Test Bank for Microbiology with Diseases by Taxonomy 4th Edition Bauman 0321819314 9780321819314

https://testbankpack.com/p/test-bank-for-microbiology-with-diseases-by-taxonomy-4th-edition-bauman-0321819314-9780321819314/

1) Which of the followin charge?	g is a particle to	and in the nucleus of	an atom and mat na	is no electricar	1) _
A) neutron	B) isotope	C) element	D) electron	E) proton	
2) Matter composed of a	single type of a	tom is known as a(n)			2)
A) element.					
B) mineral.					
C) electron.					
D) compound.					
E) molecule.					
3) A stable atom has	in its vale	nce shell.			3)
A) 8 electrons					
B) 8 protons					
C) 2 neutrons					
D) 10 electrons					
E) 4 electrons					
4) Which parts of the ato	oms interact in a	chemical reaction?			4)
A) isotopes	B) neutrons	C) protons	D) ions	E) electrons	, -
5)					5)
					,
9 ((1)) 9)				
\ \ \					
•					
The outer ring in Figu	re 2-1 represent	rs			
A) the nucleus.	_				
B) an electron.					
C) an isotope.					
D) a neutron.					
E) an electron shell					
6) The valence of an ator	m represents its				6) _
A) electronegativity	•				, -
B) ability to interac		ms.			
C) radioactivity.					
D) ability to interac	t resitle resolve				

E) ability to attract electrons.	
7) The type(s) of bond produced when atoms share electrons equally is/are A) an ionic bond.	7)

- B) a nonpolar covalent bond.
- C) a hydrogen bond.
- D) a polar covalent bond.
- E) both polar covalent and ionic bonds.

8) The type(s) of bond produced when atoms with somewhat different electronegativities share	8)
electrons is/are	
A) a polar covalent bond.	
B) an ionic bond.	
C) a nonpolar covalent bond.	
D) a hydrogen bond.	
E) both nonpolar covalent and ionic bonds.	
9) Which of the following types of chemical bonds do carbon atoms generally NOT form?	9)
A) polar covalent bonds	,
B) ionic bonds	
C) hydrogen bonds	
D) nonpolar covalent bonds	
E) neither ionic nor hydrogen bonds	
10) Unstable isotopes can be useful	10)
A) in the formation of hydrogen bonds.	,
B) catalysts.	
C) in vitamins.	
D) in medical diagnosis.	
E) as buffers.	
11) Which of the following is an INCORRECT pairing?	11)
A) hydrolysis; hydrogen bonds	11)
B) dehydration; anabolism	
C) catabolism; exothermic	
D) synthesis; endothermic	
E) electrolytes; anions	
D) electroly tes, unions	
12) Compounds that readily dissociate in water are	12)
A) ionic.	
B) polar.	
C) nonpolar.	
D) either polar or ionic.	
E) never polar or ionic.	
13) Which of the following is a property of water?	13)
A) It is a nonpolar molecule.	·
B) It has a high capacity for heat.	
C) It is not a good solvent.	
D) It is liquid in a very narrow temperature range.	
E) It is not a common reactant in metabolic reactions.	
14) An acid dissociates in water to release	14)
A) hydroxyl group(s).	14)
B) anion(s).	
C) cation(s).	
D) hydrogen ion(s).	
E) both anions and hydrogen ions.	
_, _ 0 11 11 11 11 11 11 11 11 11 11 11 11 1	
15) The reverse of a dehydration synthesis reaction is a(n) reaction.	15)

A) anabolic					
B) endothermic					
C) exchange					
D) metabolic					
E) hydrolytic					
16) A hydroxyl	_ acts as a base.				16)
A) salt	B) group	C) anion	D) atom	E) cation	
17) Which of the follow	ing is NOT a char	actoristic of saturate	d fate?		17)
	ds pack tightly tog		a lats:		17)
B) They are found		etilei.			
	at least one double	hond			
· · · · · · · · · · · · · · · · · · ·	m of stored energy				
· · · · · · · · · · · · · · · · · · ·					
E) They are usua.	lly solid at room te	emperature.			
18) Which of the follow	ing is NOT a chara	acteristic of phospho	olipids?		18)
A) They contain f	atty acids that asso	ociate with water.			
B) They can form	micelles and bilay	yers.			
C) They contain t	wo fatty acids and	l a phosphate functi	onal group.		
· · · · · · · · · · · · · · · · · · ·	hydrophilic phos		•		
· · · · · · · · · · · · · · · · · · ·	d in cellular memb	-			
19) Organisms use carb	•		EXCEPT		19)
A) as a building b	block of DNA and	RNA molecules.			
B) as a long-term	energy source.				
C) to keep memb	ranes flexible at lo	w temperatures.			
D) as a componer	nt of cell walls.				
E) as a short-term	n energy source.				
20) No dei e ei de e e e e		.ll			20)
20) Nucleic acids, protein	-	rbonyarates are all pi	roaucea by		20)
A) dehydration sy					
B) exchange react					
C) hydrogen bon	U				
D) hydrolytic read					
E) catabolic reacti	ions.				
21) Which of the follow	ing is an example	of a polysaccharide	?		21)
A) glycogen	o i	1 3			/ <u></u>
B) fructose					
C) glucose					
D) sucrose					
E) deoxyribose					
,					
22) Which of the follow	ing statements abo	out proteins is FALS	E?		22)
A) They are form	ed by dehydratior	n synthesis reactions			
B) They are comp	oosed of amino aci	ds.			
C) They can be hy	ydrophobic, hydro	philic, or both.			
D) Their primary	function is energy	storage.			
		ıctural organization			
-	_	-			
23) All of the following	are components o	f an amino acid EXC	CEPT a(n)		23)

A) carboxyl group.	,				
B) pentose group.					
C) amino group.					
D) R group.					
E) α -carbon.					
24) Which of the following	ng is found in nucl	eic acids?			24)
A) carboxylic acid					
B) purines					
C) glycerol					
D) R group					
E) amines					
25) Hydrogen bonds are	found in all of the	following EXCEPT			25)
A) in the DNA dou	ıble helix between	nucleotides.			
B) between the R g	groups of amino ac	rids in proteins.			
C) in α -helices.	-	-			
D) between water i	molecules.				
E) between phospl	nates in ATP.				
26) Tertiary and quatern	ary structure of pro	oteins involves	bonds.		26)
A) ionic					
B) nonpolar covale	ent				
C) polar covalent					
D) hydrogen					
E) ionic, hydrogen	, polar, and nonpo	olar covalent			
27) Which of the following	ng are examples of	pyrimidines?			27)
A) cytosine and gu	anine				
B) cytosine and the	ymine				
C) uracil and aden	ine				
D) thymine and gu	anine				
E) thymine and ad	enine				
28) All of the following b	ases are found in l	RNA molecules EXO	CEPT		28)
A) guanine.	B) adenine.	C) thymine.	D) uracil.	E) cytosine.	
29) The "backbone" of the	e DNA molecule is	s composed of			29)
A) pentoses.		1			,
B) phosphates.					
C) amino acids.					
D) alternating pho	sphates and pento:	ses.			
E) nitrogenous bas	ses.				
30) Which of the following	ng would NOT nor	rmally be found as a	component of a cel	l's nucleic acids?	30)
A) cytosine ribonu	-	•	•		
B) adenine deoxyr					
C) adenine ribonu	cleotides				
D) thymine deoxyr	ribonucleotides				
E) uracil deoxyrib	onucleotides				
31) All of the following a	re associated with	ATP molecules FX0	^FPT		31)

A) high-energy bonds.B) a recyclable energy supply.C) a long-term energy supply.D) formation of coenzymes.E) three phosphate groups.	
32) Which of the following statements concerning nucleic acids is FALSE?	32)
A) Cytosine is found in all nucleic acid molecules.	,
B) Not all DNA is double stranded.	
C) Nucleic acid strands are held together by hydrogen bonds between complementary bases.	
D) The nucleic acid polymer is composed of peptide bonds.	
E) Some viruses have DNA as their genomes.	
33) Which of the following is an INCORRECT pairing?	33)
A) secondary structure; β-pleated sheets	
B) secondary structure; disulfide bridges	
C) primary structure; amino acid sequence	
D) tertiary structure; covalent bonds	
E) quaternary structure; two or more polypeptides	
34) Proteins contain both acidic and basic R groups, and can therefore function as	34)
A) catalysts.	,
B) structural macromolecules.	
C) energy storage macromolecules.	
D) buffers.	
E) genetic material.	
35) A(n) is a compound that dissolves into anions and cations in water.	35)
A) salt B) buffer C) acid D) catalyst. E) base	
_,,	
36) Plant cell walls are composed of held together by	36)
A) polysaccharides; hydrogen bonds	
B) amino acids; peptide bonds	
C) fatty acids; polar covalent bonds	
D) peptidoglycan; ionic bonds	
E) disaccharides; hydrophobic interactions	
37) A(n) is an arrangement of atoms found in a variety of macromolecules.	37)
A) salt	
B) functional group	
C) buffer	
D) isotope	
E) stereoisomer	
38) Decomposition reactions are commonly reactions.	38)
A) anabolic	,
B) exchange	
C) endothermic	
D) exothermic	
E) dehydration	
	• 01
39) Lipids found in the membranes of all eukaryotic cells are	39)

A) phospholipids	.				
B) waxes.					
C) steroids.					
D) triglycerides.					
E) polyunsaturat	ed fats.				
40) A protein is a	of amino acids.				40)
A) bilayer					,
B) polymer					
C) decomposition	n product				
D) monomer	1				
E) solution					
41) DNA is composed of	of repeating units of	sugars, phosphat	es, and nucleic acids.	This is an example	41)
of a					
A) micelle.	B) polymer.	C) salt.	D) lipid.	E) monomer.	
42) A polymer compose	od of simple sugars	is a(n)			42)
A) protein.	d of simple sugars	13 4(11)			1 2)
B) starch.					
C) amino acid.					
D) glycoprotein.					
E) triglyceride.					
43) Anna is conducting	an experiment usir	ng a pH indicator	that is red at low pH.	green at neutral	43)
	_		on. When she adds co	_	
	~ .	-	he solution and it turi	-	
-	-	-	gest X is and	•	
A) a base; a strong		e observations sug	5est 7t 15 tirte		
B) a base; a buffe	-				
C) a buffer; a base					
D) an acid; a base					
E) an acid; a buff					
, ,					
44) An amine group is i				-	44)
	No other molecules	are used or produ	ced. What type of reac	tion is likely to	
be involved?					
A) a decomposition					
B) a synthesis rea					
C) a hydrolysis re					
D) an exchange re		1 (1)-1-1-1			
E) The answer ca	nnot be determined	for the available	information.		
45) Adenosine triphosp	hate (ATP) is a				45)
A) monomer.					
B) polymer.					
C) simple carboh	ydrate.				
D) bilayer.					
E) lipid.					
46) Amylose is a(n)	carbobydrata				46)
A) polymer	B) ionic	C) monomer	D) simple	E) nucleotide	10)
11) polymer	D) TOTHE	C, monomer	D) simple	L) Haciconae	

TRUE/FALSE. Write 'T' if the statement is true and 'F' if the statement is false. 47) The smallest chemical units of matter are elements.	47)
48) The side groups of amino acids can interact with each other and with other molecules.	48)
49) A molecule composed of carbon and hydrogen is a compound.	49)
50) The electron shells of atoms hold eight electrons each.	50)
51) Hydrogen bonds are stronger then covalent bonds.	51)
$_{52)}$ An organic molecule with the chemical formula C4H5O1N3 is probably a pyrimidine.	52)
53) Denaturation of a protein is always permanent.	53)
54) The long-term chemical energy storage molecules in plants are triglycerides.	54)
55) One of the products of dehydration synthesis reactions is water.	55)
56) Salts are produced from exchange reactions in which acids and bases neutralize each oth	er. 56)
SHORT ANSWER. Write the word or phrase that best completes each statement or answers the que 57) Radioactive iodine is sometimes used to treat thyroid cancer. This is an example of the use of (isotopes/elements/radiation) in medical treatment.	estion. 57)
58) The phosphorylation of a protein by ATP is a(n) (exchange/transfer) reaction	58)
59) Cell surface markers composed of both carbohydrate and lipid molecules are known as (glycoproteins/glycolipids/LPS).	59)
60) An atom or molecule becomes a(n) (anion/ion/cation) when it loses an electron to a more electronegative molecule.	60)
61) A chemical reaction in which a water molecule is a reactant is known as a(n) (dehydration/hydrolysis) reaction.	61)
62) A(n) (base/acid) is a molecule that binds with hydrogen ions when it is dissolved in water.	62)
63) The folding of a polypeptide into a three-dimensional shape is its (secondary/tertiary/quaternary) structure.	63)
64) The DNA double helix is held together by (covalent/ionic/hydrogen) bonds.	64)
65) R R N H N	(primary/secon Fig dary/tertiary) ure structure of a 2.2 protein. dep icts the

65))		
OO	,		

66) A(n) (catalyst/enzyme) is any molecule that speeds up a chemical reaction.	66)
67) The monomer of a nucleic acid is called a (nucleoside/nucleotide/base).	67)
68) A chemical reaction that traps energy within newly formed chemical bonds is an (exothermic/endothermic) reaction.	68)
69) A(n) (indicator/base/buffer) is a substance that maintains the pH even when the amounts of acid and / or base are changing.	69)
70) The sum of all the chemical reactions within an organism is referred to as its (metabolism/physiology).	70)
71) The (atoms/isotopes/stereoisomers) of an element vary in the number of neutrons in the nucleus.	71)

ESSAY. Write your answer in the space provided or on a separate sheet of paper.

- 72) Compare and contrast synthesis reactions with decomposition reactions.
- 73) Discuss the importance of hydrogen bonds in the chemistry of the cell.
- 74) Max is exploring the properties of various compounds. Some of his explorations involve the use of a pH indicator that is red at low pH, yellow-green at neutral pH and blue to purple at high pH. He sets up several tubes containing water and the pH indicator and then begins to add some of the compounds he is characterizing in various combinations. His results are shown on the Figure 2.3.

Compound	None	1 × L	1 × M	2 × M	5 × M	1 × N	1 × L +	1 × L +	1 × L +
							$1 \times M$	$5 \times M$	$1 \times M +$
									1 × N
Color	Green	Red	Green	Blue	Purple	Green	Red	Green	Green

What can Max conclude about his compounds based on these results? Describe the likely events in terms of hydrogen and hydroxyl ions.

- 75) Describe the chemical properties of phospholipids that account for their behavior in water.
- 76) Nitrogen is an essential element for living things, as demonstrated by the fact that nearly all fertilizers contain nitrogenous compounds. Discuss why nitrogen is essential.

- 1) A
- 2) A
- 3) A
- 4) E
- 5) E
- 6) B
- 7) B
- 8) A
- 9) E
- 10) D
- 11) A
- 12) D
- 13) B
- 14) E
- 15) E
- 16) C
- 17) C
- 18) A
- 19) C
- 20) A
- 21) A
- 22) D 23) B
- 24) B
- 25) E
- 26) E 27) B
- 28) C
- 29) D
- 30) E
- 31) C
- 32) D
- 33) B
- 34) D
- 35) A
- 36) A
- 37) B
- 38) D
- 39) A 40) B
- 41) B
- 42) B
- 43) B 44) E
- 45) A
- 46) A
- 47) FALSE
- 48) TRUE
- 49) TRUE
- 50) FALSE
- 51) FALSE

- 52) TRUE
- 53) FALSE
- 54) FALSE
- 55) TRUE
- 56) TRUE
- 57) isotopes
- 58) exchange
- 59) glycolipids
- 60) cation
- 61) hydrolysis
- 62) base
- 63) tertiary
- 64) hydrogen
- 65) primary
- 66) catalyst
- 67) nucleotide
- 68) endothermic
- 69) buffer
- 70) metabolism
- 71) isotopes
- 72) Synthesis and decomposition reactions are often the reverse of each other. Synthesis reactions consume energy (are endothermic), whereas decomposition reactions release energy (are exothermic). Synthesis reactions often release water molecules in a process called dehydration synthesis, whereas decomposition reactions often consume water molecules in a process called hydrolysis. Finally, decomposition reactions break large macromolecules into their component monomers, which can then be used in synthesis reactions to build new macromolecules for use by the cell, whereas synthesis reactions utilize component monomers to build larger molecules.
- 73) The chemistry of the cell would basically be impossible without hydrogen bonds. Water, which is required by all cellular reactions, would not have its unique properties of cohesiveness and polarity without hydrogen bonds. Hydrogen bonds hold the double helix of DNA together and contribute to the overall shape of protein molecules. However, unlike covalent bonds, hydrogen bonds are not permanent bonds, so they can easily and temporarily be broken, a characteristic that is important at certain points in the cell's life cycle (such as during DNA replication).
- 74) Max's results are consistent with L being an acid and M being a weak base. Compound N appears to be a buffer. The green color of the indicator is seen when the concentrations of hydroxyl and hydrogen ions are equal. The red color of the solution indicates the concentration of hydrogen ions is greater than the hydroxyl ion concentration. The data does not provide information for calculating the concentrations. Blue and purple indicator colors show the hydroxyl ion concentrations exceed the hydrogen ion concentrations. The results with the mixes of L and M suggest that L dissolves to release 5 times more hydrogen ions than the concentration of hydroxyl ions produced by the ionization of M. Compound N accepts or releases ions with changing hydrogen ion concentrations to maintain equal concentrations of cations and anions.
- 75) Phospholipids have polar phosphate "heads" and nonpolar fatty acid "tails," which interact in different ways with water molecules. The phospholipid heads are attracted to polar water molecules, but the nonpolar tails of the phospholipid are repelled by water. As the tails are driven away from the water molecules, they congregate together, either in the interior of a ball of lipid (called a micelle) or within the interior of a double layer of phospholipids (called a bilayer). This leaves the phosphate heads "outside," where they can easily interact with the water molecules.
- 76) Nitrogen is a component in the structure of two of the four types of organic macromolecules. The amino group of an amino acid is a key reactant in the formation of peptide bonds, or primary structure, of proteins. Nitrogen also participates in hydrogen bonding and thereby contributes to the secondary, tertiary, and quaternary structure of proteins. Nitrogen is a key structural component of the bases in nucleic acids, and its participation in hydrogen bonding results in the formation of the base pairs and therefore the double helix of DNA.