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Kinematics in One Dimension 
 

 
 
 
 
 

Of all the intellectual hurdles which the human mind has confronted and has overcome in 

the last fifteen hundred years, the one which seems to me to have been the most amazing 

in character and the most stupendous in the scope of its consequences is the one relating 

to the problem of motion. 

 
Herbert Butterfield—The Origins of Modern Science 

 
Recommended class days: 3 minimum, 4 preferred 

 

 

Background Information 
Chapter 2 is a large and difficult chapter. Although to physicists the chapter says nothing more than 
v = dx/dt and a = dv/dt, these are symbolic expressions for difficult, abstract concepts. Student ideas 
about force and motion are largely non-Newtonian, and they cannot begin to grasp Newton’s laws 
without first coming to a better conceptual understanding of motion. 

As Butterfield notes in the above quote, the “problem of motion” was an immense 

intellectual hurdle. Galileo was perhaps the first to understand what it means to quantify 

observations about nature and to apply mathematical analysis to those observations. He was also 

the first to recognize the need to separate the how of motion—kinematics—from the why of 
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motion—dynamics. These are very difficult ideas, and we should not be surprised that kinematics 

is also an immense intellectual hurdle for students. 

Student difficulties with kinematics have been well researched (Trowbridge and 

McDermott, 1980 and 1981; Rosenquist and McDermott, 1987; McDermott et al., 1987, Thornton 

and Sokoloff, 1990). Arons (1990) gives an excellent summary and makes many useful suggestions 

for teaching kinematics. Student difficulties can be placed in several categories. 
 

Difficulties with concepts: Students have a rather undifferentiated view of motion, without 

clear distinctions between position, velocity, and acceleration. Chapter 1 will have given them a 

start at making these distinctions, but they’ll need additional practice. 

 

 

 
In one study, illustrated in the figure above, students were shown two balls on tracks. Ball 

A is released from rest and rolls down an incline while ball B rolls horizontally at constant speed. 
Ball B overtakes ball A near the beginning, as the motion diagram shows, but later ball A overtakes 
ball B. Students were asked to identify the time or times (if any) at which the two balls have the 
same speed. Prior to instruction, roughly half the students in a calculus-based physics class identify 
frames 2 and 4, when the balls have equal positions, as being times when they have equal speeds. 

Similarly (see references for details), students often identify situations in which two objects 
have the same velocity as indicating that the objects have the same acceleration. Confusion of 
velocity and acceleration is particularly pronounced at a turning point, where a majority of students 
think that the acceleration is zero. McDermott and her co-workers found that roughly 80% of 
students beginning calculus-based physics make errors when asked to identify or compare 
accelerations, and that the error rate was still roughly 60% after conventional instruction. Thornton 
and Sokoloff (1990) report very similar pre-instruction and post-instruction error rates for students’ 
abilities to interpret graphs of velocity and acceleration versus time. In addition: 

 

•     Students have a very difficult time with the idea of instantaneous quantities. 

• Students are often confused by the significance of positive and negative signs, 

especially for velocity and acceleration. Many students interpret positive and 

negative accelerations as always meaning that the object is speeding up or slowing 

down. This seems to be an especially difficult idea to change. 
 

Difficulties with graphs: Nearly all students can graph a set of data or can read a value from a 

graph. Their difficulties are with interpreting information presented graphically. In particular: 
 

• Many students don’t know the meaning of “Graph a-versus-b.” They graph the first 

quantity on the horizontal axis, ending up with the two axes reversed. 

• Many students think that the slope of a straight-line graph is found from y/x (using 

any point on the graph) rather than Δ Δy/ x. 

•     Students don’t recognize that a slope has units or how to determine those units. 

•     Many students don’t understand the idea of the “slope at a point” on a curvilinear 

graph. They cannot readily compare the slopes at different points. 

•     Very few students are familiar with the idea of “area under a curve.” Even students 
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who have already started calculus, and who “know” that an integral can be
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understood as an area, have little or no idea how to use this information if presented 

with an actual curve. 

• Many students interpret “slope of a curve” or “area under a curve” literally, as the 

graph is drawn, rather than with reference to the scales and units along the axes. To 

them, a line drawn at 45° always has a slope of 1 (no units), and they may answer an 

area-under-the-curve question with “about three square inches.” 

• Students don’t recognize that an “area under the curve” has units or how the units of 

an “area” can be something other than area units. We tell them, “Distance traveled is 

the area under the v-versus-t curve.” But distance is a length? How can a length equal 

an area? 
 

A recitation hour spent interpreting and using graphs is an hour well spent for all students. 
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Difficulties relating graphs to motion: Nearly all students have a very difficult time relating 

the physical ideas of motion to a graphical representation of motion. If students observe a 

motion—a ball rolling down an incline, for example—and are then asked to draw an x-versus-t 

graph, many will draw a picture of the motion as they saw it. Confusion between graphs and 

pictures underlies many of the difficulties of relating graphs to motion. 

Part of the difficulty is that we measure position along a horizontal axis (for horizontal 

motion), but then we graph the position on a vertical axis. This choice is never explained, as it 

seems obvious to physicists, but it’s a confusing issue for students who aren’t sure what a 

function is or how graphs are interpreted. 

Confusion between position and velocity, and difficulty 
interpreting slopes, is seen with a simple example. Here is a graph that 
shows the motion of two objects A and B. Students are asked: Do A and 
B ever have the same speed? If so, at what time? A significant fraction 
will answer that A and B have the same speed at t = 2 s, confusing a 
common height with common slope. 

In another exercise, students are shown the following position-versus-time graph and asked 
at which lettered point or points is the object moving fastest, at rest, slowing down, etc. Students 
initially have difficulty with such exercises because they can’t interpret the meaning of the graph. 
Fortunately, most students can master questions similar to these with a small amount of instruction 
and practice. 

 

 

 
A much more difficult problem for most students, and one that takes more practice, is 

changing from one type of graph to another. For example, students might be given the x-versus-t 

graph shown below on the left and asked to draw the corresponding vx-versus-t graph. When first 

presented with such a problem, almost no students can generate the correct velocity graph shown 

on the right. Many feel that a “conservation of shape” law applies and redraw the position 

graph— perhaps translated up or down—as a velocity graph. They need a careful explanation, 

through several examples, of how the slope of the position graph becomes the value of the
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velocity graph at the same t. Changing from a velocity graph back to a position graph is even 

more difficult. 
 
 
 
 
 
 
 
 
 

 
These examples require giving physical meaning to the 

slope of and area under curves, but they are still somewhat 

removed from the actual situation in which the motion occurs. 

To tie all aspects of a student’s understanding of kinematics 

together, McDermott and her group presented students with 

situations of a ball rolling along a series of level and inclined tracks. The students are then asked 
to draw x-versus-t, vx-versus-t, and ax-versus-t graphs of the motion, with the graphs stacked 
vertically so that a vertical line connects equal values of t on each of the three graphs. Students in 
a conventional physics class were presented—after kinematics instruction—with the simple track 
shown in the figure. Only 1 student of 118 gave a completely correct response. Many students draw 
wildly incorrect graphs for questions like these, indicating an inability to translate from a 
visualization of the motion to a graphical description of the motion. 

 

Difficulties with terminology: Arons (1990) has written about student difficulties with the term 
per. Many students have difficulty giving a verbal explanation of what “20 meters per second” 
means—especially for an instantaneous velocity that is only “20 meters per second” for “an instant.” 
Students will often say things such as “acceleration is delta v over delta t,” but they frequently don’t 
use the word “over” in the sense of a ratio but rather to mean “during the interval.” Another difficult 
terminology issue for students is our use of the words initial and final. Sometimes we use initial to 

mean the initial conditions with which the problem starts, and final refers to the end of the problem. 

But then we use Δx = xfinal – xinitial and Δv = vfinal – vinitial when we’re looking at how position and 

velocity change over small intervals Δt. Students often don’t recognize the distinction between 

these uses. 

Finally, students often don’t make the same assumptions we do about the beginning and 

ending points of a problem. We interpret “Bob throws a ball at 20 m/s...” as a problem that starts 

with Bob releasing the ball. Students often want to include his throw as part of the problem. 

Similarly, a question to “find the final speed of a ball dropped from a height of 10 m” will get 

many answers of “zero,” because that really is the final speed. These are not insurmountable 

issues, but you need to be aware that students don’t always interpret a problem statement as a 

physicist would. 

Difficulties with mathematics: Many students, especially if they are starting calculus 

concurrently, are not sure what a function is. They don’t really understand the notation x(t) or our 

discussion of “position as a function of time.” A not insignificant fraction of students interpret 

x(t) as meaning x times t, as it would in an expression such as a(b + c). Instructors need to give 

explicit attention to this issue. 

Students are easily confused with changes in notation. Math courses tend to work with 

functions y(x), with x the independent variable. This includes graphing y-versus-x and taking 

derivatives dy/dx. In physics, we use functions x(t), with x the dependent variable. We make x- 

versus-t graphs and take derivatives dx/dt. Despite how trivial this seems, instructors should be 

aware that many students are confused by the different notation and need assistance with this.
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Finally, students at this stage often lack an operational understanding of differentials and 

integrals. They’re not perturbed by writing expressions such as dx = x2, in which they equate an 

infinitesimal to a finite expression. When faced with an integral such as ∫vdt, students are likely to 

pull the v out of the integral, as if it were as constant, rather than recognize that v is an implicit 
function of t. Physics can help them solidify their understanding and use of calculus, but you should 
be cautious about assuming that students have a working knowledge of calculus. 

 

 

Student Learning Objectives 
•   To differentiate clearly between the concepts of position, velocity, and acceleration. 

•   The interpret kinematic graphs. 

•   To translate kinematic information between verbal, pictorial, graphical, and algebraic 

representations. 

•   To learn the basic ideas of calculus (differentiation and integration) and to utilize 

these ideas both symbolically and graphically. 

•   To understand free-fall motion. 

•   To begin the development of a robust problem-solving strategy. 

•   To solve quantitative kinematics problems and to interpret the results. 
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Pedagogical Approach 

This chapter treats one-dimensional motion only. Although the basic kinematic quantities x, vx, 

and ax (or y, vy, and ay) are components of vectors, a full discussion of vectors is not needed for 

one-dimensional motion. Indeed, the term component is not introduced until Chapter 3. The 

major issue is whether each of these quantities is positive or negative, and that only depends on 

whether        

the vector r v, , or a points in the positive or the negative direction. This is easily determined with 

a motion diagram. Tactics Box 1.4 summarized the signs of these quantities, but students made 

minimal use of this information in Chapter 1. They now need practice associating a verbal 

description of the motion with the proper signs, especially for acceleration. 
 

 

Note: In this textbook, v = v
 
is the magnitude of the velocity vector, or speed, and a = a

 
is 

the magnitude of the acceleration. Component of vectors, such as vx or ay, always use explicit x- 

and y-subscripts. Not surprisingly, students can easily be confused by the rather common practice 

in one-dimensional motion of using v both for velocity (a signed quantity) and for speed. 
 

We want students to recognize vertical motion, horizontal motion, and even motion along 
an incline as just variations of “one-dimensional motion.” Consequently, the text often uses a 
generic symbol s to represent position. Examples then use x for horizontal motion and y for vertical 
motion, but instructors are encouraged to use s when writing kinematic equations that don’t refer 
to a specific situation or direction. 

This chapter introduced two important models: uniform motion and motion with constant 

acceleration. It’s important to emphasize—especially when working example problems—where 

you’re making simplifying assumptions. Few objects exhibit true uniform motion or constant 

acceleration, but it’s often reasonable to model their motion this way. Not many students are 

familiar with the crucial role that assumptions and modeling play in physics, so it’s important to 

be explicit about this rather than hoping that students will pick it up on their own.
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A major goal of this chapter is to provide both the conceptual foundations of kinematics 

and a systematic approach to analyzing problems. To this end, the text emphasizes multiple 

representations of knowledge. In particular, motion has the following descriptions: 
 

•     Verbal, as presented in typical end-of-chapter problems. 

• Pictorial, including (1) motion diagrams and (2) a sketch showing beginning and 

ending points as well as coordinates and symbols. 

•     Graphical, as shown in position-, velocity-, and acceleration-versus-time graphs. 

•     Mathematical, through the relevant equations of kinematics. 
 

To acquire an accurate, intuitive sense of motion, students must learn to move back and forth 

between these different representations. Much of this chapter is focused on learning the different 

representations of kinematic knowledge. 

The connection between motion diagrams and graphs is strongly emphasized. Students 

learned motion diagrams in Chapter 1, and they should now be able to draw a correct motion 

diagram for nearly any one-dimensional motion. This is a good intermediate stage in the process 

of interpreting a verbal description of motion. Students can see where velocities are big or small 

and where the motion speeds up or slows down. As they proceed into the less familiar territory of 

drawing graphs, you can keep calling their attention to whether or not the graph is consistent with 

the motion diagram. This approach is particularly useful for establishing correct signs. 

The ultimate goal, of course, is for students to be able to work kinematics problems. There 
is now good evidence that initial attention to these conceptual issues leads students to become better 
problem solvers. 

 
Using Class Time 

A minimum of three days is needed to cover this chapter if students are to have an adequate 

opportunity to practice the many ideas. A fourth day of additional practice problem solving can 

really help to cement these important ideas that will be used throughout the course. The fourth 

day is highly recommended if your students are starting calculus concurrently with physics. 
 

Day 1: The Chapter Preview introduces the “Looking Back” feature that recommends specific 

previous sections for review. New to the 4th edition, Looking Back references are also given in 

the body of the text on an as-needed basis; examples are in Signs and Units on p. 44. It’s worth 

calling attention to this feature and recommending its use. Although it seems like extra work, 

suggest to students that a brief review will actually save them time by making the current chapter 

easier to understand. 

Chapter 2 is the first serious test of an instructor’s intent to use an active-learning teaching 
style. The temptation to start lecturing about slopes and derivatives is strong, but I urge you to jump 
right in with questions and problems for the students to work on. You can make the necessary points 
about slopes, derivatives, and other matters as you go over the answers and underlying reasoning 
of the questions. 

A particularly important point to make as you go along is the role of Δ. Students tend to 

make no distinction between position and displacement (x and Δx) or between velocity and 

change of velocity (v and Δv). Half-remembered formulas from high school, such as v = d/t, are 

often more hindrance than help for coming to a solid understanding of kinematics. Even many 

college texts don’t distinguish between t, an instant of time, and Δt, an interval of time. Equations 

such as x = x0 + vxt are actually using t to represent an interval, not an instant. This text 

consistently uses expressions such as x = x0 + vxΔt to make the meaning of symbols clear. 

Kinematics gets off to a faster start if students have already had the opportunity to 

measure the motion of their own bodies in a microcomputer-based laboratory. Otherwise, it’s
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good to start with a number of examples in which you ask students to draw a position-versus-time 

graph for an object they see moving, then draw the corresponding velocity-versus-time graph. 

It’s good to establish a coordinate system across the front of the class, with a well- 

defined origin and with the “x-axis” pointing to the students’ right. Ask a student to start at the 

origin, then walk across the room (left to right) at constant speed. Have the students first draw a 

motion diagram, then an x-vs-t graph, and finally a vx-vs-t graph. This will give you an 

opportunity to talk about slopes and to note that the velocity vectors in the motion diagram are all 

equal length, pointing to the right. Then repeat the process, with the student 
 

•     walking right to left at constant speed, ending at the origin. 

•     starting at a negative value of x, then walking to the right (or left) at constant speed. 
 

These will provide an opportunity to discuss the role of signs for both x and vx. 
Next have a student, starting at the origin, slowly speed up until moving very fast at the 

far side of the room. (At this time, it’s best to talk about speeding up and slowing down rather 

than to introduce the term acceleration.) Again, use motion diagrams, position graphs, and 

velocity graphs to illustrate the idea of instantaneous velocity. (For simplicity, consider the 

position graph to be parabolic and the velocity graph to be linear.) A good analogy is to ask what 

a speedometer would read at different points in the motion, if the student were carrying one. 

Finally, have a student start very slowly on the far side of the room, gradually speed up 

while moving to the left, and reach the origin at top speed. Students find this one much more 

difficult, especially the proper shape of the position-versus-time graph. Focusing on the motion 

diagram helps. Time permitting, you can also demonstrate slowing down. 
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Once students seem to have the basic idea, the two questions shown above are effective. 

For each, the issue is whether A and B ever have the same speed, and if so, when? Students who 

haven’t practiced graph interpretation tend to confuse the crossing points (equal position) with 

points of equal speeds. The practice they’ve just completed should have most of them thinking 

about slopes, so error rates shouldn’t be too high, but this exercise reinforces the message and 

catches a few more who are still confusing height with slope. 

Another good question to pose is shown in the figure at the right. 

First, ask students to give a verbal description of the motion. Then, ask 

them to rank in order the speeds at points A, B, and C, from fastest to 

slowest. Finally, ask them to draw a velocity-versus-time graph—with a 

proper numerical scale. Computing the slope at B will prove to be 

difficult for many students.
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The following exercise illustrates the meaning of per, and it is a prelude to a similar 

acceleration exercise on day 2. 

A train is moving at a steady 30 m/s. At t = 0 s, the engine passes a signal light at x = 0 m. 

Without using any formulas, find the engine’s position at t = 1 s. Also at t = 2 s and t = 3 s. 
 

The objective is for students to realize the meaning of “30 meters per second” to be that “x increases 
by 30 meters during each second.” The position increases by 30 m during the first second, to x1 = 
30 m, by 30 m more during the next second, to x2 = 60 m, and so on. Some students will find this 
so obvious as to be trivial, but others will find this a difficult way to reason. 

Have students graph both position and velocity for the train, then call their attention to the 

fact that the displacement Δx is exactly the same as the area under the velocity curve. The 

constant- velocity equation s = s0 + vsΔt is merely giving algebraic expression to their observation 

that Δs = area under the velocity-versus-time curve. 

You can direct them to the text for a proof that the graphical result Δs = area is true for any velocity, 

not just constant velocity. But Δs = vsΔt applies only to constant velocity since vs × Δt is clearly 

the area of the rectangle under a horizontal line. 

For a nonconstant velocity, you can give them a graph like the one 

shown on the left and ask them to find—using the graph, not a kinematics 

equation—the position at t = 1, 2, 3, 4, and 5 s. Then have them draw a 

position-versus-time graph. Now they’ve practiced going forward, from 

position to velocity, and backward, from velocity to position. 
 
 

Day 2: An excellent exercise to start day 2, and review the ideas of day 1, is the following 

exercise taken from the Student Workbook: 

Trucker Bob starts the day 120 miles west of Denver. He drives east for 3 hours at a steady 

60 miles/hour before stopping for his coffee break. Draw a position-versus-time graph for Bob, 
 

including appropriate numerical scales along both axes. Let Denver be located at x = 0 and 

assume that the x-axis points to the east. 
 

Although this seems straightforward, I’ve found that only a small fraction of students can draw an 

appropriate graph. Seeing the types of errors they make and responding to their questions and 

concerns can lead into an excellent class discussion about the graphical representation of motion. 

It’s then a good opportunity for an example problem that requires all the steps in the 
problem-solving strategy. Encourage students to use a Dynamics Worksheet from the back of the 
Student Workbook as they work along with you. The Workbook has only a few sample worksheets; 
more copies can be downloaded via the “Resources” tab in the textbook’s Instructor Resource 
Center (www.pearsonhighered.com/educator/catalog/index.page) or from the textbook’s Instructor 
Resource  Area  in  MasteringPhysics®  (www.masteringphysics.com).  If  you  intend  to  use 
worksheets—highly recommended for developing problem-solving skills—either have students 
photocopy more, download and print worksheets for them, or provide them with the PDF to print 
their own. A good first problem might be. 

Sally opens her parachute at an altitude of 1500 m. She then descends slowly to earth at a steady 

speed of 5 m/s. How long does it take her to touch down? 
 

The goal is to illustrate the problem-solving strategy, hence the problem itself is so simple that all 

students can easily do the numerical part. Start with a pictorial representation that establishes a 

coordinate system and defines symbols. Then draw a motion diagram. Finally—and for the first 

time—use the Mathematical Representation section of the worksheet to solve the problem. Call 

attention to the fact that all the symbols used in the mathematical solution, such as y0 or t1, were

http://www.pearsonhighered.com/educator/catalog/index.page
http://www.masteringphysics.com/
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identified and defined in the pictorial representation. End by having them assess whether or not 

the result is “reasonable.” 
 

Note: Physicists often like to use a coordinate system for vertical-motion problems with the y-axis 
pointing down. This avoids a few negative signs. However, many students find this more confusing 
than helpful. The text consistently uses an upward-pointing y-axis for kinematics, matching the 
coordinate system we’ll need later for gravitational potential energy. 

 

After spending about a day and a half on velocity, it’s time to explore acceleration. To set 
the stage, toss a ball straight up and down a few times. First ask about the velocity. As the ball rises, 
is vy positive, negative, or zero? As it falls? Then focus on the turning point at the top. Nearly all 
students will now agree that vy  = 0 at the top, but it allows you to reinforce the idea of an 
instantaneous velocity. This is a good place to define a turning point and note that the instantaneous 
velocity is always zero at a turning point. 

Then ask if the acceleration at the top point is positive, negative, or zero. After giving them 
a minute to think about it, and perhaps discuss it with a neighbor, ask for a show of hands (or make 
this a clicker question). In nearly all classes, a large majority thinks that the acceleration is zero. 

 

Note: An especially important aspect of having students make a prediction is that they now have 
a vested interest in the outcome. This is a much better learning experience than simply seeing you 
demonstrate and explain something. 

 

Rather than directly discussing the answer, tell the class you’re going to let the question 

be answered experimentally, but that you’ll need to build up to it in several steps. Then turn to a 

demonstration of a ball or a cart rolling down a small incline in the positive x-direction. It’s 

important to keep the speed slow so students can observe that the velocity increases continuously. 

(It’s best to start with the object moving to the right, so that vx is positive.) An ultrasonic motion 

detector (at the top of the ramp) interfaced to a computer is an especially useful tool for showing 

that the velocity is increasing linearly with time. 

On day 1, students associated velocity with a changing position and found that velocity is 

the slope of the position graph. Now, by analogy, you can associate acceleration with a changing 
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velocity and the slope of the velocity graph. Remind students that they can judge velocity fairly 
easily when observing an object, but that it’s much more difficult to judge acceleration. That’s why 
the motion diagrams and graphical tools are so important. 

After rolling the ball or cart down and making graphs, roll it up the same incline, now 

moving in the negative x-direction, but catch it at the top before it reverses. Although many 

students will now recognize that this is a negative vx that “increases” toward zero as it slows, 

you’ll want to be quite explicit about the reasoning for those students who are still struggling with 

the proper signs. After you’ve drawn position and velocity graphs (or had them produced by the 

computer), ask them if the acceleration ax is positive, negative, or zero. Although you’ve just 

talked about the fact that acceleration is the slope of the velocity graph, and they’re looking at a 

velocity graph, a large fraction of the class is likely to respond that the acceleration is negative 

because of their belief that positive and negative accelerations mean speeding up and slowing 

down.

You can use the slope of the velocity graph to draw an acceleration graph, appeal to the 
logical argument that vx is becoming more positive as the object slows, and use motion diagrams 
to show that a points in the positive x-direction. It’s worthwhile to look for two or three other 
opportunities to have students consider the sign of the acceleration in situations where their speeding 
up/slowing down reasoning will fail. This is not a belief that is quickly or easily changed.
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Finally, roll the object up the incline and let it roll back down. Note that the turning point 

is just like the turning point of the ball you had tossed in the air, and that now you’re ready to 

answer the question. This is very nicely done with a motion detector by measuring the velocity 

and seeing that it linearly increases from negative to positive values, passing through zero (the 

turning point) with no change of slope. (Actually, carts on a track often do have a small change of 

slope due to the friction force changing direction. You’ll need to explain this, but you can easily 

note that the slope never becomes zero.) An acceleration graph then shows that the acceleration is 

uniform throughout the entire motion, with nothing to distinguish the turning point. You’ll also 

want to note that the object wouldn’t be able to move away from the turning point if both vx and 
ax were zero. 

Motion detectors are especially good for showing that objects fall with a constant 

acceleration and that the acceleration is independent of the mass. You can show the mass 

independence with carts of different mass on an incline. (First ask them to predict whether the 

acceleration of a heavier cart will be less than, greater than, or equal to the mass of a lighter cart.) 

You can also demonstrate free fall with a motion detector placed face up on the floor or 

on the lecture table if you build a protective cage around the probe. Dropping a ball onto the 

probe is easy. With a little more care, you can toss a ball upward over the probe and follow the 

motion up and down. Without a motion detector, there’s not enough time in lecture to make the 

measurements that would be required to demonstrate that free-fall motion is one of constant 

acceleration, so you’re forced to assert this without proof. 

Students, for some reason, have a strong tendency to call g by the name “gravity.” It is 

worth emphasizing that g is “the free-fall acceleration” and requiring them to use the term 

correctly. You’ll also want to emphasize that g is always a positive value. The acceleration is 

negative, given by ay = –g, but g itself is positive. 
 

Day 3: Two full days have been used on conceptual and graphical topics. Although this seems an 
inefficient use of time, since you’re ultimately going to test students on their problem-solving skill, 
these two days are extremely important for building the conceptual foundations that underlie good 
problem-solving ability. Most students cannot move beyond simple plug-and-chug problems until 
they develop a better conceptual understanding of motion. 

But now that the conceptual foundations have been laid, it’s time to start kinematics 
problems. Deriving kinematics equations is not an effective use of class time; students should have 
read the derivations in the textbook. However, you can use examples to reinforce the textbook 

derivations. A good exercise is to tell students that a jet plane accelerates at 3 m/s2 during take-off, 
then ask them without using any equations or their calculators the plane’s velocity at t = 1, 2, 3, 

and 4 s. You want them to reason that 3 m/s2 = (3 m/s) per second, so the velocity increases by 3 
m/s every second. (This is analogous to the 30 m/s train exercise on day 1.) The velocity graph is 
linear, and you can then use area under the curve to find (and graph) the position at t = 1, 2, 3, and 

4 s. You want students to recognize that Δ =s 12 as(Δt)2 for constant acceleration can be understood 
from the geometry of the graphs, that it’s not “just” a result derived from calculus. 

Here are four good examples. In working them, I encourage you to use the full step-by- 
step approach of the Dynamics Worksheets and to be very explicit about all the small steps in your 
reasoning. In other words, think out loud about the various assumptions that are being made and 
the reasons for your choices. These problems are so second nature to an experienced physicist that 
we’re usually not aware of our assumptions or reasoning, but this “hidden problem solving” is the 
information most needed by beginners. 

 

Example 1: Bob throws a ball straight up at 20 m/s, releasing the ball 1.5 m above the ground. 

What is the maximum height of the ball? What is the ball’s impact speed as it hits the ground? 
 

Example 2: A ball is released at a height of 1.0 m on a frictionless 30° slope. At the bottom, it 
turns smoothly onto a 60° slope going back up. What maximum height does it reach on the right
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side? (This is a two-part problem. Most students will be surprised that the answer is 1.0 m, and this 
gives you an opportunity to say a few initial words about energy.) 

 

 
 
 

Example 3: A sprinter accelerates at 2.5 m/s2 until reaching his top speed of 15 m/s. He then 

continues to run at top speed. How long does it take him to run the 100-m dash? (It’s worth 

including a graphical analysis with this problem.) 
 

Example 4: Ball A rolls along a frictionless, horizontal surface at a speed of 1.0 m/s. Ball B is 

released from rest at the top of a 2.0-m-long, 10° ramp at the exact instant ball A passes by. Will 

B overtake A before reaching the bottom of the ramp? If so, at what position? (The answer is yes 

at x = 1.193 m. This problem is considerably more difficult and allows you to point out that a 

simple plug-and-chug approach will not succeed. Students really do need the pictorial 

representation and good conceptual understanding of the motion in order to devise a strategy for 

solving it. Before doing the mathematics, it’s worth sketching position graphs and showing that 

you’re trying to find where the two graphs intersect.) 

 

 

 
At some point, after starting calculations, you’ll want to discuss significant figures. Most 

students are aware of these rules, except perhaps for subtle points such as whether a 0 is 

significant or not, but likely they’ve never been required to follow them. We all know the 

students who write down ten digits from their calculator display. An equally serious problem is 

the student who keeps his or her calculator set to display two decimal points, leading them to give 

the one-significant- figure answer 0.02 when computing 2.87/123. It’s worth urging students to 

keep their calculator set 
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in scientific notation mode, with two decimal places, so as to always be displaying three 

significant figures. 

I think it’s counterproductive to be overly rigid on significant figures. Although I 

emphasize that two or three significant figures is usually appropriate, depending on the 

information in the problem, I’m willing to accept up to four. I’m more concerned with getting 

students to recognize that less than two or more than four is clearly inappropriate. I try to enforce 

proper usage with an automatic one-point deduction on homework problems and an automatic 

two-point deduction on exam problems for improper significant figures. Alas, even with repeated 

penalties it is hard to get some students to pay attention to significant figures. 
 

Day 4: A fourth day, if you have one, allows more practice problem solving. You can take the 
time to allow students to work in small groups rather than your presenting the solution as a worked
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example. Problems with turning points and with accelerations opposite in sign from what students 
might guess are well worthwhile. Problems involving two moving objects are particularly 
challenging because they can’t be solved by equation hunting. 

Another good exercise for day 4 is to have students work through several examples 

similar to those on pages 53–54 of balls rolling along multi-segment tracks. These exercises 

require students to visualize the motion and to relate it to graphs. Most students find these 

difficult, even after the exercises of days 1 and 2. But quite a few “get it” after a few such 

examples, and their ability to relate visualized motion to graphs suddenly takes a quantum leap. 

Most instructors will want to cover Section 2.7 on instantaneous acceleration, but this is 

an optional section that is easily omitted if you’re pressed for time. Instantaneous acceleration 

isn’t seen again until simple harmonic motion, and by then students will be farther along in 
calculus and will know (or readily accept) that instantaneous acceleration is the time-derivative of 

velocity. 
 

 

Sample Exam Questions 
These questions cover the material of Chapters 1–2. If you’ve been having students do homework 

on the Dynamics Worksheets, you’ll probably want to require their use on the quantitative 

problems on an exam. These are not “kinematics problems,” for which borrowing unassigned 

Chapter 2 homework problems is recommended, but problems to assess whether students are 

acquiring a more sophisticated understanding of motion. 

1.   A ball released from rest rolls down a ramp, across a horizontal floor, and up the other side. 

Draw a complete motion diagram of the ball until it reaches its highest point on the right side. 

 

 

 
2.   Mike falls out of a tree and lands on a trampoline. The trampoline sags 2 feet before 

launching Mike back into the air. At the very bottom, where the sag is the greatest, is Mike’s 
acceleration upward, downward, or zero? Use the tools that you’ve learned in these first 
chapters to give a convincing explanation of your answer. 

 

 

 
3.   Is it possible for an object with a negative acceleration to be speeding up? If so, give an 

explicit example. If not, explain why not. 

4.   The figure below shows a ball rolling along a smooth frictionless track. Each segment of the 
track is straight, and the ball can move from segment to segment with no loss of speed. The 
ball starts from the left edge with an initial velocity v0s that is large enough to make it over 
the top. 

Draw position-, velocity-, and acceleration-versus-time graphs for the ball until it rolls off the right 
edge of the track. (Position s is measured along the track.) Your three graphs should have the 
same time scale. 
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(It’s good on a question like this to supply them with three empty sets of axes stacked one 

above the other.) 

5.   Draw the position graph and the acceleration graph that go with the velocity graph shown 

below. The initial position is x0 = –2.0 m. 

 

 

 
6.   An object moving horizontally has the acceleration-versus-time graph shown below. At t = 0 

s, the object has x0 = 0 m. and velocity v0x = 10 m/s. 

 

 

a. Draw a velocity-versus-time graph for the object. Include a numerical scale on the 

vertical axis. 

b.   Draw a motion diagram of the object’s motion. 

c.   Write a description of a real object for which this is a realistic motion. 
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