i>n</i> is the first even integer, then $n \square 2$ is the second even integer and $n \square 4$ is the third. So the sum of three consecutive                                                                                             |  |  |  |  |  |  |  |  |
|             | even integers is $n \square \square n \square 2 \square \square \square n \square 4 \square \square 3n \square 6$ .                                                                                                                              |  |  |  |  |  |  |  |  |
|             | If <i>n</i> is the first integer, then the next integer is $n \square 1$ . The sum of their squares is                                                                                                                                           |  |  |  |  |  |  |  |  |
|             | $n^2 \square \square n \square 1 \square^2 \square n^2 \square \square n^2 \square 2n \square 1 \square 2n^2 \square 2n \square 1.$                                                                                                              |  |  |  |  |  |  |  |  |
| 11.         | If s is the third test score, then since the other test scores are 78 and 82, the average of the three test scores is $\frac{78 \square 82 \square s}{3} \square \frac{160 \square s}{3}$ .                                                      |  |  |  |  |  |  |  |  |
| 12.         | If $q$ is the fourth quiz score, then since the other quiz scores are 8, 8, and 8, the average of the four quiz scores is $\frac{8 \square 8 \square q}{4} \square \frac{24 \square q}{4}$ .                                                     |  |  |  |  |  |  |  |  |
| 13.         | If x dollars are invested at $2\frac{1}{5}\%$ simple interest, then the first year you will receive $0 \square 025x$ dollars in interest.                                                                                                        |  |  |  |  |  |  |  |  |
| 14.         | 1. If $n$ is the number of months the apartment is rented, and each month the rent is \$795, then the total rent paid is $795n$ .                                                                                                                |  |  |  |  |  |  |  |  |
| 15.         | Since $\square$ is the width of the rectangle, the length is four times the width, or $4\square$ . Then                                                                                                                                          |  |  |  |  |  |  |  |  |
|             | area $\Box$ length $\Box$ width $\Box$ 4 $\Box$ $\Box$ $\Box$ 4 $\Box$ ^2 ft <sup>2</sup>                                                                                                                                                        |  |  |  |  |  |  |  |  |
| 16.         | Since $\square$ is the width of the rectangle, the length is $\square$ $\square$ 4. Then                                                                                                                                                         |  |  |  |  |  |  |  |  |
|             | perimeter $\square$ 2 $\square$ length $\square$ 2 $\square$ width $\square$ 2 $\square$ $\square$ 4 $\square$ 2 $\square$ $\square$ $\square$ 4 $\square$ 8 $\square$ ft                                                                        |  |  |  |  |  |  |  |  |
| 17.         | If d is the given distance, in miles, and distance $\Box$ rate $\Box$ time, we have time $\Box$ $\frac{\text{distance}}{\text{rate}}$ $\Box$ $\frac{d}{55}$ .                                                                                    |  |  |  |  |  |  |  |  |
| 18.         | Since distance $\square$ rate $\square$ time we have distance $\square$ $s$ $\square$ $\square$ 45 min $\square$ $\square$ 4 min $\square$ 4 min $\square$ 4 min.                                                                                |  |  |  |  |  |  |  |  |

19. If x is the quantity of pure water added, the mixture will contain 25 oz of salt and  $3 \square x$  gallons of water. Thus the

**20.** If p is the number of pennies in the purse, then the number of nickels is 2p, the number of dimes is  $4 \square 2p$ , and the number of quarters is  $\square 2p \square \square 4p \square 4p \square 4$ . Thus the value (in cents) of the change in the purse

**40** CHAPTER P Prerequisites SECTION P.9 Modeling with Equations **40** 

 $1 \ \square \ p \ \square \ 5 \ \square \ 2p \ \square \ 10 \ \square \ 4 \ \square \ 2p \square \ \square \ 25 \ \square \ 4p \ \square \ 4\square \ \square \ p \ \square \ 10p \ \square \ 40 \ \square \ 20p \ \square \ 100p \ \square \ 100 \ \square \ 131p \ \square \ 140.$ 

worked 8 hours of overtime.

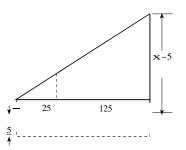
| 21. | If d is the number of days and m the number of miles, then the cost of a rental is $C \square 65d \square 0 \square 20m$ . In this case, $d \square 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | and $C = 275$ , so we solve for $m: 275 = 65 = 3 = 0 = 20m = 275 = 195 = 0 = 2m = 0 = 2m = 80 = m = \frac{80}{0} = 200. Thus,$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|     | Michael drove 400 miles.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 22. | If $m$ is the number of messages, then a monthly cell phone bill (above \$10) is $B \square 10 \square 0 \square 10 \square m \square 1000 \square$ . In this case,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|     | $B \ \square \ 38 \square 5$ and we solve for $m: 38 \square 5 \square \ 10 \square \ 0 \square 10 \square m \square \ 10000 \square \ 0 \square 10 \square m \square \ 10000 \square \ 28 \square 5 \square m \square \ \frac{28 \square 5}{0 \square 1} \square \ 285 \square$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|     | $m \square 1285$ . Thus, Miriam sent 1285 text messages in June.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 23. | If $x$ is Linh's score on her final exam, then because the final counts twice as much as each midterm, her average score is $\frac{82 \ \square \ 75 \ \square \ 71 \ \square \ 2x}{3 \ \square \ 100 \ \square \ \square \ 200} \ \square \ \frac{228 \ \square \ 2x}{500} \ \square \ \frac{114 \ \square \ x}{250}$ . For her to average 80%, we must have $\frac{114 \ \square \ x}{250} \ \square \ 80\% \ \square \ 0\square 8 \ \square$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|     | 114 $\square$ $x$ $\square$ 250 $\square$ 0 $\square$ 8 $\square$ $\square$ 200 $\square$ $x$ $\square$ 86. So Linh scored 86% on her final exam.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 24. | Six students scored 100 and three students scored 60. Let $x$ be the average score of the remaining 25 $\square$ 6 $\square$ 3 $\square$ 16 students. $ \frac{6 \square 100 \square \square 3 \square 60 \square \square}{16x} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|     | Because the overall average is 84% $\square$ 0 $\square$ 84, we have $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|     | $\Box$ 16x $\Box$ 1320 $\Box$ x $\Box$ $\Box$ 1320 $\Box$ 82 $\Box$ 5. Thus, the remaining 16 students' average score was 82 $\Box$ 5%.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 25. | Let <i>m</i> be the amount invested at $4\frac{1}{2}$ %. Then 12,000 $\square$ <i>m</i> is the amount invested at 4%.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|     | Since the total interest is equal to the interest earned at $4\frac{1}{2}\%$ plus the interest earned at 4%, we have                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|     | $525 \ \square \ 0\square 045m \ \square \ 0\square 04 \ \square 12,000 \ \square \ m \ \square \ 525 \ \square \ 0\square 045m \ \square \ 480 \ \square \ 0\square 04m \ \square \ 45 \ \square \ 0\square 005m \ \square \ \frac{45}{m \ \square} \ \square \ 00005$ Thus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     | \$9000 is invested at $4\frac{1}{2}$ %, and \$12,000 $\Box$ \$3000 is invested at 4%.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 26. | Let m be the amount invested at $5\frac{1}{2}\%$ . Then 4000 $\square$ m is the total amount invested. Thus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|     | $4\frac{1}{2}\%$ of the total investment $\square$ interest earned at $4\%$ $\square$ interest earned at $5\frac{1}{2}\%$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|     | So $0 \Box 045 \Box 4000 \Box m \Box \Box 0 \Box 04 \Box 4000 \Box 0 \Box 055m \Box 180 \Box 0 \Box 045m \Box 160 \Box 0 \Box 055m \Box 20 \Box 0 \Box 01m \frac{20}{\Box m} \Box 2000.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|     | Thus \$2,000 needs to be invested at $5\frac{1}{2}\%$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 27. | Using the formula $I \square Prt$ and solving for $r$ , we get $262 \square 50 \square 3500 \square r \square \square r \square 262 \square 5 \square 0 \square 075$ or $7 \square 5\%$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 28. | If \$1000 is invested at an interest rate $a\%$ , then 2000 is invested at $a = \frac{1}{2}$ , so, remembering that $a$ is expressed as a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|     | percentage, the total interest is $I \square 1000 \square \frac{a}{100} \square 1 \square$ $\frac{a \square \frac{1}{2}}{100} \square 1 \square 10a \square 20a \square 10 \square 30a \square 10$ . Since the total interest 2000 $\square$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     | is \$190, we have $190 \square 30a \square 10 \square 180 \square 30a \square a \square 6$ . Thus, the \$1000 is invested at 6% interest.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 29. | Let $x$ be her monthly salary. Since her annual salary $\Box$ 12 $\Box$ $\Box$ monthly salary $\Box$ $\Box$ Christmas bonus $\Box$ we have 97,300 $\Box$ 12 $x$ $\Box$ 8,500 $\Box$ 88,800 $\Box$ 12 $x$ $\Box$ 7,400. Her monthly salary is \$7,400.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 30. | Let $s$ be the husband's annual salary. Then her annual salary is $1 \square 15s$ . Since husband's annual salary $\square$ total annual income, we have $s \square 1 \square 15s \square 69,875 \square 2 \square 15s \square 69,875 \square s \square 32,500$ . Thus the husband's annual salary is \$32,500.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 31. | Let $x$ be the overtime hours Helen works. Since gross pay $\square$ regular salary $\square$ overtime pay, we obtain the equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|     | $352 \square 50 \square 7 \square 50 \square 35 \square 7 \square 50 \square 1 \square 5 \square x \square 352 \square 50 \square 262 \square 50 \square 11 \square 25x \square 90 \square 11 \square 11 \square 11 \square 11 \square 11 \square 11 \square 11$ |
|     | Helen                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

42 CHAPTER P Prerequisites SECTION P.9 Modeling with Equations 42

| 32. | Let $x$ be the hours the assistant worked. Then $2x$ is the hours the plumber worked. Since the labor charge is equal to the                                                |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | plumber's labor plus the assistant's labor, we have $4025 \square 45 \square 2x \square \square 25x \square 4025 \square 90x \square 25x \square 4025 \square 115x \square$ |
|     | $x \ \Box \ \frac{4025}{115} \ \Box \ 35$ . Thus the assistant works for 35 hours, and the plumber works for $2 \ \Box \ 35 \ \Box \ 70$ hours.                             |

| 33. | All ages are in terms of the daughter's age 7 years ago. Let $y$ be age of the daughter 7 years ago. Then $11y$ is the age of the movie star 7 years ago. Today, the daughter is $y \square 7$ , and the movie star is $11y \square 7$ . But the movie star is also 4 times his daughter's age today. So $4 \square y \square 7 \square \square 11y \square 7 \square 4y \square 28 \square 11y \square 7 \square 21 \square 7y \square y \square 3$ . Thus the movie star's age today is $11 \square 3 \square \square 7 \square 40$ years. |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 34. | Let $h$ be number of home runs Babe Ruth hit. Then $h \square 41$ is the number of home runs that Hank Aaron hit. So 1469 $\square h \square h \square 41 \square 1428 \square 2h \square h \square 714$ . Thus Babe Ruth hit 714 home runs.                                                                                                                                                                                                                                                                                                 |
| 35. | Let $p$ be the number of pennies. Then $p$ is the number of nickels and $p$ is the number of dimes. So the value of the coins in the purse is the value of the pennies plus the value of the nickels plus the value of the dimes. Thus $1 \square 44 \square 0 \square 01p \square 0 \square 05p \square 0 \square 10p \square 1 \square 44 \square 0 \square 16p \square 1 \square 44 \square 9$ . So the purse contains 9 pennies, 9 nickels, and 9 dimes.                                                                                 |
| 36. | Let $q$ be the number of quarters. Then $2q$ is the number of dimes, and $2q \square 5$ is the number of nickels. Thus $3\square 00 \square$ value of the nickels $\square$ value of the dimes $\square$ value of the quarters. So                                                                                                                                                                                                                                                                                                           |
|     | $ 3 \square 00 \square 0 \square 05 \square 2q \square 5 \square 0 \square 10 \square 2q \square \square 0 \square 25q \square 3 \square 00 \square 0 \square 10q \square 0 \square 25q \square 0 \square 20q \square 0 \square 25q \square 2 \square 75 \square \frac{Q-1}{2}  5q \square q \square 2 \square 75 \square 5. $                                                                                                                                                                                                               |
|     | Thus Mary has 5 quarters, $2 \square 5 \square \square 10$ dimes, and $2 \square 5 \square \square 5 \square 15$ nickels.                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 37. | Let $l$ be the length of the garden. Since area $\square$ width $\square$ length, we obtain the equation 1125 $\square$ 25 $l$ $\square$ $l$ $\square$ $\frac{1125}{25}$ $\square$ 45 ft. So the garden is 45 feet long.                                                                                                                                                                                                                                                                                                                     |
| 38. | Let $\Box$ be the width of the pasture. Then the length of the pasture is $2\Box$ . Since area $\Box$ length $\Box$ width we have 115,200 $\Box$                                                                                                                                                                                                                                                                                                                              |
| 39. | Let $x$ be the length of a side of the square plot. As shown in the figure, area of the plot $\square$ area of the building $\square$ area of the parking lot. Thus,                                                                                                                                                                                                                                                                                                                                                                         |
|     | $x^2 \ \Box \ 60 \ \Box \ 40 \ \Box \ 12,000 \ \Box \ 2,400 \ \Box \ 12,000 \ \Box \ 14,400 \ \Box \ x \ \Box \ \Box \ 120.$ So the plot of land measures 120 feet by 120 feet.                                                                                                                                                                                                                                                                                                                                                              |
| 40. | Let $\Box$ be the width of the building lot. Then the length of the building lot is $5\Box$ . Since a half-acre is $\frac{1}{2}\Box$ 43,560 $\Box$ 21,780 and area is length times width, we have 21,780 $\Box$                                                                                                                                                                                                                                                               |
| 41. | The figure is a trapezoid, so its area is $\frac{base_1 \Box base_2}{2} \Box height\Box$ . Putting in the known quantities, we have                                                                                                                                                                                                                                                                                                                                                                                                          |
|     | $120 \ \Box \ \frac{y \ \Box \ 2y}{2} \ \Box y \ \Box \ \Box \ 2y \ \Box \ \Box \ B0 \ \Box \ y \ \Box \ B0 \ \Box \ 4 \ 5. $ Since length is positive, $y \ \Box \ 4 \ 5 \ \Box \ 8\Box \ 94 $ inches.                                                                                                                                                                                                                                                                                                                                      |
| 42. | First we write a formula for the area of the figure in terms of $x$ . Region $A$ has dimensions 10 cm and $x$ cm and region $B$ has dimensions 6 cm and $x$ cm. So the                                                                                                                                                                                                                                                                                                                                                                       |
|     | shaded region has area $\Box 10 \Box x \Box \Box \Box 6 \Box x \Box \Box 16x \text{ cm}^2$ . We are given that this is equal to $144 \text{ cm}^2$ , so $144 \Box 16x \Box \frac{x}{16} \Box 144 \Box 9 \text{ cm}$ .                                                                                                                                                                                                                                                                                                                        |
| 43. | Let $x$ be the width of the strip. Then the length of the mat is $20 \square 2x$ , and the width of the mat is $15 \square 2x$ . Now the perimeter is twice the length plus twice the width, so $102 \square 2 \square 20 \square 2x \square \square 2 \square 15 \square 2x \square \square 102 \square 40 \square 4x \square 30 \square 4x$                                                                                                                                                                                                |
| 44  | $102 \square 70 \square 8x \square 32 \square 8x \square x \square 4$ . Thus the strip of mat is 4 inches wide.<br>Let x be the width of the strip. Then the width of the poster is $100 \square 2x$ and its length is $140 \square 2x$ . The perimeter of the                                                                                                                                                                                                                                                                               |
|     | Let will be the strict of the bull. Then the width of the poster is 100 \( \text{L} \) 2x that its length is 140 \( \text{L} \) 2x. The perimeter of the                                                                                                                                                                                                                                                                                                                                                                                     |

printed area is  $2 \square 100 \square \square 2 \square 140 \square \square 480$ , and the perimeter of the poster is  $2 \square 100 \square 2x \square \square 2 \square 140 \square 2x \square$ . Now we


fact that the perimeter of the poster is  $1^1$  times the perimeter of the printed area:  $2 \square 100 \square 2x \square \square 2 \square 140 \square 2x \square \square 3 \square 480 \square$ 

44 CHAPTER P Prerequisites SECTION P.9 Modeling with Equations 44

 $\square$  8x  $\square$  720  $\square$  8x  $\square$  240  $\square$  x  $\square$  30. The blank strip is thus 30 cm wide.

- **45.** Let x be the length of the man's shadow, in meters. Using similar triangles,  $\frac{10 \Box x}{6} \Box \frac{x}{2} \Box 20 \Box 2x \Box 6x \Box 4x \Box 20 \Box x \Box 5$ . Thus the man's shadow is 5 meters long.
- **46.** Let *x* be the height of the tall tree. Here we use the property that corresponding sides in similar triangles are proportional. The base of the similar triangles starts at eye level of the woodcutter, 5 feet. Thus we obtain the proportion  $\frac{x \Box 5}{15} \Box \frac{150}{25}$

| 25 □    | <i>x</i> 🗆 | 5□  | □ 1   | 5 □ | 150□ | □ 25 | $\delta x \square$ | 125 | 2250 | 25 <i>x</i> | 2375 | 5 □ <i>x</i> | 95. | Thu | s the |
|---------|------------|-----|-------|-----|------|------|--------------------|-----|------|-------------|------|--------------|-----|-----|-------|
| 15      |            |     |       |     |      |      |                    |     |      |             |      |              |     |     |       |
| tree is | s 95       | fee | t tal | l.  |      |      |                    |     |      |             |      |              |     |     |       |



**47.** Let x be the amount (in mL) of 60% acid solution to be used. Then 300  $\square x$  mL of 30% solution would have to be used to yield a total of 300 mL of solution.

|               | 60% acid      | 30% acid       | Mixture |
|---------------|---------------|----------------|---------|
| mL            | х             | 300 □ <i>x</i> | 300     |
| Rate (% acid) | 0□60          | 0□3            | 0□5     |
| Value         | 0□60 <i>x</i> | 0□30 □300 □    | 0□50    |

Thus the total amount of pure acid used is  $0 \square 60x \square 0 \square 30 \square 300 \square x \square \square 0 \square 50 \square 300 \square \square 0 \square 3x \square 90 \square 150 \stackrel{60}{ \boxminus x} \square 0 \square 3$   $\square 200$ .

So 200 mL of 60% acid solution must be mixed with 100 mL of 30% solution to get 300 mL of 50% acid solution.

**48.** The amount of pure acid in the original solution is  $300 \square 50\% \square \square 150$ . Let x be the number of mL of pure acid added. Then the final volume of solution is  $300 \square x$ . Because its concentration is to be 60%, we must have  $\frac{150 \square x}{300 \square x} \square 60\% \square 0\square 6 \square$ 

150  $\square$   $x \square 0 \square 6 \square 300$   $\square$   $x \square 150$   $\square$   $x \square 180$   $\square 0 \square 6x$   $\square 0 \square 4x$   $\square 30$   $\square$   $x \longrightarrow_{0 \square 4}$   $\square$  75. Thus, 75 mL of pure acid must be added.

**49.** Let x be the number of grams of silver added. The weight of the rings is  $5 \square 18 \ g \square 90 \ g$ .

|               | 5 rings | Pure silver | Mixture       |
|---------------|---------|-------------|---------------|
| Grams         | 90      | x           | 90 □ <i>x</i> |
| Rate (% gold) | 0□90    | 0           | 0□7           |
| Value         | 0□90    | 0x          | 0□75 □90 □    |

Value  $0 \square 90$  0x  $0 \square 75 \square 90 \square$ So  $0 \square 90 \square 90 \square 0x$   $0 \square 75 \square 90 \square x \square 0$   $0 \square 75 \square 90 \square x$   $0 \square 75 \square 90 \square x$   $0 \square 75x$   $0 \square 13 \square 5$   $0 \square 18$ . Thus 18 grams of silver

must be added to get the required mixture.

**50.** Let x be the number of liters of water to be boiled off. The result will contain  $6 \square x$  liters.

|               | Original | Water    | Final        |
|---------------|----------|----------|--------------|
| Liters        | 6        | $\Box x$ | 6 □ <i>x</i> |
| Concentration | 120      | 0        | 200          |
| Amount        | 120 □6□  | 0        | 200 □6 □     |

**46** CHAPTER P Prerequisites SECTION P.9 Modeling with Equations **46** 

So  $120 \ \Box 6 \ \Box \ 0 \ \Box \ 200 \ \Box 6 \ \Box \ x \ \Box \ 720 \ \Box \ 1200 \ \Box \ 200x \ \Box \ 200x \ \Box \ 480 \ \Box \ x \ \Box \ 2 \Box 4$ . Thus  $2 \Box 4$  liters need to be boiled off.

47

**51.** Let *x* be the number of liters of coolant removed and replaced by water.

|                     | 60% antifreeze | 60% antifreeze (removed) | Water | Mixture |
|---------------------|----------------|--------------------------|-------|---------|
| Liters              | 3□             | x                        | х     | 3□      |
| Rate (% antifreeze) | 0□6            | 0□6                      | 0     | 0□50    |
| Value               | 0□60           | □0 <u>0</u> 60           | 0x    | 0□50    |

| So 0□60 □3□6□ | $0\Box 60x  \Box 0x$ | 0□50□3□6□ | 2□16 | $0\Box 6x$ | 1□8_ | $0\Box 6x\Box$ | $-0 \square 36 \square 0 \square 6$ . Thus $0 \square 6$ liters |
|---------------|----------------------|-----------|------|------------|------|----------------|-----------------------------------------------------------------|
|               |                      |           |      |            |      |                | $\Box 0 \Box 36$                                                |
|               |                      |           |      |            |      | X              | $\Box 0\Box 6$                                                  |

must be removed and replaced by water.

**52.** Let *x* be the number of gallons of 2% bleach removed from the tank. This is also the number of gallons of pure bleach added to make the 5% mixture.

|               | Original 2%    | Pure bleach | 5% mixture   |
|---------------|----------------|-------------|--------------|
| Gallons       | 100 □ <i>x</i> | х           | 100          |
| Concentration | 0 🗆 0          | 1           | 0 🗆 0        |
| Bleach        | 0□02 □100 □    | 1 <i>x</i>  | 0 □ 05 □ 100 |

So  $0 \square 02 \square 100 \square x \square \square x \square 0 \square 05 \square 100 \square 2 \square 0 \square 02x \square x \square 5 \square 0 \square 98x \square 3 \square x \square 3 \square 06$ . Thus  $3 \square 06$  gallons need to removed and replaced with pure bleach.

**53.** Let *c* be the concentration of fruit juice in the cheaper brand. The new mixture that Jill makes will consist of 650 mL of the original fruit punch and 100 mL of the cheaper fruit punch.

|               | Original Fruit Punch           | Cheaper Fruit Punch | Mixture |
|---------------|--------------------------------|---------------------|---------|
| mL            | 650                            | 100                 | 750     |
| Concentration | 0□5                            | c                   | 0□48    |
| Juice         | $0\square \hat{50}\square 650$ | 100c                | 0□48 □  |

So  $0 \square 50 \square 650 \square 100c \square 0 \square 48 \square 750 \square 325 \square 100c \square 360 \square 100c \square 35 \square c \square 0 \square 35$ . Thus the cheaper brand is only 35% fruit juice.

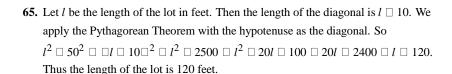
**54.** Let x be the number of ounces of  $3 \square 00 \square 0z$  tea Then  $80 \square x$  is the number of ounces of  $2 \square 75 \square 0z$  tea.

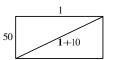
|                       | \$3□00 tea      | \$2□75 tea    | Mixture |
|-----------------------|-----------------|---------------|---------|
| Pounds                | х               | 80 □ <i>x</i> | 80      |
| Rate (cost per ounce) | 3□00            | 2□7           | 2□90    |
| Value                 | 3 □ 00 <i>x</i> | 2□75 □80 □    | 2□90    |

| So $3\square 00x \square 2\square 75\square 80\square x$ | :□ □ 2□90 □80□ □ 3□ | $00x \square 220 \square$ | $\Box 2\Box 75x \Box 2$ | $232 \square 0 \square 25x \square$ | $12 \square x \square 48.$ | The mixture |
|----------------------------------------------------------|---------------------|---------------------------|-------------------------|-------------------------------------|----------------------------|-------------|
| uses                                                     |                     |                           |                         |                                     |                            |             |

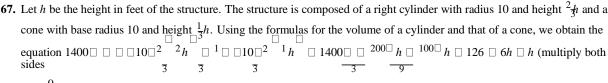
48 ounces of \$3 $\square$ 00 $\square$ 0z tea and 80  $\square$  48  $\square$  32 ounces of \$2 $\square$ 75 $\square$ 0z tea.

| 55. | Let t be the time in minutes it would take Candy and Tim if they work together. Candy delivers the papers at a rate of                                                                                       |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | $\frac{1}{70}$ of the job per minute, while Tim delivers the paper at a rate of $\frac{1}{80}$ of the job per minute. The sum of the fractions of the                                                        |
|     | job that each can do individually in one minute equals the fraction of the job they can do working together. So we have                                                                                      |
|     | $\frac{1}{t}$ $\Box$ $\frac{1}{70}$ $\Box$ $\frac{1}{80}$ $\Box$ 560 $\Box$ 8t $\Box$ 7t $\Box$ 560 $\Box$ 15t $\Box$ t $\Box$ 37 $_3$ Explainates. Since $_3$ of a minute is 20 seconds, it would take them |
|     | 37 minutes 20 seconds if they worked together.                                                                                                                                                               |
|     |                                                                                                                                                                                                              |


| 56. | Let t be the time, in minutes, it takes Hilda to mow the lawn. Since Hilda is twice as fast as Stan, it takes Stan 2t minutes to                                                       |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | mow the lawn by himself. Thus $40 \stackrel{1}{\Box_t} \Box 40 \stackrel{1}{\Box_{2t}} \Box 1 \Box 40 \Box 20 \Box t \Box t \Box 60$ . So it would take Stan $2 \Box 60 \Box \Box 120$ |
|     | minutes                                                                                                                                                                                |


to mow the lawn.

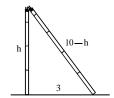
|     | Let <i>t</i> be the time, in hours, it takes Ka                                                                                                                                               |                        |         |                     |              |               |                                                            |                       |                    |                                          |                       |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|---------|---------------------|--------------|---------------|------------------------------------------------------------|-----------------------|--------------------|------------------------------------------|-----------------------|
|     | in $\frac{2}{3}t$ hours. The sum of their individual $\frac{3}{3}$                                                                                                                            | lual rates equa        | ls thei | r rate v            | vork         | ing to        | ogether, so                                                | <u>1</u> 1            | 1 <u>1</u> 2       | 1 3                                      | <b>;</b>              |
|     | 3                                                                                                                                                                                             |                        |         |                     |              |               |                                                            | $t^{\Box 6}$          | $\frac{1}{3}t$ $t$ | 2                                        | t                     |
|     | $6 \square t \square 9 \square t \square 3$ . Thus it would tak                                                                                                                               | e Karen 3 hou          | rs to p | aint a h            | ouse         | alon          | ie.                                                        |                       |                    |                                          |                       |
| 58. | Let <i>h</i> be the time, in hours, to fill the                                                                                                                                               | swimming poo           | ol usin | g Jim's             | hos          | e aloi        | ne. Since B                                                | ob's hose             | takes 20%          | less time,                               | it uses               |
|     | only 80% of the time, or $0\square 8h$ . Thus                                                                                                                                                 |                        |         |                     |              |               |                                                            |                       |                    |                                          |                       |
|     | $\square \ 0\square 8h$                                                                                                                                                                       | h                      | 0       | 8 <i>h</i>          |              |               |                                                            |                       |                    |                                          |                       |
|     | $\Box$ $h$ $\Box$ 40 $\Box$ 5. Jim's hose takes 40 $\Box$ 5                                                                                                                                   | hours, and Bo          | b's hos | se takes            | 32           | ∃4 ho         | ours to fill tl                                            | he pool alo           | one.               |                                          |                       |
| 59. | Let <i>t</i> be the time in hours that Wendy                                                                                                                                                  | spent on the t         | rain. T | Then $\frac{11}{2}$ | - □ <i>t</i> | is th         | e time in ho                                               | ours that V           | Vendy spe          | nt on the bi                             | us. We                |
|     | construct a table:                                                                                                                                                                            |                        |         |                     |              |               |                                                            |                       |                    |                                          |                       |
|     |                                                                                                                                                                                               |                        | Rate    | Tin                 | ne           | D             | istance                                                    |                       |                    |                                          |                       |
|     |                                                                                                                                                                                               | By train               | 40      | _t                  |              |               | 40 <i>t</i>                                                |                       |                    |                                          |                       |
|     |                                                                                                                                                                                               | By bus                 | 60      | 11<br>2             | $\Box t$     | 60            | $\begin{bmatrix} 40t \\ \frac{11}{2} \Box t \end{bmatrix}$ |                       |                    |                                          |                       |
|     | The total distance traveled is the sum                                                                                                                                                        | of the distance        | ces tra | veled b             | y bu         | ıs and        | d by train, s                                              | so 300 🗆              | 40 <i>t</i> □ 60   | $\frac{11}{2} \Box t$                    |                       |
|     | $300 \square 40t \square 330 \square 60t \square \square 30 \square $ |                        |         |                     |              |               |                                                            |                       |                    |                                          |                       |
| 60. | Let $r$ be the speed of the slower cycli                                                                                                                                                      |                        |         |                     |              |               |                                                            |                       |                    |                                          |                       |
|     |                                                                                                                                                                                               |                        | Г       | Rate                | Tir          | no l          | Distance                                                   | _                     |                    |                                          |                       |
|     |                                                                                                                                                                                               | Slower cyc             |         | r                   | 2            |               | 2r                                                         |                       |                    |                                          |                       |
|     |                                                                                                                                                                                               | Faster cycli           |         | $\frac{1}{2r}$      | 2            |               | 4r                                                         |                       |                    |                                          |                       |
|     | When they meet, they will have trave                                                                                                                                                          | eled a total of        | 90 mil  | es, so 2            | $2r \square$ | 4r 🗆          | ] 90 □ 6 <i>r</i> [                                        | □ 90 □ <i>r</i>       | □ 15. Th           | e speed of                               | the                   |
|     | slower cyclist is 15 mi/h, while the sp                                                                                                                                                       |                        |         |                     |              |               |                                                            |                       |                    |                                          |                       |
| 61. | Let <i>r</i> be the speed of the plane from I Angeles to Montreal.                                                                                                                            | Montreal to Lo         | s Ang   | eles. T             | hen          | $r \square 0$ | $0\square 20r \square 10$                                  | $\Box 20r$ is the     | e speed of         | the plane f                              | from Los              |
|     | Aligeles to Wolffear.                                                                                                                                                                         |                        |         |                     |              |               |                                                            |                       |                    |                                          |                       |
|     |                                                                                                                                                                                               |                        |         | Rate                |              | ime           | Distance                                                   |                       |                    |                                          |                       |
|     |                                                                                                                                                                                               | Montreal to l          |         | r                   |              | 500<br>r      | 2500                                                       |                       |                    |                                          |                       |
|     |                                                                                                                                                                                               | L.A. to Mon            | treal   | $1\square 2r$       | 2            | 500           | 2500                                                       |                       |                    |                                          |                       |
|     |                                                                                                                                                                                               |                        |         |                     | 1            | $\sqcup 2r$   |                                                            |                       |                    |                                          |                       |
|     | The total time is the sum of the time                                                                                                                                                         | nas anch way           | so 0 !  | 1 - 2               | 2500         | _ 2           | 2500 _ 5                                                   | 5 _ 250               | 0 _ 2500           | 0 _                                      |                       |
|     | The total time is the sum of the time                                                                                                                                                         | nes each way,          | 80 9    | 6 -                 | r            |               | $1\square 2r$                                              | $\frac{1}{6}$ $r$     | 1 2                | ir "                                     |                       |
|     | $55 \square 1 \square 2r \square 2500 \square 6 \square 1 \square 2 \square 2500$                                                                                                             | 00 □ 6 □ 66 <i>r</i> □ | 18,0    | 00 🗆 15             | 5,000        | 0 🗆 6         | $6r \square 33,00$                                         | 00 🗆 <del>r 😡 3</del> | $33,000 \square 5$ | 500. Thus tl                             | he plane              |
|     | flew                                                                                                                                                                                          |                        |         |                     |              |               |                                                            | 00                    |                    |                                          |                       |
|     | at a speed of 500 mi/h on the trip from                                                                                                                                                       |                        |         |                     |              |               |                                                            |                       |                    | 5200 C                                   |                       |
| 62. | Let $x$ be the speed of the car in mi/h.                                                                                                                                                      | Since a mile c         | ontain  | s 5280              | ft an        | id an         | hour contai                                                | ins 3600 s,           | , 1 mi/h □         | $\frac{5280 \text{ ft}}{3600 \text{ s}}$ | $\frac{22}{15}$ ft/s. |
|     | The truck is traveling at 50 $\Box \frac{22}{15}$ $\Box$ - of the car must travel the length of the                                                                                           |                        |         |                     |              |               |                                                            |                       |                    |                                          |                       |
|     | $\frac{14 \square 30 \square 440}{6} \square \frac{242}{3} \text{ ft/s. Converting to}$                                                                                                       |                        |         |                     |              |               |                                                            |                       |                    | speed must                               | 00                    |
|     | 6 3 To S. Converting to                                                                                                                                                                       | im/ii, we nave         | unat t  | ne spec             | u UI         | are e         | u 13 <u>3</u> L                                            | 22 🗆 33               | 1111/11.           |                                          |                       |
| 63. | Let $x$ be the distance from the fulcrum                                                                                                                                                      | n to where the         | mothe   | er sits. '          | Ther         | ı subs        | stituting the                                              | known va              | alues into         | the formula                              | a given,              |


we have  $100 \square 8 \square \square 125x \square 800 \square 125x \square x \square 6 \square 4$ . So the mother should sit  $6\square 4$  feet from the fulcrum. **64.** Let  $\square$  be the largest weight that can be hung. In this exercise, the edge of the building acts as the fulcrum, so the 240 lb man is sitting 25 feet from the fulcrum. Then substituting the known values into the formula given in Exercise 43, we have

 $240 \ \Box 25 \Box \ \Box \ 5 \Box \ \Box \ 6000 \ \Box \ 5 \Box \ \Box \ \Box \ \Box \ 1200. \ Therefore, 1200 \ pounds \ is the largest weight that can be hung.$ 






66. Let r be the radius of the running track. The running track consists of two semicircles and two straight sections 110 yards long, so we get the equation  $2 \square r \square 220 \square 440 \square 2 \square r \square 220 \square r \square 110 \square 35 \square 03$ . Thus the radius of the semicircle is about 35 yards.



by  $\frac{9}{100}$ )  $\Box$  126  $\Box$  7h  $\Box$  18. Thus the height of the structure is 18 feet.

**68.** Let h be the height of the break, in feet. Then the portion of the bamboo above the break is  $10 \square h$ . Applying the Pythagorean Theorem, we obtain

| $h^2 \square 3^2 \square \square 10 \square h \square^2 \square h^2 \square 9 \square 100 \square 20h \square h^2 \square \square 91 \square \square 20h \square$ | ] |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| $h \square \frac{91}{20} \square 4\square 55$ . Thus the break is $4\square 55$ ft above the ground.                                                              |   |



69. Pythagoras was born about 569 BC in Samos, Ionia and died about 475 BC. Euclid was born about 325 BC and died about 265 BC in Alexandria, Egypt. Archimedes was born in 287 BC in Syracuse, Sicily and died in 212 BC in Syracuse.

**70.** Answers will vary.

#### CHAPTER P REVIEW

| 1. (a)     | Since there are initially 250 tablets and she takes 2 tablets per day, the number of tablets $T$ that are left in the bottle |
|------------|------------------------------------------------------------------------------------------------------------------------------|
|            | after she has been taking the tablets for x days is $T \square 250 \square 2x$ .                                             |
| <b>(b)</b> | After 30 days, there are $250 \square 2 \square 30 \square \square 190$ tablets left.                                        |

(c) We set  $T \square 0$  and solve:  $T \square 250 \square 2x \square 0 \square 250 \square 2x \square x \square 125$ . She will run out after 125 days.

| 2  | (a) | The total | cost is \$2 p | er calzone | nlue the  | \$3 delivery | charge so  | $C \sqcap$ | 2r 🗆 3           |  |
|----|-----|-----------|---------------|------------|-----------|--------------|------------|------------|------------------|--|
| 4. | (4) | The total | LCOSLIS JAZ D | ai Caizone | onus me . | an delivery  | Charge, so |            | $\Delta X = 0.0$ |  |

**(b)** 4 calzones would be  $2 \square 4 \square \square 3 \square \$11$ .

(c) We solve  $C \square 2x \square 3 \square 15 \square 2x \square 12 \square x \square 6$ . You can order six calzones.

**3.** (a) 16 is rational. It is an integer, and more precisely, a natural number.

**(b)** □16 is rational. It is an integer, but because it is negative, it is not a natural number.

(c)  $\Box \overline{16} \Box 4$  is rational. It is an integer, and more precisely, a natural number. (d)  $\overline{2}$  is irrational.

(e)  $\frac{8}{3}$  is rational, but is neither a natural number nor an integer.

(f)  $\Box \frac{8}{2} \Box \Box 4$  is rational. It is an integer, but because it is negative, it is not a natural number.

**4.** (a)  $\Box 5$  is rational. It is an integer, but not a natural number.

**(b)**  $\Box \frac{25}{6}$  is rational, but is neither an integer nor a natural number.

(c)  $25 \square 5$  is rational, a natural number, and an integer.


(d)  $3\square$  is irrational.

46

- (e)  $\frac{24}{16} \square \frac{3}{2}$  is rational, but is neither a natural number nor an integer.
- (f)  $10^{20}$  is rational, a natural number, and an integer.
- 5. Commutative Property of addition.
- **7.** Distributive Property.
- **9.** (a)  $\frac{5}{2} = \frac{2}{2} = \frac{5}{2} = \frac{4}{2} = \frac{9}{2} = \frac{3}{2}$ 
  - 6 3 6 6 6 2 **(b)**  $\frac{5}{6} \square \frac{2}{3} \square \frac{5}{6} \square \frac{4}{6} \square \frac{1}{6}$
- 11. (a)  $\frac{15}{8} \Box \frac{12}{2} = \frac{15}{12} \Box \frac{3}{2} \Box \frac{3}{2} \Box \frac{3}{2} \Box 1 \Box$ 
  - **(b)**  $\frac{15}{8} \Box \frac{12}{5} \Box \frac{15}{8} \Box \Box \frac{5}{8} \Box \Box \frac{5}{8} \Box \Box \frac{25}{32}$
- **13.**  $x \square [\square 2 \square 6 \square \square \square 2 \square x \square 6 \square$

\_2 6

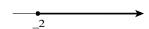
**15.**  $x \square \square \square \square \square 4] \square x \square 4$ 



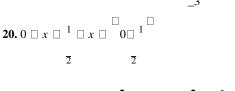
**17.**  $x \square 5 \square x \square [5 \square \square \square]$ 



**19.**  $\Box 1 \Box x \Box 5 \Box x \Box \Box \Box \Box$ 




- **21.** (a)  $A \square B \square \square 1 \square 0 \square 1 \square 1 \square 2 \square 3 \square 4 \square 2$ 
  - **(b)**  $A \square B \square \square 1 \square$
- 23. (a)  $A \square C \square \square \square \square$   $2 \square$ (b)  $B \square D \square \frac{1}{2} \square \square$
- **25.**  $\Box$ 7  $\Box$  10 $\Box$   $\Box$   $\Box$   $\Box$ 3  $\Box$  3
- **27.**  $2^{1 \square 2} 8^{1 \square 2} \square \square 2 \square \square 8 \square \square 16 \square 4$


- 6. Commutative Property of multiplication.
- 8. Distributive Property.
- **10.** (a)  $\frac{7}{}$   $\Box$   $\frac{11}{}$   $\Box$   $\frac{21}{}$   $\Box$   $\frac{22}{}$   $\Box$   $\Box$   $\frac{1}{}$ 
  - **(b)**  $\frac{10}{10} \Box \frac{15}{15} \Box \frac{30}{21} \Box \frac{30}{22} \Box \frac{30}{30} \Box \frac{43}{30}$
- 12. (a)  $\frac{30}{7} \Box \frac{12}{35} \begin{bmatrix} 30 \Box \\ \frac{35}{7 \Box} \end{bmatrix} \Box \frac{5 \Box 5}{1 \Box 2} \Box \frac{25}{2}$ 
  - **(b)**  $\frac{30}{7} \Box \frac{12}{2} = \frac{30}{7} \Box \frac{6}{7} \Box \frac{72}{7} = \frac{12}{7} \Box \frac{72}{49}$ 35 7
- 14.  $x \square \square 0 \square 10$ ]  $\square 0 \square x \square 10$

10

**16.**  $x \square [\square 2 \square \square \square \square \square 2 \square x]$ 



**18.**  $x \square \square 3 \square x \square \square \square \square \square \square \square \square \square$ 



- **22.** (a)  $C \square D \square \square \square \square \square \square \square$ 
  - **(b)**  $C \square D \square \square 0 \square 1$
- **24.** (a)  $A \Box D \Box \Box 0 \Box 1 \Box$ (b)  $B \Box C \Box \frac{1}{2} \Box 1$ 
  - **26.**  $\Box$ 3  $\Box$   $\Box$ 9 $\Box$ 0  $\Box$ 3  $\Box$ 9 $\Box$   $\Box$ 0  $\Box$ 6  $\Box$ 6
  - **28.**  $2^{\square 3}$   $\square$   $3^{\square 2}$   $\square_8$   $\stackrel{1}{\square}_9$   $\stackrel{1}{\square}_{72}$   $\stackrel{9}{\square}_{72}$   $\stackrel{8}{\square}_{72}$   $\stackrel{1}{\square}_{72}$

- **29.**  $216^{\square\square\square} \square \frac{1}{216^{1}\square} \square \frac{1}{216} \square 6$
- **33.** (a) □5 □ 3 □ □ □2 □ □
  - **(b)** □□5 □ 3□ □ □□8□ □ 8

- **32.** 2 50 □ 100 □ 10
- - **(b)** \$\tag{0.4} \$\tag{0.4}\$ \$\tag{0.1}\$ \$\tag{0.1}\$ \$\tag{0.1}\$ \$\tag{0.1}\$ \$\tag{0.1}\$ \$\tag{0.1}\$

35. (a) 
$$\sqrt[5]{7} \Box 7^{1} \Box 3$$

**(b)** 
$$^{5}\overline{7^{4}} \,\Box \, 7^{4}\Box$$

37. (a) 
$$6 \overline{x^5} \square x^5 \square 6$$

39. 
$$2x^3y^{2} 3x^{2} 3x^{2} 3x^{2} 4x^6y^2 3x^{2} 43x^{6}y^2$$

$$y^2$$


$$\Box 12x^{5}y^{4}$$

$$\Box 9x^{4}\Box 2\Box 3 \Box 9x^{3}$$

43. 
$$x^3 = x^4 = x^4$$

$$y^4$$
 $8r^1 \square^2_S \square^3$ 

**46.** 
$$ab^2c^{\Box 3} \over 2a^3b^{\Box 4}$$
  $a^{\Box 2}b^{\Box 4}c^6 \over 2^{\Box 2}a^{\Box 6}b^8 \Box 2^2a^{\Box 2}\Box^{\Box 6}b^{\Box 4}\Box^8c^6 \Box 4a^4b^{\Box 12}c^6 \frac{4a^4c^6}{b^{12}}$ 



**48.** 2 □ 08 □ 10 □ 8 □ 0 □ 00000000208

**49.** 
$$\frac{ab}{10}$$
 □ 0 □ 000000293 □ 1 □ 582 □ 2 □ 93 □ 10 □ 6 □ 1 □ 582 □ 2 □ 93 □ 10 □ 6 □ 1 □ 582 □ 10 □ 6 □ 1 □ 582 □ 10 □ 6 □ 1 □ 582 □ 10 □ 6 □ 1 □ 582 □ 10 □ 6 □ 1 □ 582 □ 10 □ 6 □ 1 □ 582 □ 10 □ 6 □ 1 □ 582 □ 10 □ 6 □ 1 □ 582 □ 10 □ 6 □ 1 □ 582 □ 10 □ 6 □ 1 □ 582 □ 10 □ 6 □ 1 □ 582 □ 10 □ 6 □ 1 □ 582 □ 10 □ 6 □ 1 □ 582 □ 10 □ 6 □ 1 □ 582 □ 10 □ 6 □ 1 □ 582 □ 10 □ 6 □ 1 □ 582 □ 10 □ 6 □ 1 □ 582 □ 10 □ 6 □ 1 □ 582 □ 10 □ 6 □ 1 □ 582 □ 10 □ 6 □ 1 □ 582 □ 10 □ 6 □ 1 □ 582 □ 10 □ 6 □ 1 □ 582 □ 10 □ 6 □ 1 □ 582 □ 10 □ 6 □ 1 □ 582 □ 10 □ 6 □ 1 □ 582 □ 10 □ 6 □ 1 □ 582 □ 10 □ 6 □ 1 □ 582 □ 10 □ 6 □ 1 □ 582 □ 10 □ 6 □ 1 □ 582 □ 10 □ 6 □ 1 □ 582 □ 10 □ 6 □ 1 □ 582 □ 10 □ 6 □ 1 □ 582 □ 10 □ 6 □ 1 □ 582 □ 10 □ 6 □ 1 □ 582 □ 10 □ 6 □ 1 □ 582 □ 10 □ 6 □ 1 □ 582 □ 10 □ 6 □ 1 □ 582 □ 10 □ 6 □ 1 □ 582 □ 10 □ 6 □ 1 □ 582 □ 10 □ 6 □ 1 □ 582 □ 10 □ 6 □ 1 □ 582 □ 10 □ 6 □ 1 □ 582 □ 10 □ 6 □ 1 □ 582 □ 10 □ 6 □ 1 □ 582 □ 10 □ 6 □ 1 □ 582 □ 10 □ 6 □ 1 □ 582 □ 10 □ 6 □ 1 □ 582 □ 10 □ 6 □ 1 □ 582 □ 10 □ 6 □ 1 □ 582 □ 10 □ 6 □ 1 □ 582 □ 10 □ 6 □ 1 □ 582 □ 10 □ 6 □ 1 □ 582 □ 10 □ 6 □ 1 □ 582 □ 10 □ 6 □ 1 □ 582 □ 10 □ 6 □ 1 □ 582 □ 10 □ 6 □ 1 □ 582 □ 10 □ 6 □ 1 □ 582 □ 10 □ 6 □ 1 □ 582 □ 10 □ 6 □ 1 □ 582 □ 10 □ 6 □ 1 □ 582 □ 10 □ 6 □ 1 □ 582 □ 10 □ 6 □ 1 □ 582 □ 10 □ 6 □ 1 □ 582 □ 10 □ 6 □ 1 □ 582 □ 10 □ 6 □ 1 □ 582 □ 10 □ 6 □ 1 □ 582 □ 10 □ 6 □ 1 □ 582 □ 10 □ 6 □ 1 □ 582 □ 10 □ 6 □ 1 □ 582 □ 10 □ 6 □ 1 □ 582 □ 10 □ 6 □ 1 □ 582 □ 10 □ 6 □ 1 □ 582 □ 10 □ 6 □ 1 □ 582 □ 10 □ 6 □ 1 □ 582 □ 10 □ 6 □ 1 □ 582 □ 10 □ 6 □ 1 □ 582 □ 10 □ 6 □ 1 □ 582 □ 10 □ 6 □ 1 □ 582 □ 10 □ 6 □ 1 □ 582 □ 10 □ 6 □ 1 □ 582 □ 10 □ 6 □ 1 □ 582 □ 10 □ 6 □ 1 □ 582 □ 10 □ 6 □ 1 □ 582 □ 10 □ 6 □ 1 □ 582 □ 10 □ 6 □ 1 □ 582 □ 10 □ 6 □ 1 □ 582 □ 10 □ 6 □ 1 □ 582 □ 10 □ 6 □ 1 □ 582 □ 10 □ 6 □ 1 □ 582 □ 10 □ 6 □ 1 □ 582 □ 10 □ 6 □ 1 □ 582 □ 10 □ 6 □ 1 □ 582 □ 10 □ 6 □ 1 □ 582 □ 10 □ 6 □ 1 □ 582 □ 10 □ 6 □ 1 □ 582 □ 10 □ 6 □ 1 □ 582 □ 10 □ 6 □ 1 □ 582 □ 10 □ 6 □ 1 □ 6 □ 1 □ 582 □ 10 □ 6 □ 1 □ 582 □ 10 □ 6 □ 1 □ 582 □ 10 □ 6 □ 1 □ 1

$$\begin{array}{ccc}
c & 2 \square 8064 \square \\
10^{12} & & \\
\square & 1 \square 65 \square & 10 \square 32
\end{array}$$

**50.** 80 times hour 
$$\frac{60 \text{ minutes}}{\text{day}}$$
  $\frac{24 \text{ hours}}{\text{day}}$   $\square \frac{365 \text{ days}}{\text{year}}$   $\square 90 \text{ years } \square 3\square 8 \square 10^9 \text{ times}$ 

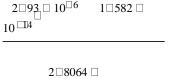
**51.** 
$$2x^2y \square 6xy^2 \square 2xy \square x \square 3y \square$$

**51.** 
$$2x^2y \Box 6xy^2 \Box 2xy \Box x \Box 3y \Box \Box$$
  
**52.**  $12x^2y^4 \Box 3xy^5 \Box 9x^3y^2 \Box 3xy^2 \Box 4xy^2 \Box y^3 \Box 3x^2 \Box$ 

**53.** 
$$x^2 \square 5x \square 14 \square \square x \square 7 \square \square x \square 2 \square$$

**55.** 
$$3x^2 \square 2x \square 1 \square \square 3x \square 1\square \square x \square 1\square$$

**56.** 
$$6x^2 \square x \square 12 \square \square 3x \square 4\square \square 2x \square 3\square$$


**36.** (a) 
$$\sqrt[3]{57} \square 5^7 \square 3$$

**40.** 
$$a^2 \Box a^3 b^{-2}$$
  $\Box a^{-6} \Box b^{12}$   $\Box b^{3}$ 

$$\sqcap a^{\Box 6\Box 6}b^{2\Box 12}\sqcap b^{14}$$

41. 
$$\frac{x^4}{3x^3} = \frac{x^4}{3x^3} = \frac{9x^2}{x^3} = \frac{9x^4}{3x^3} = \frac{9x^3}{3x^3} = \frac{x^4}{3x^3} = \frac{x^4}{3x^3}$$

43. 
$$x^3y^{-2} = x^5x^6y^4y^2 = x^6y^6 = x^2y^2$$
 $y^4$ 
 $8r^1 = x^2y^4 = x^2$ 
 $2 = x^2y^4 = x^2y^4$ 
 $2 = x^2y^4 = x^2y^4$ 
 $2 = x^2y^4 = x^2y^4$ 



 $10^{12}$ 





CHAPTER P Prerequisites CHAPTER P Review

**57.**  $4t^2 \square 13t \square 12 \square \square 4t \square 3\square \square t \square 4\square$ 

**59.**  $16 \square 4t^2 \square 4 \square 4 \square t^2 \square \square 4 \square t \square 2 \square \square t \square 2 \square$ 

**62.**  $a^4b^2 \square ab^5 \square ab^2 \square a^3 \square b^3 \square ab^2 \square a \square b \square \square a^2 \square ab \square b^2$ 

**63.**  $x^3 \square 27 \square \square x \square 3 \square x^2 \square 3x \square 9$ 

**64.**  $3y^3 \square 81x^3 \square 3 y^3 \square 27x^3 \square 3 \square y \square 3x \square y^2 \square 3xy \square 9x^2$ 

50 CHAPTER P Prerequisites CHAPTER P Review 50

- **65.**  $4x^3 \,\Box \, 8x^2 \,\Box \, 3x \,\Box \, 6 \,\Box \, 4x^2 \,\Box x \,\Box \, 2\Box \,\Box \, 3 \,\Box x \,\Box \, 2\Box \,\Box \,\Box \, 4x^2 \,\Box \, 3 \,\Box x \,\Box \, 2\Box$
- **66.**  $3x^3 \square 2x^2 \square 18x \square 12 \square x^2 \square 3x \square 2\square \square 6 \square 3x \square 2\square \square 3x \square 2\square x^2 \square 6$
- **68.**  $\Box a \Box b \Box^2 \Box 3 \Box a \Box b \Box \Box 10 \Box \Box a \Box b \Box 5 \Box \Box a \Box b \Box 2 \Box$
- **69.**  $\Box 2y \Box 7 \Box \Box 2y \Box 7 \Box \Box 4y^2 \Box 49$
- **70.**  $\Box 1 \Box x \Box \Box 2 \Box x \Box \Box \Box 3 \Box x \Box \Box 3 \Box x \Box \Box 2 \Box x \Box x^2 \Box 9 \Box x^2 \Box 2 \Box x \Box x^2 \Box 9 \Box x^2 \Box \Box 7 \Box x$
- **71.**  $x^2 \Box x \Box 2 \Box \Box x \Box x \Box 2 \Box^2 \Box x^3 \Box 2x^2 \Box x \Box x^2 \Box 4x \Box 4 \Box x^3 \Box 2x^2 \Box x^3 \Box 4x^2 \Box 4x \Box 2x^3 \Box 6x^2 \Box 4x$
- 72.  $\frac{x^3 \Box 2x^2 \Box 3x}{x} \Box \frac{x \Box x^2 \Box 2x \Box 3}{x} \Box x^2 \Box 2x \Box 3$
- **74.**  $\Box 2x \Box 1\Box^3 \Box \Box 2x\Box^3 \Box 3 \Box 2x\Box^2 \Box 1\Box \Box 3 \Box 2x\Box \Box 1\Box^2 \Box \Box 1\Box^3 \Box 8x^3 \Box 12x^2 \Box 6x \Box 1$
- 75.  $\frac{x^2 \square 2x \square 3}{2x^2 \square 5x \square 3} \square \frac{\square x \square 3 \square \square x \square}{\square 2x \square 3 \square \square x \square} \square \frac{x \square 3}{2x \square 3}$
- 76.  $\frac{t^3 \Box 1}{\Box t} \bigcirc \frac{\Box t \Box }{\Box t} \Box \frac{t^2 \Box t \Box 1}{\Box t} \Box \frac{t^2 \Box t \Box 1}{\Box t}$
- 77.  $x^2 \square 8x \square 16$   $x \square 1$   $x \square 4$   $x \square 4$
- **79.**  $x \square \frac{1}{x \square 1} \square \frac{x \square x \square 1}{x \square 1} \square \frac{1}{x \square 1} \square \frac{x^2 \square x \square 1}{x \square 1}$
- 80. x = 1  $x = x^2 = 1$   $x = x^2 = 1$   $x^2 = 1$  x = 1
- - 1 1 2

51 CHAPTER P Prerequisites

52

93. 
$$\frac{x \Box 5}{x \Box 10}$$
 is defined whenever  $x \Box 10 \Box 0 \Box x \Box \Box 10$ , so its domain is  $\Box x \Box x \Box \Box 10 \Box$ .

**94.** 
$$\frac{2x}{}$$
 is defined whenever  $x^2 \square 9 \square 0 \square x^2 \square 9 \square x \square 3$ , so its domain is  $\square x \square x \square 3$  and  $x \square 3 \square$ .

95. 
$$\frac{x^2 \square 9}{x^2 \square 3x \square 4}$$
 is defined whenever  $x \square 0$  (so that  $\frac{\square}{x}$  is defined) and  $x^2 \square 3x \square 4 \square \square x \square 1 \square \square x \square 4 \square \square 0 \square x \square \square 1$  and

 $x \square 4$ . Thus, its domain is  $\square x \square x \square 0$  and  $x \square 4\square$ .

**96.** 
$$\frac{ }{x^2 \Box 4x \Box 4}$$
 is defined whenever  $x \Box 3 \Box 0 \Box x \Box 3$  and  $x^2 \Box 4x \Box 4 \Box \Box x \Box 2\Box^2 \Box 0 \Box x \Box \Box 2$ . Thus, its domain is  $\Box x \Box x \Box x \Box 3\Box$ .

- **99.** This statement is true:  $\frac{12 \square y}{y} \square \frac{12}{y} \square \frac{y}{y} \square \frac{12}{y} \square 1$ .
- **100.** This statement is false. For example, take  $a ext{ } ext{ }$
- **101.** This statement is false. For example, take  $a \ \square \ \square 1$ . Then LHS  $\ \square \ \overline{a^2} \ \square \ \square \square \square 2 \ \square \ \square 1$  , which does not equal  $a \ \square \ \square 1$ . The true statement is  $\ \square \ \overline{a^2} \ \square \ \square a \square$ .
- **102.** This statement is false. For example, take  $x \square 1$ . Then LHS  $\square \frac{1}{x \square 4} \square \frac{1}{1 \square 4} \square \frac{1}{5}$ , while RHS  $\square \frac{1}{x} \square \frac{1}{4} \square \frac{1}{1} \square \frac{1}{4} \square \frac{5}{4}$ , and  $\frac{1}{5} \square \frac{5}{4}$ .
- **103.**  $3x \ \Box \ 12 \ \Box \ 24 \ \Box \ 3x \ \Box \ 12 \ \Box \ x \ \Box \ 4$  **104.**  $5x \ \Box \ 7 \ \Box \ 42 \ \Box \ 5x \ \Box \ 49 \ \Box \ x \ \Box \ ^{49} \ \overline{\phantom{a}_{5}}$

**105.** 
$$7x \square 6 \square 4x \square 9 \square 3x \square 15 \square x \square 5$$

**106.** 
$$8 \square 2x \square 14 \square x \square \square 3x \square 6 \square x \square \square 2$$

**107.** 
$$\frac{1}{3}x \square \frac{1}{2} \square 2 \square 2x \square 3 \square 12 \square 2x \square 15 \square x \square {}^{15}\frac{}{2}$$

**108.** 
$$\frac{2}{3}x \Box \frac{3}{5} \Box \frac{1}{5} \Box 2x \Box 10x \Box 9 \Box 3 \Box 30x \Box 40x \Box \Box 6 \Box x \Box \Box 6 \frac{40}{40} \Box 3 \frac{20}{20}$$

**109.** 
$$2 \square x \square 3 \square \square 4 \square x \square 5 \square \square 8 \square 5x \square 2x \square 6 \square 4x \square 20 \square 8 \square 5x \square \square 2x \square 26 \square 8 \square 5x \square 3x \square \square 18 \square x \square \square 6$$

110. 
$$\frac{x \square 5}{2} \square \frac{2x \square 5}{3} \square \frac{5}{6} \square 3 \square x \square 5 \square \square 2 \square 2x \square 5 \square \square 5 \square 3x \square 15 \square 4x \square 10 \square 5 \square \square x \square 30 \square x \square 30$$

111. 
$$\frac{}{x \Box 1} \Box \frac{}{2x \Box 1} \Box ax \Box 1 \Box 2x \Box 1 \Box ax \Box 1 \Box 2x \Box 1 \Box ax \Box 1 \Box 2x^2 \Box 3x \Box 1 \Box 2x^2 \Box 3x \Box 1 \Box 6x \Box 0 \Box x \Box 0$$

112. 
$$\frac{x}{x \square 2} \square 3 \square \frac{1}{x \square 2} \square x \square 3 \square x \square 2 \square \square 1 \square x \square 3x \square 6 \square 1 \square \square 2x \square 7 \square x \square \square 2$$

113. 
$$\frac{x \Box 1}{x \Box 1} \Box \frac{3x}{3x \Box 6} \Box \frac{3x}{3\Box x \Box 2} \Box \frac{x}{x \Box 2} \Box \Box x \Box 1 \Box \Box x \Box 2 \Box \Box x \Box 1 \Box \Box x^2 \Box x \Box 2 \Box x^2 \Box x \Box 2 \Box 0$$
. Since

last equation is never true, there is no real solution to the original equation.

**115.** 
$$x^2 \Box 144 \Box x \Box \Box 12$$

**116.** 
$$4x^2 \Box 49 \Box x^2 \Box \frac{49}{4} \Box x \Box \frac{7}{2}$$

**117.** 
$$x^3 \square 27 \square 0 \square x^3 \square 27 \square x \square 3$$
.

**118.** 
$$6x^4 \square 15 \square 0 \square 6x^4 \square \square 15 \square x^4 \square \square_2$$
 Since  $x^4 \square x^4 \square x^5 \square x^4 \square x^5 \square x^5$  Since  $x^4 \square x^4 \square x^5 \square x^5$ 

**119.** 
$$\Box x \Box 1 \Box^3 \Box \Box 64 \Box x \Box 1 \Box \Box 4 \Box x \Box \Box 1 \Box 4 \Box \Box 5.$$

**121.** 
$$\begin{bmatrix} \frac{1}{3} \overline{x} & \square & \square & 3 & \square & x & \square & \square & 3 & \square^3 & \square & \square & 27. \end{bmatrix}$$

**122.** 
$$x_{\square}^{2\square 3} \square 4 \square 0 \square \square 4 \square x^{1\square 3} \square 2 \square x \square 0 8.$$

**123.** 
$$4x^{3\Box 4} \Box 500 \Box 0 \Box 4x^{3\Box 4} \Box 500 \Box x^{3\Box 4} \Box 125 \Box x \Box 125^{4\Box 3} \Box 5^4 \Box 625$$
.

**124.** 
$$\Box x \Box 2\Box^{1\Box 5} \Box 2 \Box x \Box 2 \Box 2^5 \Box 32 \Box x \Box 2 \Box 32 \Box 34$$
.

**125.** 
$$A \square \frac{x \square y}{2} \square 2A \square x \square y \square x \square 2A \square y$$
.

**126.** 
$$V \square xy \square yz \square xz \square V \square y \square x \square z \square xz \square V \square xz \square y \square x \square z \square y \qquad \frac{V \square xz}{x \square z}$$
.

1 1 1 1 1 1 1 1 TT 127. Multiply through by 
$$t$$
:  $J \Box \frac{1}{t} \Box \frac{1}{2t} \Box \frac{1}{3t} \Box t J \Box 1 \Box \frac{1}{2} \Box \frac{1}{3} \Box \frac{1}{6} \Box t \Box \frac{1}{6J}$ ,  $J \Box 0$ .

$$q_1q_2$$
  $q_1q_2$   $q_1q_2$   $q_1q_2$ 

55 CHAPTER P Prerequisites CHAPTER P Review 55

**129.** Let x be the number of pounds of raisins. Then the number of pounds of nuts is  $50 \square x$ .

|                       | Raisins | Nuts          | Mixture |
|-----------------------|---------|---------------|---------|
| Pounds                | х       | 50 □ <i>x</i> | 50      |
| Rate (cost per pound) | 3□20    | 2□40          | 2□72    |

So  $3 \square 20x \square 2 \square 40 \square 50 \square x \square \square 2 \square 72 \square 50 \square \square 3 \square 20x \square 120 \square 2 \square 40x \square 136 \square 0 \square 8x \square 16 \square x \square 20$ . Thus the mixture uses

20 pounds of raisins and 50  $\square$  20  $\square$  30 pounds of nuts.

51 CHAPTER P Prerequisites CHAPTER P Test 51

**130.** Let *t* be the number of hours that Anthony drives. Then Helen drives for  $t ext{ } ext{ }$ 

|         | Rate | Time                                  | Distance |
|---------|------|---------------------------------------|----------|
| Anthony | 45   | $t \stackrel{t}{\Box}_{\overline{A}}$ | 40 45t 7 |
| Helen   | 40   | Ī                                     | _ 1 _    |

When they pass each other, they will have traveled a total of 160 miles. So  $45t \square 40$   $t \square \frac{1}{4}$   $\square 160 \square 45t \square 40t \square 10 \square 160$   $\square 85t \square 170 \square t \square 2$ . Since Anthony leaves at 2:00 P.M. and travels for 2 hours, they pass each other at 4:00 P.M.

131. Let x be the amount invested in the account earning  $1 \square 5\%$  interest. Then the amount invested in the account earning  $2 \square 5\%$  is

 $7000 \square x$ .

|                 | 1□5% Account | 2□5% Account    | Total  |  |
|-----------------|--------------|-----------------|--------|--|
| Amount invested | x            | 7000 □ <i>x</i> | 7000   |  |
| Interest earned | $0\Box 015x$ | 0□025 □7000 □   | 120□25 |  |

From the table, we see that  $0 \square 015x \square 0 \square 025 \square 7000 \square x \square \square 120 \square 25 \square 0 \square 015x \square 175 \square 0 \square 025x \square 120 \square 25 \square 54 \square 75 \square 0 \square 01x \square$ 

 $x \square 5475$ . Thus, Luc invested \$5475 in the account earning  $1 \square 5\%$  interest and \$1525 in the account earning  $2 \square 5\%$  interest.

**132.** The amount of interest Shania is currently earning is  $6000 \square 0 \square 03 \square \square \$180$ . If she wishes to earn a total of \$300, she must earn another \$120 in interest at a rate of  $1 \square 25\%$  per year. If the additional amount invested is x, we have the equation

 $0 \square 0125x \square 120 \square x \square 9600$ . Thus, Shania must invest an additional \$9600 at  $1 \square 25\%$  simple interest to earn a total of \$300 interest per year.

133. Let t be the time it would take Abbie to paint a living room if she works alone. It would take Beth 2t hours to paint the living room alone, and it would take 3t hours for Cathie to paint the living room. Thus Abbie does  $\frac{1}{t}$  of the job per hour,

Beth does  $\frac{1}{2t}$  of the job per hour, and Cathie does  $\frac{1}{3t}$  of the job per hour. So  $\frac{1}{t} \Box \frac{1}{2t} \Box \frac{1}{3t} \Box 1 \Box 6 \Box 3 \Box 2 \Box 6t \Box$ 

 $6t \square 11 \square t \square \frac{11}{6}$ . So it would Abbie 1 hour 50 minutes to paint the living room alone.

**134.** Let □ be width of the pool. Then the length of the pool is 2□, and its volume is 8 □□□□2□□□ 8464 □ 16□²□ 8464 □□□²□ 529□□□□23. Since□□0, we reject the negative value. The pool is 23 feet wide, 2□23□□ 46 feet long, and 8 feet deep.

### CHAPTER P TEST

- **1.** (a) The cost is  $C \square 9 \square 1 \square 5x$ .
  - **(b)** There are four extra toppings, so  $x \square 4$  and  $C \square 9 \square 1 \square 5 \square 4 \square \square $15$ .
- **2.** (a) 5 is rational. It is an integer, and more precisely, a natural number.
  - **(b)**  $\overline{5}$  is irrational.
  - (c)  $\Box \frac{9}{3} \Box \Box 3$  is rational, and it is an integer.
  - (d)  $\Box 1,000,000$  is rational, and it is an integer.
- **3.** (a) *A* □ *B* □ □0□1□5□
  - **(b)**  $A \square B \square \square 2\square 0\square \square 1\square 3\square 5\square 7$

**4.** (a)



**(b)** 



 $[\Box 4\Box 2\Box \Box [0\Box 3] \Box [\Box 4\Box 3]$ 

**(c)** □□4 □ 2□ □ □□6□ [0□ 2□

□ 6

- **5.** (a)  $\Box 2^6 \Box \Box 64$
- **(b)**  $\Box \exists 2 \Box^6 \Box 64$  **(c)**  $2^{\Box 6} \Box \frac{1}{2^6} \Box \frac{1}{64}$  **(d)**  $\frac{7^{10}}{7^{12}} \Box 7^{\Box 2} \Box \frac{1}{49}$

(e) 
$$\frac{3}{2}$$
  $\frac{2}{3}$   $\frac{4}{9}$ 

(f) 
$$=\frac{\sqrt{32}}{16} \square \frac{2}{4} \square \frac{1}{2}$$

(g) 
$$^4\frac{3^8}{2^{16}} \Box \frac{3^2}{2^4} \Box \frac{9}{16}$$

**6.** (a)  $186,000,000,000 \square 1 \square 86 \square 10^{11}$ 

**(b)**  $0 \square 0000003965 \square 3 \square 965 \square 10 \square$ 

7. (a)  $\frac{a^3b^2}{ab^3} \Box \frac{a^2}{b}$ 

$$(\mathbf{b}) \begin{bmatrix} 2x^3 \\ 2x^3 \end{bmatrix} \qquad \qquad \Box \frac{y^4}{4x^6}$$

(e) 
$$\Box \frac{1}{18x^3y^4} \Box \Box \frac{9 \Box 2 \Box x^2 \Box x \Box}{\Box y^2} \Box 3xy^2 \Box 2x \Box$$

(f) 
$$\frac{2x^2y}{x^{3}y^{1}} = \frac{2^{2}x^2}{y^{2}} = \frac$$

**8.** (a)  $3 \square x \square 6 \square \square 4 \square 2x \square 5 \square \square 3x \square 18 \square 8x \square 20 \square 11x \square 2$ 

**(b)** 
$$\Box x \Box 3 \Box \Box 4x \Box 5 \Box \Box 4x^2 \Box 5x \Box 12x \Box 15 \Box 4x^2 \Box 7x \Box 15$$

(a) 
$$3 \square x \square 6 \square \square 4 \square 2x \square 5 \square \square 3x \square 18 \square 8x \square 20 \square 11x \square 2$$
  
(b)  $\square x \square 3 \square \square 4x \square 5 \square \square 4x^2 \square 5x \square 12x \square 15 \square 4x^2 \square 7x \square 15$   
(c)  $\square a \square b \square a \square b \square a \square b \square a \square b$ 

- (d)  $\Box 2x \Box 3\Box^2 \Box \Box 2x\Box^2 \Box 2\Box 2x\Box \Box 3\Box \Box \Box 3\Box^2 \Box 4x^2 \Box 12x \Box 9$
- (e)  $\Box x \Box 2\Box^3 \Box \Box x\Box^3 \Box 3\Box x\Box^2 \Box 2\Box \Box 3\Box x\Box 2\Box^2 \Box \Box 2\Box^3 \Box x^3 \Box 6x^2 \Box 12x \Box 8$ (f)  $x^2 \Box x \Box 3\Box \Box x \Box 3\Box \Box x^2 \Box x^2 \Box 9 \Box x^4 \Box 9x^2$

**9.** (a)  $4x^2 \square 25 \square \square 2x \square 5 \square \square 2x \square 5 \square$ 

- **(b)**  $2x^2 \square 5x \square 12 \square \square 2x \square 3\square \square x \square 4\square$
- (c)  $x^3 \square 3x^2 \square 4x \square 12 \square x^2 \square x \square 3 \square \square 4 \square x \square 3 \square \square x \square 3 \square x^2 \square 4 \square \square x \square 3 \square \square x \square 2 \square \square x \square 2 \square x \square 2 \square x \square 2 \square x \square 3 \square x \square 4 \square x \square 3 \square x \square 4 \square x \square 3 \square x \square 4 \square x 14 \square x \square 4 \square x 14 \square$
- (d)  $x^4 \square 27x \square x \square x^3 \square 27 \square x \square x \square 3 \square x^2 \square 3x \square 9$
- (e)  $\Box 2x \Box y \Box^2 \Box 10 \Box 2x \Box y \Box \Box 25 \Box \Box 2x \Box y \Box^2 \Box 2 \Box 5 \Box \Box 2x \Box y \Box 5^2 \Box \Box 2x \Box y \Box 5 \Box^2$
- (f)  $x^3y \Box 4xy \Box xy x^2 \Box 4 \Box xy \Box x \Box 2 \Box x \Box 2 \Box$
- 10. (a)  $\frac{x^2 \square 3x \square 2}{x^2 \square x \square 2} \square \frac{\square x \square 1 \square \square x \square}{\square x \square 1 \square \square x \square} \frac{x \square 2}{z \square} \frac{x \square 2}{x \square 2}$

(b) 
$$\frac{2x^2 \square x \square 1}{x^2 \square 9}$$
  $\frac{x \square 3}{2x \square 1}$   $\frac{\square 2x \square 1 \square \square x \square}{\square x \square 3 \square \square x \square}$   $\frac{x \square 3}{2x \square 1}$   $\frac{x \square 1}{x \square 3}$ 

(c) 
$$\frac{x^2}{x^2 \cup 4} \cup \frac{x \cup 1}{x \cup 2} \cup \frac{x^2}{x \cup 2} \cup \frac{x \cup 1}{x \cup 2} \cup \frac{x \cup 1}{x \cup 2} \cup \frac{x^2}{x \cup 2} \cup \frac{x^2}{x \cup 2} \cup \frac{x \cup 1}{x \cup 2} \cup \frac{x \cup 2}{x \cup$$

(d) 
$$\frac{y}{x} \Box \frac{x}{y} \Box \frac{x}{y} \Box \frac{x}{y} \Box \frac{x}{y} \Box \frac{x}{y} \Box \frac{y^2 \Box x^2}{x \Box} \Box \frac{y \Box x \Box y \Box}{x \Box} \Box \frac{y \Box y \Box}{x \Box} \Box y \Box x \Box$$

(b) 
$$\begin{bmatrix} \frac{1}{10} \\ 5 & 2 \end{bmatrix} = \begin{bmatrix} \frac{1}{10} \\ 5 &$$

(c) 
$$\frac{1}{1} = \frac{1}{1} = \frac{1}{1} = \frac{x}{1} = \frac{1}{x}$$

$$1 = x \quad 1 = x \quad 1 = x \quad 1 = x$$

**12.** (a) 
$$4x \Box 3 \Box 2x \Box 7 \Box 4x \Box 2x \Box 7 \Box \Box 3\Box \Box 2x \Box 10 \Box x \Box 5$$
.  
(b)  $8x^3 \Box \Box 125 \Box ^{\begin{bmatrix} 1 \\ 3 \end{bmatrix}} \overline{8x^3} \Box ^{\begin{bmatrix} 1 \\ 3 \end{bmatrix}} \underline{125} \Box 2x \Box \Box 5 \Box x ^{5}$ .

(c) 
$$x^{2\square 3} \square 64 \square 0 \square x^{2\square 3} \square 64 \square 0 \square x^{2\square 3} \square 64 \square 3 \square 2 \square 64^{3\square 2} \square x \square 8^3 \square 512.$$

(d) 
$$\frac{x}{2x \Box 5} \Box \frac{x \Box 3}{2x \Box 1} \Box x \Box 2x \Box 1 \Box \Box x \Box 3 \Box 2x \Box 5 \Box \Box 2x^2 \Box x \Box 2x^2 \Box 5x \Box 6x \Box 15 \Box \Box x \Box x \Box 15 \Box 2x \Box \Box x \Box \frac{15}{2}$$

13. 
$$E \square mc^2 \square \frac{E}{m} \square c^2 \square c \square \frac{\square}{m}$$
. (We take the positive root because  $c$  represents the speed of light, which is positive.)

**14.** Let *d* be the distance in km, between Bedingfield and Portsmouth.

| Direction                | Distance | Rate | Time     |
|--------------------------|----------|------|----------|
| Bedingfield □ Portsmouth | d        | 100  | d<br>100 |
| Portsmouth ☐ Bedingfield | d        | 75   | d<br>75  |

| distance |
|----------|
|----------|

to fill in the time column of the table. We are given that the sum of the times is  $3\Box 5$ 

Thus we get the equation  $\frac{d}{100} \square \frac{d}{75} \square 3\square 5 \square 300 \stackrel{d}{100} \square \frac{d}{75} \square 300 \square 3\square 5\square \square 3d \square 4d \square 1050 \square d \stackrel{1050}{7} \square 150 \text{ km}.$ 

## FOCUS ON MODELING Making the Best Decisions

|       |            |                                                            | cost o   | □<br>f           |                     | ntenance         |          | number                   |                 | copy          |         | number        |                  |
|-------|------------|------------------------------------------------------------|----------|------------------|---------------------|------------------|----------|--------------------------|-----------------|---------------|---------|---------------|------------------|
| 1. (a | ı)         | The total cost is $\Box$                                   | copie    |                  |                     | cost             |          | of months                |                 | cost          |         | of months     | ☐. Each month    |
|       |            | the copy cost is 800                                       | 00 🗆 0   | □03 □ 2          | 240. Thι<br>□ □     | us we get        | $C_1$    | 5800 □ 25 <i>n</i>       | n □ 240n        | □ 580         | 00 🗆 20 | 65 <i>n</i> . |                  |
|       |            |                                                            |          | rental           | 1                   | number           |          | copy                     | nur             | nber          |         |               |                  |
| (l    | ))         | In this case the cost                                      | t is 🗆   | cost             | of                  | f months         |          | cost                     | of m            | onths         | □. Ea   | ach month t   | he copy cost is  |
|       |            | 8000 □ 0□06 □ 48                                           | 30. Thu  | s we ge          | et C <sub>2</sub> □ | 95 <i>n</i> □ 48 |          | 575n.                    | D4-1            | 7             |         |               |                  |
| (0    | :)         |                                                            |          |                  |                     | Years            | n        | Purchase                 | Rental          |               |         |               |                  |
|       |            |                                                            |          |                  |                     | 1 2              | 12<br>24 | 8,980<br>12,160          | 6,900<br>13,800 |               |         |               |                  |
|       |            |                                                            |          |                  |                     | 3                | 36       | 15,340                   | 20,700          |               |         |               |                  |
|       |            |                                                            |          |                  |                     | 4                | 48       | 18,520                   | 27,600          |               |         |               |                  |
|       |            |                                                            |          |                  |                     | 5                | 60       | 21,700                   | 34,500          |               |         |               |                  |
|       |            |                                                            |          |                  |                     | 6                | 72       | 24,880                   | 41,400          |               |         |               |                  |
|       | ) ]        | The cost is the same                                       | 3 🗆 🗆    | daily cost daily |                     | cost pe          | r        | number                   |                 |               |         | n □ 18□7      |                  |
| a     |            | The cost of Plan 2 i  When $x \square 400$ , Plan          |          | cost             |                     | □ 90 □ 2         |          | (5 and Plan <sup>c</sup> | 2 costs \$2     | 970 sa        | . Plan  | l is cheaner  | When r □         |
| (*    |            | 800, Plan 1 costs 19                                       |          |                  |                     |                  |          |                          |                 |               |         |               | . When x         |
| (0    |            | The cost is the sam businessman drives                     |          |                  | 0□15 <i>x</i>       | □ 270 □          | □ 0□1    | 5 □ 75 <i>x</i> □        | <i>x</i> □ 500  | . So b        | oth pla | ans cost \$27 | 0 when the       |
|       |            |                                                            | setup    |                  | cost p              | oer              | numb     | □<br>per                 |                 |               |         |               |                  |
| 3. (a | 1)         | The total cost is $\Box$                                   | cost     |                  | tire                |                  | of tir   | □. So C                  | C □ 8000        | □ 22 <i>x</i> | τ.      |               |                  |
| ()    | <b>b</b> ) | The revenue is $\Box$                                      | price pe | er 🗆 🗆           |                     | ∟. Տա            | o R □    | 49 <i>x</i> .            |                 |               |         |               |                  |
|       | l)         | Profit ☐ Revenue ☐ Break even is when 297 tires to break e | profit   |                  |                     |                  |          |                          |                 |               |         | o they need   | to sell at least |

| 4. (a)       | Option 1: In this option the width is constant at 100. Let $x$ be the increase in length. Then the additional area is                                                                                                               |                 |                                                |                                                                                                                       |                                       |  |  |  |
|--------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------|------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|---------------------------------------|--|--|--|
|              | width $\Box$ increase $\Box$ $\Box$ 100x. The cost is the sum of the costs of moving the old fence, and of installing the                                                                                                           |                 |                                                |                                                                                                                       |                                       |  |  |  |
|              | in length                                                                                                                                                                                                                           | - <u> </u> 100x | . The cost is the sum of the cos               | as of moving the old fence, and                                                                                       | of mistaring the                      |  |  |  |
|              | new one. The cost of 1                                                                                                                                                                                                              | moving is \$    | 6 □ 100 □ \$600 and the cost of                | f installation is $2 \square 10 \square x \square 20$                                                                 | 0x, so the total cost is              |  |  |  |
|              |                                                                                                                                                                                                                                     |                 |                                                | $C \square 600 \square x \square \frac{C \square 600}{20}$ . Su                                                       |                                       |  |  |  |
|              |                                                                                                                                                                                                                                     |                 | o get o = 20x = 000 = 20x =                    | 20                                                                                                                    |                                       |  |  |  |
|              | we have $A_1 \square 100 = \frac{C \square 600}{20} = 5 \square C \square 600 \square 5C \square 3,000.$                                                                                                                            |                 |                                                |                                                                                                                       |                                       |  |  |  |
|              |                                                                                                                                                                                                                                     |                 |                                                |                                                                                                                       |                                       |  |  |  |
|              | Option 2: In this option the length is constant at 180. Let $y$ be the increase in the width. Then the additional area is                                                                                                           |                 |                                                |                                                                                                                       |                                       |  |  |  |
|              | length $\Box$ increase $\Box$ $\Box$ 180y. The cost of moving the old fence is $\Box$ 180 $\Box$ \$1080 and the cost of installing the new                                                                                          |                 |                                                |                                                                                                                       |                                       |  |  |  |
|              | in width                                                                                                                                                                                                                            |                 | -                                              |                                                                                                                       | -                                     |  |  |  |
|              | one is $2 \square 10 \square y \square 20$                                                                                                                                                                                          | 0x, so the to   | otal cost is $C \square 20y \square 1080$ . So | lving for $y_{\square}$ we get $C \square 20y \square 1$                                                              | 080 □ 20 <i>y</i> □ <i>C</i> □ 1080   |  |  |  |
|              | $\Box y \Box \frac{C \Box 1080}{20}$ . Su                                                                                                                                                                                           | bstituting in   | n the area we have $A_2 \square 180$           | Iving for $y$ we get $C \square 20y \square 1$ $\frac{C \square 1080}{20} \square 9 \square C \square 1080 \square 1$ | $\square$ 9 <i>C</i> $\square$ 9,720. |  |  |  |
| <b>(b)</b>   | 20                                                                                                                                                                                                                                  | C               | -                                              | 20                                                                                                                    |                                       |  |  |  |
| (0)          |                                                                                                                                                                                                                                     | Cost, C         | Area gain $A_1$ from Option 1                  | Area gain $A_2$ from Option 2                                                                                         |                                       |  |  |  |
|              |                                                                                                                                                                                                                                     | \$1100          | 2,500 ft <sup>2</sup>                          | 180 ft <sup>2</sup>                                                                                                   |                                       |  |  |  |
|              |                                                                                                                                                                                                                                     | \$1200          | $3,000 \text{ ft}^2$                           | 1,080 ft <sup>2</sup>                                                                                                 |                                       |  |  |  |
|              |                                                                                                                                                                                                                                     | \$1500          | $4,500 \text{ ft}^2$                           | $3,780 \text{ ft}^2$                                                                                                  |                                       |  |  |  |
|              |                                                                                                                                                                                                                                     | \$2000          | $7,000 \text{ ft}^2$                           | 8,280 ft <sup>2</sup>                                                                                                 |                                       |  |  |  |
|              |                                                                                                                                                                                                                                     | \$2500          | 9,500 ft <sup>2</sup>                          | 12,780 ft <sup>2</sup>                                                                                                |                                       |  |  |  |
|              |                                                                                                                                                                                                                                     | \$3000          | 12,000 ft <sup>2</sup>                         | 17,280 ft <sup>2</sup>                                                                                                |                                       |  |  |  |
| (c)          | If the farmer has only                                                                                                                                                                                                              | \$1200. Opti    | on 1 gives him the greatest gain               | . If the farmer has only \$2000, 0                                                                                    | Option 2 gives him the                |  |  |  |
| (-)          | greatest gain.                                                                                                                                                                                                                      | ·, - <b>-</b>   | 6 6 8                                          | , ,, ,, ,, ,, ,, ,, ,                                                                                                 | . L                                   |  |  |  |
| 5. (a)       | a) Design 1 is a square and the perimeter of a square is four times the length of a side. $24 \square 4x$ , so each side is $x \square 6$ feet                                                                                      |                 |                                                |                                                                                                                       |                                       |  |  |  |
|              | long. Thus the area is $6^2 \square 36 \text{ ft}^2$ .                                                                                                                                                                              |                 |                                                |                                                                                                                       |                                       |  |  |  |
|              | Design 2 is a circle with perimeter $2 \square r$ and area $\square r^2$ . Thus we must solve $2 \square r \square 24 \square r \square \frac{12}{\square}$ . Thus, the area is                                                     |                 |                                                |                                                                                                                       |                                       |  |  |  |
|              | $\Box$ 12 $\Box$ 2 144                                                                                                                                                                                                              |                 |                                                |                                                                                                                       |                                       |  |  |  |
|              | $\Box$ $\frac{12}{\Box}$ $\Box$ $\Box$ $\frac{144}{\Box}$ $\Box$ 45 $\Box$ 8 ft <sup>2</sup> . Design 2 gives the largest area.                                                                                                     |                 |                                                |                                                                                                                       |                                       |  |  |  |
| <b>(L)</b>   |                                                                                                                                                                                                                                     |                 |                                                |                                                                                                                       |                                       |  |  |  |
| ( <b>b</b> ) | 1) In Design 1, the cost is \$3 times the perimeter $p$ , so $120 \square 3p$ and the perimeter is 40 feet. By part (a), each side is then $\frac{40}{4} \square 10$ feet long. So the area is $10^2 \square 100$ ft <sup>2</sup> . |                 |                                                |                                                                                                                       |                                       |  |  |  |
|              | $\frac{4}{4}$ $\Box$ 10 feet long. So the area is 10 <sup>2</sup> $\Box$ 100 ft <sup>2</sup> .                                                                                                                                      |                 |                                                |                                                                                                                       |                                       |  |  |  |
|              | In Design 2, the cost is \$4 times the perimeter $p$ . Because the perimeter is $2 \Box r$ , we get $120 \Box 4 \Box 2 \Box r \Box$ so                                                                                              |                 |                                                |                                                                                                                       |                                       |  |  |  |
|              | 120 15                                                                                                                                                                                                                              | 2               | $^{\sqcup}15^{\;\sqcup_2}$ 225 $_2$            |                                                                                                                       |                                       |  |  |  |
|              | $r \square \overline{8\square} \square \overline{\square}$ . The a                                                                                                                                                                  | rea is $\Box r$ | □ □ <del>□</del> □ 71□6 ft                     | . Design 1 gives the largest are                                                                                      | a.                                    |  |  |  |
|              |                                                                                                                                                                                                                                     |                 |                                                |                                                                                                                       |                                       |  |  |  |
| 6. (a)       | (a) Plan 1: Tomatoes every year. Profit $\square$ acres $\square$ $\square$ Revenue $\square$ cost $\square$ 100 $\square$ 1600 $\square$ 300 $\square$ 130,000. Then for $n$ year                                                  |                 |                                                |                                                                                                                       |                                       |  |  |  |
| <i>a</i> >   | the profit is $P_1 \square 130$ ,                                                                                                                                                                                                   |                 | TTI C' C                                       | · B C                                                                                                                 |                                       |  |  |  |
| ( <b>b</b> ) |                                                                                                                                                                                                                                     | lowed by to     | omatoes. The profit for two y $\Box\Box$       | ears is Profit \( \) acres \( \)                                                                                      |                                       |  |  |  |
|              | soybean                                                                                                                                                                                                                             | tomato          |                                                |                                                                                                                       |                                       |  |  |  |
|              | avenue                                                                                                                                                                                                                              |                 | □□ □ 100 □1200 □ 1600□ □                       | 280,000. Remember that no fe                                                                                          | ertilizer is                          |  |  |  |
|              | revenue revenue                                                                                                                                                                                                                     |                 |                                                |                                                                                                                       |                                       |  |  |  |
|              | needed in this plan. Th                                                                                                                                                                                                             | nen for 2k y    | ears, the profit is $P_2 \square 280,000$      | k.                                                                                                                    |                                       |  |  |  |
| (c)          | When $n \Box 10$ , $P_1 \Box 130,000 \Box 10 \Box \Box 1,300,000$ . Since $2k \Box 10$ when $k \Box 5$ , $P_2 \Box 280,000 \Box 5 \Box \Box 1,400,000$ . So Plan                                                                    |                 |                                                |                                                                                                                       |                                       |  |  |  |

В

is more profitable.

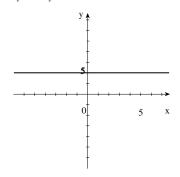
7. (a)

| Data (GB)  | Plan A                                                                 | Plan B                                                         | Plan C                                                           |
|------------|------------------------------------------------------------------------|----------------------------------------------------------------|------------------------------------------------------------------|
| 1          | \$25                                                                   | \$40                                                           | \$60                                                             |
| 1 🗆        | $25 \square 5 \square 2 \square 00 \square \square$                    | 40 □ 5 □1□50□ □                                                | $60 \square 5 \square 1 \square 00 \square \square$              |
| 2          | 25 \( \begin{array}{c} 10  2  00                                       | $40 \square 10 \square 1 \square 50 \square \square \$55$      | 60 \[ \] 10 \[ \] 1 \[ \] 00 \[ \]                               |
| $2\square$ | 25 \[ \] 15 \[ \] 2 \[ \] 00 \[ \]                                     | 40 □ 15 □1□50□ □                                               | ¢70<br>60 □ 15 □1□00□ □                                          |
| 3          | °55<br>25 □ 20 □2 □00 □                                                | \$62\\\\ 40 \\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\                    | <sup>€75</sup><br>60 □ 20 □1□00□ □                               |
| 3□         | <sup>965</sup><br>25 □ 25 □2□00□ □                                     | 40 🗆 25 🗆 1 🗆 50 🗆 🗆 \$77 🗆 50                                 | ¢s∩<br>60 □ 25 □1□00□ □                                          |
| 4          | ©75<br>25 \( \text{30} \( \text{12} \) \( \text{000} \) \( \text{1} \) | 40 \( \text{30} \( \text{1} \) \( \text{150} \) \( \text{1} \) | 60 \( \text{30} \) \( \text{1} \) \( \text{00} \) \( \text{1} \) |

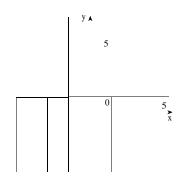
|              |                                                                                                                                                                                                                                | 3          | $25 \square 20 \square 2 \square 00 \square \square$ | 40 🗆 20 🗆 1 🗆 50 🗆 🗆 \$70          | 60 □ 20 □1 □00 □ □                                                               |              |  |  |
|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|------------------------------------------------------|------------------------------------|----------------------------------------------------------------------------------|--------------|--|--|
|              |                                                                                                                                                                                                                                | 3□         | \$65<br>25 \[ \] 25 \[ \] 2 \[ \] 00 \[ \] \[ \]     | 40 □ 25 □1□50□ □ \$77□50           | 60 \[ 25 \] 1 \[ 00 \] \                                                         |              |  |  |
|              |                                                                                                                                                                                                                                | 4          | \$75<br>25 □ 30 □2□00□ □                             | 40 □ 30 □ 1 □ 50 □ □               | 60 \( \text{30} \) \( \text{30} \) \( \text{1} \) \( \text{00} \) \( \text{1} \) |              |  |  |
| <b>(b)</b>   | (b) For Plan A: $C_{\mathbf{A}} \square 25 \square 2 \square 10x \square 10\square \square 20x \square 5$ . For Plan B: $C_{\mathbf{B}} \square 40 \square 1 \square 5 \square 10x \square 10\square \square 15x \square 25$ . |            |                                                      |                                    |                                                                                  |              |  |  |
|              | For Plan C: CC                                                                                                                                                                                                                 | □ 60 □ 1   | $\Box 10x \Box 10\Box \Box 10x \Box 50$              | O. Note that these equations are v | valid only for $x \square 1$ .                                                   |              |  |  |
| (c)          | If Gwendolyn u                                                                                                                                                                                                                 | ises 2□2 C | GB, Plan A costs 25 □ 12                             | □2□ □ \$49, Plan B costs 40 □      | 12 □ 1 □ 5 □ □ \$58, and I                                                       | Plan C costs |  |  |
|              | 60 🗆 12 🗆 1 🗆 🗆                                                                                                                                                                                                                | \$72.      |                                                      |                                    |                                                                                  |              |  |  |
|              | If she uses 3 □ 7 GB, Plan A costs 25 □ 27 □ 2 □ □ \$79, Plan B costs 40 □ 27 □ 1 □ 5 □ □ \$80 □ 50, and Plan C costs                                                                                                          |            |                                                      |                                    |                                                                                  |              |  |  |
|              | $60 \square 27 \square 1 \square \square \$87.$                                                                                                                                                                                |            |                                                      |                                    |                                                                                  |              |  |  |
|              | If she uses 4□9 GB, Plan A costs 25 □ 39 □2□ □ \$103, Plan B costs 40 □ 39 □1□5□ □ \$98□50, and Plan C costs                                                                                                                   |            |                                                      |                                    |                                                                                  |              |  |  |
|              | $60 \square 39 \square 1 \square \square \$99.$                                                                                                                                                                                |            |                                                      |                                    |                                                                                  |              |  |  |
| ( <b>d</b> ) | (d) (i) We set $C_A \square C_B \square 20x \square 5 \square 15x \square 25 \square 5x \square 20 \square x \square 4$ . Plans A and B cost the same when 4 GB are used.                                                      |            |                                                      |                                    |                                                                                  |              |  |  |
|              | (ii) We set $C_A \square C_C \square 20x \square 5 \square 10x \square 50 \square 10x \square 45 \square x \square 4\square 5$ . Plans A and C cost the same when $4\square 5$ GB are                                          |            |                                                      |                                    |                                                                                  |              |  |  |
|              | used.                                                                                                                                                                                                                          |            |                                                      |                                    |                                                                                  |              |  |  |
|              | (iii) We set $C_B \square C_C \square 15x \square 25 \square 10x \square 50 \square 5x \square 25 \square x \square 5$ . Plans B and C cost the same when 5 GB are                                                             |            |                                                      |                                    |                                                                                  |              |  |  |
|              | used.                                                                                                                                                                                                                          |            |                                                      |                                    |                                                                                  |              |  |  |
| 8. (a)       | a) In this plan, Company A gets \$3 □ 2 million and Company B gets \$3 □ 2 million. Company A's investment is \$1 □ 4                                                                                                          |            |                                                      |                                    |                                                                                  |              |  |  |
|              | million, so they make a profit of $3 \square 2 \square 1 \square 4 \square \$1 \square 8$ million. Company B's investment is $\$2 \square 6$ million, so they make                                                             |            |                                                      |                                    |                                                                                  |              |  |  |
|              | a profit of                                                                                                                                                                                                                    |            |                                                      |                                    |                                                                                  |              |  |  |
|              | $3\square 2\square 2\square 6\square$                                                                                                                                                                                          | \$0□6 mill | ion. So Company A make                               | es three times the profit that Com | pany B does, which is no                                                         | t fair.      |  |  |
| <b>(b)</b>   | <b>(b)</b> The original investment is $1 \square 4 \square 2 \square 6 \square \$4$ million. So after giving the original investment back, they then share the                                                                 |            |                                                      |                                    |                                                                                  |              |  |  |
|              | profit of \$2 $\square$ 4 million. So each gets an additional \$1 $\square$ 2 million. So Company A gets a total of $1\square$ 4 $\square$ $1\square$ 2 $\square$ \$2 $\square$ 6                                              |            |                                                      |                                    |                                                                                  |              |  |  |
|              | million and Company B gets $2 \square 6 \square 1 \square 2 \square \$3 \square 8$ million. So even though Company B invests more, they make the                                                                               |            |                                                      |                                    |                                                                                  |              |  |  |
|              | same profit as C                                                                                                                                                                                                               | Company A  | A, which is not fair.                                |                                    |                                                                                  |              |  |  |
| (c)          | (c) The original investment is \$4 million, so Company A gets $\frac{1\square 4}{4}$ $\square$ $6\square 4$ $\square$ \$2\sum 24 million and Company B gets                                                                    |            |                                                      |                                    |                                                                                  |              |  |  |
|              | $\frac{2}{4}$ $\square$ 6 $\square$ 4 $\square$ \$                                                                                                                                                                             | 4□16 mill  | ion. This seems the faires                           | t.                                 |                                                                                  |              |  |  |

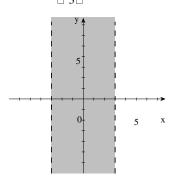
# 1 EQUATIONS AND GRAPHS

### 1.1 THE COORDINATE PLANE

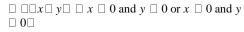

- **2.** If x is positive and y is negative, then the point  $\Box x \Box y \Box$  is in Quadrant IV.
- **3.** The distance between the points  $\Box a \Box b \Box$  and  $\Box c \Box$   $\Box b \Box a \Box b \Box$ . So the distance between  $\Box 1 \Box 2 \Box$  and  $\Box 7 \Box$  d  $\Box$  is

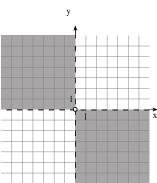
- $\textbf{5.} \ A \ \square 5 \square \ 1 \square, \ B \ \square 1 \square \ 2 \square, \ C \ \square \ \square 2 \square \ 6 \square, \ D \ \square \ 1 \square \ 0 \square \ 2 \square, \ E \ \square \ 4 \square \ \square \ 1 \square, \ F \ \square \ 2 \square \ 0 \square, \ G \ \square \ 1 \square \ \square \ 3 \square, \ H \ \square \ 2 \square \ \square \ 2 \square \$
- **6.** Points A and B lie in Quadrant 1 and points E and G lie in Quadrant 3.


**8**.3 5 00, 02000, 02060 01030, and 002050

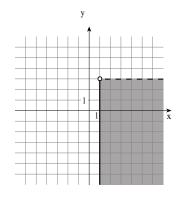

 $9. \square \square x \square y \square \square x \square$ 

**10.**  $\Box\Box x\Box y\Box \Box y\Box 2\Box$ 

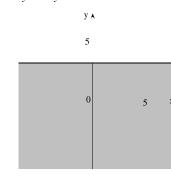





**15.** 
$$\Box\Box x\Box y\Box \Box xy\Box 0\Box$$



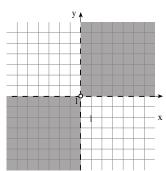



17.  $\Box\Box x \Box y \Box \Box x \Box 1$  and  $y \Box 3 \Box$ 

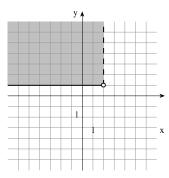


**12.** 
$$\Box\Box x\Box y\Box \Box y\Box 3\Box$$

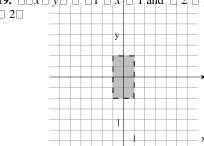



**14.** 
$$\square\square x\square y\square \square 0\square y\square 2\square$$

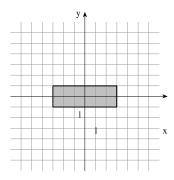


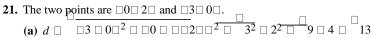



**16.** 
$$\Box\Box x\Box y\Box \Box xy\Box 0\Box$$







**18.**  $\square \square x \square y \square \square x \square 2$  and  $y \square 1 \square$ 

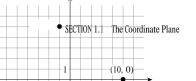


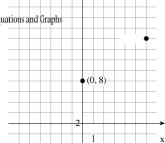





**20.** 
$$\square \square x \square y \square \square \square 3 \square x \square 3$$
 and  $\square 1 \square y \square 1 \square$ 

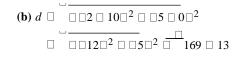






- **(b)** midpoint:  $\frac{3 \square 0}{2} \frac{0 \square 2}{2} \square \square \frac{3}{2} \square \square$

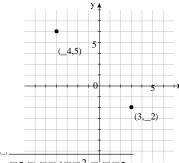
- (b) midpoint:  $\frac{\square 3 \square 5}{2} \quad 3 \square \square 3 \square \square$

(b) midpoint: 
$$\frac{\Box 2 \Box 4}{2} \quad \frac{\Box 3 \Box \Box 1 \Box}{\Box} \quad \Box 1 \Box \Box 2 \Box$$


25. (a) 26. (a) y



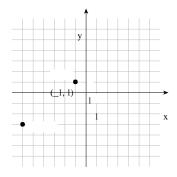



(b) 
$$d \Box \Box 0 \Box 6\Box^2 \Box 0 B \Box 16\Box^2 \Box 100 \Box 10$$

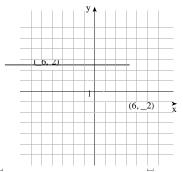
(c) Midpoint: 
$$\frac{0 \square 6}{2} \quad \frac{8 \square 16}{2} \quad \frac{3 \square 3}{12 \square}$$



(c) Midpoint: 
$$\frac{\Box 2 \Box 10}{2} \qquad 5 \Box 0 \qquad \Box \\
 \Box \qquad \boxed{2} \qquad \boxed{2} \qquad \boxed{2} \qquad 4 \Box \boxed{2}$$



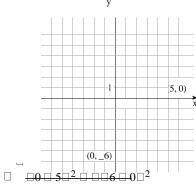




**(b)** 
$$d ext{ } ext$$

(c) Midpoint: 
$$\frac{\Box 4 \Box 3}{2} \stackrel{5 \Box 2}{\Box} \stackrel{\Box}{\Box} \stackrel{1 \ 3}{\overline{2}} \stackrel{\Box}{\Box}$$

#### 28. (a)




29. (a)



(b) 
$$d \square \square 6 \square \square 6 \square \square^2 \square \square 2 \square \square 12^2 \square \square \square 4 \square^2$$

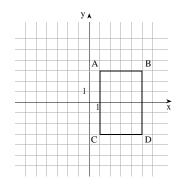
$$\Box \underline{6 \Box 6} \ \underline{\Box 2 \Box 2}^{\Box}$$

**30.** (a)



| 62 | CHAPTER 1 | Equations and | Graphs |
|----|-----------|---------------|--------|
|    |           |               |        |

SECTION 1.1 The Coordinate Plane

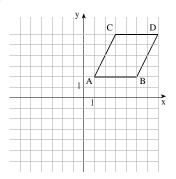

62

2 2 0

2

- 31. d \( A \cap B \cap \) \( \text{01} \cap 5 \cap 2 \cap \) \( \text{03} \cap \) \( \text{0.4} \cap 2 \cap \) \( \text{4.} \)

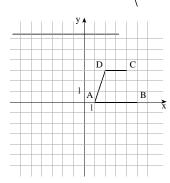
the area is  $4 \square 6 \square 24$ .




Since two sides are parallel to the x-axis, we use the length

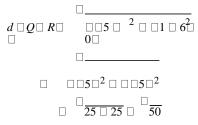
32. The area of a parallelogram is its base times its height.

of one of these as the base. Thus, the base is


height is the change in the y coordinates, thus, the height is  $6 \square 2 \square 4$ . So the area of the parallelogram is base  $\square$  height  $\square 4 \square 4 \square 16$ .

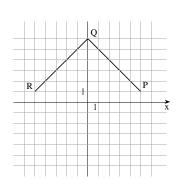


**33.** From the graph, the quadrilateral ABCD has a pair of parallel sides, so ABCD is a trapezoid. The area is  $b_1 \Box b_2 \Box h$ . From the graph we see that


h is the difference in y-coordinates is  $\Box 3 \Box 0 \Box \Box 3$ . Thus

the area of the trapezoid is  $\frac{4 \sqcup 2}{2}$ 




**35.**  $d \square 0 \square A \square \square$ 

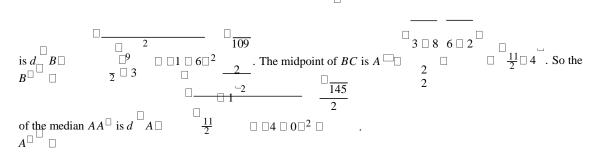
**34.** The point *S* must be located at  $\Box 0 \Box \Box 4 \Box$ . To find the area, we find the length of one side and square it. This gives



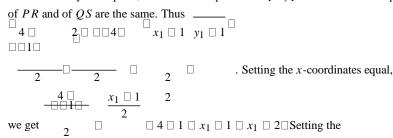
So the area is  $\begin{array}{c|c} \Box & \Box & \Box & \Box \\ \hline 50 & \Box & 50 \end{array}$ 

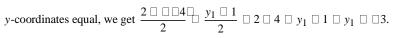
У▲



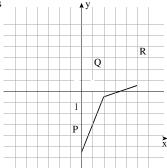



Thus point  $A \square 6 \square 7 \square$  is closer to the origin.


| <b>36.</b>       | $d \square E \square C \square$     |                                                                                                                              | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                          |
|------------------|-------------------------------------|------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  | $d \square E \square D \square$     |                                                                                                                              | $5^2 \square \square \square \square \square^2 \square \square 25 \square 1 \square \square 26.$                                                                                                                                                                |
|                  |                                     | is closer to point $E$ .                                                                                                     |                                                                                                                                                                                                                                                                 |
| <b>37.</b> □     | $d \square P \square R \square$     |                                                                                                                              |                                                                                                                                                                                                                                                                 |
|                  | $d \square Q \square R \square$     | 001 0 00100 <sup>2</sup> 0 001 0                                                                                             | $0 \square \square 4 \square^2 \square \square 16 \square 4. \text{ Thus } \overline{point } Q \square \square 1 \square 3 \square \text{ is closer to point } R.$                                                                                              |
| <b>38.</b><br>is | (a) The dista                       | ance from $\Box 7 \Box 3 \Box$ to the orig                                                                                   | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                            |
|                  |                                     | the origin. from                                                                                                             | $37 \square 0 \square^2 \square 3^2 \square 7^2 \square 9 \square 49 \square 58$ . So the points are the same distance                                                                                                                                          |
|                  | is $\Box$                           |                                                                                                                              | a = a = a = a in $a = a = a$ $a = a$ to the origin is                                                                                                                                                                           |
|                  | $\Box b \ \Box$ (                   | $0 \square^2 \square \square a \square 0 \square^2 \square b^2 \square a$                                                    | $a^2 \Box a^2 \Box b^2$ . So the points are the same distance from the origin.                                                                                                                                                                                  |
| 39.              | Since we do                         | not know which pair are isosc                                                                                                | eles, we find the length of all three sides.                                                                                                                                                                                                                    |
|                  | $d \square A \square B \square$     |                                                                                                                              | eles, we find the length of all three sides. $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                             |
|                  | $d \square C \square B \square$     |                                                                                                                              | $1^2 \square \square 4 \square^2 \square 1 \square 16 \square 17.$                                                                                                                                                                                              |
|                  | $d \square A \square C \square$     |                                                                                                                              | $4^2 \square \square \square \square \square^2 \square \square$                                                                                                         |
| 40.              |                                     |                                                                                                                              | we use this as the base in the formula area $\Box$ $\frac{1}{2}\Box$ base $\Box$ height $\Box$ . The height is base is $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ and the height is $\Box$ |
| 41.              | (a) Here we $d \square A \square B$ | have $A \square \square 2 \square 2 \square$ , $B \square \square 3 \square 3 \square 2 \square^2 \square \square 1 \square$ | $\square$                                                                                                                                                             |
|                  | $d \square C \square I$             | 3                                                                                                                            | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                          |


Since  $[d \square A \square B \square]^2 \square [d \square C \square B \square]^2 \square [d \square A \square C \square]^2$ , we conclude that the triangle is a right triangle.

Since  $[d \square A \square B \square]^2 \square [d \square A \square C \square]^2 \square [d \square B \square C \square]^2$ , we conclude that the triangle is a right triangle. The area is  $\frac{1}{2} \square 41 \square \square 41 \square 2^{41}$ .

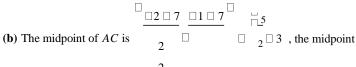



**47.** As indicated by Example 3, we must find a point  $S \square x_1 \square y_1 \square$  such that the midpoints



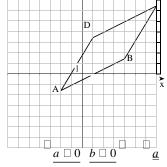


Thus  $S \square \square 2 \square \square 3 \square$ .

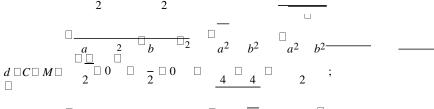


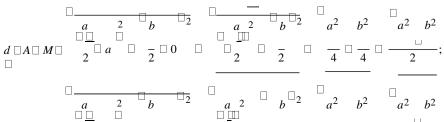

**48.** We solve the equation  $6 \square \frac{2 \square x}{2}$  to find the x coordinate of B. This gives  $6 \square \frac{2 \square x}{2} \square 12 \square 2 \square x \square x \square 10$ . Likewise,

$$8 \ \Box \ \frac{3 \ \Box \ y}{2} \ \Box \ 16 \ \Box \ 3 \ \Box \ y \ \Box \ y \ \Box \ 13. \ \text{Thus, } B \ \Box \ \Box 10 \Box$$


49. (a)







of 
$$BD$$
 is  $\begin{bmatrix} \frac{4}{2} & 1 \\ \frac{2}{2} & 2 \end{bmatrix} \begin{bmatrix} \frac{4}{2} & \frac{1}{2} \end{bmatrix} \begin{bmatrix} \frac{7}{2} & 3 \end{bmatrix}$ .

(c) Since the they have the same midpoint, we conclude that the diagonals bisect each other.



**50.** We have  $M \square$  $_{2}$   $\Box$   $\Box$   $_{2}$   $\Box$  . Thus,



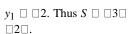


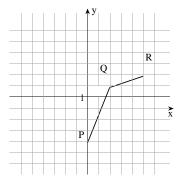
- **51.** (a) The point  $\Box 5\Box 3\Box$  is shifted to  $\Box 5\Box 3\Box 3\Box 2\Box \Box \Box 8\Box 5\Box$ .
  - **(b)** The point  $\Box a \Box b \Box$  is shifted to  $\Box a \Box 3 \Box b \Box 2 \Box$ .
  - (c) Let  $\Box x \Box y \Box$  be the point that is shifted to  $\Box 3 \Box 4 \Box$ . Then  $\Box x \Box 3 \Box y \Box 2 \Box \Box \Box 3 \Box 4 \Box$ . Setting the x-coordinates equal, we get

 $x \square 3 \square 3 \square x \square 0$ . Setting the y-coordinates equal, we get  $y \square 2 \square 4 \square y \square 2 \square S$  of the point is  $\square 0 \square 2 \square$ .

- $4\square$ ; and  $C \square \square 2\square 1\square$ , so  $C^{\square} \square \square 2\square 3\square 1\square 2\square \square \square5\square 3\square$ .
- **52.** (a) The point  $\Box 3\Box 7\Box$  is reflected to the point  $\Box \Box 3\Box 7\Box$ .
  - **(b)** The point  $\Box a \Box b \Box$  is reflected to the point  $\Box \Box a \Box b \Box$ .
  - (c) Since the point  $\Box a \Box b \Box$  is the reflection of  $\Box a \Box b \Box$ , the point  $\Box \Box \Box \Box \Box$  is the reflection of  $\Box \Box \Box \Box \Box$ .
- 53. (a)  $d \square A \square B \square \square 3^2 \square 4^2 \square 25 \square 5$ .
  - (b) We want the distances from  $C \square \square 4 \square 2 \square$  to  $D \square \square 11 \square 26 \square$ . The walking distance is

- (c) The two points are on the same avenue or the same street.
- **54.** (a) The midpoint is at  $\frac{3 \Box 27}{2} \frac{7 \Box 17}{2} \Box \Box 15 \Box 12 \Box$ , which is at the intersection of 15th Street and 12th Avenue.
  - **(b)** They each must walk  $\Box 15$   $\Box$   $3\Box$   $\Box$   $\Box 12$   $\Box$   $7\Box$   $\Box$  12  $\Box$  5  $\Box$  17 blocks.
- **55.** The midpoint of the line segment is  $\Box 66\Box 45\Box$ . The pressure experienced by an ocean diver at a depth of 66 feet is 45 lb/in<sup>2</sup>.


- **56.** We solve the equation  $6 \square \frac{2 \square x}{2}$  to find the x coordinate of B:  $6 \square \frac{2 \square x}{2} \square 12 \square 2 \square x \square x \square 10$ . Likewise, for the y coordinate of *B*, we have  $8 \Box \frac{3 \Box y}{2} \Box 16 \Box 3 \Box y \Box y \Box 13$ . Thus  $B \Box \Box 10 \Box 13 \Box$ .
- **57.** We need to find a point  $S \square x_1 \square y_1 \square$  such that PQRS is a parallelogram. As indicated by Example 3, this will be the case if the diagonals PR and QS bisect each other. So the midpoints of PR and QS are the same. Thus  $0 \ 0 \ 5 \ 0 \ 3 \ 0 \ 3$



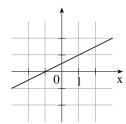

$$\frac{}{2} \Box \frac{}{2} \Box \qquad \Box \qquad \Box \qquad \text{. Setting the $x$-coordinates equal, we get}$$
 
$$0 \Box 5 \qquad x_1 \Box 2 \qquad \qquad 2$$

$$\frac{\phantom{a}}{2} \, \Box \, \frac{\phantom{a}}{2} \, \Box \, 0 \, \Box \, 5 \, \Box \, x_1 \, \Box \, 2 \, \Box \, x_1 \, \Box \, 3.$$

Setting the y-coordinates equal, we get 
$$\frac{\Box 3 \Box 3}{2} \qquad \frac{y_1 \Box 2}{2} \qquad 3 \qquad 3 \qquad y \qquad 2$$






## 1.2 GRAPHS OF EQUATIONS IN TWO VARIABLES: CIRCLES

1. If the point  $\Box 2 \Box 3 \Box$  is on the graph of an equation in x and y, then the equation is satisfied when we replace x by 2 and y by

We check whether  $2 \square 3 \square ^{?} 2 \square _{0} \square ^{?} 3$ . This is false, so the point  $\square 2 \square 3 \square$  is not on the graph of the equation  $\square x \square 1$ .

| $\chi$ | y II          | $\exists x \exists y \exists$           |
|--------|---------------|-----------------------------------------|
| □2     | <u> 1</u>     | 2⊞ ⊟ 1                                  |
| □1     | 0             |                                         |
| 0      | $\frac{1}{2}$ | $\square \square \underline{1} \square$ |
| 1      | 1             | 0 1                                     |
| 2      | 3<br>2        | - <u>-</u> 2                            |

 $\frac{\text{in terms of } x \cdot 2}{\|x\| \|y\|} y \square x \square 1 \square y \square \frac{1}{2} \square x \square 1 \square \square_{2}^{-1} x \square_{2}^{-1}.$ 



- **2.** To find the x-intercept(s) of the graph of an equation we set y equal to 0 in the equation and solve for  $x: 2 \square 0 \square \square x \square 1 \square$  $x \square \square 1$ , so the x-intercept of  $2y \square x \square 1$  is  $\square 1$ .
- 3. To find the y-intercept(s) of the graph of an equation we set x equal to 0 in the equation and solve for y:  $2y \square 0 \square 1 \square$  $y \square \frac{1}{2}$ , so the y-intercept of  $2y \square x \square 1$  is  $\frac{1}{2}$ .
- **4.** The graph of the equation  $\Box x \Box 1 \Box^2 \Box \Box y \Box 2 \Box^2 \Box 9$  is a circle with center  $\Box 1 \Box 2 \Box$  and radius  $\Box$  9  $\Box$  3.
- 5. (a) If a graph is symmetric with respect to the x-axis and  $\Box a \Box b \Box$  is on the graph, then  $\Box a \Box b \Box$  is also on the graph. (b) If a graph is symmetric with respect to the y-axis and  $\Box a \Box b \Box$  is on the graph, then  $\Box \Box a \Box b \Box$  is also on the graph. (c) If a graph is symmetric about the origin and  $\Box a \Box b \Box$  is on the graph, then  $\Box \Box a \Box b \Box$  is also on the graph.
- **6.** (a) The x-intercepts are  $\Box 3$  and 3 and the y-intercepts are  $\Box 1$  and 2.
  - **(b)** The graph is symmetric about the *y*-axis.

| 7. | <b>7.</b> Yes, this is true. If for every point $\Box x \Box y \Box$ on the graph, $\Box \Box x \Box$ | y  and $ x $ $ y $ are also on the graph, then $ x $ $ y $ |
|----|-------------------------------------------------------------------------------------------------------|------------------------------------------------------------|
|    | must be on the graph as well, and so it is symmetric about the or                                     | igin.                                                      |

**8.** No, this is not necessarily the case. For example, the graph of  $y \square x$  is symmetric about the origin, but not about either axis.

| 9.                 | $y \square 3 \square 4x$ . For the point $\square 0 \square 3 \square$ : $\stackrel{?}{3} \square 3 \square 4 \square 0 \square \square 3$ $\square 3$ . Yes. For $\square 4 \square \stackrel{?}{0} \square$ : $0 \square 3 \square 4 \square \stackrel{?}{4} \square \square 0$ $\square 13$ . No. For $\square 1 \square \square 1 \square$ :                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|--------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    | $\Box$ 1 $\overset{?}{\Box}$ 3 $\Box$ 4 $\Box$ 1 $\Box$ $\Box$ 1. Yes.<br>So the points $\Box$ 0 $\Box$ 3 $\Box$ and $\Box$ 1 $\Box$ 1 $\Box$ are on the graph of this equation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Ι0.                | $y = \begin{bmatrix} 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                    | $1 \sqcup 1 \sqcup 0$ . Yes. So the points $\square 3 \square 2 \square$ and $\square 0 \square 1 \square$ are on the graph of this equation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <b>11.</b><br>0. ` | $x \square 2y \square 1 \square 0$ . For the point $\square 0 \square 0 \square : 0 \square 2 \square 0 \square \stackrel{?}{\square} 1 \square 0 \square \stackrel{?}{\square} 1 \square 0$ . No. For $\square 1 \square 0 \square : 1 \square 2 \square \stackrel{?}{0} \square \square 1 \square 0 \square \stackrel{?}{\square} 1 \square 1 \square$ Yes.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                    | For $\Box \Box \Box$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 12.                | $\begin{bmatrix} y & x^2 & 1 & 0 & 1 & 1 & 1 & 1 & 1 & 1 & 1 & 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                    | Yes. For $1 	ext{d} 1 	ext{d} 1 	ext{d} 2 	ext{d} 1 	ex$ |
|                    | So the points $1 \Box 1$ and $1 \Box 1$ are on the graph of this equation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                    | $_{2}$ $_{\overline{2}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 13.                | $x^2 \square 2xy \square y^2 \square 1$ . For the point $\square 0 \square 1 \square$ : $0^2 \square 2 \square 0 \square \square 1 \square^2 \square 1^2 \square 1^2 \square 1$ . Yes. For $\square 2 \square \square 1 \square$ : $2^2 \square 2 \square 2 \square \square \square 1^2 \square 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                    | $\square$ 4 $\square$ 4 $\square$ 1 $\square$ 1 $\square$ 1. Yes. For $\square$ $\square$ 2 $\square$ 3 $\square$ : $\overline{\square}$ $\square$ 2 $\square$ 2 $\square$ 2 $\square$ 2 $\square$ 2 $\square$ 3 $\square$ 3 $\square$ 3 $\square$ 1 $\square$ 4 $\square$ 1 $\square$ 2 $\square$ 9 $\square$ 1 $\square$ 1. Yes. So the points $\square$ 0 $\square$ 1 $\square$ 1, $\square$ 2 $\square$ 1 $\square$ 1, and $\square$ 2 $\square$ 3 $\square$ are on the graph of this equation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 14.                | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                    | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                    | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                    | So the points $\Box 0 \Box 1 \Box \frac{1}{2} \Box \frac{1}{2} \Box 1$ , and $2 \Box 1 \Box 1$ are on the graph of this equation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 15.                | $y \square 3x$ 16. $y \square \square 2x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

| x        | у  | $\boldsymbol{x}$ |  |
|----------|----|------------------|--|
| 3        | □9 | □3               |  |
| <b>2</b> | □6 | □2               |  |
| □1       | □3 | □1               |  |
| 0        | 0  | 0                |  |
|          |    | 1                |  |

| 1 | 3 |
|---|---|
| 2 | 6 |
| 3 | 9 |

**17.**  $y \Box 2 \Box x$ 

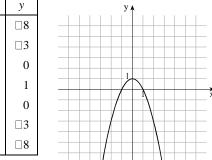
| x  | у  |
|----|----|
| □4 | 6  |
| □2 | 4  |
| 0  | 2  |
| 2  | 0  |
| 4  | □2 |

**18.**  $y \square \frac{2x \square}{x}$ □5  $\square 2$  $\Box 1$ 0 3 2 7

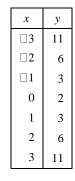
4

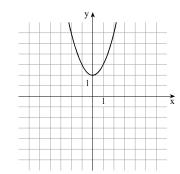
11

**19.** Solve for y:  $2x \square y \square 6 \square y \square 2x \square 6$ .


| x  | y   |
|----|-----|
| □2 | □10 |
| 0  | □6  |
| 2  | □2  |
| 4  | 2   |
| 6  | 6   |

**20.** Solve for x:  $x \square 4y \square 8 \square x \square 4y \square 8$ .


| х        | y                  |
|----------|--------------------|
| □4       | □3                 |
| $\Box 2$ | $\Box \frac{5}{2}$ |
| 0        | □2                 |
| 2        | $\Box \frac{3}{2}$ |
| 4        | □1                 |
| 6        | $\Box \frac{1}{2}$ |
| 8        | 0                  |
| 10       | $\frac{1}{2}$      |


**21.**  $y \Box 1 \Box x^2$ 

| x        | у  |
|----------|----|
| □3       | □8 |
| $\Box 2$ | □3 |
| □1       | 0  |
| 0        | 1  |
| 1        | 0  |
| 2        | □3 |
| 3        | □8 |



**22.**  $y \Box x^2 \Box 2$ 



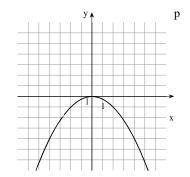


| 23.         | ν | П      | $r^2$         | П      | 2 |
|-------------|---|--------|---------------|--------|---|
| <b>4</b> J. | v | $\Box$ | $\mathcal{A}$ | $\Box$ | _ |

| x  | у  |
|----|----|
| □3 | 7  |
| □2 | 2  |
| □1 | □1 |
| 0  | □2 |
| 1  | □1 |
| 2  | 2  |
| 3  | 7  |

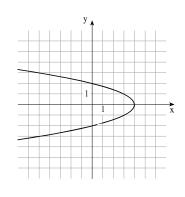
24. 
$$y \Box x^2 \Box 4$$
 $x \qquad y$ 
 $\Box 3 \qquad \Box 5$ 
 $\Box 2 \qquad 0$ 
 $\Box 1 \qquad 3$ 
 $0 \qquad 4$ 
 $1 \qquad 3$ 
 $2 \qquad 0$ 
 $3 \qquad \Box 5$ 

**25.**  $9y \square x^2$ . To make a table, we rewrite the equation as  $y \square \frac{1}{9}x^2$ .


$$y = 9x$$
.

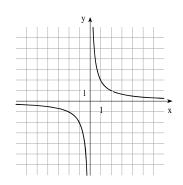
3

| $\perp$ | \                 |                   | 1 | Ш  |   |    | 1        | L        |
|---------|-------------------|-------------------|---|----|---|----|----------|----------|
| +       | +                 |                   |   |    |   |    | $\vdash$ |          |
|         | $\bot$            |                   |   |    |   | -/ |          |          |
|         | $\perp \setminus$ |                   |   |    |   | /  |          |          |
| $\pm$   | '                 | $\forall \exists$ |   |    |   |    |          |          |
|         |                   | $\Lambda$         |   |    | / |    |          |          |
| +       |                   | +                 | 1 | ١, |   |    |          | $\vdash$ |


**26.**  $4y \square \square x^2$ .

| x  | у  |
|----|----|
| □4 | □4 |
| 2  | □1 |
| 0  | 0  |
| 2  | □1 |
| 4  | □4 |
|    |    |




**27.**  $x \Box y^2 \Box 4$ .

| х   | y  |
|-----|----|
| □12 | □4 |
| □5  | □3 |
| 0   | □2 |
| 3   | □1 |
| 4   | 0  |
| 3   | 1  |
| 0   | 2  |
| □5  | 3  |
| □12 | 4  |



**28.**  $xy \square 2 \square y \square \frac{2}{x}$ .

| х                           | у                  |
|-----------------------------|--------------------|
| □4                          | $\Box \frac{1}{2}$ |
| □2                          | □1                 |
| □1                          | $\Box^2$           |
| $\Box \frac{1}{2}$          | □4                 |
| $\Box \frac{1}{4}$          | □8                 |
| 1                           | 8                  |
| $\frac{4}{1}$ $\frac{2}{2}$ | 4                  |
| 1                           | 2                  |
| 2                           | 1                  |
| 4                           | 1<br>2             |
|                             |                    |



**29.** 
$$y \Box \Box \overline{x}$$
.

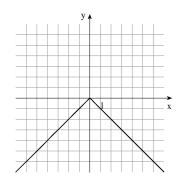
| х      | у             | У∱ |          |
|--------|---------------|----|----------|
| 0      | 0             |    |          |
| 1<br>4 | $\frac{1}{2}$ |    |          |
| 1      | 1             |    |          |
| 2      | 2             | 1  | <u> </u> |
| 4      | 2             | 1  | 5        |
| 9      | 3             |    |          |
| 16     | 4             |    |          |
|        |               |    |          |

**30.** 
$$y \square 2 \square^{\square} x$$
.

|   |         | у ∧      |
|---|---------|----------|
| x | у       |          |
| 0 | 2       |          |
| 1 | 3       |          |
| 2 | 2 🗆 💆 2 |          |
| 4 | 4       |          |
| 9 | 5       | 1        |
|   |         | <u> </u> |

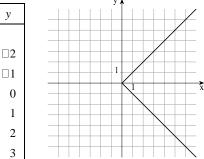
the square root) cannot be negative, we must have 
$$9 \square x^2 \square 0 \square x^2 \square 9 \square \square x \square \square 3.$$

| х  | У                            |
|----|------------------------------|
| □3 | 0                            |
| □2 | □ <u></u> 5                  |
| □1 | $\Box 2^{\Box} \overline{2}$ |
| 0  | □3                           |
| 1  | □2                           |
| 2  | □ <b></b> 5                  |
| 3  | 0                            |

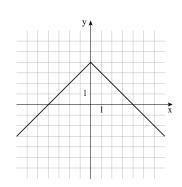

**32.** 
$$y \Box \Box 9 \Box x^2$$

Since the radicand (the expression inside the square root) cannot be negative, we must have 
$$9 \square x^2 \square 0 \square x^2 \square 9$$
  $\square \square x \square \square 3$ .

| x  | у                         |
|----|---------------------------|
| □3 | 0                         |
| □2 | <u>-</u> 5                |
| □1 | $2^{\square}\overline{2}$ |
| 0  | 3                         |
| 1  | 2 2                       |
| 2  | _ <del>5</del>            |
| 3  | 0                         |

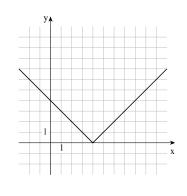

**33.** 
$$y \square \square$$
  $\square x \square$ .

| у  |
|----|
| □6 |
| □4 |
| □2 |
| 0  |
| □2 |
| □4 |
| □6 |
|    |



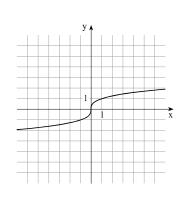

**34.**  $x \square \square y \square$ . In the table below, we insert values of y and find the corresponding value of x.

| x | у  |  |  |
|---|----|--|--|
|   |    |  |  |
|   |    |  |  |
| 2 | □2 |  |  |
| 2 |    |  |  |
| 1 | □1 |  |  |
| 1 |    |  |  |
| 0 | 0  |  |  |
| O | U  |  |  |
| 1 | 1  |  |  |
| - | -  |  |  |
| 2 | 2  |  |  |
|   |    |  |  |
| 3 | 3  |  |  |
| _ |    |  |  |



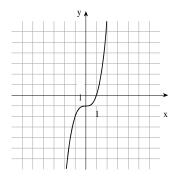

| х  | у  |
|----|----|
| □6 | □2 |
| □4 | 0  |
| □2 | 2  |
| 0  | 4  |
| 2  | 2  |
| 4  | 0  |
| 6  | □2 |




**36.** 
$$y \square \square 4 \square x \square$$
.

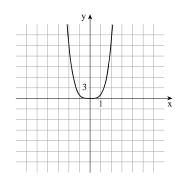
| x  | у  |
|----|----|
| □6 | 10 |
| □4 | 8  |
| □2 | 6  |
| 0  | 4  |
| 2  | 2  |
| 4  | 0  |
| 6  | 2  |
| 8  | 4  |
| 10 | 6  |




**37.**  $x \Box y^3$ . Since  $x \Box y^3$  is solved for x in terms of y, we insert values for y and find the corresponding values of x in the table below.

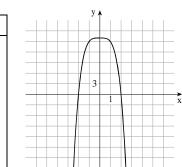
| х  | у  |
|----|----|
|    |    |
| □8 | □2 |
| □1 | □1 |
| 0  | 0  |
| 1  | 1  |
| 8  | 2  |
| 27 | 3  |
|    | •  |



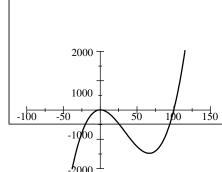

**38.**  $y \Box x^3 \Box 1$ .

| х  | у   |
|----|-----|
| □3 | □28 |
| □2 | □9  |
| □1 | □2  |
| 0  | □1  |
| 1  | 1   |
| 2  | 7   |
| 3  | 26  |
|    |     |

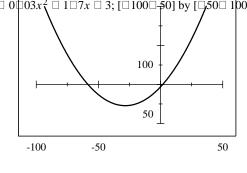



**39.**  $y \Box x^4$ .

| х  | у  |
|----|----|
| □3 | 81 |
| □2 | 16 |
| □1 | 1  |
| 0  | 0  |
| 1  | 1  |
| 2  | 16 |
| 3  | 81 |
|    |    |

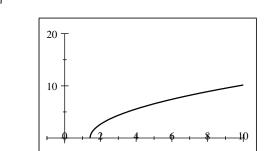



**40.**  $y \Box 16 \Box x^4$ .

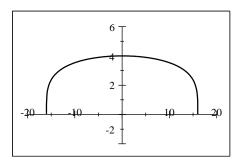

| x  | у   |
|----|-----|
| □3 | □65 |
| □2 | 0   |
| □1 | 15  |
| 0  | 16  |
| 1  | 15  |
| 2  | 0   |
| 3  | □65 |
|    |     |



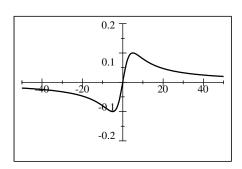




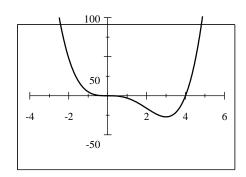

**42.** 
$$y = 0 \oplus 03x_1^2 = 1 \oplus 7x \oplus 3; [ \oplus 100 \oplus 50] \text{ by } [ \oplus 50 \oplus 100]$$




-50


**43.** 
$$y \Box \Box \overline{12x \Box 17}$$
;  $[\Box 1 \Box 10]$  by  $[\Box 1 \Box 20]$ 

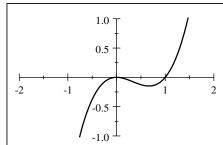



**44.**  $y = \sqrt[4]{256 - x^2}$ ; [ $\Box 20 \Box 20$ ] by [ $\Box 2 \Box 6$ ]



**45.** 
$$y \Box \frac{x}{x^2 \Box 25}$$
; [ $\Box 50 \Box 50$ ] by [ $\Box 0 \Box 2 \Box$ 



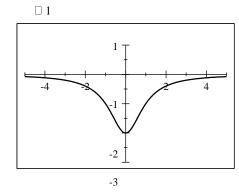

**46.**  $y \Box x^4 \Box 4x^3$ ;  $[\Box 4 \Box 6]$  by  $[\Box 50 \Box 100]$ 



- **47.**  $y \square x \square 6$ . To find x-intercepts, set  $y \square 0$ . This gives  $0 \square x \square 6 \square x \square 6$ , so the x-intercept is  $\square 6$ . To find y-intercepts, set  $x \square 0$ . This gives  $y \square 0 \square 6 \square y \square 6$ , so the y-intercept is 6.
- **48.**  $2x \square 5y \square 40$ . To find x-intercepts, set  $y \square 0$ . This gives  $2x \square 5 \square 0 \square \square 40 \square 2x \square 40 \square x \square 20$ , and the x-intercept is 20. To find y-intercepts, set  $x \square 0$ . This gives  $2 \square 0 \square \square 5y \square 40 \square y \square \square 8$ , so the y-intercept is  $\square 8$ .
- **49.**  $y \square x^2 \square 5$ . To find x-intercepts, set  $y \square 0$ . This gives  $0 \square x^2 \square 5 \square x^2 \square 5 \square x \square \square \square 0$ .  $0 \square x$  is the x-intercepts are  $0 \square x$ . To find y-intercepts, set  $x \square 0$ . This gives  $y \square 0^2 \square 5 \square \square 5$ , so the y-intercept is  $\square 5$ .
- **50.**  $y^2 \square 9 \square x^2$ . To find x-intercepts, set  $y \square 0$ . This gives  $0^2 \square 9 \square x^2 \square x^2 \square 9 \square x \square 3$ , so the x-intercepts are  $\square 3$ . To find y-intercepts, set  $x \square 0$ . This gives  $y^2 \square 9 \square 0^2 \square 9 \square y \square \square 3$ , so the y-intercepts are  $\square 3$ .
- **51.**  $y \square 2xy \square 2x \square 1$ . To find x-intercepts, set  $y \square 0$ . This gives  $0 \square 2x \square 0 \square \square 2x \square 1 \square 2x \square 1 \square x \square \frac{1}{2}$ , so the x-intercept is  $\frac{1}{2}$ .

To find y-intercepts, set  $x \square 0$ . This gives  $y \square 2 \square 0 \square y \square 2 \square 0 \square \square 1 \square y \square 1$ , so the y-intercept is 1.

| 52. | $x^2 \square xy \square y \square 1$ . To find $x$ -intercepts, set $y \square 0$ . This gives $x^2 \square x \square 0 \square \square 0 \square \square 1 \square x^2 \square 1 \square x \square \square 1$ , so the $x$ -                                                                                                                                          |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | intercepts are $\Box 1$ and 1. To find <i>y</i> -intercepts, set $x \Box 0$ . This gives $y \Box \Box 0 \Box^2 \Box \Box 0 \Box y \Box y \Box 1 \Box y \Box 1$ , so the <i>y</i> -intercept is 1.                                                                                                                                                                      |
| 53  | 3. $y \square x \square 1$ . To find $x$ -intercepts, set $y \square 0$ . This gives $y \square x \square 1 \square 0 \square x \square 1 \square x \square 1$ , so the $x$ -intercept is $\square 1$ . To find $y$ -intercepts, set $y \square 0$ . This gives $y \square 0 \square 1 \square y \square 1$ , so the $y$ -intercept is $\square 1$ .                   |
| 54. | $xy \ \Box$ 5. To find $x$ -intercepts, set $y \ \Box$ 0. This gives $x \ \Box$ 0 $\Box$ 5 $\Box$ 0 $\Box$ 5, which is impossible, so there is no $x$ -intercept. To find $y$ -intercepts, set $x \ \Box$ 0. This gives $\Box$ 0 $\Box$ 5 $\Box$ 0 $\Box$ 5, which is again impossible, so there is no $y$ -intercept.                                                 |
| 55. | $4x^2 \square 25y^2 \square 100$ . To find x-intercepts, set $y \square 0$ . This gives $4x^2 \square 25 \square 0 \square^2 \square 100 \square x^2 \square 25 \square x \square \square 5$ , so the x-intercepts are $\square 5$ and $5$ .                                                                                                                           |
|     | To find y-intercepts, set $x \square 0$ . This gives $4 \square 0 \square^2 \square 25y^2 \square 100 \square y^2 \square 4 \square y \square \square 2$ , so the y-intercepts are $\square 2$ and 2.                                                                                                                                                                  |
| 56. | $25x^2 \Box y^2 \Box 100$ . To find <i>x</i> -intercepts, set $y \Box 0$ . This gives $25x^2 \Box 0^2 \Box 100 \Box x^2 \Box 4 \Box x \Box \Box 2$ , so the <i>x</i> -intercepts are $\Box 2$ and $2$ .  To find <i>y</i> -intercepts, set $x \Box 0$ . This gives $25 \Box 0 \Box^2 \Box y^2 \Box 100 \Box y^2 \Box \Box 100$ , which has no solution, so there is no |
|     | y-intercept.                                                                                                                                                                                                                                                                                                                                                           |
| 57. | $y \Box 4x \Box x^2$ . To find x-intercepts, set $y \Box 0$ . This gives $0 \Box 4x \Box x^2 \Box 0 \Box x \Box 4 \Box x \Box 0 \Box x$ or $x \Box 4$ , so the x-intercepts are 0 and 4.                                                                                                                                                                               |
|     | To find y-intercepts, set $x \square 0$ . This gives $y \square 4 \square 0 \square \square 0^2 \square y \square 0$ , so the y-intercept is 0.                                                                                                                                                                                                                        |
| 58. | $\frac{x^2}{9} \square \frac{y^2}{4} \square 1$ . To find x-intercepts, set $y \square 0$ . This gives $\frac{x^2}{9} \square \frac{0^2}{4} \square 1 \square \frac{x^2}{9} \square 1 \square x^2 \square 9 \square x \square \square 3$ , so the                                                                                                                      |
|     | $x$ -intercepts are $\square 3$ and $3$ .                                                                                                                                                                                                                                                                                                                              |
|     | To find y-intercepts, set $x \square 0$ . This gives $\frac{0^2}{9} \square \frac{y^2}{4} \square 1 \square \frac{\overline{y^2}}{4} \square 1 \square y^2 \square 4 \square x \square \square 2$ , so the y-intercepts are $\square 2$ and $2$ .                                                                                                                      |
| 59. | $x^4 \square y^2 \square xy \square$ 16. To find <i>x</i> -intercepts, set $y \square$ 0. This gives $x^4 \square 0^2 \square x \square 0 \square \square$ 16 $\square x^4 \square$ 16 $\square x \square \square$ 2. So the <i>x</i> -intercepts are $\square$ 2 and 2.                                                                                               |
|     | To find y-intercepts, set $x \square 0$ . This gives $0^4 \square y^2 \square \square 0 \square y \square 16 \square y^2 \square 16 \square y \square 4$ . So the y-intercepts are $\square 4$ and 4                                                                                                                                                                   |
| 60. | $x^2 \square y^3 \square x^2 y^2 \square$ 64. To find <i>x</i> -intercepts, set $y \square 0$ . This gives $x^2 \square 0^3 \square x^2 \square 0 \square^2 \square$ 64 $\square x^2 \square$ 64 $\square x \square \square$ 8. So the <i>x</i> -intercepts are $\square$ 8 and 8.                                                                                     |
|     | To find y-intercepts, set $x \square 0$ . This gives $0^2 \square y^3 \square \square 0 \square^2 y^2 \square 64 \square y^3 \square 64 \square y \square 4$ . So the y-intercept is 4.                                                                                                                                                                                |
| 61. | (a) $y \Box x^3 \Box x^2$ ; $[\Box 2 \Box 2]$ by $[\Box 1 \Box 1]$ (b) From the graph, it appears that the <i>x</i> -intercepts are 0                                                                                                                                                                                                                                  |




- and 1 and the y-intercept is 0.
- (c) To find *x*-intercepts, set  $y \square 0$ . This gives  $0 \square x^3 \square x^2 \square x^2 \square x \square 1 \square \square 0 \square x \square 0$  or 1. So the x-intercepts are 0 and 1. To find y-intercepts, set  $x \square 0$ . This gives  $y \square 0^3 \square 0^2 \square 0$ . So the *y*-intercept is 0.

- **62.** (a)  $y \Box x^4 \Box 2x^3$ ;  $[\Box 2\Box 3]$  by  $[\Box 3\Box 3]$
- **(b)** From the graph, it appears that the *x*-intercepts are 0 and 2 and the y-intercept is 0.
- (c) To find x-intercepts, set  $y \square 0$ . This gives  $0 \square x^4 \square 2x^3 \square x^3 \square x \square 2\square \square 0 \square x \square 0$  or 2. So the x-intercepts are 0 and 2.

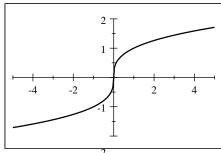
To find *y*-intercepts, set  $x \square 0$ . This gives  $y \square 0^4 \square 2 \square 0 \square^3 \square 0$ . So the y-intercept is 0.

**63.** (a)  $y \Box \Box \frac{2}{x^2}$ ;  $[\Box 5 \Box 5]$  by  $[\Box 3 \Box$ 

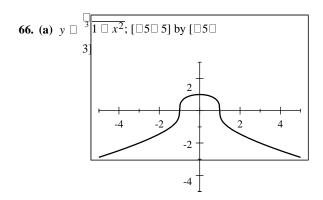


(b) From the graph, it appears that there is no x-intercept

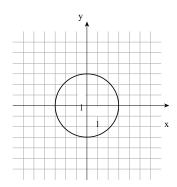
and the y-intercept is  $\Box 2$ .


(c) To find x-intercepts, set  $y \square 0$ . This gives  $0 \ \Box \ \dfrac{2}{\kappa^2 \ \Box \ 1},$  which has no solution. So there is no x-intercept.

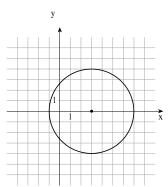
To find *y*-intercepts, set  $x \square 0$ . This gives  $y \square \square \frac{2}{0^2 \square 1} \square \square 2$ . So the y-intercept is  $\square 2$ .


- **64.** (a)  $y = \frac{x}{x^2 1} \dot{2} [0.5 5]$  by [0.2 1]
- **(b)** From the graph, it appears that the *x* and y-intercepts are 0.
- (c) To find x-intercepts, set  $y \square 0$ . This gives  $0 \square \frac{x}{x^2 \square 1} \square x \square 0$ . So the *x*-intercept is 0.

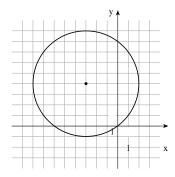
To find *y*-intercepts, set  $x \square 0$ . This gives  $y \square \frac{\square 1}{0^2} \square 0$ . So the *y*-intercept is 0.


**65.** (a)  $y \Box ^{\int_3} \overline{x}$ ;  $[\Box 5 \Box 5]$  by  $[\Box 2 \Box 2]$ 

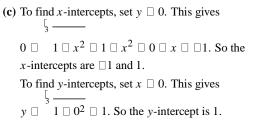



- (b) From the graph, it appears that and the x- and y-intercepts are 0.
- (c) To find x-intercepts, set  $y \square 0$ . This gives  $0 \square {}^{[3]}x$  $\Box x \Box 0$ . So the *x*-intercept is 0. To find y-intercepts, set  $x \square 0$ . This gives  $y \Box ^{\frac{1}{3}} \overline{0} \Box 0$ . So the y-intercept is 0.

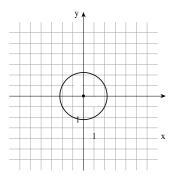



**67.**  $x^2 \square y^2 \square 9$  has center  $\square 0 \square 0 \square$  and radius 3.

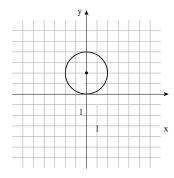



**69.**  $\Box x \Box 3\Box^2 \Box y^2 \Box 16$  has center  $\Box 3\Box 0\Box$  and radius 4.

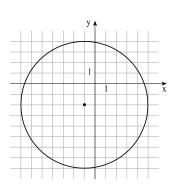



**71.**  $\Box x \Box 3\Box^2 \Box \Box y \Box 4\Box^2 \Box 25$  has center  $\Box \Box 3\Box 4\Box$  and radius 5.




**(b)** From the graph, it appears that the x-intercepts are  $\Box 1$  and 1 and the y-intercept is 1.




**68.**  $x^2 \square y^2 \square 5$  has center  $\square 0 \square 0 \square$  and radius  $0 \square 5$ .



**70.**  $x^2 \square \square y \square 2 \square^2 \square 4$  has center  $\square 0 \square 2 \square$  and radius 2.



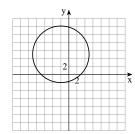
**72.**  $\Box x \Box 1 \Box^2 \Box y \Box 2 \Box^2 \Box 36$  has center  $\Box 1 \Box \Box 2 \Box$  and radius 6.



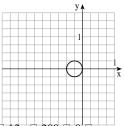
|                    | Using $h \square \square 3$ , $k \square 2$ , and $r \square 5$ , we get $\square x \square \square \square 3 \square \square^2 \square \square y \square 2 \square^2 \square 5^2 \square \square x \square 3 \square^2 \square \square y \square 2 \square^2 \square 25$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 74.                | Using $h \square \square 1$ , $k \square \square 3$ , and $r \square 3$ , we get $\square x \square \square \square 1 \square \square^2 \square \square y \square \square \square 3 \square \square^2 \square 3^2 \square \square x \square 1 \square^2 \square \square y \square 3 \square^2 \square 9$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 75.                | The equation of a circle centered at the origin is $x^2 \Box y^2 \Box r^2$ . Using the point $\Box 4 \Box 7 \Box$ we solve for $r^2$ . This gives $\Box 4 \Box^2 \Box \Box 7 \Box^2 \Box r^2 \Box 16 \Box 49 \Box 65 \Box r^2$ . Thus, the equation of the circle is $x^2 \Box y^2 \Box 65$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <b>76.</b><br>poi: | Using $h \square \square 1$ and $k \square 5$ , we get $\square x \square $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                    | $\square 4 \square \square 6 \square$ , we solve for $r^2$ . This gives $\square 4 \square 1 \square^2 \square \square 6 \square 5 \square^2 \square r^2 \square 130 \square r^2$ . Thus, an equation of the circle is $\square x \square 1 \square^2 \square \square y \square 5 \square^2 \square 130$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 77.                | The center is at the midpoint of the line segment, which is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                    | so $r = \begin{bmatrix} 1 & \Box \Box$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 78.                | The center is at the midpoint of the line segment, which is $\begin{bmatrix} 2 \\ 2 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                    | diameter, so $r \Box \frac{1}{2} \Box \Box$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 79.                | Since the circle is tangent to the <i>x</i> -axis, it must contain the point $\Box 7 \Box 0 \Box$ , so the radius is the change in the <i>y</i> -coordinates. That is, $r \Box \Box 3 \Box 0 \Box \Box 3$ . So the equation of the circle is $\Box x \Box 7 \Box^2 \Box \Box y \Box \Box 3 \Box^2 \Box 3^2$ , which is $\Box x \Box 7 \Box^2 \Box \Box y \Box 3 \Box^2 \Box 9$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 80.                | Since the circle with $r \square 5$ lies in the first quadrant and is tangent to both the $x$ -axis and the $y$ -axis, the center of the circle is at $\square 5 \square 5 \square$ . Therefore, the equation of the circle is $\square x \square 5 \square^2 \square \square y \square 5 \square^2 \square 25$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <b>81.</b><br>2.   | From the figure, the center of the circle is at $\Box\Box\Box\Box\Box\Box\Box\Box\Box\Box$ . The radius is the change in the y-coordinates, so $r\ \Box\ \Box\Box\Box\Box\Box\Box$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                    | Thus the equation of the circle is $\Box x \Box $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Thu                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                    | $r$ $\square$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 83.                | Completing the square gives $x^2 \Box y^2 \Box 2x \Box 4y \Box 1 \Box 0 \Box x^2 \Box 2x \Box \Box \Box 2 \Box 2 \Box 2 \Box 4y \Box \Box 4 \Box 2 \Box 2 \Box \Box 2 \Box 2 \Box \Box 2 $ |
|                    | $\Box$ $x^2$ $\Box$ $2x$ $\Box$ $1$ $\Box$ $y^2$ $\Box$ $4y$ $\Box$ $4$ $\Box$ $\Box$ $1$ $\Box$ $4$ $\Box$ $\Box$ $x$ $\Box$ $1$ $\Box$ $2$ $\Box$ $y$ $\Box$ $2$ $\Box$ $2$ $\Box$ $4$ . Thus, the center is $\Box$ $1$ $\Box$ $2$ $\Box$ , and the radius is $2$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 84.                | Completing the square gives $x^2 \Box y^2 \Box 2x \Box 2y \Box 2 \Box x^2 \Box 2x \Box \Box 2 \Box 2 \Box 2 \Box 2y \Box \Box 2 \Box 2 \Box 2 \Box 2 \Box $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                    | $\Box x^2 \Box 2x \Box 1 \Box y^2 \Box 2y \Box 1 \Box 2 \Box 1 \Box 1 \Box \Box x \Box 1 \Box^2 \Box \Box y \Box 1 \Box^2 \Box 4$ . Thus, the center is $\Box 1 \Box 1 \Box$ , and the radius is 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 85.                | Completing the square gives $x^2 \Box y^2 \Box 4x \Box 10y \Box 13 \Box 0 \Box x^2 \Box 4x \Box \frac{\Box 4}{2} \Box y^2 \Box 10y \Box \frac{10}{2}^2 \Box \Box 13 \Box \frac{4}{2}^2 \Box \frac{\Box 10}{2}^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                    | $\Box$ $x^2 \Box 4x \Box 4 \Box y^2 \Box 10y \Box 25 \Box \Box 13 \Box 4 \Box 25 \Box \Box x \Box 2 \Box^2 \Box \Box y \Box 5 \Box^2 \Box$ 16. Thus, the center is $\Box 2 \Box \Box 5 \Box$ , and the radius is 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 86.                | Completing the square gives $x^2 \Box y^2 \Box 6y \Box 2 \Box 0 \Box x^2 \Box y^2 \Box 6y \Box \frac{6}{2} \Box 2 \Box \frac{6}{2} \Box x^2 \Box y^2 \Box 6y \Box 9 \Box 2 \Box 9 \Box x^2 \Box y \Box 3 \Box^2 \Box 7$ . Thus, the circle has center $\Box 0 \Box \Box 3 \Box$ and radius                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                    | $\Box$ 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

\_ 2

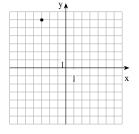
| 87. | Completing the so | quare gives $x^2 \square y^2 \square x \square$  | $\bigcirc 0 \square x^2 \square x \square$ | 1_ [           | $\exists y^2 \Box \Box 1 \Box x$ | $e^2 \square x \square ^1 \square y^2$ | _ 1 _ |
|-----|-------------------|--------------------------------------------------|--------------------------------------------|----------------|----------------------------------|----------------------------------------|-------|
|     |                   | $\frac{1}{2}$ . Thus, the circle has cen         | ter $\frac{1}{2} \Box 0$ a                 | 2<br>nd radius | 2.1.                             | 4                                      | 4     |
| 88. |                   | 4 quare gives $x^2 \Box y^2 \Box 2x \Box$        |                                            |                |                                  |                                        |       |
|     |                   | $\Box y \Box ^1 \Box ^1 \Box \Box x \Box 1 \Box$ |                                            |                |                                  | -                                      | _     |
|     |                   | 4 4                                              | 2                                          | 4              |                                  | $\Box$ 2                               | 2     |


Completing the square gives 
$$x^2 \cup y^2 \cup 1x \cup 1y \cup 1 \cup x^2 \cup 1x \cup \frac{1}{2} \cup$$

**91.** Completing the square gives  $x^2 \Box y^2 \Box 4x \Box 10y \Box 21 \Box$  **92.** First divide by 4, then complete the square. This gives


$$x^{2} \Box 4x \Box \overset{4}{} \overset{2}{\Box} y^{2} \Box 10y \Box \overset{\Box 10}{2} \overset{2}{\Box} 21 \Box \overset{4}{Z} \overset{2}{\Box}$$

$$4x^{2} \Box 4y^{2} \Box 2x \Box 0 \Box x^{2} \Box y \Box \overset{2}{Q} \overset{1}{\Box} \overset{1}{Z} \overset{2}{\Box} \overset{1}{Z} \overset{2}{\Box} \overset{1}{Z} \overset{2}{\Box} \overset{1}{Z} \overset{2}{\Box} \overset{1}{Z} \overset{2}{\Box} \overset{2}{Z} \overset{2}{Z}$$



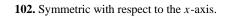


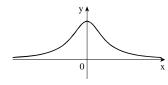

and radius  $\frac{1}{4}$ .

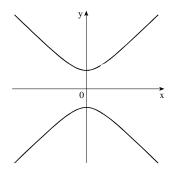


- **93.** Completing the square gives  $x^2 \square y^2 \square 6x \square 12y \square 45 \square 0$  **94.**  $x^2 \square y^2 \square 16x \square 12y \square 200 \square 0$ 
  - $\square \square x \square 3 \square^2 \square \square y \square 6 \square^2 \square \square 45 \square 9 \square 36 \square 0$ . Thus, the center is  $\Box \Box \exists \Box 6\Box$ , and the radius is 0. This is a degenerate

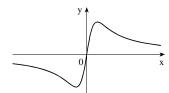


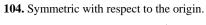

$$x^{2} \square 16x \qquad \begin{array}{c} \square & 16 \\ \square & 2 \\ \square & \frac{1}{2} \end{array} \qquad \begin{array}{c} \square & 2 \\ \square & 2 \end{array} \qquad \begin{array}{c} \square & 2 \\ \square & 2 \end{array} \qquad \begin{array}{c} 2 \\ \square & 2 \end{array}$$

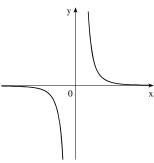

 $\Box x \Box 8\Box^2 \Box \Box y \Box 6\Box^2 \Box \Box 200 \Box 64 \Box 36 \Box \Box 100$ . Since completing the square gives  $r^2 \square \square 100$ , this is not the equation of a circle. There is no graph.


| 95. | x-axis symmetry: $\Box \Box y \Box \Box x^4 \Box x^2 \Box y \Box \Box x^4 \Box x^2$ , which is not the same as $y \Box x^4 \Box x^2$ , so the graph is not symmetric                         |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | with respect to the <i>x</i> -axis.                                                                                                                                                          |
|     | y-axis symmetry: $y \square \square \square x \square^4 \square \square \square x \square^2 \square x^4 \square x^2$ , so the graph is symmetric with respect to the y-axis.                 |
|     | Origin symmetry: $\Box \Box y \Box \Box \Box \Box x \Box^4 \Box \Box \Box x \Box^2 \Box \Box y \Box x^4 \Box x^2$ , which is not the same as $y \Box x^4 \Box x^2$ , so the graph            |
|     | is not symmetric with respect to the origin.                                                                                                                                                 |
| 96. | <i>x</i> -axis symmetry: $x \square \square \square y \square^4 \square \square \square y \square^2 \square y^4 \square y^2$ , so the graph is symmetric with respect to the <i>x</i> -axis. |
|     | y-axis symmetry: $\Box \Box x \Box \Box y^4 \Box y^2$ , which is not the same as $x \Box y^4 \Box y^2$ , so the graph is not symmetric with respect to the                                   |
|     | y-axis.                                                                                                                                                                                      |
|     | Origin symmetry: $\Box \Box x \Box \Box \Box y \Box^4 \Box \Box \Box y \Box^2 \Box \Box x \Box y^4 \Box y^2$ , which is not the same as $x \Box y^4 \Box y^2$ , so the graph                 |
|     | is not symmetric with respect to the origin.                                                                                                                                                 |

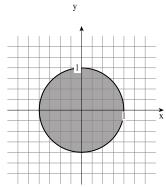
| 97. | $x$ -axis symmetry: $\Box y \Box x^3 \Box 10x \Box y \Box x^3 \Box 10x$ , which is not the same as $y \Box x^3 \Box 10x$ , so the graph is not symmetric with respect to the $x$ -axis. $y$ -axis symmetry: $y \Box \Box x \Box^3 \Box 10 \Box x \Box y \Box x^3 \Box 10x$ , which is not the same as $y \Box x^3 \Box 10x$ , so the graph is not symmetric with respect to the $y$ -axis. Origin symmetry: $\Box y \Box x \Box^3 \Box 10 \Box x \Box y \Box x^3 \Box 10x \Box y \Box x^3 \Box 10x$ , so the graph is symmetric with respect to the origin. |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 98. | $x$ -axis symmetry: $\Box y \Box x^2 \Box x \Box y \Box x^2 \Box x \Box$ , which is not the same as $y \Box x^2 \Box x \Box$ , so the graph is not symmetric with respect to the $x$ -axis.                                                                                                                                                                                                                                                                                                                                                                 |
|     | y-axis symmetry: $y \square \square x \square^2 \square \square x \square y \square x^2 \square x \square$ , so the graph is symmetric with respect to the y-axis. Note that                                                                                                                                                                                                                                                                                                                                                                                |
|     | $\square \square x \square \square \square x \square$ .  Origin symmetry: $\square \square y \square \square \square x \square^2 \square \square x \square \square \square y \square x^2 \square \square x \square \square y \square x^2 \square \square x \square$ , which is not the same as $y \square x^2 \square \square x \square$ , so the graph is not symmetric with respect to the origin.                                                                                                                                                        |
| 99. | $x$ -axis symmetry: $x^4 \Box y \Box^4 \Box x^2 \Box y \Box^2 \Box 1 \Box x^4 y^4 \Box x^2 y^2 \Box 1$ , so the graph is symmetric with respect to the $x$ -axis. $y$ -axis symmetry: $\Box x \Box^4 y^4 \Box y^2 \Box 1 \Box x^4 y^4 \Box x^2 y^2 \Box 1$ , so the graph is symmetric with respect to the $y$ -axis. Origin symmetry: $\Box x \Box^4 \Box y \Box^4 \Box y \Box^4 \Box y \Box^2 \Box y \Box^2 \Box 1 \Box x^4 y^4 \Box x^2 y^2 \Box 1$ , so the graph is symmetric with respect to the origin.                                              |
| 100 | <i>x</i> -axis symmetry: $x^2 \Box \Box y \Box^2 \Box x \Box \Box y \Box \Box 1 \Box x^2 y^2 \Box xy \Box 1$ , which is not the same as $x^2 y^2 \Box xy \Box 1$ , so the graph is not symmetric with respect to the <i>x</i> -axis.                                                                                                                                                                                                                                                                                                                        |
|     | y-axis symmetry: $\Box \Box x \Box^2 y^2 \Box \Box \Box x \Box y \Box 1 \Box x^2 y^2 \Box xy \Box 1$ , which is not the same as $x^2 y^2 \Box xy \Box 1$ , so the graph is not                                                                                                                                                                                                                                                                                                                                                                              |
|     | symmetric with respect to the <i>y</i> -axis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|     | Origin symmetry: $\Box \Box x \Box^2 \Box \Box y \Box^2 \Box \Box \Box x \Box \Box \Box y \Box \Box 1 \Box x^2 y^2 \Box xy \Box 1$ , so the graph is symmetric with respect to the origin.                                                                                                                                                                                                                                                                                                                                                                  |


**101.** Symmetric with respect to the *y*-axis.

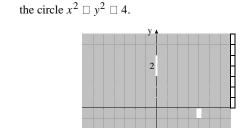






**103.** Symmetric with respect to the origin.



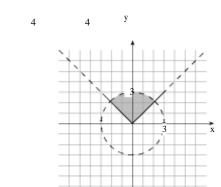





(and on) the circle  $x^2 \square y^2 \square 1$ .



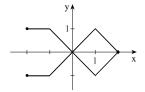
**107.** Completing the square gives  $x^2 \square y^2 \square 4y \square 12 \square 0$ 

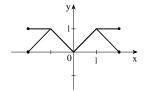


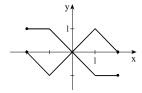

108. This is the top quarter of the circle of radius 3. Thus, the

 $x^2 \square \square y \square 2 \square^2 \square 16$ . Thus, the center is  $\square 0 \square 2 \square$ , and the radius is 4. So the circle  $x^2 \square y^2 \square 4$ , with center  $\square 0 \square 0 \square$ 

 $\Box 0 \Box 0 \Box$  and radius  $2\Box$  sits completely inside the larger circle. Thus, the area is  $\Box 4^2 \Box \Box 2^2 \Box 16\Box \Box 4\Box \Box 12\Box$ .



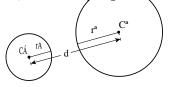





- **109.** (a) The point  $\Box 5 \Box 3 \Box$  is shifted to  $\Box 5 \Box 3 \Box 3 \Box 2 \Box \Box \Box 8 \Box 5 \Box$ .
  - **(b)** The point  $\Box a \Box b \Box$  is shifted to  $\Box a \Box 3 \Box b \Box 2 \Box$ .
  - (c) Let  $\Box x \Box y \Box$  be the point that is shifted to  $\Box 3 \Box 4 \Box$ . Then  $\Box x \Box 3 \Box y \Box 2 \Box \Box 3 \Box 4 \Box$ . Setting the *x*-coordinates equal, we get

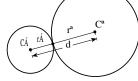
 $x \square 3 \square 3 \square x \square 0$ . Setting the y-coordinates equal, we get  $y \square 2 \square 4 \square y \square 2 \square So$  the point is  $\square 0 \square 2 \square$ .

- (d)  $A \square \square 5 \square \square 1 \square$ , so  $A^{\square} \square \square 0 5 \square 3 \square \square 1 \square 2 \square \square \square 0 2 \square 1 \square$ ;  $B \square \square 0 3 \square 2 \square$ , so  $B^{\square} \square \square 0 3 \square 3 \square 2 \square 2 \square$   $\square 0 \square 0 \square 0 \square$  4  $\square$ ; and  $C \square \square 0 \square 1 \square$ , so  $C^{\square} \square 0 \square 2 \square 3 \square 1 \square 2 \square$   $\square 0 \square 0 \square$   $\square 0 \square$
- **110.** (a) Symmetric about the *x*-axis.
- **(b)** Symmetric about the *y*-axis.
- (c) Symmetric about the origin.

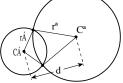








- **111.** (a) In 1980 inflation was 14%; in 1990, it was 6%; in 1999, it was 2%.
  - (b) Inflation exceeded 6% from 1975 to 1976 and from 1978 to 1982.
  - (c) Between 1980 and 1985 the inflation rate generally decreased. Between 1987 and 1992 the inflation rate generally increased.
  - (d) The highest rate was about 14% in 1980. The lowest was about 1% in 2002.
- 112. (a) Closest: 2 Mm. Farthest: 8 Mm.

| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| root of both sides we get $x \ \square \ 3 \ \square \ \square \ 2 \ \square \ x \ \square \ 3 \ \square \ 2 \ \square \ x \ \square \ 3 \ \square \ 2 \ \square \ x \ \square \ 3 \ \square \ 2 \ \square \ x \ \square \ 3 \ \square \ 2 \ \square \ x \ \square \ 3 \ \square \ 2 \ \square \ x \ \square \ 3 \ \square \ 2 \ \square \ x \ \square \ 3 \ \square \ 2 \ \square \ x \ \square \ 3 \ \square \ 2 \ \square \ x \ \square \ 3 \ \square \ 2 \ \square \ x \ \square \ 3 \ \square \ 2 \ \square \ x \ \square \ 3 \ \square \ 2 \ \square \ x \ \square \ 3 \ \square \ 2 \ \square \ x \ \square \ 3 \ \square \ 2 \ \square \ x \ \square \ 3 \ \square \ 2 \ \square \ x \ \square \ 3 \ \square \ 2 \ \square \ x \ \square \ 3 \ \square \ 2 \ \square \ x \ \square \ 3 \ \square \ 2 \ \square \ x \ \square \ 3 \ \square \ x \ x$ |
| The distance from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| from $\Box 7 \Box 33 \Box 2 \Box$ to the center $\Box 0 \Box 0 \Box$ $\Box 7 \Box 33 \Box 0 \Box^2 \Box \Box 2 \Box 0 \Box^2 \Box \Box 57 \Box 7307 \Box 7 \Box 60$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <b>113.</b> Completing the square gives $x^2 \Box y^2 \Box ax \Box by \Box c \Box 0 \Box x^2 \Box ax \Box \frac{\underline{a}}{2} \Box y^2 \Box by \Box \frac{\underline{b}}{2} \Box 2 \Box c \Box \frac{\underline{a}}{2} \Box \frac{\underline{b}}{2} \Box 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| equation represents a point when $\Box c \Box = 0$ , and this equation represents the empty set when $\Box c \Box = 0$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| When the equation represents a circle, the center is $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 114. (a) (i)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| (ii) $x^2 \square \square y \square 2\square^2 \square 4$ , the center is at $\square 0\square 2\square$ , and the radius is 2. $\square x \square 5\square^2 \square \square y \square$ $14\square^2 \square 9$ , the center is at $\square 5\square 14\square$ , and the radius is 3. The distance between centers is $\square 0\square 5\square^2 \square 2\square 14\square^2 \square 5\square^2 \square \square 12\square^2 \square 25\square 144\square 169\square 13. Since 13. \square 3, \square 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| these circles do not intersect.  (iii) $\Box x \Box 3\Box^2\Box\Box y \Box 1\Box^2\Box 1$ , the center is at $\Box 3\Box\Box\Box$ , and the radius is 1. $\Box x \Box 2\Box^2\Box\Box y \Box 2\Box^2\Box 25$ , the center is at $\Box 2\Box 2\Box$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| and the radius is 5. The distance between centers is $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Since $10 \ 1 \ 5$ , these circles intersect.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |


(b) If the distance d between the centers of the circles is greater than the sum  $r_1 \Box r_2$  of their radii, then the circles do not intersect, as shown in the first diagram. If  $d \Box r_1 \Box r_2$ , then the circles intersect at a single point, as shown in the second diagram. If  $d \Box r_1 \Box r_2$ , then the circles intersect at two points, as shown in the third diagram.



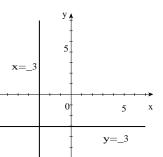
**Case 1**  $d \square r_1 \square r_2$ 



Case 2  $d \square r_1 \square r_2$ 



Case 3  $d \square r_1 \square r_2$ 


## 1.3 LINES

- **1.** We find the "steepness" or slope of a line passing through two points by dividing the difference in the *y*-coordinates of these points by the difference in the *x*-coordinates. So the line passing through the points  $\Box 0 \Box 1 \Box$  and  $\Box 2 \Box 5 \Box$  has  $\frac{5 \Box 1}{2 \Box} \Box 2$ .
- **2.** (a) The line with equation  $y \square 3x \square 2$  has slope 3.
  - **(b)** Any line parallel to this line has slope 3.

- (c) Any line perpendicular to this line has slope  $\Box \frac{1}{3}$ .
- 3. The point-slope form of the equation of the line with slope 3 passing through the point  $\Box 1 \Box 2 \Box$  is  $y \Box 2 \Box 3 \Box x \Box 1 \Box$ .
- **4.** For the linear equation  $2x \square 3y \square 12 \square 0$ , the x-intercept is 6 and the y-intercept is 4. The equation in slope-intercept form is  $y \square \square \frac{2}{3}x \square 4$ . The slope of the graph of this equation is  $\square \frac{2}{3}$ .
- **5.** The slope of a horizontal line is 0. The equation of the horizontal line passing through  $\Box 2 \Box 3 \Box$  is  $y \Box 3$ .
- **6.** The slope of a vertical line is undefined. The equation of the vertical line passing through  $\Box 2 \Box 3 \Box$  is  $x \Box 2$ .
- **7.** (a) Yes, the graph of  $y \square \square 3$  is a horizontal line 3 units below the x-axis.
  - **(b)** Yes, the graph of  $x \square \square 3$  is a vertical line 3 units to the left of the y-axis.
  - (c) No, a line perpendicular to a horizontal line is vertical and has undefined slope.
  - (d) Yes, a line perpendicular to a vertical line is horizontal and has slope 0.

8.

81



9.  $m \square \frac{y_2 \square y_1}{x x} \square \frac{0 \square 2^{\dagger}}{x x} \square \frac{2}{1}$ 

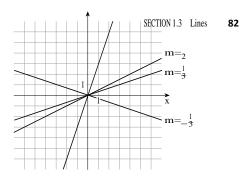
$$11. m \ \square \ \frac{y_2 \ \square \ y_1}{x_2 \ \square \ x_1} \ \square \ \frac{\square \ \square \ \square \ \square}{7 \ \square \ 2} \ \square \ 5$$

13. 
$$m = \frac{y_2 \Box y_1}{x_2 \Box x_1} = \frac{4 \Box 4}{0 \Box 5} \Box 0$$

**15.** 
$$m \sqcup_{x_2 \square x_1} \sqcup_{6 \square 10} \square_{4} \square_{4}$$

Yes, the graphs of  $y \square \square 3$  and  $x \square \square 3$  are perpendicular lines.

$$\overline{y_2 \square y_1} \qquad \square 2 \square \square \square 2 \square$$


**16.**  $m \square x_2 \square x_1 \square 6 \square 3 \square 0$ 

 $\square$ 2 $\square$  and  $\square$ 3 $\square$ 1 $\square$ . Thus, the slope of  $\square$ 3 is  $\frac{m}{x}$   $\frac{\square}{x}$   $\frac{$ 

 $y_2 \square y_1 \qquad \square \overline{2 \square \square \square 1} \square \qquad \square 1$  $\square 2 \square \square 2 \square$ . Thus, the slope of  $\square_4$  is  $m \longrightarrow x \square 2 \square 2 \square$  $2 \square 1 \square \square$ 

18. (a) **(b)**  m=0 1

m=\_1



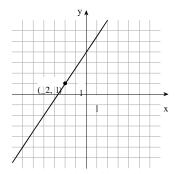
| 19.                 | First we find two points $\Box 0 \Box 4 \Box$ and $\Box 4 \Box 0 \Box$ that lie on the line. So the slope is $\frac{0 \Box 4}{4 \Box 0} \Box \Box 1$ . Since the <i>y</i> -intercept is 4,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                     | the equation of the line is $y \square mx \square b \square \square 1x \square 4$ . So $y \square \square x \square 4$ , or $x \square y \square 4 \square 0$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <b>20.</b> <i>m</i> | We find two points on the graph, $\Box 0 \Box 4 \Box$ and $\Box \Box 2 \Box 0 \Box$ . So the slope is $\frac{0 \Box 4}{\Box 2 \Box 0} \Box$ 2. Since the <i>y</i> -intercept is 4, the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                     | equation of the line is $y \square mx \square b \square 2x \square 4$ , so $y \square 2x \square 4 \square 2x \square y \square 4 \square 0$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 21.                 | We choose the two intercepts as points, $\Box 0 \Box \Box 3 \Box$ and $\Box 2 \Box 0 \Box$ . So the slope is $\frac{0 \Box \Box \Box 3}{2 \Box 0} \Box_{2}$ . Since the <i>y</i> -intercept is $\Box 3$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                     | the equation of the line is $y \square mx \square b \square \frac{3}{2}x \square 3$ , or $3x \square 2y \square 6 \square 0$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 22.<br>m            | $\sqcup 3 \sqcup 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                     | equation of the line is $y \square mx \square b \square \square \frac{4}{3}x \square 4 \square 4x \square 3y \square 12 \square 0$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 23.                 | Using $y \square mx \square b$ , we have $y \square 3x \square \square \square 2\square$ or $3x \square y \square 2 \square 0$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 24.                 | Using $y \square mx \square b$ , we have $y \square \frac{2}{5}x \square 4 \square 2x \square 5y \square 20 \square 0$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 25                  | W                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                     | Using the equation $y \square y_1 \square m \square x \square x_1 \square$ , we get $y \square 3 \square 5 \square x \square 2 \square \square \square 5x \square y \square \square 7 \square 5x \square y \square 7 \square 0$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                     | Using the equation $y \square y_1 \square m \square x \square x_1 \square$ , we get $y \square 4 \square \square \square \square x \square \square \square \square \square \square \square \square \square y \square 4 \square \square x \square 2 \square x \square y \square 2 \square 0$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                     | Using the equation $y \square y_1 \square m \square x \square x_1 \square$ , we get $y \square 7 \square_3^2 \square x \square 1 \square \square 3y \square 21 \square 2x \square 2 \square \square 2x \square 3y \square 19 \square 2x \square 3y \square 19 \square 0$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                     | Using the equation $y \square y_1 \square m \square x \square x_1 \square$ , we get $y \square \square \square 5 \square $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 29.                 | First we find the slope, which is $m = \frac{y_2 \Box y_1}{x_2 \Box x_1} = \frac{6 \Box 1}{1 \Box 2} = \frac{\overline{5}}{\Box 1} = \overline{5}$ . Substituting into $y \Box y_1 \Box m \Box x \Box x_1 \Box$ , we get                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                     | $y \square 6 \square \square 5 \square x \square 1 \square \square y \square 6 \square \square 5x \square 5 \square 5x \square y \square 11 \square 0.$ $y_2 \square y_1 \qquad 3 \square \square \square 2 \square \qquad 5$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 30.                 | First we find the slope, which is $m \ \Box \ \frac{y_2 \ \Box \ y_1}{x} \ \Box \ \frac{3 \ \Box \ \Box 2}{4} \ \Box \ \underline{1} \ \Box \ \underline{5} \ \Box \ 1$ . Substituting into $y \ \Box \ y_1 \ \Box \ m \ \Box x \ \Box x_1 \Box$ , we get                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                     | $y \square 3 \square 1 \square x \square 4 \square \ y \square 3 \square x \square 4 \square x \square y \square 1 \square 0.$ $\underline{y_2 \square y_1} \qquad \underline{ \square 3 \square 5} \qquad \underline{ \square 8}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 31.                 | We are given two points, $\Box 2 \Box 5 \Box$ and $\Box 1 \Box \Box 3 \Box$ . Thus, the slope is $\begin{bmatrix} \frac{52-51}{x} & -\frac{1}{2} & -\frac{1}{$ |
|                     | into $y \square y_1 \square m \square x \square x_1 \square$ , we get $y \square 5 \square \square 8 [x \square \square \square 2 \square] \square y \square \square 8x \square 11$ or $8x \square y \square 11 \square 0$ .<br>$y_2 \square y_1 \qquad 7 \square 7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| <b>32.</b> <i>m</i> | We are given two points, $\Box 1 \Box 7 \Box$ and $\Box 4 \Box 7 \Box$ . Thus, the slope is $\frac{1}{x_2 \Box x_1} \Box \frac{1}{4 \Box 1} \Box 0$ . Substituting into                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                     | $y \square y_1 \square m \square x \square x_1 \square$ , we get $y \square 7 \square 0 \square x \square 1 \square \square y \square 7$ or $y \square 7 \square 0$ . $y_2 \square y_1 \qquad \square 3 \square 0 \qquad \square 3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <b>33.</b> □        | We are given two points, $\Box 1 \Box 0 \Box$ and $\Box 0 \Box \Box 3 \Box$ . Thus, the slope is $\frac{m \Box}{x \ x} \ 0 \Box 1 \ \Box 1 \ \Box 3$ . Using the y-intercept,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                     | we have $y \square 3x \square \square \square 3\square$ or $y \square 3x \square 3$ or $3x \square y \square 3 \square 0$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

into  $y \square y_1 \square m \square x \square x_1 \square$ , we get  $y \square 2 \square 2[x \square \square \square 3 \square] \square y \square 2x \square 8$  or  $2x \square y \square 8 \square 0$ .

84

SECTION 1.3 Lines

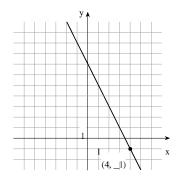
84


- **41.** Since the equation of a horizontal line passing through  $\Box a \Box b \Box$  is  $y \Box b$ , the equation of the horizontal line passing through  $\square 4 \square 5 \square$  is  $y \square 5$ .
- **42.** Any line parallel to the y-axis has undefined slope and an equation of the form  $x \square a$ . Since the graph of the line passes through the point  $\Box 4 \Box 5 \Box$ , the equation of the line is  $x \Box 4$ .
- **43.** Since  $x \square 2y \square 6 \square 2y \square \square x \square 6 \square y \square \square_2 \stackrel{1}{*} \square 3$ , the slope of this line is  $\square_2 \stackrel{1}{\cdot}$  Thus, the line we seek is given by
- **44.** Since  $2x \square 3y \square 4 \square 0 \square 3y \square \square 2x \square 4 \square y \square \square_3 \stackrel{?}{=} \square_3 \stackrel{4}{=} \text{the slope of this line is } m \square \square_3 \stackrel{2}{=} \text{Substituting } m \square \square_3 \stackrel{2}{=} \text{and}$  $b \square 6$  into the slope-intercept formula, the line we seek is given by  $y \square \square \frac{2}{3}x \square 6 \square 2x \square 3y \square 18 \square 0$ .
- **45.** Any line parallel to  $x \square 5$  has undefined slope and an equation of the form  $x \square a$ . Thus, an equation of the line is  $x \square \square 1$ .
- **46.** Any line perpendicular to  $y ext{ } ext{ } ext{ } ext{ } 1$  has undefined slope and an equation of the form  $x ext{ } ext$ through the point  $\Box 2 \Box 6 \Box$ , an equation of the line is  $x \Box 2$ .
- **47.** First find the slope of  $2x \square 5y \square 8 \square 0$ . This gives  $2x \square 5y \square 8 \square 0 \square 5y \square \square 2x \square 8 \square y \square \square_5 \stackrel{?}{=} \square_5 \stackrel{.}{=} \square_5$  so the slope of the line that is perpendicular to  $2x \Box 5y \Box 8 \Box 0$  is  $m \Box \Box \frac{1}{\Box 2\Box} \Box \frac{5}{2}$ . The equation of the line we seek is
- $y \ \square \ \square \square 2 \square \ \ \square _2^{5} \ \square x \ \square \ \square \square \square \square \square \square \square \square \square 2y \ \square \ 4 \ \square \ 5x \ \square \ 5 \ \square \ 5x \ \square \ 2y \ \square \ 1 \ \square \ 0.$
- **48.** First find the slope of the line  $4x \square 8y \square 1$ . This gives  $4x \square 8y \square 1 \square \square 8y \square \square 4x \square 1 \square y \square \square 1 {*}_{2} \square \square \square 1$  So the slope of the

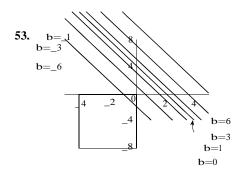
line that is perpendicular to  $4x \square 8y \square 1$  is  $m \square \square \frac{1}{1 \square 2} \square \square 2$ . The equation of the line we seek is  $y \square \square 3 \square \square 2 x \square 2$  $\square \ y \square \ \frac{2}{3} \square \ \square 2x \square 1 \square 6x \square 3y \square 1 \square 0.$ 

**49.** First find the slope of the line passing through  $\Box 2 \Box 5 \Box$  and  $\Box \Box 2 \Box 1 \Box$ . This gives  $\frac{1 \Box 5}{\Box 2 \Box 2} \Box \Box \Box 1$ , and so the equation of the line we seek is  $y \square 7 \square 1 \square x \square 1 \square \square x \square y \square 6 \square 0$ .

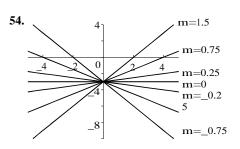
of the line that is perpendicular is  $m \square \square \square$   $\square$  2. Thus the equation of the line we seek is  $y \square$  11  $\square$  2  $\square x \square$  2  $\square$  $2x \square y \square 7 \square 0.$ 







**(b)**  $y \square 1 \square \frac{3}{2} \square x \square \square \square 2 \square \square \square 2y \square 2 \square 3 \square x \square$ 

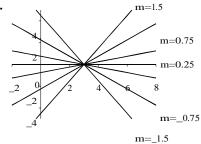



## 52. (a)



 $2x \square y \square 7 \square 0$ .



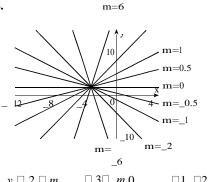

 $y \square \square 2x \square b, b \square 0, \square 1, \square 3, \square 6$ . They have the same slope, so they are parallel.



 $m=\_1.5$   $y \square mx \square 3, m \square 0, \square 0 \square 25, \square 0 \square 75, \square 1 \square 5.$  Each of the lines contains the point  $\square 0 \square \square 3 \square$  because the point  $\square 0 \square \square 3 \square$  satisfies each equation  $y \square mx \square 3$ . Since  $\square 0 \square \square 3 \square$  is on

the y-axis, they all have the same y-intercept.



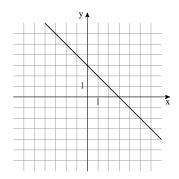



 $y \square m \square x \square 3\square$ ,  $m \square 0$ ,  $\square 0\square 25$ ,  $\square 0\square 75$ ,  $\square 1\square 5$ . Each of the lines contains the point  $\square 3\square 0\square$  because the point  $\square 3\square 0\square$ 

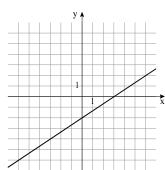
satisfies each equation  $y \square m \square x \square 3\square$ . Since  $\square 3 \square 0\square$  is on

the x-axis, we could also say that they all have the same x-intercept.

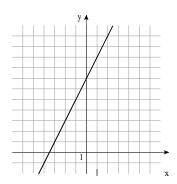
56.



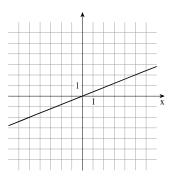

 $y \square 2 \square m$   $\square 3 \square, m 0, \square 1, \square 2, \square 6$ . Each of  $\square x$   $\square \square 0 \square 5,$ 


the lines contains the point  $\Box\Box\Box\Box\Box\Box\Box\Box$  because the point

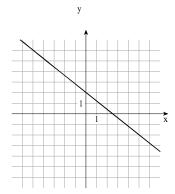
$$\square$$
 3  $\square$  2  $\square$  satisfies each equation y  $\square$   $\square$   $\square$   $\square$ 


**57.**  $y \square 3 \square x \square \square x \square 3$ . So the slope is  $\square 1$  and the *y*-intercept is 3.

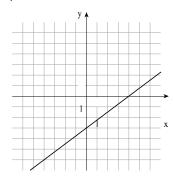



**58.**  $y \ \Box \ \frac{2}{3}x \ \Box \ 2$ . So the slope is  $\frac{2}{3}$  and the y-intercept is  $\Box 2$ .

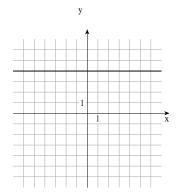



**59.**  $\Box 2x \Box y \Box 7 \Box y \Box 2x \Box 7$ . So the slope is 2 and the *y*-intercept is 7.

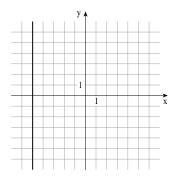



**60.**  $2x \square 5y \square 0 \square \square 5y \square \square 2x \square y \square ^2$ **3**. So the slope is  $\frac{2}{5}$  and the y-intercept is 0.

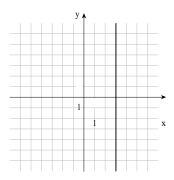



**61.**  $4x \square 5y \square 10 \square 5y \square \square 4x \square 10 \square y \square \square^4 _{\frac{x}{5}} \square 2$ . So the slope is  $\Box \frac{4}{5}$  and the *y*-intercept is 2.

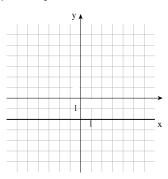



**62.**  $3x \square 4y \square 12 \square \square 4y \square \square 3x \square 12 \square y \square {}^3x \square 3$ . So the slope is  $\frac{3}{4}$  and the y-intercept is  $\square 3$ .



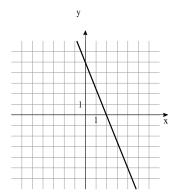

**63.**  $y \square 4$  can also be expressed as  $y \square 0x \square 4$ . So the slope is **64.**  $x \square \square 5$  cannot be expressed in the form  $y \square mx \square b$ . So 0 and the y-intercept is 4.




the slope is undefined, and there is no y-intercept. This is a vertical line.

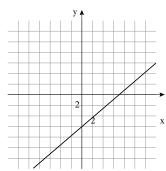


**65.**  $x \square 3$  cannot be expressed in the form  $y \square mx \square b$ . So the **66.**  $y \square 2$  can also be expressed as  $y \square 3$  0. So the slope slope is undefined, and there is no y-intercept. This is a vertical line.




is 0 and the *y*-intercept is  $\Box 2$ .



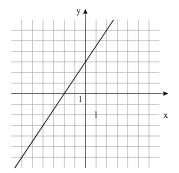

**67.**  $5x \square 2y \square 10 \square 0$ . To find x-intercepts, we set  $y \square 0$  and **68.**  $6x \square 7y \square 42 \square 0$ . To find x-intercepts, we set  $y \square 0$  and solve for x:  $5x \square 2 \square 0 \square \square 10 \square 0 \square 5x \square 10 \square x \square 2$ , so the x-intercept is 2.

To find *y*-intercepts, we set  $x \square 0$  and solve for *y*:  $5 \square 0 \square \square 2y \square 10 \square 0 \square 2y \square 10 \square y \square 5$ , so the *y*-intercept is 5.



solve for x:  $6x \square 7 \square 0 \square \square 42 \square 0 \square 6x \square 42 \square x \square 7$ , so the x-intercept is 7.

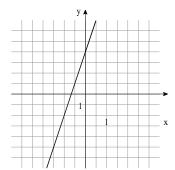
To find *y*-intercepts, we set  $x \square 0$  and solve for *y*:  $6 \square 0 \square \square 7y \square 42 \square 0 \square 7y \square \square 42 \square y \square \square 6$ , so the *y*-intercept is  $\Box 6$ .




**69.**  ${}^1x \square {}^1y \square 1 \square 0$ . To find *x*-intercepts, we set  $y \square 0$  and  ${}^2z \square {}^3z \square {}^2z \square {}$ 

so the *x*-intercept is  $\Box 2$ .

To find *y*-intercepts, we set  $x \square 0$  and solve for *y*:


 $\frac{1}{2} \square 0 \square \stackrel{1}{\hookrightarrow} {}_3 y \square 1 \square 0 \stackrel{1}{\hookrightarrow} {}_3 y \square 1 \square y \square 3, \text{ so the } y\text{-intercept is } 3.$ 

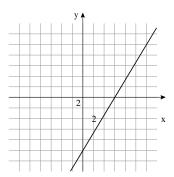


**71.**  $y \square 6x \square 4$ . To find *x*-intercepts, we set  $y \square 0$  and solve

for x:  $0 \square 6x \square 4 \square 6x \square 24 \square 4 \square 3x \square 2 {1 \over 8}$ so the x-intercept is  $\square {2 \over 3}$ .

To find *y*-intercepts, we set  $x \square 0$  and solve for *y*:  $y \square 6 \square 0 \square \square 4 \square 4$ , so the *y*-intercept is 4.



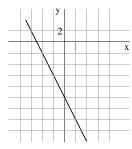

**70.**  ${}^1x \square {}^1y \square 2 \square 0$ . To find *x*-intercepts, we set  $y \square 0$  and

solve for x:  ${}^1x \Box {}^1 \Box 0 \Box \Box 2 \Box 0 \Box {}^1x \Box 2 \Box x \Box 6$ , so

the *x*-interce $\overline{p}$ t is 6.

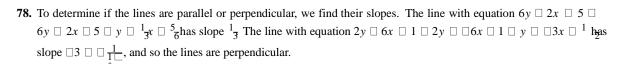
To find y-intercepts, we set  $x \square 0$  and solve for y:

 $\begin{bmatrix} - & - \\ 1 & 0 \end{bmatrix} \begin{bmatrix} - & - \\ 5 & y \end{bmatrix} \begin{bmatrix} 2 \end{bmatrix} \begin{bmatrix} 0 \end{bmatrix} \begin{bmatrix} 1 \\ 5 \end{bmatrix} \begin{bmatrix} 0 \end{bmatrix} \begin{bmatrix} 1 \\ 5 \end{bmatrix} \begin{bmatrix} 0 \end{bmatrix} \begin{bmatrix} 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} 0 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix}$ , so the *y*-intercept is  $\begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} 0 \\$ 




**72.**  $y \square \square 4x \square 10$ . To find *x*-intercepts, we set  $y \square 0$  and

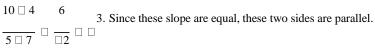
solve for x:  $0 \Box \Box 4x \Box 10 \Box 4x \Box \Box 10 \Box x \Box \Box^5$ , so the x-intercept is  $\Box^5$ .


To find y-intercepts, we set  $x \square 0$  and solve for y:

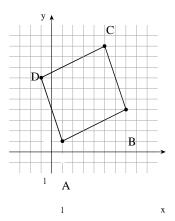
 $y \square \square 4 \square 0 \square \square 10 \square \square 10$ , so the y-intercept is  $\square 10$ .



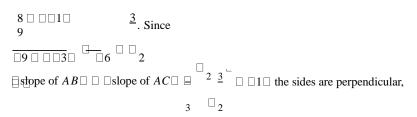
- **73.** To determine if the lines are parallel or perpendicular, we find their slopes. The line with equation  $y \square 2x \square 3$  has slope 2. The line with equation  $2y \square 4x \square 5 \square 0 \square 2y \square 4x \square 5 \square y \square 2x \square \frac{5}{2}$  also has slope 2, and so the lines are parallel.
- **74.** To determine if the lines are parallel or perpendicular, we find their slopes. The line with equation  $y = \frac{1}{2}x = 4$  has slope  $\frac{1}{2}$ . The line with equation 2x = 4y = 1 = 4y = 2x = 1 = 2x = 4 has slope  $\frac{1}{2}$  has slope  $\frac{1}{2}$  has slope  $\frac{1}{2}$  and so the lines are neither parallel nor perpendicular.
- **75.** To determine if the lines are parallel or perpendicular, we find their slopes. The line with equation  $\Box 3x \Box 4y \Box 4 \Box 4y \Box 3x \Box 4 \Box y \Box \frac{3}{4}x \Box 1$  has slope  $\frac{3}{4}$ . The line with equation  $4x \Box 3y \Box 5 \Box 3y \Box \Box 4x \Box 5 \Box y \Box \frac{4}{3}x \Box \frac{5}{3}$  has slope  $\Box \frac{4}{3} \Box \Box \frac{1}{3}\Box a$  and so the lines are perpendicular.
- **76.** To determine if the lines are parallel or perpendicular, we find their slopes. The line with equation  $2x \Box 3y \Box 10 \Box 3y \Box 2x \Box 10 \Box y \Box \frac{2}{3}x \Box \frac{10}{3}$  has slope  $\frac{2}{3}$ . The line with equation  $3y \Box 2x \Box 7 \Box 0 \Box 3y \Box 2x \Box 7 \Box y \Box \frac{2}{3}x \Box \frac{7}{3}$  also has slope  $\frac{2}{3}$ , and so the lines are parallel.


77. To determine if the lines are parallel or perpendicular, we find their slopes. The line with equation  $7x \Box 3y \Box 2 \Box 3y \Box 7x \Box 2 \Box y \Box \frac{7}{3}x \Box \frac{2}{3}$  has slope  $\frac{7}{3}$ . The line with equation  $9y \Box 21x \Box 1 \Box 9y \Box 21x \Box 1 \Box y \Box \frac{7}{3}\Box \frac{1}{3}$  has slope  $\Box \frac{7}{3}\Box \Box \frac{1}{7\Box 3}$  and so the lines are neither parallel nor perpendicular.

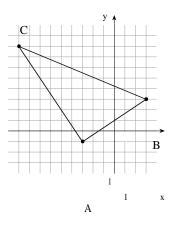



**79.** We first plot the points to find the pairs of points that determine each side. Next we find the slopes of opposite sides. The slope of AB is  $\longrightarrow$   $\square$  , and the

slope of DC is  $\frac{10 \square 7}{5 \square} \square \frac{3}{6} \square \frac{1}{2}$ . Since these slope are equal, these two sides


are parallel. The slope of AD is  $\Box$   $\Box$  3, and the slope of BC is




Hence ABCD is a parallelogram.

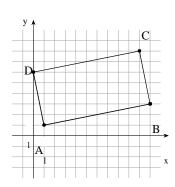


**80.** We first plot the points to determine the perpendicular sides. Next find the slopes of the sides. The slope of *AB* is  $\frac{1}{3 \square \square \square 3} \square \square$ , and the slope of *AC* is



and ABC is a right triangle.




**81.** We first plot the points to find the pairs of points that determine each side. Next we find the slopes of opposite sides. The slope of AB is \_\_\_\_  $\Box$  \_\_  $\Box$  and the

slope of DC is  $\frac{6 \square 8}{\square} \square \frac{\square 2}{\square} \square \frac{1}{\square}$ . Since these slope are equal, these two sides



 $\frac{3 \square 8}{11 \square 10} \square \frac{\square 5}{1} \square \square 5$ . Since these slope are equal, these two sides are parallel.

Since  $\Box$  slope of  $AB \Box \Box$  slope of  $AD \Box_{\overline{5}} \Box ^{1} \Box \Box \Box 5 \Box \Box \Box 1$ , the first two sides are each perpendicular to the second two sides. So the sides form a rectangle.



and  $\Box 6\Box$   $21\Box 1$   $\Box$   $\frac{20}{6\Box 1}$   $\Box$   $\frac{20}{5}$   $\Box$  4. Since the slopes are equal, the points are collinear.

83. We need the slope and the midpoint of the line AB. The midpoint of AB is  $\begin{bmatrix} 1 & 7 & 4 & 2 \\ 2 & 2 & 4 & 2 \end{bmatrix}$   $\begin{bmatrix} 1 & 7 & 4 & 2 \\ 2 & 4 & 4 & 2 \end{bmatrix}$   $\begin{bmatrix} 1 & 7 & 4 & 2 \\ 2 & 4 & 4 & 2 \end{bmatrix}$  and the slope of  $\begin{bmatrix} 1 & 7 & 4 & 2 \\ 2 & 4 & 4 & 2 \end{bmatrix}$ 

*AB* is  $m \ \Box \ \frac{\Box 2 \ \Box 4}{7 \ \Box 1} \ \Box \ \frac{\Box 6}{6} \ \Box \ \Box 1$ . The slope of the perpendicular bisector will have slope  $\frac{\Box 1}{} \ \Box \ \frac{\Box 1}{\Box 1} \ \Box \ 1$ . Using the point-slope form, the equation of the perpendicular bisector is  $y \ \Box \ 1 \ \Box \ 1 \ \Box x \ \Box \ 4 \ \Box \ or \ x \ \Box \ y \ \Box \ 3 \ \Box \ 0$ .

- **84.** We find the intercepts (the length of the sides). When  $x \square 0$ , we have  $2y \square 3 \square 0 \square \square 6 \square 0 \square 2y \square 6 \square y \square 3$ , and when  $y \square 0$ , we have  $2 \square 0 \square \square 3x \square 6 \square 0 \square 3x \square 6 \square x \square 2$ . Thus, the area of the triangle is  $\frac{1}{2} \square 3 \square \square 2 \square \square 3$ .
- **85.** (a) We start with the two points  $\Box a \Box 0 \Box$  and  $\Box 0 \Box b \Box$ . The slope of the line that contains  $\frac{b \Box 0}{\Box a} \Box \Box \frac{b}{a}$ . So the equation them is 0

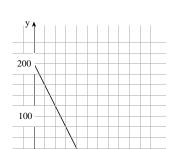
D

of the line containing them is  $y \square \square_a x \square b$  (using the slope-intercept form). Dividing by b (since  $b \square 0$ ) gives  $\frac{y}{b} \square \square_a x \square 1 \square x \square b \square 1$ .

- **(b)** Setting  $a \square 6$  and  $b \square \square 8$ , we get  $\frac{x}{6} \square \frac{y}{\square 8} \square 1 \square 4x \square 3y \square 24 \square 4x \square 3y \square 24 \square 0$ .
- **86.** (a) The line tangent at  $\Box 3 \Box \Box 4 \Box$  will be perpendicular to the line passing through the points  $\Box 0 \Box 0 \Box$  and  $\Box 3 \Box \Box 4 \Box$ . The slope of

this line is  $\frac{\Box 4 \Box 0}{3 \Box 0} = \frac{4}{3}$ . Thus, the slope of the tangent line will be  $\frac{1}{\Box \Box 4 \Box 3 \Box} = \frac{3}{4}$ . Then the equation of the tangent

line is  $y \square \square 4 \square \not\sqsubseteq ^3 \square x \square 3 \square \square 4 \square y \square 4 \square \square 3 \square x \square 3 \square \square 3x \square 4y \square 25 \square 0$ .


- (b) Since diametrically opposite points on the circle have parallel tangent lines, the other point is  $\Box \Box \exists \Box \exists \Box \exists \Box$ .
- 87. (a) The slope represents an increase of  $0 \square 02^{\square}$  C every year. The T -intercept is the average surface temperature in 1950, or  $15^{\square}$  C.

**(b)** In 2050, t = 2050 = 1950 = 100, so T = 0 = 02 = 100 = 15 = 17 degrees Celsius.

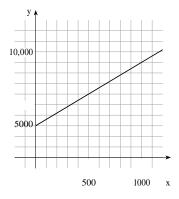
88. (a) The slope is  $0 \square 0417D \square 0 \square 0417 \square 200 \square \square 8 \square 34$ . It represents the increase in dosage for each one-year increase in the child's age.

**(b)** When  $a \square 0$ ,  $c \square 8\square 34 \square 0 \square 1 \square \square 8\square 34$  mg.

89. (a)



**(b)** The slope,  $\Box 4$ , represents the decline in number of spaces sold for each \$1 increase in rent. The *y*-intercept is the number of spaces at the flea market, 200, and the *x*-intercept is the cost per space when the manager rents no spaces, \$50.


**93** CHAPTER 1 Equations and Graphs

SECTION 1.3 Lines

93

×

90. (a)



**(b)** The slope is the cost per toaster oven, \$6. The *y*-intercept, \$3000, is the monthly fixed cost—the cost that is incurred no matter how many toaster ovens are produced.

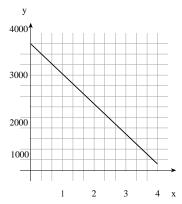
91. (a)

| С | □30□ | □20□            | □10□ | 0 _ | 10 | 20 🗆 | 30 🗆 |
|---|------|-----------------|------|-----|----|------|------|
| F | □22□ | □4 <sup>□</sup> | 14   | 32  | 50 | 68   | 86   |

**(b)** Substituting *a* for both F and C, we have

$$a \quad \Box^{9}_{5}a \quad \Box \quad 32 \quad \Box \quad \Box^{4}_{5}a \quad \Box \quad 32 \quad \Box$$
 $a \quad \Box \quad 40 \quad \Box$  Thus both scales agree at  $\Box \quad 40 \quad \Box$ 

**92.** (a) Using n in place of x and t in place of y, we find that the slope is  $\frac{t_2 \Box t_1}{n_2 \Box n_1} \Box \frac{80 \Box 70}{168 \Box 120} \Box \frac{5}{48} \Box \frac{5}{24}$ . So the linear

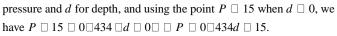

| equation is $t \square 80 \square$ | $\frac{5}{24} \sqcap n \square 168 \sqcap \square t \square$ | $80 \square_{\overline{24}}^{5} n \square 35 \square$ | $t \square \frac{5}{24} n \square 45$ . |  |
|------------------------------------|--------------------------------------------------------------|-------------------------------------------------------|-----------------------------------------|--|

**(b)** When  $n \square 150$ , the temperature is approximately given by  $t \square \frac{5}{24} \square 150 \square \square 45 \square 76 \square 25^{\square}$  F  $\square 76^{\square}$  F.

**93.** (a) Using t in place of x and V in place of y, we find the slope of the line using the points  $\Box 0 \Box 4000 \Box$  and  $\Box 4 \Box 200 \Box$ . Thus, the slope is



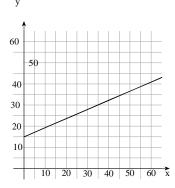
**(b)** 




(c) The slope represents a decrease of \$950 each year in the value of the computer. The *V* -intercept represents the cost of the computer.

 $V \square \square 950 \square 3 \square \square 4000 \square$  1150.

**94.** (a) We are given  $\frac{10 \text{ feet change in depth}}{10 \text{ for}} = \frac{0 \text{ } 0 \text{ } 434. \text{ Using } P}{10 \text{ } \text{ for}}$ 


for



(c) The slope represents the increase in pressure per foot of descent. The *y*-intercept represents the pressure at the surface.

 $d \square 195 \square 9$  ft. Thus the pressure is 100 lb/in<sup>3</sup> at a depth of approximately 196 ft.

**(b)** 



**95.** The temperature is increasing at a constant rate when the slope is positive, decreasing at a constant rate when the slope is negative, and constant when the slope is 0.

**96.** We label the three points A, B, and C. If the slope of the line segment  $\overline{AB}$  is equal to the slope of the line segment  $\overline{BC}$ , then the points A, B, and C are collinear. Using the distance formula, we find the distance between A and B, between B and C, and between A and C. If the sum of the two smaller distances equals the largest distance, the points A, B, and C are collinear.

Another method: Find an equation for the line through A and B. Then check if C satisfies the equation. If so, the points are collinear.

## 1.4 SOLVING QUADRATIC EQUATIONS

| 1  | (a)         | The Quadratic Formula states that $x \square$ |            | $\Box b$ |        | $b^2 \square 4$ | ac |              |   |   |            |   |  |
|----|-------------|-----------------------------------------------|------------|----------|--------|-----------------|----|--------------|---|---|------------|---|--|
| 1. | (a)         | THE QU                                        | iadratic i | OIII     | iuia s | iaics           | ша | ι <i>λ</i> 🗆 |   |   | 2 <i>a</i> |   |  |
|    | <b>/=</b> \ |                                               |            | 1 4      | · _    |                 |    | _            | 1 | _ |            | _ |  |

| <b>(b)</b> | In the equation  | $\frac{1}{2}x^2 \square x$ | $\Box$ 4 $\Box$ 0, $a$ $\Box$ | $\frac{1}{2}$ , $b \square$ | $\Box$ 1, and $c$ $\Box$ | □4. S | So, the so | lution of | the equatio | n is |
|------------|------------------|----------------------------|-------------------------------|-----------------------------|--------------------------|-------|------------|-----------|-------------|------|
|            | x \( \Bigcirc \) | □□12                       | 1                             | $\frac{1 \sqcup 3}{1}$      | □ □2 or 4.               |       |            |           |             |      |

$$2 \frac{}{2}$$

- **2.** (a) To solve the equation  $x^2 \Box 4x \Box 5 \Box 0$  by factoring, we write  $x^2 \Box 4x \Box 5 \Box x \Box 5 \Box x \Box 1 \Box 0$  and use the Zero-Product Property to get  $x \Box 5$  or  $x \Box 1$ .
  - **(b)** To solve by completing the square, we add 5 to both sides to get  $x^2 \Box 4x \Box 5$ , and then add  $\begin{bmatrix} 1 & 1 & 1 \\ & 4 & \\ & & 2 \end{bmatrix}$  to both sides to get  $\begin{bmatrix} 1 & 1 & \\ & & 2 \end{bmatrix}$

```
x^2 \square 4x \square 4 \square 5 \square 4 \square \square x \square 2 \square^2 \square 9 \square x \square 2 \square 3 \square x \square 5 \text{ or } x \square \square 1.
```

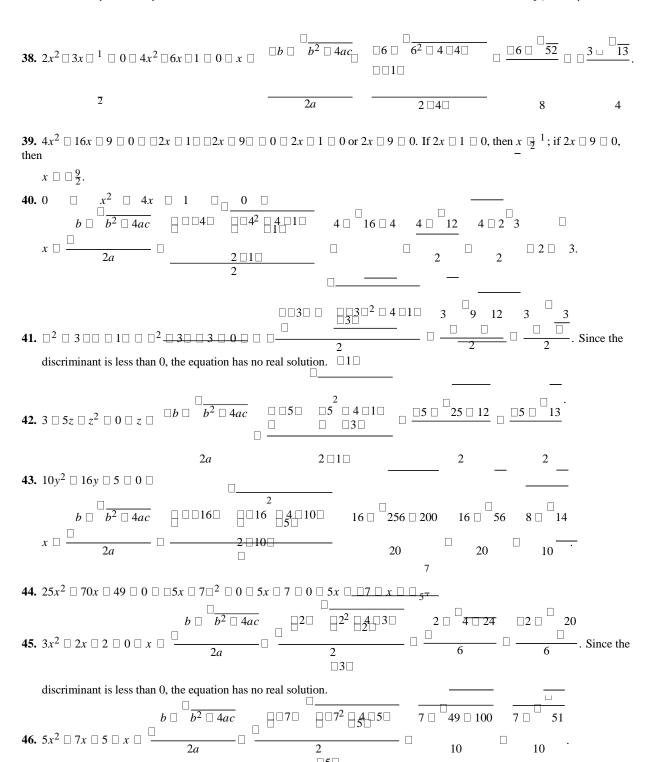
(c) To solve using the Quadratic Formula, we substitute  $a \square 1$ ,  $b \square \square 4$ , and  $c \square \square 5$ , obtaining

- **3.** For the quadratic equation  $ax^2 \Box bx \Box c \Box 0$  the discriminant is  $D \Box b^2 \Box 4ac$ . If  $D \Box 0$ , the equation has two real solutions; if  $D \Box 0$ , the equation has one real solution; and if  $D \Box 0$ , the equation has no real solution.
- **4.** There are many possibilities. For example,  $x^2 \Box 1$  has two solutions,  $x^2 \Box 0$  has one solution, and  $x^2 \Box \Box 1$  has no solution.
- **5.**  $x^2 \square 8x \square 15 \square 0 \square \square x \square 3 \square \square x \square 5 \square \square 0 \square x \square 3 \square 0 \text{ or } x \square 5 \square 0$ . Thus,  $x \square 3 \text{ or } x \square 5$ .
- **6.**  $x^2 \square 5x \square 6 \square 0 \square \square x \square 3 \square \square x \square 2 \square \square 0 \square x \square 3 \square 0$  or  $x \square 2 \square 0$ . Thus,  $x \square \square 3$  or  $x \square \square 2$ .
- 7.  $x^2 \square x \square 6 \square x^2 \square x \square 6 \square 0 \square \square x \square 2 \square \square x \square 3 \square \square 0 \square x \square 2 \square 0$  or  $x \square 3 \square 0$ . Thus,  $x \square \square 2$  or  $x \square 3$ .
- **8.**  $x^2 \square 4x \square 21 \square x^2 \square 4x \square 21 \square 0 \square \square x \square 3 \square \square x \square 7 \square \square 0 \square x \square 3 \square 0 \text{ or } x \square 7 \square 0.$  Thus,  $x \square \square 3 \text{ or } x \square 7.$
- **9.**  $5x^2 \square 9x \square 2 \square 0 \square \square 5x \square 1 \square \square x \square 2 \square \square 0 \square 5x \square 1 \square 0$  or  $x \square 2 \square 0$ . Thus,  $x \square \not \equiv 1$  or  $x \square 2$ .
- **10.**  $6x^2 \square x \square 12 \square 0 \square \square 3x \square 4 \square \square 2x \square 3 \square \square 0 \square 3x \square 4 \square 0 \text{ or } 2x \square 3 \square 0.$  Thus,  $x \square \stackrel{\triangle}{=}_3$  or  $x \stackrel{\square}{=}_2$ .
- **12.**  $4y^2 \square 9y \square 28 \square 4y^2 \square 9y \square 28 \square 0 \square \square 4y \square 7 \square \square y \square 4 \square \square 0 \square 4y \square 7 \square 0 \text{ or } y \square 4 \square 0.$  Thus,  $y \square \frac{\square}{4}^7$  or  $y \square 4$ .
- **13.**  $12z^2 \square 44z \square 45 \square 12z^2 \square 44z \square 45 \square 0 \square \square 6z \square 5 \square \square 2z \square 9 \square \square 0 \square 6z \square 5 \square 0 \text{ or } 2z \square 9 \square 0.$  Thus,  $z \square \stackrel{\triangle}{=}_6$  or  $z \square^2_2$ .
- **14.**  $4 \Box ^2 \Box 4 \Box \Box 3 \Box 4 \Box ^2 \Box 4 \Box \Box 3 \Box 0 \Box \Box 2 \Box \Box 1 \Box \Box 2 \Box \Box 3 \Box 0 \Box 2 \Box \Box 1 \Box 0 \text{ or } 2 \Box \Box 3 \Box 0. \text{ If } 2 \Box \Box 1 \Box 0, \text{ then } \Box \Box \Box \frac{1}{2}; \text{ if } 2 \Box \Box 3 \Box 0, \text{ then } \Box \Box \frac{3}{2}.$
- **15.**  $x^2 \square 5 \square x \square 100 \square \square x^2 \square 5x \square 500 \square x^2 \square 5x \square 500 \square 0 \square x \square 25 \square x \square 200 \square 0 \square x \square 25 \square 0 \text{ or } x \square 20 \square 0$ . Thus,

 $x \square 25$  or  $x \square \square 20$ .

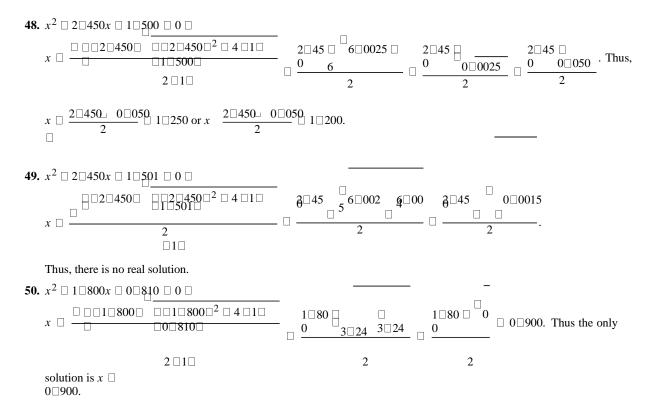
**16.**  $6x \square x \square 1 \square \square 21 \square x \square 6x^2 \square 6x \square 21 \square x \square 6x^2 \square 5x \square 21 \square 0 \square \square2x \square 3 \square \square3x \square 7 \square \square 0 \square 2x \square 3 \square 0 \text{ or } 3x \square 7 \square 0$ .

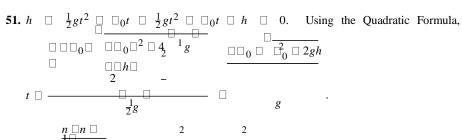
If  $2x \square 3 \square 0$ , then  $x \square \square \frac{3}{2}$ ; if  $3x \square 7 \square 0$ , then  $x \square \frac{7}{3}$ .


- **18.**  $x^2 \square 6x \square 2 \square 0 \square x^2 \square 6x \square 2 \square x^2 \square 6x \square 9 \square 2 \square 9 \square x \square 3 \square^2 \square 11 \square x \square 3 \square \square \overline{11} \square x \square \square 3 \square 11$ .
- **19.**  $x^2 \square 6x \square 11 \square 0 \square x^2 \square 6x \square 11 \square x^2 \square 6x \square 9 \square 11 \square 9 \square \square x \square 3 \square^2 \square 20 \square x \square 3 \square \square^2 5 \square x \square 3 \square 2 \square 5.$

- **23.**  $x^2 \square 22x \square 21 \square 0 \square x^2 \square 22x \square \square 21 \square x^2 \square 22x \square 11^2 \square \square 21 \square 11^2 \square \square 21 \square 121 \square \square x \square 11 \square^2 \square 100 \square x \square 11 \square \square 10 \square x \square \square 11 \square 10$ . Thus,  $x \square \square 1$  or  $x \square \square 21$ .
- **24.**  $x^2 \,\Box\, 18x \,\Box\, 19 \,\Box\, x^2 \,\Box\, 18x \,\Box\, \Box\, \Box\, 9\Box^2 \,\Box\, 19 \,\Box\, \Box\, \Box\, 9\Box^2 \,\Box\, 19 \,\Box\, 81 \,\Box\, \Box\, x \,\Box\, 9\Box^2 \,\Box\, 100 \,\Box\, x \,\Box\, 9 \,\Box\, \Box\, 10 \,\Box\, x \,\Box\, 9 \,\Box\, 10, \,so$

- **27.**  $2x^2 \ | \ 7x \ | \ 4 \ | \ 0 \ | \ x^2 \ | \ \frac{7}{2}x \ | \ 2 \ | \ 0 \ | \ x^2 \ | \ \frac{7}{2}x \ | \ 2 \ | \ 0 \ | \ x^2 \ | \ \frac{7}{2}x \ | \ 2 \ | \ x^2 \ | \ \frac{7}{2}x \ | \ x^2 \ | \ \frac{49}{16} \ | \ 2 \ | \ \frac{49}{16} \ | \ x \ | \ \frac{7}{4} \ | \ \frac{17}{16} \ | \ x \ | \ \frac{7}{4} \ | \ \frac{17}{16} \ | \ x \ | \ \frac{7}{4} \ | \ \frac{17}{16} \ | \ x \ | \ \frac{7}{4} \ | \ \frac{17}{16} \ | \ x \ | \ \frac{7}{4} \ | \ \frac{17}{16} \ | \ x \ | \ \frac{7}{4} \ | \ \frac{17}{16} \ | \ x \ | \ \frac{7}{4} \ | \ \frac{17}{16} \ | \ x \ | \ \frac{7}{4} \ | \ \frac{17}{16} \ | \ x \ | \ \frac{7}{4} \ | \ \frac{17}{16} \ | \ x \ | \ \frac{7}{4} \ | \ \frac{17}{16} \ | \ x \ | \ \frac{7}{4} \ | \ \frac{17}{16} \ | \ x \ | \ \frac{7}{4} \ | \ \frac{17}{16} \ | \ x \ | \ \frac{7}{4} \ | \ \frac{17}{16} \ | \ x \ | \ \frac{7}{4} \ | \ \frac{17}{16} \ | \ x \ | \ \frac{7}{4} \ | \ \frac{17}{16} \ | \ x \ | \ \frac{7}{4} \ | \ \frac{17}{16} \ | \ x \ | \ \frac{7}{4} \ | \ \frac{17}{16} \ | \ x \ | \ \frac{7}{16} \ | \ x \ | \ \frac{7}{4} \ | \ \frac{17}{16} \ | \ x \ | \ \frac{7}{4} \ | \ \frac{17}{16} \ | \ x \ | \ \frac{7}{4} \ | \ \frac{17}{16} \ | \ x \ | \ \frac{7}{4} \ | \ \frac{17}{16} \ | \ x \ | \ \frac{7}{4} \ | \ \frac{17}{16} \ | \ x \ | \ \frac{7}{4} \ | \ \frac{17}{16} \ | \ x \ | \ \frac{7}{4} \ | \ \frac{17}{16} \ | \ x \ | \ \frac{7}{16} \ | \ x \ | \ \frac{7}{16} \ | \ x \ | \ \frac{7}{4} \ | \ \frac{17}{16} \ | \ x \ | \ \frac{7}{16} \ | \ x \ | \ x \ | \ \frac{7}{16} \ | \ x \ | \ x \ | \ x \ | \ x \ | \ x \ | \ x \ | \ x \ | \ x \ | \ x \ | \ x \ | \ x \ | \ x \ | \ x \ | \ x \ | \ x \ | \ x \ | \ x \ | \ x \ | \ x \ | \ x \ | \ x \ | \ x \ | \ x \ | \ x \ | \ x \ | \ x \ | \ x \ | \ x \ | \ x \ | \ x \ | \ x \ | \ x \ | \ x \ | \ x \ | \ x \ | \ x \ | \ x \ | \ x \ | \ x \ | \ x \ | \ x \ | \ x \ | \ x \ | \ x \ | \ x \ | \ x \ | \ x \ | \ x \ | \ x \ | \ x \ | \ x \ | \ x \ | \ x \ | \ x \ | \ x \ | \ x \ | \ x \ | \ x \ | \ x \ | \ x \ | \ x \ | \ x \ | \ x \ | \ x \ | \ x \ | \ x \ | \ x \ | \ x \ | \ x \ | \ x \ | \ x \ | \ x \ | \ x \ | \ x \ | \ x \ | \ x \ | \ x \ | \ x \ | \ x \ | \ x \ | \ x \ | \$
- **29.**  $x^2 \square 8x \square 12 \square 0 \square \square x \square 2 \square \square x \square 6 \square \square 0 \square x \square 2$  or  $x \square 6$ .
- **30.**  $x^2 \square 3x \square 18 \square 0 \square \square x \square 3\square \square x \square 6\square \square 0 \square x \square \square 3$  or  $x \square 6$ .
- **31.**  $x^2 \square 8x \square 20 \square 0 \square x \square 10 \square x \square 2 \square 0 \square x \square 10$  or  $x \square 2$ .
- **32.**  $10x^2 \square 9x \square 7 \square 0 \square \square 5x \square 7 \square \square 2x \square 1 \square \square 0 \square x \square \square \square_5$  or  $x \square \square_2$ .
- **33.**  $2x^2 \square x \square 3 \square 0 \square \square x \square 1 \square \square 2x \square 3 \square \square 0 \square x \square 1 \square 0$  or  $2x \square 3 \square 0$ . If  $x \square 1 \square 0$ , then  $x \square 1$ ; if  $2x \square 3 \square 0$ , then  $x \square 1 \frac{3}{2}$ .
- 35.  $3x^2 \Box 6x \Box 5 \Box 0 \Box x^2 \Box 2x \Box \frac{5}{3} \Box 0 \Box x^2 \Box 2x \Box \frac{5}{3} \Box x^2 \Box 2x \Box 1 \Box \frac{5}{3} \Box 1 \Box \Box x \Box 1 \Box 2 \Box \frac{8}{3} \Box x \Box 1 \Box \Box \frac{8}{3} \Box x \Box 1 \Box \Box \frac{2}{6}$
- **36.**  $x^2 \square 6x \square 1 \square 0 \square_{\square}$

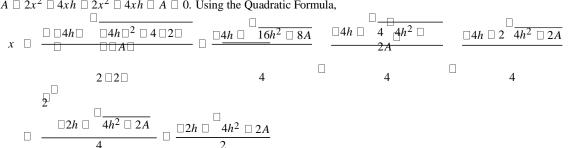

**37.**  $x^2 \square \frac{4}{3}x \square \frac{4}{9} \square 0 \square 9x^2 \square 12x \square 4 \square 0 \square \square 3x \square 2\square^2 \square 0 \square x \square \frac{2}{3}$ .

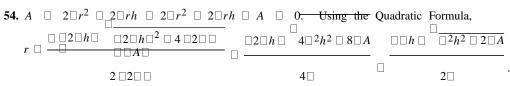

\_\_\_\_



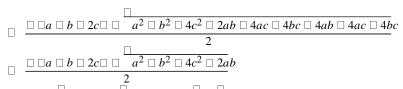
Since the discriminant is less than 0, the equation has no real solution.

Thus,  $x \Box \frac{0 \Box 01 \bot 0 \Box 506}{2} 0 \Box 259 \text{ or } x \frac{0 \Box 01 \bot 0 \Box 506}{2} \Box 0 \Box 248.$ 




**52.**  $S \square \square 2S \square n \square n \square n \square n \square n \square n \square n$  Using the Quadratic Formula,




**53.**  $A \square 2x^2 \square 4xh \square 2x^2 \square 4xh \square A \square 0$ . Using the Quadratic Formula,





- $\mathbf{55.} \ \frac{1}{s \sqcap a} \square \frac{1}{s \sqcap b} \square \frac{1}{c} \square c \square s \square b \square \square c \square s \square a \square \square s \square a \square s \square b \square \square c s \square bc \square cs \square ac \square s^2 \square as \square bs \square ab \square$



- **56.**  $\frac{1}{r} \Box \frac{2}{1 \Box r} \Box \frac{4}{r^2} \Box r^2 \Box 1 \Box r \Box \frac{1}{r} \Box \frac{2}{1 \Box r} \Box r^2 \Box 1 \Box r \Box \frac{4}{r^2} \Box r \Box 1 \Box r \Box 2r^2 \Box 4 \Box 1 \Box r \Box r \Box r^2 \Box 2r^2 \Box 4 \Box$
- **57.**  $D \square b^2 \square 4ac \square \square \square 6\square^2 \square 4\square 1\square \square 1\square \square 32$ . Since D is positive, this equation has two real solutions.
- **58.**  $x^2 \square 6x \square 9 \square x^2 \square 6x \square 9$ , so  $D \square b^2 \square 4ac \square \square \square 6\square^2 \square 4 \square 1\square \square 9\square \square 36 \square 36 \square 0$ . Since  $D \square 0$ , this equation has one real solution.
- **59.**  $D \square b^2 \square 4ac \square \square 2\square 20\square^2 \square 4 \square 1 \square \square 1\square 21\square \square 4\square 84 \square 4\square 84 \square 0$ . Since  $D \square 0$ , this equation has one real solution.

| <b>60.</b> $D \square b^2 \square 4ac \square \square 2\square 21\square^2 \square 4 \square 1 \square \square 1\square 21\square \square 4\square 8841 \square 4\square 84 \square 0\square 0441$ . Since $D \square 0$ , this equation has two real solutions.                                                                                  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>61.</b> $D \square b^2 \square 4ac \square \square 5\square^2 \square 4 \square 4 \square 4 \square 3 \square \square \square 13 \square \square 25 \square 26 \square \square 1$ . Since $D$ is negative, this equation has no real solution.                                                                                                 |
| <b>62.</b> $D \square b^2 \square 4ac \square \square r \square^2 \square 4 \square 1 \square \square s \square \square r^2 \square 4s$ . Since $D$ is positive, this equation has two real solutions.                                                                                                                                            |
| <b>63.</b> $a^2x^2 \square 2ax \square 1 \square 0 \square \square ax$ $P \square                                  $                                                                                                                                                                                                                              |
| <b>64.</b> $ax^2 \square \square 2a \square 1 \square x \square \square a \square 1 \square \square 0 \square [ax \square \square a \square 1 \square] \square x \square 1 \square \square 0 \square ax \square \square a \square 1 \square \square 0 \text{ or } x \square 1 \square 0.$ If $ax \square \square a \square 1 \square \square 0$ , |
| then $x \square \frac{a \square 1}{a}$ ; if $x \square 1 \square 0$ , then $x \square 1$ .                                                                                                                                                                                                                                                        |

| 65.              | We want to find the values of $k$ that make the discriminant 0. Thus $k^2 \square 4 \square 4 \square 25 \square \square 0 \square k^2 \square 400 \square k \square \square 20 \square$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                  | We want to find the values of $k$ that make the discriminant 0. Thus $D \Box 36^2 \Box 4 \Box k \Box \Box k \Box \Box 0 \Box 4k^2 \Box 36^2 \Box 2k \Box \Box 36 \Box k \Box \Box 18$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 67.              | Let $n$ be one number. Then the other number must be 55 $\square$ $n$ since $n$ $\square$ $\square$ 55 $\square$ $n$ $\square$ 55.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                  | Because the product is 684, we have $\square n \square \square 55 \square n \square \square 684 \square 55n \square n^2 \square 684 \square n^2 \square 55n \square 684 \square 0 \square$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                  | 684                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                  | $\frac{1}{2}$ 19. In either case, the two numbers are 19 and 36.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 68.              | Let $n$ be one even number. Then the next even number is $n \square 2$ . Thus we get the equation $n^2 \square \square n \square 2 \square^2 \square 1252 \square$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                  | Let $n$ be one even number. Then the next even number is $n \square 2$ . Thus we get the equation $n^2 \square n \square 2 \square^2 \square 1252 \square n^2 \square n^2 \square 4n \square 4 \square 1252 \square 0 \square 2n^2 \square 4n \square 1248 \square 2 \square n^2 \square 2n \square 624 \square 2 \square n \square 24 \square n \square 26 \square$ . So $n \square 24$ or $n \square 26$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                  | Thus the consecutive even integers are 24 and 26 or □26 and □24.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 69.              | Let $\Box$ be the width of the garden in feet. Then the length is $\Box$ 10. Thus 875 $\Box$ $\Box$ $\Box$ 10 $\Box$ 2 $\Box$ 10 $\Box$ 875 $\Box$ 0 $\Box$ $\Box$ 35 $\Box$ $\Box$ 25 $\Box$ 0. So $\Box$ 35 $\Box$ 0 in which case $\Box$ 35 $\Box$ which is not possible, or $\Box$ 25 $\Box$ 0 and so $\Box$ 25. Thus the width is 25 feet and the length is 35 feet.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 70.              | Let $\Box$ be the width of the bedroom. Then its length is $\Box$ $\Box$ 7. Since area is length times width, we have $228 \Box $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                  | $\square$ $\square$ 19 or $\square$ 12. Since the width must be positive, the width is 12 feet.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 71.              | Let $\Box$ be the width of the garden in feet. We use the perimeter to express the length $l$ of the garden in terms of width. Since the perimeter is twice the width plus twice the length, we have $200 \Box 2\Box \Box 2l \Box 2l \Box 200 \Box 2\Box \Box l \Box 100 \Box \Box$ . Using                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                  | the formula for area, we have $2400 \square \square 100 \square \square \square 100 \square \square \square 100 \square \square \square 100 \square \square 2400 \square 2400 \square 0 \square \square 400 \square \square 060 \square 0.$ So $\square \square 40 \square \square \square 40$ , or $\square \square 60 \square 0 \square \square \square 60$ . If $\square \square 40$ , then $\square \square 100 \square 40 \square 60$ . And if $\square \square 60$ , then $\square \square 100 \square 100$ |
| 72.              | First we write a formula for the area of the figure in terms of $x$ . Region $A$ has                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                  | dimensions 14 in. and $x$ in. and region $B$ has dimensions $\Box 13 \Box x \Box$ in. and $x$ in.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                  | So the area of the figure is $\Box 14 \Box x \Box \Box \Box \Box 13 \Box x \Box x \Box \Box \Box 14x \Box 13x \Box x^2 \Box x^2 \Box$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                  | 27x. We are given that this is equal to $160 \text{ in}^2$ , so $160 \square x^2 \square 27x \square x^2 \square 27x \square$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                  | $\square \square x \square 32 \square \square x \square 5 \square \square x \square \square 32 \text{ or } x \square 5. x \text{ must be positive, so } x \square 5 \text{ in.}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <b>73.</b><br>We | The shaded area is the sum of the area of a rectangle and the area of a triangle. So $A \Box y \Box 1 \Box \Box 1 \Box y \Box y \Box \Box 1 y^2 \Box y$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                  | are given that the area is 1200 cm <sup>2</sup> , so 1200 $\square$ $\frac{1}{2}y^2$ $\square$ $y$ $\square$ $y^2$ $\square$ 2 $y$ $\square$ 2400 $\square$ 0 $\square$ $\square$ $y$ $\square$ 50 $\square$ $\square$ $y$ $\square$ 48 $\square$ $\square$ 0. $y$ is positive, so                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                  | <i>y</i> □ 48 cm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 74.              | Setting $P \square 1250$ and solving for $x$ , we have $1250 \square \frac{1}{10}x \square 300 \square x \square \square 30x \square \frac{1}{10}x^2 \square \frac{1}{10}x^2 \square 30x \square 1250 \square 0$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                  | Using the Quadratic Formula, $x = \begin{bmatrix} 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                  | 2 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                  | $30 \square 20$ $30 \square 20$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                  | $x \square \qquad \square \qquad \square \qquad \square \qquad \square$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

|                                                                         | $\square$ 250. Since he must have $0 \square x \square$ 200, he should make 50 ovens per week.                                                                                              |
|-------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $0\Box 2$                                                               | •                                                                                                                                                                                           |
| <b>75.</b> Let $x$ be the length of one side of the                     | ne cardboard, so we start with a piece of cardboard $x$ by $x$ . When 4 inches are                                                                                                          |
| removed from each side, the base of                                     | the box is $x \square 8$ by $x \square 8$ . Since the volume is 100 in <sup>3</sup> , we get $4 \square x \square 8 \square^2 \square 100 \square$                                          |
| $x^2 \square 16x \square 64 \square 25 \square x^2 \square 16x \square$ | 39 $\square$ 0 $\square$ $\square$ $x$ $\square$ 3 $\square$ $\square$ $x$ $\square$ 13 $\square$ $\square$ 0. So $x$ $\square$ 3 or $x$ $\square$ 13. But $x$ $\square$ 3 is not possible, |
| since                                                                   |                                                                                                                                                                                             |
| then the length of the base would be                                    | $3 \square 8 \square \square 5\square$ and all lengths must be positive. Thus $x \square 13$ , and the piece of cardboard                                                                   |
| is 13 inches by 13 inches.                                              |                                                                                                                                                                                             |

| 76. | Let $r$ be the radius of the can. Now using the formula $V \square \square r^2 h$ with $V \square 40 \square \text{ cm}^3$ and $h \square 10$ , we solve for $r$ . Thus $40 \square \square r^2 \square 10 \square \square 4 \square r^2 \square r \square \square 2$ . Since $r$ represents radius, $r \square 0$ . Thus $r \square 2$ , and the diameter is 4 cm.                                                                                                                                                                                                     |
|-----|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 77. | Let $\Box$ be the width of the lot in feet. Then the length is $\Box$ 6. Using the Pythagorean Theorem, we have $\Box^2 \Box \Box \Box \Box \Box^2 \Box \Box^2 \Box \Box^2 \Box \Box^2 \Box \Box \Box \Box$                                                                                                                                                                                                                                                                                                                                                             |
| 78. | Let $h$ be the height of the flagpole, in feet. Then the length of each guy wire is $h \square 5$ . Since the distance between the points where the wires are fixed to the ground is equal to one guy wire, the triangle is equilateral, and the flagpole is the perpendicular bisector of the base. Thus from the Pythagorean Theorem, we get $\frac{1}{2} \square h \square \square h^2 \square \square h \square 5 \square^2 \square h^2 \square 10h \square 25 \square 4h^2 \square 40h \square 100 \square h^2 \square 30h \square 75 \square 0 \square 5 \square$ |
|     | $h \ \square \ \ 2 \ \square \ \ \ \ \ \ \ \ \ \ \ \ \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|     | the height is $h \square \frac{30 \square 20 \square 3}{2} \square 15 \square 10 \square 3 \square 32 \square 32$ ft $\square 32$ ft 4 in.                                                                                                                                                                                                                                                                                                                                                                                                                              |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |

**79.** Let x be the rate, in mi/h, at which the salesman drove between Ajax and Barrington.

| Distance   | Rate                | Time            |
|------------|---------------------|-----------------|
| 120<br>150 | $x \\ x \square 10$ | $\frac{120}{x}$ |
|            |                     | 150             |
|            | -                   |                 |

We have used the equation time  $\Box$  to fill in the "Time" column of the table. Since the second part of the trip took 6 minutes (or  $\frac{1}{2}$  hour) more than the first, we can use the time column to get the equation  $\frac{120}{x} - \frac{1}{10} - \frac{150}{x} - \frac{1}{10} - \frac$ 

drove either 50 mi/h or 240 mi/h between Ajax and Barrington. (The first choice seems more likely!)

**80.** Let *x* be the rate, in mi/h, at which Kiran drove from Tortula to Cactus.

|        | Direction             | Distance   | Rate                                             | Time            |
|--------|-----------------------|------------|--------------------------------------------------|-----------------|
|        | Tortula □ Cactus      | 250<br>360 | $\begin{array}{c} x \\ x \square 10 \end{array}$ | $\frac{250}{x}$ |
|        | Cactus □ Dry Junction | 500        | 10                                               | 360             |
| distan | ce Dry Junction       |            |                                                  | <i>x</i> □ 10   |

| We have used time $\square$ |      | to fill in the time | column of the table. | We are given that th  | ie sum of   |
|-----------------------------|------|---------------------|----------------------|-----------------------|-------------|
| we have used time           | rate | to mi m the time    | column of the table. | we are given that the | ic suiii oi |

the times is 11 hours. Thus we get the equation  $\frac{250}{x}$   $\Box$   $\frac{360}{x \Box 10}$   $\Box$  11  $\Box$  250  $\Box$ x  $\Box$  10 $\Box$  360x  $\Box$ 

 $11x \square x \square 10 \square \square 250x \square 2500 \square 360x \square 11x^2 \square 11\underline{0x} \square 11x^2 \square 500x \square 2500 \square 0 \square$ 

 $x \ \Box \ \frac{\Box \ \Box 500 \Box \ \Box \ 500 \Box^2 \ \Box \ 4 \ \Box 11 \Box}{\Box \ \Box \ \Box \ 2500 \Box} \ \Box \ \frac{500 \ \Box \ \Box \ 250,000 \ \Box \ 110,000}{22} \ \Box \ \frac{500 \ \Box \ \Box \ 360,000}{22} \ \Box \ \frac{500 \ \Box \ 600}{22} \ . \ \text{Hence,}$ 

Kiran drove either  $\Box 4\Box 54$  mi/h (impossible) or 50 mi/h between Tortula and Cactus.

have  $\Box_o \Box 80 \text{ ft/s}.$ 

**81.** Let r be the rowing rate in km/h of the crew in still water. Then their rate upstream was  $r \square 3$  km/h, and their rate downstream was  $r \square 3$  km/h.

| Direction  | Distance | Rate         | Time                    |
|------------|----------|--------------|-------------------------|
| Upstream   | 6        | <i>r</i> □ 3 | $\frac{6}{r \square 3}$ |
| Downstream | 6        | <i>r</i> □ 3 | $\frac{6}{r \square 3}$ |

|     |               | ce the time to row upstream plus the time to row downstream was 2 hours 40 minutes $\Box$ $\frac{8}{3}$ hour, we get the equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----|---------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | $\frac{6}{r}$ | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|     | 0 [           | $  8r^2   36r   72   4   2r^2   9r   18   4   2r   3   0   0   0   0   0   0   0   0   0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|     | ,             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|     |               | ch is impossible because the rowing rate is positive. If $r \square 6 \square 0$ , then $r \square 6$ . So the rate of the rowing crew in still er is $6 \text{ km/h}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 82. | Let           | $r$ be the speed of the southbound boat. Then $r \square 3$ is the speed of the eastbound boat. In two hours the southbound boat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     |               | traveled $2r$ miles and the eastbound boat has traveled $2 \square r \square 3 \square \square 2r \square 6$ miles. Since they are traveling is directions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|     | 900           | h are $90^{\square}$ apart, we can use the Pythagorean Theorem to get $\square 2r \square^2 \square \square 2r \square 6\square^2 \square 30^2 \square 4r^2 \square 4r^2 \square 24r \square 36 \square$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|     | □ 8           | $3r^2 \square 24r \square 864 \square 0 \square 8$ $r^2 \square 3r \square 108$ $\square 0 \square 8 \square r \square 12 \square \square r \square 9 \square \square 0$ . So $r \square \square 12$ or $r \square 9$ . Since speed is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|     | pos           | itive, the speed of the southbound boat is 9 mi/h.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 83. | Usi<br>t □    | ng $h_0 \square 288$ , we solve $0 \square \square 16t^2 \square 288$ , for $t \square 0$ . So $0 \square \square 16t^2 \square 288 \square 16t^2 \square 288 \square t^2 \square 18 \square$ $\square \square 18 \square \square 3$ 2. Thus it takes $3 \square 2 \square 4 \square 24$ seconds for the ball the hit the ground.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 84. | (a)           | Using $h_0 \square 96$ , half the distance is 48, so we solve the equation 48 $\square \square 16t^2 \square 96 \square \square 16t^2 \square 3 \square t^2 \square t \square \square 3$ . Since $t \square 0$ , it takes $\square 3 \square 1 \square 732$ s.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|     | (b)           | The ball hits the ground when $h \square 0$ , so we solve the equation $0 \square \square 16t^2 \square 96 \square 16t^2 \square 96 \square t^2 \square 6 \square t \square \square 6$ . Since $t \square 0$ , it takes $0 \square 0$ is takes $0 \square 0$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 85. | We            | are given $\Box$ $\Box$ 40 ft/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|     | ( <b>a</b> )  | Setting $h \square 24$ , we have $24 \square \square 16t^2 \square 40t \square 16t^2 \square 40t \square 24 \square 0 \square 8 \square 2t^2 \square 5t \square 3 \square 0 \square 8 \square 2t \square 3 \square \square t \square 1 \square \square$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|     |               | $\Box$ t $\Box$ 1 or t $\Box$ 1 $\frac{1}{2}$ Therefore, the ball reaches 24 feet in 1 second (ascending) and again after 1 $\frac{1}{2}$ seconds (descending).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|     | (b)           | Setting $h$ $48$ , we have $48$ $16t^2$ $40t$ $16t^2$ $40t$ $48$ $0$ $2t^2$ $5t$ $6$ $0$ $16t$ |
|     |               | 4 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     |               | never reaches a height of 48 feet.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     | (c)           | The greatest height $h$ is reached only once. So $h \square \square 16t^2 \square 40t \square 16t^2 \square 40t \square h \square 0$ has only one solution. Thus                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     |               | $D \ \square \ \square 40\square^2 \ \square \ 4 \ \square 16\square \ \square h \square \ \square \ 0 \ \square \ 1600 \ \square \ 64h \ \square \ 0 \ \square \ h \ \square \ 25$ . So the greatest height reached by the ball is 25 feet.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|     | ( <b>d</b> )  | Setting $h \square 25$ , we have $25 \square \square 16t^2 \square 40t \square 16t^2 \square 40t \square 25 \square 0 \square \square 4t \square 5\square^2 \square 0 \square t \square 1 \frac{1}{4}$ . Thus the ball                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|     |               | reaches the highest point of its path after $1\frac{1}{4}$ seconds.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|     | (e)           | Setting $h \square 0$ (ground level), we have $0 \square \square 16t^2 \square 40t \square 2t^2 \square 5t \square 0 \square t \square 2t \square 5\square \square 0 \square t \square 0$ (start) or $t \square 2 \frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|     |               | So the ball hits the ground in $2\frac{1}{2}$ s.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 86. | If th         | ne maximum height is 100 feet, then the discriminant of the equation, $16t^2 \square \square_o t \square 100 \square 0$ , must equal zero. So                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | 0 [           | $ b^2 \square 4ac \square \square \square_o \square^2 \square 4 \square 16 \square \square 100_{\overline{o}} \square \square^2 \square 6400 \square \square_o \square 80$ . Since $\square_o \square 80$ does not make sense, we must                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

| 87.  | (a) The fish population on January 1, 2002 corresponds to $t = 0$ , so $F = 1000 = 30 = 17 = 00 = 200 = 30 = 30 = 300 = 300 = 300 = 300 = 300 = 3000 = 3000 = 3000 = 3000 = 30000 = 30000 = 300000000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| fine |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 1111 | when the population will again reach this value, we set $F \square 30 \square 000$ , giving                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|      | $30000 \ \Box \ 1000 \ \Box \ 30 \ \Box \ 17t \ \Box \ t^2 \ \Box \ 30000 \ \Box \ 17000t \ \Box \ 1000t^2 \ \Box \ 0 \ \Box \ 17000t \ \Box \ 1000t^2 \ \Box \ 1000t \ \Box \ 17 \ \Box \ t \ \Box \ 0 \ \text{or}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|      | $t \square 17$ . Thus the fish population will again be the same 17 years later, that is, on January 1, 2019.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|      | <b>(b)</b> Setting $F \square 0$ , we have $0 \square 1000 30 \square 17t \square t^2 \square t^2 \square 17t \square 30 \square 0 \square$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|      | $t \ \Box \ \frac{17 \ \Box \ \overline{289} \ \Box \ 120}{\Box 2} \ \Box \ \frac{17 \ \Box \ 409}{\Box 2} \ \Box \ \frac{17 \ \Box}{2} \ \Box \ 20 \Box 22}{\Box 2} \ . \ \text{Thus} \ t \ \Box \ 11 \Box 612 \ \text{or} \ t \ \Box \ 18 \Box 612. \ \text{Since}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|      | $t \square 0$ is inadmissible, it follows that the fish in the lake will have died out $18\square 612$ years after January 1, 2002, that is on August 12, 2020.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 88.  | Let $y$ be the circumference of the circle, so $360 \square y$ is the perimeter of the square. Use the circumference to find the radius, $r$ , in terms of $y$ : $y \square 2 \square r \square r \square y \square \square 2 \square \square$ . Thus the area of the circle is $\square y \square \square 2 \square \square$ . Now if the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      | perimeter of the square is 360 $\Box$ $y$ , the length of each side is ${}^1$ $\Box$ 360 $\Box$ $y$ $\Box$ and the area of the square is ${}^1$ $\Box$ 360 $\Box$ $y$ $\Box$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|      | Setting these areas equal, we obtain $y^2 \square 4 \square \square 4 \square 360 \square y \square 2 \square 4 \square 360 \square y \square 2 y \square 360 \square y \square 2 y \square 360 \square 360 \square y \square 360 \square 360 \square y \square 360 \square$ |
|      | $\bigcirc$ 2 $\bigcirc$ $\bigcirc$ y $\bigcirc$ 360 $\bigcirc$ . Therefore, $y$ $\bigcirc$ 360 $\bigcirc$ $\bigcirc$ 2 $\bigcirc$ $\bigcirc$ $\bigcirc$ 169 $\bigcirc$ 1. Thus one wire is 169 $\bigcirc$ 1 in. long and the other is 190 $\bigcirc$ 9 in. long.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 89.  | Let $\Box$ be the uniform width of the lawn. With $\Box$ cut off each end, the area of the factory is $\Box 240 \Box 2\Box \Box 180 \Box 2\Box \Box$ . Since the lawn and the factory are equal in size this area, is $\Box 240 \Box 180$ . So $21,600 \Box 43,200 \Box 480 \Box 360 \Box$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|      | $4\Box^2\Box$ $0\Box 4\Box^2\Box 840\Box \Box 21,600\Box 4\Box^2\Box 210\Box \Box 5400\Box \Box 4\Box\Box \Box 30\Box\Box\Box\Box 180\Box\Box\Box\Box 30\ or \Box\Box 180.$ Since 180 ft is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|      | too                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|      | wide, the width of the lawn is 30 ft, and the factory is 120 ft by 180 ft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 90.  | Let $h$ be the height the ladder reaches (in feet). Using the Pythagorean Theorem we have $\begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \end{bmatrix}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 91.  | Let $t$ be the time, in hours it takes Irene to wash all the windows. Then it takes Henry $t = \frac{3}{2}$ hours to wash all the windows, and the sum of the fraction of the job per hour they can do individually equals the fraction of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|      | job they can do together. Since 1 hour 48 minutes $\Box$ 1 $\Box$ $\frac{48}{60}$ $\Box$ 1 $\Box$ $\frac{4}{5}$ $\Box$ $\frac{9}{5}$ , we have $\frac{1}{t}$ $\Box$ $\frac{1}{t}$ $\Box$ $\frac{3}{2}$ $\Box$ $\Box$ $\frac{1}{5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|      | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |

2 □10□

or  $t = \frac{21 - 39}{20} = 3$ . Since t = 0 is impossible, all the windows are washed by Irene alone in 3 hours and by Henry alone in  $3 = \frac{3}{2} = 4\frac{1}{2}$  hours.

- **92.** Let t be the time, in hours, it takes Kay to deliver all the flyers alone. Then it takes Lynn t  $\square$  1 hours to deliver all the flyers alone, and it takes the group  $0\square 4t$  hours to do it together. Thus  $\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square\frac{1}{t}\square$ 

  - $\Box t \Box 3 \Box \Box t \Box 2 \Box \Box 0$ . So  $t \Box 3$  or  $t \Box \Box 2$ . Since  $t \Box \Box 2$  is impossible, it takes Kay 3 hours to deliver all the flyers alone.

## 1.5 COMPLEX NUMBERS

**1.** The imaginary number *i* has the property that  $i^2 \square \square 1$ .

**2.** For the complex number  $3 \square 4i$  the real part is 3 and the imaginary part is 4.

**3.** (a) The complex conjugate of  $3 \square 4i$  is  $\overline{3 \square 4i} \square 3 \square 4i$ .

**(b)** 
$$\Box 3 \Box 4i \Box 3 \Box 4i \Box 3^2 \Box 4^2 \Box 25$$

**4.** If  $3 \Box 4i$  is a solution of a quadratic equation with real coefficients, then  $3 \Box 4i \Box 3 \Box 4i$  is also a solution of the equation.

**5.** Yes, every real number a is a complex number of the form  $a \square 0i$ .

**6.** Yes. For any complex number  $z, z \square \overline{z} \square \square a \square bi \square \overline{\square} a \square bi \square \square a \square bi \square a \square bi \square 2a$ , which is a real number.

**7.** 5  $\square$  7*i*: real part 5, imaginary part  $\square$ 7.

**8.**  $\Box 6 \Box 4i$ : real part  $\Box 6$ , imaginary part 4.

9. 
$$\frac{\square 2 \square 5i}{3} \square \square_{\overline{3}} \square_{\overline{3}} i : \text{ real part } \square_{\overline{3}}, \text{ imaginary part } \square_{\overline{3}}.$$

$$10. \frac{4 \square 7i}{2} \square 2 \square_{2} i : \text{ real part 2, imaginary part } \frac{7}{2}.$$

10. 
$$\frac{4 \Box 7i}{2} \Box 2 \Box \frac{7}{2}i$$
: real part 2, imaginary part  $\frac{7}{2}$ .

11. 3: real part 3, imaginary part 0.

**12.**  $\Box \frac{1}{2}$ : real part  $\Box \frac{1}{2}$ , imaginary part 0.

| 13. $\Box \frac{2}{3}i$ : real part 0, imaginary part $\Box \frac{2}{3}$ .<br>15. $\Box \overline{3} \Box \Box \Box \overline{4} \Box \Box \overline{3} \Box 2i$ : real part $\Box 3$ , imaginary part 2. | 14. $i \Box \overline{3}$ : real part 0, imaginary part $\Box$ 16. $2 \Box \Box \Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ |                                                             |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|
| 17. $\Box 3 \Box 2i \Box \Box 5i \Box 3 \Box \Box 2 \Box 5 \Box i \Box 3 \Box 7i$                                                                                                                         | <b>18.</b> $3i \square \square 2 \square 3i \square \square \square 2 \square [3 \square$                                                            | $\square \square 3 \square ]i \square \square 2 \square 6i$ |
| <b>19.</b> $\Box 5 \Box 3i \Box \Box \Box 4 \Box 7i \Box \Box \Box 5 \Box 4\overline{\Box} \Box \Box \Box 3 \Box 7 \Box i \Box 1 \Box \Box 5 \Box j i \Box \Box 5 \Box 9i$                                |                                                                                                                                                      |                                                             |
| <b>21.</b> □ 6 <i>i</i> □ 0 9 □ <i>i</i> □ 0 0 6 □ 9 □ 0 6 □ 1 □ <i>i</i> □ 3 □ 0 2 <i>i</i> □ 0                                                                                                          | 5 <i>i</i> 22. □3 5 □ ½ □ □3 □ 5 □ □                                                                                                                 | $2 \square^{1} i \square \square 2 \square^{7} i$           |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                      |                                                                                                                                                      | □ 3 3                                                       |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                      |                                                                                                                                                      |                                                             |

**25.** 
$$\Box \Box 12 \Box 8i \Box \Box \Box 7 \Box 4i \Box \Box \Box 12 \Box 8i \Box 7 \Box 4i \Box \Box \Box 12 \Box 7 \Box \Box \Box 8 \Box 4 \Box i \Box \Box 19 \Box 4i$$

**26.** 6i  $\Box$  4  $\Box$  i  $\Box$  6i  $\Box$  4  $\Box$  i  $\Box$   $\Box$  4  $\Box$  i  $\Box$   $\Box$  6  $\Box$  1  $\Box$  i  $\Box$  4  $\Box$  7i

**27.** 
$$4 \square \square 1 \square 2i \square \square \square 4 \square 8i$$

**28.** 
$$\square 2 \square 3 \square 4i \square \square \square 6 \square 8i$$

**29.** 
$$\Box$$
7  $\Box$   $i$   $\Box$   $\Box$ 4  $\Box$ 2 $i$   $\Box$   $\Box$ 28  $\Box$ 14 $i$   $\Box$ 4 $i$   $\Box$ 2 $i$ <sup>2</sup>  $\Box$   $\Box$ 28  $\Box$ 2 $\Box$ 14  $\Box$ 4 $\Box$ 1  $\Box$ 30  $\Box$ 10 $i$ 

**30.** 
$$\Box 5 \Box 3i \Box \Box 1 \Box i \Box \Box 5 \Box 5i \Box 3i \Box 3i^2 \Box \Box 5 \Box 3\Box \Box \Box 5 \Box 3\Box i \Box 8 \Box 2i$$

**31.** 
$$\Box 6 \Box 5i \Box \Box 2 \Box 3i \Box \Box 12 \Box 18i \Box 10i \Box 15i^2 \Box \Box 12 \Box 15 \Box \Box \Box 18 \Box 10 \Box i \Box 27 \Box 8i$$

**33.** 
$$\Box 2 \Box 5i \Box \Box 2 \Box 5i \Box \Box 2^2 \Box \Box 5i \Box^2 \Box 4 \Box 25 \Box \Box 1 \Box \Box 29$$

**34.** 
$$\square 3 \square 7i \square \square 3 \square 7i \square \square 3^2 \square \square 7i \square^2 \square 58$$

**35.** 
$$\Box 2 \Box 5i \Box^2 \Box 2^2 \Box \Box 5i \Box^2 \Box 2 \Box 2 \Box 2 \Box \Box 5i \Box \Box 4 \Box 25 \Box 20i \Box \Box 21 \Box 20i$$

**36.** 
$$\Box 3 \Box 7i \Box^2 \Box 3^2 \Box \Box 7i \Box^2 \Box 2 \Box 3 \Box \Box 7i \Box \Box \Box 40 \Box 42i$$

37. 
$$\frac{1}{i} \Box \frac{1}{i} \Box^i \Box \frac{i}{i^2} \Box \frac{i}{\Box 1} \Box \Box i$$

**40.** 
$$5 \square i \square 5 \square i \square 3 \square 4i \square 15 \square 20i \square 3i \square 4i^2 \square 3 \square i \square 15 \square 20i \square 3i \square 4i^2 \square 3 \square i \square 15 \square 4 \square \square 20i \square 3 \square i \square 23i \square 3 \square i \square 23i \square 3 \square i \square 23i \square 3 \square i \square 3 \square$$

3 
$$\square$$
 4i 3  $\square$  4i 9  $\square$  16i<sup>2</sup> 9  $\square$  16 2

41.  $\frac{10i}{1 \square 2i} \square \frac{10i}{1 \square 2i} \square \frac{1}{1 \square} \square \frac{10i \square 20i^2}{1 \square 4i^2} \square \frac{200 \square 10i}{1 \square 4} \square \frac{5 \square 4 \square}{5} \square \square \square \square \square \square \square \square \square \square$ 

**42.** 
$$\Box 2 \Box 3i \Box \Box \Box \frac{1}{2 \Box 3i} \Box \frac{1}{2 \Box 3i} \Box \frac{2 \Box 3i}{2 \Box 3i} \Box \frac{2 \Box 3i}{4 \Box 9i^2} \Box \frac{2 \Box 3i}{4 \Box 9} \Box \frac{2 \Box 3i}{13} \Box \frac{2}{13} \Box \frac{3}{13}i$$

**43.** 
$$\frac{4 \square 6i}{3i} \square \frac{4 \square 6i}{3i} \stackrel{3i}{\square} \frac{12i \square 18i^2}{9i^2} \square \frac{\square 18 \square 12i}{\square 9} \square \frac{\square 18}{\square 9} \square \frac{12}{\square 9}i \square 2 \square \frac{4}{3}i$$

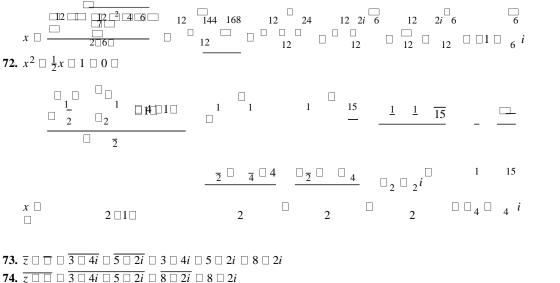
**45.** 
$$\frac{1}{1 \square i} \square \frac{1}{1 \square i^2} \square \frac{1 \square i}{1 \square i^2} \square \frac{1 \square i}{2} \square \frac{1 \square i}{2} \square \frac{1 \square i}{2} \square \square i$$

$$15 \square 5i$$
  $15$   $5$ 

47. 
$$i^3 = i^2i = i$$

48.  $i^{10} = i^{2} = i^{5} = i$ 

49.  $1 = i^{2} = i^{5} = i^{5$ 


100 CHAPTER 1 Equations and Graphs 

65.  $x^2 \ 3x \ 7 \ 0 \ 0 \ x \ 0$ 

68.  $x^2 \ | \ 3x \ | \ 3 \ | \ 0 \ | \ x \ |$ 

**70.**  $t \square 3 \square$   $\square$   $\square 0 \square t$   $\square 3t \square 3 \square 0 \square t$   $\square$ 

**71.**  $6x^2 \Box 12x \Box 7 \Box 0 \Box$ 



- **75.**  $z \square z \square \square 3 \square 4i \square \square 3 \square 4i \square \square 3^2 \square 4^2 \square 25$
- **76.**  $\overline{z}$   $\square$   $\square$   $\square$  3  $\square$  4i  $\square$  5  $\square$  2i  $\square$  15  $\square$  6i  $\square$  20i  $\square$  8i  $^2$   $\square$  23  $\square$  14i

 $\text{RHS} \ \square \ \overline{z} \ \square \ \square \ \square \ \overline{a} \ \square \ bi \square \ \square \ \overline{c} \ \square \ di \ \square \ \square \ a \ \square \ c \ \square \ \square \ b} \ \square \ d \ \square \ i \ \square \ a \ \square \ c \ \square \ \square$ 

 $\Box b \Box d \Box i$ . Since LHS  $\Box$  RHS, this proves the statement.

 $bc \square i$ .

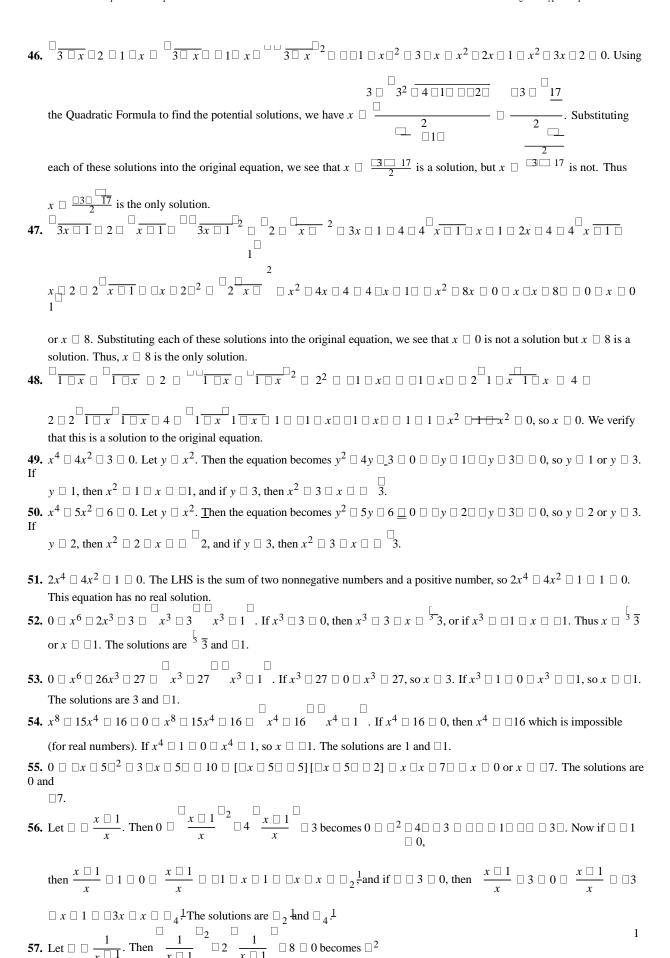
 $\mathsf{RHS} \,\,\square\,\,\overline{z}\,\,\square\,\square\,\,\square\,\,a\,\,\square\,\,bi\,\,\square\,\,c\,\,\square\,\,di\,\,\square\,\,\square\,a\,\,\square\,\,bi\,\,\square\,\,c\,\,\square\,\,di\,\,\square\,\,\square\,\,ac\,\,\square\,\,adi\,\,\square\,\,bci\,\,\square\,\,bdi^{\,2}\,\,\square\,\,\square\,ac\,\,\square\,\,bd\,\square\,\,\square\,\,ad$  $\Box$   $bc\Box i$ . Since LHS  $\Box$  RHS, this proves the statement.

| <b>79.</b><br>bi [ | LHS $\square$ $\square_z \square^2$ $\square$ $\square a$ $\square$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    | RHS $\Box \overline{z^2} \Box \overline{\Box a \Box bi \Box^2} \overline{\Box a^2 \Box 2abi \Box b^2i^2} \overline{\Box a^2 \Box b^2} \overline{\Box 2abi} \Box \overline{a^2 \Box b^2} \Box 2abi.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                    | Since LHS $\square$ RHS, this proves the statement.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 80.                | $\overline{\overline{z}} \ \Box \ \overline{\overline{a \ \Box bi}} \ \Box \ \overline{a \ \Box bi} \ \Box \ a \ \Box \ bi \ \Box \ z.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 81.                | $z \square \overline{z} \square \square a \square bi \square \overline{\square a \square bi} \square \square a \square bi \square \square a \square bi \square a \square bi \square 2a$ , which is a real number.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 82.                | $z \square \overline{z} \square \square a \square bi \square \overline{\square a \square bi} \square \square a \square bi \square a \square $ |
| 83.                | $z \square z \square a \square bi \square \square a^2 \square b^2i^2 \square a^2 \square b^2$ , which is a real number.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                    | Suppose $z \Box \overline{z}$ . Then we have $\Box a \Box bi \Box \overline{\Box a \Box bi \Box b \Box 0$ , so $z$ is real. Now if $z$ is real, then $z \Box a \Box 0i$ (where $a$ is real). Since $z \Box a \Box 0i$ , we have $\overline{z} \Box z$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 85.                | Using the Quadratic Formula, the solutions to the equation are $x = \frac{ab}{b^2} = \frac{b^2}{ac} = \frac{ab}{ac}$ . Since both solutions are imaginary, we have $b^2 = 4ac = 0 = 4ac = b^2 = 0$ , so the solutions are $x = \frac{ab}{2a} = \frac{ab}{ac} = $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                    | we have $b^2 \Box 4ac \Box 0 \Box 4ac \Box b^2 \Box 0$ , so the solutions are $x \Box \frac{\Box b}{2a} \Box \frac{4ac \Box b^2}{2a} i$ , where $\frac{\Box 4ac \Box b^2}{4ac \Box b^2}$ is a real number.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                    | Thus the solutions are complex conjugates of each other.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 86.                | $i \ \Box \ i, i^5 \ \Box \ i^4 \ \Box \ i, i^9 \ \Box \ i^8 \ \Box \ i \ \Box \ i;  i^2 \ \Box \ \Box 1, i^6 \ \Box \ i^4 \ \Box \ i^2 \ \Box \ \Box 1, i^{10} \ \Box \ i^8 \ \Box \ i^2 \ \Box \ \Box 1;$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                    | $i^3 \ \square \ i, i^7 \ \square \ i^4 \ \square \ i, i^{11} \ \square \ i^8 \ \square \ i^3 \ \square \ \square i;  i^4 \ \square \ 1, i^8 \ \square \ i^4 \ \square \ 1, i^{12} \ \square \ i^8 \ \square \ i^4 \ \square \ 1.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                    | Because $i^4 \Box 1$ , we have $i^n \Box i^r$ , where $r$ is the remainder when $n$ is divided by 4, that is, $n \Box 4 \Box k \Box r$ , where $k$ is an integer and $0 \Box r \Box 4$ . Since 4446 $\Box 4 \Box 1111 \Box 2$ , we must have $i^{4446} \Box i^2 \Box \Box 1$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 1.                 | 6 SOLVING OTHER TYPES OF EQUATIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                    | e: In cases where both sides of an equation are squared, the implication symbol $\Box$ is sometimes used loosely. For example,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                    | $\exists \ x \ \Box \ 1 \ "\Box \ x^{\Box 2} \ \Box \ x \ \Box \ 1 \ \Box^2$ is valid only for positive $x$ . In these cases, inadmissible solutions are identified later in solution.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                    | (a) To solve the equation $x^3 \Box 4x^2 \Box 0$ we <i>factor</i> the left-hand side: $x^2 \Box x \Box 4 \Box \Box 0$ , as above.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| _,                 | (b) The solutions of the equation $x^2 \square x \square 4 \square \square 0$ are $x \square 0$ and $x \square 4$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 2                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 4.                 | (a) Isolating the radical in $2x \sqcup x \sqcup 0$ , we obtain $2x \sqcup x$ .<br>(b) Now square both sides: $2x \sqcup x \sqcup 2x \sqcup x^2$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                    | (b) Now square both sides: $2x  \Box  x \Box  \Box  2x  \Box  x^2$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                    | (c) Solving the resulting quadratic equation, we find $2x \square x^2 \square x^2 \square 2x \square x \square x \square 2 \square \square 0$ , so the solutions are $x \square 0$ and $x \square 2$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                    | (d) We substitute these possible solutions into the original equation: $\begin{bmatrix} 2 & \boxed{0} & \boxed{0}$ is a solution, but $\begin{bmatrix} 2 & \boxed{0} & 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 3.                 | The equation $\Box x \Box 1 \Box^2 \Box 5 \Box x \Box 1 \Box \Box 6 \Box 0$ is of <i>quadratic</i> type. To solve the equation we set $W \Box x \Box 1$ . The resulting                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                    | quadratic equation is $W^2 \square 5W \square 6 \square 0 \square \square W \square 3\square \square W \square 2\square \square 0 \square W \square 3 \square x \square 1 \square 2$ or $x \square 1 \square 3 \square$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                    | $x \square 1$ or $x \square 2$ . You can verify that these are both solutions to the original equation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 4.                 | The equation $x^6 \Box 7x^3 \Box 8 \Box 0$ is of <i>quadratic</i> type. To solve the equation we set $W \Box x^3$ . The resulting quadratic equation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                    | is $W^2 \square 7W \square 8 \square 0$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                    | $x^2 \square x \square 0 \square x \square x \square 1 \square \square 0 \square x \square 0$ or $x \square 1 \square 0$ . Thus, the two real solutions are 0 and 1.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 6.                 | $3x^3 \square 6x^2 \square 0 \square 3x^2 \square x \square 2 \square \square 0 \square x \square 0$ or $x \square 2 \square 0$ . Thus, the two real solutions are 0 and 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 7.                 | $x^3 \ \Box \ 25x \ \Box \ x^3 \ \Box \ 25x \ \Box \ 0 \ \Box \ x \ \Box \ 25 \ \Box \ 0 \ \Box \ x \ \Box \ 5\Box \ \Box \ x \ \Box \ 5\Box \ \Box \ 0 \ or \ x \ \Box \ 5 \ \Box \ 0 \ or \ x \ \Box \ 5 \ \Box \ 0$ . The three                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                    | real solutions are $\Box 5$ , 0, and 5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

 $\square\_$ 

103

| <b>8.</b> $x^5 \ \Box \ 5x^3 \ \Box \ x^5 \ \Box \ 5x^3 \ \Box \ 0 \ \Box \ x^3 \ \Box \ x^2 \ \Box \ 5 \ \Box \ 0 \ \Box \ x \ \Box \ 0 \ \text{or} \ x^2 \ \Box \ 5 \ \Box \ 0$ . The solutions are 0 and $\Box$ 5.                                                                                                                                                   |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>9.</b> $x^5 \square 3x^2 \square 0 \square x^2 \xrightarrow{1} x^3 \square 3 \xrightarrow{1} \square 0 \square x \square 0$ or $x^3 \square 3 \square 0$ . The solutions are 0 and $x^3 \square 3$ .                                                                                                                                                                 |
| <b>10.</b> $6x^5 \square 24x \square 0 \square 6x  x^4 \square 4  \square 0 \square 6x  x^2 \square 2  x^2 \square 2  \square 0$ . Thus, $x \square 0$ , or $x^2 \square 2 \square 0$ (which has no solution), or                                                                                                                                                       |
| $x^2 \square 2 \square 0$ . The solutions are 0 and $\square$ 2.                                                                                                                                                                                                                                                                                                        |
| <b>11.</b> $0 \square 4z^5 \square 10z^2 \square 2z^2 \square 2z^3 \square 5$ . If $2z^2 \square 0$ , then $z \square 0$ . If $2z^3 \square 5 \square 0$ , then $2z^3 \square 5 \square z \square 3 \frac{\square}{2}$ . The solutions are $0$                                                                                                                          |
| and $\frac{\sqrt{3}}{5}$ .                                                                                                                                                                                                                                                                                                                                              |
| <b>12.</b> $0 \square 125t^{10} \square 2t^7 \square t^7 \square 125t^3 \square 2$ . If $t^7 \square 0$ , then $t \square 0$ . If $125t^3 \square 2 \square 0$ , then $t \square \frac{3}{125} \square \frac{3}{5}$ . The solutions are $0$                                                                                                                             |
| and $\frac{2}{5}$ .                                                                                                                                                                                                                                                                                                                                                     |
| 13. $0 \square x^5 \square 8x^2 \square x^2                               $                                                                                                                                                                                                                                                                                             |
| then                                                                                                                                                                                                                                                                                                                                                                    |
| $x \square 0$ ; if $x \square 2 \square 0$ , then $x \square \square 2$ , and $x^2 \square 2x \square 4 \square 0$ has no real solution. Thus the solutions are $x \square 0$ and $x \square \square 2$ .                                                                                                                                                               |
| <b>14.</b> $0 \square x^4 \square 64x \square x \square x^3 \square 64 \square x \square 0 \text{ or } x^3 \square 64 \square 0. \text{ If } x^3 \square 64 \square 0, \text{ then } x^3 \square \square 64 \square x \square \square 4. \text{ The solutions are } 0$                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                         |
| and $\Box 4$ . $\Box$ $\Box$ $\Box$ 15. $0 \Box x^3 \Box 5x^2 \Box 6x \Box x \Box x^2 \Box 5x \Box 6 \Box x \Box x \Box 2\Box \Box x \Box 3\Box \Box x \Box 0, x \Box 2\Box 0, \text{ or } x \Box 3\Box 0. \text{ Thus } x \Box 0, \text{ or } x \Box 2,$                                                                                                               |
| or                                                                                                                                                                                                                                                                                                                                                                      |
| $x \square 3$ . The solutions are $x \square 0$ , $x \square 2$ , and $x \square 3$ . <b>16.</b> $0 \square x^4 \square x^3 \square 6x^2 \square x^2 \square x \square 6 \square x^2 \square x \square 3 \square \square x \square 2 \square$ . Thus either $x^2 \square 0$ , so $x \square 0$ , or $x \square 3$ , or $x \square 2$ .                                  |
| The $x^2 - 3x^2 - 3x^2 - 3x - 3$                                                                                                                                                                                                                                                                                                          |
| solutions are 0.2 and $\square 2$                                                                                                                                                                                                                                                                                                                                       |
| <b>17.</b> $0 \square x^4 \square 4x^3 \square 2x^2 \square x^2 \square 4x \square 2$ . So either $x^2 \square 0 \square x \square 0$ , or using the Quadratic Formula on $x^2 \square 4x \square 2 \square 0$ ,                                                                                                                                                        |
| 4 4 16 8 4 8 4 2 2                                                                                                                                                                                                                                                                                                                                                      |
| we have $x \square \frac{\square}{2\square\square} - 2 \square 2 \square 2$ . The solutions are 0, $\square 2 \square 2$ , and                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                         |
| <b>18.</b> $0 \square y^5 \square 8y^4 \square 4y^3 \square y^3 \square y^2 \square 8y \square 4$ . If $y^3 \square 0$ , then $y \square 0$ . If $y^2 \square 8y \square 4 \square 0$ , then using the Quadratic Formula, we                                                                                                                                            |
| 16. 0 1 y 1 8 y 1 4 y 1 y 1 8 y 1 4 1 1 y 1 0, then using the Quadratic Politicia, we                                                                                                                                                                                                                                                                                   |
| have $y = \begin{bmatrix}                                 $                                                                                                                                                                                                                                                                                                             |
| <del>-</del>                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                         |
| 10. $\Box 2x \Box 5\Box^4 \Box \Box 2x \Box 5\Box^3 \Box 0$ . Let $y \Box 2x \Box 5$ . The equation becomes $y^4 \Box y^3 \Box 0$ .                                                                                                                                                                                                                                     |
| <b>19.</b> $\Box 3x \Box 5\Box ^4\Box \Box 3x \Box 5\Box ^3\Box \Box 0$ . Let $y \Box 3x \Box 5$ . The equation becomes $y^4\Box y^3\Box 0$ $\Box y \Box y \Box 1 \Box y^2\Box y \Box 1 \Box 0$ . If $y \Box 0$ , then $3x \Box 5\Box 0 \Box x \Box ^5_3\Box$ . If $y \Box 1 \Box 0$ , then $3x \Box 5\Box 1 \Box 0$                                                    |
| $\Box x \Box \Box \frac{4}{3}$ . If $y^2 \Box y \Box 1 \Box 0$ , then $\Box 3x \Box 2 \Box \Box 3x \Box 5 \Box \Box 1 \Box 0 \Box \Box 33x \Box 31 \Box 0$ . The discriminant is $9x^2$                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                         |
| $b^2 \Box 4ac \Box 33^2 \Box 4 \Box 9 \Box \Box 31 \Box \Box \Box 27 \Box 0$ , so this case gives no real solution. The solutions are $x \Box^5\Box_3$ and $x \Box^4\Box_3$ .                                                                                                                                                                                           |
| <b>20.</b> $\Box x \Box 5\Box^4 \Box 16 \Box x \Box 5\Box^2 \Box 0$ . Let $y \Box x \Box 5$ . The equation becomes $y^4 \Box 16y^2 \Box y^2 \Box y \Box 4\Box \Box y \Box 4\Box \Box 0$ . If $y^2 \Box 0$ , then                                                                                                                                                        |
| $x \Box 5 \Box 0$ and $x \Box \Box 5$ . If $y \Box 4 \Box 0$ , then $x \Box 5 \Box 4 \Box 0$ and $x \Box \Box 1$ . If $y \Box 4 \Box 0$ , then $x \Box 5 \Box 4 \Box 0$ and $x \Box \Box 9$ . Thus, the solutions are $\Box 9$ , $\Box 5$ , and $\Box 1$ .                                                                                                              |
| 21. $0 \square x^3 \square 5x^2 \square 2x \square 10 \square x^2 \square x \square 5\square \square 2\square x \square 5\square \square x^2 \square x \square 5\square \square 5$ . If $x \square 5 \square 0$ , then $x \square 5$ . If $x \square 5 \square 0$ , then $x \square 5$ . If $x \square 5 \square 0$ , then $x \square 5$ . If $x \square 5 \square 0$ . |
| 0, then                                                                                                                                                                                                                                                                                                                                                                 |


- 105 CHAPTER 1 Equations and Graphs SECTION 1.6 Solving Other Types of Equations **24.**  $7x^3 \ \Box x \ \Box 1 \ \Box x^3 \ \Box 3x^2 \ \Box x \ \Box 0 \ \Box 6x^3 \ \Box 3x^2 \ \Box 2x \ \Box 1 \ \Box 3x^2 \ \Box 2x \ \Box 1 \ \Box \Box 2x \ \Box 1 \ \Box \Box 2x \ \Box 1 \ \Box \Box 3x^2 \ \Box 1 \ \Box 2x \ \Box 1$ or  $3x^2 \square 1 \square 0$ . If  $2x \square 1 \square 0$ , then  $x \square \frac{1}{2}$ . If  $3x^2 \square 1 \square 0$ , then  $3x^2 \square 1 \square x^2 \square \frac{1}{2} \square x \square \square \frac{1}{3}$ . The solutions are  $\frac{1}{2}$ . solution is  $z \square 1$ . We must check the original equation to make sure this value of z does not result in a zero denominator. **26.**  $\frac{10}{m \ \Box \ 5} \ \Box \ 15 \ \Box \ 3m \ \Box \ m \ \Box \ \frac{10}{m \ \Box \ 5} \ \Box \ 15 \ \Box \ m \ \Box \ 5 \ \Box \ 3m \ \Box \ 10 \ \Box \ 15m \ \Box \ 3m^2 \ \Box \ 15m \ \Box \ 3m^2 \ \Box \ 85 \ \Box \ 0 \ \Box$  $m \square \square$  3. Verifying that neither of these values of m results in a zero denominator in the original equation, we see that  $\begin{array}{ccc}
   & \square \\
   & 85 & 85 \\
  \text{the solutions are } \square \\
   & 3 & \text{and} \\
   & 3 & 3
  \end{array}$
- 27.  $\frac{1}{x \Box 1} \Box \frac{1}{x \Box 2} \Box \frac{5}{4} \Box 4 \Box x \Box 1 \Box x \Box \frac{1}{x \Box 1} \Box \frac{1}{x \Box 2} \Box 4 \Box x \Box 1 \Box x \Box \frac{5}{4} \Box$ 
  - $4 \ \square x \ \square \ 2 \ \square \ \square \ 4 \ \square x \ \square \ 1 \ \square \ \square \ 5 \ \square x \ \square \ 1 \ \square \ \square x \ \square \ 2 \ \square \ \square \ 4x \ \square \ 8 \ \square \ 4x \ \square \ 4 \ \square \ 5x^2 \ \square \ 5x \ \square \ 10 \ \square \ 5x^2 \ \square \ 3x \ \square \ 14 \ \square \ 0 \ \square$  $\Box 5x \Box 7 \Box \Box x \Box 2 \Box \Box 0$ . If  $5x \Box 7 \Box 0$ , then  $x \Box 7 \Box 5$ ; if  $x \Box 2 \Box 0$ , then  $x \Box 2$ . The solutions are  $\Box 5$  and 2.
- **28.**  $\frac{10}{x} \square \frac{12}{x \square 3} \square 4 \square 0 \square x \square x \square \frac{10}{x} \square \frac{12}{x \square 3} \square 4 \square 0 \square 12x \square 4x \square x \square 3 \square 0 \square$
- **29.**  $\frac{1}{x \square 100} \bigcirc 50 \square x^2 \square 50 \square x \square 100 \square \square 50x \square 5000 \square x^2 \square 50x \square 5000 \square 0 \square x \square 100 \square x \square 50 \square \square 0 \square x \square 100 \square 0$

or  $x \square 50 \square 0$ . Thus  $x \square 100$  or  $x \square \square 50$ . The solutions are 100 and  $\square 50$ .

- 31.  $1 \bigcirc \frac{1}{\Box x \ \Box x} \ 2 \bigcirc \Box 1 \bigcirc \frac{2}{\Box x} \ \Box \frac{1}{x} \ 2 \bigcirc \Box x \ \Box 1 \bigcirc x \ \Box 1$
- 32.  $\frac{x}{x \square 3} \square \frac{2}{x \square 3} \square \frac{1}{x^2 \square 9} \square x \square x \square 3 \square \square 2 \square x \square 3 \square \square 1 \square x^2 \square 3 x \square 2 x \square 6 \square 1 \square x^2 \square 5 x \square 5 \square 0$ . Using the Quadratic

| 35. | $\frac{x \ \square \ \frac{2}{x}}{3 \ \square \ \frac{x}{4}} \ \square \ 5x \ \square \ \qquad \frac{x \ \square \ \frac{2}{x}}{3 \ \square \ \frac{x}{4}} \ \square \ \stackrel{\square}{=} \ \square \ \frac{x^2 \ \square \ 2}{3x \ \square \ 4} \ \square \ 5x \ \square \ x^2 \ \square \ 2 \ \square \ 5x \ \square \ 3x \ \square \ 4 \ \square \ x^2 \ \square \ 2 \ \square \ 15x^2 \ \square \ 20x \ \square \ 0 \ \square \ 14x^2 \ \square \ 20x \ \square \ 2$ |
|-----|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                      |
|     | $2 \square 14 \square$ $28$ $28$ $28$ $\square$ . The                                                                                                                                                                                                                                                                                                                                                                                                                       |
|     | 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     | solutions are $\frac{3}{7}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 36. | solutions are $\frac{\Box 5 \Box 4 \ 2}{7}$ . $3 \Box \frac{1}{2} \Box \frac{x}{4} \Box x \Box x \ 2 \Box \stackrel{4}{=} \frac{x}{2} \Box \frac{x}{4} \Box x \Box x \ 2 \Box \stackrel{4}{=} \frac{x}{2} \Box \stackrel{4}{=} x \Box x \Box x \ 2 \Box \stackrel{4}{=} x \Box x \Box x \ 2 \Box \stackrel{4}{=} x \Box x $                                                                                         |
|     | Formula, we find $x = \begin{bmatrix} 0 & 0.7 & 0.07 & 0.07 & 0.04 & 0.02 \\ \hline 0 & 0.01 & 0.01 & 0.04 & 0.04 \end{bmatrix}$ . Both are admissible, so the solutions are $\frac{7 + 0.057}{4}$ .                                                                                                                                                                                                                                                                        |
| 37. | $5 \ \Box \ \overline{4x \ \Box 3} \ \Box \ 5^2 \ \Box \ \overline{4x \ \Box 3}^2 \ \Box \ 25 \ \Box \ 4x \ \Box \ 3 \ \Box \ 4x \ \Box \ 28 \ \Box \ x \ \Box \ 7$ is a potential solution. Substituting into the                                                                                                                                                                                                                                                          |
|     | original equation, we get $5 \ \Box \ 4 \ \Box 7 \ \Box \ 3 \ \Box \ 5 \ \Box \ 25$ , which is true, so the solution is $x \ \Box \ 7$ .                                                                                                                                                                                                                                                                                                                                    |
| 38. | $\frac{1}{8x \ \Box \ 1} \ \Box \ 3 \ \Box \ \frac{1}{8x \ \Box \ 1} \ \Box \ 3^2 \ \Box \ 8x \ \Box \ 1 \ \Box \ 9 \ \Box \ x \ \Box \ ^5$ . Substituting into the original equation, we get                                                                                                                                                                                                                                                                               |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     | $\begin{bmatrix} 3 & 1 \\ 8 & 4 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 3 & 3 \end{bmatrix} = \begin{bmatrix} 5 & 3 \\ 9 & 3 \end{bmatrix}$ , which is true, so the solution is $x = \begin{bmatrix} 5 \\ 4 \end{bmatrix}$ .                                                                                                                                                                                                                                                |
| 39. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     | we get 20400 1 0 20400 5 0 7 0 7 which is true so the solution is x 0 4                                                                                                                                                                                                                                                                                                                                                                                                     |
| 40  | we get                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 40. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     | $x \square \square 1$ or $x \square 2$ . Substituting into the original equation, we get $3 \square $                                                                                                                                                                                                                               |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     | and $\frac{1}{3} \frac{1}{2} \frac{1}{2} \frac{1}{2}$ , which is also true. So the solutions are $x = 1$ and $x = 2$ .                                                                                                                                                                                                                                                                                                                                                      |
| 41  | and $3 \square 2 \square 2 \square 1$ , which is also true. So the solutions are $x \square \square 1$ and $x \square 2$ . $ \square x \square 2 \square x \square 2 \square x \square 2 \square x^2 \square x \square 2 \square x^2 \square x \square 2 \square x \square 1 \square \square x \square 2 \square \square 0 \square x \square \square 1 \text{ or } x \square 2 . $ Substituting                                                                             |
| 71, |                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     | into the original equation, we get                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 12  | true. So $x \square 2$ is the only real solution. $\square 4 \square 6x \square 2x \square \square 4 \square 6x \square 2x \square 2x \square 2x \square 2x \square 2x \square 2x \square 2x$                                                                                                                                                                                                                                                                               |
| 42. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     | or $x = \frac{1}{2}$ . Substituting into the original equation, we get $4 = 6 = 2 = 2 = 4$ or $2 = 2 = 4$ or $2 = 2 = 4$ . Substituting into the original equation, we get                                                                                                                                                                                                                                                                                                  |
|     | $4 \square 6 \stackrel{1}{\stackrel{1}{\stackrel{1}{}{}{}}} \square 2 \stackrel{1}{\stackrel{1}{}{}} \square 1 \square 1$ , which is true. So $x \square_2^{-1}$ is the only real solution.                                                                                                                                                                                                                                                                                 |
| 43. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     | Potential solutions are $x \square 0$ and $x \square 4 \square x \square 4$ . These are only potential solutions since squaring is not a reversible                                                                                                                                                                                                                                                                                                                         |
|     | operation. We must check each potential solution in the original equation.                                                                                                                                                                                                                                                                                                                                                                                                  |
|     | Checking $x \ 0 : \ 2 \ 0 \ 0 \ 1 \ 1 \ 0 \ 0 \ 0 \ 0 \ 0 \ 0$                                                                                                                                                                                                                                                                                                                                                                                                              |
| 44. | $x \square 9 \square 3x \square 0 \square x \square 9 \square 3x \square x^2 \square 9 \square 3x \square 0 \square x^2 \square 3x \square 9$ . Using the Ouadratic Formula to find the potential                                                                                                                                                                                                                                                                           |
|     | $x \ \Box \ 9 \ \Box \ 3x \ \Box \ 0 \ \Box \ x \ \Box \ 9 \ \Box \ 3x \ \Box \ 0 \ \Box \ x^2 \ \Box \ 3x \ \Box \ 9$ . Using the Quadratic Formula to find the potential $3 \ \Box \ 3^2 \ \Box \ 4 \ \Box \ \Box \ 0 \ \Box \ x^2 \ \Box \ 3x \ \Box \ 3 \ \Box \ 3 \ 5$                                                                                                                                                                                                 |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |

|          | solutions, we have $x 	ext{ } 	ext{ }$ |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|          | original equation, we see that $x = \frac{3 \cdot 3 \cdot 5}{2}$ is a solution, but $x = \frac{3 \cdot 3 \cdot 5}{3 \cdot 3 \cdot 5}$ is not. Thus $x = \frac{2}{3 \cdot 3 \cdot 5}$ is the only solution.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 45.<br>1 | $x \mathbin{\square} \overline{x \mathbin{\square} 1} \mathbin{\square} 3 \mathbin{\square} x \mathbin{\square} 3 \mathbin{\square} \overline{x \mathbin{\square} 1} \mathbin{\square} x \mathbin{\square} 3 \mathbin{\square}^2 \mathbin{\square} \overline{x \mathbin{\square}} {\stackrel{2}{\square}} x \mathbin{\square} {\stackrel{2}{\square}} x \mathbin{\square} 6x \mathbin{\square} 9 \mathbin{\square} x \mathbin{\square} 1 \mathbin{\square} x^2 \mathbin{\square} 7x \mathbin{\square} 10 \mathbin{\square} 0 \mathbin{\square}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 1        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|          | $\Box x \Box 2 \Box \Box x \Box 5 \Box \Box 0$ . Potential solutions are $x \Box 2$ and $x \Box 5$ . We must check each potential solution in the original                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|          | equation. Checking $x \square 2$ : $2 \square $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|          | $\square$ 5 $\square$ 2 $\square$ 3, which is true, so $x$ $\square$ 5 is the only solution.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |



| <b>59.</b> 0.  | Let $u \square x^{2 \square 3}$ . Then $0 \square x^{4 \square 3} \square 5x^{2 \square 3} \square 6$ becomes $u^2 \square 5u \square 6 \square 0 \square u \square 3 \square u \square 2 \square \square 0 \square u \square 3 \square 0$ or $u \square 2 \square 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|----------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                | If $u \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | Let $u = \sqrt[4]{x}$ ; then $0 = \sqrt[4]{x} = 3\sqrt[4]{x} = 4 = u^2 = 3u = 4 = u = 4 = u = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1 = 1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 61.            | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                | $x \square 3$ . The solutions are $\square 1$ , 0, and 3.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <b>62.</b> □ 1 | Let $u \square x \square 4$ ; then $0 \square 2 \square x \square 4 \square^{7\square 3} \square \square x \square 4 \square^{4\square 3} \square \square x \square 4 \square^{1\square 3} \square 2u^{7\square 3} \square u^{4\square 3} \square u^{1\square 3} \square u^{1\square 3} \square 2u \square 1 \square \square u$ $\square$ . So                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                | $u \square x \square 4 \square 0 \square x \square 4$ , or $2u \square 1 \square 2 \square x \square 4 \square \square 1 \square 2x \square 7 \square 0 \square 2x \square 7 \square x \square \frac{7}{2}$ , or $u \square 1 \square \square x \square 4 \square \square 1 \square x \square 5 \square 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                | $\Box x \Box 5$ . The solutions are 4, $\frac{7}{2}$ and 5.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | $x^{3\square 2} \square 10x^{1\square 2} \square 25x^{\square 1\square 2} \square 0 \square x^{\square 1\square 2}                                 $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 64.            | $x^{1 \square 2} \square x^{\square 1 \square 2} \square 6x^{\square 3 \square 2} \square 0 \square x^{\square 3 \square 2} \square x^2 \square x \square 6 \square 0 \square x^{\square 3 \square 2} \square x \square 2 \square x \square 3 \square \square 0. $ Now $x^{\square \square 2} \square 0$ , and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| fur            | hermore                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                | the original equation cannot have a negative solution. Thus, the only solution is $x \square 3$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 65.            | Let $u \square x^{1 \square 6}$ . (We choose the exponent $\frac{1}{6}$ because the LCD of 2, 3, and 6 is 6.) Then $x^{1 \square 2} \square 3x^{1 \square 3} \square 3x^{1 \square 6} \square 9 \square$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                | $x^{3 \ \square 6} \ \square \ 3x^{2 \ \square 6} \ \square \ 3x^{1 \ \square 6} \ \square \ 9 \ \square \ u^3 \ \square \ 3u^2 \ \square \ 3u \ \square \ 9 \ \square \ u^3 \ \square \ 3u^2 \ \square \ 3u \ \square \ 9 \ \square \ u^2 \ \square \ u \ \square \ 3u \ \square \ \ 3u \ \square \ \ 3u \ \square \ \$ |
|                | $\square$ 3 . So $u$ $\square$ 3 $\square$ 0 or $u^2$ $\square$ 3 $\square$ 0. If $u$ $\square$ 3 $\square$ 0, then $x^{1\square 6}$ $\square$ 3 $\square$ 0 $\square$ $x^{1\square 6}$ $\square$ 3 $\square$ $x$ $\square$ 3 $\square$ 729. If $u^2$ $\square$ 3 $\square$ 0,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                | then $x^{1 \square 3} \square 3 \square 0 \square x^{1 \square 3} \square 3 \square x \square 3^3 \square 27$ . The solutions are 729 and 27.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 66.            | Let $u \ \Box \ \overline{x}$ . Then $0 \ \Box \ x \ \Box \ 5 \ \overline{x} \ \Box \ 6$ becomes $u^2 \ \Box \ 5u \ \Box \ 6 \ \Box \ u \ \Box \ 3 \ \Box \ u \ \Box \ 2 \ \Box \ 0$ . If $u \ \Box \ 3 \ \Box \ 0$ , then $x \ \Box \ 3 \ \Box \ 0$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                | $\frac{1}{x^3}  \Box  \frac{4}{x^2}  \Box  \frac{4}{x}  \Box  0  \Box  1  \Box  4x  \Box  4x^2  \Box  0  \Box  \Box  1  \Box  2x  \Box^2  \Box  0  \Box  1  \Box  2x  \Box  0  \Box  2x  \Box  \Box  \Box  1  \Box  x  \Box  \Box_2  \Box \text{The solution is } \Box_2  \Box  \Box  \Box  \Box  \Box  \Box  \Box  \Box  \Box  $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                | $0 \square 4x^{\square 4} \square 16x^{\square 2} \square 4$ . Multiplying by $\frac{x^4}{4}$ we get, $0 \square 1 \square 4x^2 \square \overline{x^4}$ . Substituting $u \square x^2$ , we get $0 \square 1 \square 4u \square u^2$ , and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 68.            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                | using the Quadratic Formula, we get $u$ $\square$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | back, we have $x^2 \square 2 \square \overline{3}$ , and since $2 \square \overline{3}$ and $2 \square \overline{3}$ are both positive we have $x \square \square 2 \square \overline{3}$ . Thus the solutions are $\square 2 \square \overline{3}$ , $\square 2 \square \overline{3}$ , and $\square 2 \square \overline{3}$ , and $\square 2 \square \overline{3}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 69             | . $x \square 5 \square x \square 5$ . Squaring both sides, we get $x \square 5 \square x \square 25 \square x \square 5 \square x$ . Squaring both sides again, we                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                | get $x \ \Box \ 5 \ \Box \ 25 \ \Box \ x \ \Box \ 5 \ \Box \ 625 \ \Box \ 50x \ \Box \ x^2 \ \Box \ 0 \ \Box \ x^2 \ \Box \ 51x \ \Box \ 620 \ \Box \ \Box \ x \ \Box \ 20 \ \Box \ x \ \Box \ 31 \ \Box$ . Potential solutions are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                | $x \ \Box \ 20$ and $x \ \Box \ 31$ . We must check each potential solution in the original equation. Checking $x \ \Box \ 20$ : $20 \ \Box \ 5 \ \Box \ 20 \ \Box \ 5 \ \Box \ 20 \ \Box \ 5$ , which is true, and hence $x \ \Box \ 20$ is a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                | solution. Checking $x \square 31$ : $\square 31 \square 5 \square 31 \square 5 \square 31 \square 5 \square 31 \square 5 \square 37 \square 5$ , which is false, and hence $x \square 31$ is not a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                | Checking $x \sqcup 31$ : $\sqcup 31 \sqcup \sqcup 5 \sqcup 31 \sqcup 5 \sqcup 36 \sqcup 31 \sqcup 5 \sqcup 37 \sqcup 5$ , which is false, and hence $x \sqcup 31$ is not a solution. The only real solution is $x \sqcup 20$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 70             | $ \begin{bmatrix} 3 & & & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| . ••           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |

 $\square$  0 or x  $\square$  2.

The

solutions are 0 and 2.

| <b>71.</b> □ 3 | $x^{2} \xrightarrow{x \ \ 3} \ \square \ x \ \square \ 3 \ \square^{3\square 2} \ \square \ 0 \ \square \ x^{2} \xrightarrow{x \ \ 3} \ \square \ x \ \square \ 3 \ \square^{3\square 2} \ \square \ 0 \ \square \ x \ \square \ 3 \ \square \ x^{2} \ \square \ \square \ x \ \square \ 3 \ \square \ x^{2} \ \square \ x \ \square \ 3 \ \square \ x^{2} \ \square \ x \ \square \ 3 \ \square \ x^{2} \ \square \ x \ \square \ 3 \ \square \ x^{2} \ \square \ x \ \square \ 3 \ \square \ x^{2} \ \square \ x \ \square \ 3 \ \square \ x^{2} \ \square \ x \ \square \ 3 \ \square \ x^{2} \ \square \ x \ \square \ 3 \ \square \ x^{2} \ \square \ x \ \square \ 3 \ \square \ x^{2} \ \square \ x \ \square \ 3 \ \square \ x^{2} \ \square \ x \ \square \ 3 \ \square \ x^{2} \ \square \ x \ \square \ 3 \ \square \ x^{2} \ \square \ x \ \square \ 3 \ \square \ x^{2} \ \square \ x \ \square \ 3 \ \square \ x^{2} \ \square \ x \ \square \ 3 \ \square \ x^{2} \ \square \ x \ \square \ 3 \ \square \ x^{2} \ \square \ x \ \square \ 3 \ \square \ x^{2} \ \square \ x \ \square \ 3 \ \square \ x^{2} \ \square \ x \ \square \ 3 \ \square \ x^{2} \ \square \ x \ \square \ 3 \ \square \ x^{2} \ \square \ x \ \square \ 3 \ \square \ x^{2} \ \square \ x \ \square \ x \ \square \ x^{2} \ \square \ x \ x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|----------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                | If $\Box x \Box 3\Box^{1\Box 2} \Box 0$ , then $x \Box 3 \Box 0 \Box x \Box \Box 3$ . If $x^2 \Box x \Box 3 \Box 0$ , then using the Quadratic Formula $x \Box \frac{1\Box 13}{2}$ . The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                | solutions are $\Box 3$ and $\frac{1 \Box \Box 13}{2}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 72.            | Let $u \ \Box \ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                | $11 \square x^2 \qquad u$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                | Multiplying both sides by $u$ we obtain $u^2 \square 2 \square u \square 0 \square u^2 \square u \square 2 \square u \square 2 \square u \square 1 \square$ . So $u \square 2$ or $u \square 1$ . But since $u$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                | must be nonnegative, we only have $u \ \Box \ 2 \ \Box \ 11 \ \Box \ x^2 \ \Box \ 2 \ \Box \ 11 \ \Box \ x^2 \ \Box \ 4 \ \Box \ x^2 \ \Box \ 7 \ \Box \ x \ \Box \ \Box$ 7. The solutions are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 73.            | $x \square x \square 2 \square 2$ . Squaring both sides, we get $x \square x \square 2 \square 4 \square x \square 2 \square 4 \square x$ . Squaring both sides again, we get                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                | $x \ \square \ 2 \ \square \ \square 4 \ \square \ x \ \square^2 \ \square \ 16 \ \square \ 8x \ \square \ x^2 \ \square \ 0 \ \square \ x^2 \ \square \ 9x \ \square \ 14 \ \square \ 0 \ \square \ \square x \ \square \ 7 \ \square \ 0 \ x \ \square \ 2 \ \square. \ \text{If} \ x \ \square \ 7 \ \square \ 0, \ \text{then} \ x \ \square \ 7. \ \text{If} \ x \ \square \ 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                | $\square$ 0, then $x$ $\square$ 2. So $x$ $\square$ 2 is a solution but $x$ $\square$ 7 is not, since it does not satisfy the original equation.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 74.            | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                | $x \Box \overline{2x \Box 1} \Box \overline{4} \Box \overline{x} \Box 2 \Box 16 \Box 8 \overline{x} \Box x \Box \overline{2x \Box 1} \Box 16 \Box 8 \overline{x}$ . Again, squaring both sides, we obtain                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                | $2x \square 1 \square \square 16 \square 8 \square 2 \square 256 $      |
|                | we found possible solutions; however, consider the last equation. Since we are working with real numbers, for $x$ to be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                | defined, we must have $x \square 0$ . Then $\square 62x \square 255 \square 0$ while $256 \square x \square 0$ , so there is no solution.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 75.            | $0 \square x^4 \square 5ax^2 \square 4a^2 \square \stackrel{\square}{a} \square x^2 \stackrel{\square}{a} 4a \square x^2$ . Since $a$ is positive, $a \square x^2 \square 0 \square x^2 \square a \square x \square \stackrel{\square}{a}$ . Again, since $a$ is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                | positive, $4a \square x^2 \square 0 \square x^2 \square 4a \square x \square \square 2^{\square}a$ . Thus the four solutions are $\square \square a$ and $\square 2^{\square}a$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 76             | $0 \ \square \ a^3x^3 \ \square \ b^3 \ \square \ \square ax \ \square \ b \ \square \ a^2x^2 \ \square \ abx \ \square \ b^2 \ . \ So \ ax \ \square \ b \ \square \ 0 \ \square \ ax \ \square \ \square b \ \square \ x \ \square \ \trianglerighteq \ or$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                | $x \ \Box \ \frac{\Box ab \ \Box \ \Box ab \ \Box \ \Box \ ab}{2} \ \Box \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                | $\Box _{a^2}\Box$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 77.            | $x \ a \ 2$ $x \ a$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                | $x \ \square a \ \square 2  x \ \square a  x \ \square a  \square x \ \square a  \square 2 \ \square x \ \square 6 \ \square \ 2x \ \square 2  x \ \square a  \square 2x \ \square 12 \ \square 2  x \ \square a  x \ \square a \ \square x \ \square x \ \square a \ \square x \ \square$                                                                  |
|                | $a \ \square \ 12$ $\square \ x \ \square \ a \ \square \ x \ \square \ a \ \square \ a \ \square \ a \ \square \ a \ \square \ a^2 \ \square \ a$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                | 26                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                | $ \square $ $ \square$ |
|                | $\Box$ $x \Box$ $\Box$ $a^2 \Box$ 36. Checking these answers, we see that $x \Box$ $\Box$ $a^2 \Box$ 36 is not a solution (for example, try substituting $a \Box$ 8), but $x \Box$ $a^2 \Box$ 36 is a solution.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                | 150 150 0 150 0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                | Let $\Box$ $x^{1 \Box 6}$ . Then $x^{1 \Box 3}$ $\Box$ $\Box$ and $x^{1 \Box 2}$ $\Box$ $\Box$ $\Box$ and so $\Box$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                | $b^{\sqcup \sqcup b}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                | $a \ \Box^{\ \ \ \ \ } x \ \Box \ x \ \Box \ a^6$ is one solution. Setting the first factor equal to zero, we have $\ ^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                | However, the original equation includes the term $b^{\ \ \ \ \ }$ and we cannot take the sixth root of a negative number, so this is not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

**79.** Let *x* be the number of people originally intended to take the trip. Then originally, the cost of the trip is  $\frac{900}{x}$ . After 5 people

a solution. The only solution is  $x \square a^6$ .

| cancel, there are now $x \square 5$ people, each paying                                                                           | $\frac{900}{2} \square 2. \text{ Thus } 900 \square \square x \square$ | $ \begin{array}{c c}  & 900 \\  & 2 & 900 & 900 & 2x \\  & x & 900 & 900 & 900 \\ \end{array} $ | 4500<br><sub>x</sub> □ 10 |
|-----------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|---------------------------|
| $\square \ 0 \ \square \ 2x \ \square \ 10 \ \square \ \frac{4500}{x} \ \square \ 0 \ \square \ 2x^{2} \ \square \ 10x \ \square$ | $4500 \ \Box \ \Box 2x \ \Box \ 100 \Box \ \Box x \ \Box \ 4$          | 15 □. Thus either $2x □ 100 □ 0$ , so                                                           | $x \square 50$ , or       |

 $x \square 45 \square 0$ ,  $x \square \square 45$ . Since the number of people on the trip must be positive, originally 50 people intended to take the trip.

solution. So the box is 2 feet by 6 feet by 15 feet.

| 80. | Let <i>n</i> be the number of people in the group, so each person now pays $\frac{120,000}{n}$ . If one person joins the group, then there would                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | be $n \square 1$ members in the group, and each person would pay $\frac{120,000}{n} \square 6000$ . So $\square n \square n \square 6000 \square 120,000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|     | $0 \square n^2 \square n \square 20 \square \square n \square 4 \square \square n \square 5 \square$ . Thus $n \square 4$ or $n \square \square 5$ . Since $n$ must be positive, there are now 4 friends in the group.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 81. | We want to solve for $t$ when $P 	ext{ } 	ext$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | $500 \ \Box \ 3u^2 \ \Box \ 10u \ \Box \ 140 \ \Box \ 0 \ \Box \ 3u^2 \ \Box \ 10u \ \Box \ 360 \ \Box \ u \ \Box \ \Box \ \Box \ \overline{1105}$ . Since $u \ \Box \ \overline{t}$ , we must have $u \ \Box \ 0$ . So                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|     | $\Box_{\overline{t}} \Box u \Box \Box \overline{\Box 1105} \Box 9 \Box 414 \Box t \Box \Box 88 \Box 62$ . So it will take 89 days for the fish population to reach 500.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 82. | Let $d$ be the distance from the lens to the object. Then the distance from the lens to the image is $d \square 4$ . So substituting $F \square 4 \square 8$ , $x \square d$ , and $y \square d \square 4$ , and then solving for $x$ , we have $\frac{1}{4 \square 8} \square \frac{1}{d} \square \frac{1}{4}$ . Now we multiply by the $d$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|     | LCD, $4 \square 8d \square d \square 4\square$ , to get $d \square d \square 4\square \square 4\square 8\square d \square 4\square 9\square 6d \square 9u 6d \square 9u 6d \square 9u 6d \square 9u 6d □ 9u $ |
| 83. | Let $x$ be the height of the pile in feet. Then the diameter is $3x$ and the radius is $\frac{3}{2}x$ feet. Since the volume of the cone is $1000 \text{ ft}^3$ , we have $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 84. | Let $r$ be the radius of the tank, in feet. The volume of the spherical tank is $\frac{4}{3}\Box r^3$ and is also 750 $\Box$ 0 $\Box$ 1337 $\Box$ 100 $\Box$ 275. So $\frac{4}{3}\Box r^3\Box$ 100 $\Box$ 275 $\Box$ $r^3\Box$ 23 $\Box$ 938 $\Box$ $r\Box$ 2 $\Box$ 88 feet.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| 85. | Let $r$ be the radius of the larger sphere, in mm. Equating the volumes, we have $\frac{4}{3} \Box r^3 \Box \frac{4}{3} \Box 2^3 \Box 3^3 \Box 4^3 \Box r^3 \Box 2^3 \Box 3^3 \Box 4^4 \Box r^3 \Box 99 \Box r \Box \frac{1}{3} 99 \Box 4 \Box 63$ . Therefore, the radius of the larger sphere is about $4 \Box 63$ mm.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 86. | We have that the volume is $180 \text{ ft}^3$ , so $x \square x \square 4 \square \square x \square 9 \square \square 180 \square x^3 \square 5x^2 \square 36x \square 180 \square x^3 \square 5x^2 \square 36x \square 180 \square 0$<br>$\square x^2 \square x \square 5 \square \square 36 \square x \square 5 \square \square 0 \square \square x \square 5 \square x^2 \square 36 \square 0 \square \square x \square 5 \square \square x \square 6 \square \square x \square 6 \square \square 0 \square x \square 6 \text{ is the only}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

| 87. | Let $x$ be the length, in miles, of the abandoned road to be used. Then the length of the abandoned road not used                                                                                                                                                  |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | is 40 $\square$ x, and the length of the new road is $10^2 \square 10^2 \square 10^2$ miles, by the Pythagorean Theorem. Since the                                                                                                                                 |
|     | cost of the road is cost per mile $\Box$ number of miles, we have $100,000x \Box 200,000 \xrightarrow{x^2 \Box 80x \Box 1700} \Box 6,800,000$                                                                                                                      |
|     | cost of the road is cost per mile $\Box$ number of miles, we have 100,000 $x = 200,000 \times 2 \cup 80x \cup 1700 \cup 6,800,000$                                                                                                                                 |
|     | $\square$ 2 $x^2$ $\square$ 80x $\square$ 1700 $\square$ 68 $\square$ x. Squaring both sides, we get $4x^2$ $\square$ 320x $\square$ 6800 $\square$ 4624 $\square$ 136x $\square$ $x^2$ $\square$                                                                  |
|     | $3x^2 \square 184x \square 2176 \square 0 \square x \square \frac{184 \square 33856 \square 26112}{6} \square \frac{184 \square 88}{6} \square x \square \frac{136}{3} \text{ or } x \square 16. \text{ Since } 45\frac{1}{3} \text{ is longer than the existing}$ |
|     | П                                                                                                                                                                                                                                                                  |
|     | road, 16 miles of the abandoned road should be used. A completely new road would have length $10^2 - 40^2$ (let $x - 0$ )                                                                                                                                          |
|     | and would cost $1700 \square 200,000 \square 8 \square 3$ million dollars. So no, it would not be cheaper.                                                                                                                                                         |
|     |                                                                                                                                                                                                                                                                    |

117

<u>1</u> <u>1</u> 2 <u>1</u> 2 <u>1</u>

| 88. | Let x be the distance, in feet, that he goes on the boardwalk before veering off onto the sand.  The distance along the boardwalk from where he started to the point on the boardwalk closest                                                                                         |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |                                                                    |                         |  |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------|--------------------------------------------------------------------|-------------------------|--|
|     | to the umbrella is $750^2 \square 210^2 \square 720$ ft. Thus the distance that he walks on the sand is                                                                                                                                                                               |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |                                                                    |                         |  |
|     | $\Box$                                                                                                                                                                                                                 | ${210^2}  \Box  {518400}  \Box$                     | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <sup>2</sup> □ 144         | $0x \Box 562 500$                                                  |                         |  |
|     | a,20 a x a a                                                                                                                                                                                                                                                                          | 210 - 310,100 -                                     | 11103 = 3 = 11,100 = 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                            |                                                                    |                         |  |
|     |                                                                                                                                                                                                                                                                                       | <b>_</b>                                            | Distance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Rate                       | Time                                                               |                         |  |
|     |                                                                                                                                                                                                                                                                                       | Along boardwalk                                     | x                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 4                          | $\frac{x}{4}$                                                      |                         |  |
|     |                                                                                                                                                                                                                                                                                       | Across sand                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 2                          |                                                                    |                         |  |
|     |                                                                                                                                                                                                                                                                                       |                                                     | onds, we equate the time it ta                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                            |                                                                    |                         |  |
|     | to the total time to                                                                                                                                                                                                                                                                  | o get 285 $\square \frac{x}{4} \square \frac{x}{4}$ | $\frac{2 \square 1440x \square 562,500}{2} \square 114$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 40 □ x [                   |                                                                    | 0. Squaring both        |  |
|     |                                                                                                                                                                                                                                                                                       |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |                                                                    |                         |  |
|     | sides, we get $\Box 11$                                                                                                                                                                                                                                                               | $ 40 \square x \square^2 \square 4   x^2$           | $ \begin{array}{c ccccc}  & 1440x & 562,500 & 1,29 \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & \\  & & & &$ | 99,600                     | $ 2280x \square x^2 \square 4x^2 \square 576 $                     | $50x \square 2,250,000$ |  |
|     | $\Box \ 0 \ \Box \ 3x^2 \ \Box \ 34$                                                                                                                                                                                                                                                  | $480x \Box 950,400 \Box 3$                          | $x^2 \square 1160x \square 316,800$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\Box$ 3 $\Box$ x          | $\Box$ 720 $\Box$ $\Box$ $x$ $\Box$ 440 $\Box$ . So $x$            | : □ 720 □ 0             |  |
|     | $\Box x \Box 720$ , and                                                                                                                                                                                                                                                               | $\mathbf{d} x \square 440 \square 0 \square x$      | $x \square 440$ . Checking $x \square$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 720, the                   | e distance across the sand                                         | is                      |  |
|     | 210 feet. So $\frac{720}{4}$                                                                                                                                                                                                                                                          | $\square \frac{210}{2} \square 180 \square 10$      | 05 ☐ 285 seconds. Checkin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $g x \square$              | 440, the distance across the                                       | e sand is               |  |
|     | 1 1                                                                                                                                                                                                                                                                                   | =                                                   | $\operatorname{So}_{4}^{440} \square_{2}^{350} \square 110 \square 175 \square$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |                                                                    |                         |  |
|     |                                                                                                                                                                                                                                                                                       |                                                     | walks 440 feet down the board                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |                                                                    |                         |  |
|     |                                                                                                                                                                                                                                                                                       |                                                     | neads toward his umbrella.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                            |                                                                    | ,                       |  |
| 89. | Let <i>x</i> be the lengtl                                                                                                                                                                                                                                                            | h of the hypotenuse o                               | f the triangle, in feet. Then or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ne of the                  |                                                                    | ٨                       |  |
|     | sides has length x                                                                                                                                                                                                                                                                    | $\Box$ 7 feet, and since the                        | ne perimeter is 392 feet, the re                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | emaining                   | g side                                                             | \                       |  |
|     | sides has length $x \square 7$ feet, and since the perimeter is 392 feet, the remaining side must have length 392 $\square x \square \square x \square 7 \square \square 399 \square 2x$ . From the Pythagorean                                                                       |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |                                                                    |                         |  |
|     | Theorem, we get $\Box x \Box 7\Box^2 \Box \Box 399 \Box 2x\Box^2 \Box x^2 \Box 4x^2 \Box 1610x \Box 159250 \Box 0$ .                                                                                                                                                                  |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |                                                                    |                         |  |
|     | Using the                                                                                                                                                                                                                                                                             |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |                                                                    |                         |  |
|     | Quadratic Formula, we get                                                                                                                                                                                                                                                             |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |                                                                    |                         |  |
|     | $x \ \square \ \frac{1610 \ \square \ 1610^2 \ \square \ \square}{1610 \ \square} $ $\frac{1610 \ \square \ 44100}{8} \ \square \ \frac{1610 \ \square \ 227}{8}$ , and so $x \ \square \ 227 \ \square 5$ or $x \ \square \ 175$ . But if $x \ \square \ 227 \ \square 5$ , then the |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |                                                                    |                         |  |
|     | side of length v                                                                                                                                                                                                                                                                      | 7 combined with the                                 | hypotenuse already exceeds t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ha narin                   | eater of 202 feat, and so we                                       | must have $r = 175$     |  |
|     | -                                                                                                                                                                                                                                                                                     |                                                     | 7 $\square$ 168 and 399 $\square$ 2 $\square$ 175                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                          |                                                                    |                         |  |
|     | 175 feet.                                                                                                                                                                                                                                                                             |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |                                                                    | .,,                     |  |
| 90. | Let <i>h</i> be the heigh                                                                                                                                                                                                                                                             | nt of the screens in inc                            | ches. The width of the smalle                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                            |                                                                    |                         |  |
|     | screen is $1 \square 8h$ inches. The diagonal measure of the smaller screen is $h^2 \square h \square 7\square^2$ , and the diagonal measure of the                                                                                                                                   |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |                                                                    |                         |  |
|     | larger screen is $h^2 \square 1 \square 8h \square 4 \square 24h^2 \square 2 \square 06h$ . Thus $h^2 \square 7 \square^2 \square \square h \square h^2 \square h \square \square 3$ .                                                                                                |                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                            |                                                                    |                         |  |
|     | Squaring both sid                                                                                                                                                                                                                                                                     | es gives $h^2 \square h^2 \square 1$                | 4h   49   4   24h <sup>2</sup>   12   26   26   26   27   27   27   27   2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $\frac{36h}{}$ $\square$ 9 | $0 \oplus 0 \oplus \overline{2 \oplus 24h^2} \oplus 26 \oplus 36h$ |                         |  |
|     |                                                                                                                                                                                                                                                                                       |                                                     | 26 36 2 4 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <u> </u>                   | O .                                                                | 6 □ 32 □ 45             |  |
|     | the Quadratic For $26\square 36\square 32$                                                                                                                                                                                                                                            | mula, we obtain $h \square$                         | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                            | □<br>4 □ 48<br>□                                                   | 1□48 . So               |  |

| <b>91.</b> Since the total time is 3 s, we have 3 $\square$                                                | 4 $\square$ 1090. Letting $\square$ $\square$ d, we have $\square$ 4 $\square$ 1090 $\square$ $\square$ 1090 $\square$ $\square$ 4 $\square$ $\square$ $\square$ | 0 |
|------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
|                                                                                                            | 545 □ 591 □ 054                                                                                                                                                  |   |
| $\square \ 2\square^2 \ \square \ 545\square \ \square \ 6540 \ \square \ 0 \ \square \ \square \ \square$ | Since $\square$ 0, we have $\stackrel{\square}{d}$ $\square$ $\square$ 11 $\square$ 51, so $d$ $\square$ 132 $\square$ 56. The                                   |   |
| is $132\square 6$ ft deep.                                                                                 | well                                                                                                                                                             |   |

| 92. ( | a) | <i>Method 1:</i> Let $u \ \square \ \overline{x}$ , so $u \ \square \ \square \ x$ . Thus $x \ \square \ \overline{x} \ \square \ 2 \ \square \ 0$ becomes $u^2 \ \square \ u \ \square \ 2 \ \square \ 0 \ \square \ \square \ u \ \square \ 2 \ \square \ u \ \square \ 1 \ \square \ \square \ 0$ . So $u \ \square \ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|-------|----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       |    | 2 or $u$ $\square$ 1. If $u$ $\square$ 2, then                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|       |    | 1. Checking $x \square 4$ we have $4 \square \square 4 \square 2 \square 4 \square 2 \square 2 \square 0$ . Checking $x \square 1$ we have $1 \square \square 1 \square 2 \square 1 \square 1 \square 2 \square 0$ . The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|       |    | only solution is 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|       |    | Method 2: $x \Box \overline{x} \Box 2 \Box 0 \Box x \Box 2 \Box \overline{x} \Box x^2 \Box 4x \Box 4 \Box x \Box x^2 \Box 5x \Box 4 \Box 0 \Box \Box x \Box 4 \Box \Box x \Box 1 \Box \Box 0$ . So the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|       |    | possible solutions are 4 and 1. Checking will result in the same solution.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| (     | b) | Method 1: Let $u \ \Box \ \frac{1}{x \ \Box \ 3}$ , so $u^2 \ \Box \ \frac{1}{\Box \ 3 \ \Box^2}$ Thus $\frac{12}{\Box x \ \Box} \ \Box \ \frac{10}{x \ \Box \ 3} \ \Box \ 1 \ \Box \ 0$ becomes $12u^2 \ \Box \ 10u \ \Box \ 1 \ \Box \ 0$ . Using $\Box x \ \Box \ x \ x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|       |    | the Quadratic Formula, we have $u = \begin{bmatrix} 10 & \boxed{10^2 & 4 & \boxed{12} & \boxed{10} & \boxed{52} & \boxed{10} & \boxed{2} & 13 & \boxed{5} & \boxed{13} & \boxed{55} & \boxed{13} \\ 24 & 24 & \boxed{12} & \boxed{12} & . \text{ If } u & \boxed{12} & , \\ & & & & & & & & & & & & & & & & &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|       |    | then $\frac{1}{x \ 3}$ $\frac{12}{12}$ $\frac{12}{13}$ $\frac{12}{13}$ $\frac{12}{13}$ $\frac{12}{13}$ $\frac{12}{13}$ $\frac{13}{12}$ $\frac{13}{12}$ $\frac{13}{13}$ $\frac{13}{12}$ $\frac{13}{13}$ $\frac{13}{12}$ $\frac{13}{13}$ |
|       |    | If $u = \frac{1}{12}$ , then $\frac{1}{x + 3} = \frac{12}{12}$ , then $\frac{12}{x + 3} = \frac{12}{12}$ and $\frac{12}{13} = \frac{12}{13}$ and $\frac{12}{13} = \frac{12}{13}$ and $\frac{12}{13} = \frac{12}{13}$ and $\frac{13}{13} = \frac{12}{13} = \frac{12}{13} = \frac{12}{13}$ and $\frac{13}{13} = \frac{12}{13} = \frac$                                               |
|       |    | The solutions are $\Box 2 \Box \Box \overline{13}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|       |    | Method 2: Multiplying by the LCD, $\Box x \Box 3\Box^2$ , we get $\Box x \Box \frac{12}{\Box x \Box} \Box \frac{10}{x \Box 3} \Box 1 \Box 0 \Box \Box x \Box 3\Box^2 \Box 3\Box^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|       |    | 12 $\square$ 10 $\square$ $x$ $\square$ 3 $\square$ $\square$ $\square$ $\square$ 2 $\square$ 10 $\square$ 12 $\square$ 10 $x$ $\square$ 30 $\square$ $x^2$ $\square$ 6 $x$ $\square$ 9 $\square$ 0 $\square$ $x^2$ $\square$ 4 $x$ $\square$ 9 $\square$ 0. Using the Quadratic 4 $\square$ 4 $\square$ 4 $\square$ 19 $\square$ 4 $\square$ 52 $\square$ 4 $\square$ 13 $\square$ 13. The solutions are $\square$ 2 $\square$ 13.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|       |    | Formula, we have $u \square $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

## 1.7 SOLVING INEQUALITIES

|        |      |           | _    |    |   |     | _ |     |       |
|--------|------|-----------|------|----|---|-----|---|-----|-------|
| 1. (a) | If x | . 1 5. th | en x | 13 | 5 | 113 | x | 113 | 1   2 |

**(b)** If  $x \square 5$ , then  $3 \square x \square 3 \square 5 \square 3x \square 15$ .

(c) If  $x \square 2$ , then  $\square 3 \square x \square \square 3 \square 2 \square \square 3x \square \square 6$ .

(d) If  $x \square \square 2$ , then  $\square x \square 2$ .

**2.** To solve the nonlinear inequality  $\frac{x \Box 1}{x \Box 2} \Box 0$  we

first observe that the numbers  $\Box \, 1$  and 2 are zeros

| Interval                                 |  | □2□    |
|------------------------------------------|--|--------|
| Sign of $x \square 1$                    |  |        |
| Sign of $x \square 2$                    |  |        |
| Sign of $\Box x \Box 1 \Box \Box x \Box$ |  |        |
| □ 1                                      |  | 2. □ 1 |

The endpoint  $\Box 1$  satisfies the inequality, because  $\frac{1}{\Box 1} \Box 2 \Box 0 \Box 0$ , but 2 fails to satisfy the inequality because  $\frac{2}{2} \Box 2$  is not

|    | Thus, referring to the table, we see that the solution of the inequality is $[\Box 1 \Box 2 \Box$ .                                                    |
|----|--------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3. | (a) No. For example, if $x \square \square 2$ , then $x \square x \square 1 \square \square \square 2 \square \square 1 \square \square 2 \square 0$ . |
|    | <b>(b)</b> No. For example, if $x \square 2$ , then $x \square x \square 1 \square \square 2 \square 3 \square \square 6$ .                            |
| 4. | (a) To solve $3x \square 7$ , start by dividing both sides of the inequality by 3.                                                                     |

**(b)** To solve  $5x \square 2 \square 1$ , start by adding 2 to both sides of the inequality.

5.

| х                | $\Box 2 \Box 3x \Box \frac{1}{3}$       |
|------------------|-----------------------------------------|
| □5               | $\Box 17 \ \Box \ \frac{1}{3}$ ; no     |
| □1               | $\Box 5 \Box \frac{1}{3}$ ; no          |
| 0                | □2 □ 0; no                              |
| $\frac{2}{3}$    | $0 \square \frac{1}{3}$ ; no            |
| 2<br>3<br>5<br>6 | $\frac{1}{2} \square \frac{1}{3}$ ; yes |
| _1               | $1 \square \frac{1}{3}$ ; yes           |
| 5                | $4\Box7 \ \Box \ ^1;$                   |
| 3                | yeş<br>7 □ <del>1</del> 3; yes          |
| 5                | 13, 2 ½; yes                            |

The elements  $\frac{5}{6}$ , 1,  $\frac{13}{5}$ ,  $\frac{1}{3}$ ,  $\frac{1}{5}$  we he inequality.

7.

| х                | $1 \square 2x \square 4 \square 7$             |
|------------------|------------------------------------------------|
| □5               | 1 □ □14 □ 7; no                                |
| □1               | 1 □ □6 □ 7; no                                 |
| 0                | 1 □ □4 □ 7; no                                 |
| 2<br>3<br>5<br>6 | $1 \square \square \frac{8}{3} \square 7$ ; no |
| 5<br>6           | $1 \square \square \frac{7}{3} \square 7$ ; no |
| _1               | 1 □ □2 □ 7; no                                 |
| 5                | $1 \square 0 \square 47 \square 7;$            |
| 3                | no                                             |
| 5                | $1 \square 2 \square 7$ ; yes                  |

The elements 3 and 5 satisfy the inequality.

6.

| x                | $1 \square 2x \square 5x$                 |     |
|------------------|-------------------------------------------|-----|
| □5               | 11 □ □25; yes                             |     |
| $\Box 1$         | 3 □ □5; yes                               |     |
| 0                | 1 □ 0; yes                                |     |
| $\frac{2}{3}$    | $\Box \frac{1}{3} \Box \frac{10}{3}$ ; no |     |
| 2<br>3<br>5<br>6 | $\Box \frac{2}{3} \Box \frac{25}{6}$ ; no |     |
| $\Box_{5}^{1}$   | □1 □ 5; no                                |     |
| <sup>-</sup> 5   | □3□47 □ 11□18; no                         |     |
| 3                | □5 □ 15; no                               |     |
| 5                | □9 □ 25; no                               | 1:4 |

The elements 5, 1, and 0 satisfy the inequality.

8.

| x                | $\Box 2 \Box 3 \Box x \Box 2$                        |
|------------------|------------------------------------------------------|
| □5               | □2 □ 8 □ 2; no                                       |
| □1               | □2 □ 4 □ 2; no                                       |
| 0                | $\square 2 \square 3 \square 2$ ; no                 |
| 2<br>3<br>5<br>6 | $\Box 2 \Box \frac{7}{3} \Box 2$ ; no                |
| <u>5</u>         | $\Box 2 \ \Box \ \frac{13}{6} \ \Box \ 2; \text{no}$ |
| _1               | □2 □ 2 □ 2; no                                       |
| <u>5</u>         | $\Box 2 \ \Box \ 0 \Box 76 \ \Box \ 2;$              |
| 3                | yes                                                  |
| 5                | $\Box 2 \Box 0 \Box 2$ ; yes                         |
|                  |                                                      |

The elements  $\overline{5}$ , 3, and 5 satisfy the inequality.

9.

| х                     | $\frac{1}{\overline{x}}$ $\square$ $\frac{1}{2}$ $\square$                                                              |
|-----------------------|-------------------------------------------------------------------------------------------------------------------------|
| □5                    | $\Box_5^1 \Box_2^1$ ; yes                                                                                               |
| □1                    | $\square 1 \square \frac{1}{2}$ ; yes                                                                                   |
| 0                     | $\frac{1}{0}$ is undefined; no                                                                                          |
| 2                     | $\frac{3}{2} \square \frac{1}{2}$ ; no                                                                                  |
| 0<br>2<br>3<br>5<br>6 | $\begin{array}{c} \frac{3}{2} \square \frac{1}{2}; \text{no} \\ \frac{6}{5} \square \frac{1}{2}; \text{no} \end{array}$ |
| 1                     | $1 \square \frac{1}{2}$ ; no                                                                                            |
| 5                     | $0\Box 45\Box^{1};$                                                                                                     |
| 3                     | - yeş                                                                                                                   |
| 5                     | $\frac{1}{3} \square \frac{1}{2}$ ; yes                                                                                 |
| 5                     | $\Box$ $\frac{1}{5}$ $\Box$ $\frac{1}{2}$ ; yes                                                                         |

The elements 0.5, 0.1, 0.5, 3, 0.5 = 2,765 The elements 0.5, 0.1, 0.5, 3, 0.5 = 2,765 The inequality.

**11.**  $5x \square 6 \square x \square ^6$ . Interval:  $\square 6$ 

Graph: 
$$\begin{array}{c|c}
\hline
5 & \Box \Box 5 \\
\hline
6 \\
\hline
6 \\
\hline
5
\end{array}$$

10.

| $x^2 \square 2 \square 4$                 |
|-------------------------------------------|
| 27 □ 4; no                                |
| 3 □ 4; yes                                |
| 2 □ 4; yes                                |
| $\frac{\overline{22}}{9} \square 4$ ; yes |
| $^{97}_{36}$ $\square$ 4; yes             |
| 3 □ 4; yes                                |
| 7 □ 4; no                                 |
| 11 □ 4; no                                |
| 27 □ 4; no                                |
|                                           |

The elements  $\Box 1$ , 0,  $\overset{2}{,}$  5, and 1 satisfy the inequality.

**12.**  $2x \square 8 \square x \square 4$ . Interval:  $[4 \square \square \square]$ 

**13.**  $2x \square 5 \square 3 \square 2x \square 8 \square x \square 4$ Interval: □4□□□

**15.**  $2 \square 3x \square 8 \square 3x \square 2 \square 8 \square x \square \square 2$ Interval:  $\Box \Box \Box \Box \Box \Box \Box \Box$ 

Graph:

**17.**  $2x \square 1 \square 0 \square 2x \square \square 1 \square x \square \square^{1}_{\overline{2}}$ 

Interval:  $\Box$ 

Graph:

**19.**  $1 \Box 4x \Box 5 \Box 2x \Box 6x \Box 4 \Box x \Box ^{2}_{3}$ 

Interval:  $\square$  2

Graph:

**21.**  $^1x \square ^2 \square 2 \square ^1x \square ^8 \square x \square ^{16}$ 2 3 2

Interval:  $\frac{\Box}{3}\Box\Box$ 

- Graph:  $\frac{}{\frac{16}{3}}$
- **23.**  $4 \square 3x \square \square \square 1 \square 8x \square \square 4 \square 3x \square \square 1 \square 8x \square 5x \square \square 5$  $\Box x \Box \Box 1$

Interval:  $\Box \Box \Box \Box \Box \Box \Box \Box$ 

**25.**  $2 \square x \square 5 \square 4 \square \square 3 \square x \square \square 1$ 

Interval:  $[\Box 3 \Box \Box 1 \Box$ 

**14.**  $3x \square 11 \square 5 \square 3x \square \square 6 \square x \square \square 2$ 

Interval:  $\Box\Box\Box\Box\Box\Box\Box\Box$ 

Graph: -

**16.**  $1 \square 5 \square 2x \square 2x \square 5 \square 1 \square x \square 2$ 

Interval:  $\Box\Box\Box\Box\Box\Box\Box$ 

Graph:

**18.**  $0 \square 5 \square 2x \square 2x \square 5 \square x \square \frac{5}{2}$ 

 $\Box\Box$ 

Graph:

**20.**  $5 \square 3x \square 2 \square 9x \square 6x \square \square 3 \square x \square \square_2$ 

Interval:

 $\Box\Box$  2

**22.**  $\stackrel{?}{=} \Box \stackrel{1}{=} x \Box \stackrel{1}{=} \Box x$  (multiply both sides by 6)  $\Box$ 

 $4 \ \Box \ 3x \ \Box \ 1 \ \Box \ 6x \ \Box \ 3 \ \Box \ 9x \ \Box \ _3 \ \Box \ x$ 

Interval:  $\Box\Box$  3

Graph:

**24.**  $2 \square 7x \square 3 \square \square 12x \square 16 \square 14x \square 6 \square 12x \square 16 \square$ 

 $2x \square 22 \square x \square 11$ Interval:  $\Box \Box \Box \Box \Box \Box \Box \Box$ 

3

**26.** 5  $\square$  3x  $\square$  4  $\square$  14  $\square$  9  $\square$  3x  $\square$  18  $\square$  3  $\square$  x  $\square$  6

Interval: [3□ 6]

Graph:

**27.**  $\Box 6 \Box 3x \Box 7 \Box 8 \Box 1 \Box 3x \Box 15 \Box \frac{1}{3} \Box x \Box 5$ 



Graph: 
$$\frac{3}{\frac{1}{3}} \xrightarrow{5}$$

**28.**  $\square 8 \square 5x \square 4 \square 5 \square \square 4 \square 5x \square 9 \square \square \frac{4}{5} \square x \square \frac{9}{5}$ 

Interval: 
$$\begin{bmatrix} \Box & 4 & \Box & 9 \end{bmatrix}$$

Graph: 
$$\frac{4}{-5}$$
  $\frac{9}{5}$ 

 $\square \stackrel{9}{\sim} \square x \square 5$ 

Interval:  $^{\Box}{}^{9}\Box$ 

31.  $\frac{2}{3} \Box \frac{2x \Box 3}{12} \Box \frac{1}{6} \Box 8 \Box 2x \Box 3 \Box 2$  (multiply each 32.  $\Box \frac{1}{2} \Box \frac{4 \Box 3x}{5} \Box \frac{1}{4} \Box$  (multiply each expression by 20)

expression by 12)  $\Box$  11  $\Box$  2x  $\Box$  5  $\Box$  11  $\Box$  x  $\Box$  5 Interval:  $\Box$  5  $\Box$  11

**29.**  $\Box 2 \Box 8 \Box 2x \Box \Box 1 \Box \Box 10 \Box \Box 2x \Box \Box 9 \Box 5 \Box x \Box \frac{9}{2}$  **30.**  $\Box 3 \Box 3x \Box 7 \Box \frac{1}{2} \Box \Box 10 \Box 3x \Box \frac{13}{2} \Box \Box \frac{13}{2}$ 

 $\Box \frac{10}{3} \Box x \Box \Box \frac{13}{6}$ 

Interval:  $\Box$  10  $\Box$  13

- Graph:  $\underbrace{\begin{array}{c} 10 \\ -3 \end{array} }_{\phantom{0}} \underbrace{\begin{array}{c} 13 \\ -6 \end{array}}_{\phantom{0}}$

 $\Box 10 \Box 4 \Box 4 \Box 3x \Box \Box 5 \Box \Box 10 \Box 16 \Box 12x \Box 5 \Box$ 

 $\Box 26 \Box \Box 12x \Box \Box 11 \Box \frac{13}{6} \Box x \Box \frac{11}{12} \Box \frac{11}{12} \Box x \Box \frac{13}{6}$ 

Interval:  $\frac{\Box}{12} \Box 13$ 

- 33.  $\Box x \Box 2 \Box \Box x \Box 3 \Box \Box 0$ . The expression on the left of the inequality changes sign where  $x \Box \Box 2$  and where  $x \Box 3$ . Thus we must check the intervals in the following table.

| Interval                                 |  | □3□ |
|------------------------------------------|--|-----|
| Sign of $x \square 2$                    |  |     |
| Sign of $x \square 3$                    |  |     |
| Sign of $\Box x \Box 2 \Box \Box x \Box$ |  |     |

From the table, the solution set is

 $\Box x \Box \Box 2 \Box x \Box 3 \Box$ . Interval:  $\Box \Box 2 \Box 3 \Box$ .

**34.**  $\Box x \Box 5 \Box \Box x \Box 4 \Box \Box$  0. The expression on the left of the inequality changes sign when  $x \Box 5$  and  $x \Box \Box 4$ . Thus we must check the intervals in the following table.

| Interval                                 |  | □5□ |
|------------------------------------------|--|-----|
| Sign of $x \square 5$                    |  |     |
| Sign of $x \square 4$                    |  |     |
| Sign of $\Box x \Box 5 \Box \Box x \Box$ |  |     |

From the table, the solution set is

 $\Box x \Box x \Box \Box 4 \text{ or } 5 \Box x \Box.$ 

Interval: □□□□□4] □ [5□

Graph: 4

**35.**  $x \square 2x \square 7\square \square 0$ . The expression on the left of the inequality changes sign where  $x \square 0$  and where  $x \square \frac{1}{2}$ . Thus we must check the intervals in the following table.

| Interval                       | $\exists_{\overline{2}} 0$ |  |
|--------------------------------|----------------------------|--|
| Sign of x                      |                            |  |
| Sign of $2x \square 7$         |                            |  |
| Sign of $x \square 2x \square$ |                            |  |

From the table, the solution set is

$$x \square x \square \exists_2 \text{ or } 0 \square x$$
.

Graph: 
$$\begin{array}{c} & & & & & \\ \hline & 7 & & & & \\ & -^{7} & & & & \\ \end{array}$$

CHAPTER 1 Equations and Graphs

SECTION 1.7 Solving Inequalities

**36.**  $x \Box 2 \Box 3x \Box \Box 0$ . The expression on the left of the inequality changes sign when  $x \Box 0$  and  $x \Box_{\overline{3}}^2$ . Thus we must check the intervals in the following table.

| Interval                      | $0 \Box \frac{2}{3}$ | $\frac{2}{3}\Box \Box$ |
|-------------------------------|----------------------|------------------------|
| Sign of x                     |                      |                        |
| Sign of $2 \square 3x$        |                      |                        |
| Sign of $x \square 2 \square$ |                      |                        |

|          | _ | _ | _ |
|----------|---|---|---|
| Graph: ' | 0 | 2 |   |
|          | U | 3 |   |

- **37.**  $x^2 \square 3x \square 18 \square 0 \square \square x \square 3 \square \square x \square 6 \square \square 0$ . The expression on the left of the inequality changes sign where  $x \square 6$  and where
  - $x \square \square 3$ . Thus we must check the intervals in the following table.

| Interval                                 |  | □6□ |
|------------------------------------------|--|-----|
| Sign of $x \square 3$                    |  |     |
| Sign of $x \square 6$                    |  |     |
| Sign of $\Box x \Box 3 \Box \Box x \Box$ |  |     |

From the table, the solution set is  $\Box x \Box \Box 3 \Box x \Box 6 \Box$ . Interval:  $[\Box 3 \Box 6]$ .

**38.**  $x^2 \Box 5x \Box 6 \Box 0 \Box \Box x \Box 3 \Box \Box x \Box 2 \Box \Box 0$ . The expression on the left of the inequality changes sign when  $x \Box \Box 3$  and  $x \Box \Box 2$ . Thus we must check the intervals in the following table.

| Interval                                 |  |  |
|------------------------------------------|--|--|
| Sign of $x \square 3$                    |  |  |
| Sign of $x \square 2$                    |  |  |
| Sign of $\Box x \Box 3 \Box \Box x \Box$ |  |  |

From the table, the solution set is  $\Box x \Box x \Box \exists x \Box \exists x \Box x \Box$ . Interval:  $\Box \Box \Box \Box \exists x \Box \exists x \Box z \Box$ .

Graph:  $\Box \Box \Box \Box \exists x \Box x \Box$ 

- **39.**  $2x^2 \square x \square 1 \square 2x^2 \square x \square 1 \square 0 \square \square x \square 1 \square \square 2x \square 1 \square \square 0$ . The expression on the left of the inequality changes sign where
  - $x \square \square 1$  and where  $x \square \frac{1}{2}$ . Thus we must check the intervals in the following table.

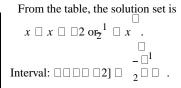
| Interval                                  | $\Box\Box\frac{1}{2}$ | $\frac{1}{2}$ |
|-------------------------------------------|-----------------------|---------------|
| Sign of $x \square 1$                     |                       |               |
| Sign of $2x \square 1$                    |                       |               |
| Sign of $\Box x \Box 1 \Box \Box 2x \Box$ |                       |               |

| ~ .     |    |   | _             |
|---------|----|---|---------------|
| Graph:  |    |   | $\overline{}$ |
| Orapii. |    | 1 |               |
|         |    | 1 |               |
|         | _1 | _ |               |
|         |    | Z |               |

**40.**  $x^2 \square x \square 2 \square x^2 \square x \square 2 \square 0 \square \square x \square 1 \square \square x \square 2 \square 0$ . The expression on the left of the inequality changes sign when  $x \square \square 1$  and  $x \square 2$ . Thus we must check the intervals in the following table.

| Interval                                 |  | □2□ |
|------------------------------------------|--|-----|
| Sign of $x \square 1$                    |  |     |
| Sign of $x \square 2$                    |  |     |
| Sign of $\Box x \Box 1 \Box \Box x \Box$ |  |     |

From the table, the solution set is  $\Box x \Box \Box 1 \Box x \Box 2 \Box$ . Interval:  $\Box \Box 1 \Box 2 \Box$ .


| Graph:  |    |   | _ |
|---------|----|---|---|
| Orupii. | 1  | 2 |   |
|         | _1 | _ |   |

| 41. | • $3x^2 \Box 3x \Box 2x^2 \Box 4 \Box x^2 \Box 3x \Box 4 \Box 0 \Box \Box x \Box 1 \Box \Box x \Box 4 \Box 0$ . The expression on the left of the inequality changes |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | sign where $x \square \square 1$ and where $x \square 4$ . Thus we must check the intervals in the following table.                                                  |

| Interval                                 |  | □4□ |
|------------------------------------------|--|-----|
| Sign of $x \square 1$                    |  |     |
| Sign of $x \square 4$                    |  |     |
| Sign of $\Box x \Box 1 \Box \Box x \Box$ |  |     |

**42.** 
$$5x^2 \Box 3x \Box 3x^2 \Box 2 \Box 2x^2 \Box 3x \Box 2 \Box 0 \Box \Box 2x \Box 1 \Box \Box x \Box 2 \Box 0$$
. The expression on the left of the inequality changes sign when  $x \Box 1$  and  $x \Box \Box 2$ . Thus we must check the intervals in the following table.

| Interval                                  | $2 \Box \frac{1}{2}$ | $\frac{1}{2}$ |
|-------------------------------------------|----------------------|---------------|
| Sign of $2x \square 1$                    |                      |               |
| Sign of $x \square 2$                     |                      |               |
| Sign of $\Box 2x \Box 1 \Box \Box x \Box$ |                      |               |



| ~ .    |    |   |
|--------|----|---|
| Graph: | _2 | 1 |
|        |    | Z |

| 43. | $x^2 \square 3 \square x \square 6 \square \square x^2 \square 3x \square 18$ | $8 \square 0 \square \square x \square 3 \square$ | $\Box x \Box 6 \Box \Box 0.$ | The expression on th    | e left of the inequality | changes |
|-----|-------------------------------------------------------------------------------|---------------------------------------------------|------------------------------|-------------------------|--------------------------|---------|
|     | sign where $x \square 6$ and where $x \square$                                | $\square$ 3. Thus we must                         | check the interv             | als in the following ta | able.                    |         |

| Interval                                 |  | □6□ |
|------------------------------------------|--|-----|
| Sign of $x \square 3$                    |  |     |
| Sign of $x \square 6$                    |  |     |
| Sign of $\Box x \Box 3 \Box \Box x \Box$ |  |     |

| From the table, the solution                           | n set is |
|--------------------------------------------------------|----------|
| $\Box x \Box x \Box \Box 3 \text{ or } 6 \Box x \Box.$ |          |
| Interval: □□□□□3□□□                                    | □6□      |
|                                                        |          |
| Graph: ——o                                             | <b>→</b> |
|                                                        |          |

| 44. | $x^2 \square 2x \square 3 \square x^2 \square 2x \square 3 \square 0 \square \square x \square 3 \square \square x \square 1 \square$ | $\hfill \square$ 0. The expression on the left of the inequality changes sign wh | eı |
|-----|---------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------|----|
|     | $x \square \square 3$ and $x \square 1$ . Thus we must check the intervals in                                                         | the following table.                                                             |    |

| Interval                                 |  |  |
|------------------------------------------|--|--|
| Sign of $x \square 3$                    |  |  |
| Sign of $x \square 1$                    |  |  |
| Sign of $\Box x \Box 3 \Box \Box x \Box$ |  |  |

| From the table, the solution set is                    |
|--------------------------------------------------------|
| $\Box x \Box x \Box \Box 3 \text{ or } 1 \Box x \Box.$ |
| Interval: □□□□□3□□□1□                                  |
|                                                        |
| Graph: — o — o — o — o — o — o — o — o — o —           |
| 3 1                                                    |

**45.**  $x^2 \Box 4 \Box x^2 \Box 4 \Box 0 \Box \Box x \Box 2 \Box \Box x \Box 2 \Box \Box 0$ . The expression on the left of the inequality changes sign where  $x \Box 2$  and where  $x \Box 2$ . Thus we must check the intervals in the following table.

| Interval                                 |  | $\Box 2\Box$ |
|------------------------------------------|--|--------------|
| Sign of $x \square 2$                    |  |              |
| Sign of $x \square 2$                    |  |              |
| Sign of $\Box x \Box 2 \Box \Box x \Box$ |  |              |

| From the table, the solution set is                                           |
|-------------------------------------------------------------------------------|
| $\Box x \Box \Box 2 \Box x \Box 2 \Box$ . Interval: $\Box \Box 2 \Box 2 \Box$ |
| Graph:                                                                        |

| <b>46.</b> $x^2$ | $9 \square x^2 \square 9 \square 0 \square \square x \square 3 \square \square x \square 3 \square \square 0$ . The expression on the left of the inequality changes sign when $x \square 3$ |
|------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| and              |                                                                                                                                                                                              |

 $x \square 3$ . Thus we must check the intervals in the following table.

| Interval                                 |  | □3□ |
|------------------------------------------|--|-----|
| Sign of $x \square 3$                    |  |     |
| Sign of $x \square 3$                    |  |     |
| Sign of $\Box x \Box 3 \Box \Box x \Box$ |  |     |

From the table, the solution set is  $\Box x \Box x \Box 3$  or  $3 \Box x \Box$ .

Interval:  $\Box \Box \Box \Box 3$   $\Box \Box \Box \Box$ .

Graph:

| 47. | $\Box x \Box 2\Box \Box x \Box 1\Box \Box x \Box 3\Box \Box 0.$ | The expression on the left of the inequality | changes sign when x | $\square$ $\square$ 2, $x$ $\square$ 1, and $x$ $\square$ |
|-----|-----------------------------------------------------------------|----------------------------------------------|---------------------|-----------------------------------------------------------|
| 3.  |                                                                 |                                              |                     |                                                           |

Thus we must check the intervals in the following table.

| Interval                                               |  | □3□ |
|--------------------------------------------------------|--|-----|
| Sign of $x \square 2$                                  |  |     |
| Sign of $x \square 1$                                  |  |     |
| Sign of $x \square 3$                                  |  |     |
| Sign of $\Box x \Box 2 \Box \Box x \Box 1 \Box \Box x$ |  |     |

| From the table, the solution set is $\Box x \Box x \Box \Box z $ or $1 \Box x \Box 3 \Box$ . Interval: $\Box \Box \Box$ | . Gr <del>aph.</del> |   | <b></b> - | <b>→</b> |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|---|-----------|----------|
|                                                                                                                                                                                                         | - 2                  | 1 | 3         |          |

| 48.        | $\Box x \ \Box \ 5 \Box \ \Box x \ \Box \ 2 \Box \ \Box x \ \Box \ 1 \Box \ \Box \ 0.$ | The expression on the | left of the inequality | changes sign | when $x \square 5$ , | $x \square 2$ , a | and $x \square$ |
|------------|----------------------------------------------------------------------------------------|-----------------------|------------------------|--------------|----------------------|-------------------|-----------------|
| $\Box 1$ . |                                                                                        |                       |                        |              |                      |                   |                 |

Thus we must check the intervals in the following table.

| Interval                                               |  | $\Box 2\Box$ | □5□ |
|--------------------------------------------------------|--|--------------|-----|
| Sign of $x \square 5$                                  |  |              |     |
| Sign of $x \square 2$                                  |  |              |     |
| Sign of $x \square 1$                                  |  |              |     |
| Sign of $\Box x \Box 5 \Box \Box x \Box 2 \Box \Box x$ |  |              |     |

| From the table, the solution set is $\Box x \Box \Box 1 \Box x \Box 2$ or $5 \Box x \Box$ . Interval: $\Box \Box 1 \Box 2 \Box \Box 5 \Box \Box \Box$ . |   |   |   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|---|---|---|
| 1                                                                                                                                                       | 1 | 2 | 5 |

**49.**  $\Box x \Box 4 \Box \Box x \Box 2 \Box^2 \Box 0$ . Note that  $\Box x \Box 2 \Box^2 \Box 0$  for all  $x \Box \Box 2$ , so the expression on the left of the original inequality changes sign only when  $x \Box 4$ . We check the intervals in the following table.

| Interval                                 |  | □4□ |
|------------------------------------------|--|-----|
| Sign of $x \square 4$                    |  |     |
| Sign of $\Box x \Box 2 \Box^2$           |  |     |
| Sign of $\Box x \Box 4 \Box \Box x \Box$ |  |     |

From the table, the solution set is  $\Box x \Box x \Box 2$  and  $x \Box 4\Box$ . We exclude the endpoint  $\Box 2$  since the original expression cannot be 0. Interval:  $\Box \Box \Box$ 

\_2

| 50. | $\Box x \Box 3\Box^2 \Box x \Box 1\Box \Box 0$ . Note that $\Box x \Box 3\Box^2 \Box 0$ for all $x \Box \Box 3$ , so the expression on the left of the original inequality |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | changes sign only when $x \square \square 1$ . We check the intervals in the following table.                                                                              |

| Interval                                  |  |  |
|-------------------------------------------|--|--|
| Sign of $\Box x \Box 3\Box^2$             |  |  |
| Sign of $x \square 1$                     |  |  |
| Sign of $\Box x \Box 3\Box^2 \Box x \Box$ |  |  |

From the table, the solution set is  $\Box x \Box x \Box$   $\Box 1 \Box$ . (The endpoint  $\Box 3$  is already excluded.) Interval:  $\Box \Box 1 \Box \Box \Box$ .

| <b>51.</b> [ | $\Box x \Box z \Box^2 \Box x \Box 3 \Box \Box x \Box 1 \Box \Box 0$ . Note that $\Box x \Box z \Box^2 \Box 0$ for all x, so the expression on the left of the original |
|--------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| i            | inequality changes sign only when $x \square \square 1$ and $x \square 3$ . We check the intervals in the following table.                                             |
|              |                                                                                                                                                                        |

| Interval                                               |  | □2□ | □3□ |
|--------------------------------------------------------|--|-----|-----|
| Sign of $\Box x \Box 2\Box^2$                          |  |     |     |
| Sign of $x \square 3$                                  |  |     |     |
| Sign of $x \square 1$                                  |  |     |     |
| Sign of $\Box x \Box 2\Box^2 \Box x \Box 3\Box \Box x$ |  |     |     |

| From the table, the solution: | set is $\Box x$ | $\Box$ $\Box$ 1 | $\Box x$ | $\square$ 3 $\square$ . | Interval: | $[\Box 1 \Box 3].$ |
|-------------------------------|-----------------|-----------------|----------|-------------------------|-----------|--------------------|
| Graph:                        |                 |                 |          |                         |           |                    |



**52.** 
$$x^2 \ x^2 \ \Box \ 1 \ \Box \ 0 \ \Box \ x^2 \ \Box x \ \Box \ 1 \ \Box \ \Box \ 0$$
. The expression on the left of the inequality changes sign when  $x \ \Box \ \Box \ 1$  and

 $x \square 0$ . Thus we must check the intervals in the following table.

| Interval                      |  |  |
|-------------------------------|--|--|
| Sign of $x^2$                 |  |  |
| Sign of $x \square 1$         |  |  |
| Sign of $x \square 1$         |  |  |
| Sign of $x^2$ $x^2 \square 1$ |  |  |

From the table, the solution set is  $\Box x \Box x \Box 1$ ,  $x \Box 0$ , or  $1 \Box x \Box$ . (The endpoint 0 is included since the original expression

**53.** 
$$x^3 \Box 4x \Box 0 \Box x x^2 \Box 4 \Box 0 \Box x \Box x \Box 2 \Box x \Box 2 \Box 0$$
. The expression on the left of the inequality changes sign where

 $x \square 0, x \square \square 2$  and where  $x \square 4$ . Thus we must check the intervals in the following table.

| Interval                                                  |  | □2□ |
|-----------------------------------------------------------|--|-----|
| Sign of x                                                 |  |     |
| Sign of $x \square 2$                                     |  |     |
| Sign of $x \square 2$                                     |  |     |
| Sign of $x \square x \square 2 \square \square x \square$ |  |     |

From the table, the solution set is  $\Box x \Box \Box 2 \Box x \Box 0$  or  $x \Box 2 \Box$ . Interval:  $\Box \Box 2 \Box 0 \Box \Box \Box 2 \Box \Box$ . Graph:  $\bigcirc 2 \bigcirc 0$ 

| 54.  | $16x \square x^3 \square 0 \square x^3 \square 16x \square x \square x^2 \square 16 \square x \square x \square 4 \square x \square 4 \square$ . The expression on the left of the inequality changes |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| sign | n                                                                                                                                                                                                     |

when  $x \square \square 4$ ,  $x \square 0$ , and  $x \square 4$ . Thus we must check the intervals in the following table.

| Interval                                                  | □ □4□ | □4□ |
|-----------------------------------------------------------|-------|-----|
| Sign of $x \square 4$                                     |       |     |
| Sign of x                                                 |       |     |
| Sign of $x \square 4$                                     |       |     |
| Sign of $x \square x \square 4 \square \square x \square$ |       |     |

| From the table, the solution set is $\Box x \Box \Box 4 \Box x \Box 0$ or $4 \Box x \Box$ . Interval: $[\Box 4 \Box 0] \Box [4 \Box \Box \Box]$ .              | rank  |   |   | _ |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------|---|---|---|
| From the table, the solution set is $\Box x \Box \Box \Box + \Box x \Box \cup \cup$ | raph. |   |   | _ |
|                                                                                                                                                                | 4     | 0 | 4 |   |
|                                                                                                                                                                |       | 0 |   |   |

**55.** 
$$\frac{x \Box 3}{2x \Box 1} \Box 0$$
. The expression on the left of the inequality changes sign where  $x \Box \Box 3$  and where  $x \Box \Box 1$ . Thus we must check the intervals in the following table.

| Interval                                   | $3\square \frac{1}{2}$ | 2□ □ |
|--------------------------------------------|------------------------|------|
| Sign of $x \square 3$                      |                        |      |
| Sign of $2x \square 1$                     |                        |      |
| Sign of $\frac{x \square 3}{2x \square 1}$ |                        |      |

| cannot equal $0, x \square_{\overline{2}}$ .                                                                  |
|---------------------------------------------------------------------------------------------------------------|
| Interval: $\square$ |

Graph: 
$$\begin{array}{c} & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ \end{array}$$

**56.** 
$$\frac{4 \square x}{x \square 4} \square 0$$
. The expression on the left of the inequality changes sign when  $x \square 4$  and  $x \square 4$ . Thus we must check the intervals in the following table.

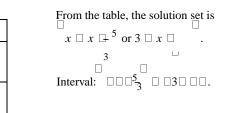
| Interval                                  |  | □4□ |
|-------------------------------------------|--|-----|
| Sign of $4 \square x$                     |  |     |
| Sign of $x \square 4$                     |  |     |
| Sign of $\frac{4 \square x}{x \square 4}$ |  |     |

From the table, the solution set is 
$$\Box x \Box x \Box d \text{ or } x \Box d \Box$$
.

Interval:  $\Box \Box \Box \Box d \Box \Box d \Box$ 
 $\Box \Box$ .

Graph:  $\bullet \bullet \bullet \bullet \bullet \bullet \bullet \bullet$ 

57. 
$$\frac{4 \Box x}{x \Box 4} \Box 0$$
. The expression on the left of the inequality changes sign where  $x \Box \Box 4$ . Thus we must check the intervals in the following table.


| Interval                                  |  | □4□ |
|-------------------------------------------|--|-----|
| Sign of $4 \square x$                     |  |     |
| Sign of $x \square 4$                     |  |     |
| Sign of $\frac{4 \square x}{x \square 4}$ |  |     |

| From the table, the solution set is                    |
|--------------------------------------------------------|
| $\Box x \Box x \Box \Box 4 \text{ or } x \Box 4 \Box.$ |
| Interval: □□□□□□4□ □ □4□                               |
|                                                        |
| Graph:                                                 |

|               | $x \square 1$                                     | $x \square 1$                               | $\frac{x \Box 1}{}$ | $\begin{array}{ccc} 2 \square x \square \\ 3 \square \end{array}$ | $3x \square 5$                                                                 |
|---------------|---------------------------------------------------|---------------------------------------------|---------------------|-------------------------------------------------------------------|--------------------------------------------------------------------------------|
| <b>58.</b> □2 | $\Box \ \overline{x \square 3} \ \Box \ 0 \ \Box$ | ${x \square 3} \square 2 \square 0 \square$ | $x \square 3$       | ${x \square 3} \square 0 \square$                                 | $\frac{1}{x \square 3}$ $\square$ The expression on the left of the inequality |

changes sign when  $x = \frac{5}{3}$  and x = 3. Thus we must check the intervals in the following table.

| Interval                                   | $\square \square \frac{5}{3}$ | ₃□ 3 |  |
|--------------------------------------------|-------------------------------|------|--|
| Sign of $3x \square 5$                     |                               |      |  |
| Sign of $x \square 3$                      |                               |      |  |
| Sign of $\frac{3x \square 5}{x \square 3}$ |                               |      |  |



|     | $2x \square 1$                    | $2x \square 1$                              | $\frac{2x \square 1}{}$ | $\begin{array}{ccc} 3 \square x \square \\ 5 \square \end{array}$ | $\Box x \Box 16$                     |                                              |
|-----|-----------------------------------|---------------------------------------------|-------------------------|-------------------------------------------------------------------|--------------------------------------|----------------------------------------------|
| 59. | ${x \square 5} \square 3 \square$ | ${x \square 5} \square 3 \square 0 \square$ | <i>x</i> □ 5            | $ = \frac{1}{x \square 5} $                                       | $0 \square {x \square 5} \square 0.$ | The expression on the left of the inequality |

changes sign where  $x \square 16$  and where  $x \square 5$ . Thus we must check the intervals in the following table.

| Interval                 | □5□ | □16□ |
|--------------------------|-----|------|
| Sign of $\Box x \Box 16$ |     |      |
| Sign of $x \square 5$    |     |      |
| Sign of                  |     |      |

From the table, the solution set is  $\Box x \Box x \Box 5$  or  $x \Box 16\Box$ . Since the denominator cannot equal 0, we must have  $x \Box 5$ .

Interval:  $\Box \Box \Box \Box 5\Box \Box [16\Box \Box \Box$ .

**60.** 
$$\frac{3 \square x}{3 \square x} \square 1 \square \frac{3 \square x}{3 \square x} \square 1 \square 0 \square \frac{3 \square x}{3 \square x} \square \frac{3 \square x}{3 \square x} \square \frac{3 \square x}{3 \square x} \square 0 \square \frac{2x}{3 \square x} \square 0$$
. The expression on the left of the inequality changes

sign when  $x \square 0$  and  $x \square 3$ . Thus we must check the intervals in the following table.

| Interval                         |  | □3□ |
|----------------------------------|--|-----|
| Sign of $3 \square x$            |  |     |
| Sign of $2x$                     |  |     |
| Sign of $\frac{2x}{3 \square x}$ |  |     |

Since the denominator cannot equal 0, we must have  $x \square 3$ . The solution set is  $\square x \square 0 \square x \square 3 \square$ .

Interval:  $[0 \square 3 \square$ .

Graph: 
$$0$$
  $3$ 

**61.** 
$$\frac{4}{x} \Box x \Box \frac{4}{x} \Box x \Box 0 \Box \frac{4}{x} \frac{x \Box}{x} \Box 0 \Box \frac{4 \Box x^2}{x} \Box 0 \Box \frac{\Box 2 \Box x \Box 2 \Box}{x} \Box 0$$
. The expression on the left of the

inequality changes sign where  $x \square 0$ , where  $x \square 2$ , and where  $x \square 2$ . Thus we must check the intervals in the following table.

| Interval                                                                   |  | $\Box 2 \Box$ |
|----------------------------------------------------------------------------|--|---------------|
| Sign of $2 \square x$                                                      |  |               |
| Sign of x                                                                  |  |               |
| Sign of $2 \square x$                                                      |  |               |
| Sign of $\begin{bmatrix} 2 & x & 2 & 2 & 3 \\ x & 3 & 3 & 3 \end{bmatrix}$ |  |               |

 $\Box_{\overline{3}}$ 

**62.**  $\frac{x}{x \Box 1} \Box 3x \Box \frac{x}{x \Box 1} \Box 3x \Box 0 \Box \frac{x}{x \Box 1} \Box \frac{3x \Box x \Box}{z \Box 1} \Box \frac{0}{z \Box 1} \Box 0 \Box \frac{\Box 2x \Box 3x^2}{z \Box 1} \Box 0 \Box \frac{\Box x \Box 2 \Box}{x \Box 1} \Box 0.$  The expression on

the left of the inequality changes sign when x = 0,  $x = \frac{1}{3}$ , and x = 1. Thus we must check the intervals in the following table.

| Interval                                                                                               | $\Box 1 \Box \Box_3$ | $\Box_3\Box 0$ | □0□ |
|--------------------------------------------------------------------------------------------------------|----------------------|----------------|-----|
| Sign of $\Box x$                                                                                       |                      |                |     |
| Sign of $2 \square 3x$                                                                                 |                      |                |     |
| Sign of $x \square 1$                                                                                  |                      |                |     |
| Sign of $x \square x $ |                      |                |     |

3

Graph:

 $x \square \square 1$ , where  $x \square 0$ , and where  $x \square 1$ . Thus we must check the intervals in the following table.

| Interval                                 | $\square\square2\square$ | □0□ |  |
|------------------------------------------|--------------------------|-----|--|
| Sign of $x \square 2$                    |                          |     |  |
| Sign of $x \square 1$                    |                          |     |  |
| Sign of x                                |                          |     |  |
| Sign of $x \square 1$                    |                          |     |  |
| Sign of $\Box x \Box 2 \Box \Box x \Box$ |                          |     |  |

Since  $x \square \square 1$  and  $x \square 0$  yield undefined expressions, we cannot include them in the solution. From the table, the solution

set is  $\Box x \Box \Box 2 \Box x \Box \Box 1$  or  $\Box x \Box 1 \Box$ . Interval:  $[\Box 2\Box \Box 1\Box \Box \Box 0\Box 1]$ . Graph:

\_1 0

 $x \square 0$ , and  $x \square 1$ . Thus we must check the intervals in the following table.

| Interval                                                                  |  | $\Box 0 \Box$ | □2□ |
|---------------------------------------------------------------------------|--|---------------|-----|
| Sign of $2 \square x$                                                     |  |               |     |
| Sign of $2 \square x$                                                     |  |               |     |
| Sign of x                                                                 |  |               |     |
| Sign of $x \square 1$                                                     |  |               |     |
| Sign of $\frac{\square 2 \square x \square \square 2 \square}{x \square}$ |  |               |     |

Since  $x \square 0$  and  $x \square 1$  give undefined expressions, we cannot include them in the solution. From the table, the solution set

is 
$$\square x \square \square 2 \square x \square 0$$
 or  $1 \square x \square 2 \square$ . Interval:  $[\square 2 \square 0 \square \square 1 \square 2]$ .

**65.** 
$$\frac{6}{x \Box 1} \Box \frac{6}{x} \Box 1 \Box \frac{6}{x \Box 1} \Box \frac{6}{x} \Box 1 \Box 0 \Box \frac{6x}{x \Box x \Box 1} \Box \frac{6\Box x \Box 1 \Box}{x \Box x \Box 1} \Box \frac{x \Box x \Box}{x \Box x \Box} \Box 0 \Box$$

$$\frac{6x \ \Box \ 6x \ \Box \ 6 \ \Box \ x^2 \ \Box \ x}{x \ \Box x \ \Box \ 1 \ \Box} \quad \boxed{0} \ \Box \ \frac{\Box x^2 \ \Box \ x \ \Box \ 6}{x \ \Box x \ \Box} \ \Box \ 0 \ \Box \ \frac{\Box \Box x \ \Box \ 3 \ \Box \ x \ \Box}{2 \ \Box} \ \Box \ 0. \text{ The}$$

expression on the left of the inequality changes sign where  $x \square 3$ , where  $x \square 2$ , where  $x \square 0$ , and where  $x \square 1$ . Thus we must check the intervals in the following table.

| Interval                            |  |  | □3□ |
|-------------------------------------|--|--|-----|
| Sign of $\Box x \Box 3$             |  |  |     |
| Sign of $x \square 2$               |  |  |     |
| Sign of x                           |  |  |     |
| Sign of $\bar{x} \square 1$         |  |  |     |
| Sign of $\Box x \Box 3 \Box x \Box$ |  |  |     |

solution set because they make the denominator zero. Interval:  $[ \Box 2 \Box 0 \Box \Box 1 \Box 3 ]$ . Graph:

\_2 0 1 3

and  $x \square \square 1$ . Thus we must check the intervals in the following table.

| Interval                                 |  | □9□ |
|------------------------------------------|--|-----|
| Sign of $x \square 9$                    |  |     |
| Sign of $x \square 2$                    |  |     |
| Sign of $x \square 1$                    |  |     |
| Sign of $\Box x \Box 9 \Box \Box x \Box$ |  |     |

From the table, the solution set is  $\Box x \Box \Box 2 \Box x \Box \Box 1$  or  $\Box x \Box \Box 1$  is excluded from the solution set because

| '. 1 .1 ' 1.C' 1.T. 1.ED2DD1DDEDD                                                            | _1        |                   |
|----------------------------------------------------------------------------------------------|-----------|-------------------|
| it makes the expression undefined. Interval: $[\Box 2 \Box \Box 1 \Box \Box [9 \Box \Box]$ . | <b></b> 0 | $\longrightarrow$ |
| Graph:                                                                                       | _2        | 9                 |

67. 
$$\frac{x \odot 2}{x \odot 3} \odot \frac{x \odot 1}{x \odot 2} \odot \frac{x \odot 2}{x \odot 3} \odot \frac{x \odot 1}{x \odot 2} \odot 0 \odot \frac{\Box x \odot 2 \odot x \odot}{2 \odot} \odot \frac{3 \odot}{\Box x \odot 2 \odot x \odot} \odot 0 \odot \frac{2 \odot}{2 \odot} \odot \frac{3 \odot}{\Box x \odot 2 \odot x \odot} \odot 0 \odot 0 \odot 0$$

$$\frac{x^2 \ \Box \ 4 \ \Box \ x^2 \ \Box \ 2x \ \Box \ 3}{\Box x \ \Box \ 3 \ \Box \ x \ \Box} \ \Box \ 0 \ \Box \ \frac{\Box 2x \ \Box \ 1}{\Box x \ \Box \ 3 \ \Box \ x \ \Box} \ \Box \ 0.$$
 The expression on the left of the inequality

changes sign where  $x \square \square_{\overline{2}}$ , where  $x \square \square_{\overline{3}}$ , and where  $x \square 2$ . Thus we must check the intervals in the following table.

| Interval                                                          | $\Box 3\Box \Box_2$ | $\square_2 \square 2$ | $\Box 2 \Box$ |
|-------------------------------------------------------------------|---------------------|-----------------------|---------------|
| Sign of $\Box 2x \Box 1$                                          |                     |                       |               |
| Sign of $x \square 3$                                             |                     |                       |               |
| Sign of $x \square 2$                                             |                     |                       |               |
| Sign of $\frac{\Box 2x \Box 1}{\Box x \Box 3 \Box \Box x \Box 2}$ |                     |                       |               |

125

| <b>40</b> | 1                        | $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ | <i>x</i> □ 2                     | $\square$ $x \square 1$     | $\Box$ | $\begin{array}{c c} \hline & 1 \\ \hline \exists x \ \Box \end{array} \Box \ 0 \ \Box \ \begin{array}{c} 2x \ \Box \ 3 \\ \hline \exists x \ \Box \ 1 \ \Box \ x \ \Box \end{array}$ | - □ 0 The |
|-----------|--------------------------|------------------------------------|----------------------------------|-----------------------------|-----------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|
| uo.       | $\overline{x \square 1}$ | ${x \square 2} \square 0 \square$  | $\Box x \Box 1 \Box \Box x \Box$ | $\Box x \Box 1 \Box x \Box$ | $\Box x \Box 1 \Box z$                                                |                                                                                                                                                                                      | U. The    |
|           |                          |                                    | $2\square$                       | $2\square$                  | 2□                                                                    | $2\Box$                                                                                                                                                                              |           |

expression on the left of the inequality changes sign when  $x \Box \Box_{\overline{2}}$ ,  $x \Box \Box_{\overline{1}}$ , and  $x \Box \Box_{\overline{2}}$ . Thus we must check the intervals in the following table.

| 10.                                                                 |                               |                                 |  |
|---------------------------------------------------------------------|-------------------------------|---------------------------------|--|
| Interval                                                            | $\square 2 \square \square_2$ | $\Box_2$ $\Box$ $\Box$ $\Box$ 1 |  |
| Sign of $2x \square 3$                                              |                               |                                 |  |
| Sign of $x \square 1$                                               |                               |                                 |  |
| Sign of $x \square 2$                                               |                               |                                 |  |
| Sign of $\begin{array}{c c} 2x & 3 \\ \hline x & 1 & x \end{array}$ |                               |                                 |  |

| From the table, the se | olution set is $x \square x \square \square 2$ o | $r = \frac{1}{2} \cdot 3 \cdot 3 \cdot x \cdot 3 \cdot 3 \cdot 1 \cdot 1 \cdot 1 \cdot 1$ . The po | points $x \square \square 2$ and $x \square \square 1$ are             |
|------------------------|--------------------------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------|
| excluded from the sol  | ution because the expression i                   | s undefined at those values.                                                                       | Interval: $\Box\Box\Box\Box\Box\Box\Box\Box\Box\Box$ $3\Box\Box\Box$ . |

 $\Box_{\overline{2}}$ 

Graph: 
$$\begin{array}{cccc} & & & & & & & & & \\ & & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & &$$

when  $x \square \square 2$  and  $x \square 1$ . We check the intervals in the following table.

| Interval                                                                                    |  | □2□ |
|---------------------------------------------------------------------------------------------|--|-----|
| Sign of $x \square 1$                                                                       |  |     |
| Sign of $x \square 2$                                                                       |  |     |
| Sign of $\Box x \Box 2\Box^2$                                                               |  |     |
| $\begin{array}{c c} \square x \square 1 \square \square x \square \\ 2 \square \end{array}$ |  |     |

|    | $x \square 4$                                    | Note that $\Box 3\Box^2 \Box 0$ for a $x$                                   |                             |               | on the le | of the in             | nequality chang | es sign        |
|----|--------------------------------------------------|-----------------------------------------------------------------------------|-----------------------------|---------------|-----------|-----------------------|-----------------|----------------|
| W  | when $x \square \frac{1}{2}$ and $x \square 4$ . | We check the intervals in the f                                             | ollowing table              | <b>).</b>     |           |                       |                 |                |
|    |                                                  | Interval                                                                    |                             | _2 □ 3        | □3□       | □4□                   |                 |                |
|    |                                                  | Sign of $2x \square 1$                                                      |                             |               |           |                       |                 |                |
|    |                                                  | Sign of $\Box x \Box 3\Box^2$                                               |                             |               |           |                       |                 |                |
|    |                                                  | Sign of $x \square 4$                                                       |                             |               |           |                       |                 |                |
|    |                                                  | Sign of $ \frac{\Box 2x \Box 1 \Box \Box x \Box^2}{3\Box} $                 |                             |               |           |                       |                 |                |
| F  | from the table, the solution                     | ion set is $x \square x \square 3$ and $x \square 3$                        | $\Box x \Box 4$ . We        | e exclude the | ne endpoi | nt 3 becau            | se the original | expression     |
| C  | annot be 0. Interval: $\frac{1}{2}$              | □ 3 □ 3 □ 4 □. Graph: 0 1 1 2 2                                             | 3 4                         | <b></b>       |           |                       |                 |                |
|    |                                                  | $0 \square x^2 \square x^2 \square 1 \square \square 0 \square x^2 \square$ |                             |               |           |                       |                 |                |
| ir | nequality changes sign v                         | where $x \square 0$ , where $x \square 1$ , and                             | I where $x \square \square$ | 1. Thus w     | e must ch | eck the int           | tervals in the  |                |
| fo | ollowing table.                                  |                                                                             |                             |               |           |                       |                 |                |
|    |                                                  | Interval                                                                    |                             |               |           |                       | ]               |                |
|    |                                                  | Sign of $x^2$                                                               |                             |               |           |                       |                 |                |
|    |                                                  | Sign of $x \square 1$                                                       |                             |               |           |                       |                 |                |
|    |                                                  | Sign of $x \square 1$                                                       |                             |               |           |                       |                 |                |
|    |                                                  | Sign of $x^2 \square x \square 1 \square \square x \square$                 |                             |               |           |                       | 1               |                |
| F  | from the table, the soluti                       | on set is $\Box x \Box x \Box \Box 1$ or $1 \Box$                           | $x \square$ . Interval:     |               | 1000      | l□ □□. <del>G</del> i | <del></del>     | - <del>0</del> |

| <b>72.</b> $x^5 \square x^2 \square x^5 \square x^2 \square 0 \square x^2 \square x^3 \square 1 \square 0 \square x^2 \square x \square 1 \square 0$ . The expression on the left of the inequality                                                                               | y |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| changes sign when $x \square 0$ and $x \square 1$ . But the solution of $x^2 \square x \square 1 \square 0$ are $x \square \frac{1}{2} \square 1 \square 2 \square 4 \square 1 \square 1 \square \square 2 \square 2 \square 1 \square 2 \square 2 \square 1 \square 2 \square 2$ |   |

Since these are not real solutions. The expression  $x^2 \square x \square 1$  does not change signs, so we must check the intervals in the following table.

| Interval                                                        | $\Box 0 \Box$ | $\Box 1 \Box$ |
|-----------------------------------------------------------------|---------------|---------------|
| Sign of $x^2$                                                   |               |               |
| Sign of $x \square 1$                                           |               |               |
| Sign of $x^2 \square x \square 1$                               |               |               |
| Sign of $x^2 \square x \square 1 \square x^2 \square x \square$ |               |               |

From the table, the solution set is  $\Box x \Box 1 \Box x \Box$ . Interval:  $\Box 1 \Box \Box \Box$ . Graph:  $\bigcirc 1$ 

| 73. | For   | $16 \square 9x^2$ to be defined as a real number we must have $16 \square 9x^2 \square 0 \square 14 \square 3x \square 14 \square 3x \square 10$ . The expression in |
|-----|-------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | the i | nequality changes sign at $x_{\frac{1}{2}}$ and $x_{\frac{1}{2}}$ .                                                                                                  |

| Interval                                  | <br> | 3 □ |  |
|-------------------------------------------|------|-----|--|
| Sign of $4 \square 3x$                    |      |     |  |
| Sign of $4 \square 3x$                    |      |     |  |
| Sign of $\Box 4 \Box 3x \Box \Box 4 \Box$ |      |     |  |

Thus  $\Box \frac{4}{3} \Box x \Box \frac{4}{3}$ .

74. For  $3x^2 \square 5x \square 2$  to be defined as a real number  $\square$  we must have  $3x^2 \square 5x \square 2 \square 0 \square 3x \square 2 \square x \square 1 \square \square 0$ .

The expression on the left of the inequality changes sign when  $x_3 = 2$  and x = 1. Thus we must check the intervals in the

following table.

| Interval                                 | $\Box\Box\Box\overline{}_{3}$ | $_3 \square 1$ |  |
|------------------------------------------|-------------------------------|----------------|--|
| Sign of $3x \square 2$                   |                               |                |  |
| Sign of $x \square 1$                    |                               |                |  |
| Sign of $\Box 3x \Box 2\Box \Box x \Box$ |                               |                |  |

Thus  $x \Box \frac{2}{3}$  or  $1 \Box x$ .

75. For 
$$\frac{1}{x^2 - 5x - 14}^2$$
 to be defined as a real number we must have  $x^2 - 5x - 14 - 0 - 2x - 7 - 2x - 2 - 0$ . The

expression in the inequality changes sign at  $x \square 7$  and  $x \square \square 2$ .

| Interval                                 |  | □7□ |
|------------------------------------------|--|-----|
| Sign of $x \square 7$                    |  |     |
| Sign of $x \square 2$                    |  |     |
| Sign of $\Box x \Box 7 \Box \Box x \Box$ |  |     |

Thus  $x \square \square 2$  or  $7 \square x$ , and the solution set is  $\square \square \square \square \square \square \square \square \square \square \square$ .

**76.** For 
$$4 \frac{1 \square x}{2 \square x}$$
 to be defined as a real number we must have  $\frac{1 \square x}{2 \square x} \square 0$ . The expression on the left of the inequality changes

sign when  $x \square 1$  and  $x \square \square 2$ . Thus we must check the intervals in the following table.

| Interval                                  |  |  |  |
|-------------------------------------------|--|--|--|
| Sign of $1 \square x$                     |  |  |  |
| Sign of $2 \square x$                     |  |  |  |
| Sign of $\frac{1 \square x}{2 \square x}$ |  |  |  |

Thus  $\Box 2 \Box x \Box 1$ . Note that  $x \Box \Box 2$  has been excluded from the solution set because the expression is undefined at that value.

**78.** We have 
$$a \square bx \square c \square 2a$$
, where  $a,b,c \square 0 \square a \square c \square bx \square 2a \square c \square \frac{a \square c}{b} \square x \square \frac{2a \square c}{b}$ .

| 79.        | Inserting the relationship $C \ \Box \ \frac{3}{9} \ \Box F \ \Box \ 32 \ \Box$ , we have $20 \ \Box \ C \ \Box \ 30 \ \Box \ 20 \ \Box \ _{9}^{5} \ \Box F \ \Box \ 32 \ \Box \ 36 \ \Box \ F \ \Box \ 32 \ \Box \ 54 \ \Box$ $68 \ \Box \ F \ \Box \ 86.$                                                                                                                                                                                                                                                |
|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 80.        | Inserting the relationship $F \ \Box \ {}^9_5C \ \Box \ 32$ , we have $50 \ \Box \ F \ \Box \ 95 \ \Box \ 50 \ \Box \ {}^9_4C \ \Box \ 32 \ \Box \ 95 \ \Box \ 18 \ \Box \ {}^9_4G \ \Box \ 63 \ \Box \ 10 \ \Box \ C \ \Box \ 35$ .                                                                                                                                                                                                                                                                       |
| 81.        | Let $x$ be the average number of miles driven per day. Each day the cost of Plan A is $30 \square 0 \square 10x$ , and the cost of Plan B is 50. Plan B saves money when $50 \square 30 \square 0 \square 10x \square 20 \square 0 \square 1x \square 200 \square x$ . So Plan B saves money when you average more than 200 miles a day.                                                                                                                                                                   |
| 82.        | Let $m$ be the number of minutes of long-distance calls placed per month. Then under Plan A, the cost will be $25 \square 0 \square 05m$ , and under Plan B, the cost will be $5 \square 0 \square 12m$ . To determine when Plan B is advantageous, we must solve $25 \square 0 \square 05m \square 5 \square 0 \square 12m \square 20 \square 0 \square 07m \square 285 \square 7 \square m$ . So Plan B is advantageous if a person places fewer than 286 minutes of long-distance calls during a month. |
| 83.        | We need to solve 6400 $\Box$ 0 $\Box$ 35 $m$ $\Box$ 2200 $\Box$ 7100 for $m$ . So 6400 $\Box$ 0 $\Box$ 35 $m$ $\Box$ 2200 $\Box$ 7100 $\Box$ 4200 $\Box$ 0 $\Box$ 35 $m$ $\Box$ 4900 $\Box$                                                                                                                                                                                                                                                                                                                |
|            | $12,000 \square m \square 14,000$ . She plans on driving between 12,000 and 14,000 miles.                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 84.        | (a) $T \square 20 \square \frac{h}{100}$ , where T is the temperature in $\square$ C, and h is the height in meters.                                                                                                                                                                                                                                                                                                                                                                                       |
|            | <b>(b)</b> Solving the expression in part (a) for $h$ , we get $h \square 100 \square 20 \square T \square$ . So $0 \square h \square 5000 \square 0 \square 100 \square 20 \square T \square \square 5000$                                                                                                                                                                                                                                                                                                |
|            | $0 \square 20 \square T \square 50 \square \square 20 \square \square T \square 30 \square 20 \square T \square \square 30$ . Thus the range of temperature is from $20^{\square}$ C down to $\square 30^{\square}$ C.                                                                                                                                                                                                                                                                                     |
| 85.        | (a) Let $x$ be the number of \$3 increases. Then the number of seats sold is $120 \square x$ . So $P \square 200 \square 3x$ $\square 3x \square P \square 200 \square x \square \frac{1}{3} \square P \square 200 \square$ . Substituting for $x$ we have that the number of seats sold is $120 \square x \square 120 \square \frac{1}{3} \square P \square 200 \square \square \frac{1}{3} \square P \stackrel{560}{\square}$ .                                                                          |
|            | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|            | 290 $\square$ $P$ $\square$ 215. Putting this into standard order, we have 215 $\square$ $P$ $\square$ 290. So the ticket prices are between \$215 and \$290.                                                                                                                                                                                                                                                                                                                                              |
| 86.        | If the customer buys $x$ pounds of coffee at $6 = 50$ per pound, then his cost $c$ will be $6 = 50x$ . Thus $x = \frac{c}{6 = 5}$ . Since the                                                                                                                                                                                                                                                                                                                                                              |
|            | scale's accuracy is $\Box 0 \Box 03$ lb, and the scale shows 3 lb, we have $3 \Box 0 \Box 03 \Box x \Box 3 \Box 0 \Box 03 \Box 2 \Box 97 \stackrel{\pounds}{\ominus}_{6\Box 5} \Box 3 \Box 03 \Box 3 \Box 03 \Box 03 \Box 03 \Box 03 \Box 03 $                                                                                                                                                                                                                                                             |
|            | $\Box 6\Box 50\Box 2\Box 97$ $\Box$ $c$ $\Box$ $\Box 6\Box 50\Box 3\Box 03$ $\Box$ $\Box 19\Box 305$ $\Box$ $c$ $\Box$ $\Box 19\Box 695$ . Since the customer paid \$19\subseteq 50, he could have been over- or                                                                                                                                                                                                                                                                                           |
|            | undercharged by as much as $19\Box 5$ cents.                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| <b>87.</b> | $0 \square 0004$ $\frac{4,000,000}{d^2} \square 0 \square 01$ . Since $d \square 0$ and $d \square 0$ , we can multiply each expression by $d^2$ to obtain                                                                                                                                                                                                                                                                                                                                                 |
|            | $0 \square 0004d^2 \square 4,000,000 \square 0 \square 01d^2$ . Solving each pair, we have $0 \square 0004d^2 \square 4,000,000 \square d^2 \square 10,000,000,000$ $\square d \square 100,000$ (recall that $d$ represents distance, so it is always nonnegative). Solving $4,000,000 \square d^2 \square 20,000 \square d$ . Putting these together, we have $20,000 \square d \square 100,000$ .                                                                                                        |

| Interval                            | □60□ |
|-------------------------------------|------|
| Sign of $\frac{1}{20}\Box$ $\Box$ 3 |      |
| Sign of □ □ 80                      |      |
| Sign of 1 🗆 🗆 3 🗆 🗆                 |      |

So Kerry must drive between 0 and 60 mi/h.

|     |                                                                                                                                                            | П                                                                           |                              |                                                    |                             |                 |                                           |  |  |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|------------------------------|----------------------------------------------------|-----------------------------|-----------------|-------------------------------------------|--|--|
| 92. | Solve 2400 $\square$ 20 $x$ $\square$ 20                                                                                                                   | $000 \square 8x \square 0 \square 0025x^2 \square \square 2400 \square$     | $20x \square 200$            | 00 □ 8 <i>x</i> □                                  | $0\square 0025x^2$          | □ 0□00          | $025x^2 \square 12x \square 4400 \square$ |  |  |
| 0   |                                                                                                                                                            |                                                                             |                              |                                                    |                             |                 |                                           |  |  |
|     | $\square \square $ |                                                                             |                              |                                                    |                             |                 |                                           |  |  |
|     | 4400. Since the manufacturer can only sell positive units, we check the intervals in the following table.                                                  |                                                                             |                              |                                                    |                             |                 |                                           |  |  |
|     | Гт                                                                                                                                                         | Interval                                                                    |                              | □400□                                              | □44(                        | 00□             |                                           |  |  |
|     | <u> </u>                                                                                                                                                   | Sign of $0 \square 0025x \square 1$                                         |                              |                                                    |                             | 7               |                                           |  |  |
|     |                                                                                                                                                            | Sign of $x = 4400$                                                          |                              |                                                    |                             |                 |                                           |  |  |
|     |                                                                                                                                                            | Sign of $\Box 0 \Box 0025x \Box 1 \Box \Box x \Box$                         |                              |                                                    |                             |                 |                                           |  |  |
|     | <u> </u>                                                                                                                                                   | t sell between 400 and 4400 units to                                        |                              | 1                                                  | l                           |                 |                                           |  |  |
| 93. |                                                                                                                                                            | e garden and $\square$ its width. Using the                                 |                              |                                                    |                             | ve must         | have $2x \square 2\square \square 120$    |  |  |
|     |                                                                                                                                                            | nce the area must be at least 800 f                                         |                              |                                                    |                             |                 |                                           |  |  |
|     |                                                                                                                                                            | $\Box x \Box 20 \Box \Box x \Box 40 \Box \Box 0$ . The ex                   |                              |                                                    |                             |                 |                                           |  |  |
|     |                                                                                                                                                            | resents length, we must have $x \square 0$ .                                | •                            | are meque                                          | arey erialige.              | , 51811 4       |                                           |  |  |
|     | •                                                                                                                                                          |                                                                             |                              |                                                    |                             |                 |                                           |  |  |
|     |                                                                                                                                                            | Interval                                                                    |                              |                                                    | □40□                        |                 |                                           |  |  |
|     |                                                                                                                                                            | Sign of $x \square 20$                                                      |                              |                                                    |                             |                 |                                           |  |  |
|     |                                                                                                                                                            | Sign of $x \square 40$                                                      |                              |                                                    |                             |                 |                                           |  |  |
|     |                                                                                                                                                            | Sign of $\Box x \Box 20 \Box \Box x \Box$                                   |                              |                                                    |                             |                 |                                           |  |  |
|     | -                                                                                                                                                          | should be between 20 and 40 feet.                                           |                              |                                                    |                             |                 |                                           |  |  |
| 94. |                                                                                                                                                            | We have $a \square a \square a \square b$ , since $a \square b$             |                              |                                                    |                             |                 |                                           |  |  |
|     |                                                                                                                                                            | $a^2 \square b^2$ . Continuing, we have $a \square$                         |                              |                                                    |                             |                 |                                           |  |  |
|     |                                                                                                                                                            | Thus $a \square b \square 0 \square a^3 \square b^3$ . So $a$               |                              |                                                    |                             |                 |                                           |  |  |
|     | Case 2: $0 \square a \square b$ We $0 \square$                                                                                                             | The have $a \square a \square a \square b$ , since $a \square 0$            | , and $b \square a$          | $a \square b \square b$ ,                          | since $b \square 0$         | So $a^2$        | $\Box a \Box b \Box b^2$ . Thus           |  |  |
|     |                                                                                                                                                            | vise, $a^2 \square a \square a^2 \square b$ and $b \square a^2 \square b$   | $\exists h \Box h^2 $ t      | hus $a^3 \square h$                                | $3 \text{ So } 0 \square a$ | $\Box b \Box$   | $a^n \sqcap b^n$ for all                  |  |  |
|     | positive integers $n$ .                                                                                                                                    |                                                                             | _ <i>,</i> , .               | nusu 🗆 D                                           | . 500 a                     |                 | u b, for un                               |  |  |
|     |                                                                                                                                                            | $n$ is odd, then $a^n \square b^n$ , because $a^n$                          | is negative                  | and $b^n$ is                                       | positive. If r              | is ever         | n, then we could have                     |  |  |
|     | either $a^n \square b^n$ or $a^n \square b$                                                                                                                | $\mathbb{P}^n$ . For example, $\square 1 \square 2$ and $\square \square 1$ | $\Box^2 \Box 2^2$ , b        | ut □3 □ 2                                          | and $\Box \Box 3\Box^2$     | $\square 2^2$ . |                                           |  |  |
| 95. | The rule we want to appl                                                                                                                                   | y here is " $a \square b \square ac \square bc$ if $c \square$              | $0$ and $a \square$          | $b \square ac \square$                             | $bc$ if $c \square 0$       | ". Thu          | s we cannot simply                        |  |  |
|     | multiply by $x$ , since we d                                                                                                                               | lon't yet know if $x$ is positive or neg                                    | gative, so in                | solving 1                                          | $\frac{3}{x}$ , we m        | ust cons        | sider two cases.                          |  |  |
|     |                                                                                                                                                            | ying both sides by $x$ , we have $x \square$                                |                              |                                                    |                             |                 |                                           |  |  |
|     | -                                                                                                                                                          | lying both sides by $x$ , we have $x \square$                               | -                            |                                                    |                             |                 |                                           |  |  |
|     | gives no additional solution                                                                                                                               | on.                                                                         |                              |                                                    |                             |                 |                                           |  |  |
|     | Hence, the only solutions                                                                                                                                  | are $0 \square x \square 3$ .                                               |                              |                                                    |                             |                 |                                           |  |  |
|     |                                                                                                                                                            | $c \square b \square c$ . Using Rule 1 again, $b \square$                   |                              |                                                    |                             |                 |                                           |  |  |
| 97. | $\frac{a}{b}  \Box  \frac{c}{d}$ , so by Rule 3, $d\frac{c}{d}$                                                                                            | $\frac{a}{b} \Box d \frac{c}{d} \Box \frac{ad}{b} \Box c$ . Adding $a$ to   | both sides,                  | we have $\frac{a}{l}$                              | $\frac{d}{b} \Box a \Box c$ | $\Box a$ . Re   | ewriting the left-hand                    |  |  |
|     | side as $\frac{ad}{b} \sqcup \frac{ab}{b} \sqcup \frac{a \square b}{\square}$                                                                              | $\frac{b \square}{b}$ and dividing both sides by $b$                        | $\Box$ d gives $\frac{d}{d}$ | $\frac{\underline{a}}{b} \Box \overline{a \Box c}$ | •                           |                 |                                           |  |  |
|     | $rac{cb}{d}\Box$                                                                                                                                          | $c \square b \square$ , so $b \square d \square d$ .                        |                              |                                                    |                             |                 |                                           |  |  |
|     | Similarly, $a \square c \square d$                                                                                                                         | $c \square$ $d$ , so $b \square d$ $\square$ $d$ .                          |                              |                                                    |                             |                 |                                           |  |  |

## 1.8 SOLVING ABSOLUTE VALUE EQUATIONS AND INEQUALITIES

| 1.                | The        | e equation $\Box x \Box \Box 3$ has the two solutions $\Box 3$ and $3$ .                                                                                                                                                                                                                       |
|-------------------|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2.                | (a)        | The solution of the inequality $\Box x \Box = 3$ is the interval $[\Box 3 \Box 3]$ .                                                                                                                                                                                                           |
|                   | <b>(b)</b> | The solution of the inequality $\Box x \Box \Box 3$ is a union of two intervals $\Box \Box \Box \Box \Box 3] \Box [3 \Box \Box \Box$ .                                                                                                                                                         |
| 3.                | (a)        | The set of all points on the real line whose distance from zero is less than 3 can be described by the absolute value inequality $\Box x \Box \Box 3$ .                                                                                                                                        |
|                   | <b>(b)</b> | The set of all points on the real line whose distance from zero is greater than 3 can be described by the absolute value inequality $\Box x \Box \Box 3$ .                                                                                                                                     |
|                   |            |                                                                                                                                                                                                                                                                                                |
| 4.                |            | $\Box 2x \Box 1 \Box \Box 5$ is equivalent to the two equations $2x \Box 1 \Box 5$ and $2x \Box 1 \Box \Box 5$ .                                                                                                                                                                               |
| _                 |            | $\Box 3x \Box 2\Box \Box 8$ is equivalent to $\Box 8 \Box 3x \Box 2 \Box 8$ .                                                                                                                                                                                                                  |
|                   |            | $x \square \square 20 \square 5x \square \square 20 \square x \square \square 4.$                                                                                                                                                                                                              |
|                   |            | $\exists x \Box \Box 10 \Box \Box 3x \Box \Box 10 \Box x \Box \Box \frac{10}{3}.$                                                                                                                                                                                                              |
|                   |            | $x \square \square 3 \square 28 \square 5 \square x \square \square 25 \square \square x \square \square 5 \square x \square \square 5.$                                                                                                                                                       |
|                   | _          |                                                                                                                                                                                                                                                                                                |
|                   |            | $\square$ 3 $\square$ 2 is equivalent to $x$ $\square$ 3 $\square$ $\square$ 2 $\square$ $x$ $\square$ 1 or $x$ $\square$ 5.                                                                                                                                                                   |
| 10.               |            | $x \square 3 \square \square 7$ is equivalent to either $2x \square 3 \square 7 \square 2x \square 10 \square x \square 5$ ; or $2x \square 3 \square \square 7 \square 2x \square \square 4 \square x \square \square 2$ . The two ations are $x \square 5$ and $x \square \square 2$ .       |
| 11.               | $\Box x$   | $\square 4\square \square 0\square 5$ is equivalent to $x \square 4 \square \square 0\square 5 \square x \square \square 4 \square 0\square 5 \square x \square \square 4\square 5$ or $x \square \square 3\square 5$ .                                                                        |
| 12.               | $\Box x$   | $\square$ 4 $\square$ $\square$ 3. Since the absolute value is always nonnegative, there is no solution.                                                                                                                                                                                       |
| 13.               | $\Box 2$ . | $x \square 3 \square \square 11$ is equivalent to either $2x \square 3 \square 11 \square 2x \square 14 \square x \square 7$ ; or $2x \square 3 \square \square 11 \square 2x \square \square 8 \square x \square \square 4$ . The                                                             |
|                   |            | solutions are $x \square 7$ and $x \square \square 4$ .                                                                                                                                                                                                                                        |
| 14.               |            | $\square$ $x$ $\square$ 11 is equivalent to either 2 $\square$ $x$ $\square$ 11 $\square$ $x$ $\square$ $\square$ 9; or 2 $\square$ $x$ $\square$ $\square$ 11 $\square$ $x$ $\square$ 13. The two solutions are $x$ $\square$ $\square$ 9 and $\square$ 13.                                   |
| <b>15.</b><br>□1  |            | $  \                                   $                                                                                                                                                                                                                                                       |
|                   |            | $3x \square 6 \square 3 \square 3x \square \square 9 \square x \square \square 3$ . The two solutions are $x \square \square 1$ and $x \square \square 3$ .                                                                                                                                    |
| 16.               |            | $\square$ 2 $x$ $\square$ 6 $\square$ 14 $\square$ 05 $\square$ 2 $x$ $\square$ 8 which is equivalent to either 5 $\square$ 2 $x$ $\square$ 8 $\square$ 02 $x$ $\square$ 3 $\square$ $x$ $\square$ $2 \square$ 3; or 5 $\square$ 2 $x$ $\square$ 08 $\square$                                  |
|                   | □2.        | $x \square \square 13 \square x \square \qquad \stackrel{13}{\square}$ . The two solutions are $x \square \square \qquad \stackrel{3}{\square}$ and $x \square \qquad \stackrel{13}{\square}$ .                                                                                                |
| 1 <b>7.</b>       | 3 □        | $x \square 5 \square \square 6 \square 15 \square 3 \square x \square 5 \square \square 9 \square \square x \square 5 \square \square 3$ , which is equivalent to either $x \square 5 \square 3 \square x \square \square 2$ ; or $x \square 5 \square \square 3$                              |
|                   |            | $\square$ 8. The two solutions are $x \square \square 2$ and $x \square \square 8$ .                                                                                                                                                                                                           |
|                   |            | $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                          |
|                   |            | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                          |
|                   | <i>x</i> [ | $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                           |
| 20                | □<br>□     | 2 $3$ $3$ $3$ $3$ $3$ $4$ $3$ $4$ $4$ $4$ $4$ $4$ $4$ $4$ $4$ $4$ $4$                                                                                                                                                                                                                          |
| 20.               | □ 5<br>2   | 2                                                                                                                                                                                                                                                                                              |
|                   | 3          | 13 65 <u>25 65</u>                                                                                                                                                                                                                                                                             |
|                   | ₹ x        | $\square$                                                                                                                                                                                            |
| 21.               | $\Box x$   | $\square$ 1 $\square$ $\square$ 3x $\square$ 2 $\square$ , which is equivalent to either $x$ $\square$ 1 $\square$ 3x $\square$ 2 $\square$ $\square$ 2x $\square$ 3 $\square$ x $\square$ $\square$ $\square$ $\square$ 3x $\square$ 2 $\square$ $\square$ 3x $\square$ 2 $\square$ $\square$ |
|                   |            | $1 \square \square 3x \square 2 \square 4x \square \square 1 \square x \square \square_4 \stackrel{!}{\cdot}$ The two solutions are $x \square \square_2 \stackrel{3}{\cdot}$ and $x \square \square_4 \stackrel{!}{\cdot}$                                                                    |
| <b>22.</b><br>□ 1 |            | $\square$ 3 $\square$ $\square$ 2x $\square$ 1 $\square$ is equivalent to either $x$ $\square$ 3 $\square$ 2x $\square$ 1 $\square$ $\square$ x $\square$ 2; or $x$ $\square$ 3 $\square$ $\square$ 2x $\square$ 1 $\square$ x $\square$ 3 $\square$ 2x                                        |
| _                 | □ 3        | $3x \square \square 4 \square x \square \square_3 \stackrel{4}{\cdot}$ The two solutions are $x \square 2$ and $x \square \square_3 \stackrel{4}{\cdot}$                                                                                                                                       |
| 23                | Пт         | □ □ 5 □ □ 5 □ r □ 5 Interval: [□5□5]                                                                                                                                                                                                                                                           |

 $\square$   $\square$ 4  $\square$  x  $\square$   $\square$ 1. Interval:  $[\square$ 4 $\square$ 1]  $\square$   $[1\square$ 4].

| to $2x \ \ 7 \ \ x \ \ \ ^7$ ; or $2x \ \ \ \ \ 7 \ \ \ x \ \ \ \ \ \ \ \ \ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | . $\frac{1}{2} \square x \square \square 1 \square \square x \square \square 2$ is equivalent to $\square 10$ . $\square x \square 3 \square \square 9$ is equivalent to $x \square 3$ . $\square x \square 1 \square \square 1$ is equivalent to $x \square 1$ . $\square x \square 4 \square \square 0$ is equivalent to $\square x \square 1$ . $\square x \square 4 \square \square 0$ is equivalent to $\square x \square 1$ . $\square x \square 4 \square \square1$ . $\square x \square 4 \square1$ . $\square x \square4$ | 26. ½ □x □<br>27. □x □ 4<br>28. □x □ 3<br>29. □x □ 1<br>30. □x □ 4<br>31. □2x □ |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|
| is equivalent to $x \ 2$ or $x \ 2$ . Interval: $2 \ 2$ $2$ $2$ $2$ $2$ $2$ $2$ $2$ $2$ $2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | . $\frac{1}{2} \square x \square \square 1 \square \square x \square \square 2$ is equivalent to $\square 10$ . $\square x \square 3 \square \square 9$ is equivalent to $x \square 3$ . $\square x \square 1 \square \square 1$ is equivalent to $x \square 1$ . $\square x \square 4 \square \square 0$ is equivalent to $\square x \square 1$ . $\square x \square 4 \square \square 0$ is equivalent to $\square x \square 1$ . $\square x \square 4 \square \square1$ . $\square x \square 4 \square1$ . $\square x \square4$ | 26. ½ □x □<br>27. □x □ 4<br>28. □x □ 3<br>29. □x □ 1<br>30. □x □ 4<br>31. □2x □ |
| lent to \  \  \  \  \  \  \  \  \  \  \  \  \                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | . $\Box x \Box 4 \Box \Box 10$ is equivalent to $\Box 10$ . $\Box x \Box 3 \Box \Box 9$ is equivalent to $x \Box 3$ . $\Box x \Box 1 \Box \Box 1$ is equivalent to $x \Box 1$ . $\Box x \Box 4 \Box \Box 0$ is equivalent to $\Box x \Box \Box \Box 0$ . $\Box 2x \Box 1 \Box \Box 3$ is equivalent to $\Box 2x \Box \Box \Box 0$ . $\Box 3x \Box 2 \Box \Box 7$ is equivalent to $\Box 3x \Box \Box 0$ . $\Box 3x \Box 3 \Box \Box 0$ . $\Box 3x \Box 3 \Box \Box 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 27.                                                                             |
| ent to $x \   \ 3 \   \ 9 \   \ x \   \   \ 6$ ; or $x \   \ 3 \   \ 9 \   \ x \   \ 12$ . Interval: $\  \  \  \  \  \  \  \  \  \  \  \  \ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | . $\Box x \ \Box \ 3 \ \Box \ 9$ is equivalent to $x \ \Box \ 3$ . $\Box x \ \Box \ 1 \ \Box \ 1$ is equivalent to $x \ \Box \ 1$ . $\Box x \ \Box \ 4 \ \Box \ 0$ is equivalent to $\Box x \ \Box $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 28.                                                                             |
| ent to $x = 1 = 1 = x = 0$ ; or $x = 1 = 1 = x = 2$ . Interval: $0 = 2 = 2 = 2$ $0 = 2$ . Ent to $0 = x = 4 = 0 = x = 4$ . Ent to $0 = x = 4 = 0 = x = 4$ . The only solution is $x = 4$ . Ealent to $0 = x = 4 = x = 2$ ; or $0 = 2 = 2 = x = 1$ . Interval: $0 = 2 = 2 = 2 = x = 1$ . Interval: $0 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = 2 = $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | . $\Box x \Box 1 \Box \Box 1$ is equivalent to $x \Box 1$ . $\Box x \Box 4 \Box \Box 0$ is equivalent to $\Box x \Box \Box 0$ . $\Box 2x \Box 1 \Box \Box 3$ is equivalent to $\Box 2x \Box 0$ . $\Box 3x \Box 2 \Box \Box 0$ 7 is equivalent to $\Box 3x \Box 0$ . $\Box 3x \Box 3 \Box 0$ . $\Box 3x \Box 0$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>29.</b> □ <i>x</i> □ 3 <b>30.</b> □ <i>x</i> □ 4 <b>31.</b> □2 <i>x</i> □    |
| ent to $\Box x \Box 4 \Box \Box 0 \Box x \Box 4 \Box 0 \Box x \Box \Box 4$ . The only solution is $x \Box \Box 4$ .  alent to $2x \Box 1 \Box \Box 3 \Box 2x \Box \Box 4 \Box x \Box \Box 2$ ; or $2x \Box 1 \Box 3 \Box 2x \Box 2 \Box x \Box 1$ . Interval:  alent to $3x \Box 2 \Box \Box 7 \Box 3x \Box \Box 5 \Box x \Box \Box \frac{5}{3}$ ; or $3x \Box 2 \Box 7 \Box 3x \Box 9 \Box x \Box 3$ . Interval: $\Box A \Box A$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | . $\Box x \ \Box \ 4 \ \Box \ 0$ is equivalent to $\Box x \ \Box$ . $\Box 2x \ \Box \ 1 \ \Box \ 3$ is equivalent to $2x \ \Box$ . $\Box 3x \ \Box \ 2 \ \Box \ 7$ is equivalent to $3x \ \Box$ . $\Box 3x \ \Box \ 2 \ \Box \ 3 \ \Box \ 3 \ \Box \ \Box$ . $\Box 2x \ \Box \ 3 \ \Box \ 0 \ \Box \ 4 \ \Box \ 0 \ \Box \ 4 \ \Box \ 2x \ \Box$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | <b>30.</b> □ <i>x</i> □ <i>4</i> <b>31.</b> □2 <i>x</i> □                       |
| alent to $2x \  \   \   \   \  \  \  \  \  \  \  \ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>31.</b> □2 <i>x</i> □                                                        |
| alent to $3x \  \   2 \  \   \  \   \  \   \  \   \  \   \   \   \   \   \   \   \   \   \   \   \                     $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                 |
| $\Box 4 \Box 2x \Box 3 \Box 0 \Box 4 \Box 2 \Box 6 \Box 2x \Box 3 \Box 4 \Box 1 \Box 3 \Box x \Box 1 \Box 7$ . Interval: [1 $\Box 3 \Box 1 \Box 7$ ].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 32. □3 <i>x</i> □                                                               |
| $\Box 4 \Box 2x \Box 3 \Box 0 \Box 4 \Box 2 \Box 6 \Box 2x \Box 3 \Box 4 \Box 1 \Box 3 \Box x \Box 1 \Box 7$ . Interval: [1 $\Box 3 \Box 1 \Box 7$ ].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\square 2x \square 3\square \square 0\square 4 \square \square 0\square 4 \square 2x \square$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | <b>32.</b> $\square 3x \square$                                                 |
| $\Box 4 \Box 2x \Box 3 \Box 0 \Box 4 \Box 2 \Box 6 \Box 2x \Box 3 \Box 4 \Box 1 \Box 3 \Box x \Box 1 \Box 7$ . Interval: [1 $\Box 3 \Box 1 \Box 7$ ].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | $\square 2x \square 3\square \square 0\square 4 \square \square 0\square 4 \square 2x \square$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | . $\Box 2x \Box 3\Box \Box 0\Box 4\Box \Box 0\Box 4\Box 2x\Box$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                 |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>33.</b> $\Box 2x \Box$                                                       |
| 3 3 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | . $\Box 5x \Box 2\Box \Box 6 \Box \Box 6 \Box \overline{5x} \Box 2 \Box 6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <b>34.</b> □5 <i>x</i> □                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                 |
| $\Box$ 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | $\Box x \Box 2$ $x \Box 2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $\Box x \Box$                                                                   |
| $\square$ 2 $\square$ $\square$ 6 $\square$ $x$ $\square$ 2 $\square$ 6 $\square$ $\square$ 4 $\square$ $x$ $\square$ 8. Interval: $\square$ $\square$ 4 $\square$ 8 $\square$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 35. □                                                                           |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 3                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\Box x \Box$                                                                   |
| $\Box$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>36.</b> <u> </u>                                                             |
| Interval: □□□□ □9] □ [7□ □□.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $x \square 1 \square \square 8 \square x \square \square 9$ . Interval: $\square$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $x \square 1$                                                                   |
| $0 \square 001 \square x \square 6 \square 0 \square 001 \square \square 6 \square 001 \square x \square \square 5 \square 999$ . Interval: $\square \square 6 \square 001 \square \square 5 \square 999 \square$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                 |
| $x \square a \square d \square a \square d \square x \square a \square d$ . Interval: $\square a \square d \square a \square d \square$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                 |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                 |
| $\Box 2x \Box 4\Box \Box \Box 2 \Box \Box 2x \Box 4\Box \Box 2$ which is equivalent to either $2x \Box 4 \Box 2 \Box 2x \Box \Box 2 \Box x \Box$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | <b>40.</b> 3 ⊔ ⊔2 □1; or                                                        |
| $5 \square x \square \square 3$ . Interval: $\square \square \square \square \square 3$ ] $\square [\square 1 \square \square \square \square$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | . $8 \square \square 2x \square 1 \square \square 6 \square \square 2x \square 1 \square$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <b>41.</b> 8 🗆 🗆                                                                |
| _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Interval: $\begin{bmatrix} 1 & 3 \end{bmatrix}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Interva                                                                         |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\Box_{\overline{2}}$ $\overline{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                 |
| $\Box x \Box 2 \Box \Box \Box 1 \Box \Box x \Box 2 \Box_{7} \Box \Box^{1}$ . Since the absolute value is always nonnegative, the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                 |
| eal numbers. In interval notation, we have $\Box \Box \Box \Box \Box \Box$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                 |
| $4x \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 4 🗆 [                                                                           |
| $4x \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $4x \sqcup 1$                                                                   |
| $4x \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $4x \sqcup \sqcup 2 \sqcup x \sqcup \sqcup 1$ . Interval:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                 |
| $4x \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $4x \cup \cup 2 \cup x \cup \cup \uparrow$ . Interval: $\overline{2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                 |
| $4x \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 4x $\square$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $\frac{1}{1}$                                                                   |
| erval: $\begin{bmatrix} 2 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                 |
| 4x $\frac{1}{3}$ $\frac{1}{3}$ $\frac{1}{3}$ , which is equivalent to either $4x = \frac{1}{3}$ $\frac{1}{3}$ $\frac{1}$ |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                 |
| erval: $\begin{bmatrix} 2 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 & 3 &$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | ☐2 ☐2 Interval: [□54□42].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Interva                                                                         |
| $\Box x \Box 2 \Box \Box \Box 1 \Box \Box x \Box 2 \Box_{7} \Box \Box^{1}$ . Since the absolute value is always nonnegative, the eal numbers. In interval notation, we have $\Box \Box \Box \Box \Box \Box$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>42.</b> 7 □ <i>x</i> □ inequal <b>43.</b> $\frac{1}{2}$ □ <i>x</i>           |

|     | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | is is equivalent to $\Box$ $\Box$ $\Box$ 2 | $\begin{array}{c c} x \square 5 \square & 1 \\ 2 & \end{array}$ | $\frac{\square}{2}^9 \square x \square ^{11}.$ | Since $x \square 5$ | is excluded, the solution |
|-----|-------------------------------------------------------|--------------------------------------------|-----------------------------------------------------------------|------------------------------------------------|---------------------|---------------------------|
| 47. | 1 .                                                   |                                            |                                                                 | x   7                                          |                     |                           |
|     |                                                       | 3                                          | 2                                                               | 2                                              | 2                   | 2                         |
|     | $\Box {2}$ $\Box$ ${2}$                               |                                            |                                                                 |                                                |                     |                           |

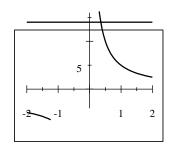
| 48. | 1 🗆 5                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\Box$ | $3\Box$ , since $\Box 2x\Box$                                                                      | 3□ □ 0, pı                                                                                 | rovided $2x \square 3$                     | $\Box \ 0 \ \Box \ x \ \Box$        | <sup>3</sup> . Now for         | x = 3, we                               | have                   |  |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------|--------------------------------------------|-------------------------------------|--------------------------------|-----------------------------------------|------------------------|--|
|     | $\overline{\square}2x \ \overline{\square}\ 3\square$                                                                                                                                                                                                                                                                                                                                                                                        | _                                                                     | 1                                                                                                  | 16                                                                                         | 8                                          | 2                                   | <u>1</u>                       | 2<br><u>14</u>                          | <u>7</u>               |  |
|     | $ \begin{array}{cccc} 1 & & \\ \hline 5 & & \\ \hline \end{array} $                                                                                                                                                                                                                                                                                                                                                                          | 3□ is equivalent                                                      | to either $_5 \square 2x$                                                                          | □ 3                                                                                        | $2x \square_{\overline{5}} \square x$ ; or | $2x \square 3 \square$              | $\Box_5 \Box 2x \Box$          | $_{5}$ $\Box x \Box$                    | 5.                     |  |
|     | Interval:                                                                                                                                                                                                                                                                                                                                                                                                                                    | 7 8 5                                                                 | □ .                                                                                                |                                                                                            |                                            |                                     |                                |                                         |                        |  |
| 49. | $\Box x \Box \Box 3$                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                       | <b>50.</b> $\Box x \Box \Box 2$                                                                    |                                                                                            | <b>51.</b> □ <i>x</i> □ ′                  | 7□ □ 5                              | :                              | <b>52.</b> □ <i>x</i> □ 21              | □ 4                    |  |
| 53. | $\Box x \Box \Box 2$                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                       | <b>54.</b> $\Box x \Box \Box 1$                                                                    |                                                                                            | <b>55.</b> □ <i>x</i> □ [                  | □ 3                                 |                                | <b>56.</b> □ <i>x</i> □ □               | 4                      |  |
|     | <b>57.</b> (a) Let $x$ be the thickness of the laminate. Then $\Box x \Box 0 \Box 020 \Box 0 \Box 003$ .  (b) $\Box x \Box 0 \Box 020 \Box 0 \Box 003 \Box 0 \Box 003 \Box x \Box 0 \Box 020 \Box 0 \Box 003 \Box 0 \Box 017 \Box x \Box 0 \Box 023$ . $\Box h \Box \Box \Box \Box \Box b $                                                                                                        |                                                                       |                                                                                                    |                                                                                            |                                            |                                     |                                |                                         |                        |  |
|     | <ul> <li>between 62 □ 4 in and 74 □ 0 in.</li> <li>59. □x □ 1□ is the distance between x and 1; □x □ 3□ is the distance between x and 3. So □x □ 1□ □ □x □ 3□ represents those points closer to 1 than to 3, and the solution is x □ 2, since 2 is the point halfway between 1 and 3. If a □ b, then the solution to □x □ a□ □ □x □ b□ is x □ b □ is x □ b □ is x □ b</li> <li>1.9 SOLVING EQUATIONS AND INEQUALITIES GRAPHICALLY</li> </ul> |                                                                       |                                                                                                    |                                                                                            |                                            |                                     |                                |                                         |                        |  |
| 1.  | The solutions                                                                                                                                                                                                                                                                                                                                                                                                                                | of the equation x                                                     | $x^2 \square 2x \square 3 \square 0$                                                               | are the <i>x</i> -inte                                                                     | rcepts of the grap                         | sh of $y \square x^2$               | $\square \ 2x \ \square \ 3.$  |                                         |                        |  |
| 2.  | The solutions <i>above</i> the <i>x</i> -ax                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                       | $x^2 \square 2x \square 3 \square 0$                                                               | are the <i>x</i> -coo                                                                      | ordinates of the p                         | oints on the                        | graph of $y \square$           | $x^2 \square 2x \square$                | 3 that lie             |  |
| 3.  | to the equality (b) From the                                                                                                                                                                                                                                                                                                                                                                                                                 | graph, we see th                                                      | that the graph of $\Box x^2 \Box 3x \Box 0$ are at where $\Box 1 \Box x$ 0 is satisfied for $\Box$ | $\begin{array}{c} e \ x \ \Box \ \Box 1, x \\ \Box \ 0 \ \text{or} \ 1 \ \Box \end{array}$ | $\Box 0, x \Box 1, \text{ and } x$         | $x \square 3$ . lies below the      | ne x-axis. Th                  |                                         |                        |  |
| 4.  | and $x \square 4$                                                                                                                                                                                                                                                                                                                                                                                                                            | 4.                                                                    | $\frac{1}{2}$ and $y \square 4$ inters $\frac{1}{2}$ lies strictly above                           |                                                                                            |                                            | -                                   |                                |                                         |                        |  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                       | of $x$ , that is, for $\Box x$                                                                     |                                                                                            |                                            | $\sqcup x \sqcup 4$ , so            | the inequalit                  | ty $5x \sqcup x^2$                      | <b>⊿ 4 1</b> 8         |  |
| 5.  | Algebraically                                                                                                                                                                                                                                                                                                                                                                                                                                | $: x \square 4 \square 5x \square 1$                                  | $ 2 \square \square 16 \square 4x \square$                                                         | $x \square \square 4.$                                                                     | 6. Algebraicall                            | y: $\frac{1}{2}x \square 3 \square$ | $6 \square 2x \square \square$ | $9  \square  \frac{3}{2} x  \square  x$ | ι □ □6.                |  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                       | equations $y_1 \square x$                                                                          |                                                                                            | Graphically:                               | We graph th                         | e two equation                 | ons $y_1 \Box \frac{1}{2}$ .            | $x \square 3$ and      |  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                       | ectangle [□6□4]                                                                                    |                                                                                            | $y_2  \Box 6  \Box 2x$                     | in the viewi                        | ng rectangle                   | [ _10 \[ 5] b                           | y                      |  |
|     | [⊔10⊔2]. Zo                                                                                                                                                                                                                                                                                                                                                                                                                                  | oming in, we see                                                      | that the solution                                                                                  | $18 x \sqcup \sqcup 4.$                                                                    | [□10□ 5]. Z                                | cooming in, v                       | ve see that th                 | e solution is                           | $x \square \square 6.$ |  |



133 CHAPTER 1 Equations and Graphs

-10

SECTION 1.9 Solving Equations and Inequalities Graphically

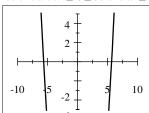

-10 -5

-5 -10 133

- 7. Algebraically:  $\frac{2}{x} \Box \frac{1}{2x} \Box 7 \Box 2x \Box \frac{2}{x} \Box \frac{1}{2x} \Box 2x$  8. Algebraically:  $\frac{4}{x \Box 2} \Box \frac{6}{2x} \Box \frac{5}{2x \Box 4} \Box$ 
  - $\square 4 \square 1 \square 14x \square x \square \frac{5}{12}$

Graphically: We graph the two equations  $y_1 \Box \frac{1}{x} \Box \frac{1}{2x}$ and  $y_2 \Box 7$  in the viewing rectangle  $[\Box 2 \Box 2]$  by  $[\Box 2 \Box$ 

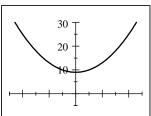
Zooming in, we see that the solution is  $x \square$ 




**9.** Algebraically:  $x^2 \square 32 \square 0 \square x^2 \square 32 \square$ 

$$x \square \square^{\square} \overline{32} \square \square 4^{\square} 2.$$

Graphically: We graph the equation  $y_1 \square x^2 \square 32$  and determine where this curve intersects the x-axis. We use the viewing rectangle  $[\Box 10\Box 10]$  by  $[\Box 5\Box 5]$ . Zooming


we see that solutions are  $x \square 5\square 66$  and  $x \square \square 5\square 66$ .

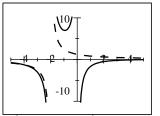


**11.** Algebraically:  $x^2 \square 9 \square 0 \square x^2 \square \square 9$ , which has no real **12.** Algebraically:  $x_{\square}^2 \square 3 \square 2x \square x^2 \square 2x \square 3 \square 0 \square$ solution.

Graphically: We graph the equation  $y \square x^2 \square 9$  and see


that this curve does not intersect the x-axis. We use the viewing rectangle  $[\Box 5\Box 5]$  by  $[\Box 5\Box 30]$ .



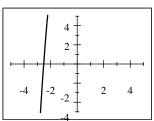

 $2x \Box 4\Box \Box \Box x \Box 2\Box \Box 6\Box \Box x \Box 5\Box \Box 8x \Box 6x \Box 12 \Box 5x$ 

 $\Box 12 \Box 3x \Box \Box 4 \Box x$ .

Graphically: We graph the two equations

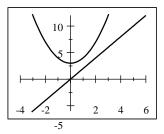


rectangle  $[\Box 5\Box 5]$  by  $[\Box 10\Box 10]$ . Zooming in, we see that there is only one solution at  $x \square \square 4$ .




**10.** Algebraically:  $x^3 \Box 16 \Box 0 \Box x^3 \Box \Box 16 \Box x \Box \Box 2$  2.\_

Graphically: We graph the equation  $y \square x^3 \square 16$  and


determine where this curve intersects the x-axis. We use the viewing rectangle  $[\Box 5 \Box 5]$  by  $[\Box 5 \Box 5]$ . Zooming in,

see that the solution is  $x \square \square 2 \square 52$ .

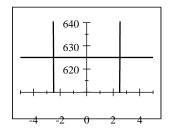


Because the discriminant is negative, there is no real solution.

Graphically: We graph the two equations  $y_1 \Box x^2 \Box 3$  and  $y_2 \Box 2x$  in the viewing rectangle  $[\Box 4 \Box 6]$  by  $[\Box 6 \Box 12]$ , and see that the two curves do not intersect.



2

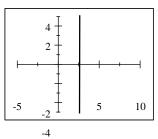

**13.** Algebraically:  $16x^4 \square 625 \square x^4 \square \frac{625}{16} \square$ 

$$\begin{array}{ccc}
x & \square & \square \\
\square & 2 & \square & \square
\end{array}$$

Graphically: We graph the two equations  $y_1 \Box 16x^4$  and

 $y_2 \Box$  625 in the viewing rectangle [ $\Box$ 5 $\Box$ 5] by [610 $\Box$ 640].

Zooming in, we see that solutions are  $x \square \square 2 \square 5$ .

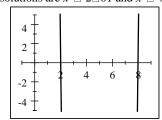



**14.** Algebraically:  $2x^5 \square 243 \square 0 \square 2x^5 \square 243 \square x^5 \square ^{243}$ 

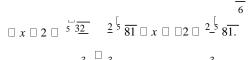
Graphically: We graph the equation  $y \square 2x^5 \square 243$  and

determine where this curve intersects the *x*-axis. We use the viewing rectangle  $[\Box 5\Box 10]$  by  $[\Box 5\Box 5]$ .

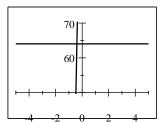
Zooming in, we see that the solution is  $x \square 2 \square 61$ .



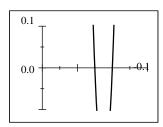

**15.** Algebraically:  $\Box x \Box 5\Box^4 \Box 80 \Box 0 \Box \Box x \Box 5\Box^4 \Box 80$ 


$$x \square 5 \square \square^{4} \overline{80} \square \square 2^{4} \overline{5} \square x \square 5 \square 2^{4} \overline{5}.$$

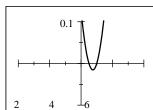
Graphically: We graph the equation  $y_1 \Box \Box x \Box 5\Box^4 \Box 80$  and determine where this curve intersects the *x*-axis. We use the viewing rectangle  $[\Box 1\Box 9]$  by  $[\Box 5\Box 5]$ . Zooming in,


we see that solutions are  $x \square 2\square 01$  and  $x \square 7\square 99$ .




**16.** Algebraically:  $6 \square x \square 2 \square^5 \square 64 \square \square x \square 2 \square^5 \square 64 \square 32$ 



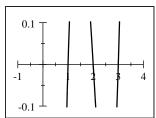

Graphically: We graph the two equations  $y_1 \Box 6 \Box x \Box 2 \Box^5$  and  $y_2 \Box 64$  in the viewing rectangle  $[\Box 5 \Box 5]$  by  $[50 \Box 70]$ . Zooming in, we see that the solution is  $x \Box \Box 0 \Box 39 \Box$ 



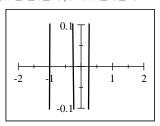
17. We graph  $y \Box x^2 \Box 7x \Box 12$  in the viewing rectangle  $[0 \Box 6]$  by  $[\Box 0 \Box 1 \Box 0 \Box 1]$ . The solutions appear to be exactly  $x \Box 3$  and  $x \Box 4$ . [In fact  $x^2 \Box 7x \Box 12 \Box \Box x \Box 3 \Box x \Box 4 \Box .]$ 



**18.** We graph  $y \square x^2 \square 0 \square 75x \square 0 \square 125$  in the viewing rectangle  $[\square 2 \square 2]$  by  $[\square 0 \square 1 \square 0 \square 1]$ . The solutions are  $x \square 0 \square 25$  and  $x \square 0 \square 50$ .

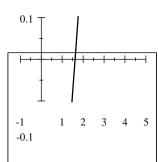



-2 -1 1 2

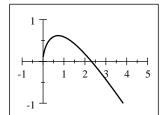

-0.1

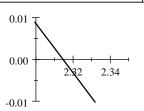
138

**19.** We graph  $y \square x^3 \square 6x^2 \square 11x \square 6$  in the viewing rectangle  $[\Box 1 \Box 4]$  by  $[\Box 0 \Box 1 \Box 0 \Box 1]$ . The solutions are  $x \square 1\square 00$ ,  $x \square 2\square 00$ , and  $x \square 3\square 00$ .




**20.** Since  $16x^3 \Box 16x^2 \Box x \Box 1 \Box 16x^3 \Box 16x^2 \Box x \Box 1 \Box 0$ , we graph  $y \Box 16x^3 \Box 16x^2 \Box x \Box 1$  in the viewing rectangle  $[\Box 2 \Box 2]$  by  $[\Box 0 \Box 1 \Box 0 \Box 1]$ . The solutions are:  $x \square \square 1 \square 00$ ,  $x \square \square 0 \square 25$ , and  $x \square 0 \square 25$ .

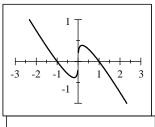




**21.** We first graph  $y \square x \square \square x \square 1$  in the viewing rectangle  $[\square 1 \square 5]$  by  $[\square 0 \square 1 \square 0 \square 1]$ and

find that the solution is near  $1 \square 6$ . Zooming in, we see that solutions is  $x \square$  $1 \square 62$ .

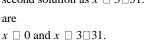


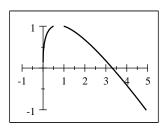
22.  $1 \Box \overline{x} \Box \overline{1} \Box x^2 \Box 1 \Box x^2 \Box 1 \Box x^2 \Box 0$  | Since  $\overline{x}$  is only defined for  $x \square 0$ , we start with the viewing rectangle  $[\Box 1 \Box 5]$  by  $[\Box 1 \Box 1]$ . In this rectangle, there appears to be an exact solution at  $x \square 0$  and another solution between  $x \square 2$  and  $x \square 2 \square 5$ . We then use the viewing rectangle  $[2 \square 3 \square 2 \square 35]$ 

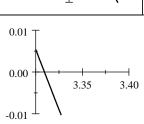


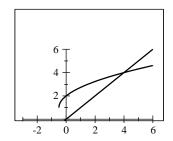



 $[\Box 0 \Box 01 \Box 0 \Box 01]$ , and isolate the second solution

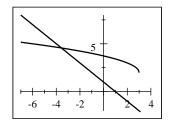

 $x \square 2 \square 314$ . Thus the solutions are  $x \square 0$  and



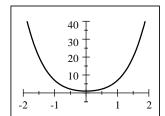





**24.** Since  $x^{1 \square 2}$  is defined only for  $x \square 0$ , we start by graphing  $y \square x^{1\square 2} \square x^{1\square 3} \square x$  in the viewing rectangle  $[\Box 1 \Box 5]$  by  $[\Box 1 \Box 1] \Box$ We see a solution at  $x \square 0$  and another one between  $x \square 3$  $x \square 3\square 5$ . We then use the viewing rectangle  $[3 \square 3 \square 3 \square 4]$  by  $[\square 0 \square 01 \square 0 \square 01]$ , and isolate the

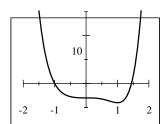
second solution as  $x \square 3 \square 31$ . Thus, the solutions



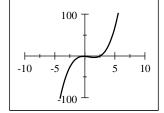


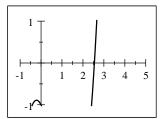





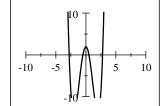


**26.** We graph  $y \Box \overline{3 \Box x} \Box 2$  and  $y \Box 1 \Box x$  in the viewing rectangle  $[\Box 7 \Box 4]$  by  $[\Box 2 \Box 8]$  and see that the only solution to the equation  $\overline{3 \Box x} \Box 2 \Box 1 \Box x$  is  $x \Box \Box 3 \Box 56$ , which can be verified by substitution.

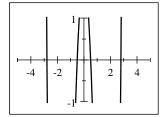



**27.** We graph  $y \Box 2x^4 \Box 4x^2 \Box 1$  in the viewing rectangle  $[\Box 2 \Box 2]$  by  $[\Box 5 \Box 40]$  and see that the equation  $2x^4 \Box 4x^2 \Box 1 \Box 0$  has no solution.

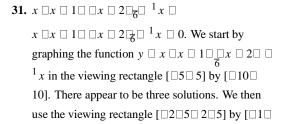


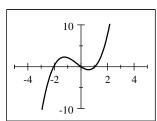

**28.** We graph  $y \Box x^6 \Box 2x^3 \Box 3$  in the viewing rectangle  $[\Box 2 \Box 2]$  by  $[\Box 5 \Box 15]$  and see that the equation  $x^6 \Box 2x^3 \Box 3 \Box 0$  has solutions  $x \Box \Box 1$  and  $x \Box 1 \Box 44$ , which can be verified by substitution.

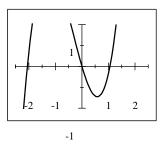




**29.**  $x^3 \Box 2x^2 \Box x \Box 1 \Box 0$ , so we start by graphing the function  $y \Box x^3 \Box 2x^2 \Box x \Box 1$  in the viewing rectangle  $[\Box 10 \Box 10]$  by  $[\Box 100 \Box 100]$ . There appear to be two solutions, one near  $x \Box 0$  and another one between  $x \Box 2$  and  $x \Box 3$ . We then use the viewing rectangle  $[\Box 1 \Box 5]$  by  $[\Box 1 \Box 1]$  and zoom in on the only solution,  $x \Box 2 \Box 55$ .





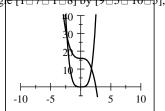


**30.**  $x^4 \square 8x^2 \square 2 \square 0$ . We start by graphing the function  $y \square x^4 \square 8x^2 \square 2$  in the viewing rectangle  $[\square 10 \square 10]$  by  $[\square 10 \square 10]$ . There appear to be four solutions between  $x \square 3$  and  $x \square 3$ . We then use the viewing rectangle  $[\square 5 \square 5]$  by  $[\square 1 \square 1]$ , and zoom to find the four solutions

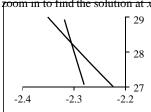


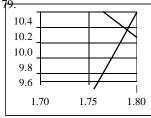



 $x \square \square 2 \square 78$ ,  $x \square \square 0 \square 51$ ,  $x \square 0 \square 51$ , and  $x \square 2 \square 78$ .

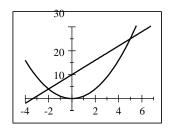




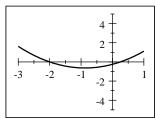





zoom into the solutions at  $x \square \square 2 \square 05$ ,  $x \square 0 \square 00$ ,

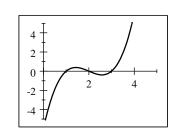
and  $x \square 1 \square 05$ .


**32.**  $x^4 ext{ } e$ 

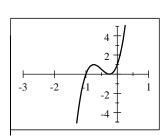


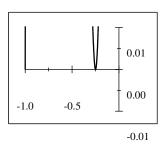






**33.** We graph  $y \square x^2$  and  $y \square 3x \square 10$  in the viewing rectangle  $[\square 4 \square 7]$  by  $[\square 5 \square 30]$ . The solution to the inequality is  $[\square 2 \square 5]$ .

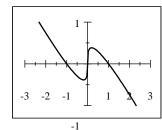



**34.** Since  $0 \Box 5x^2 \Box 0 \Box 875x \Box 0 \Box 25 \Box 0 \Box 5x^2 \Box 0 \Box 875x \Box 0 \Box 25 \Box 0$ , we graph  $y \Box 0 \Box 5x^2 \Box 0 \Box 875x \Box 0 \Box 25$  in the viewing rectangle  $[\Box 3 \Box 1]$  by  $[\Box 5 \Box 5]$ . Thus the solution to the inequality is  $[\Box 2 \Box 0 \Box 25]$ .



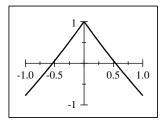

**35.** Since  $x^3 \Box 11x \Box 6x^2 \Box 6 \Box x^3 \Box 6x^2 \Box 11x \Box 6 \Box 0$ , we graph  $y \Box x^3 \Box 6x^2 \Box 11x \Box 6$  in the viewing rectangle  $[0\Box 5]$  by  $[\Box 5\Box 5]$ . The solution set is  $\Box\Box\Box\Box\Box\Box\Box\Box\Box\Box\Box\Box\Box\Box\Box\Box\Box\Box\Box$ .




**36.** Since  $16x^3 \square 24x^2 \square \square 9x \square 1 \square$  $16x^3 \square 24x^2 \square 9x \square 1 \square 0$ , we graph  $y \square 16x^3 \square 24x^2 \square 9x \square 1$  in the viewing rectangle  $[\Box 3 \Box 1]$  by  $[\Box 5 \Box 5]$ . From this rectangle, we see that  $x \square \square 1$  is an x-intercept, but it is unclear what is occurring between  $x \square \square 0 \square 5$  and



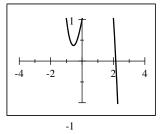



 $x \square 0$ . We then use the viewing rectangle  $[\square 1 \square 0]$  by  $[\square 0 \square 01 \square 0 \square 01]$ . It shows  $y \square 0$  at  $x \square \square 0 \square 25$ . Thus in interval notation, the solution is  $\Box\Box\Box\Box\Box\Box\Box\Box\Box\Box\Box\Box\Box\Box\Box\Box\Box\Box\Box\Box\Box\Box\Box\Box$ .

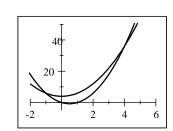
**37.** Since  $x^{1 \square 3} \square x \square x^{1 \square 3} \square x \square 0$ , we graph  $y \square x^{1 \square 3} \square x$  **38.** Since  $0 \square 5x^2 \square 1 \square 2 \square x \square \square \square 0 \square 5x^2 \square 1 \square 2 \square x \square \square$ in the viewing rectangle  $[\Box 3 \Box 3]$  by  $[\Box 1 \Box 1]$ . From this, we find that the solution set is  $\Box \Box \Box$ .



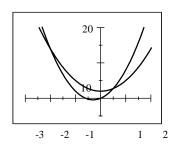
graph  $y \square 0 \square 5x^2 \square 1 \square 2 \square x \square$  in the viewing rectangle  $[\Box 1 \Box 1]$  by  $[\Box 1 \Box 1]$ . We locate the *x*-intercepts at  $x \square \square 0 \square 535$ . Thus in interval notation, the solution


is approximately  $\Box\Box\Box\Box\Box\Box\Box\Box535$ ]  $\Box$  [0 $\Box$ 535 $\Box$   $\Box$ .

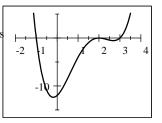



**39.** Since  $\Box x \Box 1\Box^2 \Box \Box x \Box 1\Box^2 \Box \Box x \Box 1\Box^2 \Box \Box x \Box 1\Box^2 \Box 40$ . Since  $\Box x \Box 1\Box^2 \Box x^3 \Box \Box x \Box 1\Box^2 \Box x^3 \Box 0$ , we graph  $\square$  0, we graph  $y \square \square x \square 1 \square^2 \square \square x \square 1 \square^2$  in the viewing rectangle  $[\Box 2 \Box 2]$  by  $[\Box 5 \Box 5]$ . The solution set is  $\square$   $\square$   $\square$   $\square$   $\square$   $\square$   $\square$   $\square$   $\square$ 



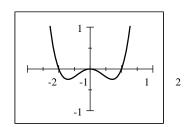

 $y \square \square x \square 1 \square^2 \square x^3$  in the viewing rectangle  $[\square 4 \square 4]$ by  $[\Box 1 \Box 1]$ . The x-intercept is close to  $x \Box 2$ . Using a trace function, we obtain  $x \square 2 \square 148$ . Thus the solution is [2□148□ □□.



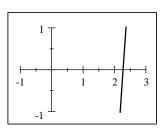

**41.** We graph the equations  $y \square 3x^2 \square 3x$  and  $y \square 2x^2 \square 4$  in the viewing rectangle  $[\Box 2\Box 6]$  by  $[\Box 5\Box 50]$ . We see that the two curves intersect at  $x \Box \Box 1$  and at  $x \Box 4$ , and that the first curve is lower than the second for  $\Box 1 \Box x \Box 4$ . Thus, we see that the inequality  $3x^2 \Box 3x \Box 2x^2 \Box 4$  has the solution set  $\Box \Box 1 \Box 4 \Box$ .



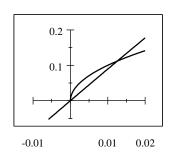
**42.** We graph the equations  $y ext{ } ext{$ 




**43.** We graph the equation  $y \Box x \Box 2\Box^2 \Box x \Box 3\Box x \Box 1\Box$  in the viewing rectangle  $[\Box 2\Box 4]$  by  $[\Box 15\Box 5]$  and see that the inequality  $\Box x \Box 2\Box^2 \Box x \Box 3\Box x \Box 1\Box \Box 0$  has the solution set  $[\Box 1\Box 3]$ .

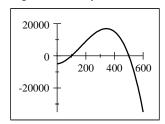



**44.** We graph the equation  $y \Box x^2 \Box x^2 \Box 1$  in the viewing rectangle  $[\Box 2 \Box 2]$ 


by  $[ \Box 1 \Box 1 ] \text{ and see that the inequality } x^2 \Box x^2 \Box 1 \Box 0 \text{ has the solution set}$ 



**45.** To solve  $5 \square 3x \square 8x \square 20$  by drawing the graph of a single equation, we isolate all terms on the left-hand side:  $5 \square 3x \square 8x \square 20 \square 5 \square 3x \square 8x \square 20 \square 8x \square 20 \square 8x \square 20 \square 11x \square 25 \square 0$  or  $11x \square 25 \square 0$ . We graph  $y \square 11x \square 25$ , and see that the solution is  $x \square 2\square 2$ , as in Example 2.



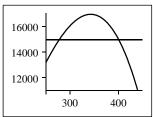

**46.** Graphing  $y \Box x^3 \Box 6x^2 \Box 9x$  and  $y \Box x$  in the viewing rectangle  $[\Box 0 \Box 01 \Box 0 \Box 02]$  by  $[\Box 0 \Box 05 \Box 0 \Box 2]$ , we see that  $x \Box 0$  and  $x \Box 0 \Box 01$  are solutions of the equation  $x^3 \Box 6x^2 \Box 9x \Box x$ .



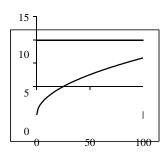
47. (a) We graph the equation

 $y \square 10x \square 0\square 5x^2 \square 0\square 001x^3 \square 5000$  in the viewing rectangle  $[0\square 600]$  by  $[\square 30000\square 20000]$ .




(b) From the graph it appears that

 $0 \square 10x \square 0\square 05x^2 \square 0\square 001x^3 \square 5000$  for  $100 \square x \square 500$ , and so 101 cooktops must be produced to *begin* to make a profit.


(c) We graph the equations  $y \square 15,000$  and

 $y \Box 10x \Box 0\Box 5x^2 \Box 0\Box 001x^3 \Box 5000$  in the viewing rectangle [250 $\Box$  450] by [11000 $\Box$  17000]. We use a zoom or trace function on a graphing calculator, and find that the company's profits are greater than \$15,000 for

279  $\square x \square 400$ .



48. (a)



**(b)** Using a zoom or trace function, we find that  $y \square 10$  for  $x \square 66 \square 7$ . We

could estimate this since if x = 100, then  $\frac{1}{5280}$ ,  $\frac{1}{2} = 0 = 0$ . So for

 $x \square 100$  we have  $1 \square 5x \square \frac{\square}{5280} 2 \square 1 \square 5x$ . Solving  $1 \square 5x \square 10$  we

get  $1 \square 5 \square 100$  or  $x \square 100 \square 66 \square 7$  mi.

- **49.** Answers will vary.
- **50.** Calculators perform operations in the following order: exponents are applied before division and division is applied before addition. Therefore,  $Y_1=x^1/3$  is interpreted as  $y = \frac{x^1}{3} = \frac{x}{3}$ , which is the equation of a line. Likewise,  $Y_2=x/x+4$  is x

interpreted as  $y = \frac{1}{x} = 4 = 1 = 4 = 5$ . Instead, enter the following:  $Y_1 = x^(1/3)$ ,  $Y_2 = x/(x+4)$ .

## 1.10 MODELING VARIATION

- **1.** If the quantities x and y are related by the equation  $y ext{ } ex$
- 2. If the quantities x and y are related by the equation  $y = \frac{3}{x}$  then we say that y is *inversely proportional* to x, and the constant of *proportionality* is 3.
- **3.** If the quantities x, y, and z are related by the equation  $z \square 3\frac{x}{y}$  then we say that z is *directly proportional* to x and *inversely proportional* to y.
- **4.** Because z is jointly proportional to x and y, we must have  $z \square kxy$ . Substituting the given values, we get  $10 \square k \square 4 \square \square 5 \square \square 20k \square k \square 1$ . Thus, x, y, and z are related by the equation  $z \not\subseteq 1xy$ .
- **5.** (a) In the equation  $y \square 3x$ , y is directly proportional to x.
  - **(b)** In the equation  $y \square 3x \square 1$ , y is not proportional to x.
- **6.** (a) In the equation  $y ext{ } ext{ }$ 
  - **(b)** In the equation  $y \square \frac{1}{x}$ , y is inversely proportional to x.

- **7.**  $T \square kx$ , where k is constant.
- **9.**  $\Box \frac{k}{z}$ , where k is constant.
- **11.**  $y \square \frac{ks}{t}$ , where k is constant.
- **13.**  $z \square k^{\square} \overline{y}$ , where k is constant.
- **15.**  $V \square kl \square h$ , where k is constant.
- 17.  $R \Box \frac{kP^2t^2}{h^3}$ , where k is constant.

- **8.**  $P \square k \square$ , where k is constant.
- **10.**  $\square$   $\square$  *kmn*, where *k* is constant.
- **12.**  $P \sqcup \frac{k}{T}$ , where k is constant.
- **14.**  $A \square \frac{kx^2}{t^3}$ , where k is constant.
- **16.**  $S \square kr^2 \square^2$ , where k is constant.
- **18.**  $A \square k^{\square} \overline{xy}$ , where k is constant.
- **19.** Since y is directly proportional to x, y  $\square$  kx. Since y  $\square$  42 when x  $\square$  6, we have 42  $\square$  k  $\square$ 6 $\square$  k  $\square$  7. So y  $\square$  7x.
- **21.** A varies inversely as r, so  $A \subseteq \frac{k}{r}$ . Since  $A \subseteq 7$  when  $r \subseteq 3$ , we have  $7 \subseteq \frac{k}{3} \subseteq k \subseteq 21$ . So  $A \subseteq \frac{21}{r}$ .
- **22.** *P* is directly proportional to *T*, so  $P \square kT$ . Since  $P \square 20$  when  $T \square 300$ , we have  $20 \square k \square 300 \square \square k \square \frac{1}{15}$ . So  $P \square \frac{1}{15} T$ .
- **23.** Since A is directly proportional to x and inversely proportional to t,  $A \square \frac{kx}{t}$ . Since  $A \square 42$  when  $x \square 7$  and  $t \square 3$ , we

have 42  $\square$   $\frac{k \square 7}{3}$   $\square$   $k \square$  18. Therefore,  $A \square \frac{18x}{t}$ .

- **24.**  $S \square kpq$ . Since  $S \square 180$  when  $p \square 4$  and  $q \square 5$ , we have  $180 \square k \square 4 \square \square 5 \square \square 180 \square 20k \square k \square 9$ . So  $S \square 9pq$ .
- **25.** Since W is inversely proportional to the square of r,  $W \square \frac{k}{r^2}$ . Since  $W \square 10$  when  $r \square 6$ , we have  $10 \square \frac{k}{\square 6 \square^2} \square k \square 360$ .

So  $W \square \frac{360}{r^2}$ .

 $\Box 2 \Box \ \Box 3 \Box$  xy

- **26.**  $t \square k \longrightarrow \infty$ . Since  $t \square 25$  when  $x \square 2$ ,  $y \square 3$ , and  $r \square 12$ , we have  $25 \square k \square 12 \square k \square 50$ . So  $t \square 50 n \square 12$
- **27.** Since *C* is jointly proportional to *l*,  $\square$ , and *h*, we have  $C \square kl \square h$ . Since  $C \square 128$  when  $l \square \square h \square 2$ , we have  $128 \square k \square 2 \square \square 2 \square \square 2 \square \square 128 \square 8k \square k \square 16$ . Therefore,  $C \square 16l \square h$ .
- **28.**  $H \square kl^2 \square^2$ . Since  $H \square 36$  when  $l \square 2$  and  $\square \square^1$ , we have  $36 \square k \square 2 \square^2 \square^2 \square 36 \square 4 \square k \square 81$ . So  $H \square 81l^2 \square^2$ .

k k k k  $\frac{27 \square 5}{121}$   $\frac{1}{11} \square k \square 27 \square 5. \text{ Thus, } R$ 

- **30.**  $M \square k \frac{abc}{d}$ . Since  $M \square 128$  when  $a \square d$  and  $b \square c \square 2$ , we have  $128 \square k \frac{a \square 2 \square \square 2 \square}{a} \square 4k \square k \square 32$ . So  $M \square 32 \frac{abc}{d}$ .
- **31.** (a)  $z \Box k \frac{1}{y^2}$

 $\begin{array}{ccc} \begin{array}{cccc} 3x & 27 & x^3 \end{array}$ 

**(b)** If we replace x with 3x and y with 2y, then  $z ext{ } ext{ }$ 

**32.** (a) 
$$z \Box k \frac{x^2}{y^4}$$

$$\Box 3x\Box^2$$
 9  $\Box$   $x^2$ 

**(b)** If we replace x with 3x and y with 2y, then  $z ext{ } ext{ }$ 

- **33.** (a)  $z \Box kx^3y^5$ 
  - **(b)** If we replace x with 3x and y with 2y, then  $z \Box k \Box 3x \Box^3 \Box 2y \Box^5 \Box 864kx^3y^5$ , so z changes by a factor of 864.

| 34          | (a) | 7 | $\frac{k}{2}$ |
|-------------|-----|---|---------------|
| J <b>T.</b> | (a) | 4 | $x^2v^3$      |

| 1 6 1 10                                         |
|--------------------------------------------------|
| anges by a factor $\frac{1}{6}$ $\frac{1}{72}$ . |
|                                                  |

**35.** (a) The force F needed is  $F \square kx$ .

| (h) | Since $F \square 30 N$ | N when $x \square 9$ cm and the       | spring's natural length is 5 cr | m we have $30 \square k \square 9 \square$                     | $5 \square \square k \square 7 \square 5$ |
|-----|------------------------|---------------------------------------|---------------------------------|----------------------------------------------------------------|-------------------------------------------|
| (v  | ) Diffice I - Join     | which $\lambda = \lambda$ chi and the | spring s natural length is 5 cr | ii, we have so $\square$ $\kappa$ $\square$ $\gamma$ $\square$ | J                                         |

(c) From part (b), we have 
$$F \square 7\square 5x$$
. Substituting  $x \square 11 \square 5 \square 6$  into  $F \square 7\square 5x$  gives  $F \square 7\square 5 \square 6\square \square 45$  N.

**36.** (a)  $C \square kpm$ 

**(b)** Since 
$$C \square 60{,}000$$
 when  $p \square 120$  and  $m \square 4000$ , we get  $60{,}000 \square k \square 120 \square 4000 \square \square k \square 1$ . So  $C \square 1 pm$ .

(c) Substituting 
$$p \square 92$$
 and  $m \square 5000$ , we get  $C \square \frac{1}{8} \square 92 \square \square 5000 \square \square $57,500$ .

**37.** (a)  $P \square ks^3$ .

**(b)** Since 
$$P \square 96$$
 when  $s \square 20$ , we get  $96 \square k \square 20^3 \square k \square 0 \square 012$ . So  $P \square 0 \square 012s^3$ .

(c) Substituting 
$$x \square 30$$
, we get  $P \square 0 \square 012 \square 30^3 \square 324$  watts.

**38.** (a) The power P is directly proportional to the cube of the speed s, so  $P \square ks^3$ .

**(b)** Because 
$$P \square 80$$
 when  $s \square 10$ , we have  $80 \square k \square 10 \square^3 \square k \square \frac{80}{1000} \square \frac{2}{25} \square 0 \square 08$ .

(c) Substituting 
$$k \square \frac{2}{25}$$
 and  $s \square 15$ , we have  $P \square \stackrel{2}{\boxtimes} \square 15 \square^3 \square 270$  hp.

**39.**  $D \square ks^2$ . Since  $D \square 150$  when  $s \square 40$ , we have  $150 \square k \square 40 \square^2$ , so  $k \square 0 \square 09375$ . Thus,  $D \square 0 \square 09375s^2$ . If  $D \square 200$ , then

200 □ 0□09375 $s^2$  □  $s^2$  □ 2133□3, so s □ 46 mi/h (for safety reasons we round down).

**40.** 
$$L \square ks^2A$$
. Since  $L \square 1700$  when  $s \square 50$  and  $A \square 500$ , we have  $1700 \square k \square 50^2 \square 500 \square \square k \square 0 \square 00136$ . Thus  $L \square 0 \square 00136s^2A$ . When  $A \square 600$  and  $s \square 40$  we get the lift is  $L \square 0 \square 00136 \square 40^2 \square 6000 \square 1305 \square 6$  lb.

**41.** 
$$F \square kAs^2$$
. Since  $F \square 220$  when  $A \square 40$  and  $s \square 5$ . Solving for  $k$  we have  $220 \square k \square 40 \square \square 5 \square^2 \square 220 \square 1000k \square k \square 0 \square 22$ . Now when  $A \square 28$  and  $F \square 175$  we get  $175 \square 0 \square 220 \square 28 \square s^2 \square 28 \square 4090 \square s^2$  so  $s \square 28 \square 4090 \square 5 \square 33$  mi/h.

**42.** (a)  $T^2 \Box kd^3$ 

**(b)** Substituting 
$$T \square 365$$
 and  $d \square 93 \square 10^6$ , we get  $365^2 \square k \square 93 \square 3 \square k \square 1 \square 66 \square 10 \square 9$ .

(c) 
$$T^2 \square 1 \square 66 \square 10^{\square 19} \square 2 \square 79 \square \square 3 \square 60 \square 10^9 \square T \square 6 \square 00 \square 10^4$$
. Hence the period of Neptune is  $6.00 \square 10^4$   $10^9$ 

days□ 164 years.

kT

43. (a) 
$$P \square \overline{V}$$
.

**(b)** Substituting  $P \square 33 \square 2$ ,  $T \square 400$ , and  $V \square 100$ , we get  $33 \square 2$   $\frac{k \square 400}{100} \square k \square 8 \square 3$ . Thus  $k \square 8 \square 3$  and the equation is

8*□*3*T* 

$$P \sqcup \overline{V}$$
.

(c) Substituting  $T \square 500$  and  $V \square 80$ , we have  $P \square \frac{8 \square 3}{500} \square 51 \square 875$  kPa. Hence the pressure of the sample of gas is about  $51 \square 9$  kPa.

 $\Box s^2$ 

- **44.** (a)  $F \Box k \frac{1}{r}$ 
  - (b) For the first car we have  $\Box_1$   $\Box$  1600 and  $s_1$   $\Box$  60 and for the second car we have  $\Box_2$   $\Box$  2500. Since the forces are equal

we have  $k \frac{1600 \,\square\, 60^2}{r} \,\square\, k \frac{2500 \,\square\, s_2^2}{r} \,\square\, \frac{16 \,\square\, 60^2}{25} \,\square\, s_2^2$ , so  $s_2 \,\square\, 48$  mi/h.

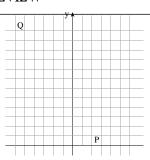
| 45. | (a) The loudness L is inversely proportional to the square of the distance d, so $L \square \frac{k}{d^2}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | <b>(b)</b> Substituting $d \square 10$ and $L \square 70$ , we have $70 \square \frac{k}{10^2} \square k \square 7000$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|     | (c) Substituting 2d for d, we have $L \square \frac{k}{\lceil 2d \rceil^2} \stackrel{1}{=} \frac{k}{d^2}$ , so the loudness is changed by a factor of $\frac{1}{4}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|     | (d) Substituting $\frac{1}{2}d$ for $d$ , we have $L \square \frac{k}{\square \frac{1}{2}} \square 4 \frac{k}{d^2}$ , so the loudness is changed by a factor of 4.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|     | $2^d$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 46. | (a) The power P is jointly proportional to the area A and the cube of the velocity $\Box$ , so $P \Box kA\Box^3$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|     | <b>(b)</b> Substituting $2 \square$ for $\square$ and ${}^1A$ for $A$ , we have $P \square k \square 1 A \square 2 \square \square 3 \square 4kA\square 3$ , so the power is changed by a factor of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|     | (c) Substituting ${}^1\Box$ for $\Box$ and ${}^3A$ for $A$ , we have $P\Box k\Box 3A\Box \Box ^3\Box 3Ak\Box ^3$ , so the power is changed by a factor of ${}^3$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|     | 2 8 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 47. | (a) $R \square \frac{kL}{d^2}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|     | (b) Since $R \Box 140$ when $L \Box 1\Box 2$ and $d \Box 0\Box 005$ , we get $140 \Box \frac{k \Box 1\Box 2\Box}{\Box 0\Box 005\Box^2} \Box k \Box \frac{7}{2400} \Box 0\Box \overline{00}2916$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|     | (c) Substituting $L \square 3$ and $d \square 0 \square 008$ , we have $R \square \frac{7}{2400} \square \frac{3}{32} \square 137 \square$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|     | $k \square 3L \square \qquad \underline{3} kL$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|     | (d) If we substitute $2d$ for $d$ and $3L$ for $L$ , then $R 	ext{ } 	$ |
| 48  | Let S be the final size of the cabbage, in pounds, let N be the amount of nutrients it receives, in ounces, and let $c$ be the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|     | number of other cabbages around it. Then $S \square k \frac{N}{c}$ . When $N \square 20$ and $c \square 12$ , we have $S \square 30$ , so substituting, we have                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|     | $30 \square k \frac{20}{12} \square k \square 18$ . Thus $S \square 18 \frac{N}{c}$ . When $N \square 10$ and $c \square 5$ , the final size is $S \square 18 \frac{\square}{10} \square 36$ lb.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 49. | (a) For the sun, $E_{\rm S} = k6000^4$ and for earth $E_{\rm E} = k300^4$ . Thus $E_{\rm E} = \frac{k6000^4}{k300^4} = \frac{10000}{1000} = \frac{10000}{1000} = \frac{100000}{1000}$ . So the sun                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|     | produces 160,000 times the radiation energy per unit area than the Earth.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|     | (b) The surface area of the sun is $4 \square \square 435,000 \square^2$ and the surface area of the Earth is $4 \square \square 3,960 \square^2$ . So the sun has                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|     | (b) The surface area of the sun is $4 \square \ \Box 435,000 \square^2$ and the surface area of the Earth is $4 \square \ \Box 3,960 \square^2$ . So the sun has $4 \square \ \Box 435,000 \square^2 \ \Box 435,000 \square^2 \ \Box 435,000 \square^2$ times the surface area of the Earth. Thus the total radiation emitted by the sun is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|     | $160,000 \square \frac{435,000}{3,960} \square 2 \square 1,930,670,340$ times the total radiation emitted by the Earth.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 50. | Let $V$ be the value of a building lot on Galiano Island, $A$ the area of the lot, and $q$ the quantity of the water produced. Since                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|     | $V$ is jointly proportional to the area and water quantity, we have $V \square kAq$ . When $A \square 200 \square 300 \square 60,000$ and $q \square 10$ , we have $V \square \$48 \square 000$ , so $48,000 \square k \square 60,000 \square 10 \square \square k \square 0 \square 08$ . Thus $V \square 0 \square 08Aq$ . Now when $A \square 400 \square 400 \square$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|     | 160,000 and $q \square$ 4, the value is $V \square$ 0\sum 0\subseteq 08 \sum 160,000 \subseteq \subseteq \subseteq \subseteq 51,200.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 51. | (a) Let $T$ and $l$ be the period and the length of the pendulum, respectively. Then $T \square k \square \overline{l}$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |

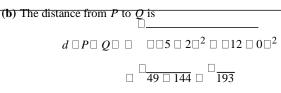
quadruple the length l to double the period T.

**52.** Let H be the heat experienced by a hiker at a campfire, let A be the amount of wood, and let d be the distance from campfire. So  $H \Box k \frac{A}{d^3}$ . When the hiker is 20 feet from the fire, the heat experienced is  $H \Box k \frac{A}{20^3}$ , and when the amount of wood is doubled, the heat experienced is  $H \Box k \frac{A}{d^3}$ . So  $k \frac{2A}{8 \Box 000} \Box k \frac{2A}{d^3} \Box d \Box 16 \Box 000 \Box d \Box 20 \Box 2 \Box 25 \Box 2$  feet.

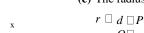
- **53.** (a) Since f is inversely proportional to L, we have  $f \, \Box \, \frac{k}{L}$ , where k is a positive constant.
  - **(b)** If we replace L by 2L we have  $\frac{k}{2L} \Box \frac{1}{2} \Box \stackrel{k}{\Box} \Box \frac{1}{2} f$ . So the frequency of the vibration is cut in half.
- **54.** (a) Since r is jointly proportional to x and  $P \square x$ , we have  $r \square kx \square P \square x \square$ , where k is a positive constant.
  - (b) When 10 people are infected the rate is r = k10 = 5000 = 10 = 49,900k. When 1000 people are infected the rate is  $r \square k \square 1000 \square \square 5000 \square 1000 \square \square 4,000,000k$ . So the rate is much higher when 1000 people are infected. Comparing these rates, we find that  $\frac{1000 \text{ people infected}}{10 \text{ people infected}} \sqcup \frac{4,000,000k}{49,900k} \sqcup 80$ . So the infection rate when 1000 people are infected

is about 80 times as large as when 10 people are infected.


- (c) When the entire population is infected the rate is  $r \square k \square 5000 \square 5000 \square 5000 \square 0$ . This makes sense since there are no more people who can be infected.
- 55. Using  $B \square k \frac{L}{d^2}$  with  $k \square 0 \square 080$ ,  $L \square 2 \square 5 \square 0 \square 080$ , and  $d \square 2 \square 4 \square 0 \square 080$ , we have  $B \square 0 \square 080$   $\square 080$   $\square 080$   $\square 080$   $\square 080$   $\square 080$ 10


The star's apparent brightness is about  $3\Box 47\Box 10^{\Box 14}\ W\Box m^2$ .

- **56.** First, we solve  $B \Box k \frac{L}{d^2}$  for  $d: d^2 \Box k \frac{L}{B} \Box d \Box \overset{\Box}{k} \frac{\overline{L}}{d^2}$  because d is positive. Substituting  $k \Box 0 \Box 080$ ,  $L \Box 5 \Box 8 \Box ^{30}$ , and
  - $B \square 8 \square 2 \square 10^{\square 16}$ , we find  $d = \begin{cases} \square 08 \frac{5 \square \square 10^{30}}{8} \square 2 \square 38 \square 10^{22} \end{cases}$ , so the star is approximately  $2 \square 38 \square 10^{22}$  m from earth. 8□2 □ 10 □16
- 57. Examples include radioactive decay and exponential growth in biology.

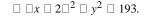

## **CHAPTER 1 REVIEW**

1. (a)



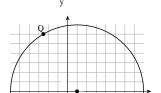


 $_{2}$   $\square$   $\square$   $_{2}$   $\square$   $_{6}$  . (c) The midpoint is




(e) The radius of this circle was found in part (b). It is

 $r \square d \square P \square \square \square 193$ . So an equation is

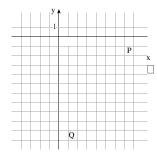

(d) The line has slope  $m \square \frac{12 \square 0}{2} \square \frac{12}{7}$ , and has





equation  $y \square 0 \square \square \neg \square x \square 2 \square \square y \square \square \neg x \square \neg \gamma$  $\Box$  12x  $\Box$  7y  $\Box$  24  $\Box$  0.








2 P x

CHAPTER 1 Review 144

P



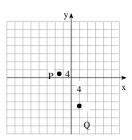
**(b)** The distance from P to Q is

$$d \square P \square Q \square \square 2 \square 7 \square^2 \square \square \square 11 \square 1 \square^2$$

- (c) The midpoint is  $\frac{\phantom{a}}{2}$
- (d) The line has slope  $m \sqcup \frac{11 \square 1}{2 \square 7} \square \frac{\square 10}{\square 5} \square 2$ , and

its equation is  $y \square 11 \square 2 \square x \square 2 \square$ 

 $y \square 11 \square 2x \square 4 \square y \square 2x \square 15.$ 


(e) The radius of this circle was found in part (b). It is

$$r \square d \square P$$
,  $Q \square 5 \overline{5}$ . So an equation is

$$\Box x \Box 7\Box^2 \Box \Box y \Box 1\Box^2 \Box 125.$$



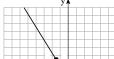




**(b)** The distance from P to Q is

2 □ □□14□ <u>-</u>



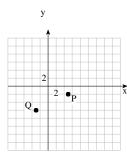

and equation  $y \square 2 \square \square_{\overline{5}} \square x \square 6 \square \square$ 

 $y \square 2 \square \square_5 x \square_5 \square y \square \square_5 x \square_5.$ 

(e) The radius of this circle was found in part (b). It is 
$$r \square d \square P \square Q \square \square 2$$
 89. So an equation is








УА

P 4

Q 4






**(b)** The distance from P to Q is



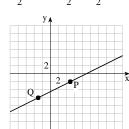
- $\Box$   $\overline{64} \Box \overline{16} \Box$   $\overline{80} \Box 4 5.$
- (c) The midpoint is



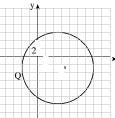
(d) The line has slope m



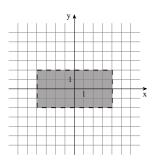
(e) The radius of this circle was found in part (b). It is


has equation  $y \square \square \square 2 \square \square 2 \square \square 1 \square x \square 5 \square$ 

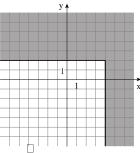
 $r \square d \square P \square Q \square$  5. So an equation is  $\square 4$ 


$$y \square 2 \square {}^{1}x \square {}^{5} \square y \square {}^{1}x \square {}^{9}.$$

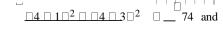



 $\overline{2}$   $\overline{2}$   $\overline{2}$   $\overline{2}$ 




 $\Box x \Box 5\Box^2 \Box \Box y \Box 2\Box^2 \Box 80.$ 




5.



**6.** □ x □ y □ □ x □ 4 or y □ 2 □



7. d \( A \) C \( C \) \( \text{04} \) \( \text{01} \) \( \text{02} \) \( \text{03} \) \( \text{02} \) \( \text{02} \) \( \text{03} \) \( \text{02} \) \( \text{02} \) \( \text{03} \) \( \text{02} \) \( \tex

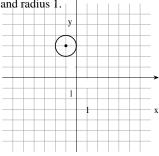


 $d \square B \square C \square \qquad \square 5 \square \square \square \square \square^2 \square \square 3 \square$ 



8. The circle with center at  $\Box 2 \Box \Box 5 \Box$  and radius  $\Box 2$  has equation  $\Box x \Box 2 \Box^2 \Box \Box y \Box 5 \Box^2 \Box \Box \Box x \Box 2 \Box^2 \Box \Box y \Box 5 \Box^2 \Box \Box z$ .

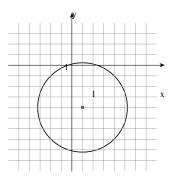
9. The center is C = 0.5 = 0.0, and the point P = 0.0 = 0.0 is on the circle. The radius of the circle is C = 0.0 = 0.0 is on the circle. The radius of the circle is C = 0.0 = 0.0 is on the circle. The radius of the circle is C = 0.0 = 0.0 is on the circle. The radius of the circle is C = 0.0 = 0.0 is on the circle. The radius of the circle is C = 0.0 = 0.0 is on the circle. The radius of the circle is C = 0.0 = 0.0 is on the circle.


 $\Box x \Box 5\Box^2 \Box \Box y \Box 1\Box^2 \Box$ 26.

 $\ ^{\square}2\ \square\ 1\ \ 3\ \square\ 8\ ^{\square}\ \square\ \frac{1}{2}\square^{11}\ ^{\square}$ , and the radius is  $^{1}$  of the distance from P to Q, or

**11.** (a)  $x^2 \Box y^2 \Box 2x \Box 6y \Box 9 \Box 0 \Box x^2 \Box 2x \Box y^2 \Box 6y \Box \Box 9 \Box$ 

 $\Box x \Box 1\Box^2 \Box \Box y \Box 3\Box^2 \Box 1$ , an equation of a circle.

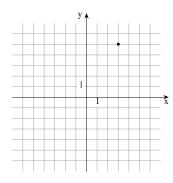

and radius 1.



**12.** (a)  $2x^2 \square 2y^2 \square 2x \square 8y \square ^1 \square x^2 \square x \square y^2 \square 4y \square ^1 \square$ 

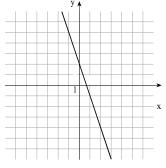
(b) The circle has center  $\begin{bmatrix} \Box \\ 1 \\ \Box \end{bmatrix}$ 

and radius  $\frac{3^{\square}-2}{2}$ .



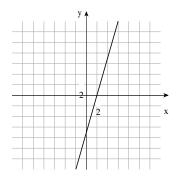

13. (a)  $x^2 \square y^2 \square 72 \square 12x \square x^2 \square 12x \square y^2 \square 12x \square y^2 \square 12x \square 36 \square y^2 \square 12x \square 36 \square x \square 6\square^2 \square y^2 \square 36$ . Since the left side of this equation must be greater than or equal to zero, this equation has no graph.

**14.** (a)  $x^2 \square y^2 \square 6x \square 10y \square 34 \square 0 \square x^2 \square 6x \square y^2 \square 10y \square \square 34 \square$ 


**(b)** This is the equation of the point

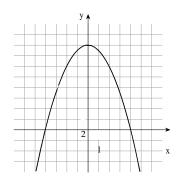
 $\Box x \Box 3\Box^2 \Box \Box y \Box 5\Box^2 \Box 0$ , an equation of a point.




| 15. | v | 2 | 3x |
|-----|---|---|----|
|     |   |   |    |

|               |   | - |
|---------------|---|---|
| $\Box 2$      | 8 |   |
| 0             | 2 | - |
| $\frac{2}{3}$ | 0 |   |



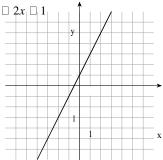

## 17. $\frac{x}{2} \square \frac{y}{7} \square 1 \square y \square \frac{7}{2}x \square 7$

| х  | у   |
|----|-----|
| □2 | □14 |
| 0  | □7  |
| 2  | 0   |



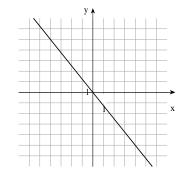
**19.** 
$$y \Box 16 \Box x^2$$

| х  | у  |
|----|----|
| □3 | 7  |
| □1 | 15 |
| 0  | 16 |
| 1  | 15 |
| 3  | 7  |



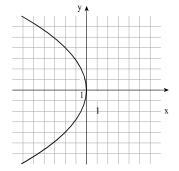

**21.**  $x \square \Box \overline{y}$ 

|   |   |   |  | У   |               |   |   |
|---|---|---|--|-----|---------------|---|---|
| x | у | _ |  |     |               | 1 | 4 |
| 0 | 0 |   |  |     |               |   |   |
| 1 | 1 |   |  |     |               |   |   |
| 2 | 4 | _ |  | -1- | $\mathcal{F}$ |   |   |
| 3 | 9 |   |  |     | 1             |   | - |
|   |   |   |  |     |               |   |   |
|   |   |   |  |     |               |   |   |
|   |   |   |  |     |               |   |   |



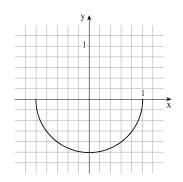

| x                  | у  |
|--------------------|----|
| □2                 | □3 |
| 0                  | 1  |
| $\Box \frac{1}{2}$ | 0  |
| _                  |    |




**18.**  $\frac{x}{4} \Box \frac{y}{5} \Box 0 \Box 5x \Box 4y \Box 0$ 

| х  | y  |
|----|----|
| □4 | 5  |
| 0  | 0  |
| 4  | □5 |




**20.**  $8x \square y^2 \square 0 \square y^2 \square \square 8x$ 

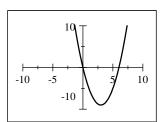
| х  | у  |
|----|----|
| □8 | □8 |
| □2 | □4 |
| 0  | 0  |



 $22. y \qquad \frac{\Box}{1 \Box x^2}$ 

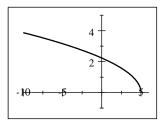
| х             | y              |
|---------------|----------------|
| □1            | 0              |
| $\frac{1}{2}$ | $-\frac{3}{2}$ |
| 0             | □1             |
| 1             | 0              |




151 CHAPTER 1 Equations and Graphs

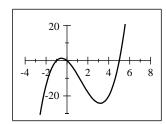
CHAPTER 1 Review

| 23. | <i>y</i> _ | $\Box 9 \Box x^2$                                                                                                                                                                                                                                    |
|-----|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | (a)        | <i>x</i> -axis symmetry: replacing <i>y</i> by $\Box y$ gives $\Box y \Box 9 \Box x^2$ , which is not the same as the original equation, so the graph is not symmetric about the <i>x</i> -axis.                                                     |
|     |            | <i>y</i> -axis symmetry: replacing $x$ by $\Box x$ gives $y \Box 9 \Box \Box \Box x \Box^2 \Box 9 \Box x^2$ , which is the same as the original equation, so the graph is symmetric about the $y$ -axis.                                             |
|     |            | Origin symmetry: replacing $x$ by $\Box x$ and $y$ by $\Box y$ gives $\Box y \Box 9 \Box \Box x \Box^2 \Box y \Box \Box 9 \Box x^2$ , which is not the same as the original equation, so the graph is not symmetric about the origin.                |
|     | <b>(b)</b> | To find <i>x</i> -intercepts, we set $y \square 0$ and solve for $x: 0 \square 9 \square x^2 \square x^2 \square 9 \square x \square 3$ , so the <i>x</i> -intercepts are $\square 3$ and $3$ .                                                      |
|     |            | To find y-intercepts, we set $x \square 0$ and solve for y: $y \square 9 \square 0^2 \square 9$ , so the y-intercept is 9.                                                                                                                           |
| 24. | 6 <i>x</i> | $\square y^2 \square 36$                                                                                                                                                                                                                             |
|     | (a)        | <i>x</i> -axis symmetry: replacing <i>y</i> by $\Box y$ gives $6x \Box \Box \Box y \Box^2 \Box 36 \Box 6x \Box y^2 \Box 36$ , which is the same as the original equation, so the graph is symmetric about the <i>x</i> -axis.                        |
|     |            | <i>y</i> -axis symmetry: replacing $x$ by $\Box x$ gives $6 \Box \Box x \Box \Box y^2 \Box 36 \Box \Box 6x \Box y^2 \Box 36$ , which is not the same as the original equation, so the graph is not symmetric about the $y$ -axis.                    |
|     |            | Origin symmetry: replacing $x$ by $\Box x$ and $y$ by $\Box y$ gives $6 \Box \Box x \Box \Box \Box y \Box^2 \Box 36 \Box \Box 6x \Box y^2 \Box 36$ , which is not the same as the original equation, so the graph is not symmetric about the origin. |
|     | <b>(b)</b> | To find x-intercepts, we set $y \square 0$ and solve for $x$ : $6x \square 0^2 \square 36 \square x \square 6$ , so the x-intercept is 6.                                                                                                            |
|     |            | To find y-intercepts, we set $x \square 0$ and solve for $y: 6 \square 0 \square \square y^2 \square 36 \square y \square \square 6$ , so the y-intercepts are $\square 6$ and 6.                                                                    |
| 25. | $x^2$      | $\square \square y \square 1 \square^2 \square 1$                                                                                                                                                                                                    |
|     |            | <i>x</i> -axis symmetry: replacing <i>y</i> by $\Box y$ gives $x^2 \Box \Box \Box y \Box \Box 1^{\Box 2} \Box 1 \Box x^2 \Box \Box y \Box 1^{\Box 2} \Box 1$ , so the graph is not                                                                   |
|     | syn        | nmetric                                                                                                                                                                                                                                              |
|     |            | about the <i>x</i> -axis.                                                                                                                                                                                                                            |
|     |            | <i>y</i> -axis symmetry: replacing <i>x</i> by $\Box x$ gives $\Box \Box x \Box^2 \Box \Box y \Box 1 \Box^2 \Box 1 \Box x^2 \Box \Box y \Box 1 \Box^2 \Box 1$ , so the graph is symmetric about the <i>y</i> -axis.                                  |
|     |            | Origin symmetry: replacing $x$ by $\Box x$ and $y$ by $\Box y$ gives $\Box \Box x \Box^2 \Box \Box \Box y \Box \Box \Box^2 \Box \Box \Box x^2 \Box \Box y \Box \Box \Box^2 \Box \Box$ , so the graph                                                 |
|     |            | is not symmetric about the origin.                                                                                                                                                                                                                   |
|     | <b>(b)</b> | To find x-intercepts, we set $y \square 0$ and solve for $x: x^2 \square \square 0 \square 1 \square^2 \square 1 \square x^2 \square 0$ , so the x-intercept is 0.                                                                                   |
|     |            | To find y-intercepts, we set $x \square 0$ and solve for $y: 0^2 \square \square y \square 1 \square^2 \square 1 \square y \square 1 \square \square 1 \square y \square 0$ or 2, so the y-intercepts are 0 and 2.                                   |
| 26. |            | $\Box$ 16 $\Box$ y                                                                                                                                                                                                                                   |
|     | (a)        | <i>x</i> -axis symmetry: replacing <i>y</i> by $\Box y$ gives $x^4 \Box 16 \Box \Box y \Box x^4 \Box 16 \Box y$ , so the graph is not symmetric about the <i>x</i> -axis.                                                                            |
|     |            | <i>y</i> -axis symmetry: replacing <i>x</i> by $\Box x$ gives $\Box \Box x \Box^4 \Box 16 \Box y \Box x^4 \Box 16 \Box y$ , so the graph is symmetric about the <i>y</i> -axis.                                                                      |
|     |            | Origin symmetry: replacing $x$ by $\Box x$ and $y$ by $\Box y$ gives $\Box \Box x \Box^4 \Box 16 \Box \Box y \Box \Box x^4 \Box 16 \Box y$ , so the graph is not symmetric about the origin.                                                         |
|     | <b>(b)</b> | To find <i>x</i> -intercepts, we set $y \square 0$ and solve for $x$ : $x^4 \square 16 \square 0 \square x^4 \square 16 \square x \square 2$ , so the <i>x</i> -intercepts are $\square 2$ and $2$ .                                                 |
|     |            | To find y-intercepts, we set $x \square 0$ and solve for $y: 0^4 \square 16 \square y \square y \square \square 16$ , so the y-intercept is $\square 16$ .                                                                                           |
| 27. |            | $^2 \square 16y^2 \square 144$                                                                                                                                                                                                                       |
|     | (a)        | <i>x</i> -axis symmetry: replacing <i>y</i> by $\Box y$ gives $9x^2 \Box 16 \Box \Box y \Box^2 \Box 144 \Box 9x^2 \Box 16y^2 \Box 144$ , so the graph is symmetric about the <i>x</i> -axis.                                                         |
|     |            | <i>y</i> -axis symmetry: replacing <i>x</i> by $\Box x$ gives $9 \Box \Box x \Box^2 \Box 16y^2 \Box 144 \Box 9x^2 \Box 16y^2 \Box 144$ , so the graph is symmetric about the <i>y</i> -axis.                                                         |
|     |            | Origin symmetry: replacing $x$ by $\Box x$ and $y$ by $\Box y$ gives $9 \Box \Box x \Box^2 \Box 16 \Box \Box y \Box^2 \Box 144 \Box 9x^2 \Box 16y^2 \Box 144$ , so the graph is symmetric about the origin.                                          |

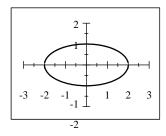

|     | <b>(b)</b>   | To find <i>x</i> -intercepts, we set $y \square 0$ and solve for $x: 9x^2 \square 16 \square 0 \square^2 \square 144 \square 9x^2 \square 144 \square x \square \square 4$ , so the <i>x</i> -intercepts are $\square 4$ and $4$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|-----|--------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     |              | To find y-intercepts, we set $x \square 0$ and solve for $y: 9 \square 0 \square^2 \square 16y^2 \square 144 \square 16y^2 \square \square 144$ , so there is no y-intercept.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 28. | y □ (a)      | $\frac{4}{x}$ $\frac{4}{x}$ axis symmetry: replacing $y$ by $\Box y$ gives $\Box y = \frac{4}{x}$ , which is different from the original equation, so the graph is not symmetric about the $x$ -axis. $y$ -axis symmetry: replacing $x$ by $\Box x$ gives $y = \frac{4}{\Box x}$ , which is different from the original equation, so the graph is not symmetric about the $y$ -axis.  Origin symmetry: replacing $x$ by $\Box x$ and $y$ by $\Box y$ gives $\Box y = \frac{4}{\Box x}$ , so the graph is symmetric about the origin.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|     | (b)          | To find x-intercepts, we set $y = 0$ and solve for $x$ : $0 = \frac{4}{x}$ has no solution, so there is no x-intercept. To find y-intercepts, we set $x = 0$ and solve for y. But we cannot substitute $x = 0$ , so there is no y-intercept.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 29. |              | $\Box 4xy \Box y^2 \Box 1$<br>$x$ -axis symmetry: replacing $y$ by $\Box y$ gives $x^2 \Box 4x \Box \Box y \Box \Box \Box y \Box^2 \Box 1$ , which is different from the original equation, so the graph is not symmetric about the $x$ -axis.<br>$y$ -axis symmetry: replacing $x$ by $\Box x$ gives $\Box \Box x \Box^2 \Box 4 \Box \Box x \Box y \Box y^2 \Box 1$ , which is different from the original equation,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|     | <b>(L)</b>   | so the graph is not symmetric about the <i>y</i> -axis.  Origin symmetry: replacing <i>x</i> by $\Box x$ and <i>y</i> by $\Box y$ gives $\Box \Box x \Box^2 \Box 4 \Box \Box x \Box \Box y \Box \Box \Box y \Box^2 \Box 1 \Box x^2 \Box 4xy \Box y^2 \Box 1$ , so the graph is symmetric about the origin.  To find <i>x</i> -intercepts, we set $y \Box 0$ and solve for $x$ : $x^2 \Box 4x \Box 0 \Box \Box 0^2 \Box 1 \Box x^2 \Box 1 \Box x \Box \Box 1$ , so the <i>x</i> -intercepts are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     | ( <b>D</b> ) | To find <i>x</i> -intercepts, we set $y = 0$ and solve for $x$ : $x^2 = 4x = 0 = 0$ and 1.  To find <i>y</i> -intercepts, we set $x = 0$ and solve for $y$ : $0^2 = 4 = 0 = 0$ and $y = 0$ |
|     |              | $\Box xy^2 \Box 5$<br>$x$ -axis symmetry: replacing $y$ by $\Box y$ gives $x^3 \Box x \Box \Box y \Box^2 \Box 5 \Box x^3 \Box xy^2 \Box 5$ , so the graph is symmetric about the $x$ -axis.<br>$y$ -axis symmetry: replacing $x$ by $\Box x$ gives $\Box x \Box^3 \Box \Box x \Box y^2 \Box 5$ , which is different from the original equation, so the graph is not symmetric about the $y$ -axis.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|     | <b>(b)</b>   | Origin symmetry: replacing $x$ by $\Box x$ and $y$ by $\Box y$ gives $\Box \Box x \Box^3 \Box \Box \Box x \Box \Box y \Box^2 \Box 5$ , which is different from the original equation, so the graph is not symmetric about the origin.  To find $x$ -intercepts, we set $y \Box 0$ and solve for $x$ : $x^3 \Box x \Box 0 \Box^2 \Box 5 \Box x^3 \Box 5 \Box x \Box^{\frac{1}{3}} \overline{5}$ , so the $x$ -intercept is $x \overline{5}$ .  To find $y$ -intercepts, we set $y \Box 0$ and solve for $y$ : $y \overline{5}$ bas no solution, so there is no $y$ -intercept.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |

**31.** (a) We graph  $y \square x^2 \square 6x$  in the viewing rectangle  $[\square 10 \square 10]$  by  $[\square 10 \square 10]$ .

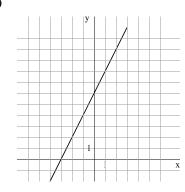



**(b)** From the graph, we see that the *x*-intercepts are 0 and 6 and the *y*-intercept is 0.

**32.** (a) We graph  $y \Box \overline{5} \Box x$  in the viewing rectangle  $[\Box 10 \Box 6]$  by  $[\Box 1 \Box 5]$ .



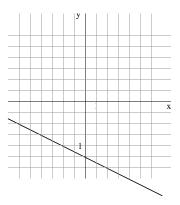

(b) From the graph, we see that the *x*-intercept is 5 and the *y*-intercept is approximately  $2\Box 24$ .


**33.** (a) We graph  $y \Box x^3 \Box 4x^2 \Box 5x$  in the viewing rectangle  $[\Box 4 \Box 8]$  by  $[\Box 30 \Box 20]$ .



- **(b)** From the graph, we see that the *x*-intercepts are  $\Box 1$ , 0, and 5 and the *y*-intercept is 0.
- 34. (a) We graph  $\frac{x^2}{4} \Box y^2 \Box 1 \Box y^2 \Box 1 \Box \frac{x^2}{4} \Box$   $y \Box \Box 1 \Box \frac{x^2}{4}$  in the viewing rectangle [\Begin{aligned} \omega \omega




- **(b)** From the graph, we see that the *x*-intercepts are  $\Box 2$  and 2 and the *y*-intercepts are  $\Box 1$  and 1.
- **35.** (a) The line that has slope 2 and *y*-intercept 6 has the slope-intercept equation  $y \square 2x \square 6$ .
  - **(b)** An equation of the line in general form is  $2x \square y \square 6 \square 0$ .



**36.** (a) The line that has slope  $\Box \frac{1}{2}$  and passes through the point  $\Box 6 \Box \Box 3 \Box$ 

(c)

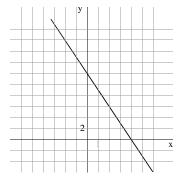




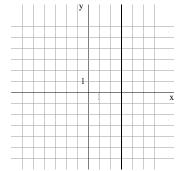
37. (a) The line that passes through the points  $\Box\Box\Box\Box\Box\Box\Box\Box\Box\Box\Box\Box\Box\Box\Box\Box\Box\Box\Box\Box\Box\Box$ (c) slope



- $\Box y \Box \frac{2}{3} x \Box \frac{16}{3}.$
- **(b)**  $y \square \frac{2}{3}x \square \frac{16}{3} \square 3y \square 2x \square 16 \square 2x \square 3y \square 16 \square 0.$
- **38.** (a) The line that has *x*-intercept 4 and *y*-intercept 12 passes through the points




 $\square 4 \square 0 \square$  and  $\square 0 \square 12 \square$ ,


 $\begin{bmatrix} 0 & 4 \end{bmatrix}$   $\Box$  3 and the equation is

 $y \square 0 \square \square 3 \square x \square 4 \square \square y \square \square 3x \square 12.$ 

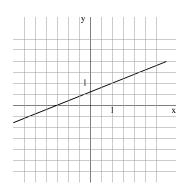
**(b)**  $y \square \square 3x \square 12 \square 3x \square y \square 12 \square 0$ .



- **39.** (a) The vertical line that passes through the point  $\Box 3 \Box \Box 2 \Box$  has equation  $x \Box$  (c) 3.
  - **(b)**  $x \square 3 \square x \square 3 \square 0$ .



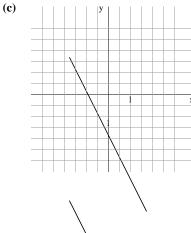
**40.** (a) The horizontal line with y-intercept 5 has equation  $y \square 5$ .


**(b)**  $y \square 5 \square y \square 5 \square 0$ .

(c)

(c)

**41.** (a)  $2x \Box 5y \Box 10 \Box 5y \Box 2x \Box 10 \Box y \Box ^2 x \Box 2$ , so the given line has slope  $m \Box \frac{2}{5}$ . Thus, an equation of the line passing through  $\Box 1 \Box 1 \Box$  parallel to this line is  $y \Box 1 - \Box ^2 \Box x \Box 1 \Box \Box y \Box ^2 - x \Box ^3$ .

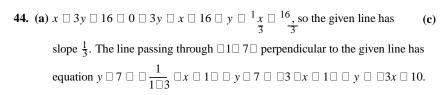

**(b)**  $y \square \frac{2}{5}x \square \frac{3}{5} \square 5y \square 2x \square 3 \square 2x \square 5y \square 3 \square 0.$ 

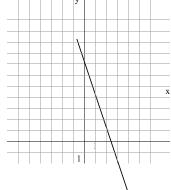


**42.** (a) The line containing  $\Box 2\Box 4\Box$  and  $\Box 4\Box \Box 4\Box$  has slope

 $m \ \Box \ \frac{\Box 4 \ \Box 4}{4 \ \Box 2} \ \Box \ \Box 4$ , and the line passing through the origin with this slope has equation  $y \ \Box \ \Box 4x$ .


**(b)**  $y \square \square 4x \square 4x \square y \square 0$ .





**43.** (a) The line  $y = \frac{1}{2}x = 10$  has slope  $\frac{1}{2}$ , so a line perpendicular to this one has slope  $\frac{1}{2} = \frac{1}{2} = 2$ . In particular, the line passing through the origin

perpendicular to the given line has equation  $y \square \square 2x$ .

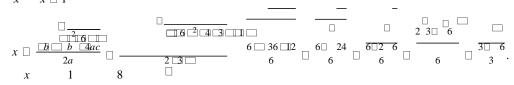
**(b)**  $y \square \square 2x \square 2x \square y \square 0$ .







**(b)**  $y \square \square 3x \square 10 \square 3x \square y \square 10 \square 0$ .


- **45.** The line with equation  $y \Box \Box \frac{1}{3}x \Box 1$  has slope  $\Box \frac{1}{3}$ . The line with equation  $9y \Box 3x \Box 3 \Box 0 \Box 9y \Box \Box 3x \Box 3 \Box y \Box \Box \frac{1}{3}x \Box \frac{1}{3}$  also has slope  $\Box \frac{1}{3}$ , so the lines are parallel.
- **46.** The line with equation  $5x \square 8y \square 3 \square 8y \square 5x \square 3 \square y \square {}^5 *_{8} \square {}^3$  has slope  ${}^5 \cdot {}_{8}$ The line with equation  $10y \square 16x \square 1 \square 10y \square 16x \square 1 \square y \square {}^5 \times_{8} \square {}^1 \square_{10}$  has slope  $\square {}^8 \times_{10} \square_{10} \square_{10}$ , so the lines are perpendicular.
- **47.** (a) The slope represents a stretch of  $0 \square 3$  inches for each one-pound increase in weight. The *s*-intercept represents the length of the unstretched spring.
  - **(b)** When  $\Box$  5, s  $\Box$  0 $\Box$ 3  $\Box$ 5 $\Box$   $\Box$  2 $\Box$ 5  $\Box$  1 $\Box$ 5  $\Box$  2 $\Box$ 5  $\Box$  4 $\Box$ 0 inches.
- **48.** (a) We use the information to find two points,  $\Box 0 \Box 60000\Box$  and  $\Box 3 \Box 70500\Box$ . Then the slope is

$$m \sqcup \frac{70,500 \sqcup 60,000}{3 \sqcup 0} \square \frac{10,500}{3} \square 3,500$$
. So S □ 3,500t □ 60,000.

- (b) The slope represents an annual salary increase of \$3500, and the S-intercept represents her initial salary.
- (c) When  $t \Box 12$ , her salary will be  $S \Box 3500 \Box 12 \Box \Box 60,000 \Box 42,000 \Box 60,000 \Box $102,000$ .
- **49.**  $x^2 \square 9x \square 14 \square 0 \square \square x \square 7 \square \square x \square 2 \square \square 0 \square x \square 7$  or  $x \square 2$ .
- **50.**  $x^2 \square 24x \square 144 \square 0 \square \square x \square 12\square^2 \square 0 \square x \square 12 \square 0 \square x \square \square 12$ .
- **51.**  $2x^2 \square x \square 1 \square 2x^2 \square x \square 1 \square 0 \square \square 2x \square 1 \square \square x \square 1 \square \square 0$ . So either  $2x \square 1 \square 0 \square 2x \square 1 \square x \square 1 \square 0 \square 0$ .  $x \square \square 1$ .
- **53.**  $0 \square 4x^3 \square 25x \square x \ 4x^2 \square 25 \ \square x \square 2x \square 5\square \square 2x \square 5\square \square 0$ . So either  $x \square 0\square$  or  $2x \square 5\square 0\square 2x \square 5\square x_2 \square 5$ ; or

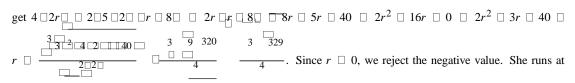
 $2x \square 5 \square 0 \square 2x \square \square 5 \square x \square \square^5 \frac{1}{2}$ 

- $54. \ x^3 \square 2x^2 \square 5x \square 10 \square 0 \square x^2 \square x \square 2 \square \square 5 \square x \square 2 \square \square 0 \square \square x \square 2 \square x^2 \square 5 \square 0 \square x \square 2 \text{ or } x \square \square 5$
- 56.  $x^2 \square 3x \square 9 \square 0 \square x \square 2a$   $\square 3 \square^2 \square 4 \square \square 9 \square \square 3 \square 9 \square 36$   $\square 3 \square 9 \square 36$  , which are not real numbers. There is no real solution.
- **57.**  $\frac{1}{x} \square \frac{2}{x \square 1} \square 3 \square \square x \square 1 \square \square 2 \square x \square \square 3 \square x \square \square x \square 1 \square \square x \square 1 \square 2 x \square 3 x^2 \square 3 x \square 0 \square 3 x^2 \square 6 x \square 1 \square$



 $\textbf{58.} \ \ \overline{x \ \square \ 2} \ \square \$ 

 $\Box$  x  $\Box$  2 or x  $\Box$   $\Box$ 5. However, since x  $\Box$  2 makes the expression undefined, we reject this solution. Hence the only solution is x  $\Box$   $\Box$ 5.


**73.**  $x^4 \square 256 \square 0 \square x^2 \square 16 x^2 \square 16 \square 0 \square x \square 4 \text{ or } x \square 4i$ 

**74.**  $x^3 \square 2x^2 \square 4x \square 8 \square 0 \square \square x \square 2 \square x^2 \square 4 \square x \square 2$  or  $x \square \square 2i$ 

**75.** Let r be the rate the woman runs in mi/h. Then she cycles at  $r \square 8$  mi/h.

|       | Rate         | Time                                                 | Distance |
|-------|--------------|------------------------------------------------------|----------|
| Cycle | <i>r</i> □ 8 | $\frac{4}{r \sqcup 8}$                               | 4        |
| Run   | r            | $ \begin{array}{c} 2 \square 5 \\ 4 \\ \end{array} $ | 2□       |

Since the total time of the workout is 1 hour, we have  $\frac{14}{r \square 8} \square \frac{5}{n} \square 1$ . Multiplying by  $2r \square r \square 8 \square$ , we



$$r \square \frac{\square 3 \square 329}{4} \square 3\square 78 \text{ mi/h.}$$

- **76.** Substituting 75 for d, we have 75  $\square$   $x \square \frac{x^2}{20} \square 1500 \square 20x \square x ^2 \square x ^2 \square 20x \square 1500 \square 0 \square x \square 30 \square x \square 50 \square 0$ .  $x \square 30$  or  $x \square \square 50$ . The speed of the car was 30 mi/h
- 77. Let x be the length of one side in cm. Then  $28 \square x$  is the length of the other side. Using the Pythagorean Theorem, we have  $x^2 \square 28 \square x \square^2 20^2 \square x^2 \square 784 \square 56x \square x^2 \square 400 \square 2x^2 \square 56x \square 384 \square 0 \square 2 x^2 \square 28x \square 192 \square 0 \square$  $2 \square x \square 12 \square \square x \square 16 \square \square 0$ . So  $x \square 12$  or  $x \square 16$ . If  $x \square 12$ , then the other side is  $28 \square 12 \square 16$ . Similarly, if  $x \square 16$ , then the other side is 12. The sides are 12 cm and 16 cm.
- 78. Let l be length of each garden plot. The width of each plot is then  $\frac{80}{l}$  and the total amount of fencing material is

 $4 \square l \square 10 \square \square l \square 12 \square \square 0$ . So  $l \square 10$  or  $l \square 12$ . If  $l \square 10$  ft, then the width of each plotis  $^{80}$   $\square$  8 ft. If  $l \square 12$  ft, then the width of each plot is  $\frac{80}{12}$   $\square$   $6\square67$  ft. Both solutions are possible.

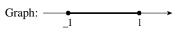
- **79.**  $3x \square 2 \square \square 11 \square 3x \square \square 9 \square x \square \square 3$ . Interval:  $\Box \Box \Box \Box \Box \Box \Box$ .
- 81.  $3 \square x \square 2x \square 7 \square 10 \square 3x \square \frac{10}{3} \square x$ Interval:  $\frac{10}{3}$   $\square$

- **80.** 12  $\square$   $x \square$  7 $x \square$  12  $\square$  8 $x \square$  3  $2\square$  x.

  Interval:  $\square$   $\square$   $\square$  3
  - Graph:
- **82.**  $\Box 1 \Box 2x \Box 5 \Box 3 \Box \Box 6 \Box 2x \Box \Box 2 \Box \Box 3 \Box x \Box \Box 1$
- **83.**  $x^2 \Box 4x \Box 12 \Box 0 \Box \Box x \Box 2\Box \Box x \Box 6\Box \Box 0$ . The expression on the left of the inequality changes sign where  $x \Box 2$  and where

 $x \square \square 6$ . Thus we must check the intervals in the following table.

| Interval                                 |  | □2□ |
|------------------------------------------|--|-----|
| Sign of $x \square 2$                    |  |     |
| Sign of $x \square 6$                    |  |     |
| Sign of $\Box x \Box 2 \Box \Box x \Box$ |  |     |


Graph: 
$$_{\underline{6}}$$
 $0$ 
 $2$ 

158

 $x \square 1$ . Thus we must check the intervals in the following table.

| Interval                                 |  | $\Box 1 \Box$ |
|------------------------------------------|--|---------------|
| Sign of $x \square 1$                    |  |               |
| Sign of $x \square 1$                    |  |               |
| Sign of $\Box x \Box 1 \Box \Box x \Box$ |  |               |

Interval:  $[\Box 1 \Box 1]$ 



**85.** 
$$\frac{2x \square 5}{x \square 1} \square 1 \square \frac{2x \square 5}{x \square 1} \square 1 \square 0 \square \frac{2x \square 5}{x \square 1} \square \frac{x \square 1}{x \square 1} \square 0 \square \frac{x \square 4}{x \square 1} \square 0$$
. The expression on the left of the inequality

changes sign where  $x \square \square 1$  and where  $x \square \square 4$ . Thus we must check the intervals in the following table.

| Interval                                  | □ □4□ |  |
|-------------------------------------------|-------|--|
| Sign of $x \square 4$                     |       |  |
| Sign of $x \square 1$                     |       |  |
| Sign of $\frac{x \square 4}{x \square 1}$ |       |  |

We exclude  $x \square \square 1$ , since the expression is not defined at this value. Thus the solution is  $[\square 4 \square \square 1 \square .$ 

| Graph: |    |    | > |
|--------|----|----|---|
| •      | _4 | _1 |   |

**86.**  $2x^2 \square x \square 3 \square 2x^2 \square x \square 3 \square 0 \square \square 2x \square 3 \square x \square 1 \square \square 0$ . The expression on the left of the inequality changes sign when  $\square 1$  and  $\frac{3}{2}$ . Thus we must check the intervals in the following table.

| Interval                                 | $\Box$ 1 $\Box$ -2 | $\begin{array}{ccc} -3 & \square \\ 2 & \square \end{array}$ |
|------------------------------------------|--------------------|--------------------------------------------------------------|
| Sign of $2x \square 3$                   |                    |                                                              |
| Sign of $x \square 1$                    |                    |                                                              |
| Sign of $\Box 2x \Box 3\Box \Box x \Box$ |                    |                                                              |

| Graph: |    | •             | <b>→</b> |
|--------|----|---------------|----------|
|        | _1 | $\frac{3}{2}$ |          |

87.  $\frac{x \Box 4}{x^2 \Box 4} \Box 0 \Box \begin{array}{c} x \Box 4 \\ \Box x \Box 2 \Box \Box x \end{array} \Box 0$ . The expression on the left of the inequality changes sign where  $x \Box 2$ , where  $x \Box 2$ ,

and where  $x \square 4$ . Thus we must check the intervals in the following table.

| Interval                                                                     |  | $\square 2 \square$ | □4□ |
|------------------------------------------------------------------------------|--|---------------------|-----|
| Sign of $x \square 4$                                                        |  |                     |     |
| Sign of $x \square 2$                                                        |  |                     |     |
| Sign of $x \square 2$                                                        |  |                     |     |
| Sign of $\begin{array}{c c} x & 4 \\ \hline x & 2 & 2 \\ \hline \end{array}$ |  |                     |     |
|                                                                              |  |                     |     |

Graph: 
$$\stackrel{1}{-}$$
  $\stackrel{2}{-}$   $\stackrel{2}{-}$   $\stackrel{4}{-}$ 

expression on the left of the inequality changes sign when  $\Box 2\Box 1\Box$  and 2. Thus we must check the intervals in the following table.

| Interval                         |     |  | □2□ |
|----------------------------------|-----|--|-----|
| Sign of $x \square 1$            |     |  |     |
| Sign of $x \square 2$            |     |  |     |
| Sign of $\overline{x} \square 2$ |     |  |     |
| Sign of                          | 2 🗆 |  |     |

- **89.**  $\Box x \Box 5 \Box \Box 3 \Box \Box 3 \Box x \Box 5 \Box 3 \Box 2 \Box x \Box$
- 0.

Interval: [2□8]

Graph: 2 8

**90.**  $\Box x \Box 4 \Box \Box 0 \Box 02 \Box \Box 0 \Box 02 \Box x \Box 4 \Box 0 \Box 02 \Box$ 

 $3 \square 98 \square x \square 4 \square 02$ 

Interval:  $\Box 3\Box 98\Box 4\Box 02\Box$ 

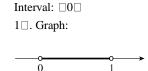
**91.**  $\Box 2x \Box 1 \Box \Box 1$  is equivalent to  $2x \Box 1 \Box 1$  or  $2x \Box 1 \Box \Box 1$ . Case 1:  $2x \Box 1 \Box 1 \Box 2x \Box 0 \Box x \Box 0$ . Case 2:  $2x \Box 1 \Box \Box 1$ 

**92.**  $\Box x \Box 1 \Box$  is the distance between x and 1 on the number line, and  $\Box x \Box 3 \Box$  is the distance between x and 3. We want those points that are closer to 1 than to 3. Since 2 is midway between 1 and 3, we get  $x \Box \Box \Box \Box \Box \Box \Box \Box \Box$  as the solution. Graph:

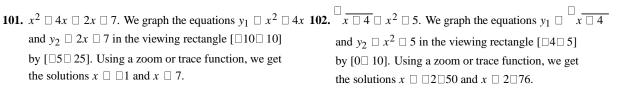
2

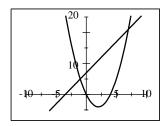
93. (a) For  $24 \square x \square 3x^2$  to define a real number, we must have  $24 \square x \square 3x^2 \square 0 \square 8 \square 3x \square 3 \square x \square 0$ . The expression

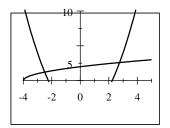
on the left of the inequality changes sign where  $8 \square 3x \square 0 \square \square 3x \square \square 8 \square x \square 8$ ; for where  $x \square \square 3$ . Thus we must check the intervals in the following table.


| Interval                                  | □3□ <sup>-</sup> 3 | 8 🗆 |
|-------------------------------------------|--------------------|-----|
| Sign of $8 \square 3x$                    |                    |     |
| Sign of 3 $\square$ x                     |                    |     |
| Sign of $\Box 8 \Box 3x \Box \Box 3 \Box$ |                    |     |

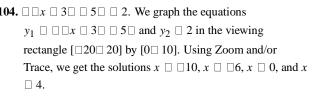
Interval:  $\Box 3 \Box_3^8$ .

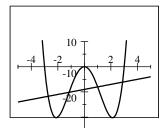

Graph:  $3 \Box_3^8 \Box_3^8$   $3 \Box_3^8 \Box_3^8$ 

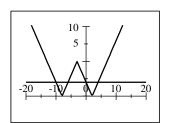

The expression on the left of the inequality changes sign where  $x \square 0$ ; or where  $x \square 1$ ; or where  $1 \square x \square x^2 \square 0$  $x \cap \frac{1 \cdot 2 \cdot 4 \cdot 1 \cdot 1}{2 \cdot 1} = \frac{1 \cdot 2 \cdot 4}{2 \cdot 1}$  which is imaginary. We check the intervals in the following table.


| Interval                                                                             | $\Box 0 \Box$ |  |
|--------------------------------------------------------------------------------------|---------------|--|
| Sign of x                                                                            |               |  |
| Sign of $1 \square x$                                                                |               |  |
| Sign of $1 \square x \square x^2$                                                    |               |  |
| $\underbrace{\text{Sign of } x \square 1 \square x \square}_{2} 1 \square x \square$ |               |  |
|                                                                                      |               |  |



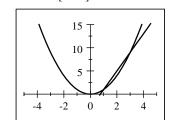

- **94.** We have  $8 \ \Box \ \frac{4}{3} \ \Box \ r^3 \ \Box \ 12 \ \Box \ \frac{6}{\Box} \ \Box \ r^3 \ \Box \ \frac{9}{\Box} \ \Box \ r \ \Box \ \frac{9}{\Box} \ \Box \ \text{Thus } r \ \Box \ \frac{6}{\Box} \ \Box \ \frac{9}{\Box} \ \Box \ \frac{9}{\Box} \ \Box$
- **95.** From the graph, we see that the graphs of  $y \square x^2 \square 4x$  and  $y \square x \square 6$  intersect at  $x \square \square 1$  and  $x \square 6$ , so these are the solutions of the equation  $x^2 \square 4x \square x \square 6$ .
- **96.** From the graph, we see that the graph of  $y \square x^2 \square 4x$  crosses the x-axis at  $x \square 0$  and  $x \square 4$ , so these are the solutions of the equation  $x^2 \square 4x \square 0$ .
- **97.** From the graph, we see that the graph of  $y \square x^2 \square 4x$  lies below the graph of  $y \square x \square 6$  for  $\square 1 \square x \square 6$ , so the inequality  $x^2 \square 4x \square x \square 6$  is satisfied on the interval  $[\square 1 \square 6]$ .
- **98.** From the graph, we see that the graph of  $y \square x^2 \square 4x$  lies above the graph of  $y \square x \square 6$  for  $\square \square \square x \square 1$  and  $0 \square x \square \square 1$ ,
- **99.** From the graph, we see that the graph of  $y \square x^2 \square 4x$  lies above the x-axis for  $x \square 0$  and for  $x \square 4$ , so the inequality  $x^2 \square 4x \square 0$  is satisfied on the intervals  $\square \square \square \square 0$ ] and  $[4 \square \square \square$ .
- **100.** From the graph, we see that the graph of  $y \square x^2 \square 4x$  lies below the x-axis for  $0 \square x \square 4$ , so the inequality  $x^2 \square 4x \square 0$  is satisfied on the interval  $[0 \square 4]$ .
- and  $y_2 \square 2x \square 7$  in the viewing rectangle  $[\square 10 \square 10]$ by  $[\Box 5\Box 25]$ . Using a zoom or trace function, we get the solutions  $x \square \square 1$  and  $x \square 7$ .



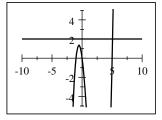






**103.**  $x^4 \square 9x^2 \square x \square 9$ . We graph the equations  $y_1 \square x^4 \square 9x^2$  **104.**  $\square \square x \square 3 \square \square 5 \square \square 2$ . We graph the equations and  $y_2 \square x \square 9$  in the viewing rectangle  $[\square 5 \square 5]$  by  $[\Box 25\Box\ 10].$  Using a zoom or trace function, we get the solutions  $x \square \square 2 \square 72$ ,  $x \square \square 1 \square 15$ ,  $x \square 1 \square 00$ , and  $x \square$ 2□87.





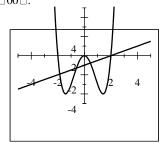

**105.**  $4x \square 3 \square x^2$ . We graph the equations  $y_1 \square 4x \square 3$  and  $y_2 \square x^2$  in the viewing rectangle  $[\square 5 \square 5]$  by  $[0 \square 15]$ . Using a zoom or trace function, we find the points of intersection

are at  $x \square 1$  and  $x \square 3$ . Since we want  $4x \square 3 \square x^2$ , the solution is the interval  $[1 \square 3]$ .



**106.**  $x^3 \Box 4x^2 \Box 5x \Box 2$ . We graph the equations  $y_1 \square x^3 \square 4x^2 \square 5x$  and  $y_2 \square 2$  in the viewing rectangle  $[\Box 10\Box 10]$  by  $[\Box 5\Box 5]$ . We find that the point of intersection is at  $x \square 5\square 07$ . Since we want  $x^3 \square 4x^2 \square 5x$  $\square$  2, the solution is the interval  $\square 5\square 07\square \square\square$ .



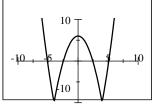

**107.**  $x^4 \Box 4x^2 \Box \frac{1}{5}x \Box 1$ . We graph the equations

 $y_1 \square x^4 \square 4x^2$  and  $y_2 \square_{2^{-}}^{1} x \square 1$  in the viewing rectangle

 $[\Box 5\Box 5]$  by  $[\Box 5\Box 5]$ . We find the points of intersection are at  $x \square \square 1 \square 85$ ,  $x \square \square 0 \square 60$ ,  $x \square 0 \square 45$ , and  $x \square$  $2\square 00$ . Since

we want  $x^4 \Box 4x^2 \Box {}^1x \Box 1$ , the solution is

 $\square \square 1 \square 85 \square \square 0 \square 60 \square \square$  $\square 0 \square 45 \square 2 \square 00 \square$ .



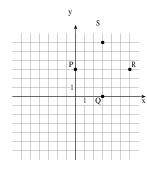

y  $\Box$   $\begin{bmatrix} \Box & \Box \\ x & \Box \end{bmatrix}$  10 in the viewing rectangle  $[\Box 10 \Box 10]$  by

 $[\Box 10 \Box 10]$ . Using a zoom or trace function, we find that the *x*-intercepts are  $x \square \square 5 \square 10$  and  $x \square \square 2 \square 45$ . Since we

16<sup>\[ \]</sup>  $\Box$  0, the solution is approximately want  $x^2 \sqcap \sqcup 10 \sqcap \sqcup$ 

□□□□□5□101□ <u>[□2□45□2□45]□ [5□1</u>0□□□.



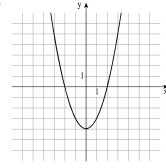

proportional to the square of the velocity, we have  $r \square l \square^2$ . Substituting  $\square \square 60$  and  $r \square 242$ , we find  $242 \square k \square 60 \square^2$ 

 $\square k \square 0 \square 0672$ . If  $\square \square 70$ , then we have a maximum range of  $r \square 0 \square 0672 \square 70 \square^2 \square 329 \square 4$  feet.

#### CHAPTER 1 TEST

1. (a)

161

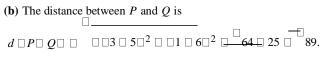


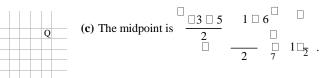

There are several ways to determine the coordinates of S. The diagonals of a

and has length is 6 units, so the diagonal QS is vertical and also has length 6. Thus, the coordinates of *S* are  $\Box 3\Box 6\Box$ .

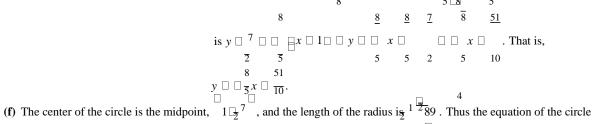
(b) The length of PQ is  $\Box 0 \Box 3 \Box^2 \Box \Box 3 \Box$   $\Box 18 \Box 3$  2. So the area of  $\Box \Box \Box \Box 2$ PQRS is  $\begin{bmatrix} 3 & 2 & 2 \\ 3 & 2 & 4 \end{bmatrix}$ 

2. (a)



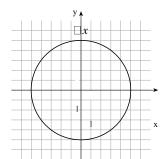


- **(b)** The *x*-intercept occurs when  $y \square 0$ , so  $0 \square x^2 \square 4 \square x^2 \square 4 \square x \square \square 2$ . The *y*-intercept occurs when  $x \square 0$ , so  $y \square \square 4$ .
- (c) x-axis symmetry:  $\Box \Box y \Box \Box x^2 \Box 4 \Box y \Box \Box x^2 \Box 4$ , which is not the same as the original equation, so the graph is not symmetric with respect to the x-axis. y-axis symmetry:  $y \square \square \square x \square^2 \square 4 \square y \square x^2 \square 4$ , which is the same as the original equation, so the graph is symmetric with respect to the y-axis. Origin symmetry:  $\Box y \Box \Box \Box x \Box^2 \Box 4 \Box \Box y \Box x^2 \Box 4$ , which is not the same as the original equation, so the graph is not symmetric with respect to the origin.

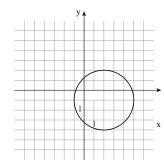
3. (a)



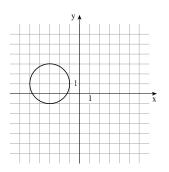

у д







- (d) The slope of the line is  $\frac{1 \Box 6}{\Box 3 \Box 5} \Box \frac{5}{\Box 8} \Box \frac{5}{8}$ .
- (e) The perpendicular bisector of PQ contains the midpoint,  $\Box \Box_2^{\phantom{1}}$ , and it slope is the negative reciprocal of  $^5$ . Thus the slope is  $\Box$   $\Box$   $\Box$  -. Hence the equation




whose diameter is PQ is  $\Box x \Box 1 \Box^2 \Box y \Box 7 \Box 2 \overline{89} \Box \Box x \Box 1 \Box^2 \Box y \Box 7 \Box 89$ 

**4.** (a)  $x^2 \square y^2 \square 25 \square 5^2$  has center  $\square 0 \square 0 \square$  (b)  $\square x \square 2 \square^2 \square \square y \square 1 \square^2 \square 9 \square$  (c)  $x^2 \square 6x \square y^2 \square 2y \square 6 \square 0 \square$  $3^2$  has



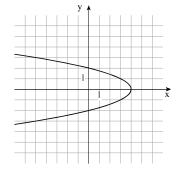


center  $\square \square 3 \square 1 \square$  and radius 2.

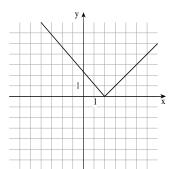


**5.** (a)  $x \Box 4 \Box y^2$ . To test for symmetry about the x-axis, we replace y with  $\Box y$ :  $x \square 4 \square \square y \square^2 \square x \square 4 \square y^2$ , so the graph is symmetric about the xaxis. To test for symmetry about the *y*-axis, we replace x with  $\Box x$ :

symmetric about the y-axis.


For symmetry about the origin, we replace x with  $\Box x$  and y with  $\Box y$ :

 $\Box x \Box 4 \Box \Box y \Box^2 \Box \Box x \Box 4 \Box y^2$ , which is different from the original equation, so the graph is not symmetric about the origin.


To find x-intercepts, we set  $y \square 0$  and solve for  $x: x \square 4 \square 0^2 \square 4$ , so the

To find y-intercepts, we set  $x \square 0$  and solve for  $y:: 0 \square 4 \square y^2 \square y^2 \square 4$  $\Box$  y  $\Box$  2, so the y-intercepts are  $\Box$ 2 and 2.

**(b)**  $y \square \square x \square 2 \square$ . To test for symmetry about the *x*-axis, we replace *y* with  $\square y$ :  $\Box y \Box \Box x \Box 2\Box$  is different from the original equation, so the graph is



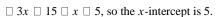
not symmetric about the *x*-axis.



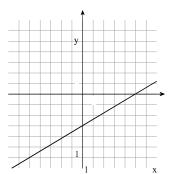
graph is not symmetric about the y-axis.

To test for symmetry about the origin, we replace x with  $\Box x$  and y with

 $\Box y$ :  $\Box y \Box \Box \Box x \Box 2 \Box \Box y \Box \Box \Box x \Box 2 \Box$ , which is different from the original equation, so the graph is not symmetric about the origin.


To find x-intercepts, we set  $y \square 0$  and solve for  $x: 0 \square \square x \square 2 \square \square$ 

 $x \square 2 \square 0 \square x \square \square 2$ , so the x-intercept is 2.

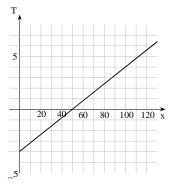

To find *y*-intercepts, we set  $x \square 0$  and solve for *y*:

 $y \square \square 0 \square 2 \square \square \square \square 2 \square \square 2$ , so the y-intercept is 2.

**6.** (a) To find the *x*-intercept, we set  $y \square 0$  and solve for  $x: 3x \square 5 \square 0 \square \square$  (b)








- (c)  $3x \square 5y \square 15 \square 5y \square 3x \square 15 \square y \square {}^3 \times \square 3$ .
- (d) From part (c), the slope is  $\frac{3}{5}$ .
- (e) The slope of any line perpendicular to the given line is the negative reciprocal of its slope, that is,  $\Box \frac{1}{3} \Box \Box \Box \frac{5}{3}$ .
- **7.** (a)  $3x \Box y \Box 10 \Box 0 \Box y \Box \Box 3x \Box 10$ , so the slope of the line we seek is  $\Box 3$ . Using the point-slope,  $y \Box \Box \Box 6 \Box \Box \Box 3 \Box x \Box 3 \Box$

**(b)** 

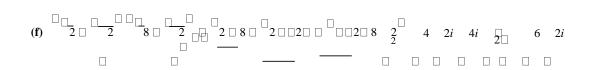
$$\square$$
 y  $\square$  6  $\square$   $\square$  3x  $\square$  9  $\square$  3x  $\square$  y  $\square$  3  $\square$  0.

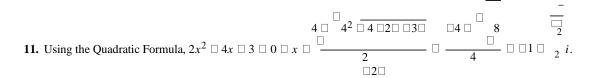
- **(b)** Using the intercept form we get  $\frac{x}{6} \Box \frac{y}{4} \Box 1 \Box 2x \Box 3y \Box 12 \Box 2x \Box 3y \Box 12 \Box 0$ .
- **8.** (a) When  $x \square 100$  we have  $T \square 0 \square 08 \square 100 \square \square 4 \square 8 \square 4 \square 4$ , so the temperature at one meter is  $4^{\square}$  C.
  - (c) The slope represents an increase of  $0 \square 08^{\square}$  C for each one-centimeter increase in depth, the *x*-intercept is the depth at which the temperature is  $0^{\square}$  C, and the *T*-intercept is the temperature at ground level.





- $x^2 \Box 5x \Box 6 \Box \Box x \Box 2\Box \Box x \Box 3\Box \Box 0$ . Thus,  $x \Box 2$  and  $x \Box 3$  are potential solutions. Checking in the original equation, we see that only  $x \Box 3$  is valid.
- (d)  $x^{1 \square 2} \square 3x^{1 \square 4} \square 2 \square 0$ . Let  $u \square x^{1 \square 4}$ , then we have  $u^2 \square 3u \square 2 \square 0 \square u \square 2 \square u \square 1 \square \square 0$ . So either  $u \square 2 \square 0$  or
  - $u \ \square \ 1 \ \square \ 0$ . If  $u \ \square \ 2 \ \square \ 0$ , then  $u \ \square \ 2 \ \square \ x^{1 \square 4} \ \square \ 2 \ \square \ x \ \square \ 2^4 \ \square \ 16$ . If  $u \ \square \ 1 \ \square \ 0$ , then  $u \ \square \ 1 \ \square \ x^{1 \square 4} \ \square \ 1 \ \square \ x \ \square \ 1$ . So  $x \ \square \ 1$  or  $x \ \square \ 16$ .


10 10 <u>10</u> 2


(f)  $3 \square x \square 4 \square \square 10 \square 0 \square 3 \square x \square 4 \square \square 10 \square 0 \square x \square 4 \square \square 10 \square 0 \square x \square 4 \square \square 10 \square 0 \square x \square 4 \square \square 3$ . So  $x \square 4 \square \square 3$  or  $\square 3$ 

 $x \square 4 \square {}^{10} \square {}^{22}$ . Thus the solutions are  $x \square {}^2$  and  $x \square {}^{22}$ .

3 3

- **10.** (a)  $\Box 3 \Box 2i \Box \Box \Box 4 \Box 3i \Box \Box 3 \Box 4 \Box \Box \Box 2i \Box 3i \Box \Box 7 \Box i$ 
  - **(b)**  $\Box 3 \Box 2i \Box \Box \Box 4 \Box 3i \Box \Box \Box 3 \Box 4 \Box \Box \Box 2i \Box 3i \Box \Box \Box 1 \Box 5i$
  - (c)  $\Box 3 \Box 2i \Box \Box 4 \Box 3i \Box \Box 3 \Box 4 \Box 3 \Box 3i \Box 2i \Box 4 \Box 2i \Box 3i \Box 12 \Box 9i \Box 8i \Box 6i^2 \Box 12 \Box i \Box 6 \Box \Box \Box \Box 18 \Box i$
  - (d)  $\frac{3 \square 2i}{4 \square 3i} \square \frac{3 \square 2i}{4 \square 3i} \square \frac{4 \square 3i}{4 \square} \square \frac{12 \square 17i \square 6i^2}{16 \square 9i^2} \square \frac{12 \square 17i \square 6}{16 \square 9} \square \frac{6}{25} \square \frac{17}{25}i$
  - $(\mathbf{e}) \underset{i^2}{i^{48}} \square \qquad \square \square \square \square^{24} \square \square$





| 12. | . Let $\Box$ be the width of the parcel of land. Then $\Box$ $\Box$ 70 is the length of the parcel of land. Then $\Box^2$ $\Box$ $\Box$ $\Box$ 70 $\Box^2$ $\Box$ 130 $^2$ $\Box$                                                                                                                                                                                                          |
|-----|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | $ \   \square^2 \ \square \   \square^2 \ \square \   140 \square \   \square \   4900 \ \square \   16,900 \ \square \   2\square^2 \ \square \   140 \square \   \square \   12,000 \ \square \   0 \ \square \   \square^2 \ \square \   70 \square \ \square \   6000 \ \square \   0 \ \square \ \square \   \square \   50 \square \ \square \   \square \   120 \square \ \square $ |
|     | 0. So $\square$ $\square$ 50 or $\square$ $\square$ 120. Since $\square$ $\square$ 0, the width is $\square$ $\square$ 50 ft and the length is $\square$ $\square$ 70 $\square$ 120 ft.                                                                                                                                                                                                    |

**13.** (a)  $\Box 4 \Box 5 \Box 3x \Box 17 \Box \Box 9 \Box \Box 3x \Box 12 \Box 3 \Box x \Box \Box 4$ . Expressing in standard form we have:  $\Box 4 \Box x \Box 3$ .

Interval:  $[\Box 4 \Box 3 \Box$ . Graph:  $\begin{array}{c} \bullet \\ -4 \end{array}$   $\begin{array}{c} \bullet \\ 3 \end{array}$ 

**(b)**  $x \Box x \Box 1 \Box \Box x \Box 2 \Box \Box 0$ . The expression on the left of the inequality changes sign when  $x \Box 0$ ,  $x \Box 1$ , and  $x \Box \Box 2$ . Thus we must check the intervals in the following table.

| Interval                                                  |  |  |
|-----------------------------------------------------------|--|--|
| Sign of x                                                 |  |  |
| Sign of $x \square 1$                                     |  |  |
| Sign of $x \square 2$                                     |  |  |
| Sign of $x \square x \square 1 \square \square x \square$ |  |  |

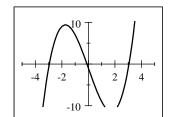
From the table, the solution set is  $\Box x \Box \Box 2 \Box x \Box 0$  or  $1 \Box x \Box$ . Interval:  $\Box \Box 2 \Box 0 \Box \Box \Box 1 \Box \Box$ .

Graph: 
$$-\circ$$
  $0$   $1$ 

- (c)  $\Box x \Box 4 \Box \Box 3$  is equivalent to  $\Box 3 \Box x \Box 4 \Box 3 \Box 1 \Box x \Box 7$ . Interval:  $\Box 1 \Box 7 \Box$ . Graph:  $\circ$
- (d)  $\frac{2x \square 3}{x \square 1} \square 1 \square \frac{2x \square 3}{x \square 1} \square 1 \square 0 \square \frac{2x \square 3}{x \square 1} \square \frac{x \square 1}{x \square 1} \square 0 \square \frac{x \square 4}{x \square 1} \square 0$ . The expression on the left of the inequality

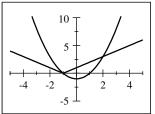
changes sign where  $x \square \square 4$  and where  $x \square \square 1$ . Thus we must check the intervals in the following table.

| Interval                                  |  | □4□ |
|-------------------------------------------|--|-----|
| Sign of $x \square 4$                     |  |     |
| Sign of $x \square 1$                     |  |     |
| Sign of $\frac{x \square 4}{x \square 1}$ |  |     |


**14.**  $5 \ \Box \ \frac{5}{9} \ \Box F \ \Box \ 32 \ \Box \ 10 \ \Box \ 9 \ \Box \ F \ \Box \ 32 \ \Box \ 18 \ \Box \ 41 \ \Box \ F \ \Box \ 50$ . Thus the medicine is to be stored at a temperature between  $41^{\Box}$  F and  $50^{\Box}$  F.

**15.** For  $6x \square x^2$  to be defined as a real number  $6x \square x^2 \square 0 \square x \square 6 \square x \square 0$ . The expression on the left of the inequality changes sign when  $x \square 0$  and  $x \square 6$ . Thus we must check the intervals in the following table.

| Interval                      | □0□ | □6□ |
|-------------------------------|-----|-----|
| Sign of x                     |     |     |
| Sign of $6 \square x$         |     |     |
| Sign of $x \square 6 \square$ |     |     |

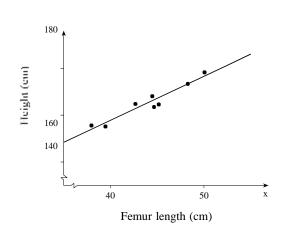

From the table, we see that  $\frac{\Box}{6x \Box x^2}$  is defined when  $0 \Box x \Box 6$ .

**16.** (a)  $x^3 \Box 9x \Box 1 \Box 0$ . We graph the equation  $y \Box x^3 \Box 9x \Box 1$  in the viewing rectangle  $[\Box 5 \Box 5]$  by  $[\Box 10 \Box 10]$ . We find that the points of intersection occur at  $x \Box \Box 2 \Box 94$ ,  $\Box 0 \Box 11$ ,  $3 \Box 05$ .



17. (a)  $M \square k \frac{\square h^2}{L}$ 

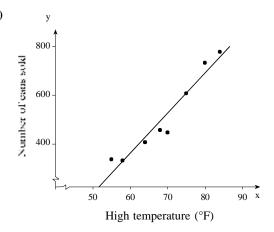
**(b)**  $x^2 \Box 1 \Box \Box x \Box 1 \Box$ . We graph the equations  $y_1 \Box x^2 \Box 1$  and  $y_2 \Box \Box x \Box 1 \Box$  in the viewing rectangle  $[\Box 5 \Box 5]$  by  $[\Box 5 \Box 10]$ . We find that the points of intersection occur at  $x \Box \Box 1$  and  $x \Box 2$ . Since we want  $x^2 \Box 1 \Box \Box x \Box 1 \Box$ , the solution is the interval  $[\Box 1 \Box 2]$ .




 $\Box 4 \Box$ 

(c) Now if  $L \square 10$ ,  $\square \square 3$ , and  $h \square 10$ , then  $M \square 400$   $\square 12,000$ . So the beam can support 12,000 pounds.

### FOCUS ON MODELING Fitting Lines to Data


1. (a)



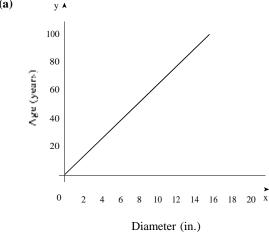
- **(b)** Using a graphing calculator, we obtain the regression line  $y \square 1 \square 8807x \square 82 \square 65$ .
- (c) Using  $x \Box 58$  in the equation  $y \Box \Box 82\Box 65$ ,  $1\Box 8807x$

we get  $y \square 1 \square 8807 \square 58 \square \square 82 \square 65 \square 191 \square 7$  cm.

2. (a)



(b) Using a graphing calculator, we obtain the regression


line  $y \square 16\square 4163x \square 621\square 83$ .

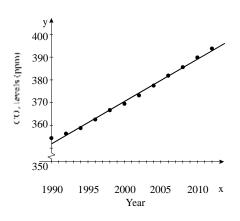
(c) Using  $x \square 95$  in the equation

 $y \square 16\square 4163x \square 621\square 83$ , we get

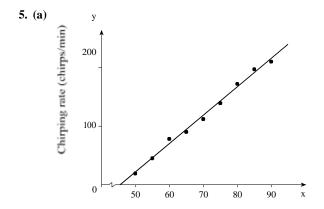
 $y \square 16\square 4163\square 95\square \square 621\square 83\square 938$  cans.

3. (a)




(b) Using a graphing calculator, we obtain the regression

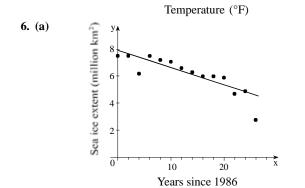
line  $y \square 6\square 451x \square 0\square 1523$ .


(c) Using  $x \square 18$  in the equation  $y \square 6 \square 451x \square 0 \square 1523$ , we get  $y \square 6 \square 451 \square 18 \square 0 \square 1523 \square$ 

116 years.

4. (a)




- **(b)** Letting  $x \square 0$  correspond to 1990, we obtain the regression line  $y \square 1 \square 8446x \square 352 \square 2$ .
- (c) Using  $x \square 21$  in the equation  $y \square 1 \square 8446x \square 352 \square 2$ , we get  $y \square 1 \square 8446 \square 21 \square \square 352 \square 2 \square 390 \square 9$  ppm  $CO_2$ , slightly lower than the measured value.



**(b)** Using a graphing calculator, we obtain the regression line  $y \square 4 \square 857x \square 220 \square 97$ .

(c) Using  $x \square 100^{\square}$  F in the equation

 $y \square 4\square 857x \square 220\square 97$ , we get  $y \square 265$  chirps per minute.



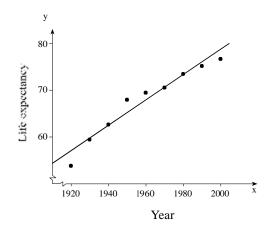
**(b)** Using a graphing calculator, we obtain the regression line  $y \square \square 0 \square 1275x \square 7 \square 929$ .

(c) Using  $x \square 30$  in the regression line equation, we get  $y \square \square 0 \square 1275 \square 30 \square \square 7 \square 929 \square 4 \square 10$  million  $\text{km}^2$ .

| 7. (a) | Mosquito positive rate (%) | 20 -<br>10 - | •  | •         | •             |    |       |
|--------|----------------------------|--------------|----|-----------|---------------|----|-------|
|        | Mosdu                      | 0            | 20 | 40<br>Flo | 60<br>ow rate | 80 | 100 x |

**(b)** Using a graphing calculator, we obtain the regression line  $y \square 00 \square 168x \square 19 \square 89$ .

| (c) | Using the regression line equation                                                                |
|-----|---------------------------------------------------------------------------------------------------|
|     | $y \square \square 0 \square 168x \square 19 \square 89$ , we get $y \square 8 \square 13\%$ when |
|     | $x \square 70\%$ .                                                                                |


| 8. (a) |               | у∱    |     |    |     |       |          |       |
|--------|---------------|-------|-----|----|-----|-------|----------|-------|
|        | 8             | 100 - |     |    |     |       |          |       |
|        | a,            |       |     |    | ١.  |       |          |       |
|        | MRT score (%) |       |     |    | \   | \•    |          |       |
|        | ž             | 50-   |     |    |     |       | \_       |       |
|        |               |       |     |    |     |       | •        |       |
|        |               |       |     |    |     |       | •        | _     |
|        |               |       | -1, |    |     |       |          | •\    |
|        |               | 0     | •   | 80 |     | 90    | 100      | 110 X |
|        |               |       |     |    | Noi | se le | vel (dB) |       |

(b) Using a graphing calculator, we obtain  $y \square \square 3 \square 9018x \square 419 \square 7$ .

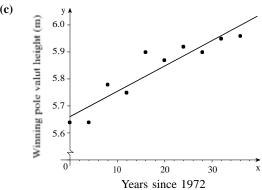
(c) The correlation coefficient is r □ □0□98, so linear model is appropriate for x between 80 dB and 104 dB.

(d) Substituting  $x \square 94$  into the regression equation, we get  $y \square \square 3 \square 9018 \square 94 \square \square 419 \square 7 \square 53$ . So the intelligibility is about 53%.

9. (a)



(b) Using a graphing calculator, we obtain


$$y \square 0 \square 27083x \square 462 \square 9.$$

- (c) We substitute  $x \square 2006$  in the model  $y \square 0 \square 27083x \square 462 \square 9$  to get  $y \square 80 \square 4$ , that is, a life expectancy of  $80\square 4$  years.
- (d) The life expectancy of a child born in the US in 2006 was 77 \( 7 \) years, considerably less than our estimate in part (b).

10. (a)

| Year | х  | Height (m) |
|------|----|------------|
| 1972 | 0  | 5□6        |
| 1976 | 4  | 5□6        |
| 1980 | 8  | 5□7        |
| 1984 | 12 | 5□7        |
| 1988 | 16 | 5□9        |
| 1992 | 20 | 5□8        |
| 1996 | 24 | 5□9        |
| 2000 | 28 | 5□9        |
| 2004 | 32 | 5□9        |
| 2008 | 36 | 5□9        |

(c)



The regression line provides a good model.

(b) Using a graphing calculator, we obtain the regression line  $y \square 5\square 664 \square 0\square 00929x$ .

(d) The regression line predicts the winning pole vault height in 2012 to be

*y* □ 0□00929  $\Box$  6  $\Box$  04 meters. □2012 1972□ 5□664

- 11. Students should find a fairly strong correlation between shoe size and height.
- 12. Results will depend on student surveys in each class.

# 2 FUNCTIONS

#### 2.1 FUNCTIONS

| 1  | Τ£ | £        | 1 [ | 3  | П | 1  | then |
|----|----|----------|-----|----|---|----|------|
| Ι. | ΙŤ | <i>t</i> | x   | X. |   | Ι. | then |

(a) the value of 
$$f$$
 at  $x \square \square 1$  is  $f \square \square 1 \square \square \square \square 1 \square^3 \square 1 \square 0$ .

**(b)** the value of 
$$f$$
 at  $x \square 2$  is  $f \square 2 \square \square 2^3 \square 1 \square 9$ .

(c) the net change in the value of 
$$f$$
 between  $x \square \square 1$  and  $x \square 2$  is  $f \square 2 \square \square f \square \square 1 \square \square 9 \square 0 \square 9$ .

- 2. For a function f, the set of all possible inputs is called the *domain* of f, and the set of all possible outputs is called the *range* of f.
- **3.** (a)  $f \square x \square \square x^2 \square 3x$  and  $g \qquad \frac{x \square 5}{x}$  have 5 in their domain because they are defined when  $x \square 5$ . However,

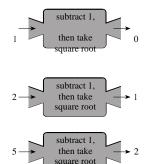
$$\underline{h} \Box x \Box \Box \Box 10$$
 is undefined when  $x \Box 5$  because  $\boxed{5 \Box 10} \Box \boxed{5}$ , so 5 is not in the domain of  $h$ .

**(b)** 
$$f \Box 5 \Box \Box 5^2 \Box 3 \Box 5 \Box \Box 25 \Box 15 \Box 10$$
 and  $g = \frac{5 \Box 5}{5} \Box \frac{0}{5} \Box 0$ .

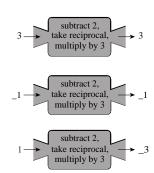
- **4.** (a) Verbal: "Subtract 4, then square and add 3."
  - **(b)** Numerical:

| х | f  |
|---|----|
| 0 | 19 |
| 2 | 7  |
| 4 | 3  |
| 6 | 7  |

- **5.** A function f is a rule that assigns to each element x in a set A exactly *one* element called  $f \square x \square$  in a set B. Table (i) defines y as a function of x, but table (ii) does not, because  $f \square 1 \square$  is not uniquely defined.
- **6.** (a) Yes, it is possible that  $f \Box 1 \Box \Box f \Box 2 \Box \Box 5$ . [For instance, let  $f \Box x \Box \Box 5$  for all x.]
  - **(b)** No, it is not possible to have  $f \Box 1 \Box \Box 5$  and  $f \Box 1 \Box \Box 6$ . A function assigns each value of x in its domain exactly one value of  $f \Box x \Box$ .
- **7.** Multiplying x by 3 gives 3x, then subtracting 5 gives  $f \Box x \Box \Box 3x \Box 5$ .
- **8.** Squaring x gives  $x^2$ , then adding two gives  $f \square x \square \square x^2 \square 2$ .
- **9.** Subtracting 1 gives  $x \square 1$ , then squaring gives  $f \square x \square \square \square x \square 1 \square^2$ .
- **10.** Adding 1 gives  $x \square 1$ , taking the square root gives  $x \square 1$ , then dividing by 6 gives  $x \square 1$ .


$$x \square 2$$

**11.** 
$$f \square x \square \square 2x \square 3$$
: Multiply by 2, then add 3.


$$\frac{x^2 + 4}{3}$$
: Square, then subtract 4, then divide by 3.

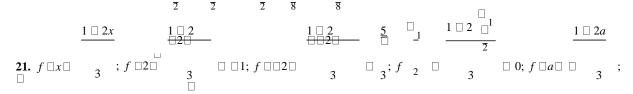
**13.** 
$$h \square x \square \square 5 \square x \square 1 \square$$
: Add 1, then multiply by 5.  $\square x \square \square$ 

**15.** Machine diagram for  $f \square x \square \square \square$ 



**16.** Machine diagram for  $f \Box x \Box \frac{3}{x \Box 2}$ 




**17.**  $f \square x \square \square 2 \square x \square$ 

| x  | f                                                 |
|----|---------------------------------------------------|
| □1 | $2 \square \square 1 \square 1 \square^2 \square$ |
| 0  | 8                                                 |
| 1  | $2 \square \square 1 \square^2 \square$           |
| 2  | 2                                                 |
| 3  | $2 \square 1 \square 1 \square^2 \square$         |

**18.**  $g \square x \square \square \square 2x \square 3\square$ 

| х  | g   |
|----|-----|
| □3 |     |
| □2 | □ 3 |
| 0  |     |
| 1  |     |
| 3  |     |

**19.**  $f \square x \square \square x^2 \square 6$ ;  $f \square \square 3 \square \square \square 3 \square^2 \square 6 \square 9 \square 6 \square 3$ ;  $f \square 3 \square \square 3^2 \square 6 \square 9 \square 6 \square 3$ ;  $f \square 0 \square \square 0^2 \square 6 \square \square 6$ ;



**23.**  $f \square x \square \square x^2 \square 2x$ ;  $f \square 0 \square \square 0^2 \square 2 \square 0 \square \square 0$ ;  $f \square 3 \square \square 3^2 \square 2 \square 3 \square \square 9 \square 6 \square 15$ ;  $f \square 3 \square \square \square 3 \square^2 \square 2 \square 3 \square \square 9 \square 6 \square 3$ ;

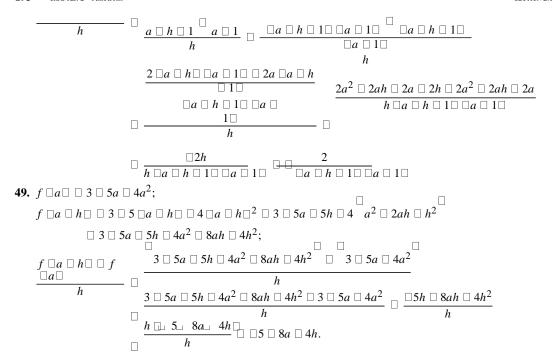
$$f \square a \square \square a^2 \square 2 \square a \square \square a^2 \square 2a; f \square x \square \square \square x \square^2 \square 2 \square x \square \square \square \frac{1}{a} \square \frac{1}{a} \square \frac{1}{a} \square \frac{1}{a} \square \frac{1}{a} \square \frac{1}{a^2} \square \frac{2}{a}.$$

$$x^2 \square 2x; f$$

$$\begin{array}{c|c}
h \square x \square 1 \square \square x \square 1 & \boxed{1} \\
x
\end{array}; h \square \frac{1}{x} \square \square \frac{1}{x} \square \frac{1}{x} \square \frac{1}{x} \square x.$$

**27.**  $k \square x \square \square x^2 \square 2x \square 3$ ;  $k \square 0 \square \square 0^2 \square 2 \square 0 \square \square 3 \square 3$ ;  $k \square 2 \square \square 2^2 \square 2 \square 2 \square \square 3 \square 3$ ;  $k \square 2 \square \square 2 \square 2 \square 3 \square 3$ ;  $k \square 2 \square \square 2 \square 2 \square 3 \square 3$ ;  $k \square 2 \square 2 \square 3 \square 3$ ;  $k \square 2 \square 3 \square 3$ ;  $k \square 2 \square 3 \square 3$ ;  $k \square 3$ 

**28.**  $k \square x \square \square 2x^3 \square 3x^2$ ;  $k \square 0 \square \square 2 \square 0 \square^3 \square 3 \square 0 \square^2 \square 0$ ;  $k \square 3 \square \square 2 \square 3 \square^3 \square 3 \square 3 \square^2 \square 27$ ;  $k \square 3 \square \square \square 2 \square 3 \square^3 \square 3$ 


| <b>31.</b><br>hav | Since $\Box 2 \Box 0$ , we have $f \Box \Box 2 \Box \Box \Box \Box \Box 2 \Box^2 \Box 4$ . Since $\Box 1 \Box 0$ , we have $f \Box \Box 1 \Box \Box \Box \Box \Box^2 \Box 1$ . Since $0 \Box 0$ , we see                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                   | $f \square 0 \square \square 0 \square 1 \square 1$ . Since $1 \square 0$ , we have $f \square 1 \square \square 1 \square 1 \square 2$ . Since $2 \square 0$ , we have $f \square 2 \square \square 2 \square 1 \square 3$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 32.               | Since $\Box 3 \Box 2$ , we have $f \Box \Box 3 \Box \Box 5$ . Since $0 \Box 2$ , we have $f \Box 0 \Box \Box 5$ . Since $2 \Box 2$ , we have $f \Box 2 \Box \Box 5$ . Since $3 \Box \Box 5$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                   | 2, we have $f \square 3 \square \square 2 \square 3 \square \square 3$ \ \since 5 \ \mu 2, we have $f \square 5 \square \square 2 \square 5 \square \square 3$ \ \mathbb{\omega} 7.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                   | Since $\Box 4 \ \Box \ \Box 1$ , we have $f \Box \Box 4 \Box \ \Box \ \Box \Box 4 \Box^2 \ \Box \ 2 \Box \Box 4 \Box \ \Box \ 16 \ \Box \ 8 \ \Box \ 8$ . $_{\overline{2}} \ \Box \ \Box 1$ , we have ce $\Box^3$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                   | $ \int_{\mathbb{R}^{3}} 3  \int_{$ |
|                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                   | $\Box 1 \ \Box \ 0 \ \Box \ 1$ , we have $f \ \Box 0 \Box \ \Box \ 0$ . Since 25 $\Box \ 1$ , we have $f \ \Box 25 \Box \ \Box \ \Box 1$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <b>34.</b><br>hav | Since $\Box 5 \Box 0$ , we have $f \Box \Box 5 \Box \Box 3 \Box \Box 5 \Box \Box \Box 15$ . Since $0 \Box 0 \Box 2$ , we have $f \Box 0 \Box \Box 0 \Box 1 \Box 1$ . Since $0 \Box 1 \Box 2$ , we see                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                   | $f \square 1 \square \square 1 \square 1 \square 2$ . Since $0 \square 2 \square 2$ , we have $f \square 2 \square \square 2 \square 1 \square 3$ . Since $5 \square 2$ , we have $f \square 5 \square \square 5 \square 2 \square^2 \square 9$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                   | $f \square x \square 2 \square \square \square x \square 2 \square^2 \square 1 \square x^2 \square 4x \square 4 \square 1 \square x^2 \square 4x \square 5; f \square x \square \square f \square 2 \square \square x^2 \square 1 \square \square 2 \square^2 \square 1 \square x^2 \square 1 \square 4 \square 1$<br>$x^2 \square 6.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 36.               | $f \square 2x \square \square 3 \square 2x \square \square 1 \square 6x \square 1; 2f \square x \square \square 2 \square 3x \square 1 \square \square 6x \square 2.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 37.               | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| <b>38.</b><br>□   | $f \stackrel{\square}{-} \underbrace{x}_{\square}  6 \stackrel{\square}{-}  \square  18  \square  2x  \square  18;  \frac{f}{\square x  \square}  \square  \frac{6x  \square  18}{3}  \square  \frac{3  \square 2x  \square  6\square}{3}  \square  2x  \square  6\square$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |

- **39.**  $f \square x \square \square 3x \square 2$ , so  $f \square 1 \square \square 3 \square 1 \square \square 2 \square 1$  and  $f \square 5 \square \square 3 \square 5 \square \square 2 \square 13$ . Thus, the net change is  $f \square 5 \square \square f \square 1 \square \square 13 \square 1 \square 12$ .
- **40.**  $f \square x \square \square 4 \square 5x$ , so  $f \square 3\square \square 4 \square 5 \square 3\square \square \square 11$  and  $f \square 5\square \square 4 \square 5 \square 5\square \square \square 21$ . Thus, the net change is  $f \square 5\square \square f \square 3\square \square \square 21 \square \square \square 11\square \square \square 10$ .

- **41.**  $g \Box t \Box \Box 1 \Box t^2$ , so  $g \Box \Box 2 \Box \Box 1 \Box \Box \Box 2 \Box^2 \Box 1 \Box 4 \Box \Box 3$  and  $g \Box 5 \Box \Box 1 \Box 5^2 \Box \Box 24$ . Thus, the net change is  $g \Box 5 \Box \Box g \Box \Box 2 \Box \Box \Box 24 \Box \Box \Box 3 \Box \Box \Box 21$ .

- **44.**  $f \square a \square \square 3a^2 \square 2$ ;  $f \square a \square h \square \square 3 \square a \square h \square^2 \square 2 \square 3a^2 \square 6ah \square 3h^2 \square 2$ ;  $\frac{f \square a \square h \square \square f}{h} \square \frac{3a^2 \square 6ah \square 3h^2 \square 2 \square 3a^2 \square 2}{h} \square \frac{6ah \square 3h}{h} \square 6a \square 3h \square$
- - - $\frac{\Box a \Box 1 \Box \Box a \Box h \Box}{1 \Box} \qquad \qquad \Box 1 \qquad .$
- 47.  $f \Box a \Box \Box a \Box h \Box a \Box h \Box a \Box h \Box 1$ ;
- - - $\ \Box \ \overline{\Box a \ \Box \ h \ \Box \ 1 \Box \ \Box a \ \Box} \ 1 \Box$
- **48.**  $f \square a \square \square 2a$ ;  $f \square a \square h \square \overline{a \square h \square 1}$ ;
  - $\frac{2 \square a \square h \square}{2a} \qquad \qquad \frac{\square 2a \square 2h \square \square a \square}{1 \square} \qquad 2a \square a \square h \square 1 \square$

175 CHAPTER 2 Functions SECTION 2.1 Functions 175



| 50. | $f \square a \square a^{3}; f \square a \square h \square a \square h \square^{3} \square a^{3} \square 3a^{2}h \square 3ah^{2} \square h^{3};$ $f \square a \square h \square f \square a \square h \square f \square a \square h \square h \square a^{3} \square 3ah^{2} \square h^{3} \square a^{3} \square 3ah^{2} \square h \square $ | 3 |
|-----|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| 51. | $f \square x \square \square 3x$ . Since there is no restriction, the domain is all real numbers, $\square \square \square \square$ three times the real number $^1y$ , the range is all real numbers $\square \square \square \square \square \square$ .                                                                                                                                                                  | ] |
| 52. | $f \square x \square \square 5x^2 \square 4$ . Since there is no restriction, the domain is all real numbers,                                                                                                                                                                                                                                                                                                              |   |

| <b>51.</b> $f \sqcup x \sqcup \sqcup \exists x$ . Since there is | no restriction, the domain is all real numbers, $  \Box \Box \Box \Box \Box \Box \Box \Box$ . Since every real number y is |  |
|------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|--|
| three times the real number                                      | $y$ , the range is all real numbers $\square \square \square \square \square \square$ .                                    |  |

**52.** 
$$f \square x \square \square 5x^2 \square 4$$
. Since there is no restriction, the domain is all real numbers,  $\square \square \square \square \square$ . Since  $5x^2 \square 0$  for all  $x$ ,  $5x^2 \square 4 \square 4$  for all  $x$ , so the range is  $[4 \square \square \square]$ .

**54.** 
$$f \square x \square \square 5x^2 \square 4$$
,  $0 \square x \square 2$ . The domain is  $[0 \square 2]$ ,  $f \square 0 \square \square 5 \square 0 \square^2 \square 4 \square 4$ , and  $f \square 2 \square \square 5 \square 2 \square^2 \square 4 \square 24$ , so the range is  $[4 \square 24]$ .

**55.** 
$$f \square x \square \square \square 3$$
. Since the denominator cannot equal 0 we have  $x \square 3 \square 0 \square x \square 3$ . Thus the domain is  $\square x \square x \square 3 \square$ . In

interval notation, the domain is  $\Box \Box \Box$ .

**56.** 
$$f \square x \square \square \square 1$$
. Since the denominator cannot equal 0, we have  $3x \square 6 \square 0 \square 3x \square 6 \square x \square 2$ . In interval notation, the  $3x$ 

domain is  $\Box \Box \Box$ .

**57.** 
$$f \square x \square \square \frac{x \square 2}{\square 1}$$
. Since the denominator cannot equal 0 we have  $x^2 \square 1 \square 0 \square x^2 \square 1 \square x \square \square 1$ . Thus the domain is  $x^2$ 

**58.** 
$$f \square x \square \square \square x \square 6$$
. Since the denominator cannot equal  $0, x^2 \square x \square 6 \square 0 \square x \square 3 \square x \square 2 \square \square 0 \square x \square 3$  or  $x \square x$ .

**59.** 
$$f \square x \square \square \square$$
 1. We must have  $x \square 1 \square 0 \square x \square \square$  1. Thus, the domain is  $[\square 1 \square \square \square \square \square \square \square$ 

**60.** 
$$g \square x \square \square \square x^2 \square 9$$
. The argument of the square root is positive for all  $x$ , so the domain is  $\square \square \square \square \square$ .

**61.** 
$$f \Box t \Box \Box \Box \frac{1}{3} t \Box 1$$
. Since the odd root is defined for all real numbers, the domain is the set of real numbers,  $\Box \Box \Box \Box \Box \Box$ .

**62.** 
$$g \square x \square \square \square 7 \square 3x$$
. For the square root to be defined, we must have  $7 \square 3x \square 0 \square 7 \square 3x \square \frac{7}{3} \square x$ . Thus the domain is  $\square \square \square \frac{7}{3}$ .

**63.** 
$$f \square x \square \square \square \square 2x$$
. Since the square root is defined as a real number only for nonnegative numbers, we require that  $\square \square 2x \square 0 \square x \square \square 1$ . So the domain is  $\square x \square x \square \square \square \square 1$ . In interval notation, the domain is  $\square x \square x \square \square 1$ .

| <b>64.</b> $g \square x \square \square$ | $x^2 \square 4$ . We must have $x^2 \square 4 \square 0 \square \square x \square 2 \square \square x \square 2 \square \square 0$ . We make a table: |
|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|

| [                                        |  | $\Box 2 \Box$ |
|------------------------------------------|--|---------------|
| Sign of $x \square 2$                    |  |               |
| Sign of $x \square 2$                    |  |               |
| Sign of $\Box x \Box 2 \Box \Box x \Box$ |  |               |

177 CHAPTER 2 Functions SECTION 2.1 Functions 177

| <b>66.</b> 2 <i>x</i> <sup>2</sup> | $\frac{\Box}{x}$ $g \Box x \Box \Box \Box x \Box 1$ . We must have $x \Box 0$ for the numerator and $2x^2 \Box x \Box 1 \Box 0$ for the denominator. So $2x^2 \Box x \Box 1 \Box 0$             |
|------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                    |                                                                                                                                                                                                 |
| <b>67.</b>                         | $g \square x \square \xrightarrow{4} x^2 \square 6x$ . Since the input to an even root must be nonnegative, we have $x^2 \square 6x \square 0 \square x \square x \square 6\square 0$ . We make |
|                                    | a table:                                                                                                                                                                                        |

|                               | 0000 | □0□ | □6□ |
|-------------------------------|------|-----|-----|
| Sign of x                     |      |     |     |
| Sign of $x \square 6$         |      |     |     |
| Sign of $x \square x \square$ |      |     |     |

Thus the domain is  $\Box \Box \Box \Box 0$   $\Box [6 \Box \Box \Box$ .

**68.**  $g \square x \square \square \square x^2 \square 2x \square 8$ . We must have  $x^2 \square 2x \square 8 \square 0 \square \square x \square 4 \square \square x \square 2 \square \square 0$ . We make a table:

| [                                        |  | □4□ |
|------------------------------------------|--|-----|
| Sign of $x \square 4$                    |  |     |
| Sign of $x \square 2$                    |  |     |
| Sign of $\Box x \Box 4 \Box \Box x \Box$ |  |     |

**69.**  $f \square x \square \square \frac{3}{x \square 4}$ . Since the input to an even root must be nonnegative and the denominator cannot equal 0, we have  $x \square 4 \square 0 \square x \square 4$ . Thus the domain is  $\square 4 \square \square \square$ .

**70.**  $f \Box x \Box \Box \frac{x^2}{6 \Box x}$ . Since the input to an even root must be nonnegative and the denominator cannot equal 0, we have

 $6 \square x \square 0 \square 6 \square x$ . Thus the domain is  $\square \square \square \square 6 \square$ .

71.  $f \square x \square \square \square \square 2$  Since the input to an even root must be nonnegative and the denominator cannot equal 0, we have  $\square 2x$ 

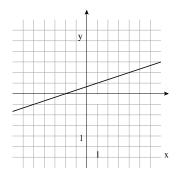
 $2x \ \Box \ 1 \ \Box \ 0 \ \Box \ x \ \Box \ \frac{1}{2}$  Thus the domain is  $\begin{array}{c} \Box \\ \frac{1}{2}\Box \ \Box \end{array}$  .

72.  $f \Box x \Box \Box \frac{x}{9 \Box x^2}$ . Since the input to an even root must be nonnegative and the denominator cannot equal 0, we have

 $9 \square x^2 \square 0 \square \square 3 \square x \square \square 3 \square x \square \square 0$ . We make a table:

| Interval                                |  | □3□ |
|-----------------------------------------|--|-----|
| Sign of 3 $\square x$                   |  |     |
| Sign of $3 \square x$                   |  |     |
| Sign of $\Box x \Box 4\Box \Box x \Box$ |  |     |

Thus the domain is  $\Box \Box 3 \Box 3 \Box$ .


**73.** To evaluate  $f \square x \square$ , divide the input by 3 and add  $^2$  to the result.

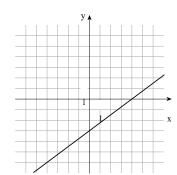
(a) 
$$f \Box x \Box \stackrel{x}{=}_{3} \stackrel{2}{=}$$

(c)

**(b)** 

| х           | $f^{-}$                                                               |
|-------------|-----------------------------------------------------------------------|
| 4<br>6<br>8 | $ \begin{array}{c} 3 \\ 2 \\ \hline 8 \\ 3 \\ \hline 10 \end{array} $ |




**74.** To evaluate  $g \square x \square$ , subtract 4 from the input and multiply the result by  $\frac{3}{4}$ .

(a) 
$$g \square x \square \square \square x \square 4 \square \square 3 \square 3 \square x$$

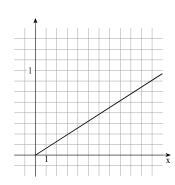
(c)

**(b)** 

| х | $g_{-}$       |
|---|---------------|
| 4 | 0             |
| 4 | 0             |
| 6 | $\frac{3}{2}$ |
| 8 | 3             |



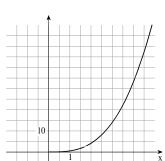
**75.** Let  $T \square x \square$  be the amount of sales tax charged in Lemon County on a purchase of x dollars. To find the tax, take 8% of the purchase price.


(a) 
$$T \square x \square \square$$

(c)

 $0 \square 08x$ 

**(b)** 


| 2 | 0 🗆 16 |
|---|--------|
| 4 | 0□32   |
| 6 | 0□48   |
| 8 | 0□64   |



**76.** Let  $V \square d \square$  be the volume of a sphere of diameter d. To find the volume, take the cube of the diameter, then multiply by  $\square$  and divide by 6.

(a) 
$$V \square d \square \square d^3 \square \square G_{\overline{6}} \square d^3$$

(c)



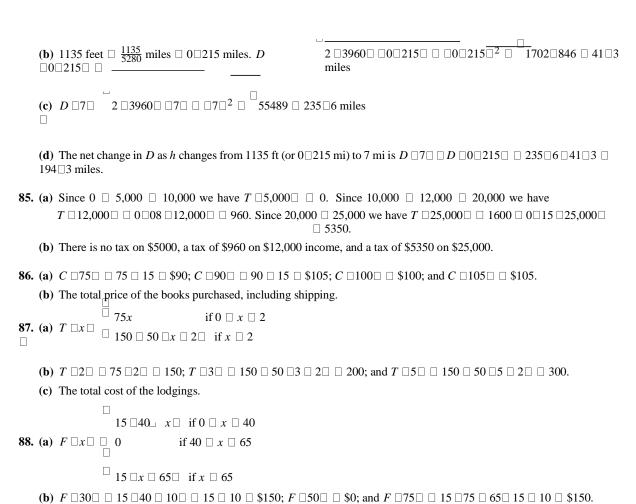
у

**(b)** 

| х | $f \square x \square$                          |
|---|------------------------------------------------|
| 2 | $\frac{4\square}{3} \square 4\square 2$        |
| 4 | $\frac{32\square}{3}$ $\square$ 33 $\square$ 5 |
| 6 | 36□ □ 113                                      |
| 8 | $\frac{256}{3}$ $\square$ 268                  |

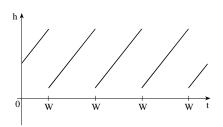
| 77. $f \square x \square$ $\square$ 1 if $x$ is rational $\square$ 5 if $x$ is irrational $\square$ The domain of $f$ is all                                                                       | I real numbers, since every real                                                                    | l number is either rational or                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| irrational; and the range of $f$ is $\Box 1 \Box$ $5 \Box$ .                                                                                                                                       |                                                                                                     |                                                                                   |
| □ 1 if r is rational                                                                                                                                                                               | all real numbers, since every re-                                                                   | al number is either rational or                                                   |
| irrational. If $x$ is irrational, then $5x$ is also irrational, and s                                                                                                                              | o the range of $f$ is $\Box x \Box x \Box 1$                                                        | or $x$ is irrational $\square$ .                                                  |
| <b>79.</b> (a) $V \square 0 \square \square 50 \square 1 \stackrel{\frown}{}_{20} 0^2 \square 50$ and $V \square 20 \square \square 50 \square 1 \stackrel{\frown}{}_{20}$                         | $\int_0^{2t^2} \Box 0.$ (c)                                                                         |                                                                                   |
|                                                                                                                                                                                                    |                                                                                                     | $X V \square X \square$                                                           |
| <b>(b)</b> $V \square 0 \square \square 50$ represents the volume of the full tank at t                                                                                                            |                                                                                                     | 0 50                                                                              |
| $V \square 20 \square \square 0$ represents the volume of the empty tank t                                                                                                                         | wenty minutes                                                                                       | 5 28□125<br>10 12□5                                                               |
| later.                                                                                                                                                                                             |                                                                                                     | 15 3 125                                                                          |
| (d) The net change in $V$ as $t$ changes from 0 minutes to 20 $V \square 20 \square \square V \square 0 \square \square 0 \square 50 \square \square 50$ gallons.                                  | ) minutes is                                                                                        | 20 0                                                                              |
|                                                                                                                                                                                                    |                                                                                                     |                                                                                   |
| <b>80.</b> (a) $S \square 2 \square \square 4 \square \square 2 \square^2 \square 16 \square \square 50 \square 27$ , $S \square 3 \square \square 4 \square \square 113 \square 10$ .             | $\Box 3\Box^2 \Box 36\Box$                                                                          |                                                                                   |
| <b>(b)</b> $S \square 2 \square$ represents the surface area of a sphere of radiu                                                                                                                  | s 2, and $S \square 3 \square$ represents the s                                                     | surface area of a sphere of radius                                                |
| 3.                                                                                                                                                                                                 |                                                                                                     |                                                                                   |
| 81. (a) $L \Box 0 \Box 5c \Box \Box 10 1 \frac{\Box 0 \Box 5c}{c^2} \Box^2 8 \Box 66 \text{ m}, L \Box 0 \Box 75 \Box 1 \Box$                                                                      | $5c \square \square 10  \frac{\square 0 \square 75c}{c^2} \square \stackrel{2}{\square} 6\square 6$ | 51 m, and                                                                         |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                             |                                                                                                     |                                                                                   |
| (b) It will appear to get shorter.                                                                                                                                                                 |                                                                                                     | X R                                                                               |
| (b) It will appear to get shorter.                                                                                                                                                                 |                                                                                                     | 1 2                                                                               |
|                                                                                                                                                                                                    |                                                                                                     | 10 1 □ 66                                                                         |
| <b>82.</b> (a) <i>R</i> □1□                                                                                                                                                                        | (b)                                                                                                 | ) 100 1 □ 48                                                                      |
| 82. (a) $R \sqcup 1 \sqcup 1 \sqcup 4 \sqcup 1 \sqcup 0 \sqcup 4 \sqcup 5 \sqcup 2 \operatorname{min},$                                                                                            |                                                                                                     | 200 1 □44                                                                         |
| <del>-</del>                                                                                                                                                                                       |                                                                                                     | 500 1 □ 41                                                                        |
|                                                                                                                                                                                                    |                                                                                                     | 1000 1 □ 39                                                                       |
| $R \square 10 \square$ $13 \square 7 \square 10 \square^0 \square 4 \square 1 \square 66 \text{ mm, and}$                                                                                          |                                                                                                     |                                                                                   |
| $ \begin{array}{c c} R \square 100\square & \hline  & \hline$                                                                          |                                                                                                     |                                                                                   |
| (c) The net change in $R$ as $x$ changes from 10 to 100 is $R \square 100 \square \square R \square 100 \square \square 1 \square 48 \square 1 \square 66 \square \square 0 \square 18 \text{ mm}$ | ı.                                                                                                  | (b) They tell us that the blood flows much faster (about $2\Box 75$ times faster) |
| <b>83.</b> (a) $\square$ $\square$ 0 $\square$ 1 $\square$ $\square$ 18500 $\square$ 0 $\square$ 25 $\square$ 0 $\square$ 1 $^2$ $\square$ 4440,                                                   |                                                                                                     | $0\Box 1$ cm from the center than $0\Box 1$ cm from the                           |

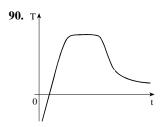
□ □0□4□ □ 18500 □0□25 □ 0□4<sup>2</sup> □ 1665.

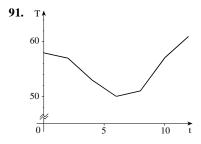

 $0 \square 1$  cm from the center than  $0 \square 1$  cm from the

edge.

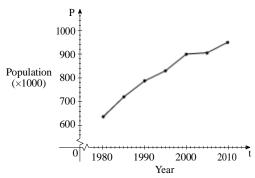
181CHAPTER 2FunctionsFunctions181


| ( <b>d</b> ) | The net change in $V$ as $r$ changes from $0 \square 1$ cm to $0 \square 5$ cm is $V \square 0 \square 5 \square \square V \square 0 \square 1 \square \square 0 \square 4440 \square \square 4440$ cm s. |     |                                 |                                   |
|--------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----|---------------------------------|-----------------------------------|
| 84. (a)      | $D \square 0 \square 1 \square \square 2 \square 3960 \square 0 \square 1 \square \square \square 0 \square 1 \square 2 \square 792 \square 01 \square 28 \square 1 miles$                                | (c) | r<br>0                          | □ □ <i>r</i> 4625                 |
|              | 2                                                                                                                                                                                                         |     | 0□1<br>0□2<br>0□3<br>0□4<br>0□5 | 4440<br>3885<br>2960<br>1665<br>0 |


182




89. We assume the grass grows linearly.


(c) The fines for violating the speed limits on the freeway.







92.

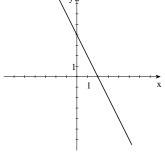


- 93. Answers will vary.
- 94. Answers will vary.
- 95. Answers will vary.

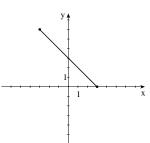
# 2.2 GRAPHS OF FUNCTIONS

1. To graph the function f we plot the points  $\Box x \Box f \Box x \Box \Box$  in a coordinate plane. To graph  $f \Box x \Box \Box x^2 \Box 2$ , we plot the points  $x \Box x^2 \Box 2$ . So, the point  $3 \Box 3^2 \Box 2 \Box \Box 3 \Box 7 \Box$  is

on the graph of f. The height of the graph of f above the x-axis when  $x \square 3$  is 7.


| х  | f  | $\Box x \Box y \Box$ |
|----|----|----------------------|
| 2  | 2  |                      |
| □1 | □1 |                      |
| 0  | □2 |                      |
| 1  | □1 |                      |
| 2  | 2  |                      |

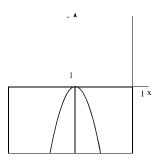



- **2.** If  $f \square 4 \square \square 10$  then the point  $\square 4 \square 10 \square$  is on the graph of f.
- **3.** If the point  $\Box 3\Box 7\Box$  is on the graph of f, then  $f\Box 3\Box \Box 7$ .
- **4.** (a)  $f \Box x \Box \Box x^2$  is a power function with an even exponent. It has graph IV.
  - **(b)**  $f \square x \square \square x^3$  is a power function with an odd exponent. It has graph II.
  - (c)  $f \Box x \Box \Box x$  is a root function. It has graph I.
  - (d)  $f \square x \square \square \square x \square$  is an absolute value function. It has graph III.

| х  | $f \square x \square \square x \square$ | y f |
|----|-----------------------------------------|-----|
| □6 | □4                                      |     |
| □4 | $\Box 2$                                |     |
| □2 | 0                                       | 1   |
| 0  | 2                                       | 1 x |
| 2  | 4                                       |     |
| 4  | 6                                       |     |
| 6  | 8                                       | +   |

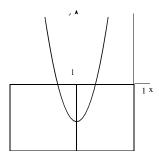
| x        | $f \square x \square \square 4 \square$ | \ y |
|----------|-----------------------------------------|-----|
| $\Box 2$ | 8                                       | \   |
| $\Box 1$ | 6                                       |     |
| 0        | 4                                       | 1   |
| 1        | 2                                       |     |
| 2        | 0                                       |     |
| 3        | $\Box 2$                                |     |
| 4        | □4                                      |     |
|          |                                         |     |




| х  | $f \square x \square \square \square x \square$ 3, |  |
|----|----------------------------------------------------|--|
| □3 | 6                                                  |  |
| □2 | 5                                                  |  |
| 0  | 3                                                  |  |
| 1  | 2                                                  |  |
| 2  | 1                                                  |  |
| 3  | 0                                                  |  |

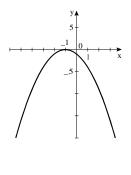


| r | $f \square x \square  \underline{\qquad \qquad } 3$ | у          |
|---|-----------------------------------------------------|------------|
| х | □, 2                                                |            |
| 0 | $\Box 1  \Box$                                      |            |
| 1 | 5                                                   | <b>†</b> , |
| 2 | □1                                                  | 1          |
| 3 | □0□<br>5                                            | †          |
| 4 | 0                                                   |            |
| 5 | 0□                                                  |            |


9.

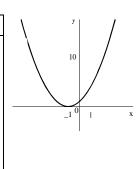
| х  | $f \square x \square \square$ |
|----|-------------------------------|
| □4 | □16                           |
| □3 | □9                            |
| □2 | □4                            |
| □1 | □1                            |
| 0  | 0                             |
|    |                               |




10.

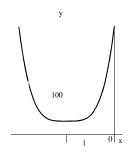
| x  | $f \square x \square \square x^2 \square$ |
|----|-------------------------------------------|
| □5 | 21                                        |
| □4 | 12                                        |
| □3 | 5                                         |
| □2 | 0                                         |
| □1 | □3                                        |
| 0  | □4                                        |




11.

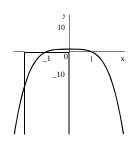
| r | $g \square x \square \square \square x \square$ |
|---|-------------------------------------------------|
| 5 | □16                                             |
| 3 | □4                                              |
| 2 | □1                                              |
| 1 | 0                                               |
| 0 | □1                                              |
| 1 | □4                                              |
| 3 | □16                                             |
|   | ]5<br>]3<br>]2<br>]1<br>0                       |




12.

| х        | $g \square x \square \square x^2 \square 2x \square$ |
|----------|------------------------------------------------------|
| □5       | 16                                                   |
| □3       | 4                                                    |
| $\Box 2$ | 1                                                    |
| □1       | 0                                                    |
| 0        | 1                                                    |
| 1        | 4                                                    |
| 3        | 16                                                   |




13.

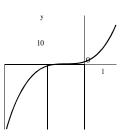
| х  | $r \square x \square \square$ |
|----|-------------------------------|
| □3 | 243                           |
| □2 | 48                            |
| □1 | 3                             |
| 0  | 0                             |
| 1  | 3                             |
| 2  | 48                            |
| 3  | 243                           |



14.

| х  | $r \square x \square \square 1 \square$ |
|----|-----------------------------------------|
| □3 | □80                                     |
| □2 | □15                                     |
| □1 | 0                                       |
| 0  | 1                                       |
| 1  | 0                                       |
| 2  | □15                                     |
| 3  | □80                                     |
|    |                                         |

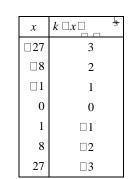


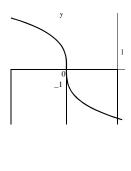

15.

| х  | $g \square x \square \square x^3 \square$ | , A |
|----|-------------------------------------------|-----|
| □3 | □35                                       |     |
| □2 | □16                                       | /   |
| □1 | □9                                        | 5   |
| 0  | □8                                        | x   |
| 1  | □7                                        |     |
| 2  | 0                                         |     |
| 3  | 19                                        |     |

16.

18.


| х   | $g \square x \square \square \square x \square$ |
|-----|-------------------------------------------------|
| □2  | □27                                             |
| □1  | □8                                              |
| 0   | $\Box 1$                                        |
| 1   | 0                                               |
| 2   | 1                                               |
| 2 3 | 8                                               |
| 4   | 27                                              |




**17.** 

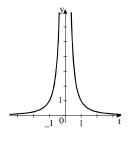
| х   | $k \square x \square \square {}^{\frac{1}{3}}$ |
|-----|------------------------------------------------|
| □27 | 3                                              |
| □8  | 2                                              |
| □1  | 1                                              |
| 0   | 0                                              |
| 1   | □1                                             |
| 8   | $\Box 2$                                       |
| 27  | □3                                             |





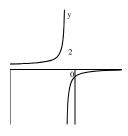


| х  | $f_{\square}\Box x\Box \Box 1\Box$ | У |
|----|------------------------------------|---|
| 0  | 1                                  |   |
| 1  | 2                                  |   |
| 4  | 3                                  |   |
| 9  | 4                                  | 1 |
| 16 | 5                                  |   |
| 25 | 6                                  |   |


| y , | / | / | / | /  | / | _ | / | _ | /  |     | / |   |
|-----|---|---|---|----|---|---|---|---|----|-----|---|---|
|     |   |   |   | 10 | 0 |   |   |   | 20 | ) . |   | x |
|     |   | _ |   |    |   |   |   |   |    |     |   |   |

| х                               | $f \square x \square \square \square x \square$ |
|---------------------------------|-------------------------------------------------|
| 2                               | 0                                               |
| 2                               | 1                                               |
| 6                               | 2                                               |
| 11                              | 3                                               |
| 18                              | 4                                               |
| <ul><li>27</li><li>38</li></ul> | 5                                               |
| 38                              | 6                                               |

|    |                                       | - |
|----|---------------------------------------|---|
| 10 | · · · · · · · · · · · · · · · · · · · | x |


21.

| х                                                        | $C \Box t \Box \Box \frac{1}{t^2}$ |
|----------------------------------------------------------|------------------------------------|
| □2                                                       | $\frac{1}{4}$                      |
| □1                                                       | 1                                  |
| $\Box \frac{1}{2}$                                       | 4                                  |
| $ \begin{array}{c}                                     $ | 16                                 |
| 0                                                        |                                    |
| 1<br>4<br>1<br>2                                         | 16                                 |
| 2                                                        | 4                                  |
| 1                                                        | 1                                  |
| 2                                                        | $\frac{1}{4}$                      |

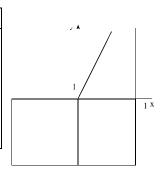


| 2 | 2 | 2. |
|---|---|----|
|   |   |    |
|   |   |    |
|   |   |    |

| х                                                       | $C \Box t \Box \Box \dfrac{1}{t \Box z}$                 |
|---------------------------------------------------------|----------------------------------------------------------|
| □3                                                      | $\frac{1}{2}$                                            |
| $\Box 2$                                                | 1                                                        |
| $\Box \frac{3}{2}$                                      | 2                                                        |
| $\Box 1$                                                |                                                          |
| $\begin{array}{c} \square \frac{1}{2} \\ 0 \end{array}$ | □2                                                       |
| 0                                                       | □1                                                       |
| 1                                                       | $\Box \frac{1}{2}$                                       |
| 2                                                       | $ \begin{array}{c}                                     $ |

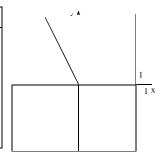


23.

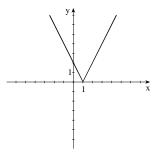

| х  | $H \square x \square \square$ | . A |
|----|-------------------------------|-----|
| □5 | 10                            |     |
| □4 | 8                             |     |
| □3 | 6                             |     |
| □2 | 4                             | 1,  |
| □1 | 2                             |     |
| 0  | 0                             |     |
|    |                               |     |

24.

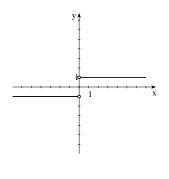
| х  | $H \square x \square \square \square x \square$ |   |   |
|----|-------------------------------------------------|---|---|
| □5 | 4                                               | 1 |   |
| □4 | 3                                               |   | 1 |
| □3 | 2                                               |   |   |
| □2 | 1                                               |   | Х |
| □1 | 0                                               |   |   |
| 0  | 1                                               |   |   |
| 1  | 2                                               |   |   |


25.

| х   | $G \square x \square \square \square x \square$ |
|-----|-------------------------------------------------|
| □5  | 0                                               |
| □2  | 0                                               |
| 0   | 0                                               |
| 1   | 2                                               |
| 2 5 | 4                                               |
| 5   | 10                                              |
|     |                                                 |

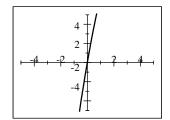



26.

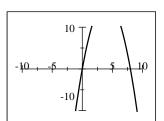

| х        | $G \square x \square \square \square x \square$ |
|----------|-------------------------------------------------|
| □5       | 10                                              |
| $\Box 2$ | 4                                               |
| $\Box 1$ | 2                                               |
| 0        | 0                                               |
| 1        | 0                                               |
| 3        | 0                                               |

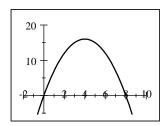


| х        | $f \square x \square \square \square 2x \square$ |
|----------|--------------------------------------------------|
| □5       | 12                                               |
| $\Box 2$ | 8                                                |
| 0        | 2                                                |
| 1        | 0                                                |
| 2 5      | 2                                                |
| 5        | 8                                                |



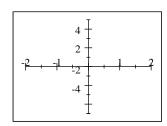

| х  | $f \qquad \Box \frac{x}{\Box x}$ |
|----|----------------------------------|
| □3 | □1                               |
| □2 | □1                               |
| □1 | □1                               |
| 0  | undefined                        |
| 1  | 1                                |
| 2  | 1                                |
|    |                                  |



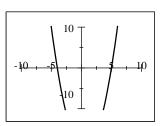


## **29.** $f \square x \square \square 8x \square x^2$

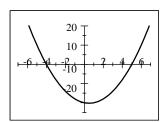
(a) [□5□5] by [□5□5]



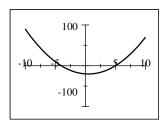

#### **(b)** [□10□10] by [□10□10]





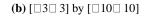


The viewing rectangle in part (c) produces the most appropriate graph of the equation.

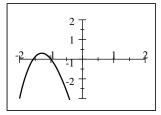
**30.** 
$$g \square x \square \square x^2 \square x \square 20$$

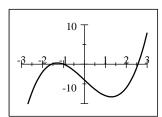



**(b)** 
$$[\Box 10\Box 10]$$
 by  $[\Box 10\Box 10]$ 



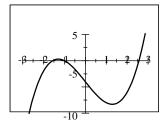




**(d)** [□10□10] by [□100□100]

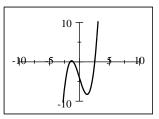



The viewing rectangle in part (c) produces the most appropriate graph of the equation.





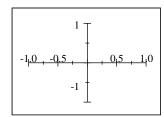


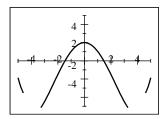

**(c)** [□3□ 3] by [□10□ 5]



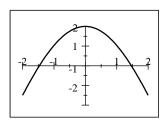



**(d)**  $[\Box 10 \Box 10]$  by  $[\Box 10 \Box 10]$ 

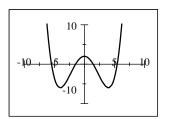



**183** CHAPTER 2 Functions SECTION 2.2 Graphs of Functions **183** 

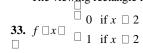
The viewing rectangle in part (c) produces the most appropriate graph of the equation.

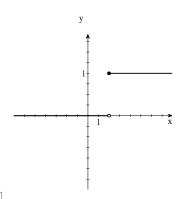

- 32.  $k \square x \square \square \square 1 x^4 \square x^2 \square$ 
  - **(a)** [□1□1] by [□1□1]

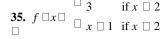


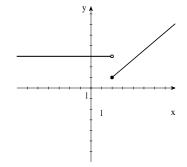

**(c)** [□5□ 5] by [□5□ 5]



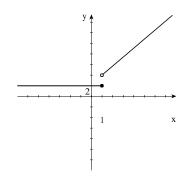

**(b)**  $[\Box 2 \Box 2]$  by  $[\Box 2 \Box 2]$ 



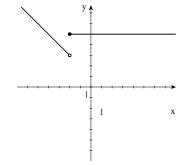


(d)  $[\Box 10\Box 10]$  by  $[\Box 10\Box 10]$ 



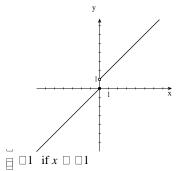

The viewing rectangle in part (d) produces the most appropriate graph of the equation.

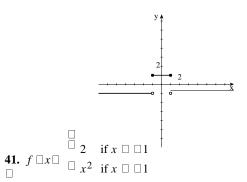


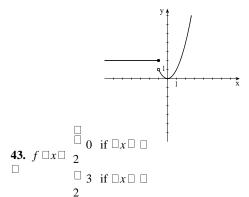


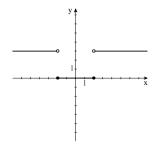



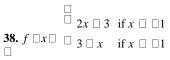


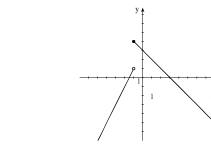


34.  $f \square x \square \square \square 1$  if  $x \square 1$ 

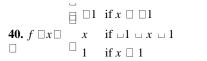


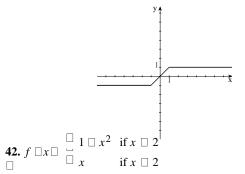


36.  $f \square x \square$   $\square$   $\square$  1  $\square x$  if  $x \square \square 2$   $\square$  5 if  $x \square \square 2$ 

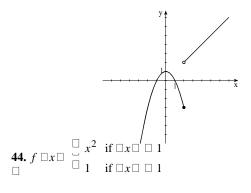


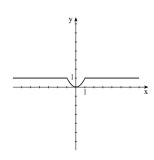



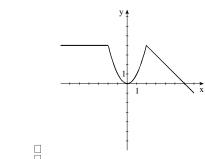



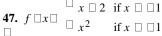



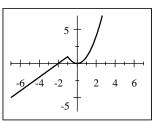






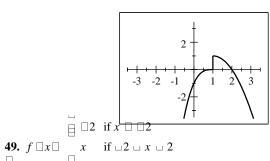


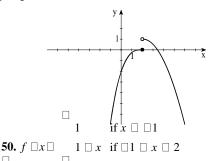




4 if 
$$x \square \square 2$$
  
45.  $f \square x \square \square \square x^2$  if  $\square 2 \square x \square 2$   
 $\square \square x \square 6$  if  $x \square 2$ 








**48.** 
$$f \square x \square$$
  $\square$   $\square x \square x^2$  if  $x \square 1$   $\square x \square 1 \square^3$  if  $x \square$ 

The first graph shows the output of a typical graphing device. However, the actual graph

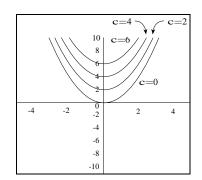
of this function is also shown, and its difference from the graphing device's version should be noted.



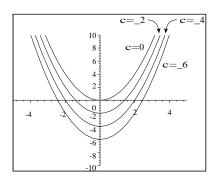


- **51.** The curves in parts (a) and (c) are graphs of a function of x, by the Vertical Line Test.
- **52.** The curves in parts (b) and (c) are graphs of functions of x, by the Vertical Line Test.
- **53.** The given curve is the graph of a function of x, by the Vertical Line Test. Domain:  $[\Box 3 \Box 2]$ . Range:  $[\Box 2 \Box 2]$ .
- **54.** No, the given curve is not the graph of a function of x, by the Vertical Line Test.
- **55.** No, the given curve is not the graph of a function of x, by the Vertical Line Test.
- **56.** The given curve is the graph of a function of x, by the Vertical Line Test. Domain:  $[\Box 3 \Box 2]$ . Range:  $\Box \Box 2 \Box \Box \Box \Box \Box 3$ ].
- **57.** Solving for y in terms of x gives  $3x \square 5y \square 7 \square y \square \frac{3}{5}x \square \frac{7}{5}$  This defines y as a function of x.
- **58.** Solving for y in terms of x gives  $3x^2 \Box y \Box 5 \Box y \Box 3x^2 \Box 5$ . This defines y as a function of x.
- **59.** Solving for y in terms of x gives  $x \Box y^2 \Box y \Box \Box x$ . The last equation gives two values of y for a given value of x. Thus, this equation does not define y as a function of x.

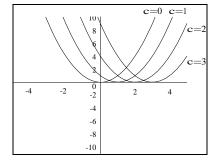
The last equation gives two values of y for a given value of x. Thus, this equation does not define y as a function of x.


- **61.** Solving for y in terms of x gives  $2x \Box 4y^2 \Box 3 \Box 4y^2 \Box 2x \Box 3 \Box y \Box \Box_2 \Box 2x \Box 3$ . The last equation gives two values of y for a given value of x. Thus, this equation does not define y as a function of x.
- **62.** Solving for y in terms of x gives  $2x^2 \Box 4y^2 \Box 3 \Box 4y^2 \Box 2x^2 \Box 3 \Box y \Box 2^{\frac{1}{2}} 2x^{\frac{1}{2}} 2x^{\frac{1}{2}} 3$ . The last equation gives two values of y for a given value of x. Thus, this equation does not define y as a function of x.
- **63.** Solving for y in terms of x using the Quadratic Formula gives  $2xy \square 5y^2 \square 4 \square 5y^2 \square 2xy \square 4 \square 0 \square$

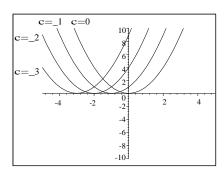
given value of x. Thus, this equation does not define y as a function of x.


- **64.** Solving for y in terms of x gives  $\sqrt[]{y} \square 5 \square x \square y \square \square x \square 5 \square^2$ . This defines y as a function of x.
- **65.** Solving for y in terms of x gives  $2 \square x \square \square y \square 0 \square y \square \square 2 \square x \square$ . This defines y as a function of x.
- **66.** Solving for y in terms of x gives  $2x \Box \Box y \Box \Box 0 \Box \Box y \Box \Box 2x$ . Since  $\Box a \Box \Box \Box a \Box$ , the last equation gives two values of y for a given value of x. Thus, this equation does not define y as a function of x.
- **67.** Solving for y in terms of x gives  $x \square y^3 \square y \square \frac{1}{3} x$ . This defines y as a function of x.
- **68.** Solving for y in terms of x gives  $x \square y^4 \square y \square \square q^4 \overline{x}$ . The last equation gives two values of y for any positive value of x.

Thus, this equation does not define y as a function of x.

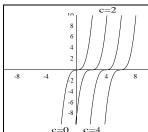

**69.** (a)  $f \square x \square \square x^2 \square c$ , for  $c \square 0, 2, 4$ , and 6.



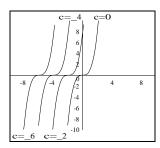

**(b)**  $f \square x \square \square x^2 \square c$ , for  $c \square 0$ ,  $\square 2$ ,  $\square 4$ , and  $\square 6$ .



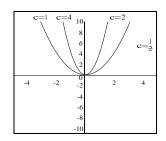
- (c) The graphs in part (a) are obtained by shifting the graph of  $f \Box x \Box \Box x^2$  upward c units,  $c \Box 0$ . The graphs in part (b) are obtained by shifting the graph of  $f \Box x \Box \Box x^2$  downward c units.
- **70.** (a)  $f \square x \square \square \square x \square c \square^2$ , for  $c \square 0, 1, 2,$  and 3.



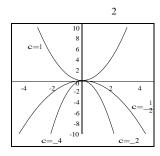

**(b)**  $f \square x \square \square \square x \square c \square^2$ , for  $c \square 0$ ,  $\square 1$ ,  $\square 2$ , and  $\square 3$ .



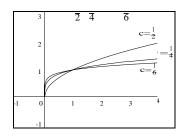

(c) The graphs in part (a) are obtained by shifting the graph of  $y \square x^2$  to the right 1, 2, and 3 units, while the graphs in part (b) are obtained by shifting the graph of  $y \square x^2$  to the left 1, 2, and 3 units.


**71.** (a)  $f \square x \square \square \square x \square c \square^3$ , for  $c \square 0, 2, 4$ ,




**(b)**  $f \square x \square \square \square x \square c \square^3$ , for  $c \square 0$ ,  $\square 2$ ,  $\square 4$ , and  $\square 6$ .

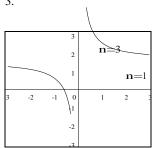



- (c) The graphs in part (a) are obtained by shifting the graph of  $f \Box x \Box \Box x^3$  to the right c units,  $c \Box 0$ . The graphs in part (b) are obtained by shifting the graph of  $f \Box x \Box \Box x^3$  to the left  $\Box c \Box$  units,  $c \Box 0$ .
- **72.** (a)  $f \square x \square \square cx^2$ , for  $c \square \mathbb{1}_{\overline{2}}^{-1}$ , 2, and

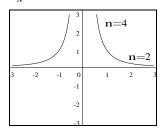



**(b)**  $f \square x \square \square cx^2$ , for  $c \square 1, \square 1, \square^1$ , and  $\square 2$ .




- (c) As  $\Box c\Box$  increases, the graph of  $f\Box x\Box\Box cx^2$  is stretched vertically. As  $\Box c\Box$  decreases, the graph of f is flattened. When
  - $c \square 0$ , the graph is reflected about the *x*-axis.
- **73.** (a)  $f \square x \square \square x^c$ , for  $c \square 1$ , 1, and 1




**(b)**  $f \square x \square \square x^c$ , for  $c \square 1$ ,  $^1$ , and  $^1$ .



- (c) Graphs\_of even roots are similar to  $y \Box \overline{x}$ , graphs of odd roots are similar to  $y \Box \overline{x}$ . As c increases, the graph of  $y \Box \overline{x}$  becomes steeper near  $x \Box 0$  and flatter when  $x \Box 1$ .
- **74.** (a)  $f \Box x \Box \xrightarrow{1 \ x^n}$ , for  $n \Box 1$  and 3.

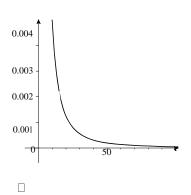


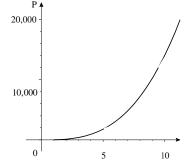
**(b)**  $f \square x \square \square \frac{1}{x^n}$ , for  $n \square 2$  and 4.



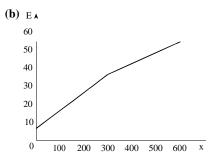
- (c) As n increases, the graphs of  $y \Box 1 \Box x^n$  go to zero faster for x large. Also, as n increases and x goes to 0, the graphs of  $y \Box 1 \Box x^n$  go to infinity faster. The graphs of  $y \Box 1 \Box x^n$  for n odd are similar to each other. Likewise, the graphs for n even are similar to each other.

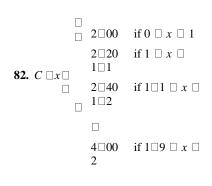
we have  $y \Box 1 \Box \Box_{6}^{7} \Box x \Box 2 \Box \Box y \Box \Box_{6}^{7} x \Box_{3}^{2} \Box 1 \Box y \Box \Box_{6}^{7} x \Box_{3}^{4}$ . Thus the function is  $f \Box x \Box \Box \Box_{6}^{7} x \Box_{3}^{4}$  for  $\Box 2 \Box x \Box 4$ .

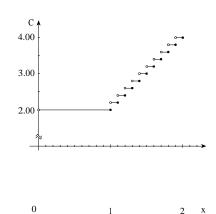

of the line, we have  $y \square 3 \square 5 \square x \square 6 \square 9 \square 5 x \square 10 \square 3$   $3 \square 5 \square x \square 6 \square 9 \square 5 x \square 10 \square 3$   $3 \square 3 \square 3 \square 6 \square 6$ . Thus the function is  $f \square x \square 1 \square 5 x \square 1$ , for  $1 \square 3 \square 3 \square 3 \square 3 \square 6$ .

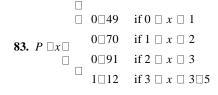

- 77. First solve the circle for  $y: x^2 \Box y^2 \Box 9 \Box y^2 \Box 9 \Box x^2 \Box y \Box y^2 \Box 9 \Box x^2$ . Since we seek the top half of the circle, we choose  $y \Box 9 \Box x^2$ . So the function is  $f \Box x \Box \Box 9 \Box x^2$ ,  $\Box 3 \Box x \Box 3$ .
- **78.** First solve the circle for y:  $x^2 \Box y^2 \Box 9 \Box y^2 \Box 9 \Box x^2 \Box \underline{y} \Box \underline{y} \Box \underline{y} \Box \underline{y}^2$ . Since we seek the bottom half of the circle, we choose  $y \Box \Box \overline{9} \Box x^2$ . So the function is  $f \Box x \Box \Box \Box \overline{9} \Box x^2$ ,  $\Box 3 \Box x \Box 3$ .
  - **79.** We graph  $T \Box r \Box = 0 \Box 5$  for  $10 \quad r = 100$ . As the  $\Box r^2$  balloon  $\Box r$

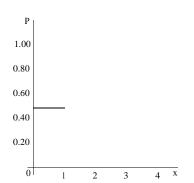
**80.** We graph  $P \square \square \square \square$  for  $1 \square \square \square 10$ . As wind speed  $14 \square 1 \square^3$ 


is inflated, the skin gets thinner, as we would expect.


increases, so does power output, as expected.

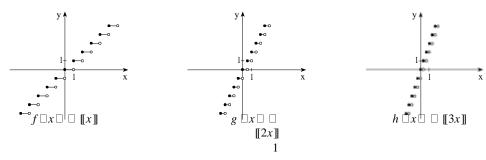




**81.** (a)  $E \square x \square \square 36\square 00 \square 0\square 06 \square x \square 300\square$  if  $300 \square x$ 





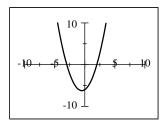


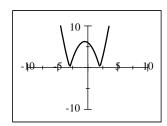





- **84.** The graph of  $x \Box y^2$  is not the graph of a function because both  $\Box 1 \Box 1 \Box$  and  $\Box \Box 1 \Box 1 \Box$  satisfy the equation  $x \Box y^2$ . The graph of  $x \Box y^3$  is the graph of a function because  $x \Box y^3 \Box x^{1\Box 3} \Box y$ . If n is even, then both  $\Box 1 \Box 1 \Box$  and  $\Box \Box 1 \Box 1 \Box$  satisfies the equation  $x \Box y^n$ , so the graph of  $x \Box y^n$  is not the graph of a function. When n is odd,  $y \Box x^{1\Box n}$  is defined for all real numbers, and since  $y \Box x^{1\Box n} \Box x \Box y^n$ , the graph of  $x \Box y^n$  is the graph of a function.
- **85.** Answers will vary. Some examples are almost anything we purchase based on weight, volume, length, or time, for example gasoline. Although the amount delivered by the pump is continuous, the amount we pay is rounded to the penny. An example involving time would be the cost of a telephone call.

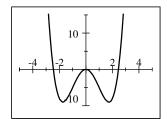
86.

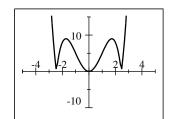




The graph of  $k \square x \square \square \llbracket nx \rrbracket$  is a step function whose steps are each n wide.

87. (a) The graphs of  $f \square x \square \square x^2 \square x \square 6$  and  $g \square x \square \square \square x^2 \square x \square 6$  are shown in the viewing rectangle  $[\square 10 \square 10]$  by  $[\square 10 \square$ 

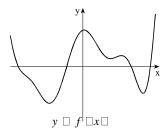
10].

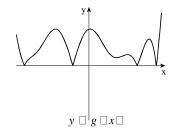

x-axis.






For those values of x where  $f \square x \square \square 0$ , the graphs of f and g coincide, and for those values of x where  $f \square x \square \square 0$ , the graph of g is obtained from that of f by reflecting the part below the x-axis about the x-axis.


(b) The graphs of  $f \square x \square \square x^4 \square 6x^2$  and  $g \square x \square \square x^4 \square 6x^2$  are shown in the viewing rectangle  $[\square 5 \square 5]$  by  $[\square 10 \square x^4 \square 6x^2 \square x^4 \square x^4$ 



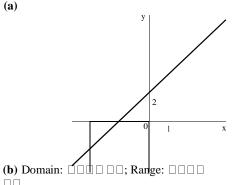



For those values of x where  $f \square x \square \square 0$ , the graphs of f and g coincide, and for those values of x where  $f \square x \square \square 0$ , the graph of g is obtained from that of f by reflecting the part below the x-axis above the x-axis.

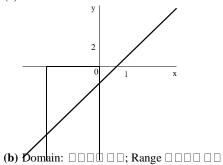
(c) In general, if  $g \square x \square \square \square f \square x \square \square$ , then for those values of x where  $f \square x \square \square 0$ , the graphs of f and g coincide, and for those values of x where  $f \square x \square \square 0$ , the graph of g is obtained from that of f by reflecting the part below the x-axis above the



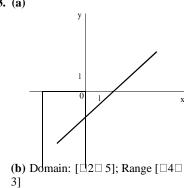



## 2.3 GETTING INFORMATION FROM THE GRAPH OF A FUNCTION

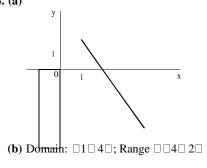
**1.** To find a function value  $f \square a \square$  from the graph of f we find the height of the graph above the x-axis at  $x \square a$ . From the graph of f we see that  $f \square 3 \square \square 4$  and  $f \square 1 \square \square 0$ . The net change in f between  $f \square 1$  and  $f \square 3$  is  $f \square 3 \square \square 1$  and  $f \square 1$  in  $f \square 1$  in


**3.** (a) If f is increasing on an interval, then the y-values of the points on the graph rise as the x-values increase. From the graph of f we see that f is increasing on the intervals  $\Box \Box \Box$ .

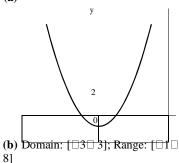
**(b)** If f is decreasing on an interval, then y-values of the points on the graph fall as the x-values increase. From the graph of f we see that f is decreasing on the intervals  $\Box 2\Box 4\Box$  and  $\Box 5\Box \Box\Box$ .



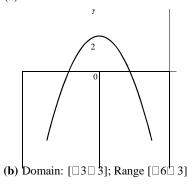




12. (a)

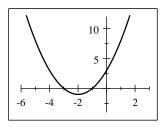



13. (a)

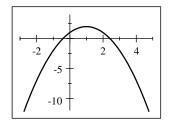



14. (a)




15. (a)




16. (a)



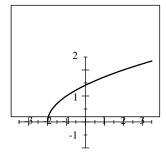
17. (a)




18. (a)

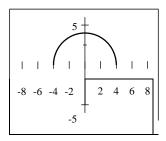


(b) Domain:  $\square$   $\square$   $\square$   $\square$ ; Range:  $[\square 1 \square$ 


**(b)** Domain:  $\square \square \square \square \square \square$ ; Range:  $\square \square \square \square 2$ ]

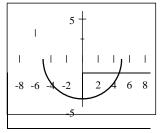
19. (a)




(b) Domain:  $[1 \square \square \square]$ ; Range:  $[0 \square$ 

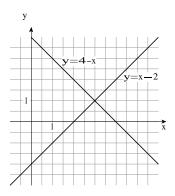
**20.** (a)




**(b)** Domain:  $[\Box 2 \Box \Box \Box; Range: [0 \Box \Box \Box]$ 

21. (a)




**(b)** Domain: [□4□ 4]; Range: [0□ 4]

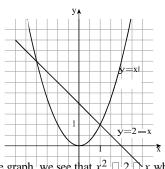
22. (a)




**(b)** Domain:  $[\Box 5 \Box 5]$ ; Range:  $[\Box 5 \Box 0]$ 

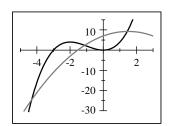
23.




- (a) From the graph, we see that  $x \square 2 \square 4 \square x$  when  $x \square 3$ .
- **(b)** From the graph, we see  $x \square 2 \square 4 \square x$  when  $x \square 3$ .

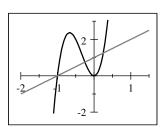
24.




- (a) From the graph, we see that  $\Box 2x \Box 3 \Box 3x \Box 7$  when  $x \Box 2$ .
- **(b)** From the graph, we see that  $\Box 2x \Box 3 \Box 3x \Box 7$  when  $x \Box 2$ .

25.

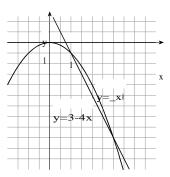



- (a) From the graph, we see that  $x^2 \square 2 \square x$  when  $x \square \square 2$  or  $x \square 1$ .
- **(b)** From the graph, we see that  $x^2 \Box 2 \Box x$  when  $\Box 2 \Box x \Box 1$ .

27.

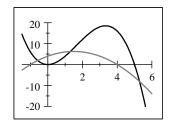


- (a) We graph  $y \Box x^3 \Box 3x^2$  (black) and  $y \Box x^2 \Box 3x \Box 7$  (gray). From the graph, we see that the graphs intersect at  $x \Box 4\Box 32, x \Box 1\Box 12$ , and  $x \Box 1\Box 44$ .
- **(b)** From the graph, we see that  $x^3 \Box 3x^2 \Box \Box x^2 \Box 3x \Box 7$  on approximately  $[\Box 4 \Box 32 \Box \Box 1 \Box 12]$  and  $[1 \Box 44 \Box \Box]$ .


29.

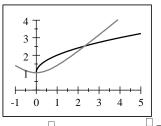


- (a) We graph  $y \Box 16x^3 \Box 16x^2$  (black) and  $y \Box x \Box 1$  (gray). From the graph, we see that the graphs intersect at  $x \Box \Box 1$ ,  $x \Box \Box \frac{1}{4}$ , and  $x \Box \frac{1}{4}$ .
- **(b)** From the graph, we see that  $16x^3 \square 16x^2 \square x \square 1$  on


$$\begin{bmatrix} \Box \\ \Box \end{bmatrix}$$
  $\begin{bmatrix} \Box \end{bmatrix}$   $\begin{bmatrix} 1 \\ \Box \end{bmatrix}$  and  $\begin{bmatrix} \Box \\ \Box \end{bmatrix}$ 

26.



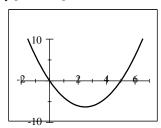

- (a) From the graph, we see that  $\Box x^2 \Box 3 \Box 4x$  when  $x \Box 1$  or  $x \Box 3$ .
- **(b)** From the graph, we see that  $\Box x^2 \Box 3 \Box 4x$  when  $1 \Box x \Box 3$ .

28.

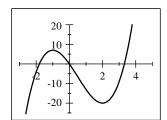


- (a) We graph  $y \Box 5x^2 \Box x^3$  (black) and  $y \Box \Box x^2 \Box 3x \Box 4$  (gray). From the graph, we see that the graphs intersect at  $x \Box \Box 0\Box 58$ ,  $x \Box 1\Box 29$ , and  $x \Box 5\Box 29$ .
- (b) From the graph, we see that  $5x^2 \Box x^3 \Box \Box x^2 \Box 3x \Box 4$  on approximately  $[\Box 0 \Box 58 \Box 1 \Box 29]$  and  $[5 \Box 29 \Box \Box \Box]$ .

30.

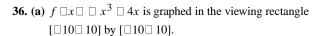


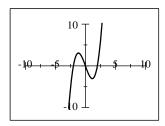

- (a) We graph  $y ext{ } ext{ } ext{ } 1 ext{ } ex$
- **(b)** From the graph, we see that  $1 \Box x \Box x \Box x \Box 1$  on approximately  $\Box 0 \Box 2 \Box 31 \Box$ .


195

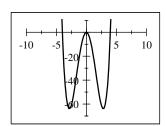
- **31.** (a) The domain is  $[\Box 1 \Box 4]$  and the range is  $[\Box 1 \Box 3]$ .
- **32.** (a) The domain is  $[\Box 2 \Box 3]$  and the range is  $[\Box 2 \Box 3]$ .
  - **(b)** The function is increasing on  $\Box 0 \Box 1 \Box$  and decreasing on  $\Box 2 \Box 0 \Box$  and  $\Box 1 \Box 3 \Box$ .
- **33.** (a) The domain is  $[\Box 3 \Box 3]$  and the range is  $[\Box 2 \Box 2]$ .
- **34.** (a) The domain is  $[\Box 2 \Box 2]$  and the range is  $[\Box 2 \Box 2]$ .
  - **(b)** The function is increasing on  $\Box\Box\Box\Box\Box\Box\Box\Box\Box$  and decreasing on  $\Box\Box\Box\Box\Box\Box\Box\Box\Box\Box$  and  $\Box\Box\Box\Box\Box\Box$ .
- **35.** (a)  $f \Box x \Box \Box x^2 \Box 5x$  is graphed in the viewing rectangle

 $[\square 2 \square 7]$  by  $[\square 10 \square 10]$ .





- **(b)** The domain is  $\square \square \square \square \square \square$  and the range is  $[\square 6 \square 25 \square \square \square]$ .
- (c) The function is increasing on  $\Box 2 \Box 5 \Box \Box \Box$ . It is decreasing on  $\Box \Box \Box \Box 2 \Box 5 \Box$ .
- 37. (a)  $f \Box x \Box \Box 2x^3 \Box 3x^2 \Box 12x$  is graphed in the viewing rectangle  $[\Box 3 \Box 5]$  by  $[\Box 25 \Box 20]$ .

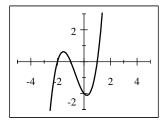



- **(b)** The domain and range are  $\Box \Box \Box \Box \Box \Box$ .
- (c) The function is increasing on  $\Box\Box\Box\Box\Box\Box\Box\Box$  and  $\Box\Box\Box$

It is decreasing on  $\Box \Box \Box \Box \Box \Box \Box \Box$ .





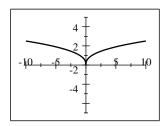

- **(b)** The domain and range are  $\Box \Box \Box \Box \Box \Box$ .
- (c) The function is increasing on □□□□□1□15□ and □1□15□□□. It is decreasing on □□1□15□ 1□15□.
- **38.** (a)  $f \Box x \Box \Box x^4 \Box 16x^2$  is graphed in the viewing rectangle  $[\Box 10\Box 10]$  by  $[\Box 70\Box 10]$ .



- **(b)** The domain is  $\square \square \square \square \square \square$  and the range is  $[\square 64 \square \square \square$ .

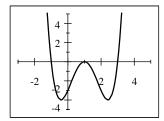
196

**39.** (a)  $f \square x \square \square x^3 \square 2x^2 \square x \square 2$  is graphed in the viewing rectangle  $[\square 5 \square 5]$  by  $[\square 3 \square 3]$ .




- **(b)** The domain and range are  $\Box \Box \Box \Box \Box$ .
- (c) The function is increasing on  $\Box\,\Box\,\Box\,\Box\,1\,\Box\,55\,\Box$  and

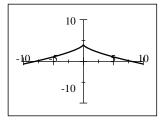
 $\square 0 \square 22 \square \square \square$ . It is decreasing on  $\square \square 1 \square 55 \square 0 \square 22 \square$ 


**41.** (a)  $f \Box x \Box \Box x^{2\Box 5}$  is graphed in the viewing rectangle

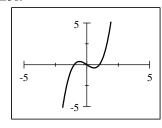
 $[\Box 10\Box 10]$  by  $[\Box 5\Box 5]$ .

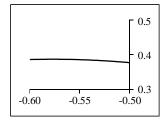


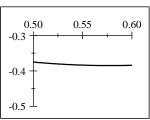
- **(b)** The domain is  $\Box \Box \Box \Box \Box \Box \Box$  and the range is  $[0 \Box \Box \Box]$ .
- (c) The function is increasing on  $\Box 0 \Box \Box \Box$ . It is decreasing on  $\Box \Box \Box \Box \Box \Box \Box \Box$ .


**40.** (a)  $f \Box x \Box \Box x^4 \Box 4x^3 \Box 2x^2 \Box 4x \Box 3$  is graphed in the viewing rectangle  $[\Box 3 \Box 5]$  by  $[\Box 5 \Box 5]$ .



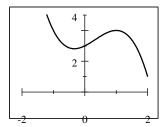

- (b) The domain is  $\square \square \square \square \square$  and the range is  $[\square 4 \square \square \square]$ .
- (c) The function is increasing on  $\Box 0 \Box 4 \Box 1 \Box$  and  $\Box 2 \Box 4 \Box$   $\Box \Box$ .

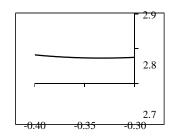

**42.** (a)  $f \Box x \Box \Box 4 \Box x^{2 \Box 3}$  is graphed in the viewing rectangle

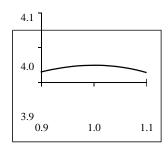

 $[\Box 10\Box 10]$  by  $[\Box 10\Box 10]$ .



- (c) The function is increasing on  $\Box \Box \Box \Box \Box \Box \Box$ . It is decreasing on  $\Box \Box \Box \Box \Box \Box$ .
- **43.** (a) Local maximum: 2 at  $x \square 0$ . Local minimum:  $\square 1$  at  $x \square \square 2$  and 0 at  $x \square 2$ .
- **44.** (a) Local maximum: 2 at  $x \square \square 2$  and 1 at  $x \square 2$ . Local minimum:  $\square 1$  at  $x \square 0$ .
- **45.** (a) Local maximum: 0 at  $x \square 0$  and 1 at  $x \square 3$ . Local minimum:  $\square 2$  at  $x \square \square 2$  and  $\square 1$  at  $x \square 1$ .
- **46.** (a) Local maximum: 3 at  $x \square \square 2$  and 2 at  $x \square \square 1$ . Local minimum: 0 at  $x \square \square 1$  and  $\square 1$  at  $x \square \square 2$ .
- **47.** (a) In the first graph, we see that  $f \Box x \Box \Box x^3 \Box x$  has a local minimum and a local maximum. Smaller x- and y-ranges show that  $f \Box x \Box$  has a local maximum of about  $0 \Box 38$  when  $x \Box 0 \Box 58$  and a local minimum of about  $\Box 0 \Box 38$  when  $x \Box 0 \Box 58$ .

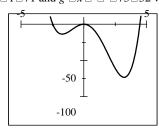


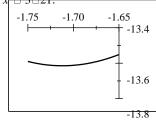



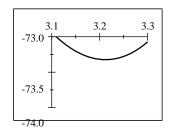




**48.** (a) In the first graph, we see that  $f \Box x \Box \Box \exists x \Box x^2 \Box x^3$  has a local minimum and a local maximum. Smaller x- and y-ranges show that  $f \square x \square$  has a local maximum of about  $4 \square 00$  when  $x \square 1 \square 00$  and a local minimum of about  $2 \square 81$ when

 $x \square \square 0 \square 33$ .

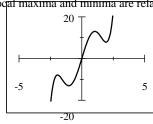


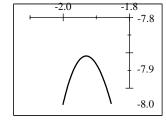



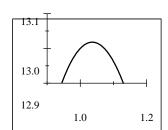



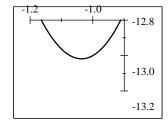

- **49.** (a) In the first graph, we see that  $g \square x \square \square x^4 \square 2x^3 \square 11x^2$  has two local minimums and a local maximum. The local maximum is  $g \square x \square \square 0$  when  $x \square 0$ . Smaller x- and y-ranges show that local minima are  $g \square x \square \square$

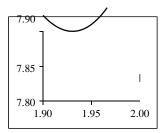
 $x \square \square 1 \square 71$  and  $g \square x \square \square \square 73 \square 32$  when  $x_{\square} \square 3 \square 21$ 





- **50.** (a) In the first graph, we see that  $g \square x \square \square x^5 \square 8x^3 \square 20x$  has two local minimums and two local maximums. The local maximums are  $g \square x \square \square \square 7\square 87$  when  $x \square \square 1\square 93$  and  $g \square x \square \square 13\square 02$  when  $x \square 1\square 04$ . Smaller x- and y-ranges show that local minimums are  $g \square x \square \square \square 13 \square 02$  when  $x \square \square 1 \square 04$  and  $g \square x \square \square 7 \square 87$  when  $x \square 1 \square 93$ . Notice that since  $g \square x \square$  is odd,

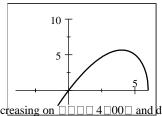

the local maxima and minima are related.



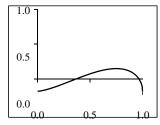


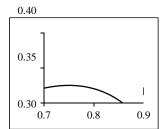







| <b>(b)</b> | The function is increasing on $\square$ |
|------------|-----------------------------------------------------------------------------------------------------------------------------------|
| □ 1        | $\square 04\square$ and                                                                                                           |
|            | $\Box 1\Box 04\Box 1\Box 93\Box$ .                                                                                                |


199

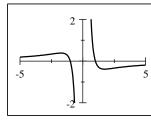

**51.** (a) In the first graph, we see that  $U \square x \square \square x x x y - x y$  has only a local maximum. Smaller x- and y-ranges show that  $U \square x \square y$ 

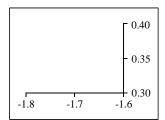
has a local maximum of about  $5\square 66$  when  $x \square 4\square 00$ .

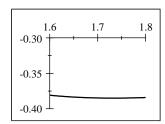


- 5.65 5.60 3.9 4.0 4.1
- **52.** (a) In the first viewing rectangle below, we see that  $U \square x \square \square x \square x^2$  has only a local maximum. Smaller x- and y-ranges show that  $U \square x \square$  has a local maximum of about  $0 \square 32$  when  $x \square 0 \square 75$ .



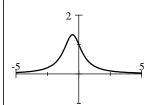


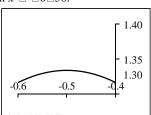


- **(b)** The function is increasing on  $\Box 0 \Box 0 \Box 75 \Box$  and decreasing on  $\Box 0 \Box 75 \Box 1 \Box$ .
- **53.** (a) In the first graph, we see that  $V \Box x \Box = \frac{1 \Box x^2}{x^3}$  has a local minimum and a local maximum. Smaller x- and y-ranges


show that  $V \square x \square$  has a local maximum of about  $0 \square 38$  when  $x \square \square 1 \square 73$  and a local minimum of about  $\square 0 \square 38$  when

 $x \square 1 \square 73$ .

 $x^2$ 



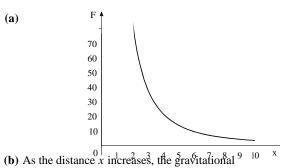






- **54.** (a) In the first viewing rectangle below, we see that  $V \square x \square \square \square 1$  has only a local maximum. Smaller x- and

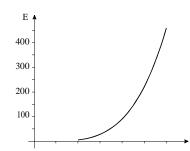
y-ranges show that  $V \square x \square$  has a local maximum of about  $1 \square 33$  when  $x \square \square 0 \square 50$ .






- **55.** (a) At 6 A.M. the graph shows that the power consumption is about 500 megawatts. Since  $t ext{ } ext{$ 
  - **(b)** The power consumption is lowest between 3 A.M. and 4 A.M..

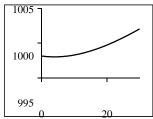
|     | <b>(c)</b> | The power consumption is highest just before 12 noon.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|-----|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | <b>(d)</b> | The net change in power consumption from 9 A.M. to 7 P.M. is $P \square 19 \square \square P \square 9 \square \square 690 \square 790 \square \square 100$ megawatts.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 56. | (a)        | The first noticeable movements occurred at time $t 	ext{ } 	e$ |
|     | <b>(b)</b> | It seemed to end at time $t = 30$ seconds.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|     | (c)        | Maximum intensity was reached at $t \square 17$ seconds.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 57. | (a)        | This person appears to be gaining weight steadily until the age of 21 when this person's weight gain slows down. The                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     |            | person continues to gain weight until the age of 30, at which point this person experiences a sudden weight loss. Weight                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|     |            | gain resumes around the age of 32, and the person dies at about age 68. Thus, the person's weight $W$ is increasing on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|     |            | $\square 0 \square 30 \square$ and $\square 32 \square 68 \square$ and decreasing on $\square 30 \square 32 \square$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|     | <b>(b)</b> | The sudden weight loss could be due to a number of reasons, among them major illness, a weight loss program, etc.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|     | <b>(c)</b> | The net change in the person's weight from age 10 to age 20 is $W \square 20 \square \square W \square 10 \square \square 150 \square 50 \square 100$ lb.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|     |            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 58. | (a)        | Measuring in hours since midnight, the salesman's distance from home $D$ is increasing on $\Box 8\Box 9\Box$ , $\Box 10\Box 12\Box$ , and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|     |            | $\Box$ 15 $\Box$ 17 $\Box$ , constant on $\Box$ 9 $\Box$ 10 $\Box$ , $\Box$ 12 $\Box$ 13 $\Box$ , and $\Box$ 17 $\Box$ 18 $\Box$ , and decreasing on $\Box$ 13 $\Box$ 15 $\Box$ and $\Box$ 18 $\Box$ 19 $\Box$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|     | <b>(b)</b> | The salesman travels away from home and stops to make a sales call between 9 A.M. and 10 A.M., and then travels                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     |            | further from home for a sales call between 12 noon and 1 P.M. Next he travels along a route that takes him closer to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|     |            | home before taking him further away from home. He then makes a final sales call between 5 P.M. and 6 P.M. and then                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     |            | returns home.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|     | (c)        | The net change in the distance $D$ from noon to 1 P.M. is $D \square 1$ P.M. $\square D \square noon \square \square 0$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 59. | (a)        | The function W is increasing on $\Box 0 \Box 150 \Box$ and $\Box 300 \Box \Box$ and decreasing on $\Box 150 \Box 300 \Box$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|     |            | W has a local maximum at $x \square 150$ and a local minimum at $x \square 300$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|     | ` ′        | The net change in the depth $W$ from 100 days to 300 days is $W \square 300 \square \square W \square 100 \square \square 25 \square 75 \square \square 50$ ft.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|     | (0)        | 110 not shange in the depair without 100 days to 500 days in will be a 100 in without 100 and 100 in without 100 and 100 in will be a 100 in without 100 and 100 in without 100 and 100 and 100 in without 100 and 100 |
| 60. | (a)        | The function $P$ is increasing on $\Box 0 \Box 25 \Box$ and decreasing on $\Box 25 \Box 50 \Box$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|     | <b>(b)</b> | The maximum population was 50,000, and it was attained at $x = 25$ years, which represents the year 1975.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|     | (c)        | The net change in the population P from 1970 to 1990 is $P \square 40 \square \square P \square 20 \square \square 40 \square 40 \square 0$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

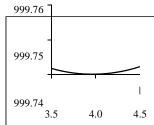

61. Runner A won the race. All runners finished the race. Runner B fell, but got up and finished the race.





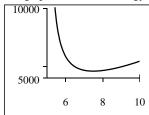
attraction *F* decreases. The rate of decrease is rapid at first, and slows as the distance increases.

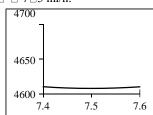

63. (a)




**(b)** As the temperature *T* increases, the energy *E* increases. The rate of increase gets larger as the temperature increases.

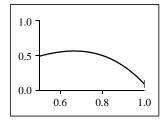
**64.** In the first graph, we see the general location of the minimum of  $V = 999 = 87 = 0 = 0006426T = 0 = 000085043T^2 = 00000679T^3$ 

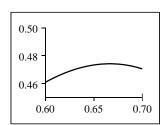

is around  $T \Box 4$ . In the second graph, we isolate the minimum, and from this graph, we see that the minimum volume of 1 kg of water occurs at  $T \Box 3\Box 96^{\Box}$  C.





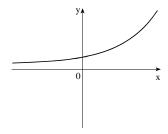

**65.** In the first graph, we see the general location of the minimum of  $E \square \square \square \square \square$   $\frac{10}{\square \square 5}$ . In the second graph, we isolate the  $2\square 73\square^3$ 

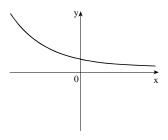

minimum, and from this graph, we see that energy is minimized when  $\Box$   $\Box$   $7\Box$ 5 mi/h.



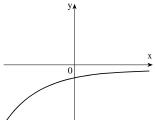



**66.** In the first graph, we see the general location of the maximum of  $\Box r \Box r \Box 3\Box 2\Box 1\Box r\Box r^2$  is around  $r\Box 0\Box 7$  cm. In the second graph, we isolate the maximum, and from this graph we see that at the maximum velocity is approximately  $0\Box 47$  when


 $r \square 0 \square 67$  cm.



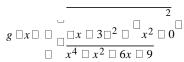




**67.** (a)  $f \Box x \Box$  is always increasing, and  $f \Box x \Box \Box 0$  for all x.

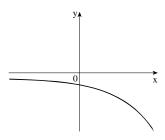
**(b)**  $f \square x \square$  is always decreasing, and  $f \square x \square \square 0$  for all x.



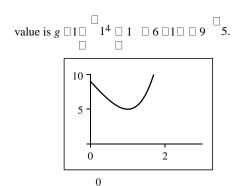



(c)  $f \square x \square$  is always increasing, and  $f \square x \square \square 0$  for all x




- **68.** Numerous answers are possible.
- **69.** (a) If  $x \square a$  is a local maximum of  $f \square x \square$  then  $f \square a \square \square f \square x \square \square 0$  for all x around  $x \square a$ . So  $\square g \square a \square \square g \square x \square 2$  and thus  $g \square a \square \square g \square x \square$ . Similarly, if  $x \square b$  is a local minimum of  $f \square x \square$ ,

then  $f \square x \square \square f \square b \square \square 0$  for all x around  $x \square b$ . So  $\square g \square x \square \square 2 \square \square g \square b \square \square 2$  and thus  $g \square x \square \square g$   $\square b \square$ .


(b) Using the distance formula,



(d)  $f \square x \square$  is always decreasing, and  $f \square x \square \square 0$  for all x



(c) Let  $f \square x \square \square x^4 \square x^2 \square 6x \square 9$ . From the graph, we see that  $f \square x \square$  has a minimum at  $x \square 1$ . Thus  $g \square x \square$  also has a minimum at  $x \square 1$  and this minimum  $x \square x \square 1$ 



## 2.4 AVERAGE RATE OF CHANGE OF A FUNCTION

- **1.** If you travel 100 miles in two hours then your average speed for the trip is average speed  $\Box$   $\frac{100 \text{ miles}}{2 \text{ hours}}$   $\Box$  50 mi/h.
- **2.** The average rate of change of a function f between  $x \square a$  and  $x \square b$  is average rate of change  $\square \frac{f \square b \square \Box f \square a}{b \square a}$ .
- **3.** The average rate of change of the function  $f \square x \square \square x^2$  between  $x \square 1$  and  $x \square 5$  is

**4.** (a) The average rate of change of a function f between  $x \square a$  and  $x \square b$  is the slope of the *secant* line between  $\square a \square f$   $\square a \square \square$ 

and  $\Box b \Box f \Box b \Box \Box$ .

- (b) The average rate of change of the linear function  $f \Box x \Box \Box 3x \Box 5$  between any two points is 3.
- **5.** (a) Yes, the average rate of change of a function between  $x \square a$  and  $x \square b$  is the slope of the secant line through  $\square a \square f$   $\square a \square \square$

and  $\Box b \Box f \Box b \Box \Box$ ;  $\frac{f \Box b \Box \Box f \Box a \Box}{b \Box a}$ .

- (b) Yes, the average rate of change of a linear function  $y \square mx \square b$  is the same (namely m) for all intervals.
- **6.** (a) No, the average rate of change of an increasing function is positive over any interval.

| No, just because the average rate of change of a function between                                                                                                                  | $x \square a$ and $x \square b$ is negative, it does not follow                                                                                                                                                                                                                         |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| that the function is decreasing on that interval. For example, $f \square x$ between $x \square \square 2$ and $x \square 1$ , but $f$ is increasing for $0 \square x \square 1$ . | $\Box x^2$ has negative average rate of change                                                                                                                                                                                                                                          |
| The net change is $f \Box 4 \Box \Box f \Box 1 \Box \Box 5 \Box 3 \Box 2$ .                                                                                                        |                                                                                                                                                                                                                                                                                         |
| We use the points $\Box 1 \Box 3 \Box$ and $\Box 4 \Box 5 \Box$ , so the average rate of ange is                                                                                   | $\frac{5 \square 3}{\square 1} \square \frac{2}{3}.$                                                                                                                                                                                                                                    |
|                                                                                                                                                                                    | that the function is decreasing on that interval. For example, $f \square x$ between $x \square \square 2$ and $x \square 1$ , but $f$ is increasing for $0 \square x \square 1$ .  The net change is $f \square 4 \square \square f \square 1 \square \square 5 \square 3 \square 2$ . |

| <b>8.</b> □2    |                     | The net change is $f \square 5 \square \square f$                                  |                                                                                               |                                                             | 2 □ 4 □ □2                                                  | <u>1</u>         | <u>L</u> |
|-----------------|---------------------|------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|-------------------------------------------------------------|-------------------------------------------------------------|------------------|----------|
|                 |                     | We use the points $\Box 1 \Box 4 \Box$ and an angle is 5                           | d $\Box 5\Box 2\Box$ , so the average rat                                                     | e of                                                        |                                                             | □ □ <sub>2</sub> | 2.       |
| 9.              | (a)                 | The net change is $f \square 5 \square \square f$                                  | □0□ □ 2 □ 6 □ □4.                                                                             |                                                             |                                                             |                  |          |
|                 |                     | We use the points $\Box 0 \Box 6 \Box$ and an ange is 5                            | d $\Box 5\Box 2\Box$ , so the average rat                                                     | e of                                                        | $\frac{2 \square 6}{\square 0} \square \frac{\square 4}{5}$ |                  |          |
| 10.             | (a)                 | The net change is $f \square 5 \square \square f$                                  | □□1□ □ 4 □ 0 □ 4.                                                                             |                                                             | 4 □ 0                                                       | <u>4</u>         | <u>2</u> |
|                 | ( <b>b</b> )<br>cha | We use the points $\Box \Box \Box \Box \Box \Box \Box$ singe is 5                  | and $\Box 5\Box 4\Box$ , so the average r                                                     | rate of                                                     |                                                             | □<br>6           | 3        |
| 11.             |                     | The net change is $f \square 3 \square \square f$<br>The average rate of change is |                                                                                               | 2 2                                                         | ] 🗆 7 🗆 4 🗆 3                                               |                  |          |
| 12 <sub>6</sub> | (a)                 | The net change is $r \square 6 \square \square r$                                  |                                                                                               |                                                             | □ 2 □ □1.                                                   |                  |          |
|                 | <b>(b)</b>          | The average rate of change is                                                      | 3 3                                                                                           |                                                             |                                                             |                  |          |
| 13 <sub>□</sub> | (a)                 | The net change is $h \square 1 \square \square h$                                  |                                                                                               |                                                             |                                                             | □5.              |          |
|                 | <b>(b)</b>          | The average rate of change is                                                      | $ \begin{array}{c cccc}  & & & & & & & & & \\  & & & & & & & & &$                             |                                                             | 2 2                                                         |                  |          |
| 14<br>  2       | (a)                 | The net change is $g \square 2 \square \square g$                                  | ⊔⊔3⊔<br>5                                                                                     |                                                             |                                                             |                  |          |
|                 | <b>(b)</b>          | The average rate of change is                                                      | 3 3                                                                                           | 3. <sup>2</sup>                                             | 2/3                                                         | <del>3</del> 10  |          |
| 15.             | (a)                 | The net change is $h \square 6 \square \square h$                                  |                                                                                               | $\begin{bmatrix} 2 & \square & 3 & \square^2 \end{bmatrix}$ | □ 3 □ 66 □                                                  | ] 15 🗆           | 51.      |
|                 | ( <b>b</b> )        | The average rate of change is                                                      | $ \frac{h \square 6 \square \square h \square 3 \square}{51} \square \frac{17}{6 \square 3} $ |                                                             |                                                             |                  |          |

- **17.** (a) The net change is  $f \Box 10 \Box \Box f \Box 0 \Box \Box \Box 10^3 \Box 4 \Box 10^2 \Box \Box 0^3 \Box 4 \Box 0^2 \Box 600 \Box 0 \Box 600$ .
  - **(b)** The average rate of change is  $\frac{ f \square 10 \square \square f}{\square 0 \square} \square \frac{600}{10} \square 60.$
- **18.** (a) The net change is  $g \square 2 \square \square g \square 2 \square \square \square 2^4 \square 2^3 \square 2^2 \square \square \square 2 \square^4 \square \square 2 \square^3 \square \square 2 \square^2 \square \square 12 \square 28 \square \square 16.$ 
  - **(b)** The average rate of change is  $\begin{array}{c|c}
    g & 2 & g \\
    \hline
     & 2 & g
    \end{array}$
- - **(b)** The average rate of change is  $\frac{f \square 3 \square h \square \square f}{\square 3 \square} \square \frac{5h^2 \square 30h}{h} \square 5h \square 30.$
- **20.** (a) The net change is  $f \square 2 \square h \square f \square 2 \square \square h \square f \square 2 \square h \square^2 \square h \square^3$   $3h^2 \square 12h \square 11 \square \square 11 \square \square 3h^2$   $\square 12h$ .
  - (b) The average rate of change is  $\begin{array}{c|c} f & \square & \square & h & \square & f \\ \hline & \square & \square & \square \\ \hline & \square & \square & \square \\ \hline & \square & \square & \square \\ \hline & 2 & \square & h & \square \\ \hline & 2 & \square & h & \square \\ \hline & 2 & \square & h & \square \\ \hline \end{array}$

**21.** (a) The net change is  $g \square a \square \square g \square 1 \square \stackrel{1}{\square} a \stackrel{1}{\square} \frac{1}{a} \square \frac{1}{a}$ .

(b) The average rate of change is  $\begin{array}{c|c}
a & 1 & a \\
\hline
 & a & a & a \\
\hline
 & a &$ 

- 23. (a) The net change is  $f \Box a \Box h \Box \Box f \Box a \Box \frac{2}{h} \Box \frac{2}{2h} \Box \frac{2}{2h}$ .
  - **(b)** The average rate of change is

- **24.** (a) The net change is  $f \Box a \Box h \Box \Box f \Box a \Box \Box \Box a \Box h \Box \Box a$ .
- - **(b)** The slope of the line  $f \square x \square \square_2^{-1} x \square 3$  is  $2^{-1}$ , which is also the average rate of change.
- - **(b)** The slope of the line  $g \square x \square \square \square 4x \square 2$  is  $\square 4$ , which is also the average rate of change.

- **27.** The function f has a greater average rate of change between  $x \square 0$  and  $x \square 1$ . The function g has a greater average rate of change between  $x \square 1$  and  $x \square 2$ . The functions f and g have the same average rate of change between  $x \square 0$  and  $x \square 1 \square 5$ .
- **28.** The average rate of change of f is constant, that of g increases, and that of h decreases.
- **29.** The average rate of change is  $\frac{W \square 200 \square \square W}{\square 100 \square} \square \frac{50 \square 75}{200 \square 100} \square \frac{\square 25}{100} \square \square \frac{1}{4} \text{ ft/day.}$
- 30. (a) The average rate of change is  $\frac{P \square 40 \square \square P}{\square 20 \square} \square \frac{40 \square 40}{40 \square 20} \square \frac{0}{20} \square 0.$ 
  - (b) The population increased and decreased the same amount during the 20 years.
- **31.** (a) The average rate of change of population is  $\frac{1,591 \square 856}{2001 \square 1998} \square \frac{735}{3} \square 245$  persons/yr.
  - **(b)** The average rate of change of population is  $\frac{826 \Box 1\Box}{483}$   $\Box$   $\frac{\Box 657}{2}$   $\Box$   $\Box 328\Box 5$  persons/yr. 2004  $\Box$  2002
  - (c) The population was increasing from 1997 to 2001.
  - (d) The population was decreasing from 2001 to 2006.

- **32.** (a) The average speed is  $\frac{800 \Box 400}{152 \Box 68} \Box \frac{400}{84} \Box \frac{100}{21} \Box 4\Box 76 \text{ m/s}.$ 
  - **(b)** The average speed is  $\frac{1,600 \square 1,200}{412 \square 263} \square \frac{400}{149} \square 2 \square 68$  m/s.

| Lap | Length of time to run lap | Average speed of lap. |
|-----|---------------------------|-----------------------|
| 1   | 32                        | 6□25 m/s              |
| 2   | 36                        | 5□56 m/s              |
| 3   | 40                        | 5□00 m/s              |
| 4   | 44                        | 4□55 m/s              |
| 5   | 51                        | 3□92 m/s              |
| 6   | 60                        | 3□33 m/s              |
| 7   | 72                        | 2□78 m/s              |
| 8   | 77                        | 2□60 m/s              |

The man is slowing down throughout the run.

- 33. (a) The average rate of change of sales is  $\frac{635 \square 495}{2013 \square 2003} \square \frac{140}{10} \square 14 \text{ players/yr.}$ (b) The average rate of change of sales is  $\frac{513 \square 495}{2004 \square 2003} \square \frac{18}{1} \square 18 \text{ players/yr.}$ 

  - (c) The average rate of change of sales is  $\frac{410 \square 513}{2005 \square 2004} \square \frac{\square 103}{1} \square \square 103$  players/yr.

**(d)** 

| Year | DVD players sold | Change in sales from previous year |
|------|------------------|------------------------------------|
| 2003 | 495              | _                                  |
| 2004 | 513              | 18                                 |
| 2005 | 410              | □103                               |
| 2006 | 402              | □8                                 |
| 2007 | 520              | 118                                |
| 2008 | 580              | 60                                 |
| 2009 | 631              | 51                                 |
| 2010 | 719              | 88                                 |
| 2011 | 624              | □95                                |
| 2012 | 582              | □42                                |
| 2013 | 635              | 53                                 |

34.

| Year | Number of books |
|------|-----------------|
| 1980 | 420             |
| 1981 | 460             |
| 1982 | 500             |
| 1985 | 620             |
| 1990 | 820             |
| 1992 | 900             |
| 1995 | 1020            |
| 1997 | 1100            |
| 1998 | 1140            |
| 1999 | 1180            |
| 2000 | 1220            |

35. The average rate of change of the temperature of the soup over the first 20 minutes is

| $T \square 20 \square \square T$ $\square 0 \square$           | 119 □ 200          | □81    | 4□05□ | F/min.   | Over the next 20 minutes, it is                      |
|----------------------------------------------------------------|--------------------|--------|-------|----------|------------------------------------------------------|
| $ \begin{array}{c c} \hline 20 & 0 \\ T & 40 & T \end{array} $ | 20 □ 0<br>89 □ 119 |        |       | The fire | st 20 minutes had a higher average rate of change of |
| 40 □ 20                                                        | - □ 40 □ 20 □      | 20 🗆 🗆 | ]     |          |                                                      |

temperature (in absolute value).

- **36.** (a) (i) Between 1860 and 1890, the average rate of change was about 84 farms per year.  $y \square 1970 \square \square y$   $\square \frac{2780 \square 5390}{20} \square \square 131$ , a loss of (ii) Between 1950 and 1970, the average rate of change was about 131 farms per year. 1970 □ 1950
  - (b) From the graph, it appears that the steepest rate of decline was during the period from 1950 to 1960.
- 37. (a) For all three skiers, the average rate of change is  $\frac{\begin{array}{c|c} d & 10 & d \\ \hline & 0 & \\ \hline & 10 & 0 \end{array}}{10 & 0} & 10.$ 
  - (b) Skier A gets a great start, but slows at the end of the race. Skier B maintains a steady pace. Runner C is slow at the beginning, but accelerates down the hill.
- **38.** (a) Skater B won the race, because he travels 500 meters before Skater A.
  - **(b)** Skater A's average speed during the first 10 seconds is  $\frac{A \Box 10 \Box \Box A}{10} \Box \frac{200 \Box 0}{10} \Box 20 \text{ m} \Box s$ . Skater B's average speed during the first 10 seconds is  $\frac{10 \square 0}{B \square 10 \square \square B} \square \frac{100 \square 0}{10} \square 10 \text{ m} \square s.$

10 □ 0

(c) Skater A's average speed during his last 15 seconds is

Skater B's spee averag

during his last 15 seconds is

*A* □40□ □ *A* □25□ 40 □ 25 *B* □35□ □ *B* □20□ 35 □ 20

$$\begin{array}{c|c}
\hline
 & 500 & 395 \\
\hline
 & 15 \\
\hline
 & 500 & 200 \\
\hline
 & 15 \\
\hline
 & 20 & m \\
\hline
 & s.$$

39.

210

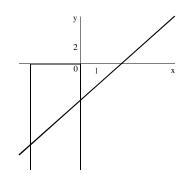
| $t \square a$ | $t \square b$ | Average Speed $\Box \begin{array}{c} f \sqcup b \sqcup \sqcup f \\ \hline \Box a \\ \hline b \Box a \end{array}$                    |
|---------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------|
| 3             | 3□5           | $\frac{16 \square 3 \square 5 \square^2 \square  16}{\square 3 \square^2} \square  104$                                             |
| 3             | 3□1           | $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                              |
| 3             | 3□01          | $\frac{16 \ \square 3 \ \square 01 \ \square^2 \ \square 16 \ \square 3 \ \square^2}{3 \ \square 01 \ \square 3} \ 96 \ \square 16$ |
| 3             | 3□001         | $\frac{16 \square 3 \square 001 \square^2 \square  16 \square 3 \square^2}{3 \square 001 \square  3}  96 \square 016$               |
| 3             | 3□0001        | $\frac{16 \square 3 \square 0001 \square^2 \square 16 \square 3 \square^2}{36 \square 6016}$                                        |

From the table it appears that the average speed approaches 96 ft $\square$ s as the time intervals get smaller and smaller. It seems reasonable to say that the speed of the object is 96 ft $\square$ s at the instant  $t \square 3$ .

## 2.5 LINEAR FUNCTIONS AND MODELS

- **1.** If f is a function with constant rate of change, then
  - (a) f is a linear function of the form  $f \square x \square \square ax \square b$ .
  - (b) The graph of f is a line.
- **2.** If  $f \square x \square \square \square 5x \square 7$ , then
  - (a) The rate of change of f is  $\square 5$ .
  - **(b)** The graph of f is a line with slope  $\Box 5$  and y-intercept 7.
- **3.** From the graph, we see that  $y \square 2 \square \square 50$  and  $y \square 0 \square \square 20$ , so the slope of the graph is

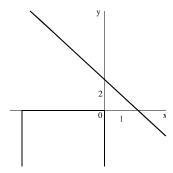
$$\begin{array}{cccc}
y \square 2 \square \square y & 50 \square 20 \\
m \square & & & & & & & & & & & \\
\end{array}$$


$$\begin{array}{ccccc}
m \square & & & & & & & & & & \\
\hline
2 \square 0 & & & & & & & & \\
\end{array}$$

$$\begin{array}{ccccc}
15 \text{ gal} \square \text{ min.}$$

- 4. From Exercise 3, we see that the pool is being filled at the rate of 15 gallons per minute.
- 5. If a linear function has positive rate of change, its graph slopes upward.
- **6.**  $f \square x \square \square 3$  is a linear function because it is of the form  $f \square x \square \square ax \square b$ , with  $a \square 0$  and  $b \square 3$ . Its slope (and hence its rate of change) is 0.
- **7.**  $f \square x \square \square 3 \stackrel{1}{\sqsubseteq} ^1 x \stackrel{1}{\sqsubseteq} ^1 x \square 3$  is linear with  $a \stackrel{1}{\sqsubseteq} ^1$  and  $b \square 3$ .
- **8.**  $f \square x \square \square 2 \square 4x \square \square 4x \square 2$  is linear with  $a \square \square 4$  and  $b \square 2$ .
- **10.**  $f \square x \square \square \square x \square 1$  is not linear.
- 11.  $f \square x \square \xrightarrow{x \square 1} \square \xrightarrow{\frac{1}{5}} x \square \xrightarrow{\frac{1}{5}}$  is linear with  $a \square \xrightarrow{\frac{1}{5}}$  and  $b \square \xrightarrow{\frac{1}{5}}$ .
- 12.  $f \square x \square \frac{2x \square 3}{x} \square 2 \square \frac{3}{x}$  is not linear.
- **13.**  $f \square x \square \square \square x \square 1 \square^2 \square x^2 \square 2x \square 1$  is not of the form  $f \square x \square \square ax \square b$  for constants a and b, so it is not linear.
- **14.**  $f \square x \square \square 2$   $^1 \square 3x \square 1 \square 2 \square 3x_2 \square 1$  is linear with  $a_2 \square 3$  and  $b_{\square 2} \square 1$ .

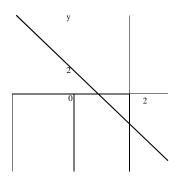
15.


| х  | $f \square x \square \square 2x \square$ |
|----|------------------------------------------|
| □1 | □7                                       |
| 0  | □5                                       |
| 1  | □3                                       |
| 2  | $\Box 1$                                 |
| 3  | 1                                        |
| 4  | 3                                        |



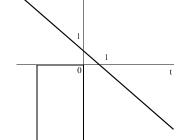
The slope of the graph of  $f \square x \square \square 2x \square 5$  is 2.

16.


| х  | $g \square x \square \square 4 \square$ |
|----|-----------------------------------------|
| □1 | 6                                       |
| 0  | 4                                       |
| 1  | 2                                       |
| 2  | 0                                       |
| 3  | $\Box 2$                                |
| 4  | □4                                      |

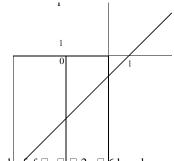


The slope of the graph of  $g \square x \square \square 4 \square 2x \square \square 2x \square 4$  is  $\square 2$ .


**17.** 

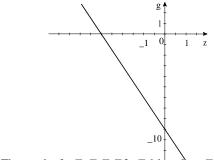
| t  | $r \Box t \Box \Box \Box \Box^2 t \Box$ |
|----|-----------------------------------------|
| □1 | 2□6                                     |
| 0  | 7                                       |
| 1  | 2                                       |
| 2  | 1□3                                     |
| 3  | 3                                       |
| 4  | 0□6<br>7                                |




18.

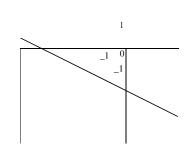
| t        | $h \square t \square \square \square ^1 \square ^3$ |
|----------|-----------------------------------------------------|
| □2       | 2                                                   |
| $\Box 1$ | 1□2                                                 |
| 0        | 5                                                   |
| 1        | 0□<br>5                                             |
| 2        | C                                                   |
| 3        | □0□2<br>5                                           |




The slope of the graph of  $h \Box t \Box \Box_2^{-1} \Box_4^{-3} t$  is  $\Box_4^{-3}$ .

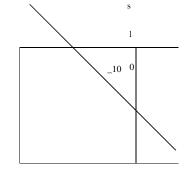
19. (a)




- (b) The graph of  $f \Box x \Box \Box 2x \Box 6$  has slope 2.
- (c)  $f \square x \square \square 2x \square 6$  has rate of change 2.

**20.** (a)



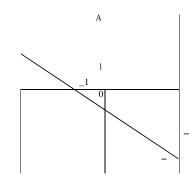

- **(b)** The graph of  $g \square z \square \square \square 3z \square 9$  has slope  $\square 3$ .
- (c)  $g \Box z \Box \Box \Box 3z \Box 9$  has rate of change  $\Box 3$ .

21. (a)



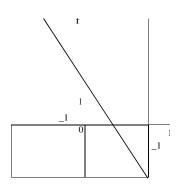
- **(b)** The graph of  $h \square t \square \square \square 0 \square 5t \square 2$  has slope  $\square 0 \square 5$ .
- (c)  $h \Box t \Box \Box \Box 0 \Box 5t \Box 2$  has rate of change  $\Box 0 \Box 5$ .

22. (a)

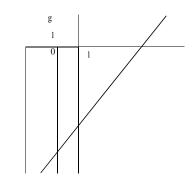



23. (a)




- **(b)** The graph of  $\Box$  t  $\Box$  t d d d d d d has slope d
- (c)  $\Box t \Box \Box \stackrel{1}{\Box} _3 t \Box 20$  has rate of change

24. (a)




- **(b)** The graph of  $A \square r \square \square \stackrel{\triangle}{=} {}_3r \square 1$  has slope  $\stackrel{\triangle}{=} {}_3$ .
- (c)  $A \Box r \Box \Box \stackrel{\triangle}{=} {}_3 r \Box 1$  has rate of change  $\stackrel{\triangle}{=} {}_3$ .

25. (a)



**(b)** The graph of  $f \Box t \Box \Box \stackrel{?}{\boxminus}_{2} t \Box 2$  has slope  $\stackrel{?}{\boxminus}_{2}$ 



**(b)** The graph of  $g \square x \square \supseteq _4 x \square 10$  has slope  $_4$ .

(c)  $f \Box t \Box \Box \stackrel{\circ}{=} _2 t \Box 2$  has rate of change  $\stackrel{\circ}{=} _2$ 

(c)  $g \square x \square \stackrel{5}{=} {}_4 x \square 10$  has rate of chang  $\delta_4$ .

**27.** The linear function f with rate of change 3 and initial value  $\Box 1$  has equation  $f \Box x \Box \Box 3x \Box 1$ .

**28.** The linear function g with rate of change  $\Box 12$  and initial value 100 has equation  $g \Box x \Box \Box \Box 12x \Box 100$ .

**29.** The linear function h with slope  $\frac{1}{2}$  and y-intercept 3 has equation  $h \square x \square \square_2^{-1} x \square 3$ .

**30.** The linear function k with slope  $\Box \frac{4}{5}$  and y-intercept  $\Box 2$  has equation  $k \Box x \Box \Box \Box x \Box 2$ .

**31.** (a) From the table, we see that for every increase of 2 in the value of x,  $f \Box x \Box$  increases by 3. Thus, the rate of change of f is  $\frac{3}{2}$ .

26. (a)

**(b)** When  $x \square 0$ ,  $f \square x \square \square 7$ , so  $b \square 7$ . From part (a),  $a \square_7 3$ , and so  $f \square x \square_7 3 3 x \square 7$ .

**32.** (a) From the table, we see that  $f \square \square 3 \square \square 11$  and  $f \square 0 \square \square 2$ . Thus, when x increases by 3,  $f \square x \square$  decreases by 9, and so the rate of change of f is  $\square 3$ .

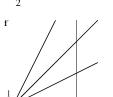
**(b)** When  $x \square 0$ ,  $f \square x \square \square 2$ , so  $b \square 2$ . From part (a),  $a \square \square 3$ , and so  $f \square x \square \square \square 3x \square 2$ .

**33.** (a) From the graph, we see that  $f \square 0 \square \square 3$  and  $f \square 1 \square \square 4$ , so the rate of change of  $f \frac{4 \square 3}{\square 0} \square 1$ .

**(b)** From part (a),  $a \Box 1$ , and  $f \Box 0 \Box \Box b \Box 3$ , so  $f \Box x \Box \Box x \Box 3$ .

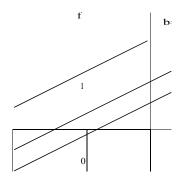
**34.** (a) From the graph, we see that  $f \square 0 \square \square 4$  and  $f \square 2 \square \square 0$ , so the rate of change of  $f \frac{0 \square 4}{\square 0} \square \square 2$ .

**(b)** From part (a),  $a \square \square 2$ , and  $f \square 0 \square \square b \square 4$ , so  $f \square x \square \square \square 2x \square 4$ .


**35.** (a) From the graph, we see that  $f \square 0 \square \square 2$  and  $f \square 4 \square \square 0$ , so the rate of change of  $f \frac{0 \square 2}{\square 0} \square \square \frac{1}{2}$ . is

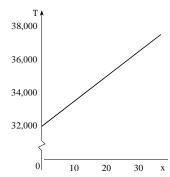
**(b)** From part (a),  $a \Box \Box \frac{1}{2}$ , and  $f \Box 0 \Box \Box b \Box 2$ , so  $f \Box x \Box \Box \Box 2x \Box 2$ .

**36.** (a) From the graph, we see that  $f \square 0 \square \square 1$  and  $f \square 2 \square \square 0$ , so the rate of change of  $f = \begin{bmatrix} 0 \square \square \square \square \\ \hline 2 \square 0 \end{bmatrix} \square 2$ .


**(b)** From part (a),  $a \Box \stackrel{1}{=}$ , and  $f \Box 0 \Box \Box b \Box \Box 1$ , so  $f \Box x \Box - \Box \stackrel{1}{=} x \Box 1$ .

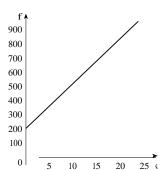
**37.** 




Increasing the value of a makes the graph of f steeper. In other words, it increases the rate of change of f.

38.




Increasing the value of b moves the graph of f upward, but does not affect the rate of change of f.

39. (a)



- **(b)** The slope of  $T \square x \square \square 150x \square 32,000$  is the value of a, 150.
- (c) The amount of trash is changing at a rate equal to the slope of the graph, 150 thousand tons per year.

**40.** (a)



- **(b)** The slope of the graph of  $f \square x \square \square 200 \square 32x$  is 32.
- (c) Ore is being produced at a rate equal to the slope of the graph, 32 thousand tons per year.

- **41.** (a) Let  $V \Box t \Box \Box at \Box b$  represent the volume of hydrogen. The balloon is being filled at the rate of  $0 \Box 5$  ft<sup>3</sup>  $\Box$ s, so  $a \Box 0 \Box 5$ , and initially it contains 2 ft<sup>3</sup>, so  $b \Box 2$ . Thus,  $V \Box t \Box \Box 0 \Box 5t \Box 2$ .
  - (b) We solve  $V \square t \square \square 15 \square 0 \square 5t \square 2 \square 15 \square 0 \square 5t \square 13 \square t \square 26$ . Thus, it takes 26 seconds to fill the balloon.
- **42.** (a) Let  $V \Box t \Box \Box at \Box b$  represent the volume of water. The pool is being filled at the rate of 10 gal $\Box$ min, so  $a \Box 10$ , and initially it contains 300 gal, so  $b \Box 300$ . Thus,  $V \Box t \Box \Box 10t \Box 300$ .
  - **(b)** We solve  $V \square t \square \square 1300 \square 10t \square 300 \square 10t \square 300 \square 10t \square 1000 \square t \square 1000. Thus, it takes 100 minutes to fill the pool.$
- **43.** (a) Let  $H \square x \square \square ax \square b$  represent the height of the ramp. The maximum rise is 1 inch per 12 inches, so  $a \square \frac{1}{12}$ . The ramp starts on the ground, so  $b \square 0$ . Thus,  $H \square x \square \square \frac{1}{12} x$ .
  - (b) We find  $H \square 150 \square \square 12^1 \square 150 \square \square 12 \square 5$ . Thus, the ramp reaches a height of  $12 \square 5$  inches
- **44.** Meilin descends 1200 vertical feet over 15,000 feet, so the grade of her road is  $\frac{\Box 1200}{15,000}$

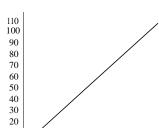
- Brianna descends 500 vertical feet over 10,000 feet, so the grade of her road is
- **45.** (a) From the graph, we see that the slope of Jari's trip is steeper than that of Jade. Thus, Jari is traveling faster.

 $7 \square 0$ 

(b) The points  $\Box 0 \Box 0 \Box$  and  $\Box 6 \Box 7 \Box$  are on Jari's graph, so her speed is 6

 $\frac{1}{100} = \frac{1}{6}$  miles per minute or 60  $\frac{1}{6} = \frac{70 \text{ mi}}{100} = \frac{1}{6}$ .

The points  $\Box 0 \Box 10 \Box$  and  $\Box 6 \Box 16 \Box$  are on Jade's graph, so her speed  $\frac{16 \Box 10}{6 \Box 0} \Box 60 \text{ mi} \Box h$ .


(c) t is measured in minutes, so Jade's speed is 60 mi $\square$ h  $\square$  h $\square$ min  $\square$  1 mi/min and Jari's speed is

70 mi  $\square$  h  $\square$  mi/min  $\square$  7 mi/min. Thus, Jade's distance is modeled by  $f \square t \square \square 1 \square t \square 0 \square \square 10 \square t \square 10$  and Jari's

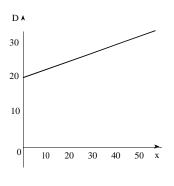
distance is modeled by  $g \Box t \Box \Box_{\overline{6}}^{7} \Box t \Box 0 \Box \Box 0_{\overline{6}} \Box^{7} t$ .

**46.** (a) Let  $d \square t \square$  represent the distance traveled. When  $t \square 0$ ,  $d \square 0$ , and when

**(b)** d٨



20 40 60 80 100 120 t


40 □ 0  $t \ \Box \ 50, d \ \Box \ 40.$  Thus, the slope of the graph is  $\frac{1}{50 \ \Box \ 0} \ \Box \ 0 \Box 8.$  The

*y*-intercept is 0, so  $d \Box t \Box \Box 0 \Box 8t$ .

- (c) Jacqueline's speed is equal to the slope of the graph of d, that is,  $0\square 8 \text{ mi} \square \text{min or } 0\square 8 \square 60\square \square 48 \text{ mi} \square \text{h}.$
- **47.** Let x be the horizontal distance and y the elevation. The slope is  $\Box \frac{6}{100}$ , so if we take  $\Box 0 \Box 0 \Box$  as the starting point, the elevation is  $y \square \square \frac{6}{100}x$ . We have descended 1000 ft, so we substitute  $y \square \square 1000$  and solve for  $x: \square 1000 \square \square \frac{6}{100}x \square$

 $x \square 16,667$  ft. Converting to miles, the horizontal distance is  $\frac{1}{5280} \square 16,667 \square \square 3 \square 16$  mi.

48. (a)



- **(b)** The slope of the graph of  $D \square x \square \square 20 \square 0 \square 24x$  is  $0 \square 24$ .
- (c) The rate of sedimentation is equal to the slope of the graph,  $0 \square 24$  cm $\square$ yr or 2□4 mm□yr.

C A 600

500

400

300

**49.** (a) Let  $C \square x \square \square ax \square b$  be the cost of driving x miles. In May Lynn drove 480 miles at a cost of \$380, and in June she drove 800 miles at a cost of \$460. Thus, the points  $\Box 480 \Box 380 \Box$  and  $\Box 800 \Box 460 \Box$  are on the graph, so the

slope is  $a \square \frac{460 \square 380}{800 \square 480} \square \frac{1}{4}$ . We use the point  $\square 480 \square 380 \square$  to find

212 CHAPTER 2 Functions SECTION 2.5 Linear Functions and Models 212

value of b: 380  $\square$   $\frac{1}{4}$   $\square$ 480 $\square$   $\square$  b  $\square$  260. Thus, C  $\square x$   $\square$   $\square$   $\square$  1  $\square$  260.

(c) The rate at which her cost increases is equal to the slope of the line, that is  $\frac{1}{4}$ . So her cost increases by 0 = 25 for every additional mile she drives.

200

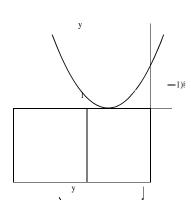
200 400 600 800 1000 1200 1400  $\stackrel{\star}{x}$ The slope of the graph of  $C \square x \square \not\sqsubseteq {}^1 x \square$  260 is the value of  $a_{\stackrel{\smile}{4}}$  1.

| 50.       | (a)        | Let $C \square x \square \square ax \square b$ be the cost of producing $x$ chairs in one day. The first <b>(b)</b> day, it cost \$2200 to produce 100 chairs, and the other day it cost \$4800 to produce 300 chairs. Thus, the points $\square 100 \square 2200 \square$ and $\square 300 \square 4800 \square$ are on the graph, so the slope is $a \square \frac{4800 \square 2200}{300 \square 100} \square 13$ . We use the point $\square 100 \square 2200 \square$ to find the value of $b$ : $2200 \square 13 \square 100 \square \square b \square b \square 900$ . Thus, $C \square x \square \square 13x \square 900$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10,000<br>9000<br>8000<br>7000<br>6000<br>5000<br>4000<br>3000<br>2000<br>1000                                                      |
|-----------|------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|
|           | (c)        | C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | 100 200 300 400 500 600 $\stackrel{\searrow}{x}$ ne slope of the graph of $\Box x \Box \Box 13x \Box 900$ is the value of $a$ , 13. |
| 51.       | (a)        | By definition, the average rate of change between $x_1$ and $x_2$ is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $ \begin{array}{c ccccc}                                $                                                                           |
|           | <b>(b)</b> | Factoring the numerator and cancelling, the average rate of change is $\frac{ax_2 \Box ax_1}{x_2 \Box x_1}$<br>The rate of change between any two points is $c$ . In particular, between $a$ and $x$ , the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $ \begin{array}{c c} a \square x_2 \square \\     \hline     x_1 \square \\     \hline     x_2 \square x_1 \end{array} $            |
| 52.       | (a)        | The rate of change between any two points is $c$ . In particular, between $a$ and $x$ , the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | the rate of change is $\frac{\int \Box x \Box \ \int \Box a \Box}{x \Box a} \Box c.$                                                |
| 2         |            | Multiplying the equation in part (a) by $x \square a$ , we obtain $f \square x \square \square f \square a \square \square c$ $\square a \square$ to both sides, we have $f \square x \square \square cx \square \square f \square a \square \square ca$ , as desired. Becau $\square Ax \square B$ with constants $A \square c$ and $B \square f \square a \square \square ca$ , it represents a linear fur $\square a \square \square ca$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | use this equation is of the form $f \square x \square$                                                                              |
| <u>2.</u> | <u>U</u>   | TRANSFORMATIONS OF FUNCTIONS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                     |
|           | (b) (a)    | The graph of $y \Box f \Box x \Box \exists$ is obtained from the graph of $y \Box f \Box x \Box$ by shift. The graph of $y \Box f \Box x \Box \exists$ is obtained from the graph of $y \Box f \Box x \Box$ by shift. The graph of $y \Box f \Box x \Box \exists$ is obtained from the graph of $y \Box f \Box x \Box$ by shift.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ing left 3 units. ing downward 3 units.                                                                                             |
|           | (a)<br>(b) | The graph of $y \Box f \Box x \Box 3\Box$ is obtained from the graph of $y \Box f \Box x\Box$ by shift. The graph of $y \Box f \Box x\Box$ is obtained from the graph of $y \Box f \Box x\Box$ by reflection. The graph of $y \Box f \Box x\Box$ is obtained from the graph of $y \Box f \Box x\Box$ by reflecting the graph of $y \Box f \Box x\Box$ by reflecting the graph of $y \Box f \Box x\Box$ by reflecting the graph of $y \Box f \Box x\Box$ by reflecting the graph of $y \Box f \Box x\Box$ by reflecting the graph of $y \Box f \Box x\Box$ by reflecting the graph of $y \Box f \Box x\Box$ by reflecting the graph of $y \Box f \Box x\Box$ by reflecting the graph of $y \Box f \Box x\Box$ by reflecting the graph of $y \Box f \Box x\Box$ by reflecting the graph of $y \Box f \Box x\Box$ by reflecting the graph of $y \Box f \Box x\Box$ by reflecting the graph of $y \Box f \Box x\Box$ by reflecting the graph of $y \Box f \Box x\Box$ by reflecting the graph of $y \Box f \Box x\Box$ by reflecting the graph of $y \Box f \Box x\Box$ by reflecting the graph of $y \Box f \Box x\Box$ by reflecting the graph of $y \Box f \Box x\Box$ by reflecting the graph of $y \Box f \Box x\Box$ by reflecting the graph of $y \Box f \Box x\Box$ by reflecting the graph of $y \Box f \Box x\Box$ by reflecting the graph of $y \Box f \Box x\Box$ by reflecting the graph of $y \Box f \Box x\Box$ by reflecting the graph of $y \Box f \Box x\Box$ by reflecting the graph of $y \Box x \Box$ by reflecting the graph of $y \Box x \Box$ by reflecting the graph of $y \Box x \Box$ by reflecting the graph of $y \Box x \Box$ by reflecting the graph of $y \Box x \Box$ by reflecting the graph of $y \Box x \Box x \Box$ by reflecting the graph of $y \Box x \Box x \Box$ by reflecting the graph of $y \Box x \Box x \Box$ by reflecting the graph of $y \Box x \Box x \Box$ by reflecting the graph of $y \Box x \Box x \Box x \Box$ by reflecting the graph of $y \Box x \Box x \Box x \Box$ by reflecting the graph of $y \Box x \Box x \Box x \Box$ by reflecting the graph of $y \Box x \Box $ | ing in the x-axis.  ng in the y-axis.                                                                                               |
| 4.        | (b)<br>(c) | The graph of $f \square x \square \square 2$ is obtained from that of $y \square f \square x \square$ by shifting upward. The graph of $f \square x \square 3\square$ is obtained from that of $y \square f \square x\square$ by shifting to the The graph of $f \square x \square 2\square$ is obtained from that of $y \square f \square x\square$ by shifting to the The graph of $f \square x \square 3\square 4$ is obtained from that of $g \square f \square x\square 3\square 3$ by shifting downwards.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | left 3 units, so it has graph I. right 2 units, so it has graph III.                                                                |
|           |            | f is an even function, then $f \square \square x \square \square f \square x \square$ and the graph of f is symmetric al                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ·                                                                                                                                   |
|           | _          | $f$ is an odd function, then $f \square \square x \square \square \square f \square x \square$ and the graph of $f$ is symmetric and The graph of $f$ is $f$ is $f$ is a symmetric and $f$ is $f$ is $f$ in $f$ in $f$ is $f$ in                    | -                                                                                                                                   |
| ٠.        |            | The graph of $y \square f \square x \square 2\square$ can be obtained by shifting the graph of $y \square f \square x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                     |
| 8.        |            | The graph of $y \Box f \Box x \Box 4 \Box$ can be obtained by shifting the graph of $y \Box f \Box x$ . The graph of $y \Box f \Box x \Box \Box 4$ can be obtained by shifting the graph of $y \Box f \Box x \Box \Box 4$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                     |
| 9.        | (a)        | The graph of $y \square f \square \square x \square$ can be obtained by reflecting the graph of $y \square f \square x$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\Box$ in the <i>y</i> -axis.                                                                                                       |

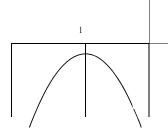
**(b)** The graph of  $y \square 3f \square x \square$  can be obtained by stretching the graph of  $y \square f \square x \square$  vertically by a factor of 3.

213 CHAPTER 2 Functions SECTION 2.6 Transformations of Functions 213

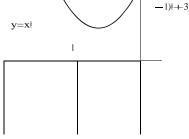
| 10.                |            | The graph of $y \square f \square x \square$ can be obtained by reflecting the graph of $y \square f \square x \square$ about the x-axis.                                                                                                     |
|--------------------|------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                    | <b>(b)</b> | The graph of $y \Box \frac{1}{3} f \Box x \Box$ can be obtained by shrinking the graph of $y \Box f \Box x \Box$ vertically by a factor $\frac{1}{3} f^{-1}$ .                                                                                |
| 11.                | (a)        | The graph of $y \square f \square x \square 5 \square \square 2$ can be obtained by shifting the graph of $y \square f \square x \square$ to the right 5 units and upward 2 units.                                                            |
|                    | (b)        | The graph of $y \Box f \Box x \Box 1 \Box \Box 1$ can be obtained by shifting the graph of $y \Box f \Box x \Box$ to the left 1 unit and downward 1 unit.                                                                                     |
| 12.                |            | The graph of $y \square f \square x \square 3 \square \square 2$ can be obtained by shifting the graph of $y \square f \square x \square$ to the left 3 units and upward 2 units.                                                             |
|                    |            | The graph of $y \square f \square x \square 7 \square \square 3$ can be obtained by shifting the graph of $y \square f \square x \square$ to the right 7 units and vnward 3 units.                                                            |
|                    | <i>(</i> ) |                                                                                                                                                                                                                                               |
| 13.                |            | The graph of $y \square f \square x \square g$ can be obtained by reflecting the graph of $y \square f \square x g$ in the x-axis, then shifting the resulting graph upward 5 units.                                                          |
|                    | <b>(b)</b> | The graph of $y \square 3f \square x \square \square 5$ can be obtained by stretching the graph of $y \square f \square x \square$ vertically by a factor of 3, then shifting the resulting graph downward 5 units.                           |
| 14.                | (a)        | The graph of $y \Box 1 \Box f \Box \Box x \Box$ can be obtained by reflect the graph of $y \Box f \Box x \Box$ about the <i>x</i> -axis, then reflecting about the <i>y</i> -axis, then shifting upward 1 unit.                               |
|                    | (b)        | The graph of $y \Box 2 \Box \frac{1}{5} f \Box x \Box$ can be obtained by shrinking the graph of $y \Box f \Box x \Box$ vertically by a factor $\mathfrak{g}f^{-1}$ , then reflecting about the <i>x</i> -axis, then shifting upward 2 units. |
| 15.                | (a)        | The graph of $y \Box 2f \Box x \Box 5\Box \Box 1$ can be obtained by shifting the graph of $y \Box f \Box x\Box$ to the left 5 units, stretching vertically by a factor of 2, then shifting downward 1 unit.                                  |
|                    | <b>(b)</b> | The graph of $y \Box \frac{1}{4}f \Box x \Box 3 \Box \Box 5$ can be obtained by shifting the graph of $y \Box f \Box x \Box$ to the right 3 units,                                                                                            |
|                    |            | shrinking vertically by $a_{\frac{1}{4}}$ actor of $\frac{1}{2}$ , then shifting upward 5 units.                                                                                                                                              |
| 16.                | (a)        | The graph of $y \Box \frac{1}{3} f \Box x \Box 2 \Box \Box 5$ can be obtained by shifting the graph of $y \Box f \Box x \Box$ to the right 2 units,                                                                                           |
|                    | (b)        | shrinking vertically by a factor of $^1$ , then shifting upward 5 units.  The graph of $y \Box 4f \Box x \Box 1 \Box \Box 3$ can be obtained by shifting the graph of $y \Box f \Box x \Box$ to the left 1 unit,                              |
| . <b>.</b>         |            | stretching vertically by a factor of 4, then shifting upward 3 units.                                                                                                                                                                         |
|                    |            | The graph of $y \Box f \Box 4x \Box$ can be obtained by shrinking the graph of $y \Box f \Box x \Box$ horizontally by a factor $\mathfrak{P}^{1}$ .                                                                                           |
|                    | <b>(b)</b> | The graph of $y \Box f \begin{bmatrix} -1 \\ 4 \end{bmatrix} x$ can be obtained by stretching the graph of $y \Box f \Box x \Box$ horizontally by a factor of 4.                                                                              |
| 18.                | (a)        | The graph of $y \square f \square 2x \square \square 1$ can be obtained by shrinking the graph of $y \square f \square x \square$ horizontally by a factor $\mathfrak{g}f^{-1}$ , there shifting it downward $1 \square$ unit.                |
|                    | <b>(b)</b> | The graph of $y \square 2f                                  $                                                                                                                                                                                 |
|                    |            | stretching it vertically by a factor of 2.                                                                                                                                                                                                    |
| 19.                | (a)        | The graph of $g \square x \square \square \square x \square 2 \square^2$ is obtained by shifting the graph of $f \square x \square$ to the left 2 units.                                                                                      |
|                    | <b>(b)</b> | The graph of $g \square x \square \square x^2 \square 2$ is obtained by shifting the graph of $f \square x \square$ upward 2 units.                                                                                                           |
| 20.                | (a)        | The graph of $g \square x \square \square x \square 4 \square^3$ is obtained by shifting the graph of $f \square x \square$ to the right 4 units.                                                                                             |
|                    | <b>(b)</b> | The graph of $g \square x \square \square x^3 \square 4$ is obtained by shifting the graph of $f \square x \square$ downward 4 units.                                                                                                         |
| <b>21.</b><br>unit |            | The graph of $g \square x \square \square \square x \square 2 \square \square 2$ is obtained by shifting the graph of $f \square x \square$ to the left 2 units and downward 2                                                                |
|                    |            | The graph of $g \square x \square \square g \square x \square \square x \square x \square x \square x \square x$ is obtained from by shifting the graph of $f \square x \square$ to the right 2 units and vard 2 units.                       |
|                    |            | Z units.                                                                                                                                                                                                                                      |


- **22.** (a) The graph of  $g \square x \square \square \square \overline{x} \square 1$  is obtained by reflecting the graph of  $f \square x \square$  in the x-axis, then shifting the resulting graph upward 1 unit.
  - (b) The graph of  $g \square x \square \square \overline{\square x} \square 1$  is obtained by reflecting the graph of  $f \square x \square$  in the y-axis, then shifting the resulting

graph upward 1 unit.

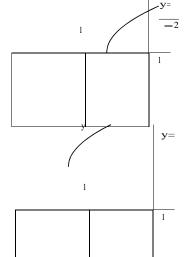

23. (a)




**(b)** 

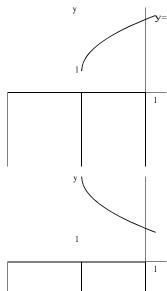


**(c)** 




**(d)** 



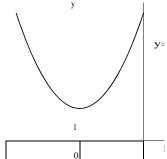

24. (a)

(c)

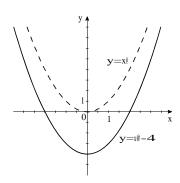


**(b)** 

(**d**)

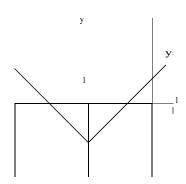



**25.** The graph of  $y \square \square x \square 1 \square$  is obtained from that of  $y \square \square x \square$  by shifting to the left 1 unit, so it has graph II.

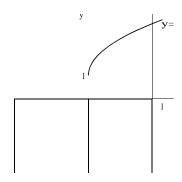

**26.**  $y \square \square x \square 1 \square$  is obtained from that of  $y \square \square x \square$  by shifting to the right 1 unit, so it has graph IV.

**27.** The graph of  $y \square \square x \square \square 1$  is obtained from that of  $y \square \square x \square$  by shifting downward 1 unit, so it has graph I.

- **28.** The graph of  $y \square \square x \square$  is obtained from that of  $y \square x \square$  by reflecting in the x-axis, so it has graph III.
- **29.**  $f \square x \square \square x^2 \square 3$ . Shift the graph of  $y \square x^2$  upward 3 units.

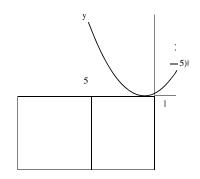



**30.**  $f \square x \square \square x^2 \square 4$ . Shift the graph of  $y \square x^2$  downward 4 units.

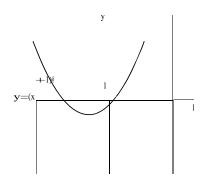



**31.**  $f \square x \square \square \square x \square \square 1$ . Shift the graph of  $y \square \square x \square$  downward

1 unit.

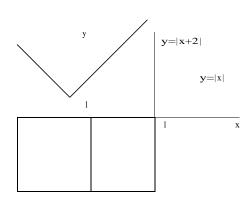



**32.**  $f \square x \square \square \square x \square 1$ . Shift the graph of  $y \square \square x$  upward 1 unit.

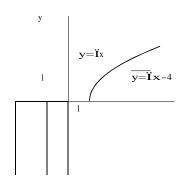



**33.**  $f \square x \square \square \square x \square 5 \square^2$ . Shift the graph of  $y \square x^2$  to the right

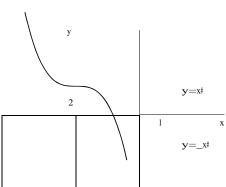
5 units.



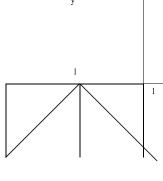

**34.**  $f \Box x \Box \Box \Box x \Box 1 \Box^2$ . Shift the graph of  $y \Box x^2$  to the left 1 unit.



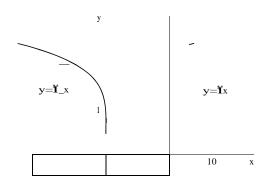

**35.**  $f \square x \square \square \square x \square 2\square$ . Shift the graph of  $y \square \square x \square$  to the left


2 units.

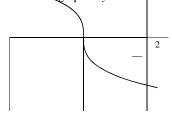



**36.**  $f \square x \square \square \square x \square 4$ . Shift the graph of  $y \square \square x$  to the right 4 units.

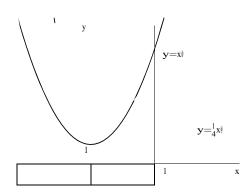



**37.**  $f \Box x \Box \Box \Box x^3$ . Reflect the graph of  $y \Box x^3$  in the *x*-axis.

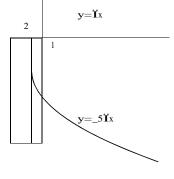



**38.**  $f \square x \square \square \square x \square$ . Reflect the graph of  $y \square x \square$  in the x-axis.

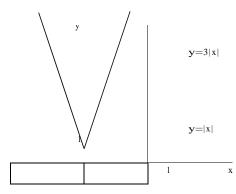



**39.**  $y \Box ^{\sqrt{4}} \overline{\Box x}$ . Reflect the graph of  $y \Box ^{\sqrt{4}} \overline{x}$  in the y-axis.

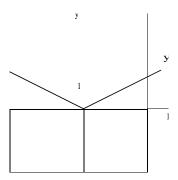



**40.**  $y \, \Box \, \overline{\ } \, x$  in the y-axis.



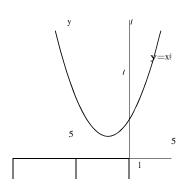

**41.**  $y = \frac{1}{4}x^2$ . Shrink the graph of  $y = x^2$  vertically by a factor of  $\frac{1}{4}$ .



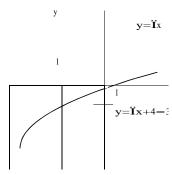

**42.**  $y \square \square 5^{\square} \overline{x}$ . Stretch the graph of  $y \square^{\square} x$  vertically by a factor of 5, then reflect it in the *x*-axis.



**43.**  $y \square 3 \square x \square$ . Stretch the graph of  $y \square \square x \square$  vertically by a factor of 3.

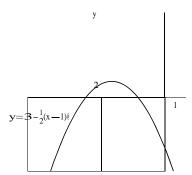



**44.**  $y \Box \frac{1}{2} \Box x \Box$ . Shrink the graph of  $y \Box x \Box$  vertically by a factor of  $\frac{1}{2}$ .

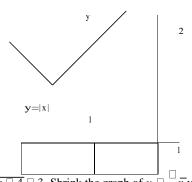



**45.**  $y \square \square x \square 3 \square^2 \square 5$ . Shift the graph of  $y \square x^2$  to the right

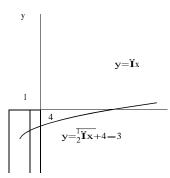
3 units and upward 5 units.




**46.**  $y \Box \overline{x \Box 4} \Box 3$ . Shift the graph of  $y \Box \overline{x}$  to the left 4 units and downward 3 units.

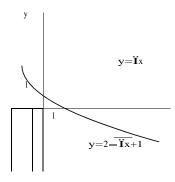



**47.**  $y \square 3 \square \frac{1}{2} \square x \square 1 \square^2$ . Shift the graph of  $y \square x^2$  to the right one unit, shrink vertically by a factor of  $^1$ , reflect in the

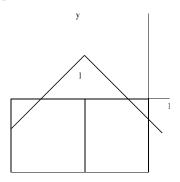

x-axis, then shift upward 3 units.



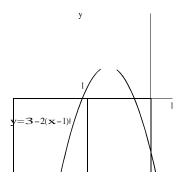
- **49.**  $y \square \square x \square 2 \square \square 2$ . Shift the graph of  $y \square \square x \square$  to the left
  - 2 units and upward 2 units.




**51.**  $y = \frac{1}{2} x = \frac{1}{4} x$  Shrink the graph of y = x vertically by a factor of  $\frac{1}{2}$ , then shift the result to the left 4 units and downward 3 units.




- **53.**  $y \square f \square x \square \square 3$ . When  $f \square x \square \square x^2$ ,  $y \square x^2 \square 3$ .
- **55.**  $y \Box f \Box x \Box 2 \Box$ . When  $f \Box x \Box \Box x$ ,  $y \Box x \Box 2$ .


**48.**  $y \square 2 \square x \square 1$ . Shift the graph of  $y \square x$  to the left 1 unit, reflect the result in the *x*-axis, then shift upward 2 units.



**50.**  $y \square 2 \square \square x \square$ . Reflect the graph of  $y \square \square x \square$  in the *x*-axis, then shift upward 2 units.



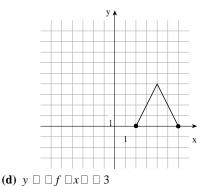
**52.**  $y \square 3 \square 2 \square x \square 1 \square^2$ . Stretch the graph of  $y \square x^2$  vertically by a factor of 2, reflect the result in the *x*-axis, then shift the result to the right 1 unit and upward 3 units.



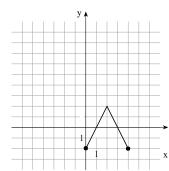
- **54.**  $y \square f \square x \square \square 5$ . When  $f \square x \square \square x^3$ ,  $y \square x^3 \square 5$ .
- **56.**  $y \Box f \Box x \Box 1 \Box$ . When  $f \Box x \overline{\Box} \Box \overline{\Box}^{5} x, \overline{y \Box}^{5} x \Box 1$ .
- **57.**  $y \square f \square x \square 2 \square \square 5$ . When  $f \square x \square \square \square x \square$ ,  $y \square \square x \square 2 \square \square 5$ . **58.**  $y \square \square f \square x \square 4 \square \square 3$ . When  $f \square x \square \square \square x \square$ ,  $y \square \square \square x \square 4 \square \square 3$ .

- **59.**  $y \square f \square \square x \square \square 1$ . When  $f \square x \square \square^{-\frac{1}{4}} x$ ,  $y \square \overline{x} \square 1$ .
- **61.**  $y \square 2f \square x \square 3 \square \square 2$ . When  $f \square x \square \square x^2$ ,  $y \square 2 \square x \square 3 \square^2 \square 2.$
- **63.**  $g \square x \square \square f \square x \square 2 \square \square \square x \square 2 \square^2 \square x^2 \square 4x \square 4$
- **65.**  $g \square x \square \square f \square x \square 1 \square \square 2 \square \square x \square 1 \square \square 2$
- **67.**  $g \square x \square \square \square f \square x \square 2 \square \square x \square 2$
- **69.** (a)  $y \Box f \Box x \Box 4 \Box$  is graph

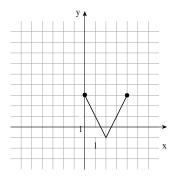
#3. **(b)**  $y \square f \square x \square \square 3$  is


graph #1. (c)  $y \square 2f \square x \square 6\square$ 

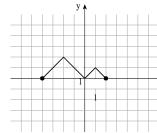
is graph #2. (d)  $y \square \square f \square 2x \square$ 


is graph #4.

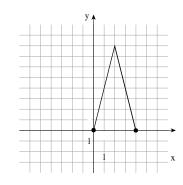
**71.** (a)  $y \square f \square x \square 2 \square$ 


**72.** (a)  $y \square g \square x \square 1 \square$ 

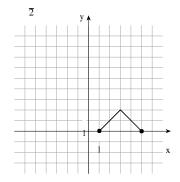



**(b)**  $y \square f \square x \square \square$ 

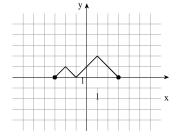


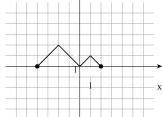

(e)  $y \square f \square \square x \square$ 

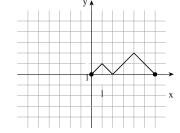


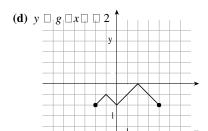

**(b)**  $y \square g \square \square x \square$ 



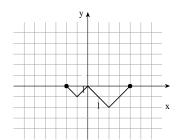

- **60.**  $y \square \square f \square x \square 2\square$ . When  $f \square x \square \square x^2$ ,  $y \square \square x \square 2\square^2$ .
- **62.**  $y \square \frac{1}{2} f \square x \square 1 \square \square 3$ . When  $f \square x \square \square \square x \square$ ,  $y \square \frac{1}{2} \square x \square 1 \square \square 3.$ 
  - **64.**  $g \square x \square \square f \square x \square \square 3 \square x^3 \square 3$
  - **66.**  $g \square x \square \square 2f \square x \square \square 2 \square x \square$
- **68.**  $g \square x \square \square \square f \square x \square 2 \square \square 1 \square \square x \square 2 \square^2 \square 1 \square \square x^2$
- **70.** (a)  $y \square \frac{1}{3} f \square x \square$  is graph #2.
  - **(b)**  $y \square \square f \square x \square 4 \square$  is graph #3.
  - (c)  $y \Box f \Box x \Box 5 \Box \Box 3$  is graph #1.
  - (d)  $y \square f \square \square x \square$  is graph #4.
    - (c)  $y \square 2f$  $\Box x \Box$

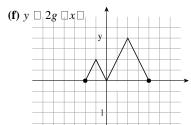


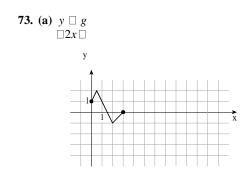


**(f)**  $y \Box ^1 f \Box x \Box 1 \Box$ 

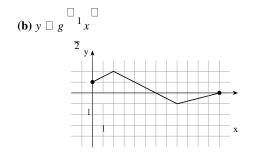


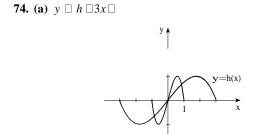

(c)  $y \square g \square x \square 2 \square$ 

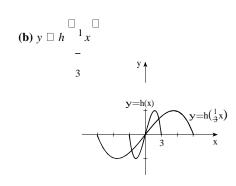


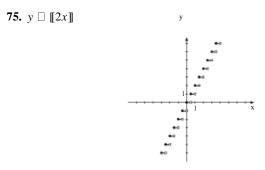



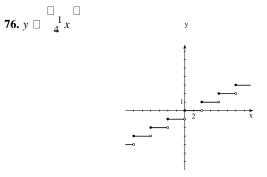



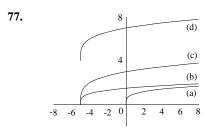



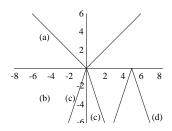



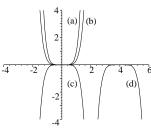




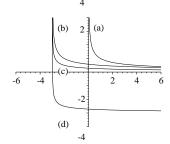






For part (b), shift the graph in (a) to the left 5 units; for part (c), shift the graph in (a) to the left 5 units, and stretch it vertically by a factor of 2; for part (d), shift the graph in (a) to the left 5 units, stretch it vertically by a factor of 2, and then shift it upward 4 units.

**78.** 



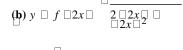

For (b), reflect the graph in (a) in the x-axis; for (c), stretch the graph in (a) vertically by a factor of 3 and reflect in the x-axis; for (d), shift the graph in (a) to the right 5 units, stretch it vertically by a factor of 3, and reflect it in the x-axis. The order in which each operation is applied to the graph in (a) is not important to obtain the graphs in part (c) and (d).

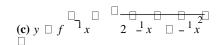
**79.** 

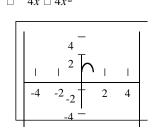


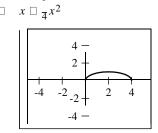
For part (b), shrink the graph in (a) vertically by a factor of  $\frac{1}{3}$ ; for part (c), shrink the graph in (a) vertically by a factor of  $\frac{1}{3}$ , and reflect it in the *x*-axis; for part (d), shift the graph in (a) to the right 4 units, shrink vertically by a factor of  $\frac{1}{3}$ , and then reflect it in the *x*-axis.

80.





For (b), shift the graph in (a) to the left 3 units; for (c), shift the graph in (a) to the left 3 units and shrink it vertically by a factor of  $\frac{1}{2}$ ; for (d), shift the graph in (a) to


2

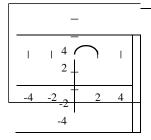

3 units. The order in which each operation is applied to the graph in (a) is not important to sketch (c), while it is important in (d).

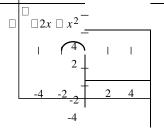
**81.** (a)  $y \square f \square x \square \square \square 2x \square$ 

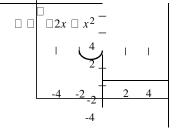






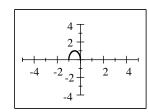


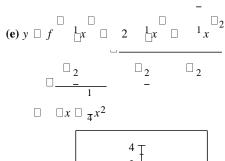


The graph in part (b) is obtained by horizontally shrinking the graph in part (a) by a factor of  $\frac{1}{2}$  (so the graph is half as wide). The graph in part (c) is obtained by horizontally stretching the graph in part (a) by a factor of 2 (so the graph is twice as wide).

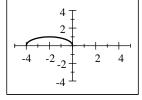

**82.** (a)  $y \Box f \Box x \Box \Box \Box 2x \Box x^2$ 







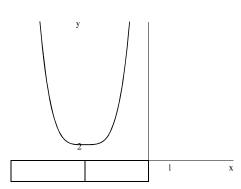




(d) 
$$y \Box f \Box \Box 2x \Box \qquad \boxed{2 \Box \Box 2x \Box \Box }$$

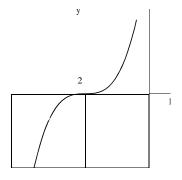
$$\square \square \square \square 2x \square x^2 \square \square \square 4x \square 4x^2$$



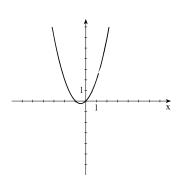





The graph in part (b) is obtained by reflecting the graph in part (a) in the y-axis. The graph in part (c) is obtained by rotating the graph in part (a) through  $180^{\circ}$  about the origin [or by reflecting the graph in part (a) first in the x-axis and then in the y-axis]. The graph in part (d) is obtained by reflecting the graph in part (a) in the y-axis and then horizontally shrinking the graph by a factor of  $\frac{1}{2}$  (so the graph is half as wide). The graph in part (e) is obtained by reflecting the graph in part (a) in the y-axis and then horizontally stretching the graph by a factor of 2 (so the graph is twice as wide).


**83.** 
$$f \square x \square \square x^4$$
.  $f \square \square x \square \square \square x \square^4 \square x^4 \square f \square x \square$ . Thus  $f \square x \square$ 

is even.

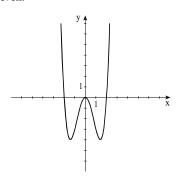



**84.** 
$$f \square x \square \square x^3$$
.  $f \square \square x \square \square \square x \square^3 \square \square x^3 \square \square f \square x \square$ . Thus

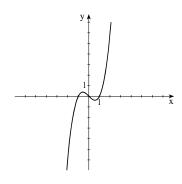
 $f \square x \square$  is odd.



**85.** 
$$f \square x \square \square x^2 \square x$$
.  $f \square \square x \square \square \square x \square^2 \square \square x \square \square x^2 \square x$ . Thus  $f \square x \square \square f \square x$ . Also,  $f \square x \square \square f \square x$ , so  $f \square x \square$  is neither odd nor even.

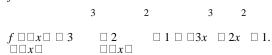



**86.** 
$$f \square x \square \square x^4 \square$$


$$4x^{2}$$
.

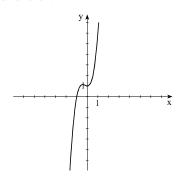
$$f \square \square x \square \square \square \square x \square^4 \square 4 \square \square x \square^2 \square x^4 \square 4x^2 \square f \square x \square$$
. Thus

 $f \square x \square$  is even.




**87.** 
$$f \square x \square \square x^3 \square$$




 $\Box x \Box$ .

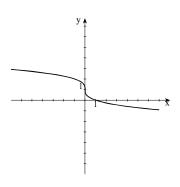
**88.** 
$$f \square x \square \square 3x^3 \square 2x^2 \square 1$$
.



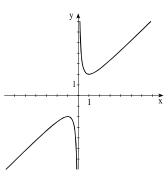
Thus  $f \square \square x \square \square f \square x \square$ . Also  $f \square \square x \square \square \square f \square x \square$ , so f $\Box x \Box$  is

neither odd nor even.

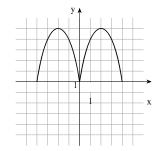



**89.** 
$$f \square x \square \square \square \square \square 3 x$$
.  $f \square \square x \square \square \square \square 3 \square \square x \square \square \square \square 3 x$ . **90.**  $f \square x \square \square x \square \square \square x$ .

Thus


 $f \square \square x \square \square f \square x \square$ . Also  $f \square \square x \square \square \square f \square x \square$ , so  $f \square x \square$  is neither odd nor even.

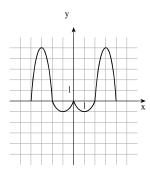



 $f \; \square \, \square x \square \; \square \; \square \square x \square \; \square \; 1 \square \; \square \square x \square \; \square \; \square x \; \square \; 1 \square x$ 

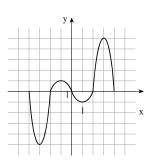



Thus  $f \square x \square$  is odd.

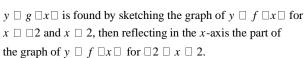



**91.** (a) Even

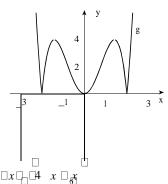



(b) Odd

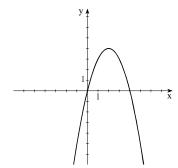


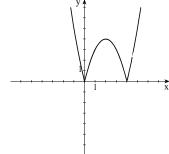

**92.** (a) Even



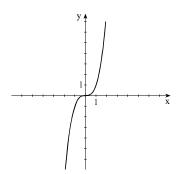

(b) Odd



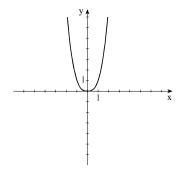

**93.** Since  $f \square x \square \square x^2 \square 4 \square 0$ , for  $\square 2 \square x \square 2$ , the graph



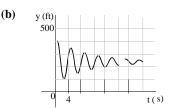


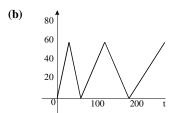




**95.** (a)  $f \square x \square \square 4x \square$ 





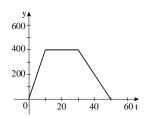


**96.** (a)  $f \square x \square \square$ 



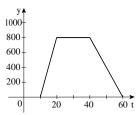

**(b)**  $g \square x \square \square x$ 



- **97.** (a) Luisa drops to a height of 200 feet, bounces up and down, then settles at 350 feet.
  - (c) To obtain the graph of H from that of h, we shift downward 100 feet. Thus,  $H \Box t \Box \Box h \Box t \Box \Box 100$ .
- **98.** (a) Miyuki swims two and a half laps, slowing down with each successive lap. In the first 30 seconds she swims 50 meters, so her average speed is
  - $\frac{50}{30} \square 1 \square 67 \text{ m} \square \text{s}.$
  - (c) Here Miyuki swims 60 meters in 30 seconds, so her average speed is
    - $\frac{60}{30} \square 2 \text{ m} \square \text{s}.$







This graph is obtained by stretching the original graph vertically by a factor of  $1 \square 2$ .

**99.** (a) The trip to the park corresponds to the first piece of the graph. The class travels 800 feet in 10 minutes, so their average speed is  $\frac{800}{10} \square 80$  ft $\square$ min. The second (horizontal) piece of the graph stretches from  $t \square 10$  to  $t \square 30$ , so the class spends 20 minutes at the park. The park is 800 feet from the school.

**(b)** 



(c)



The new graph is obtained by shrinking the original graph vertically by a factor of  $0 \square 50$ . The new average speed is  $40 \text{ ft} \square \text{min}$ , and the new park is 400 ft from the school.

This graph is obtained by shifting the original graph to the right 10 minutes. The class leaves ten minutes later than it did in the original scenario.

- **100.** To obtain the graph of  $g \square x \square \square \square x \square 2 \square^2 \square 5$  from that of  $f \square x \square \square \square x \square 2 \square^2$ , we shift to the right 4 units and upward 5 units.
- **101.** To obtain the graph of  $g \square x \square$  from that of  $f \square x \square$ , we reflect the graph about the *y*-axis, then reflect about the *x*-axis, then shift upward 6 units.
- **102.** f even implies  $f \square \square x \square \square f \square x \square \square g$  even implies  $g \square \square x \square \square g \square x \square$ ; f odd implies  $f \square \square x \square \square \square f \square x \square \square$  and g odd implies

 $g \square \square x \square \square \square g \square x \square$ 

If f and g are both even, then  $\Box f \Box g \Box \Box x \Box \Box f \Box x \Box \Box g \Box x \Box \Box f \Box x \Box \Box g \Box x \Box \Box \Box f \Box g \Box x \Box$  and  $f \Box g$  is even.

If f and g are both odd, then  $\Box f \Box g \Box \Box x \Box \Box f \Box x \Box \Box g \Box x \Box \Box \Box f \Box x \Box \Box g \Box x \Box \Box \Box f \Box g \Box x \Box$  and  $f \Box g$  is odd. If f odd and g even, then  $\Box f \Box g \Box \Box x \Box \Box f \Box x \Box \Box g \Box x \Box \Box \Box f \Box x \Box \Box g \Box x \Box$ , which is neither odd nor even.

**103.** f even implies  $f \square \square x \square \square f \square x \square$ ; g even implies  $g \square \square x \square \square g \square x \square$ ; f odd implies  $f \square \square x \square \square \square f \square x \square$ ; and g odd implies

 $g \square \square x \square \square \square g \square x \square$ .

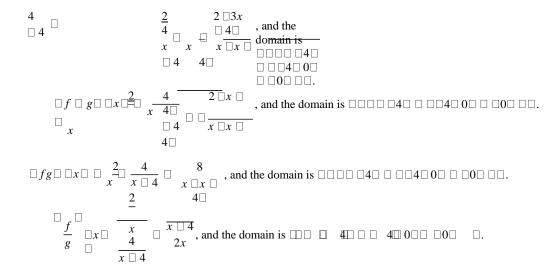
If f and g are both even, then  $\Box fg \Box \Box x \Box \Box f \Box x \Box \Box g \Box x \Box \Box f \Box x \Box g \Box x \Box \Box fg \Box x \Box$ . Thus fg is even. If f and g are both odd, then  $\Box fg \Box \Box x \Box \Box f \Box x \Box \Box g \Box x \Box \Box \Box f \Box x \Box \Box g \Box x \Box \Box g \Box x \Box \Box g \Box x \Box \Box$ 

 $\Box fg \Box \Box x \Box$ . Thus fg is even

If f if odd and g is even, then  $\Box fg \Box \Box x \Box \Box f \Box x \Box \Box g \Box x \Box \Box f \Box x \Box \Box g \Box x \Box \Box \Box f \Box x \Box \Box g \Box x \Box \Box \Box f g \Box x \Box$ . Thus fg is odd.

**104.**  $f \square x \square \square x^n$  is even when n is an even integer and  $f \square x \square \square x^n$  is odd when n is an odd integer. These names were chosen because polynomials with only terms with odd powers are odd functions, and polynomials with only terms with even powers are even functions.

## 2.7 COMBINING FUNCTIONS


| 2.7 COMBINING FUNCTIONS                                                                                                                                                                                                                                                                                                                                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>1.</b> From the graphs of $f$ and $g$ in the figure, we find $\Box f \Box g \Box \Box \Box \Box \Box f \Box 2 \Box \Box g \Box 2 \Box \Box \Box 3 \Box 5 \Box 8$ , $\Box f \Box g \Box \Box 2 \Box \Box f \Box 2 \Box \Box g \Box 2 \Box \Box G \Box$                                                                                  |
| <b>2.</b> By definition, $f \square g \square x \square \square f \square g \square x \square \square$ . So, if $g \square 2 \square \square 5$ and $g \square 5 \square 12$ , then $g \square 2 \square \square g \square 2 \square \square g \square 5$ and $g \square 5 \square 12$ .                                                                                                   |
| <b>3.</b> If the rule of the function $f$ is "add one" and the rule of the function $g$ is "multiply by 2" then the rule of $f \square g$ is "multiply by 2, then add one" and the rule of $g \square f$ is "add one, then multiply by 2."                                                                                                                                                 |
| <b>4.</b> We can express the functions in Exercise 3 algebraically as $f \Box x \Box \Box x \Box 1$ , $g \Box x \Box \Box 2x$ , $\Box f \Box g \Box \Box x \Box \Box 2x \Box$ and                                                                                                                                                                                                          |
| $\Box g \Box f \Box \Box x \Box \Box 2 \Box x \Box 1 \Box.$                                                                                                                                                                                                                                                                                                                                |
| <ul> <li>5. (a) The function □ f □ g □ □ x □ is defined for all values of x that are in the domains of both f and g.</li> <li>(b) The function □ f g □ □ x □ is defined for all values of x that are in the domains of both f and g.</li> <li>(c) The function □ f □ g □ □ x □ is defined for all values of x that are in the domains of both f and g, and g □ x □ is not to 0.</li> </ul> |
| <b>6.</b> The composition $\Box f \Box g \Box \Box x \Box$ is defined for all values of $x$ for which $x$ is in the domain of $g$ and $g \Box x \Box$ is in the domain of $f$ .                                                                                                                                                                                                            |
| 7. $f \square x \square \square x$ has domain $\square \square \square \square \square \square \square g \square x \square \square 2x$ has domain $\square \square \square$                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                            |
| 2x                                                                                                                                                                                                                                                                                                                                                                                         |
| <b>8.</b> $f \square x \square \square x$ has domain $\square \square \square$                                                                                                                                                                             |
| $\Box f \Box g \Box \Box x \Box \Box x$ , and the domain is $[0 \Box \Box \Box . \Box f \Box g \Box \Box x \Box \Box x \Box \Box x$ , and the domain is $[0 \Box \Box . \Box x \Box \Box x]$ .                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                            |
| <b>9.</b> $f \square x \square \square x^2 \square x$ and $g \square x \square \square x^2$ each have domain $\square \square \square \square \square$ . The intersection of the domains of $f$ and $g$ is $\square \square \square$ .                                                                                                                                                     |
| $\Box f \Box g \Box \Box x \Box \Box 2x^2 \Box x$ , and the domain is $\Box \Box x$ , and the domain is $\Box \Box \Box$                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                            |
| <b>10.</b> $f \square x \square \square 3 \square x^2$ and $g \square x \square \square x^2 \square 4$ each have domain $\square \square \square \square \square$ . The intersection of the domains of $f$ and $g$ is $\square$ $\square$ .                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                            |
| $g = x^2 \cup 4 \cup 3 \cup 3$                                                                                                                                                                                                                                                                                                            |

11.  $f \square x \square \square 5 \square x$  and  $g \square x \square \square x^2 \square 3x$  each have domain  $\square \square \square \square$ . The intersection of the domains of f and g is  $\square \square \square$ .  $\square f \square g \square x \square \square \square 5 \square x \square \square x^2 \square 3x \square x^2 \square 4x \square 5$ , and the domain is  $\square \square \square \square$ .  $\square f \square g \square x \square \square \square 5 \square x \square \square x^2 \square 3x \square \square x^2 \square 2x \square 5$ , and the domain is  $\square \square \square \square$ .  $\square f g \square x \square \square \square 5 \square x \square \square x^2 \square 3x \square \square x^3 \square 8x^2 \square 15x$ , and the domain is  $\square \square \square \square$ .  $\square f g \square x \square \square \square 5 \square x \square \square x^2 \square 3x \square \square x^3 \square 8x^2 \square 15x$ , and the domain is  $\square \square \square \square$ .  $\square f \square x \square \square \square x^2 \square 3x \square \square x^3 \square 8x^2 \square 15x$ , and the domain is  $\square \square \square \square \square$ .

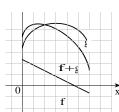
**12.**  $f \square x \square \square x^2 \square 2x$  has domain  $\square \square \square \square \square g \square x \square \square 3x^2 \square 1$  has domain  $\square \square \square \square \square \square$ . The intersection of the domains of f and

of f and g is  $\begin{bmatrix} -4 & -11 \\ -16 & x^2 \\ -16 & x^2 \end{bmatrix}$ , and the domain is  $\begin{bmatrix} -4 & -11 \\ -16 & x^2 \end{bmatrix}$ , and the domain is  $\begin{bmatrix} -4 & -11 \\ -16 & x^2 \end{bmatrix}$ , and the domain is  $\begin{bmatrix} -4 & -11 \\ -16 & x^2 \end{bmatrix}$ , and the domain is  $\begin{bmatrix} -4 & -11 \\ -16 & x^2 \end{bmatrix}$ , and the domain is  $\begin{bmatrix} -4 & -11 \\ -16 & x^2 \end{bmatrix}$ , and the domain is  $\begin{bmatrix} -4 & -11 \\ -16 & x^2 \end{bmatrix}$ , and the domain is  $\begin{bmatrix} -4 & -11 \\ -16 & x^2 \end{bmatrix}$ , and the domain is  $\begin{bmatrix} -4 & -11 \\ -16 & x^2 \end{bmatrix}$ , and the domain is  $\begin{bmatrix} -4 & -11 \\ -16 & x^2 \end{bmatrix}$ .

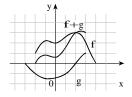
**15.**  $f \square x \square \stackrel{?}{=}_x$  has domain  $x \square 0$ .  $g \square x \square \stackrel{4}{\square 4}$ , has domain  $x \square \square 4$ . The intersection of the domains of f and g is  $\square x$ 



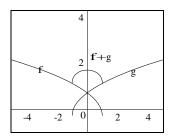
**16.**  $f \square x \square \square \square \square$  has domain  $x \square \square \square \square$ .  $g \square x \square \square \square$  has domain  $x \square \square \square \square$ . The intersection of the domains of f and g is

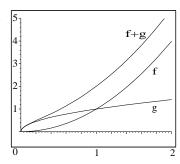

 $\Box x \Box x \Box \Box 1\Box$ ; in interval notation, this is  $\Box \Box \Box$ .

– . Since  $1\,\square 4$  is an even root and the denominator can not equal  $0,x\,\square \, 3\,\square \, 0\,\square \, x\,\square \, 3\,\square$ **19.**  $h \square x \square \square \square x \square \square 3 \square^{\square 1 \square 4} \square$ 

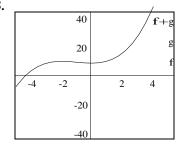

So the domain is  $\Box 3 \Box \Box \Box$ .

**20.**  $k \square x \square \xrightarrow{\frac{\square}{x \square 3}}$ . The domain of  $\frac{\square}{x \square 3}$  is  $[\square 3 \square \square]$ , and the domain  $\frac{1}{x \square 1}$  is  $x \square 1$ . Since  $x \square 1$  is  $\square \square \square \square$  of

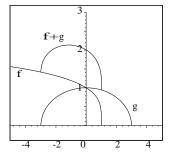

21.




22.




23.






25.



26.



- **27.**  $f \square x \square \square 2x \square 3$  and  $g \square x \square \square 4 \square x^2$ . **(a)**  $f \square g \square 0 \square \square \square f 4 \square \square 0 \square^2 \square f \square 4 \square \square 2 \square 4 \square \square 3 \square 5$

SECTION 2.7 Combining Functions 230 CHAPTER 2 Functions 230

**(b)**  $g \square f \square 0 \square \square \square g \square 2 \square 0 \square \square 3 \square \square g \square 3 \square \square 4 \square \square 3 \square^2 \square \square 5$ 

**28.** (a) f 
cdot f 
cdot 2 
cdot g 

cdot g 

cdot g 
cdot g 

cdot g 
cdot g 

cdot g 

cdot g 

cdot g 

cdot g 

cdot g 

cdot g

| 29. | (a)                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                         |  |  |  |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
|     | (b) □g □ f □ □□2□ □ g □f □□2□□ □ g □2 □□2□ □ 3□ □ g □                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                         |  |  |  |
| 30. |                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                         |  |  |  |
|     | (a)                                                                                                                                                                                                                                                                                                                                                                                                     | $3 \square \square 4 \square 3^2 \square \square 5$                                                                                     |  |  |  |
|     | (a) $\Box f \Box g \Box x \Box \Box f \Box g \Box x \Box \Box f \Box 4 \Box x^2 \Box 2 \Box 4 \Box x^2$                                                                                                                                                                                                                                                                                                 |                                                                                                                                         |  |  |  |
| 31. |                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                         |  |  |  |
|     | <b>(b)</b> $\Box g \Box f \Box \Box x \Box \Box g \Box f \Box x \Box \Box \Box g \Box 2x \Box 3 \Box \Box 4 \Box \Box 2x \Box 3$                                                                                                                                                                                                                                                                        | $3\Box^2 \Box 4\Box 4x^2 \Box 12x \Box 9 \Box \Box 4x^2 \Box 12x \Box 5$                                                                |  |  |  |
| 32. | (a) $\Box f \Box f \Box x \Box \Box f \Box f \Box x \Box \Box \Box f \Box 3x \Box 5 \Box \Box 3 \Box 3x \Box 5 \Box$                                                                                                                                                                                                                                                                                    | $\bigcirc$ 5 $\bigcirc$ 9 $x$ $\bigcirc$ 15 $\bigcirc$ 5 $\bigcirc$ 9 $x$ $\bigcirc$ 20                                                 |  |  |  |
|     | (a)                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                         |  |  |  |
|     | $2 \square x^2$                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                         |  |  |  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                         |  |  |  |
| 33. | $f \square g \square 2 \square \square \square f \square 5 \square \square 4$                                                                                                                                                                                                                                                                                                                           | <b>34.</b> $f \square 0 \square \square 0$ , so $g \square f \square 0 \square \square \square g \square 0 \square \square 3$ .         |  |  |  |
| 35. | $\square g \ \square \ f \square \ \square 4 \square \ \square \ g \ \square f \ \square 4 \square \square \ \square \ g \ \square 2 \square \ \square \ 5$                                                                                                                                                                                                                                             | <b>36.</b> $g \square 0 \square \square 3$ , so $\square f \square g \square \square 0 \square \square f \square 3 \square \square 0$ . |  |  |  |
| 37. | $\square g \ \square g \square \square \square \square \square \square \square \square g \ \square g \ \square \square \square \square$                                                                                                                                                                                                                                                                 | <b>38.</b> <i>f</i> □4□ □ 2, so □ <i>f</i> □ <i>f</i> □ □4□ □ <i>f</i> □2□ □ □2.                                                        |  |  |  |
| 39. | From the table, $g \square 2 \square \square 5$ and $f \square 5 \square \square 6$ , so $f \square g \square 2 \square \square \square 6$ .                                                                                                                                                                                                                                                            |                                                                                                                                         |  |  |  |
| 40. | From the table, $f \square 2 \square \square 3$ and $g \square 3 \square \square 6$ , so $g \square f \square 2 \square \square \square 6$ .                                                                                                                                                                                                                                                            |                                                                                                                                         |  |  |  |
| 41. | 1. From the table, $f \square 1 \square \square 2$ and $f \square 2 \square \square 3$ , so $f \square f \square 1 \square \square \square 3$ .                                                                                                                                                                                                                                                         |                                                                                                                                         |  |  |  |
| 42. | From the table, $g \square 2 \square \square 5$ and $g \square 5 \square \square 1$ , so $g \square g \square 2 \square \square \square 1$ .                                                                                                                                                                                                                                                            |                                                                                                                                         |  |  |  |
|     | From the table, $g \ \Box 6 \Box \ \Box \ 4$ and $f \ \Box 4 \Box \ \Box \ 1$ , so $\ \Box f \ \Box \ g \ \Box \ \Box 6 \Box \ \Box \ 1$                                                                                                                                                                                                                                                                |                                                                                                                                         |  |  |  |
|     | From the table, $f \square 2 \square \square 3$ and $g \square 3 \square \square 6$ , so $\square g \square f \square \square 2 \square \square 6$                                                                                                                                                                                                                                                      |                                                                                                                                         |  |  |  |
|     | From the table, $f \square 5 \square \square 6$ and $f \square 6 \square \square 3$ , so $\square f \square f \square \square 5 \square \square 3$                                                                                                                                                                                                                                                      |                                                                                                                                         |  |  |  |
|     | From the table, $g \square 2 \square \square 5$ and $g \square 5 \square \square 1$ , so $\square g \square g \square \square 5 \square \square 1$ .                                                                                                                                                                                                                                                    |                                                                                                                                         |  |  |  |
| 47. | $f \square x \square \square 2x \square 3$ , has domain $\square \square \square \square ; g \square x \square \square 4x \square 1$ , has de $\square f \square g \square \square x \square \square f \square 4x \square 1 \square \square 2 \square 4x \square 1 \square \square 3 \square 8x \square 1$ , and the following state of $\square f \square g \square g \square g \square g \square g$ . |                                                                                                                                         |  |  |  |
|     | $\Box g \Box f \Box x \Box \Box g \Box 2x \Box 3\Box \Box 4\Box 2x \Box 3\Box \Box 1\Box 8x \Box 11$ , and                                                                                                                                                                                                                                                                                              |                                                                                                                                         |  |  |  |
|     | $\Box f \Box f \Box x \Box \Box f \Box 2x \Box 3 \Box \Box 2 \Box 2x \Box 3 \Box \Box 3 \Box 4x \Box 9$ , and the domain is $\Box \Box \Box \Box \Box$ .                                                                                                                                                                                                                                                |                                                                                                                                         |  |  |  |
|     | $\Box g \Box g \Box x \Box \Box g \Box 4x \Box 1 \Box \Box 4 \Box 4x \Box 1 \Box \Box 1 \Box 16x \Box 5$ , and                                                                                                                                                                                                                                                                                          |                                                                                                                                         |  |  |  |
| 48. | $f \square x \square \square 6x \square 5$ has domain $\square \square \square \square g \square x \square \square 2$ has domain                                                                                                                                                                                                                                                                        |                                                                                                                                         |  |  |  |
|     | 18. $f \square x \square \square 6x \square 5$ has domain $\square \square \square \square \square \square g \square x^{\frac{x}{2}} \square 2$ has domain $\square \square \square$                                                                                    |                                                                                                                                         |  |  |  |
|     | $\Box g \Box f \Box \Box x \Box \Box g \Box 6x \Box \frac{6x \Box 5}{2} \Box 3x \Box \frac{5}{2}$ , and the domain is $\Box$                                                                                                                                                                                                                                                                            | 000 00.                                                                                                                                 |  |  |  |
|     | 5 2                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                         |  |  |  |
|     | $\Box f \Box f \Box x \Box \Box f \Box 6x \Box 5 \Box \Box 6 \Box 6x \Box 5 \Box \Box 5 \Box 36x \Box 35$ , at                                                                                                                                                                                                                                                                                          | nd the domain is \  \  \  \  \  \  \  \  \ .                                                                                            |  |  |  |
|     | $\square g \square g \square \square x \square \qquad \frac{x}{2} \qquad \frac{x}{2} \square \frac{x}{4}$ , and the domain is $\square \square \square \square \square$ .                                                                                                                                                                                                                               |                                                                                                                                         |  |  |  |
|     | 2 2 4                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                         |  |  |  |
| 49. | $f \square x \square \square x^2$ , has domain $\square \square \square \square \square$ ; $g \square x \square \square x \square 1$ , has domain                                                                                                                                                                                                                                                       | n 0000 00.                                                                                                                              |  |  |  |
|     | $\Box f \Box g \Box \Box x \Box \Box f \Box x \Box 1 \Box \Box \Box x \Box 1 \Box^2 \Box x^2 \Box 2x \Box 1$ , and the                                                                                                                                                                                                                                                                                  | e domain is □□□□□□.                                                                                                                     |  |  |  |
|     |                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                         |  |  |  |
|     | $\exists f \exists f \Box x \Box f x^2 \Box^2 \Box x^4$ , and the domain is $\Box \Box \Box \Box$                                                                                                                                                                                                                                                                                                       | □.                                                                                                                                      |  |  |  |
|     | $x^2$                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                         |  |  |  |

 $\Box g \Box g \Box x \Box \Box g \Box x \Box 1 \Box \Box x \Box 1 \Box \Box 1 \Box x \Box 2$ , and the domain is  $\Box \Box \Box \Box \Box$ .

- - $\square f \square f \square x \square \square f x^3 \square 2 \square x^3 \square 2 \square x^9 \square 6x^6 \square 12x^3 \square 8 \square 2 \square x^9 \square 6x^6 \square 12x^3 \square 10, \text{ and the domain is }$ □ 2
- **51.**  $f \square x \square \stackrel{1}{\rightleftharpoons}_x$ , has domain  $\square x \square x \square 0 \square$ ;  $g \square x \square \square 2x \square 4$ , has domain  $\square \square \square \square \square$ .
  - $\Box f \Box g \Box \Box x \Box \Box f \Box 2x \Box \frac{1}{2x \Box 4}$ .  $\Box f \Box g \Box \Box x \Box$  is defined for  $2x \Box 4 \Box 0 \Box x \Box \Box 2$ . So the domain is

whenever  $\Box x \Box x \Box 0 \Box \Box \Box \Box \Box 0 \Box \Box \Box 0 \Box \Box \Box$ .

- $\Box g \Box g \Box \Box x \Box \Box g \Box 2x \Box 4 \Box \Box 2 \Box 2x \Box 4 \Box \Box 4 \Box 4x \Box 8 \Box 4 \Box 4x \Box 12$ , and the domain is  $\Box \Box \Box \Box \Box$ .
- - $\Box g \Box f \Box \Box x \Box \Box g$   $x^2 \Box x^2 \Box 3$ . For the domain we must have  $x^2 \Box 3 \Box x \Box \Box 3$  or 3. Thus the domain is  $x \square$
  - $\square$   $\square$   $\square$   $\square$   $\square$   $\square$   $\square$   $\square$   $\square$  .

domain is  $\lceil 12 \square \square \square$ .

231 CHAPTER 2 Functions SECTION 2.7 Combining Functions 231

| 53. $f \sqcup x \sqcup \sqcup \sqcup x \sqcup$ , has domain $\sqcup \sqcup \sqcup \sqcup \sqcup \sqcup \sqcup g \sqcup x \sqcup \sqcup 2x \sqcup 3$ , has domain                                                                                 |  |  |  |  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                                                                                                                                                                                                                                                  |  |  |  |  |
| $\Box f \Box g \Box \Box x \Box \Box f \Box 2x \Box 4 \Box \Box \Box 2x \Box 3 \Box$ , and the domain is $\Box \Box \Box \Box \Box \Box \Box$ .                                                                                                  |  |  |  |  |
| $\Box g \Box f \Box \Box x \Box \Box g \Box \Box x \Box \Box \Box \Box \Box \Box \Box$ , and the domain is $\Box \Box \Box \Box \Box \Box \Box \Box$ .                                                                                           |  |  |  |  |
| $\Box f \Box f \Box x \Box \Box f \Box x \Box \Box \Box \Box x \Box \Box \Box x \Box$ , and the domain is $\Box \Box \Box \Box \Box \Box \Box$ .                                                                                                 |  |  |  |  |
| $\Box g \Box g \Box x \Box \Box g \Box 2x \Box 3 \Box \Box 2 \Box 2x \Box 3 \Box \Box 3 \Box 4x \Box 6 \Box 3 \Box 4x \Box 9$ . Domain is $\Box \Box \Box \Box \Box \Box$ .                                                                      |  |  |  |  |
|                                                                                                                                                                                                                                                  |  |  |  |  |
|                                                                                                                                                                                                                                                  |  |  |  |  |
| <b>54.</b> $f \square x \square \square x \square 4$ has domain $\square \square \square \square \square \square g \square x \square \square \square x \square 4 \square$ has domain $\square \square \square \square \square \square \square$ . |  |  |  |  |
| $\Box f \Box g \Box \Box x \Box \Box f \Box \Box x \Box 4 \Box \Box \Box x \Box 4 \Box \Box 4$ , and the domain is $\Box \Box \Box \Box \Box \Box \Box$ .                                                                                        |  |  |  |  |
| $\Box g \Box f \Box \Box x \Box \Box g \Box x \Box 4 \Box \Box \Box x \Box 4 \Box \Box 4 \Box \Box x \Box$ , and the domain is $\Box \Box \Box \Box \Box \Box$ .                                                                                 |  |  |  |  |
| $\Box f \Box f \Box x \Box f \Box x \Box 4 \Box \Box x \Box 4 \Box 4 \Box x \Box 8$ , and the domain is $\Box \Box \Box \Box \Box$ .                                                                                                             |  |  |  |  |
| $\Box g \Box g \Box x \Box \Box g \Box x \Box 4 \Box \Box \Box x \Box 4 \Box \Box 4 \Box \Box x \Box 4 \Box \Box 4 (\Box x \Box 4 \Box \Box 4 is always positive).$ The domain is                                                                |  |  |  |  |
|                                                                                                                                                                                                                                                  |  |  |  |  |
|                                                                                                                                                                                                                                                  |  |  |  |  |

55.  $f \square x \square \square \stackrel{x}{\square}$ , has domain  $\square x \square x \square \square 1 \square$ ;  $g \square x \square \square 2x \square 1$ , has domain  $\square \square \square \square \square$ 

- $f \ \Box f \ \Box x \ \Box$  are defined; that is, whenever  $x \ \Box$  1 and  $2x \ \Box$  1  $\Box$  0  $\Box$   $x \ \Box$   $\Box$  2, which is  $\Box$   $\Box$   $\Box$  1  $\Box$  2  $\Box$  1  $\Box$  2  $\Box$  1.  $\Box 1 \Box \Box$
- $\square g \square g \square \square x \square \square g \square 2x \square 1 \square \square 2 \square 2x \square 1 \square \square 1 \square 4x \square 2 \square 1 \square 4x \square 3, and the domain is \square \square \square \square.$

**56.**  $f \square x \square \stackrel{1}{\bigsqcup}_x$  has domain  $\square x \square x \square 0 \square \square g$   $2 \square 4x$  has domain  $\square \square \square \square$ .

numbers is positive either when both numbers are negative or when both numbers are positive. So the domain of  $f \square g$  is

defined, that is, whenever  $x \square 0$ . So the domain of  $g \square f$  is  $\square 0 \square \square$ .

and the domain is  $\Box \Box \Box \Box \Box \Box$ .

57.  $f \square x \square \square x$ , has domain  $\square x \square x \square \square \square$ ;  $g = \frac{1}{x}$  has domain  $\square x \square x \square \square \square \square$ .

defined, so the domain is x = x = 100. x

 $f \ \Box f \ \Box x \ \Box \ \ \text{are defined, so the domain is} \ \ \overset{\square}{x} \ \Box \ x \ \Box \ \ \overset{\square}{\underline{\Box}} 1 \ \Box \ \ ^1 \ .$ 

 $\Box x \Box x \Box 0 \Box$ .

**58.**  $f \square x \square \stackrel{?}{\vdash}_x$  has domain  $\square x \square x \square 0 \square$ ;  $g \stackrel{x}{\square 2}$  has domain  $\square x \square x \square \square 2 \square$ .

is, whenever  $x \square 0$  and  $x \square \square 2$ . So the domain is  $\square x \square x \square 0 \square \square 2 \square$ .

 $x \square 0$ . So the domain is  $\square x \square x \square 0 \square$ .

 $g \square g \square x \square \square$  are defined; that is whenever  $x \square \square 2$  and  $x \square 3 \square 4$ . So the domain  $x \square x \square \square 2 \square 3 \square 4$ .

**59.**  $\Box f \Box g \Box h \Box x \Box \Box f \Box g \Box h \Box x \Box \Box \Box f \Box g \Box x \Box \Box \Box \Box \Box f \Box x \Box$ 

60.  $\Box g \Box h \Box x \Box g x^2 \Box 2 \Box x^2 \Box x^6 \Box 6x^4 \Box 12x^2 \Box 8$ .  $\Box 2 \Box f x^6 \Box 6x^4 \Box 12x^2 \Box 8$ .  $\Box x^6 \Box 6x^4 \Box 12x^2 \Box x^6 \Box 6x^4 \Box 12x^2 \Box x^6 \Box 6x^4 \Box 12x^2 \Box 8$ .

For Exercises 63-72, many answers are possible.

**63.**  $F \square x \square \square \square x \square 9 \square^5$ . Let  $f \square x \square \square x^5$  and  $g \square x \square \square x \square 9$ , then  $F \square x \square \square \square f \square g \square \square x \square$ . **64.**  $F \square x \square \square \square x \square 1$ . If  $f \square x \square \square x \square 1$  and  $g \square x \square \square \square x$ , then  $F \square x \square \square \square \square f \square g \square \square x \square$ .

**65.**  $G \square x \square \stackrel{x^2}{ \square 4}$ . Let  $f \square x \square \stackrel{x}{ \square 4}$  and  $g \square x \square \square^2$ , then  $G \square x \square \square \square f \square g \square \square x \square$ .

**66.**  $G \square x \square \square \square \square \square X$  and  $g \square x \square \square X \square X$ , then  $G \square x \square \square \square G \square G \square X \square \square \square X$ .

- **67.**  $H \square x \square \square \square 1 \square x \stackrel{?}{\exists} \square$ . Let  $f \square x \square \square \square x \square$  and  $g \square x \square \square 1 \square x^3$ , then  $H \square x \square \square \square f \square g \square \square x \square$ .
- **68.**  $H \square x \square \square \square \square x$ . If  $f \square x \square \square \square \square x$  and  $g \square x \square \square \square x$ , then  $H \square x \square \square \square f \square g \square \square x$ .

- $F \square x \square \square \square f \square g \square h \square \square x \square.$  **71.**  $G \square x \square \square \square 4 \square \square 3 x \square 9$ . Let  $f \square x \square \square x 9$ ,  $g \square x \square \square 4 \square x$ , and  $h \square x \square \square \square 3 x$ , then  $G \square x \square \square \square f \square g \square h \square \square x \square.$
- 72.  $G \square x \square \square \square \square 2$ . If  $g \square x \square \square 3 \square x$  and  $h \square x$ , then  $\square g \square h \square \square x \square \square \square x$ , and if  $f \square x \square \square 2$ , then  $\square g \square h \square \square x \square \square \square x$ , and if  $f \square x \square \square 2$ , then  $\square g \square h \square x \square \square x$ .

 $G \square x \square \square \square f \square g \square h \square \square x \square.$ 

236 CHAPTER 2 Functions SECTION 2.7 Combining Functions 236

| 73.                                                                                                                                                                                           | Yes. If $f \square x \square \square m_1 x \square b_1$ and $g \square x \square \square m_2 x \square b_2$ , then                                                                                                                                                                               |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|
|                                                                                                                                                                                               | $ \Box f \Box g \Box \Box x \Box \Box f \Box m_2 x \Box b_2 \Box \Box m_1 \Box m_2 x \Box b_2 \Box \Box b_1 \Box m_1 m_2 x \Box m_1 b_2 \Box b_1, \text{ which is a linear function, because it } $                                                                                              |  |  |
|                                                                                                                                                                                               | is of the form $y \square mx \square b$ . The slope is $m_1m_2$ .                                                                                                                                                                                                                                |  |  |
| 74.                                                                                                                                                                                           | $g \square x \square \square 2x \square 1$ and $h \square x \square \square 4x^2 \square 4x \square 7$ .                                                                                                                                                                                         |  |  |
|                                                                                                                                                                                               | <i>Method 1:</i> Notice that $\Box 2x \Box 1\Box^2 \Box 4x^2 \Box 4x \Box 1$ . We see that adding 6 to this quantity gives                                                                                                                                                                       |  |  |
|                                                                                                                                                                                               | $\Box 2x \Box 1\Box^2 \Box 6 \Box 4x^2 \Box 4x \Box 1 \Box 6 \Box 4x^2 \Box 4x \Box 7$ , which is $h \Box x \Box$ . So let $f \Box x \Box \Box x^2 \Box 6$ , and we have                                                                                                                         |  |  |
|                                                                                                                                                                                               | $\Box f \Box g \Box \Box x \Box \Box \Box 2x \Box 1 \Box^2 \Box 6 \Box h \Box x \Box.$                                                                                                                                                                                                           |  |  |
|                                                                                                                                                                                               | Method 2: Since $g \square x \square$ is linear and $h \square x \square$ is a second degree polynomial, $f \square x \square$ must be a second degree                                                                                                                                           |  |  |
|                                                                                                                                                                                               | polynomial, that is, $f \square x \square \square ax^2 \square bx \square c$ for some $a, b$ , and $c$ . Thus $f \square g \square x \square \square \square f \square 2x \square 1 \square \square a \square 2x \square 1 \square^2$ $\square b \square 2x \square 1 \square \square c \square$ |  |  |
|                                                                                                                                                                                               | $4ax^2 \Box 4ax \Box a \Box 2bx \Box b \Box c \Box 4ax^2 \Box \Box 4a \Box 2b\Box x \Box \Box a \Box b \Box c \Box \Box 4x^2 \Box 4x \Box 7$ . Comparing this with $f \Box g \Box x \Box \Box$ , we                                                                                              |  |  |
|                                                                                                                                                                                               | have $4a \square 4$ (the $x^2$ coefficients), $4a \square 2b \square 4$ (the $x$ coefficients), and $a \square b \square c \square 7$ (the constant terms) $\square a \square 1$ and                                                                                                             |  |  |
| $2a \square b \square 2$ and $a \square b \square c \square 7 \square a \square 1, b \square 0 \square c \square 6$ . Thus $f \square x \square \square x^2 \square 6$ .                      |                                                                                                                                                                                                                                                                                                  |  |  |
|                                                                                                                                                                                               | $f \square x \square \square 3x \square 5$ and $h \square x \square \square 3x^2 \square 3x \square 2$ .                                                                                                                                                                                         |  |  |
|                                                                                                                                                                                               | Note since $f \square x \square$ is linear and $h \square x \square$ is quadratic, $g \square x \square$ must also be quadratic. We can then use trial and error to find                                                                                                                         |  |  |
|                                                                                                                                                                                               | $g \square x \square$ . Another method is the following: We wish to find $g$ so that $\square f \square g \square \square x \square \square h \square x \square$ . Thus $f \square g \square x \square \square \square$                                                                          |  |  |
|                                                                                                                                                                                               | $3x^2 \square 3x \square 2 \square$                                                                                                                                                                                                                                                              |  |  |
|                                                                                                                                                                                               | $3 \square g \square x \square \square \square 5 \square 3x^2 \square 3x \square 2 \square 3 \square g \square x \square \square \square 3x^2 \square 3x \square 3 \square g \square x \square \square x^2 \square x \square 1.$                                                                 |  |  |
| 75.                                                                                                                                                                                           | The price per sticker is $0 \square 15 \square 0 \square 000002x$ and the number sold is $x$ , so the revenue is                                                                                                                                                                                 |  |  |
|                                                                                                                                                                                               | $R \square x \square \square \square \square \square \square 15 \square \square \square \square \square \square 0000002x \square x \square \square \square \square \square 15x \square \square \square \square \square \square 0000002x^2.$                                                      |  |  |
| 76.                                                                                                                                                                                           | As found in Exercise 75, the revenue is $R \square x \square $                                                                                                   |  |  |
|                                                                                                                                                                                               | profit is $P \square x \square \square 0 \square 15x \square 0 \square 000002x^2 \square 0 \square 095x \square 0 \square 0000005x^2 \square 0 \square 0055x \square 0 \square 00000015x^2$ .                                                                                                    |  |  |
| 77.                                                                                                                                                                                           | (a) Because the ripple travels at a speed of 60 cm/s, the distance traveled in t seconds is the radius, so $g \Box t \Box \Box 60t$ .                                                                                                                                                            |  |  |
|                                                                                                                                                                                               | <b>(b)</b> The area of a circle is $\Box r^2$ , so $f \Box r \Box \Box r^2$ .                                                                                                                                                                                                                    |  |  |
|                                                                                                                                                                                               | (c) $f \square g \square \square g \square t \square \square^2 \square \square G0t \square^2 \square 3600 \square t^2$ cm <sup>2</sup> . This function represents the area of the ripple as a function of                                                                                        |  |  |
|                                                                                                                                                                                               | time.                                                                                                                                                                                                                                                                                            |  |  |
| <b>78.</b> (a) Let $f \Box t \Box$ be the radius of the spherical balloon in centimeters. Since the radius is increasing at a rate of the radius is $f \Box t \Box \Box t$ after $t$ seconds. |                                                                                                                                                                                                                                                                                                  |  |  |
|                                                                                                                                                                                               | <b>(b)</b> The volume of the balloon can be written as $g \Box r \Box \Box_3^4 \Box r^3$ .                                                                                                                                                                                                       |  |  |
|                                                                                                                                                                                               | (c) $g \Box f \Box_{3}^{4} \Box \Box t \Box^{3} \ \ \ ^{4} \Box t^{3}$ . $g \Box f$ represents the volume as a function of time.                                                                                                                                                                 |  |  |
| <b>79.</b>                                                                                                                                                                                    | Let $r$ be the radius of the spherical balloon in centimeters. Since the radius is increasing at a rate of 2 cm/s, the radius is $r \Box 2t$                                                                                                                                                     |  |  |
|                                                                                                                                                                                               | after t seconds. Therefore, the surface area of the balloon can be written as $S \square 4 \square r^2 \square 4 \square \square 2t \square^2 \square 4 \square 4t^2 \square 16 \square t^2$ .                                                                                                   |  |  |
| 90                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                  |  |  |
| ou.                                                                                                                                                                                           | (a) $f \square x \square \square 0 \square 80x$                                                                                                                                                                                                                                                  |  |  |
|                                                                                                                                                                                               | (b) $g \square x \square \square x \square 50$<br>(c) $\square f \square g \square \square x \square \square f \square x \square 50 \square \square 0 \square 80 \square x \square 50 \square \square 0 \square 80 x \square 40$ . $f \square g$ represents applying the \$50 coupon, then       |  |  |
|                                                                                                                                                                                               | the                                                                                                                                                                                                                                                                                              |  |  |
|                                                                                                                                                                                               | 20% discount. $\Box g \Box f \Box \Box x \Box \Box g \Box 0 \Box 80x \Box \Box 0 \Box 80x \Box 50$ . $g \Box f$ represents applying the 20% discount, then the \$50 coupon. So applying the 20% discount, then the \$50 coupon gives the lower price.                                            |  |  |
| Q1                                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                  |  |  |
| 01.                                                                                                                                                                                           | (a) $f \square x \square \square 0 \square 90x$<br>(b) $g \square x \square \square x \square 100$                                                                                                                                                                                               |  |  |
|                                                                                                                                                                                               | (c) $\Box f \Box g \Box \Box x \Box \Box f \Box x \Box \Box 100 \Box \Box 0\Box 90 \Box x \Box \Box 100 \Box \Box 0\Box 90x \Box 90$ . $f \Box g$ represents applying the \$100 coupon,                                                                                                          |  |  |
|                                                                                                                                                                                               | then the                                                                                                                                                                                                                                                                                         |  |  |
|                                                                                                                                                                                               | 10% discount. $\Box g \Box f \Box \Box x \Box \Box g \Box 0 \Box 90x \Box \Box 0 \Box 90x \Box 100$ . $g \Box f$ represents applying the 10% discount, then the                                                                                                                                  |  |  |
|                                                                                                                                                                                               | \$100 coupon. So applying the 10% discount, then the \$100 coupon gives the lower price.                                                                                                                                                                                                         |  |  |
| 82.                                                                                                                                                                                           | Let <i>t</i> be the time since the plane flew over the radar station.                                                                                                                                                                                                                            |  |  |

(a) Let s be the distance in miles between the plane and the radar station, and let d be the horizontal distance that the plane

has flown. Using the Pythagorean theorem,  $s \Box f \Box d \Box \Box \Box \Box d^2$ .

| (b) Since distance $\Box$ rate $\Box$ time, we have $a \Box g \Box t \Box \Box 550t$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (b) Since distance $\square$ rate $\square$ time, we have $d \square g \square t \square \square 350t$ .  (c) $s \square t \square $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <b>83.</b> $A \square x \square \square \square 1 \square 05x \square \square A \square A \square x \square \square \square A \square A \square x \square \square \square A \square 1 \square 05x \square \square \square 1 \square 05x \square \square \square 1 \square 05 \square^2 x.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| the account after 1 year; $A \Box A$ represents the amount in the account after 2 years; $A \Box A \Box A$ represents the amount in the account after 3 years; and $A \Box A \Box A \Box A$ represents the amount in the account after 4 years. We can see that if we compose $n$ copies of $A$ , we get $\Box 1 \Box 05 \Box^n x$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| <b>84.</b> If $g \square x \square$ is even, then $h \square \square x \square \square f \square g \square x \square \square h \square x \square$ . So yes, $h$ is always an even function.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| If $g \square x \square$ is odd, then h is not necessarily an odd function. For example, if we let $f \square x \square \square x \square 1$ and $g \square x \square \square x^3$ , g is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| an odd function, but $h \square x \square \square \square f \square g \square \square x \square \square f    1$ is not an odd function.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| If $g \square x \square$ is odd and $f$ is also odd, then                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $h \square x \square \square \square f \square g \square \square x \square \square f \square g \square x \square \square \square f \square g \square x \square \square \square \square f \square g \square x \square \square \square \square f \square g \square x \square \square \square \square h \square x \square.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| So in this case, $h$ is also an odd function.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| If $g \square x \square$ is odd and $f$ is even, then $h \square x \square \square \square f \square g \square \square x \square \square f \square g \square x \square \square \square f \square g \square x \square \square \square f \square g \square x \square \square \square$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $\Box f \Box g \Box \Box x \Box \Box h \Box x \Box$ , so in this case, h is an even function.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 2.9 ONE TO ONE EUNCTIONS AND THEIR INVERSES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| 2.8 ONE-TO-ONE FUNCTIONS AND THEIR INVERSES                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <b>1.</b> A function $f$ is one-to-one if different inputs produce <i>different</i> outputs. You can tell from the graph that a function is one-to-one by using the <i>Horizontal Line</i> Test.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| one-to-one by using the <i>Horizontal Line</i> Test.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| one-to-one by using the <i>Horizontal Line</i> Test. <b>2.</b> (a) For a function to have an inverse, it must be <i>one-to-one</i> . $f \Box x \Box \Box x^2$ is not one-to-one, so it does not have an inverse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| <ul> <li>one-to-one by using the <i>Horizontal Line</i> Test.</li> <li>2. (a) For a function to have an inverse, it must be <i>one-to-one</i>. f □x □ x² is not one-to-one, so it does not have an inverse However g □x □ x³ is one-to-one, so it has an inverse.</li> <li>(b) The inverse of g □x □ x³ is g □ x □ x² is not one-to-one, so it does not have an inverse.</li> <li>(b) The inverse of g □x □ x³ is g □ x² is g □ x □ x² is not one-to-one, so it does not have an inverse inverse.</li> <li>(b) The inverse of g □x □ x³ is g □ x² is g □ x □ x² is not one-to-one, so it does not have an inverse inverse.</li> <li>(c) The inverse of g □x □ x³ is g □ x² is g □ x² is not one-to-one, so it does not have an inverse inverse.</li> <li>(d) The inverse of g □x □ x³ is g □ x² is g □ x² is g is g □ x² is g is not one-to-one, so it does not have an inverse.</li> <li>(e) The inverse of g □x □ x³ is g □ x² is g is g □ x² is g is g □ x² is g is g is g □ x² is g □ x²</li></ul> |
| <ul> <li>one-to-one by using the <i>Horizontal Line</i> Test.</li> <li>2. (a) For a function to have an inverse, it must be <i>one-to-one</i>. f □x□ □ x² is not one-to-one, so it does not have an inverse However g □x□ □ x³ is one-to-one, so it has an inverse.</li> <li>(b) The inverse of g □x□ □ x³ is g□¹ □x□ □ x³ is g□¹ □x□ □ x².</li> <li>3. (a) Proceeding backward through the description of f, we can describe f□¹ as follows: "Take the third root, subtract 5,</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| <ul> <li>one-to-one by using the <i>Horizontal Line</i> Test.</li> <li>2. (a) For a function to have an inverse, it must be <i>one-to-one</i>. f □x□ □ x² is not one-to-one, so it does not have an inverse. However g □x□ □ x³ is one-to-one, so it has an inverse.</li> <li>(b) The inverse of g □x□ □ x³ is g□¹ □x□ □ √₃ x.</li> <li>3. (a) Proceeding backward through the description of f, we can describe f□¹ as follows: "Take the third root, subtract 5, then divide by 3."</li> <li>(b) f □x□ □ □3x □ 5□³ and f□ □ √₃ x̄ □ 5</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| <ul> <li>one-to-one by using the <i>Horizontal Line</i> Test.</li> <li>(a) For a function to have an inverse, it must be <i>one-to-one</i>. f □x □ □ x² is not one-to-one, so it does not have an inverse However g □x □ □ x³ is one-to-one, so it has an inverse.</li> <li>(b) The inverse of g □x □ □ x³ is g □ □x □ □ ∫₃ x.</li> <li>(a) Proceeding backward through the description of f, we can describe f □ 1 as follows: "Take the third root, subtract 5, then divide by 3."</li> <li>(b) f □x □ □ □3x □ 5 □ 3 and f □ □ ∫₃ x □ 5 / 3 .</li> <li>4. Yes, the graph of f is one-to-one, so f has an inverse. Because f □4 □ □ 1, f □ □ □ □ 4, and because f □5 □ 3, f □ □ □ □ □ 5.</li> <li>5. If the point □3□ 4 □ is on the graph of f, then the point □4□ 3 □ is on the graph of f □ 1. [This is another way of saying that</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <ul> <li>one-to-one by using the <i>Horizontal Line</i> Test.</li> <li>(a) For a function to have an inverse, it must be <i>one-to-one</i>. f □x □ x² is not one-to-one, so it does not have an inverse However g □x □ x³ is one-to-one, so it has an inverse.</li> <li>(b) The inverse of g □x □ x³ is g □ □x □ x³ is g □ □x □ x³ x.</li> <li>(a) Proceeding backward through the description of f, we can describe f □ as follows: "Take the third root, subtract 5, then divide by 3."</li> <li>(b) f □x □ □ 3x □ 5 □ 3 and f □ x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □ 5 x □</li></ul>  |
| <ul> <li>one-to-one by using the <i>Horizontal Line</i> Test.</li> <li>(a) For a function to have an inverse, it must be <i>one-to-one</i>. f □x □ □ x² is not one-to-one, so it does not have an inverse However g □x □ □ x³ is one-to-one, so it has an inverse.</li> <li>(b) The inverse of g □x □ □ x³ is g □ □x □ □ ∫₃ x.</li> <li>(a) Proceeding backward through the description of f, we can describe f □ 1 as follows: "Take the third root, subtract 5, then divide by 3."</li> <li>(b) f □x □ □ □3x □ 5 □ 3 and f □ □ ∫₃ x □ 5 / 3 .</li> <li>4. Yes, the graph of f is one-to-one, so f has an inverse. Because f □4 □ □ 1, f □ □ □ □ 4, and because f □5 □ 3, f □ □ □ □ □ 5.</li> <li>5. If the point □3□ 4 □ is on the graph of f, then the point □4□ 3 □ is on the graph of f □ 1. [This is another way of saying that</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |

**11.** By the Horizontal Line Test, f is not one-to-one.

**9.** By the Horizontal Line Test, f is one-to-one.

7. By the Horizontal Line Test, f is not one-to-one.

8. By the Horizontal Line Test, f is one-to-one.10. By the Horizontal Line Test, f is not one-to-one.

12. By the Horizontal Line Test, f is one-to-one.

238 CHAPTER 2 Functions SECTION 2.7 Combining Functions 238

**13.**  $f \Box x \Box \Box \Box 2x \Box 4$ . If  $x_1 \Box x_2$ , then  $\Box 2x_1 \Box \Box 2x_2$  and  $\Box 2x_1 \Box 4 \Box \Box 2x_2 \Box 4$ . So f is a one-to-one function.

**14.**  $f \square x \square \square 3x \square 2$ . If  $x_1 \square x_2$ , then  $3x_1 \square 3x_2$  and  $3x_1 \square 2 \square 3x_2 \square 2$ . So f is a one-to-one function.

| 15.           | $g \square x \square \square x$ . If $x_1 \square x_2$ , then $x_1 \square x_2$ because two different numbers cannot have the same square root. Therefore, $g$ is a one-to-one function.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|---------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 16.           | $g \square x \square \square \square x \square$ . Because every number and its negative have the same absolute value (for example, $\square \square \square$ ),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|               | g is not a one-to-one function.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|               | $h \square x \square \square x^2 \square 2x$ . Because $h \square 0 \square \square 0$ and $h \square 2 \square \square \square 2 \square 2 \square 2 \square \square 0$ we have $h \square 0 \square \square h \square 2 \square$ . So $f$ is not a one-to-function.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| 18.           | $h \square x \square \square x^3 \square 8$ . If $x_1 \square x_2$ , then $x^3 \square x^3$ and $x^3 \square 8 \square x^3 \square 8$ . So $f$ is a one-to-one function.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| <b>19.</b> so | $f \square x \square \square x^4 \square 5$ . Every nonzero number and its negative have the same fourth power. For example, $\square \square \square^4 \square \square \square \square^4$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|               | $f \square \square 1 \square \square f \square 1 \square$ . Thus $f$ is not a one-to-one function.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 20.           | $f \square x \square \square x^4 \square 5$ , $0 \square x \square 2$ . If $x_1 \square x_2$ , then $x_1 \square x_3$ because two different positive numbers cannot have the same fourth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|               | power. Thus, $x_1^4 \Box 5 \Box x_2^4 \Box 5$ . So $f$ is a one-to-one function.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 21.           | $r \Box t \Box \Box t^6 \Box 3, 0 \Box t \Box 5$ . If $t_1 \Box t_2$ , then $t^6 \Box_2 t^6$ because two different positive numbers cannot have the same sixth power                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|               | Thus, $t_1^6 \Box 3 \Box t_2^6 \Box 3$ . So <i>r</i> is a one-to-one function.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 22.<br>so     | $r \Box t \Box \Box t^4 \Box 1$ . Every nonzero number and its negative have the same fourth power. For example, $\Box \Box \Box$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|               | $r \square \square 1 \square \square r \square 1 \square$ . Thus $r$ is not a one-to-one function.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| <b>23.</b> □  | $f \square x \square \square \frac{1}{x^2}$ . Every nonzero number and its negative have the same square. For example, $\frac{1}{1 \square^2} \square 1 \square \square \frac{1}{1}$ , so                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|               | $f \square \square \square \square f \square \square$ . Thus $f$ is not a one-to-one function.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 24.           | $f \square x \square \stackrel{1}{\sqsubseteq}_x$ . If $x_1 \square x_2$ , then $\frac{1}{1} \square \frac{1}{x_2}$ . So $f$ is a one-to-one function.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| х             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 25.           | (a) $f \square 2 \square \square 7$ . Since $f$ is one-to-one, $f^{\square 1} \square 7 \square \square 2$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|               | <b>(b)</b> $f^{\Box 1} \Box 3 \Box \Box \Box 1$ . Since $f$ is one-to-one, $f \Box \Box 1 \Box \Box 3$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 26.           | (a) $f \square 5 \square \square 18$ . Since $f$ is one-to-one, $f^{\square 1} \square 18 \square \square 5$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|               | <b>(b)</b> $f^{\Box 1} \Box 4 \Box \Box 2$ . Since $f$ is one-to-one, $f \Box 2 \Box \Box 4$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|               | $f \square x \square \square 5 \square 2x$ . Since $f$ is one-to-one and $f \square 1 \square \square 5 \square 2 \square 1 \square \square 3$ , then $f^{\square 1} \square 3 \square \square 1$ . (Find 1 by solving the ation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|               | $5 \square 2x \square 3$ .)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 28.           | To find $g^{\Box 1} \Box 5\Box$ , we find the x value such that $g \Box x \Box \Box 5$ ; that is, we solve the equation $g \Box x \Box \Box x^2 \Box 4x \Box 5$ . Now                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|               | $x^2 \square 4x \square 5 \square x^2 \square 4x \square 5 \square 0 \square \square x \square 1 \square \square x \square 5 \square \square 0 \square x \square 1$ or $x \square 15$ . Since the domain of $g$ is $[\square 2 \square \square \square, x \square 1 \square \square x \square 1 \square x $ |
|               | is the only value where $g \square x \square \square 5$ . Therefore, $g^{\square 1} \square 5 \square \square 1$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|               | (a) Because $f \square 6 \square \square 2$ , $f^{\square 1} \square 2 \square \square 6$ . (b) Because $f \square 2 \square \square 5$ , $f^{\square 1} \square 5 \square \square 2$ . (c) Because $f \square 0 \square \square 6$ , $f^{\square 1} \square \square 0$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|               | (a) Because $g \square 4 \square \square 2$ , $g^{\square 1} \square 2 \square \square 4$ . (b) Because $g \square 7 \square \square 5$ , $g^{\square 1} \square 5 \square \square 7$ . (c) Because $g \square 8 \square \square 6$ , $g^{\square 1} \square 8$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 31.           | From the table, $f \Box 4 \Box \Box 5$ , so $f^{\Box 1} \Box 5 \Box \Box 4$ . <b>32.</b> From the table, $f \Box 5 \Box \Box 0$ , so $f^{\Box 1} \Box 0 \Box \Box 5$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|               | $f^{\Box 1} \Box f \Box 1 \Box \Box 1$ 34. $f^{\Box 1} \Box 6 \Box \Box 6$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| □1            | From the table, $f \square 6 \square \square 1$ , so $f^{\square 1} \square 1 \square \square 6$ . Also, $f \square 2 \square \square 6$ , so $f^{\square 1} \square 6 \square \square 1$ . Thus, $f^{\square 1} \square f \square f \square 6 \square \square 1$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| <b>36.</b> □1 | From the table, $f \square 5 \square \square 0$ , so $f^{\square 1} \square 0 \square \square 5$ . Also, $f \square 4 \square \square 5$ , so $f^{\square 1} \square 5 \square \square 4$ . Thus, $f^{\square 1} \square f \square 5 \square \square 4$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

| <b>37.</b> | $f \square g \square x \square \square \square f \square$                      | $x \square 6 \square \square x \square 6 \square \square 6 \square x$ for all $x$ .                                   |
|------------|--------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
|            |                                                                                | $c \square 6 \square \square x \square 6 \square \square f$ or all $x$ . Thus $f$ and $g$ are inverses of each other. |
|            |                                                                                | $\begin{bmatrix} x \\ 3 \end{bmatrix}  \Box x \text{ for all } x.$                                                    |
|            | $g \square f \square x \square \square \square g$ $\square 3x \square \square$ | $\frac{3x}{3} \square x$ for all x. Thus f and g are inverses of each other.                                          |

**39.** 
$$f \square g \square x \square \square$$
  $x \square 4 \square 3 \square x \square 4 \square x \square 4 \square x \square 4 \square x for all  $x$ .$ 

40. 
$$f \square g \square x \square \square$$
  $5$   $\square 2 \square 5$   $\square 2 \square 2 \square x \square \square x$  for all  $x \square x$ 

 $g \square f \square x \square \square \square g \square 2 \square \frac{2 \square \square 2 \square 5x}{5} \square \frac{5x}{5} \square x$  for all x. Thus f and g are inverses of each other.

**41.** 
$$f \square g \square x \square \square \square \frac{1}{x} \square \frac{1}{1 \square x} \square x$$
 for all  $x \square 0$ . Since  $f \square x \square \square g \square x \square$ , we also have  $g \square f \square x \square \square \square x$  for all  $x \square 0$ . Thus  $f$  and

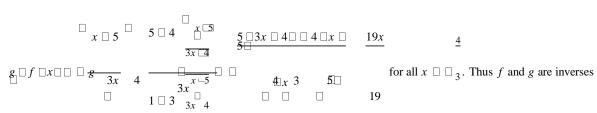
$$g$$
 are inverses of each other.

**42.**  $f \square g \square x \square \square \square f \xrightarrow{\square G} x \xrightarrow{\square G} x \text{ for all } x$ .

 $g \square f \square x \square \square \square g \xrightarrow{\square G} x \text{ for all } x$ . Thus  $f$  and  $g$  are inverses of each other.

**43.** 
$$f \square g \square x \square \square \qquad f \square x \square 9 \qquad \square \qquad x \square 9 \square x \square 9 \square 9 \square x$$
 for all  $x \square \square 9$ .

 $g \ \Box f \ \Box x \Box \Box \ \Box g \ x^2 \ \Box 9 \ \Box \ x^2 \ \Box 9 \ \Box \ x^2 \ \Box x$  for all  $x \ \Box \ 0$ . Thus f and g are inverses of each other.


$$g \Box f \Box x \Box \Box \Box g x^3 \Box 1 \Box \Box x \Box 1 \Box 1 \Box x \text{ for all } x. \text{ Thus } f \text{ and } g \text{ are inverses of each other.}$$

**45.** 
$$f \square g \square x \square \square \qquad \frac{1}{x} \square 1 \qquad \square \qquad \square \qquad 1 \square x \text{ for all } x \square 0.$$

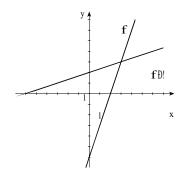
is possible since  $x \square 0$ .) Thus f and g are inverses of each other.

ice 
$$x \square 0$$
.) Thus  $f$  and  $g$  are inverses of each other.
$$\frac{2x \square 2}{x \square 1} \square \frac{2x \square 2}{x \square 1} \square 2 \qquad 2x \square 2 \square 2 \square x \square 1 \square \qquad \underline{4x}$$

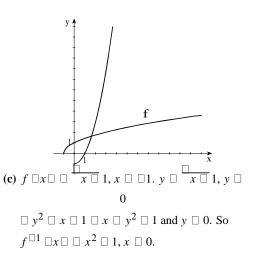
$$\underline{47.} \ f \square g \square x \square \square \square f$$



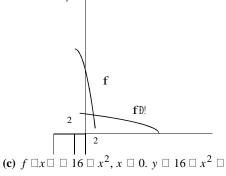
of each other.


**49.** 
$$f \square x \square \square 3x \square 5$$
.  $y \square 3x \square 5 \square 3x \square y \square 5 \square x \square \frac{1}{3} \square y \square 5 \square \frac{1}{3} \square y \square 5 \square \frac{1}{3} \stackrel{5}{\square} x \square \frac{5}{3} \stackrel{5}{\square} x \square \frac{1}{3} \square 1 \stackrel{7}{\square} 1 \stackrel{1}{\square} 1 \stackrel{7}{\square} 7$ 

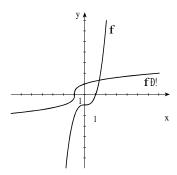
- **51.**  $f \square x \square \square 5 \square 4x^3$ .  $y \square 5 \square 4x^3 \square 4x^3 \square 5 \square y \square x^3 \square \frac{1}{4} \square 5 \square y \square x \square \frac{3}{4} \square 5 \square y \square$ . So  $f \square 1 \square x \square \frac{1}{4} \square 5 \square x \square$ . **52.**  $f \square x \square \square 3x^3 \square 8$ .  $y \square 3x^3 \square 8 \square 3x^3 \square y \square 8 \square x^3 \square \frac{1}{3} y \square \frac{8}{3} \square x \square \frac{3}{1} \frac{1}{3} y \square \frac{8}{3}$ . So  $f \square 1 \square x \square \square \frac{3}{3} \frac{1}{1} \square x \square 8 \square$ .
- 53.  $f \square x \square \frac{1}{x \square 2}$  .  $y \square \frac{1}{x \square 2} \square x \square 2 \square \frac{1}{y} \square x \square \frac{1}{y} \square 2$ . So  $f \square \square x \square \frac{1}{z} \square 2$ .


- $f^{\Box 1} \Box x \Box \Box \overline{4x}$
- **56.**  $f \square x \square \square \square 2$ .  $y \square 3x \square y \square x \square 2$   $\square y \square x \square 2$   $\square 3x \square xy \square 2y \square 3x \square xy \square 3x \square 2y \square x \square y \square 3 \square 2y \square x \square 2 \square 3$ . So  $\begin{array}{ccc}
  f^{\square 1} \square x \square & \frac{2x}{x \square 3}.
  \end{array}$
- $\begin{array}{c} 2x \ \Box \ 5 \\ \hline x \ \Box \ 7 \end{array} . \ y \ \Box \ \frac{2x \ \Box \ 5}{x \ \Box \ 7} \ . \ y \ \Box \ \overline{x \ \Box \ 7} \ \Box \ \underline{y \ \Box x} \ \Box \ 7 \ \Box \ 2x \ \Box \ 5 \ \Box \ xy \ \Box \ 7y \ \Box \ 2x \ \Box \ 7y \ \Box \ 5 \ \Box \ xy \ \Box \ 2x \ \Box \ 7y \ \Box \ 5 \ \Box \ xy \ \Box \ 2x \ \Box \ 7y \ \Box \ 5 \ \Box \ xy \ \Box \ 2x \ \Box \ 7y \ \Box \ 5 \ \Box \ xy \ \Box \ 2x \ \Box \ 7y \ \Box \ 5 \ \Box \ xy \ \Box \ 2x \ \Box \ 7y \ \Box \ 5 \ \Box \ xy \ \Box \ 2x \ \Box \ 7y \ \Box \ 5 \ \Box \ xy \ \Box \ 2x \ \Box \ 7y \ \Box \ 5 \ \Box \ xy \ \Box \ 2x \ \Box \ 7y \ \Box \ 5 \ \Box \ xy \ \Box \ 2x \ \Box \ 7y \ \Box \ 5 \ \Box \ xy \ \Box \ 2x \ \Box \ 7y \ \Box \ 5 \ \Box \ xy \ \Box \ 2x \ \Box \ 7y \ \Box \ 5 \ \Box \ xy \ \Box \ 2x \ \Box \ 7y \ \Box \ 5 \ \Box \ xy \ \Box \ 2x \ \Box \ 7y \ \Box \ 5 \ \Box \ xy \ \Box \ 2x \ \Box \ 7y \ \Box \ 5 \ \Box \ xy \ \Box \ 2x \ \Box \ 7y \ \Box \ 5 \ \Box \ xy \ \Box \ 2x \ \Box \ 7y \ \Box \ 5 \ \Box \ xy \ \Box \ 2x \ \Box \ 7y \ \Box \ 5 \ \Box \ xy \ \Box \ 2x \ \Box \ 7y \ \Box \ 5 \ \Box \ xy \ \Box \ 2x \ \Box \ 7y \ \Box \ 5 \ \Box \ xy \ \Box \ 2x \ \Box \ 7y \ \Box \ 5 \ \Box \ xy \ \Box \ 2x \ \Box \ 7y \ \Box \ 5 \ \Box \ xy \ \Box \ 2x \ \Box \ 7y \ \Box \ 5 \ \Box \ xy \ \Box \ 2x \ \Box \ 7y \ \Box \ 5 \ \Box \ xy \ \Box \ 2x \ \Box \ 7y \ \Box \ 5 \ \Box \ xy \ \Box \ 2x \ \Box \ 7y \ \Box \ 5 \ \Box \ xy \ \Box \ 2x \ \Box \ 7y \ \Box \ 5 \ \Box \ xy \ \Box \ 2x \ \Box \ 7y \ \Box \ 5 \ \Box \ xy \ \Box \ 2x \ \Box \ 7y \ \Box \ 2x \ \Box \ 2x$ 
  - $\square x \square \frac{7y \sqcup 5}{y \square 2} \cdot \text{So } f \stackrel{1}{\square} \square x \square \frac{7x \square 5}{x \square 2}.$
- - $\square x \square \frac{y \square 2}{4 \square 3y}. \text{ So } f \square \square x \square \frac{x \square 2}{4 \square 3x}.$
- - $\square x \square \frac{y \square 3}{5y \square 2}. \text{ So } f \square \square x \square \frac{x \square 3}{5x \square 2}.$
- *y* □ 3  $4 \square 2y_{\square}$ 
  - So  $f^{\Box 1} \Box x \Box \frac{x \Box 3}{4 \Box 2x \Box 1} \Box$
- **62**  $f \square x \square \square x^2 \square x \square x^2 \square x \square 1 \square 1 \square x-\square^2 \square 1, x \square \square^1. y \square x \square^1 2 \square 1 \square y \square^1 \square$

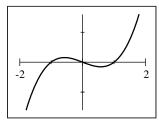
- **63.**  $f \square x \square \square x^6$ ,  $x \square 0$ .  $y \square x^6 \square x \square {6 \over 5}y$  for  $x \square 0$ . The range of f is  $\square y \square y \square 0$ , so  $f^{\square 1} \square x \square {6 \over 5}x$ ,  $x \square 0$ . **64.**  $f \square x \square {1 \over x^2}$ ,  $x \square 0$ .  $y \square {1 \over x^2}$   $\square 2 \square {1 \over y}$   $\square x \square {1 \over y}$  The range of f is  $\square y \square y \square 0$ , so  $f^{1} \square x \square {1 \over 1}x$ ,  $x \square 0$ .


- **69.**  $f \square x \square \square 2 \square^{\frac{1}{3}} x$ .  $y \square 2 \square^{\frac{1}{3}} x \square y \square 2 \square^{\frac{1}{3}} x \square x \square \square y \square 2 \square^{3}$ . Thus,  $f^{\square 1} \square x \square \square \square x \square 2 \square^{3}$ .
- **71.** (a), (b)  $f \Box x \Box \Box 3x \Box 6$



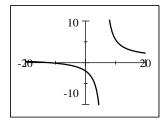

- (c)  $f \square x \square \square 3x \square 6$ .  $y \square 3x \square 6 \square 3x \square y \square 6 \square$   $x \square^{-1} \square y \square 6 \square \text{Sep}^{-1} \square x \square^{-1} \square x$   $\overline{3}$
- 73. (a), (b)  $f \square x \square \square \square$



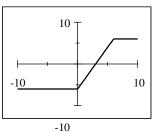

**72.** (a), (b)  $f \Box x \Box \Box 16 \Box x^2, x \Box 0$ 



- $x^{2}$   $\Box$  16  $\Box$  y  $\Box$  x  $\Box$  16  $\Box$  y. So  $f^{\Box 1}$   $\Box$  x  $\Box$   $\Box$  16  $\Box$  x, x  $\Box$  16. (Note: x  $\Box$  0  $\Box$  f  $\Box$  x  $\Box$   $\Box$  16  $\Box$   $x^{2}$   $\Box$  16.)
- **74.** (a), (b)  $f \Box x \Box \Box x^3 \Box 1$



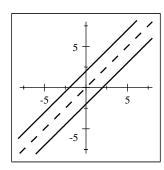

(c)  $f \square x \square \square x^3 \square 1 \square y \square x^3 \square 1 \square x^3 \square y \square 1$  $\square x \square {}^5 y \overline{\square 1}$ . So  $f \square 1 \square x \square \square {}^5 \overline{x \square 1}$ . **75.**  $f \Box x \Box \Box x^3 \Box x$ . Using a graphing device and the Horizontal Line Test, we see that f is not a one-to-one function. For example,  $f \Box 0 \Box \Box 0 \Box f \Box \Box 1 \Box$ .



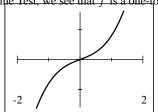

77.  $f \square x \square \stackrel{x}{\square} \frac{12}{6}$ . Using a graphing device and the

Horizontal Line Test, we see that f is a one-to-one function.



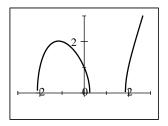

**79.**  $f \square x \square \square \square x \square \square x \square 6\square$ . Using a graphing device and the Horizontal Line Test, we see that f is not a one-to-one function. For example  $f \square 0 \square \square 6\square f$   $\square \square 2\square$ .



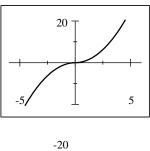

§1. (a)  $y \Box f \Box x \Box \Box 2 \Box x \Box x \Box y \Box 2$ .

 $f^{\Box 1} \Box x \Box \Box x \Box 2.$ 

**(b)** 

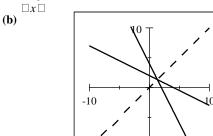



**76.**  $f \Box x \Box \Box x^3 \Box x$ . Using a graphing device and the Horizontal Line Test, we see that f is a one-to-one function.

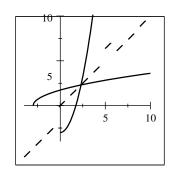



**78.**  $f \square x \square \qquad \square \qquad \qquad \square$  Using a graphing device and the  $\square$ 

Horizontal Line Test, we see that f is not a one-to-one function. For example,  $f \square 0 \square \square 1 \square f \square 2 \square$ .




**80.**  $f \square x \square \square x \square \square x \square$ . Using a graphing device and the Horizontal Line Test, we see that f is a one-to-one function.




**82.** (a)  $y \square f \square x \square \square 2 \square {}^1x \square {}^1x \square 2 \square y \square x \square 4 \square 2y$ .

So  $f^{\square}$   $\square 4 \square 2x$ .



**(b)** 



**85.** If we restrict the domain of  $f \square x \square$  to  $[0 \square \square \square]$ , then  $y \square 4 \square x^2 \square x^2 \square 4 \square y \square x \square \square \square \square \square \square$  (since  $x \square 0$ , we take the positive square root). So  $f^{\Box 1} \Box x \Box \overline{\Box} 4 \Box x$ .

negative square root). So  $f^{\Box 1} \Box x \Box \bot \Box \Box x$ .

**(b)** 

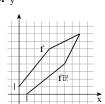
**86.** If we restrict the domain of  $g \square x \square$  to  $[1 \square \square \square$ , then  $y \square \square x \square 1 \square^2 \square x \square 1 \square \square y$  (since  $x \square 1$  we take the positive square root)  $\Box x \Box T \Box \Box y$ . So  $g^{\Box 1} \Box x \Box \Box T \Box \Box x$ .

If we restrict the domain of  $g \square x \square$  to  $\square \square \square \square 1$ , then  $y \square \square x \square 1 \square^2 \square x \square 1 \square y$  (since  $x \square 1$  we take the negative square

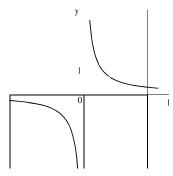
root)  $\Box x \Box 1 \Box \overline{y}$ . So  $g^{\Box 1} \Box x \Box \Box 1 \Box \overline{x}$ .

**87.** If we restrict the domain of  $h \square x \square$  to  $[\square 2 \square \square \square]$ , then  $\underline{y} \square \square x \square 2 \square^2 \square x \square 2 \square \square y$  (since  $x \square \square 2$ , we take the positive square root)  $\Box x \Box \Box z \Box \Box y$ . So  $h^{\Box 1} \Box x \Box \Box \Box z \Box \Box x$ .

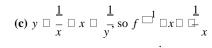
square root)  $\Box x \Box \Box 2 \Box \Box y$ . So  $h^{\Box 1} \Box x \Box \Box \Box 2 \Box x$ .


**88.**  $k \square x \square \square \square x \square$ 3□ □

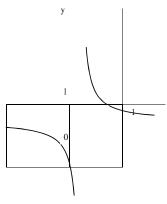
If we restrict the domain of  $k \square x \square$  to  $[3 \square \square \square]$ , then  $y \square x \square 3 \square x \square 3 \square y$ . So  $k^{\square 1} \square x \square \square 3 \square x$ .


If we restrict the domain of  $k \square x \square$  to  $\square \square \square \square 3$ , then  $y \square \square \square x \square 3 \square \square y \square \square x \square 3 \square x \square 3 \square y$ . So  $k \square \square x \square \square 3 \square x$ .

89.







91. (a)



**(b)** Yes, the graph is unchanged upon reflection about the line  $y \square x$ .



92. (a)



**(b)** Yes, the graph is unchanged upon reflection about the line  $y \square x$ .

(c) 
$$y \ \Box \ \frac{x \ \Box \ 3}{x \ \Box \ 1} \ \Box \ y \ \Box \ x \ \Box \ 3 \ \Box \ y \ \Box \ 3$$

$$x \ \Box y \ \Box \ 1 \ \Box \ y \ \Box \ 3 \ \Box \ x \ \Box \ \frac{y \ \Box \ 1}{y \ \Box \ 1}.$$
 Thus,

- **93.** (a) The price of a pizza with no toppings (corresponding to the *y*-intercept) is \$16, and the cost of each additional topping (the rate of change of cost with respect to number of toppings) is  $1 \Box 50$ . Thus,  $f \Box n \Box \Box 16 \Box 1 \Box 5n$ .
  - **(b)**  $p \Box f \Box n \Box \Box 16 \Box 1 \Box 5n \Box p \Box 16 \Box 1 \Box 5n \Box n \Box 2 \Box p \Box 16 \Box$ . Thus,  $n \Box f^{\Box 1} \Box p \Box \Box 2 \Box p \Box 16 \Box$ . This represents the number of toppings on a pizza that costs x dollars.
- **94.** (a)  $f \square x \square \square 500 \square$

80x.

represents the number of hours the investigator spends on a case for x dollars.

- (c)  $f^{\Box 1} \Box 1220 \Box \frac{1220 \Box 500}{80} \Box \frac{720}{80} \Box 9$ . If the investigator charges \$1220, he spent 9 hours investigating the case.
- 95. (a)  $V \ | \ f \ | \ t \ | \ 40 \ | \ 0 \ | \ t \ | \ 40 \ | \ 100 \ | \ 40 \ | \ 100 \ | \ 40 \ | \ 100 \ | \ 40 \ | \ 100 \ | \ 40 \ | \ 100 \ | \ 40 \ | \ 100 \ | \ 40 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100 \ | \ 100$

has elapsed since the tank started to leak.

- **(b)**  $f^{\Box 1} \Box 15 \Box \Box 40 \Box 4 \Box 15 \Box 24 \Box 5$  minutes. In 24  $\Box 5$  minutes the tank has drained to just 15 gallons of water.
- - $r^2 \ \square \ \frac{4625 \ \square \ \square}{18,500} \ \square \ r \ \square \ \square \ \frac{\overline{4625 \ \square \ \square}}{18,500}$ . Since r represents a distance,  $r \ \square \ 0$ , so  $g \ \square \ \square \ \square \ \frac{\overline{4625 \ \square \ \square}}{18,500}$ .  $g \ \square \ \square \ \square \ \square$

represents the radial distance from the center of the vein at which the blood has velocity  $\square$ .

(b)  $g^{\Box 1} \Box 30 \Box = \frac{4625 \Box 30}{18,500} \Box 0 \Box 498$  cm. The velocity is 30 cm $\Box$ s at a distance of  $0 \Box 498$  cm from the center of the artery

or vein.

| <b>97.</b><br>□ <i>L</i> | (a)<br>)□                               | $D \ \Box \ f \ \Box p \ \Box \ \Box \ 3p \ \Box \ 150. \ D \ \Box \ 3p \ \Box \ 150 \ \Box \ D \ \Box \ p \ \Box \ 50 \ \Box \ ^1D. \ So \ f^{\Box 1} \ \Box D \ \Box \ 50 \ \Box \ ^1D. \ f^{\Box 1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|--------------------------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                          |                                         | represents the price that is associated with demand $D$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                          | <b>(b)</b>                              | $f^{\Box 1} \Box 30 \Box \Box 50 \Box 1 \Box 30 \Box \Box 40$ . So when the demand is 30 units, the price per unit is \$40.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| <b>98.</b><br>□ <i>F</i> | (a)                                     | $F \ \square \ g \ \square C \ \square \ \square \ {}^9C \ \square \ 32. \ F \ \square \ {}^9C \ \square \ 32 \ \square \ {}^9C \ \square \ F \ \square \ 32 \ \square \ C \ \square \ {}^5 \ \square F \ \square \ 32 \square. \ So \ g^{\square 1} \ \square F \ \square \ 5 \ \square F \ \square \ 32 \square. \ g^{\square 1}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                          |                                         | represents the Celsius temperature that corresponds to the Fahrenheit temperature of $F$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                          | <b>(b)</b>                              | $F^{\Box 1}$ $\Box 86 \Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ $\Box$ 5 $\Box$ 54 $\Box$ $\Box$ 30. So $B6^{\Box}$ Fahrenheit is the same as $B6^{\Box}$ Celsius.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 99.                      |                                         | $f^{\Box 1} \Box U \Box \Box 1 \Box 02396U.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                          |                                         | $U \Box f \Box x \Box \Box 0 \Box 9766x$ . $U \Box 0 \Box 9766x$ $\Box x \Box 1 \Box 0240U$ . So $f^{\Box 1} \Box U \Box \Box 1 \Box 0240U$ . $f^{\Box 1} \Box U \Box$ represents the ue of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                          | vari                                    | U US dollars in Canadian dollars.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                          |                                         | $f^{\Box 1} \Box 12,250 \Box \Box 1 \Box 0240 \Box 12,250 \Box \Box 12,543 \Box 52$ . So \$12,250 in US currency is worth \$12,543 $\Box$ 52 in Canadian                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                          | Cui                                     | rency.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 100.                     | (a)                                     | $ \begin{array}{ccc}  & \Box \\  & f \Box x \Box \\  & \Box \end{array} $ if $0 \Box x \Box 20,000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                          | <b>(b)</b>                              | We will find the inverse of each piece of the function $f$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                          |                                         | $f_1 \square x \square \square 0 \square 1x$ . $T \square 0 \square 1x$ $\square x \square 10T$ . So $f^{\square 1} \square T \square \square 10T$ .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                          |                                         | $f_2 \square x \square \square 2000 \square 0\square 2 \square x \square 20,000 \square \square 0\square 2x \square 2000. \ T \square 0\square 2x \square 2000 \square 0\square 2x \square T \square 2000 \square x \square 5T \square$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                          |                                         | 10,000. So $f_2^{\square} \square T \square \square 5T \square 10,000.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 5                        | Since                                   | e $f \square 0 \square \square 0$ and $f \square 20,000 \square \square 2000$ we have $f^{\square 1} \square T \square $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                          |                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                          |                                         | $\Box$ 5T $\Box$ 10,000 if T $\Box$ 2000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                          |                                         | $\Box$ 5T $\Box$ 10,000 if T $\Box$ 2000 taxpayer's income.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                          | (c)                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| 101.                     | ` ′                                     | taxpayer's income.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| 101.                     | (a)<br>(b)                              | taxpayer's income. $f^{\Box 1} \Box 10,000 \Box \Box 5 \Box 10,000 \Box \Box 10,000 \Box 60,000.$ The required income is $\Box 60,000$ . $f \Box x \Box \Box 0 \Box 85x.$ $g \Box x \Box \Box x \Box 1000.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 101.                     | (a)<br>(b)<br>(c)                       | taxpayer's income. $f^{\Box 1} \Box 10,000 \Box 5 \Box 10,000 \Box 10,000 \Box 60,000. \text{ The required income is } \Box 60,000.$ $f^{\Box x} \Box 0 \Box 85x.$ $g^{\Box x} \Box x \Box 1000.$ $H^{\Box x} \Box 0 \Box f^{\Box x} \Box f^{\Box x} \Box 1000 \Box 0 \Box 85 \Box x \Box 1000 \Box 0 \Box 85x \Box 850.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 101.                     | (a)<br>(b)<br>(c)                       | taxpayer's income. $f^{\Box 1} \Box 10,000 \Box \Box 5 \Box 10,000 \Box \Box 10,000 \Box 60,000.$ The required income is $\Box 60,000$ . $f \Box x \Box \Box 0 \Box 85x.$ $g \Box x \Box \Box x \Box 1000.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| 101.                     | (a)<br>(b)<br>(c)<br>(d)                | taxpayer's income. $f^{\Box 1} \Box 10,000 \Box 5 \Box 10,000 \Box 10,000 \Box 60,000. \text{ The required income is } \Box 60,000.$ $f^{\Box x} \Box 0 \Box 85x.$ $g^{\Box x} \Box x \Box 1000.$ $H^{\Box x} \Box 0 \Box 85x \Box 850.$ $P^{\Box x} \Box 0 \Box 85x \Box 850.$ $P^{\Box x} \Box 1000 \Box 0 \Box 85x \Box 850.$ $P^{\Box x} \Box 1000 \Box 0 \Box 85x \Box 850.$ $P^{\Box x} \Box 1000 \Box 0 \Box 85x \Box 850.$ $P^{\Box x} \Box 1000 \Box 0 \Box 85x \Box 850.$ $P^{\Box x} \Box 1000 \Box 1000 \Box 1000 \Box 1000 \Box 16,288.$ So the original price of the car is \$16,288 when the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                          | (a)<br>(b)<br>(c)<br>(d)<br>(e)         | taxpayer's income. $f^{\Box 1} \Box 10,000 \Box 5 \Box 10,000 \Box 10,000 \Box 60,000. \text{ The required income is } \Box 60,000.$ $f^{\Box x} \Box 0 \Box 85x.$ $g^{\Box x} \Box x \Box 1000.$ $H^{\Box x} \Box f^{\Box y} \Box x \Box 1000 \Box 0 \Box 85x \Box 850.$ $P^{\Box H} \Box x \Box 0 \Box 85x \Box 850.$ $P^{\Box H} \Box x \Box 0 \Box 85x \Box 850.$ $P^{\Box H} \Box x \Box 1000.$ So $H^{\Box 1} \Box P^{\Box 1} \Box 176P \Box 1000.$ The function $H^{\Box 1}$ represents the original sticker price for a given discounted price $P$ . $H^{\Box 1} \Box 13,000 \Box 1 \Box 176 \Box 13,000 \Box 1000 \Box 16,288.$ So the original price of the car is \$16,288 when the discounted price (\$1000 rebate, then 15% off) is \$13,000.}                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                          | (a) (b) (c) (d) (e)                     | taxpayer's income. $f^{\Box 1} \Box 10,000 \Box 5 \Box 10,000 \Box 10,000 \Box 60,000$ . The required income is $\Box 60,000$ . $f^{\Box x} \Box 0 \Box 85x$ . $g^{\Box x} \Box x \Box 1000$ . $H^{\Box x} \Box 0 \Box 60,000 \Box 0 \Box 85 \Box x \Box 1000 \Box 0 \Box 85x \Box 850$ . $H^{\Box x} \Box 0 \Box 6 \Box 6 \Box 7 \Box 7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                          | (a) (b) (c) (d) (e)  f □ and □ b        | taxpayer's income. $f^{\Box 1} \Box 10,000 \Box 5 \Box 10,000 \Box 10,000 \Box 60,000$ . The required income is $\Box 60,000$ . $f^{\Box x} \Box 0 \Box 85x$ . $g^{\Box x} \Box x \Box 1000$ . $H^{\Box x} \Box 0 \Box 60,000 \Box 0 \Box 85 \Box x \Box 1000 \Box 0 \Box 85x \Box 850$ . $P^{\Box x} \Box 0 \Box 85x \Box 850$ . $P^{\Box x} \Box 1000 \Box 0 \Box 85x \Box 850$ . $P^{\Box x} \Box 1000 \Box 0 \Box 85x \Box 850$ . $P^{\Box x} \Box 1000 \Box 0 \Box 85x \Box 850$ . $P^{\Box x} \Box 1000 \Box 1000$ . So $H^{\Box 1} \Box P^{\Box 1} \Box 1000$ . The function $H^{\Box 1}$ represents the original sticker price for a given discounted price $P^{\Box x} \Box 1000 $                            |
|                          | (a) (b) (c) (d) (e)  f □ and □ b        | taxpayer's income. $f^{\Box 1} \Box 10,000 \Box 5 \Box 10,000 \Box 10,000 \Box 60,000$ . The required income is $\Box 60,000$ . $f^{\Box x} \Box 0 \Box 85x$ . $g^{\Box x} \Box x \Box 1000$ . $H^{\Box x} \Box 0 \Box 60,000 \Box 0 \Box 85 \Box x \Box 1000 \Box 0 \Box 85x \Box 850$ . $P^{\Box x} \Box 0 \Box 85x \Box 850$ . $P^{\Box x} \Box 1000 \Box 0 \Box 85x \Box 850$ . $P^{\Box x} \Box 1000 \Box 0 \Box 85x \Box 850$ . $P^{\Box x} \Box 1000 \Box 0 \Box 85x \Box 850$ . $P^{\Box x} \Box 1000 \Box 1000$ . So $H^{\Box 1} \Box P^{\Box 1} \Box 1000$ . The function $H^{\Box 1}$ represents the original sticker price for a given discounted price $P^{\Box x} \Box 1000 $                            |
|                          | (a) (b) (c) (d) (e)  f □ and □ b        | taxpayer's income. $f^{\Box 1} \Box 10,000 \Box 5 \Box 10,000 \Box 10,000 \Box 60,000$ . The required income is $\Box 60,000$ . $f^{\Box x} \Box 0 \Box 85x$ . $g^{\Box x} \Box x \Box 1000$ . $H^{\Box x} \Box 0 \Box 85x \Box 850$ . $P^{\Box x} \Box 0 \Box 85x \Box 850$ . $P^{\Box x} \Box 0 \Box 85x \Box 850$ . $P^{\Box x} \Box 0 \Box 85x \Box 850$ . $P^{\Box x} \Box 0 \Box 85x \Box 850$ . $P^{\Box x} \Box 0 \Box 85x \Box 850$ . $P^{\Box x} \Box 0 \Box 85x \Box 850$ . $P^{\Box x} \Box 0 \Box 85x \Box 850$ . $P^{\Box x} \Box 0 \Box 85x \Box 850$ . $P^{\Box x} \Box 0 \Box 85x \Box 850$ . $P^{\Box x} \Box 0 \Box 85x \Box 850$ . $P^{\Box x} \Box 0 \Box 85x \Box 850$ . $P^{\Box x} \Box 0 \Box 85x \Box 850$ . $D^{\Box x} \Box 0 \Box 1 \Box 176P \Box 1000$ . $D^{\Box x} \Box 0 \Box 1 \Box 176 \Box 13,000 \Box 1000 \Box 16,288$ . So the original price of the car is \$16,288 when the discounted price (\$1000 rebate, then 15% off) is \$13,000. $D^{\Box x} \Box 0 \Box 0$ . Notice that $D^{\Box x} \Box 0 \Box 0$ . If $D^{\Box x} \Box 0$ , $D^{$ |
| 102.                     | (a) (b) (c) (d) (e) f □ and □ b (a) (a) | taxpayer's income. $f^{\Box 1} \Box 10,000 \Box 5 \Box 10,000 \Box 10,000 \Box 60,000$ . The required income is $\Box 60,000$ . $f \Box x \Box \Box 0 \Box 85x$ . $g \Box x \Box x \Box 1000$ . $H \Box x \Box \Box f \Box g \Box x \Box f \Box x \Box 1000 \Box 0 \Box 85 \Box x \Box 1000 \Box 0 \Box 85x \Box 850$ . $P \Box H \Box x \Box \Box 0 \Box 85x \Box 850$ . $P \Box 0 \Box 85x \Box 850$ . $D \Box 0 \Box 85x \Box 850$ . $D \Box 0 \Box 85x \Box 850$ . $D \Box 0 \Box 1000$ . The function $D \Box 1000$ . The function $D \Box 1000$ is $D \Box 1$                                                                                                                                                                                                                                                                                                                                                      |
| 102.                     | (a) (b) (c) (d) (e) f □ and □ b (a) (a) | taxpayer's income. $f^{\Box 1} \Box 10,000 \Box 5 \Box 10,000 \Box 10,000 \Box 60,000$ . The required income is $\Box 60,000$ . $f \Box x \Box \Box 0 \Box 85x$ . $g \Box x \Box x \Box 1000$ . $H \Box x \Box \Box f \Box g \Box x \Box f \Box x \Box 1000 \Box 0 \Box 85 \Box x \Box 1000 \Box 0 \Box 85x \Box 850$ . $P \Box H \Box x \Box \Box 0 \Box 85x \Box 850$ . $P \Box 0 \Box 85x \Box 850$ . $D \Box 0 \Box 85x \Box 850$ . $D \Box 0 \Box 85x \Box 850$ . $D \Box 0 \Box 1000$ . The function $D \Box 1000$ . The function $D \Box 1000$ is $D \Box 1$                                                                                                                                                                                                                                                                                                                                                      |
| 102.                     | (a) (b) (c) (d) (e) f □ and □ b (a) (a) | taxpayer's income. $f^{\Box 1} \Box 10,000 \Box 5 \Box 10,000 \Box 10,000 \Box 60,000$ . The required income is $\Box 60,000$ . $f \Box x \Box \Box 0 \Box 85x$ . $g \Box x \Box x \Box 1000$ . $H \Box x \Box \Box f \Box g \Box x \Box f \Box x \Box 1000 \Box 0 \Box 85 \Box x \Box 1000 \Box 0 \Box 85x \Box 850$ . $P \Box H \Box x \Box \Box 0 \Box 85x \Box 850$ . $P \Box 0 \Box 85x \Box 850$ . $D \Box 0 \Box 85x \Box 850$ . $D \Box 0 \Box 85x \Box 850$ . $D \Box 0 \Box 1000$ . The function $D \Box 1000$ . The function $D \Box 1000$ is $D \Box 1$                                                                                                                                                                                                                                                                                                                                                      |
| 102.                     | (a) (b) (c) (d) (e) f □ and □ b (a) (a) | taxpayer's income. $f^{\Box 1} \Box 10,000 \Box 5 \Box 10,000 \Box 10,000 \Box 60,000$ . The required income is $\Box 60,000$ . $f^{\Box x} \Box 0 \Box 85x$ . $g^{\Box x} \Box x \Box 1000$ . $H^{\Box x} \Box 0 \Box f^{\Box y} \Box x \Box 1000 \Box 0 \Box 85 \Box x \Box 1000 \Box 0 \Box 85x \Box 850$ . $P^{\Box y} \Box B \Box $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |

and 
$$f^{\Box 1} \Box f \Box x \Box \Box f$$
  $\Box \frac{2x \Box 1}{5} \Box \Box \frac{5}{2} \Box \frac{1}{2} \Box \frac{2x \Box 1 \Box 1}{2} \Box \frac{2x}{2} \Box x.$ 

**(b)**  $f \Box x \Box \Box 3 \stackrel{!}{=}_{x} \frac{\Box 1}{x} \Box 3$  is "take the negative reciprocal and add 3". Since the reverse of "take the negative

reciprocal" is "take the negative reciprocal", f = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x - 1 = x $f^{\square 1}_{\square} \square f_{\square} x_{\square} \square f^{\square 1}_{\square} \longrightarrow f^{\square 1}_{\square} \longrightarrow f^{\square 1}_{\square} \square f^{\square 1}_{\square} f^{\square 1$ 

 $f^{\Box 1} \Box f \Box x \Box \Box f^{\Box 1} \xrightarrow{x^3 \Box 2} x^3 \Box 2 \Box 2 \Box 2 \Box x^3 \Box 2 \Box 2 \Box x^3 \Box x$  (on the appropriate domain).

(d)  $f \square x \square \square \square 2x \square 5\square^3$  is "double, subtract 5, and then cube". So the reverse is "take the cube root, add 5, and divide by 2" or  $f^{\Box 1} \Box x \Box = \frac{\sqrt[3]{x} \Box 5}{2}$  Domain for both  $f \Box x \Box$  and  $f^{\Box 1} \Box x \Box$  is  $\Box \Box \Box \Box \Box$ . Check:

 $f \Box f^{\Box 1} \Box x \Box \Box f \xrightarrow{2} \Box 2 \qquad \Box 5 \qquad \Box$ 

In a function like  $f \square x \square \square 3x \square 2$ , the variable occurs only once and it easy to see how to reverse the operations step by step. But in  $f \square x \square \square x^3 \square 2x \square 6$ , you apply two different operations to the variable x (cubing and multiplying by 2) and then add 6, so it is not possible to reverse the operations step by step.

**104.**  $f \square I \square x \square \square \square f \square x \square$ ; therefore  $f \square I \square f$ .  $I \square f \square x \square \square \square f \square x \square$ ; therefore  $I \square f \square f$ .

By definition,  $f \Box f^{\Box 1} \Box x \Box \Box x \Box I \Box x \Box$ ; therefore  $f \Box f^{\Box 1} \Box I$ . Similarly,  $f^{\Box 1} \Box f \Box x \Box \Box x \Box I \Box x \Box$ ;

 $f^{\Box 1} \Box f \Box I$ .

- **105.** (a) We find  $g^{\Box 1} \Box x \Box : y \Box 2x \Box 1 \Box 2x \Box y \Box 1 \Box x \Box \frac{1}{2} \Box y \Box 1 \Box$ . So  $g^{\Box 1} \Box x \Box \frac{1}{2} \Box x \Box 1 \Box$ . Thus  $f \Box x \Box a b \Box g^{\Box 1} \Box x \Box \frac{1}{2} b \Box x \Box 4 \frac{1}{2} \Box x \Box 1 \Box 4 \frac{1}{2} \Box x \Box 1 \Box 7 \Box x^2 \Box 2x \Box 1 \Box 2x \Box 2 \Box 7 \Box x^2 \Box 6$ .
  - **(b)**  $f \square g \square h \square f^{\square 1} \square f \square g \square f^{\square 1} \square h \square I \square g \square f^{\square 1} \square h \square g \square f^{\square 1} \square h$ . Note that we compose with  $f^{\square 1}$  on the left on each side of the equation. We find  $f^{\Box 1}$ :  $y \Box 3x \Box 5 \Box 3x \Box y \Box 5 \Box x \Box ^1 \Box y \Box 5\Box$ . So  $f^{\Box 1} \Box x \Box \Box ^1 \Box x$  $\square$  5 $\square$ .

244 CHAPTER 2 Functions CHAPTER 2 Review 244

|                                                                                        |                            |                                    |                             | $\Box^3$ |     | $\supset$ $^3$              | ]                 |
|----------------------------------------------------------------------------------------|----------------------------|------------------------------------|-----------------------------|----------|-----|-----------------------------|-------------------|
| Thus $g \square x \square \square f^{\square 1} \square h \square x \square \square f$ | $\Box 1  3x^2 \ \Box \ 3x$ | $\mathfrak{c} \square 2 \square^1$ | $3x^2 \square 3x \square 3$ | 2 🗆 5    | _ 1 | $3x^2 \square 3x \square 3$ | $\Box x^2 \Box x$ |
| □ 1.                                                                                   |                            | 3                                  |                             | 3        |     |                             |                   |

# CHAPTER 2 REVIEW

- **1.** "Square, then subtract 5" can be represented by the function  $f \square x \square \square x^2 \square 5$ .
- **2.** "Divide by 2, then add 9" can be represented by the function  $g \square x \square \square_2^x \square 9$ .
- **3.**  $f \square x \square \square 3 \square x \square 10 \square$ : "Add 10, then multiply by 3."
- **4.**  $f \square x \square \square \square$  6x \square 10: "Multiply by 6, then subtract 10, then take the square root."

| 5.<br>4x | $g \square x \square \square x^2 \square$ 6. $h \square x \square \square 3x^2 \square 2x$                                                                                                                                                                                                                                                                                                                                                                                                                   | □ 5                                                           |                                                              |                          |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|--------------------------------------------------------------|--------------------------|
| 7.       | $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $ \begin{array}{c c} x \\                                   $ | $ \begin{array}{c} h \\ 3 \\ 4 \\ 5 \\ 0 \\ 11 \end{array} $ | al cost of printing      |
| 8.       | (c) <i>C</i> □0□ □ 5000 □ 30 □0□ □ 0□001 □0□ <sup>2</sup> □ \$5000. This represents the fixed cost ready.  (d) The net change in <i>C</i> as <i>x</i> changes from 1000 to 10,000 is <i>C</i> □10,000□ □ <i>C</i> □1000 and  the average rate of change is                                                                                                                                                                                                                                                   | 0□ □ 2<br>115,000<br>0, and i                                 | 05,000                                                       | 0. s \$15,000 worth of   |
|          | rate of change is $\begin{array}{c c} \hline E & 15,000 & E \\ \hline & 2000 & E \\ \hline & 15,000 & 2000 \\ \hline \end{array}$ $\begin{array}{c c} \hline & 390 \\ \hline & 13,000 & \\ \hline \end{array}$ $\begin{array}{c c} \hline & 390 \\ \hline & 13,000 & \\ \hline \end{array}$ $\begin{array}{c c} \hline & 390 \\ \hline \end{array}$ $\begin{array}{c c} \hline & 390 \\ \hline \end{array}$ (e) Because the value of goods sold $x$ is multiplied by $0 \Box 03$ or $3\%$ , we see that Reyn | alda ear                                                      | ns a perc                                                    | centage of 3% on the     |
| 9.       | goods that she sells. $f \square x \square \square x^2 \square 4x \square 6; \ f \square 0 \square \square \square 0 \square^2 \square 4 \square 0 \square \square 6 \square 6; \ f \square 2 \square \square 10 \square 2 \square 2 \square 4 \square 2 \square \square 6 \square 18; \ f \square a \square \square \alpha 2 \square 4 \square a \square 6 \square a^2 \square 4a \square 6;$                                                                                                               | $\Box 2\Box^2$ $\Box$ 6; $f$                                  | □ 4 □2□<br>□a□ □                                             |                          |
| 10.      | $f \square x \square 1 \square \square x \square 1 \square^2 \square 4 \square x \square 1 \square 0                            $                                                                                                                                                                                                                                                                                                                                                                            |                                                               |                                                              |                          |
| 11.      | By the Vertical Line Test, figures (b) and (c) are graphs of functions. By the Horizonta                                                                                                                                                                                                                                                                                                                                                                                                                     | l Line T                                                      | est, figur                                                   | re (c) is the graph of a |

one-to-one function.

**12.** (a)  $f \square \square 2 \square \square \square 1$  and  $f \square 2 \square \square \square 2$ .

| <b>(b)</b> | The net change in                                                                             | f from           | $\Box 2$ to 2 is | $f \square 2 \square \square$ | $f \square \square 2 \square$ | $\square$ 2 $\square$ | $\square\square1\square$ | □ 3, | and the | average 1 | ate of | change is |
|------------|-----------------------------------------------------------------------------------------------|------------------|------------------|-------------------------------|-------------------------------|-----------------------|--------------------------|------|---------|-----------|--------|-----------|
|            | $\frac{f \square 2 \square \square f \square \square 2}{2 \square \square \square 2 \square}$ | 2 <u>3</u>       |                  |                               |                               |                       |                          |      |         |           |        |           |
|            | $2 \square \square \square 2 \square$                                                         | <sup>⊔</sup> 4 · |                  |                               |                               |                       |                          |      |         |           |        |           |

(c) The domain of f is  $[\Box 4\Box 5]$  and the range of f is  $[\Box 4\Box 4]$ .

246 CHAPTER 2 Functions CHAPTER 2 Review 246

|     | (e) $f$ has local maximum values of $\Box 1$ (at $x \Box \Box 2$ ) and 4 (at $x \Box 4$ ).                                                                                                                                      |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | (f) $f$ is not a one-to-one, for example, $f \square \square 2 \square \square \square \square \square \square f \square 0 \square$ . There are many more examples.                                                             |
| 13. | Domain: We must have $x \square 3 \square 0 \square x \square \square 3$ . In interval notation, the domain is $[\square 3 \square \square \square]$ .                                                                          |
|     | Range: For $x$ in the domain of $f$ , we have $x \square \square 3 \square x \square 3 \square 0 \square \square x \square 3 \square 0 \square f \square x \square \square 0$ . So the range is $[0 \square \square \square]$ . |

on t, the domain of F is  $\Box\Box\Box\Box\Box$ , and the range is [4 $\Box$ 

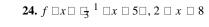
- **15.**  $f \square x \square \square 7x \square 15$ . The domain is all real numbers,  $\square \square \square \square \square \square$ .
- $2x \ \Box \ 1$  **16.**  $f \ \Box x \ \Box \ \Box \ \Box \ 1$ . Then  $2x \ \Box \ 1 \ \Box \ 0 \ \Box \ x \ \Box \ 2$ . So the domain of f is  $x \ \Box \ x \ \Box \ x \ \Box \ 2$ .

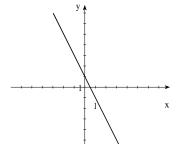
- **17.**  $f \square x \square \square \square$  4. We require  $x \square 4 \square 0 \square x \square \square$ 4. Thus the domain is  $[\square 4 \square \square \square]$ .
- **18.**  $f \square x \square \square 3x \square \frac{2}{x \square 1}$ . The domain of f is the set of x where  $x \square 1 \square 0 \square x \square \square 1$ . So the domain is  $\square \square 1 \square \square \square$ .

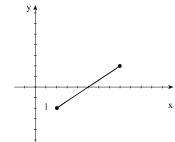
**19.**  $f \Box x \Box \ \ \ \frac{1}{x} \Box \ \ \Box \ \ 1 \ \ \Box \ \ x \Box \ \ 2$ . The denominators cannot equal 0, therefore the domain is  $\Box x \Box x \Box x \Box 0 \Box \Box 1 \Box \Box 2\Box$ .

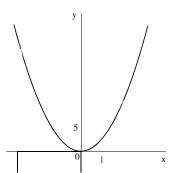
**20.**  $g \square x \square$   $\frac{2x^2 \square 5x \square 3}{2x^2 \square 5x \square 3} \square \frac{2x^2 \square 5x \square 3}{\square 2x \square 1 \square \square x \square}$ . The domain of g is the set of all x where the denominator is not 0. So the

domain is  $\Box x \Box 2x \Box 1 \Box 0$  and  $x \Box 3 \Box 0 \Box \Box x \Box x \frac{1}{2}$  and  $x \Box 3 \Box 0$ .

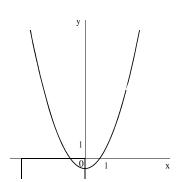

**21.**  $h \square x \square \square \square \square \square \square$  1. We require the expression inside the radicals be nonnegative. So  $4 \square x \square 0 \square 4 \square x$ ; also  $x^2 \square 1 \square 0 \square \square x \square 1 \square \square x \square 1 \square \square 0$ . We make a table:


| Interval                                 |  |  |
|------------------------------------------|--|--|
| Sign of $x \square 1$                    |  |  |
| Sign of $x \square 1$                    |  |  |
| Sign of $\Box x \Box 1 \Box \Box x \Box$ |  |  |

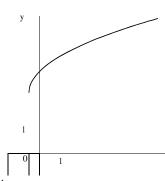

22.  $f \Box x \Box = \frac{\frac{1}{3}}{3} \frac{2x \Box 1}{2x \Box 2}$ . Since we have an odd root, the domain is the set of all x where the denominator is not 0. Now


 $\begin{bmatrix} 1 \\ 3 \\ \hline 2x \\ \square 2 \\ \square 0 \\ \square \end{bmatrix}$   $\begin{bmatrix} 1 \\ 3 \\ \hline 2x \\ \square \end{bmatrix}$   $\begin{bmatrix} 2x \\ \square \\ \square 2x \\ \square \end{bmatrix}$   $\begin{bmatrix} 2x \\ \square \\ \square \end{bmatrix}$   $\begin{bmatrix} 3x \\ \square \\ \square \end{bmatrix}$   $\begin{bmatrix} 3x \\ \square \end{bmatrix}$   $\begin{bmatrix} 3x$ 

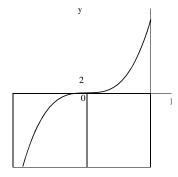


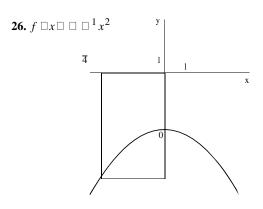




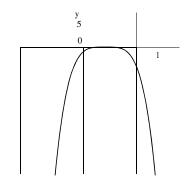





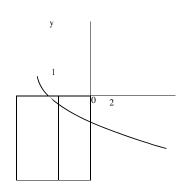


**27.** 
$$f \square x \square \square 2x^2 \square$$



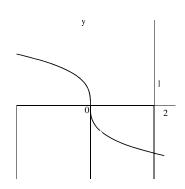

**29.**  $f \square x \square \square 1 \square - x$ 



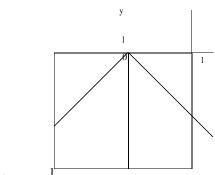

$$\begin{array}{ccc} \mathbf{31.} & f \square x \square \ \square 2 \end{array}^{1}$$



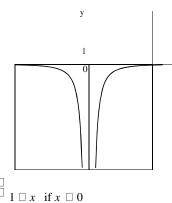


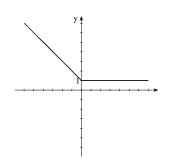





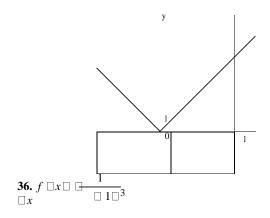


**30.** 
$$f \square x \square \square 1 \square \underline{\square x \square 2}$$

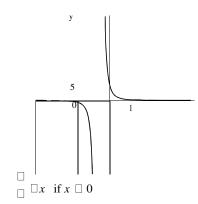


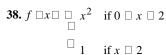

**32.** 
$$f \square x \square \square$$
  $\subseteq \frac{\lceil}{3} \square x$ 

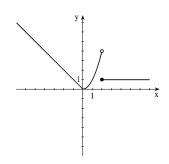



#### **33.** $f \square x \square \square \square$ $\Box x \Box$



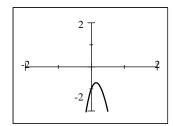



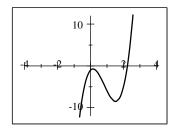




**34.** 
$$f \square x \square \square \square x \square 1 \square$$





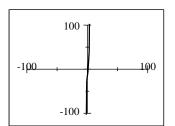



- **39.**  $x \square y^2 \square 14 \square y^2 \square 14 \square x \square y \square \square$   $\square$   $14 \square x$ , so the original equation does not define y as a function of x.
- root function is one-to-one).
- **42.**  $2x \square y^4 \square 16 \square y^4 \square 2x \square 16 \square y \square \square^4 \square 2x \square 16$ , so the original equation does not define y as a function of x.

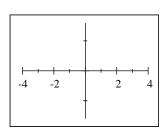

- **43.**  $f \square x \square \square 6x^3 \square 15x^2 \square 4x \square$ 
  - (i)  $[\square 2 \square 2]$  by  $[\square 2 \square 2]$



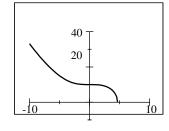

- (iii)  $[\Box 4\Box 4]$  by  $[\Box 12\Box$
- 12]



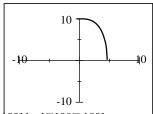
(ii)  $[\square 8 \square 8]$  by  $[\square 8 \square 8]$ 



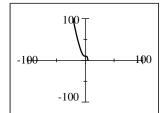

**(iv)** [□100□100] by [□100□100]




From the graphs, we see that the viewing rectangle in (iii) produces the most appropriate graph.

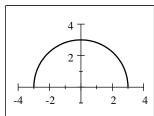

- **44.**  $f \square x \square \square \square \square 100 \square x^3$ 
  - (i) [□4□ 4] by [□4□ 4]




- (**iii**) [□10□10] by [□10□
- 40]



(ii) [□10□10] by [□10□10]



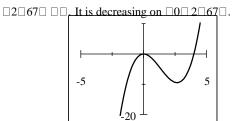

(iv) [□100□ <del>100] by [□100□ 100]</del>




**45.** (a) We graph  $f \square x \square \square \square \square x^2$  in the viewing rectangle

 $[\Box 4\Box 4]$  by  $[\Box 1\Box$ 

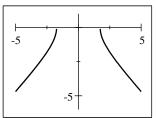



- **(b)** From the graph, the domain of f is  $[\Box 3 \Box 3]$  and the range of f is  $[0 \square 3]$ .
- **47.** (a) We graph  $f \square x \square \square \overline{x^3 \square 4x \square} 1$  in the viewing rectangle  $[\Box 5 \Box 5]$  by  $[\Box 1 \Box 5]$ .

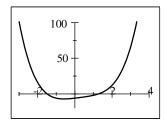


(b) From the graph, the domain of f is approximately  $[\,\Box 2\,\Box \,11\,\Box\,\,0\,\Box \,25]\,\Box\, [\,1\,\Box \,86\,\Box\,\,\Box\,\,\Box$  and the range of f is  $[0 \square \square \square$ .

**49** tangle  $x \square \square x^3 \square 4x^2$  is graphed in the viewing

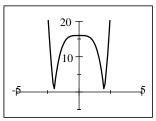

 $[\Box 5\Box 5]$  by  $[\Box 20\Box 10]$ .  $f\Box x\Box$  is increasing on  $\Box\Box\Box\Box$  $0\square$  and




change is

**46.** (a) We graph  $f \square x \square \square \square \overline{x^2 \square 3}$  in the viewing

rectangle  $[\Box 5\Box 5]$  by  $[\Box 6\Box 1]$ .




- (b) From the graph, the domain of f is  $\square$   $\square$   $\square$   $\square$   $\square$   $\square$   $\square$   $\square$   $\square$  and the range of f is  $\square$   $\square$   $\square$   $\square$  0].
- **48.** (a) We graph  $f \Box x \Box \Box x^4 \Box x^3 \Box x^2 \Box 3x \Box 6$  in the viewing rectangle  $[\Box 3\Box 4]$  by  $[\Box 20\Box 100]$ .



- **(b)** From the graph, the domain of f is  $\Box \Box \Box \Box \Box \Box$ and the range of f is approximately  $[\Box 7 \Box 10 \Box$  $\Box\Box$ .
- **50.**  $f \square x \square \square 4x \square 164$  is graphed in the viewing rectangle  $[\Box 5\Box 5]$  by  $[\Box 5\Box 20]$ .  $f\Box x\Box$  is increasing on  $\Box\Box 2\Box 0\Box$ and

 $\square 2 \square \square \square$ . It is decreasing on  $\square \square \square \square \square \square 2 \square$  and  $\square 0 \square 2 \square$ .



 $\frac{f \; \Box 8 \Box \; \Box \; f \; \Box 4 \Box}{8 \; \Box \; 4} \; \Box \; \frac{\Box 4}{4} \; \Box \; \Box 1.$ 

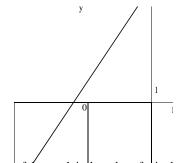
- **51.** The net change is  $f \square 8 \square \square f \square 4 \square \square 8 \square 12 \square \square 4$  and the average rate of change is
- **52.** The net change is  $g \square 30 \square \square g \square 10 \square \square 30 \square \square 5 \square \square 35$  and the average rate of  $g \square 30 \square \square g \square 10 \square \square 35 \square 35$   $\square 35 \square 10 \square 35 \square 10 \square 35 \square 10$
- **53.** The net change is  $f \Box 2 \Box \Box f \Box \Box 1 \Box \Box 6 \Box 2 \Box 4$  and the average rate of change is

252 CHAPTER 2 Functions CHAPTER 2 Review 252

**54.** The net change is  $f \square 3 \square \square f \square 1 \square \square \square 1 \square 5 \square \square 6$  and the average rate of  $f \square 3 \square \square f \square 1 \square \square \square \square 6$  change is

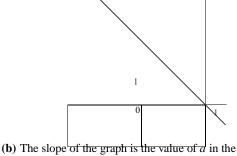
$$\frac{f \Box 4 \Box \Box f \Box \Box \Box}{4 \Box 1} \Box \frac{9}{3} \Box = 3.$$

**56.** The net change is  $g \square a \square h \square \square g \square a \square \square \square a \square h \square 1 \square^2 \square \square a \square 1 \square^2 \square 2ah \square 2h \square h^2$  and the average rate of change is


$$\frac{g \square a \square h \square g}{\square a \square a \square h \square a} \square \frac{2ah \square 2h \square h^2}{h} \square 2a \square 2 \square h.$$

**57.**  $f \square x \square \square \square 2 \square 3x \square^2 \square 9x^2 \square 12x \square 4$  is not linear. It cannot be expressed in the form  $f \square x \square \square ax \square b$  with constant a and b.

**58.**  $g \square x \square \xrightarrow{x \square 3} \square \xrightarrow{\frac{1}{5}} x \square \xrightarrow{\frac{3}{5}}$  is linear with  $a \square \xrightarrow{\frac{1}{5}}$  and  $b \square \xrightarrow{\frac{3}{5}}$ .


59. (a)





(b) The slope of the graph is the value of a in the equation  $f \square x \square \square ax \square b \square 3x \square 2$ ; that is, 3.

3.(c) The rate of change is the slope of the graph, 3.



**(b)** The slope of the graph is the value of d in the equation  $f \Box x \Box \Box ax \Box b \Box \Box_2 x \Box 3$ ; that is,  $\Box_2$ .

(c) The rate of change is the slope of the graph,  $\Box$ <sup>1</sup>

 $\overline{2}$ .

**61.** The linear function with rate of change  $\Box 2$  and initial value 3 has  $a \Box \Box 2$  and  $b \Box 3$ , so  $f \Box x \Box \Box \Box 2x \Box 3$ .

**62.** The linear function whose graph has slope  $\frac{1}{2}$  and y-intercept  $\Box 1$  has  $a \Box \frac{1}{2}$  and  $b \Box \Box 1$ , so  $f \Box x \Box \Box_2^{-1} x \Box 1$ .

63. Between  $x \square 0$  and  $x \square 1$ , the rate of change is  $\begin{array}{c|c} f \square 0 \square & 5 \square 3 \\ \hline 1 \square 0 & \square & 1 \end{array}$   $\square$  2. At  $x \square 0$ ,  $f \square x \square \square 3$ . Thus, an equation is  $f \square x \square \square 2x \square 3$ .

**64.** Between  $x \square 0$  and  $x \square 2$ , the rate of change is  $\frac{f \square 2 \square \square f \square 0 \square}{2 \square 0} \square \frac{5 \square 5 \square 6}{2} \square \frac{1}{4}$ . At  $x \square 0$ ,  $f \square x \square \square 6$ . Thus, an equation is  $f \square x \square \square \frac{1}{4} x \square 6$ .

65. The points  $\Box 0 \Box 4 \Box$  and  $\Box 8 \Box 0 \Box$  lie on the graph, so the rate of change is  $\begin{bmatrix} 0 \Box 4 & \underline{1} \\ \hline \Box 0 & \Box \end{bmatrix}_2$ . At  $x \Box 0$ ,  $y \Box 4$ . Thus, an equation is  $\begin{bmatrix} 0 \Box 4 & \underline{1} \\ \hline \Box 0 & \Box \end{bmatrix}_2$ .

|     | The points $\Box 0 \Box \Box 4 \Box$ and $\Box 2 \Box 0 \Box$ unge is | lie on the graph, s                                      | so the rate of      | 2     | 0     | $\square$ 2. At $x$ $\square$ 0, $y$ $\square$ $\square$ 4. Thus, an equation                                           |
|-----|-----------------------------------------------------------------------|----------------------------------------------------------|---------------------|-------|-------|-------------------------------------------------------------------------------------------------------------------------|
|     | is $y \square 2x \square 4$ .                                         |                                                          |                     |       |       |                                                                                                                         |
| 67. | $P \Box t \Box \Box 3000 \Box 200t \Box 0 \Box 1t^2$                  |                                                          |                     |       |       |                                                                                                                         |
|     | $P \square 20 \square \square 3000 \square 200 \square 200$           | $\square \ 0 \square 1 \ \square 20 \square^2 \ \square$ | 7040 represents its | s pop | pulat | lation in its 10th year (that is, in 1995), and ion in its 20th year (in 2005).  □ 203 people□year. This represents the |

CHAPTER 2 Review 251

average yearly change in population between 1995 and 2005.

251 CHAPTER 2 Functions

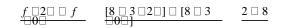
 $\square$   $\square$ 3,

|     |   |               |   |      | _       |
|-----|---|---------------|---|------|---------|
| 68. | D | $\Box t \Box$ | П | 3500 | $15t^2$ |

- **(b)** Solving the equation  $D \Box t \Box \Box 17,000$ , we get  $17,000 \Box 3500 \Box 15t^2 \Box 15t^2 \Box 13,500 \Box t^2 \Box \frac{13500}{15} \Box 900 \Box t \Box 30$ , so thirty years after 1995 (that is, in the year 2025) she will deposit \$17,000.
- (c) The average rate of change is  $\frac{D \Box 15 \Box D}{\Box 0 \Box} \Box \frac{6875 \Box 3500}{15 \Box 0} \Box \$225 \Box \text{ year. This represents the average annual}$

increase in contributions between 1995 and 2010.

### 


(a) The average rate of change of f between  $x \square 0$  and  $x \square 2$  is

| $f$ $\square 2 \square$ $\square$ $f$ $\square 0 \square$         | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | □5 □<br>□□6□                                          | $\frac{1}{2}$ , and the average rate of change of $f$ between $x \square 15$ |
|-------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------------------|------------------------------------------------------------------------------|
| $\frac{2 \square 0}{\text{and } x \square 50 \text{ is}} \square$ | 2                                                     | 2                                                     | 2                                                                            |
| f □50□ □ f □15□                                                   | $ \begin{array}{cccccccccccccccccccccccccccccccccccc$ | $\square \qquad \square \qquad 19 \sqcup \frac{3}{2}$ | <u>I</u> .                                                                   |
| <del></del> [                                                     | 35                                                    | 🗆                                                     |                                                                              |

- (b) The rates of change are the same.
- (c) Yes, f is a linear function with rate of change  $\frac{1}{2}$ .

#### **70.** $f \square x \square \square 8 \square$

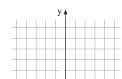
3x

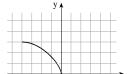


(a) The average rate of change of f between  $x \square 0$  and  $x \square 2$  is

- **(b)** The rates of change are the same.
- (c) Yes, f is a linear function with rate of change  $\square 3$ .


### **71.** (a) $y \Box f \Box x \Box \Box 8$ . Shift the graph of $f \Box x \Box$ upward 8

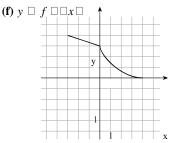

- **(b)**  $y \Box f \Box x \Box 8 \Box$ . Shift the graph of  $f \Box x \Box$  to the left 8 units.
- (c)  $y \Box 1 \Box 2f \Box x \Box$ . Stretch the graph of  $f \Box x \Box$  vertically by a factor of 2, then shift it upward 1 unit.
- (d)  $y \square f \square x \square 2 \square \square 2$ . Shift the graph of  $f \square x \square$  to the right 2 units, then downward 2 units.
- (e)  $y \Box f \Box \Box x \Box$ . Reflect the graph of  $f \Box x \Box$  about the y-axis.
- (f)  $y \square \square f \square \square x \square$ . Reflect the graph of  $f \square x \square$  first about the y-axis, then reflect about the x-axis.
- (g)  $y \square \square f \square x \square$ . Reflect the graph of  $f \square x \square$  about the x-axis.
- **(h)**  $y \Box f^{\Box 1} \Box x \Box$ . Reflect the graph of  $f \Box x \Box$  about the line  $y \Box x$ .


**72.** (a) 
$$y \square f \square x \square 2 \square$$



(c) 
$$y \square 3 \square f \square x \square$$








253 CHAPTER 2 Functions CHAPTER 2 Review 253

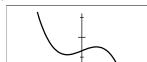
 (d)  $y \square \frac{1}{2} f \square x \square \square$ 





- y 1 1 x
- **73.** (a)  $f \square x \square \square 2x^5 \square 3x^2 \square 2$ .  $f \square \square x \square \square 2 \square \square x \square^5 \square 3 \square \square x \square^2 \square 2 \square \square 2x^5 \square 3x^2 \square 2$ . Since  $f \square x \square \square f \square \square x \square$ , f is not even.

 $\Box f \Box x \Box \Box \Box 2x^5 \Box 3x^2 \Box 2$ . Since  $\Box f \Box x \Box \Box f \Box \Box x \Box$ , f is not odd.

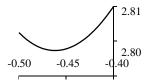

- (b)  $f \square x \square \square x^3 \square x^7$ .  $f \square \square x \square \square \square x \square^3 \square \square x \square^7$   $\square \square f \square x \square$ , hence f is odd.  $\square x^3 \square x^7$

 $f \square \square x \square \square \square f \square x \square$ , f is not odd.

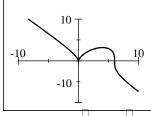
- **74.** (a) This function is odd.
  - (b) This function is neither even nor odd.
  - (c) This function is even.
  - (d) This function is neither even nor odd.
- **75.**  $g \square x \square \square 2x^2 \square 4x \square 5 \square 2 x^2 \square 2x \square 5 \square 2 x^2 \square 2x \square 1 \square 5 \square 2 \square 2 \square x \square 1 \square^2 \square 7$ . So the local minimum value  $\square$ 7 when  $x \square \square$ 1.

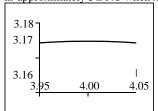
when  $x \square \square \frac{1}{2}$ .

77.  $f \square x \square \square 3\square 3 \square 1\square 6x \square 2\square 5x^3$ . In the first viewing rectangle,  $[\square 2\square 2]$  by  $[\square 4\square 8]$ , we see that  $f \square x \square$  has a local maximum and a local minimum. In the next viewing rectangle,  $[0\square 4\square 0\square 5]$  by  $[3\square 78\square 3\square 80]$ , we isolate the local maximum value as approximately  $3\square 79$  when  $x\square 0\square 46$ . In the last viewing rectangle,  $[\square 0\square 5\square \square 0\square 4]$  by  $[2\square 80\square 2\square 82]$ , we isolate the local minimum value as  $2\square 81$  when  $x\square \square 0\square 46$ .







255 CHAPTER 2 Functions CHAPTER 2 Review 255


2.82

-2 2 3.78 0.40 0.45 0.50

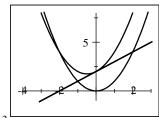


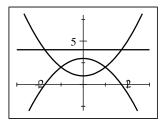
**78.**  $f \Box x \Box \Box x^{2\Box 3} \Box 6 \Box x \Box^{1\Box 3}$ . In the first viewing rectangle,  $[\Box 10\Box 10]$  by  $[\Box 10\Box 10]$ , we see that  $f \Box x \Box$  has a local maximum and a local minimum. The local minimum is 0 at x = 0 (and is easily verified). In the next viewing rectangle,  $[3 \square 95 \square 4 \square 05]$  by  $[3 \square 16 \square 3 \square 18]$ , we isolate the local maximum value as approximately  $3 \square 175$  when  $x \square 4 \square 00$ .





79.  $h \Box t \Box \Box \Box 16t^2 \Box 48t \Box 32 \Box \Box 16 \ t^2 \Box 3t \ \Box 32 \Box \Box 16 \ t^2 \Box 3t \ \Box 9 \ \Box 68 \ \Box \Box 16 \ t \ \Box 3^2 \ \Box 68$ 


The stone reaches a maximum height of 68 feet.


**80.**  $P \square x \square$   $\square$   $\square 1500 \square$   $\square 12x \square$   $\square 0\square 0004x^2 \square$   $\square 0\square 00004 x^2 \square 30,000x \square$  $1500 \ \square \ \square 0 \square 0004 \ x^2 \ \square \ 30,000x \ \square \ 225,000,000 \ \square \ 1500 \ \square \ 90,000 \ \square \ \square \ 00 \square 0004 \ \square x \ \square \ 15,000 \square^2 \ \square \ 88,500$ 

The maximum profit occurs when 15,000 units are sold, and the maximum profit is \$88,500.

**81.**  $f \square x \square \square x \square 2$ ,  $g \square x \square \square$  $x^2$ 

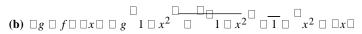
**82.**  $f \square x \square \square x^2 \square 1, g \square x \square \square 3 \square x^2$ 





- **83.**  $f \square x \square \square x^2 \square 3x \square 2_{\lceil}$ and  $g \square x \square \square_{\lceil} 4 \square 3x$ .
  - (a)  $\Box f \Box g \Box \Box x \Box \Box \Box x^2 \Box 3x \Box 2 \Box \Box 4 \Box 3x \Box \Box x^2 \Box$

 $6x \square 6$ 


**(b)**  $\Box f \Box g \Box \Box x \Box \Box \Box x^2 \Box 3x \Box 2 \Box \Box 4 \Box 3x \Box \Box x^2 \Box$ 



(d) 
$$\frac{f}{g} \Box x \Box \frac{x^2 \Box 3x \Box 2}{4 \Box 3x}, x \Box \frac{4}{3}$$

- **84.**  $f \square x \square \square 1 \square x^2$  and  $g \square x \square \square \square 1$ . (Remember that the proper domains must apply.)

  (a)  $\square f \square g \square \square x \square \square f$   $\square x \square 1 \square \square \square 2$   $\square 1 \square x \square 1 \square x$   $\square x \square 1$



257 CHAPTER 2 Functions CHAPTER 2 Review 257

(e)  $\Box f \Box g \Box f \Box \Box x \Box \Box f \Box \Box g \Box f \Box \Box x \Box \Box \Box f \Box \Box x \Box \Box \Box x \Box \Box x^2$ . Note that  $\Box g \Box f \Box \Box x \Box \Box x \Box$  by part (b).

(f)  $\Box g \Box f \Box g \Box x \Box \Box g \Box f \Box g \Box x \Box \Box g \Box x \Box \Box x$   $\Box 1$ . Note that  $\Box f \Box g \Box x \Box \Box x$  by part (a).

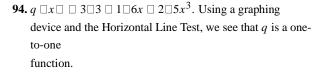
- **85.**  $f \square x \square \square 3x \square 1$  and  $g \square x \square \square 2x \square x^2$ .  $\square f \square g \square x \square \square f \square 2x \square x^2 \square 3 \square 2x \square x^2 \square 1 \square \square 3x^2 \square 6x \square 1$ , and the domain is  $\square \square \square \square$ .
  - domain is

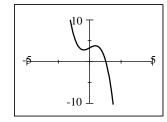
domain is  $\Box \Box \Box \Box \Box \Box \Box$ .

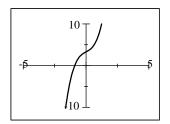
- **86.**  $f \square x \square \square \square x$ , has domain  $\square x \square x \square 0 \square . g \longrightarrow 2$ , has domain  $\square x \square x \square 4 \square .$ 

  - whenever  $x \Box 4$  and  $\frac{2}{x \Box 4} \Box 0$ . Now  $\frac{2}{x \Box 4} \Box 0 \Box x \Box 4 \Box 0 \Box x \Box 4$ . So the domain of  $f \Box g$  is  $\Box 4 \Box \Box \Box$ .

  - defined; that is,


  - $g \square g \square x \square \square$  are defined; that is, whenever  $x \square 4$  and  $9 \square 2x \square 0$ . Now  $9 \square 2x \square 0 \square 2x \square 9 \square x \not\sqsubseteq 9$ . So the domain of  $g \square g$  is  $x \square x \not\sqsubseteq 9 \square 4$ .
- **88.** If  $h \square x \square \square x$  and  $g \square x \square \square 1 \square x$ , then  $\square g \square h \square \square x \square \square g \square x \square \square 1 \square x$ . If  $\frac{1}{x}$ , then
- **89.**  $f \square x \square \square 3 \square x^3$ . If  $x_1 \square x_2$ , then  $x^3 \square x^3$  (unequal numbers have unequal cubes), and therefore  $3 \square x^3 \square 3 \square x^3$ . Thus  $f \square x^3 \square x^3 \square x^3$ .
- **90.**  $g \square x \square \square 2 \square 2x \square x^2 \square x^2 \square 2x \square 1 \square 1 \square 1 \square x \square 1 \square^2 \square 1$ . Since  $g \square 0 \square \square 2 \square g \square 2 \square$ , as is true for all pairs of numbers equidistant from 1, g is not a one-to-one function.

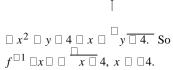

259 CHAPTER 2 Functions CHAPTER 2 Review 259


91.  $h \square x \square = \frac{1}{x^4}$ . Since the fourth powers of a number and its negative are equal, h is not one-to-one. For example,

**92.**  $r \square x \square \square 2 \square \overline{x \square 3}$ . If  $x_1 \square x_2$ , then  $x_1 \square 3 \square x_2 \square 3$ , so  $\overline{x_1 \square 3} \square \overline{x_2 \square 3}$  and  $2 \square \overline{x_1 \square 3} \square 2 \square \overline{x_2 \square 3}$ . Thus r is one-to-one.

**93.**  $p \square x \square \square 3 \square 3 \square 1 \square 6x \square 2 \square 5x^3$ . Using a graphing device and the Horizontal Line Test, we see that p is not a one-to-one function.

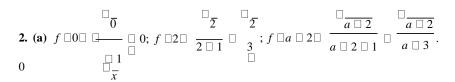







- **95.**  $f \square x \square \square \exists x \square 2 \square y \square \exists x \square 2 \square 3x \square y \square 2 \square x \square \frac{1}{3} \square y \square 2 \square$ . So  $f^{\square 1} \square x \square_{\overline{3}} \square^{-1} \square x \square 2 \square$ .
- 96.  $f \square x \square$   $3 \square y$   $3 \square y$   $3 \square x$   $2x \square 1 \square 3y \square 2x \square 3y \square 1 \square x \square 2 \square 3y \square 1 \square So <math>\square x \square 2 \square 3x \square 1 \square$ .
- **97.**  $f \square x \square \square \square x \square 1 \square^3 \square y \square \square x \square 1 \square^3 \square x \square 1 \square \frac{\lceil y y \square x \square \lceil 3 y \square 1 . So <math>f \square^1 \square x \square \square \frac{\lceil 3 x \square 1 .}{\rceil} x \square 1 .$  **98.**  $f \square x \square \square \square \square \frac{\lceil x \square 2}{\rceil} y \square 1 \square \frac{\lceil x \square 2}{\rceil} \square y \square 1 \square \frac{\lceil x \square 2}{\rceil} \square x \square 2 \square y \square 1 \square^5 \square x \square 2 \square y \square 1 \square^5 .$  So  $f^{\Box 1} \Box x \Box \Box 2 \Box \Box x \Box 1 \Box^5.$
- **99.** The graph passes the Horizontal Line Test, so f has an inverse. Because  $f \Box 1 \Box \Box 0$ ,  $f^{\Box 1} \Box 0 \Box \Box 1$ , and because  $f \Box 3 \Box \Box$

(b), (c)


- **100.** The graph fails the Horizontal Line Test, so f does not have an inverse.
- **101.** (a), (b)  $f \Box x \Box \Box x^2 \Box 4, x \Box$
- (a) If  $x_1 \Box x_2$ , then  $\sqrt[4]{x_1} \Box \sqrt[4]{x_2}$ , and so  $1 \Box \sqrt[4]{x_1} \Box 1 \Box \sqrt[4]{x_2}$ . Therefore, f is a 102. one-to-one function.

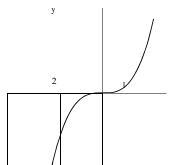


- fĐ! (d)  $f \square x \square \square \uparrow \square$  $\overline{x}$ .  $y \square 1 \square \stackrel{[_4]}{\overline{x}} \square \stackrel{[_4]}{\overline{x}} \square y \square 1$ 
  - $\Box x \Box \Box y \Box 1 \Box^4$ . So  $f^{\Box 1} \Box x \Box \Box \Box x \Box 1 \Box^4$ ,  $x \square 1$ . Note that the domain of f is  $[0 \square \square]$ , so  $y \square 1 \square {}^{[4]} \overline{x} \square 1$ . Hence, the domain of  $f^{\square 1}$  is [1 🗆  $\Box\Box$ .

256 CHAPTER 2 Functions CHAPTER 2 Test 256

**1.** By the Vertical Line Test, figures (a) and (b) are graphs of functions. By the Horizontal Line Test, only figure (a) is the graph of a one-to-one function.

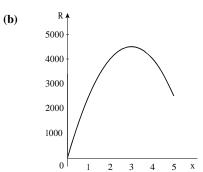



**(b)**  $f \square x \square \square \square 1$ . Our restrictions are tha<u>t</u> the input to the radical is nonnegative and that the denominator must not be 0.

x

Thus,  $x \Box 0$  and  $x \Box 1 \Box 0 \Box x \Box \Box 1$ . (The second restriction is made irrelevant by the first.) In interval notation, the domain is  $[0 \Box \Box \Box .$ 

- (c) The average rate of change is  $\frac{f \square 10 \square \square f}{\square 2 \square} \square \frac{\square 10}{10 \square 2} \square \frac{\square 2}{2 \square 1} \square \frac{3 \square 10 \square 11 \square 2}{264}.$
- **3.** (a) "Subtract 2, then cube the result" can be expressed algebraically as  $f \square x \square \square \square x \square 2\square^3$ .






**(b)** 

| х  | f   |
|----|-----|
| □1 | □27 |
| 0  | □8  |
| 1  | □1  |
| 2  | 0   |
| 3  | 1   |
| 4  | 8   |

- (d) We know that f has an inverse because it passes the Horizontal Line Test. A verbal description for  $f^{\Box 1}$  is, "Take the cube root, then add 2."
- (e)  $y \square \square x \square 2 \square^3 \square \frac{\lceil 3 \rceil}{3} y \square x \square 2 \square x \square \frac{\lceil 3 \rceil}{3} y \square 2$ . Thus, a formula for  $f^{\square 1}$  is  $f^{\square 1} \square x \square \square \frac{\lceil 3 \rceil}{3} x \square 2$ .
- **4.** (a) f has a local minimum value of  $\Box 4$  at  $x \Box \Box 1$  and local maximum values of  $\Box 1$  at  $x \Box \Box 4$  and 4 at  $x \Box 3$ .
- **5.**  $R \square x \square \square \square 500x^2 \square 3000x$ 
  - (a)  $R \square 2 \square \square 500 \square 2 \square^2 \square 3000 \square 2 \square \square $4000$  represents their total sales revenue when their price is \$2 per bar and  $R \square 4 \square \square 500 \square 4 \square^2 \square 3000 \square 4 \square \square $4000$  represents their total sales revenue when their price is \$4 per bar
  - (c) The maximum revenue is \$4500, and it is achieved at a price

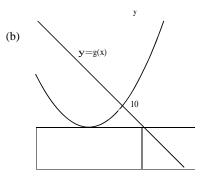


**6.** The net change is  $f \square 2 \square h \square \square f \square 2 \square \square \square 2 \square h \square^2 \square 2 \square h \square^2 \square 2 \square 2 \square 2 \square 2 \square 2 \square 4 \square h^2 \square 4h \square 4 \square 2h \square 0 \square 2h \square h^2 \square 2 \square h \square$ 

and the average rate of change is  $\frac{f \ \Box 2 \ \Box \ h \ \Box}{\Box \ f \ \Box 2 \Box}$ 

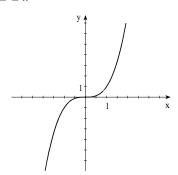
 $2 \square h \square 2$ 

258 CHAPTER 2 Functions CHAPTER 2 Test 258

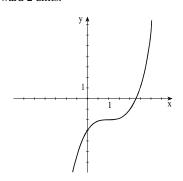

 $_{\square}\overset{2h}{\underset{h}{\square}}\overset{h^{2}}{\underset{h}{\square}}$ 

 $\square \ 2 \ \square \ h.$ 

**7.** (a)  $f \Box x \Box \Box x \Box 5\Box^2 \Box x^2 \Box 10x \Box 25$  is not linear because it cannot be expressed in the form  $f \Box x \Box \Box ax \Box b$  for constants a and b.


 $g \square x \square \square 1 \square 5x$  is linear.

(c)  $g \square x \square$  has rate of change  $\square 5$ 

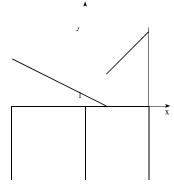



0

**8.** (a)  $f \square x \square \square x^3$ 



**(b)**  $g \square x \square \square \square x \square 1 \square^3 \square 2$ . To obtain the graph of g, shift the graph of f to the right 1 unit and downward 2 units.




- **9.** (a)  $y \Box f \Box x \Box 3 \Box \Box$  2. Shift the graph of  $f \Box x \Box$  to the right 3 units, then shift the graph upward 2 units.
  - **(b)**  $y \Box f \Box \Box x \Box$ . Reflect the graph of  $f \Box x \Box$  about the y-axis.
- **10.** (a)  $f \square \square 2 \square \square 1 \square \square 2 \square \square 1 \square 2 \square 3$  (since  $\square 2 \square 1 \square 2 \square 3$ )

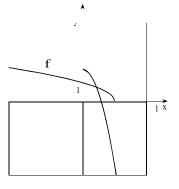
1).

 $f \square 1 \square \square 1 \square 1 \square 0$  (since  $1 \square 1$ ).





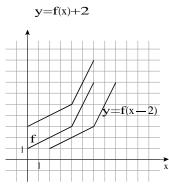
- - (b)  $\Box f \Box g \Box \Box x \Box \Box f \Box x \Box \Box g \Box x \Box \Box \Box x^2 \Box x \Box 1 \Box \Box x \Box 3 \Box \Box x^2 \Box 4$
  - (c)  $\Box f \Box g \Box x \Box \Box f \Box g \Box x \Box \Box f \Box x \Box 3 \Box \Box x \Box 3 \Box \Box x \Box 3 \Box \Box 1 \Box x^2 \Box 6x \Box 9 \Box x \Box 3 \Box 1 \Box x^2 \Box 5x \Box 7$


  - (e)  $f \square g \square 2 \square \square \square f \square 1 \square \square \square 1 \square^2 \square \square 1 \square \square 1 \square 1$ . [We have used the fact that  $g \square 2 \square \square 2 \square 3 \square \square 1$ .]
  - (f)  $g \square f \square 2 \square \square \square g \square 7 \square \square 7 \square 3 \square 4$ . [We have used the fact that  $f \square 2 \square \square 2^2 \square 2 \square 1 \square 7$ .]

 $g \square x \square 3 \square \square \square x \square 3 \square \square 3 \square x \square 6.$ 

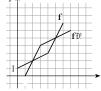
- **12.** (a)  $f \square x \square \square x^3 \square 1$  is one-to-one because each real number has a unique cube.
  - **(b)**  $g \square x \square \square \square x \square 1 \square$  is not one-to-one because, for example,  $g \square \square 2 \square \square g \square 0 \square \square 1$ .

the Inverse Function Property, f and g are inverse functions.


- **14.**  $f \square x \square$   $x \square 3$   $y \square 3$   $y \square 5$   $y \square 10$   $y \square 10$ 
  - $f^{\Box 1} \Box x \Box \Box \frac{5x \Box 3}{2x \Box 1}.$
- (b)  $f \square x \square \square \square 3 \square x, x \square 3$  and  $f^{\square 1} \square x \square \square 3 \square x^2, x \square 0$



y

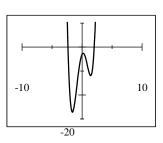

- **16.** The domain of f is  $[0 \square 6]$ , and the range of f is  $[1 \square 7]$ .
- **17.** The graph passes through the points  $\Box 0 \Box 1 \Box$  and  $\Box 4 \Box 3 \Box$ , so  $f \Box 0 \Box \Box 1$  and  $f \Box 4 \Box \Box 3$ .
- **18.** The graph of  $f \square x \square 2 \square$  can be obtained by shifting the graph of  $f \square x \square$  to the right

2 units. The graph of f  $\Box x \Box$   $\Box$  2 can be obtained by shifting the graph of f upward 2 units.



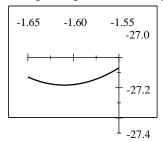
up ward 2 ames.

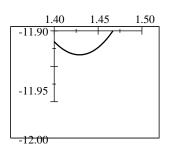
- **19.** The net change of f between  $x ext{ } ext{$
- **20.** Because  $f \square 0 \square \square 1$ ,  $f^{\square 1} \square 1 \square \square 0$ . Because  $f \square 4 \square \square 3$ ,  $f^{\square 1} \square 3 \square \square 4$ .
- **21.** y




**261** CHAPTER 2 Functions CHAPTER 2 Test **261** 

1 x


**22.** (a)  $f \Box x \Box \Box 3x^4 \Box 14x^2 \Box 5x \Box 3$ . The graph is shown in the viewing rectangle


 $[\Box 10\Box 10]$  by  $[\Box 30\Box 10]$ .

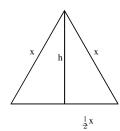


- (b) No, by the Horizontal Line Test.
- (c) The local maximum is approximately  $\Box 2\Box 55$  when  $x \Box 0\Box 18$ , as shown in the first viewing rectangle  $[0\Box 15\Box 0\Box 25]$  by  $[\Box 2\Box 6\Box \Box 2\Box 5]$ . One local minimum is approximately  $\Box 27\Box 18$  when  $x \Box \Box 1\Box 61$ , as shown in the second viewing rectangle  $[\Box 1\Box 65\Box \Box 1\Box 55]$  by  $[\Box 27\Box 5\Box \Box 27]$ . The other local minimum is approximately  $\Box 11\Box 93$  when  $x \Box 1\Box 43$ , as shown is the viewing rectangle  $[1\Box 4\Box 1\Box 5]$  by  $[\Box 12\Box \Box 11\Box 9]$ .








- (d) Using the graph in part (a) and the local minimum,  $\Box 27\Box 18$ , found in part (c), we see that the range is  $[\Box 27\Box 18\Box \Box \Box$ .

 $\Box 1 \Box 43 \Box \Box \Box$  and decreasing on the intervals  $\Box \Box \Box \Box \Box 1 \Box 61 \Box$  and  $\Box 0 \Box 18 \Box 1 \Box 43 \Box$ .

## FOCUS ON MODELING Modeling with Functions

- **1.** Let  $\Box$  be the width of the building lot. Then the length of the lot is  $3\Box$ . So the area of the building lot is  $A\Box\Box\Box\Box\Box 3\Box^2$ ,  $\Box\Box$  0.
- **3.** Let  $\Box$  be the width of the base of the rectangle. Then the height of the rectangle is  $\frac{1}{2}\Box$ . Thus the volume of the box is given by the function  $V \Box \Box \Box \Box \frac{1}{2}\Box 0$ .
- **4.** Let r be the radius of the cylinder. Then the height of the cylinder is 4r. Since for a cylinder  $V \square r^2h$ , the volume of the cylinder is given by the function  $V \square r \square \square r^2 \square 4r \square \square 4\square r^3$ .
- 5. Let *P* be the perimeter of the rectangle and *y* be the length of the other side. Since  $P \square 2x \square 2y$  and the perimeter is 20, we have  $2x \square 2y \square 20 \square x \square y \square 10 \square y \square 10 \square x$ . Since area is  $A \square xy$ , substituting gives  $A \square x \square \square x \square 10 \square x \square 10x \square x^2$ , and since *A* must be positive, the domain is  $0 \square x \square 10$ .
- **6.** Let *A* be the area and *y* be the length of the other side. Then  $A \square xy \square 16 \square y \square \frac{16}{x}$ . Substituting into  $P \square 2x \square 2y$  gives
  - $P \square 2x \square 2 \quad \frac{16}{x} \square 2x \square \frac{32}{x}$ , where  $x \square 0$ .

7.

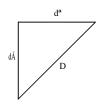


Let h be the height of an altitude of the equilateral triangle whose side has length x, as shown in the diagram. Thus the area is given by  $A = \frac{1}{2}xh$ . By the Pythagorean

as snown in the diagram. Thus the area is given by 
$$A \sqcup \frac{1}{2}xh$$
. By the Pythago Theorem,  $h^2 \sqcup \frac{1}{2} \sqcup x^2 \sqcup h^2 \sqcup \frac{1}{2}x^2 \sqcup h^2 \sqcup \frac{3}{2}x$ .

Substituting into the area of a triangle, we get 
$$A \square x \square \square 1xh \square 1x \square 3x \square 3x^2, x \square 0.$$

**8.** Let d represent the length of any side of a cube. Then the surface area is  $S \square 6d^2$ , and the volume is  $V \square d^3 \square d \square^{\frac{1}{3}} V$ . Substituting for d gives  $S \square V \square \square G = \frac{\square \square \square}{3} V^2 \square G V^{2 \square 3}, V \square 0.$ 

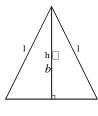

**9.** We solve for r in the formula for the area of a circle. This gives  $A \square \square r^2 \square r^2 \square \frac{A}{\square} \square r \square \frac{\overline{A}}{\square}$ , so the model is  $r \square A \square$   $\square$ ,  $A \square 0$ .

**10.** Let r be the radius of a circle. Then the area is  $A \square \square r^2$ , and the circumference is  $C \square 2 \square r \square r \square \frac{C}{2 \square}$ . Substituting for r

**11.** Let h be the height of the box in feet. The volume of the box is V = 60. Then  $x^2h = 60 = h = \frac{1}{x^2}$ The surface area, S, of the box is the sum of the area of the 4 sides and the area of the base and top. Thus  $S \square 4xh \square 2x^2 \square 4x \stackrel{\square}{=} \frac{60}{x^2} \square 2x^2 \square \frac{240}{x} \square 2x^2$ , so the model is  $S \square x \square \frac{240}{x} \square 2x^2$ ,  $x \square 0$ .

**12.** By similar triangles,  $\frac{5}{L} \Box \frac{12}{L \Box d} \Box 5 \Box L \Box d \Box \Box 12L \Box 5d \Box 7L \Box L \Box \frac{5d}{7}$ . The model is  $L \Box d \Box \Box \frac{5}{7} d$ .

13.




Let  $d_1$  be the distance traveled south by the first ship and  $d_2$  be the distance traveled east by the second ship. The first ship travels south for t hours at 5 mi/h, so  $d_1 \square 15t$  and, similarly,  $d_2 \square 20t$ . Since the ships are traveling at right angles to each other, we can apply the Pythagorean Theorem to get

 $D \Box t \Box \Box \Box d^2 \Box d^2 \Box \Box \Box 15t \Box^2 \Box \Box 20t \Box^2 \Box \Box 225t^2 \Box 400t^2 \Box 25t.$ 

**14.** Let n be one of the numbers. Then the other number is  $60 \square n$ , so the product is given by the function  $P \square n \square \square n \square 60 \square n \square \square 60n \square n^2.$ 

15.



h

Let b be the length of the base, l be the length of the equal sides, and h be the height in centimeters. Since the perimeter is 8,  $2l \square b \square 8 \square 2l \square 8 \square b \square$ 

 $l \ \Box \ ^1 \ \Box 8 \ \Box \ b \Box$  . By the Pythagorean Theorem,  $h^2 \ \Box \ ^{1} \ ^2 \ \Box \ l^2 \ \Box$ 

 $h \ \Box \ \overline{l^2 \Box \frac{1}{4}b^2}$ . Therefore the area of the triangle is

$$A \square^{1} \square b \square h \square^{1} \square b \stackrel{\square}{} \overline{l^{2} \square 1 b^{2}} \square \stackrel{b}{} \stackrel{\square}{} \overline{1} \square 8 \square b \square^{2} \square^{1} b^{2}$$

$$\overline{2} \qquad \overline{2} \qquad \overline{2}$$

**261** FOCUS ON MODELING

so the model is  $A \square b \square \square b \square b, 0 \square b \square 4$ .

| 16. | Let $x$ be the length of the shorter leg of the right triangle. Then the length of the other triangle is $2x$ . Since it is a right                                                                     |
|-----|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|     | triangle, the length of the hypotenuse is $x^2 \square \square$ |
|     | $P \square x \square x \square 2x \square 5x \square 3 \square 5 x.$                                                                                                                                    |

17. Let 
$$\Box$$
 be the length of the rectangle. By the Pythagorean Theorem,  $\begin{bmatrix} 1 & \Box & 2 & \Box & 10^2 & \Box & 10^2 \\ h^2 & & & \Box & \Box & \Delta & \Box & \Box \end{bmatrix}$ 

|                                                                   | •                                                                                                      |                   |
|-------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------|-------------------|
|                                                                   | <u>]</u>                                                                                               |                   |
| $\square^2 \square 4  100 \square h^2  \square \square \square 2$ | 100 $\Box h^2$ (since $\Box \Box 0$ ). Therefore, the area of the rectangle is $A \Box \Box h \Box 2h$ | $100 \square h^2$ |
|                                                                   | <u> </u>                                                                                               |                   |
| so the model is $A \square h \square \square 2h$                  | $00 \square h^2, 0 \square h \square 10.$                                                              |                   |

- **18.** Using the formula for the volume of a cone,  $V = \frac{1}{3}\Box r^2 h$ , we substitute V = 100 and solve for h. Thus  $100 = \frac{1}{3}\Box r^2 h = \frac{300}{\Box r^2}$ .
- **19.** (a) We complete the table.

| First number | Second number | Product |
|--------------|---------------|---------|
| 1            | 18            | 18      |
| 2            | 17            | 34      |
| 3            | 16            | 48      |
| 4            | 15            | 60      |
| 5            | 14            | 70      |
| 6            | 13            | 78      |
| 7            | 12            | 84      |
| 8            | 11            | 88      |
| 9            | 10            | 90      |
| 10           | 9             | 90      |
| 11           | 8             | 88      |

From the table we conclude that the numbers is still increasing, the numbers whose product is a maximum should both be  $9\Box 5$ .

**(b)** Let x be one number: then  $19 \square x$  is the other number, and so the product, p, is

$$p \square x \square \square x \square 19 \square x \square 19x \square x^{2}.$$

$$(c) p \square x \square \square 19x \square x^{2} \square x^{2} \square 19x$$

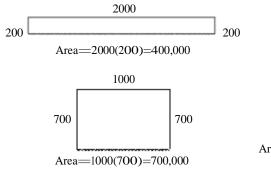
$$\square x^{2} \square 19x \square \square 19 \square 19$$

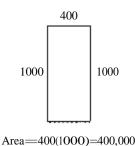
$$\square x^{2} \square 19x \square \square 19$$

$$\square 2$$

$$\overline{2}$$

| $\square$ $\square$ $\square$ $x$ $\square$ $9\square 5\square^2$ $\square$ $90\square 25$ |     |     |      |              |      |
|--------------------------------------------------------------------------------------------|-----|-----|------|--------------|------|
|                                                                                            | l r | □ 9 | 15□4 | $\square$ 90 | )□25 |


So the product is maximized when the numbers are both  $9\Box 5$ .


**20.** Let the positive numbers be x and y. Since their sum is 100, we have  $x \Box y \Box 100 \Box y \Box 100 \Box x$ . We wish to minimize the sum of squares, which is  $S \Box x^2 \Box y^2 \Box x^2 \Box 100 \Box x \Box^2$ . So  $S \Box x \Box \Box x^2 \Box 100 \Box x \Box^2 \Box x^2 \Box 10,000 \Box 200x \Box$ 

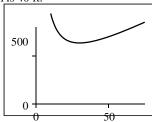
 $x^2 \square 2x^2 \square 200x \square 10,000 \square 2 \qquad x^2 \square 100x \qquad \square 10,000 \square 2 \qquad x^2 \square 100x \qquad \square 10,000 \square 5000 \qquad \square 2 \square x \square 50 \square^2 \square 5000.$ 

Thus the minimum sum of squares occurs when  $x \Box 50$ . Then  $y \Box 100 \Box 50 \Box 50$ . Therefore both numbers are 50.

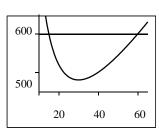
**21.** (a) Let x be the width of the field (in feet) and l be the length of the field (in feet). Since the farmer has 2400 ft of fencing we must have  $2x \square l \square 2400$ .





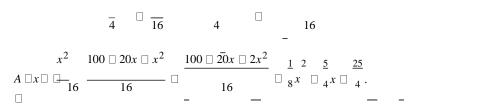

| Width | Length | Area    |
|-------|--------|---------|
| 200   | 2000   | 400,000 |
| 300   | 1800   | 540,000 |
| 400   | 1600   | 640,000 |
| 500   | 1400   | 700,000 |
| 600   | 1200   | 720,000 |
| 700   | 1000   | 700,000 |
| 800   | 800    | 640,000 |
|       | •      | •       |

It appears that the field of largest area is about 600 ft  $\Box$  1200 ft.

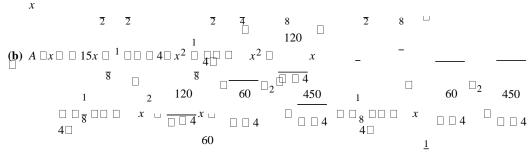

- (b) Let x be the width of the field (in feet) and l be the length of the field (in feet). Since the farmer has 2400 ft of fencing we must have  $2x \Box l \Box 2400 \Box l \Box 2400 \Box 2x$ . The area of the fenced-in field is given by  $A \Box x \Box \Box l \Box x \Box \Box 2400 \Box 2x \Box x \Box \Box 2400x \Box \Box 2 \Box x^2 \Box 1200x$ .
- (c) The area is  $A \square x \square \square \square 2$   $x^2 \square 1200x \square 600^2 \square 2$   $0000^2 \square 2 \square 2 \square 6000 \square 2$  120000 So the maximum area occurs when  $x \square 600$  feet and  $t \square 2400 \square 2 \square 6000 \square 1200$  feet.
- **22.** (a) Let  $\Box$  be the width of the rectangular area (in feet) and l be the length of the field (in feet). Since the farmer has 750 feet of fencing, we must have  $5 \Box 2l \Box 750 \Box 2l \Box 750 \Box 5 \Box l \Box 5 \Box 150 \Box \Box$ . Thus the total area of the four pens is  $A \Box \Box \Box l \Box \Box 5 \Box 150 \Box \Box \Box \Box 25 \Box 150 \Box$ .

 $14062 \square 5$ . Therefore, the largest possible total area of the four pens is  $14,062 \square 5$  square feet.

- **23.** (a) Let x be the length of the fence along the road. If the area is 1200, we have  $1200 \square x \square$  width, so the width of the garden is  $\frac{1200}{x}$ . Then the cost of the fence is given by the function  $C \square x \square \square 5 \square x \square x \square 2 \frac{1200}{x} \square 8x \square \frac{7200}{x}$ .
  - **(b)** We graph the function  $y \square C \square x \square$  in the viewing rectangle  $[0 \square 75] \square [0 \square 800]$ . From this we get the cost is minimized when  $x \square 30$  ft. Then the width is  $\frac{1200}{30} \square 40$  ft. So the length is 30 ft and the width is 40 ft.




(c) We graph the function  $y \Box C \Box x \Box$  and  $y \Box 600$  in the viewing rectangle  $[10\Box 65] \Box [450\Box 650]$ . From this we get that the cost is at most \$600 when  $15 \Box x \Box 60$ . So the range of lengths he can fence along the road is 15 feet to 60 feet.



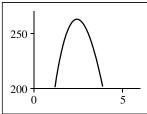

**24.** (a) Let x be the length of wire in cm that is bent into a square. So  $10 \square x$  is the length of wire in cm that is bent into the second square. The width of each square is  $\frac{x}{4}$  and  $\frac{10 \square x}{4}$ , and the area

ef each square is  $\frac{1}{x}$   $x^2$  and  $\frac{10 - x}{x}$   $\frac{100 - 20x - x^2}{x}$ . Thus the sum of the areas is



- **25.** (a) Let h be the height in feet of the straight portion of the window. The circumference of the semicircle is  $C ext{ } ext$



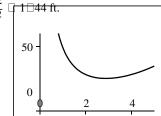

The area is maximized when  $x \square \square \square 4 \square 8\square 40$ , and hence  $h \square 15 \square 2 \square 8\square 40 \square 4 \square 8\square 40 \square 4\square 20$ .

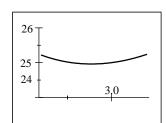
**26.** (a) The height of the box is x, the width of the box is  $12 \square 2x$ , and the length of the box is  $20 \square 2x$ . Therefore, the volume of the box is

 $V \square x \square \square x \square 12 \square 2x \square \square 20 \square 2x \square$  $\square 4x^3 \square 64x^2 \square 240x, 0 \square x \square 6$ 

(c) From the graph, the volume of the box with the largest volume is  $262 \square 682 \text{ in}^3$  when  $x \square 2 \square 427$ .

**(b)** We graph the function  $y \square V \square x \square$  in the viewing rectangle  $[0 \square 6] \square [200 \square 270]$ .

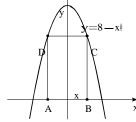


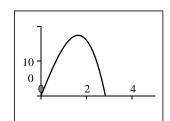


From the calculator we get that the volume of the box is greater than 200 in<sup>3</sup> for  $1 \square 174 \square x \square 3 \square 898$  (accurate to 3 decimal places).

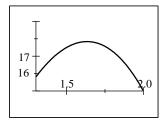
**27.** (a) Let x be the length of one side of the base and let h be the height of the box in feet. Since the volume of the box is  $V \Box x^2 h \Box 12$ , we have  $x^2 h \Box 12 \Box h \Box \frac{12}{x^2}$ . The surface area, A, of the box is sum of the area of the four sides and the area of the base. Thus the surface area of the box is given by the formula  $A \Box x \Box \Box 4xh \Box x^2 \Box \frac{12}{x^2} \Box x^2 \Box \frac{48}{x} \Box x^2, x \Box 0$ .

(b) The function  $y \square A \square x \square$  is shown in the first viewing rectangle below. In the second viewing rectangle, we isolate the minimum, and we see that the amount of material is minimized when x (the length and width) is  $2 \square 88$  ft. Then

height is  $h \square \frac{12}{x^2} \square 1 \square 44$  ft.



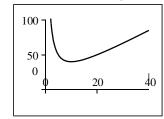


**28.** Let A, B, C, and D be the vertices of a rectangle with base AB on the x-axis and its other two vertices C and D above the x-axis and lying on the parabola  $y \square 8 \square x^2$ . Let C have the coordinates  $\square x \square y \square$ ,  $x \square 0$ . By symmetry, the coordinates of D must be  $\Box x \Box y \Box$ . So the width of the rectangle is 2x, and the length is  $y \Box 8 \Box x^2$ . Thus the area of the rectangle

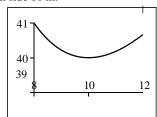
A  $\Box x \Box$  length  $\Box$  width  $\Box 2x$  8  $\Box x^2$   $\Box$  16x  $\Box 2x^3$ . The graphs of  $A \Box x \Box$  below show that the area is maximized when

 $x \square 1 \square 63$ . Hence the maximum area occurs when the width is  $3 \square 26$  and the length is  $5 \square 33$ .





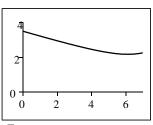




**29.** (a) Let  $\Box$  be the width of the pen and l be the length in meters. We use the area to establish a relationship between

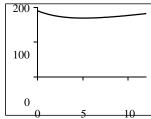
 $\square$  and l. Since the area is 100 m<sup>2</sup>, we have l  $\square$   $\square$  100  $\square$  l  $\square$   $\frac{100}{\square}$ . So the amount of fencing used is

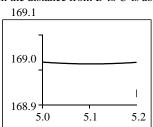
$$F \square 2l \square 2\square \square 2 \stackrel{\square}{\square} \frac{100}{\square} \square 2\square \square \frac{200}{\square} \frac{2\square^2}{\square}.$$

(b) Using a graphing device, we first graph F in the viewing rectangle  $[0 \square 40]$  by  $[0 \square 100]$ , and locate the approximate location of the minimum value. In the second viewing rectangle, [8 \( \) 12] by [39 \( \) 41], we see that the minimum value of F occurs when  $\square$   $\square$  10. Therefore the pen should be a square with side 10 m.

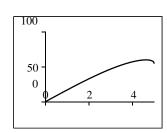


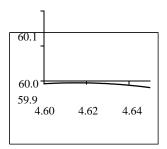




**30.** (a) Let  $t_1$  represent the time, in hours, spent walking, and let  $t_2$  represent the time spent rowing. Since the distance walked is x and the walking speed is 5 mi/h, the time spent walking is  $t_1 extstyle frac{1}{5}x$ . By the Pythagorean Theorem, the distance rowed is


 $d \square 2^2 \square \square 7 \square x \square^2 \square x^2 \square 14x \square 53$ , and so the time spent rowing is  $t_2 \square \frac{1}{2} \square x^2 \square 14x \square 53$ . Thus the total time is  $T \square x \square \square 2 \square 14x \square 53 \square 3 \square 51 x$ .

(b) We graph y □ T □x□. Using the zoom function, we see that T is minimized when x □ 6□13. He should land at a point 6□13 miles from point B.





- 31. (a) Let x be the distance from point B to C, in miles. Then the distance from A to C is  $x^2 \square 25$ , and the energy used in flying from A to C then C to D is  $x \square \square 14$   $x^2 \square 25$   $\square 10 \square 12 \square x \square$ .
  - (b) By using a graphing device, the energy expenditure is minimized when the distance from B to C is about  $5 \square 1$  miles.





- - (b) The function  $y \Box A \Box x \Box \Box x$   $25 \Box x^2 \Box 144 \Box x^2$  is shown in the first viewing rectangle below. In the second viewing rectangle, we isolate the maximum, and we see that the area of the kite is maximized when  $x \Box 4\Box 615$ . So the length of the horizontal crosspiece must be  $2 \Box 4\Box 615 \Box 9\Box 23$ . The length of the vertical crosspiece is  $5^2 \Box \Box 4\Box 615 \Box^2 \Box 12^2 \Box \Box 4\Box 615 \Box^2 \Box 13\Box 00$ .



