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Chapter 2 
 
 
 
 
 

 

Problem 2.1 
 

a) 
Let 

 

wk  = x + j y 

p(−k) = a + j b 

We may then write 
 

f =wkp∗(−k) 

=(x + j y)(a − j b) 

=(ax + by) + j(ay − bx) 
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Letting 
 

 
where 

f = u + j v

 

u = ax + by 

v = ay − bx 

Hence, 
 

∂u               ∂u 
= a             = b 

∂x               ∂y 

∂v               ∂v 
= a 

∂y               ∂x 

 

= −b
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k 

 

 
 

From these results we can immediately see that 
 

∂u      ∂v 
= 

∂x      ∂y 
 

∂v         ∂u 

∂x 
= − 

∂y 

In other words, the product term wkp∗(−k) satisfies the Cauchy-Riemann equations, and so this 

term is analytic. 

b) 
Let 

 

 
 
 
 
 
 

Let 

 
 
 
 

f =wkp∗(−k) 

=(x − j y)(a + j b) 

=(ax + by) + j(bx − ay)

 

 
with 

f = u + jv

 

u = ax + by 

v = bx − ay 

Hence,
 

∂u               ∂u 
=a 

∂x               ∂y 

∂v              ∂v 
=b 

∂x              ∂y 

 
= b 
 

 

= −a

 

From these results we immediately see that 
 

∂u     ∂v 
= 

∂x     ∂y 

∂v          ∂u 

∂x 
= − 

∂y 
 

In other words, the product term w∗p(−k) does not satisfy the Cauchy-Riemann equations, 

and so this term is not analytic.
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d 

d 

d 

 

 

Problem 2.2 
 

a) 
From the Wiener-Hopf equation, we have 

 

w0  = R−1p                                                                                                             

(1) We are given that 

, 
1    0.5

,
 

R =  
0.5    1 

, 
0.5 

,
 

p =  
0.25 

 

Hence the inverse of R is 

, 
1    0.5

,−1

R−1  = 
 
 

= 

 

0.5    1 

  1   
, 

1      −0.5
,−1

0.75 −0.5     1

 

Using Equation (1), we therefore get 

  1   
, 

1      −0.5
, , 

0.5 
,

w0  =
0.75 −0.5     1 0.25

  1   
,

0.375
,

 
= 

0.75      0 
,

0.5
,

 
=   

0 
 
 

 

b) 
The minimum mean-square error is 

 

Jmin  =o2 − pH w0

=o2 − 
 
0.5   0.25

,
 

 

=o2 − 0.25 

,
0.5

,
 

0
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c) 
The eigenvalues of the matrix R are roots of the characteristic equation: 

 

(1 − λ)2  − (0.5)2  = 0 
 

That is, the two roots are 
 

λ1  = 0.5    and λ2  = 1.5 
 

The associated eigenvectors are defined by 
 

Rq  = λq 
 

For λ1  = 0.5, we have 

, 
1    0.5

, ,
q11

, 

= 0.5 

,
q11

,

0.5    1 q12 q12

 

Expanded this becomes 
 

q11 + 0.5q12 = 0.5q11 

 

0.5q11 + q12 = 0.5q12 
 

Therefore, 
 

q11 = −q12 

 

Normalizing the eigenvector q1  to unit length, we therefore have
 

  1 
q1  = √

2 

, 
1 
, 

−1

 

Similarly, for the eigenvalue λ2  = 1.5, we may show that
 

  1 
q2  = √

2 

,
1
, 

1
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1 2 

i 

 

 
 

Accordingly, we may express the Wiener filter in terms of its eigenvalues and eigenvectors as 

follows: 
   

2      
1         

\

wO  =
 
�     

qiq
H    p

λ       i 

i=1 
  

1                1          
\

=      q1qH + 
λ1 

q2qH    p 
λ2

= 

 , 
1 
, 
, 1   −1

, 
+

 1 
,

1
, 
,
1   1

 ,
\ , 

0.5 
,

−1                      3   1 0.25

= 

 , 
1    −1

, 

+
 1 

,
1   1

,\ , 
0.5 

,

−1     1 3   1   1 0.25

 
4        2  

= 
 3     

−
3  

, 
0.5 

,

 2     4   
−

3    3 
 
4     1   

0.25

= 
 6 

− 
6  

 1     1  
−

3 
+ 

3 
,

0.5
,

 
=   

0 
 

 

Problem 2.3 
 

a) 
From the Wiener-Hopf equation we have 

 

wO  = R−1p                                                                                                             (1) 

We are given 

 

 

 

1     0.5   0.25

R =  0.5 1 0.5  

0.25 0.5 1 
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and 
 

 

p = 
,
0.5   0.25   0.125

,T
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d 

d 

d 

T 

 

 
 

Hence, the use of these values in Equation (1) yields 
 

wO  =R−1p
 
1     0.5   0.25

−1 

 

0.5 

=  0.5     1     0.5  

0.25   0.5     1 

 0.25  

0.125

 
1.33    −0.67       0 

  
0.5 

= −0.67     1.67    −0.67   0.25 

0       −0.67     1.33 0.125

 

wO  = 
,
0.5   0   0

,
 

 

b) 
The Minimum mean-square error is 

 

Jmin  =o2 − pH wO 

 
 
 
 

 

0.5

=o2 − 
,
0.5   0.25   0.125

, 
 0  

0 

=o2 − 0.25 
 

 

c) 
The eigenvalues of the matrix R are 

,
λ1     λ2     λ3

, 
= 

,
0.4069   0.75   1.8431

,
 

 
The corresponding eigenvectors constitute the orthogonal matrix: 

−0.4544   −0.7071   0.5418  
 

Q =  0.7662 0 0.6426  

−0.4544 0.7071 0.5418 
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i 

Accordingly, we may express the Wiener filter in terms of its eigenvalues and eigenvectors as 

follows: 
   

3      
1         

\

wO  =
 
�     

qiq
H    p

λ       i 

i=1
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0.6426  
,
0.5 418   0.6426   0.541 8

,
 ×  0.25 

0.5418  0.125 

 

. 

 
 

 

1     
−0.4544  

wO  =  
0.4069 

 0.7662  
,
−0.4544   0.7662   −0.4544

,
 

−0.4544
 

1 
+ 

0.75 

−0.7071 
 0 

0.7071 

 

 
,
−0.7071   0   −0.7071

,

 

1 
+ 

1.8431 

0.5418  
  

0.5  

 
 

1     

 
0.2065    −0.3482     0.2065  

wO  =  
0.4069 

−0.3482     0.5871    −0.3482  
0.2065    −0.3482     0.2065 

 
0.5    0   −0.5

1 
+ 

0.75 
 0      0      0    

−0.5   0    0.5

1     
0.2935   0.3482   0.2935  

 
0.5 

+         0.3482   0.4129   0.3482  ×  0.25 
 

0.5  

=  0  

0 

1.8431 
0.2935   0.3482   0.2935 0.125

 

 

Problem 2.4 
 
By definition, the correlation matrix 

R = E[u(n)uH (n)] 
 

Where 
 
u(n)     

u(n)  = 
u(n − 1)                

 
              

 
               

u(0) 
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Invoking the ergodicity theorem,
 

 

R(N ) = 

 

1 

N + 1 

 

N � 
u(n)uH (n) 

n=O



32 

PROBLEM 2.5.                                                                       CHAPTER 2.    

 

α 

 

 
 

Likewise, we may compute the cross-correlation vector 
 

p = E[u(n)d∗(n)] 
 

as the time average
 
 

p(N ) = 

 

1 

N + 1 

 
N � 
u(n)d∗(n) 

n=O

 

The tap-weight vector of the wiener filter is thus defined by the matrix product
 

 

wO(N ) = 

    
N � 
u(n)uH (n) 

n=O 

\−1    
N                             

\ 
� 

u(n)d∗(n) 

n=O

 

 

Problem 2.5 
 

a) 
 

R =E[u(n)uH (n)] 

=E[(α(n)s(n) + v(n))(α∗(n)sH (n) + vH (n))] 
 

With α(n)  uncorrelated with v(n), we have 
 

R =E[|α(n)|2]s(n)sH (n) + E[v(n)vH (n)] 

=o2 s(n)sH (n) + Rv                                                                                                                                        (1) 
 

where Rv  is the correlation matrix of v 

 

b) 
The cross-correlation  vector between the input vector u(n)  and the desired response d(n) 
is 

 

p = E[u(n)d∗(n)]                                                                                                   (2) 
 

If d(n) is uncorrelated with u(n),  we have 
 

p = 0 
 

Hence, the tap-weight of the wiener filter is 
 

wO  =R−1p 

=0
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α 

=E 

  

v   p 

 

 

c) 
With o2  = 0, Equation (1) reduces to 

 

R = Rv 

 

with the desired response 
 

d(n) = v(n − k) 
 

Equation (2) yields 
 

p =E[(α(n)s(n) + v(n)v∗(n − k))] 

=E[(v(n)v∗(n − k))] 
 
v(n)        

 
 

 v(n − 1)      
  

           
.
  (v

∗(n − k))

 .             
v(n − M + 1)

 
 

=E  
 
 

 

rv (n) 

rv (n − 1) 

. 
rv (k − M + 1) 

 
 

 

 ,    0 ≤ k ≤ M − 1                                                        (3) 

 

where rv (k) is the autocorrelation of v(n) for lag k. Accordingly, the tap-weight vector of the 

(optimum) wiener filter is 
 

wO  =R−1p 

=R−

1 

 

where p is defined in Equation (3). 
 

d) 
For a desired response 

 

d(n) = α(n) exp(− j ωτ )
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α 

α 

I
 

α 

I
 

 

O                                                                                v         
I

 

o 2 

. 

v 
. 

 

 
 

The cross-correlation vector p is 
 

p =E[u(n)(d∗n)] 

=E[(α(n)s(n) + v(n)) α∗(n) exp(− j ωτ )] 

=s(n) exp(j ωτ )E[|α(n)|2] 

=o2 s(n) exp(j ωτ )
 

 
 

=o2 
I 

I 
 

 

 
 
 

=o2 
I 

I 
 

 

1 exp(− j 

ω) 
 

. 
exp((− j ω)(M − 1)) 
 

exp(j ωτ ) 

exp(j ω(τ − 1)) 
 

. 

 
 

 

 exp(j ωτ ) 
 

 

 
 

 
 
 

exp((j ω)(τ − M + 1)) 
 

The corresponding value of the tap-weight vector of the Wiener filter is 
 

 

w   =o2 (o2 s(n)sH (n) + R  )-1 
I

 

exp(j ωτ )            

exp(j ω(τ − 1))       

.                  

α    α                                      I 
 

 
 

exp((j ω)(τ − M + 1))
 

       \-1 I
 exp(j ωτ )            

exp(j ω(τ − 1))      

=  s(n)sH (n) + 
1 

R 
α 

I                                     
I                                      

                                      

exp((j ω)(τ − M + 1))
 

 

Problem 2.6 
 

The optimum filtering solution is defined by the Wiener-Hopf equation 
 

RwO  = p                                                                                                                (1) 
 

for which the minimum mean-square error is 
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d Jmin  = o2 − pH wO                                                                                                                                                   (2)
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d     p 

d 

d 

 

 
 

Combine Equations (1) and Equation(2) into a single relation:
,
o2 H 

, , 
1 
, 

= 

,
Jmin

,

 
 

Define 

p     R      wO                  0 
 

 

,
o2         H 

,

A =    d     p 
p     R 

 

Since 
 

o2                            ∗
 

 

(3)

d  = E[d(n)d  (n)] 
 

p = E[u(n)d∗(n)] 

R = E[u(n)uH (n)] 
 

we may rewrite Equation (3) as 
,

E[d(n)d∗(n)]    E[d(n)uH (n)]
, 

A =  
E[u(n)d∗(n)]   E[u(n)uH (n)] 

=E 

 ,
d(n)

, 
,
d∗(n)   uH (n)

,
 

 
u(n) 

 

The minimum mean-square error equals 
 

Jmin  = o2 − pH wO                                                                                                                                                   (4) 
 
 

Eliminating o2  between Equation (1) and Equation (4): 
 

J(w) = Jmin  + pH wO  − pH Rw − wH RwO  + wH Rw                                        (5) 
 

 
Eliminating p between Equation (2) and Equation (5) 

 

J(w) = Jmin  + wH RwO  − wH Rw − wH RwO  + wH Rw                                   (6) O                                    O 
 
 

where we have used the property RH = R. We may rewrite Equation (6) as 
 

J(w) = Jmin + (w − wO)H R(w  − wO) 
 

 
which clearly shows that J(wO) = Jmin
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d 

k 

k 

 

 

Problem 2.7 
 

The minimum mean-square error is 
 

Jmin  = o2 − pH R-1p                                                                                             (1) 

Using the spectral theorem, we may express the correlation matrix R as 

R = QΛQH
 

M 

R = 
� 

λkqkqH
 

 
(2)

k=1 

Substituting Equation (2) into Equation (1) 
 

M      
1
 

Jmin  =o2 − 
�     

pH qkpH qk
 

d   λk 
k=1 

M 

=o2 − 
�  1 

|pH q  |2
 

d   λk 
k=1 

 

 

Problem 2.8 
 

When the length of the Wiener filter is greater than the model order m, the tail end of the tap-

weight vector of the Wiener filter is zero; thus, 

,
am

, 
wO  =   

0 
 

Therefore, the only possible solution for the case of an over-fitted model is 

,
am

, 
wO  =   

0 
 

 

Problem 2.9 
 

a) 
The Wiener solution is defined by 

 

RM aM   = pM
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rH
 

rH
 

- 

H 

rH
 

d 

d 

d 

 
, 

RM             rM-m 

M-m     RM-m,M-m 

RM am = pm 
 

M-mam  = pM-m 

, , 
am 

0M-m 

,  , 
pm   

,
 

=  
pM   m

H                          H             -1
 

pM-m  = rM-mam  = rM-mRM  pm                                                                                        (1) 
 

 

b) 
Applying the conditions of Equation (1) to the example in Section 2.7 in the textbook 

rM-m  = 
,
−0.05   0.1   0.15

,
 

 
 
0.8719   

am = −0.9129  
0.2444 

 

The last entry in the 4-by-1 vector p is therefore 
 

M-mam  = − 0.0436 − 0.0912 + 0.1222 

= − 0.0126 
 

 
 

Problem 2.10 
 

 

Jmin  = o2 − pH wO 

= o2 − pH R-1p 
 

when m = 0, 
 

Jmin  = o2
 

= 1.0 
 

When m = 1, 
 

1 
Jmin  = 1 − 0.5 × 

1.1 
× 0.5

 

= 0.9773
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= 1 − 0.6781 

= 0.3219 
 

when m = 3, 

1.1   0.5   0.1
-1  

0.5   

Jmin  = 1 − 
,
0.5   −0.4   −0.2

, 
0.5   1.1   0.5  −0.4  
0.1   0.5   1.1         −0.2 

= 1 − 0.6859 

= 0.3141 
 

when m = 4, 
 

Jmin  = 1 − 0.6859 

= 0.3141 
 

Thus any further increase in the filter order beyond m = 3 does not produce any meaning- ful 

reduction in the minimum mean-square error. 
 

 

Problem 2.11 





1 
- 

= 

1 

 

 

when m = 2 
 

 

,
1.1   0.5

,-1 , 
0.5 

,

Jmin  = 1 − 
,
0.5   −0.4

,
 

 

0.5   1.1 
 

−0.4

 
 
 
 
 
 
 
 
 

 

R
x  

= 
r

x
0     r

x
1

rx1     rx0
 

 
 

2 
r

x
0         

x 
 

 

2 
1 + a

2                  1
 

=  --------------  ----------------------------------  =  1
1 – a

2 
2 

1 + a2
 
 
 
 
 



– a
2

 
 
 
 
 

.  d(n)

1(n)  + 
 

_ 

 
 

 
0.8458 
 

(a) 

 

z-1 

 

.
d(n-1)

 

 

 
 
 
 
2(n)

                                                                               u(n) 
 

z-1 

 
0.9452 

 

(b) 
 

 

r
x
1  = 

–a                               34 

-------------- 
1 + a2

= 0.5 
 
 
 

Rx  = 1      0.5
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x 

1 

a1 

2 

 

 

a) 
 

u(n) = x(n) + v
2 
(n) (1) 

d(n) = −d(n − 1) × 0.8458 + v
1 
(n) (2) 

x(n) = d(n) + 0.9458x(n − 1) 
 

Equation (3) rearranged to solve for d(n) is 

(3) 

d(n) = x(n) − 0.9458x(n − 1) 
 

Using Equation (2) and Equation (3): 
 

x(n) − 0.9458x(n − 1) = 0.8458[−x(n − 1) + 0.9458x(n − 2)] + v
1 
(n) 

 

Rearranging the terms this produces: 
 

x(n) =(0.9458 − 8.8458)x(n − 1) + 0.8x(n − 2) + v
1 
(n) 

=(0.1)x(n − 1) + 0.8x(n − 2) + v
1 
(n) 

 

 

b) 
 

u(n) = x(n) + v
2 
(n) 

 

where x(n) and v2(n) are uncorrelated, therefore 
 

R = Rx + Rv 

 

Rx = 

,
rx(0)   rx(1)

,
 

rx(1)   rx(0)

 

 

rx(0) =o2
 

1 + a2         o
2   

=                 1                 = 1 
1 − a2 (1 + a2)2  − a2

 

 

 

rx(1) =  
 −  

 
1 + a2 

 

rx(1) = 0.5
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v 

2 

 
 

Rx = 

, 
1    0.5

,
 

0.5    1 
,

0.1     0 
,

R  
2   

=   
0    0.1 

 

 

,
1.1   0.5

,

R = Rx + Rv     = 

,
p(0)

, 

0.5   1.1

p =  
p(1) 

 

p(k) = E[u(n − k)d(n)],     k = 0, 1 
 

 
 
 
 

p(0) =rx(0) + b1rx(−1) 

=1 − 0.9458 × 0.5 

=0.5272 
 
 
 
 

 
p(1) =rx(1) + b1rx(0 

=0.5 − 0.9458 

= − 0.4458 

Therefore, 
 

 

p = 

 

 

, 
0.5272 

,
 

−0.4458
 

 

c) 
The optimal weight vector is given by the equation wO  = R-1p; hence, 

,
1.1   0.5

,-1 , 
0.5272 

,

wO  = 
 

 

= 

0.5   1.1 
, 

0.8363 
,

 

−0.7853 

−0.4458
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Problem 2.12 
 

a) 
For M = 3 taps, the correlation matrix of the tap inputs is 

 

 
1.1 

 

0.5 0.85  

R =  0.5 1.1 0.5  

0.85 0.5 1.1 
 

The cross-correlation  vector between the tap inputs and the desired response is 

 
0.527   

p = −0.446  

0.377 
 

 

b) 
The inverse of the correlation matrix is 

 
2.234    −0.304   −1.666  

R-1  = −0.304     1.186    −0.304  

−1.66    −0.304     2.234 
 

Hence, the optimum weight vector is 

 
0.738   

wO  = R-1p = −0.803  
0.138 

 

The minimum mean-square error is 
 

Jmin  = 0.15
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=E[|A  |2] 
 

O 

v 

I 
. 

 

 

Problem 2.13 
 

a) 
The correlation matrix R is 

 

R =E[u(n)uH (n)]
 
e- j ω1n

 

I e- j ω1(n-1)
 

1       
I

 
 

e- j ω1(n-M+1) 

 
 

 ,
e+ j ω1n    e+ j ω1(n-1) 

 
 

 
 
 

. . .   e 

 
 

+ j ω1(n-M+1)
,

=E[|A1|
2]s(ω1)s

H (ω1) + IE[|v(n)|2] 

=o2s(ω1)s
H (ω1) + o2I 

1                                         v 
 

where I is the identity matrix. 
 

b) 
The tap-weights vector of the Wiener filter is 

 

wO  = R-1p 
 

From part a), 
 

R = o2s(ω1)s
H (ω1) + o2I 

1                                         v 
 

We are given 
 

p = o2s(ωO) 
 

To invert the matrix R, we use the matrix inversion lemma (see Chapter 10), as described here: 

If: 
 

A = B-1  + CD-1CH
 

 

then: 
 

A-1  = B − BC(D + CH BC)-1CH B 
 

In our case: 
 

A = o2I
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1 

v I 

o 

o 

v  + s  (ω1)s(ω1) 

o                       

H 

o 

o 

v  + s  (ω1)s(ω1) 

o 2 

v 

  

 

B-1  = o2 

D-1  = o2 

 

C = s(ω1) 
 

Hence, 

 
 
 
 
 
 
 

 

 1           H
 

2 
s(ω1)s 

 
 
 
 
 
 
 
 
 

(ω1)

R-1  =  
 1 

I − 
 ov   

2           oψ   
2           

H 

2 
1 

 

The corresponding value of the Wiener tap-weight vector is 
 

wO  = R-1p 
 

2 
O s(ω1)s   (ω1) 

o2                          o2 

wO  =    O s(ωO) −     v                                  s(ωO)
2 
v 

 

 

we note that 

oψ   
2          

H 

2 
1

 

sH (ω1)s(ω1) = M 
 

which is a scalar hence, 
  

 

o2                            o2  sH (ω1)s(ω1)
wO  =

 O s(ωO) − 
 

O 
s(ωO)

o2                     
 
ov        o

2                                 
 

2 
v                                           v  + M 

O 

 

Problem 2.14 
 

The output of the array processor equals 
 

e(n) = u(1, n) − wu(2, n) 
 

The mean-square error equals 
 

J(w) =E[|e(n)|2] 

=E[(u(1, n) − wu(2, n))(u∗(1, n) − w∗u∗(2, n))] 
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=E[|u(1, n)|2] + |w|2E[|u(2, n)|2] − wE[u(2, n)u∗(1, n)] − wE[u(1, n)u∗(2, n)]
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∂w 

 

 
 

Differentiating J(w) with respect to w: 
 

∂J 
= −2E[u(1, n)u∗(2, n)] + 2wE[|u(2, n)|2] 

Putting  
∂J

 
∂w 

 

 

wO  = 

 

= 0 and solving for the optimum value of w: 

 
E[u(1, n)u∗(2, n)] 

E[|u(2, n)|2]
 

 

Problem 2.15 
 

Define the index of the performance (i.e., cost function) 
 

J(w) = E[|e(n)|2] + cH sH w + wH sc − 2cH D1/21 
 

J(w) = wH Rw + cH sH w + wH sc − 2cH D1/21 
 

Differentiate J (w) with respect to w and set the result equal to zero: 

∂J 

∂w 
 

Hence, 

 

= 2Rw + 2sc = 0

 

wO  = −R-1sc 
 

But, we must constrain wO  as 
 

sH wO  = D1/21 
 

therefore, the vector c equals 
 

c = −(sH R-1s)-1D1/21 
 

Correspondingly, the optimum weight vector equals 
 

wO  = R-1s(sH R-1s)-1D1/21
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v 

-1 

 

 

Problem 2.16 
 

The weight vector w of the beamformer that maximizes the output signal-to-noise  ratio: 
 

wH RS w
(SNR)O  = 

 

wH Rv w
 

is derived in part b) of the problem 2.18; there it is shown that the optimum weight vector 
wSN so defined is given by 

 

wSN = R-1s                                                                                                          (1) 
 

where s is the signal component and Rv   is the correlation matrix of the noise v(n).  On the 

other hand, the optimum weight vector of the LCMV beamformer is defined by 
 

R-1s(φ)
wO  = g∗ 

sH (φ)R 
(2) 

s(φ)

 

where s(φ) is the steering vector. In general, the formulas (1) and (2) yield different values for the 

weight vector of the beamformer. 
 

 

Problem 2.17 
 
Let τi be the propagation delay, measured from the zero-time reference to the ith element of a 

nonuniformly spaced array, for a plane wave arriving from a direction  defined by angle θ with 

respect to the perpendicular to the array. For a signal of angular frequency ω, this delay amounts to 

a phase shift equal to −ωτi. Let the phase shifts for all elements of the array be collected together 

in a column vector denoted by d(ω, θ). The response of a beamformer with weight vector w to a 

signal (with angular frequency ω) originates from angle θ = wH d(ω, θ). Hence, constraining the 

response of the array at ω and θ to some value g involves the linear constraint 
 

wH d(ω, θ) = g 
 

Thus, the constraint vector d(ω, θ) serves the purpose of generalizing the idea of an LCMV 

beamformer beyond simply the case of a uniformly spaced array. Everything else is the same as 

before, except for the fact that the correlation matrix of the received signal is no longer Toeplitz 

for the case of a nonuniformly spaced array
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k 

N 

N 

 

 

Problem 2.18 
 

a) 
Under hypothesis Hl, we have 

 

u = s + v 
 

The correlation matrix of u equals 
 

R = E[uuT ] 
 

R = ssT  + RN ,    where RN = E[vvT ] 
 

The tap-weight vector wk  is chosen so that wT u yields an optimum estimate of the kth element 

of s. Thus, with s(k) treated as the desired response, the cross-correlation  vector between u and 

s(k) equals 
 

pk  =E[us(k)] 

=ss(k),    k = 1, 2, . . . , m 
 

Hence, the Wiener-Hopf equation yields the optimum value of wk  as 
 

wkO  = R-lpk 
 

wkO  = (ssT   + RN )
-lss(k),     k = 1, 2, . . . , M                                                     (1) 

To apply the matrix inversion lemma (introduced in Problem 2.13), we let 

A = R 
 

B-l  = RN 
 

C = s 
 

D = 1 
 

Hence, 
 

 

R-l  = R-l
 

 
 
 
 
 
 
 
 
 
 
 

R-lss T R-l 

N               N
N    − 

1 + sT R-ls                                                                                    
(2)

 
 

Substituting Equation (2) into Equation (1) yields: 
 

wkO  =
 R-lssT R-l 

\
 

R-l  −   N              N 
 

ss(k)

N          
1 + sT R-ls
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N 

N 

N   w 

N      a                                                                                                            (4) 

 

 

R-ls(1 + sT R-ls) − R-lssT R-ls
wkO  =    N

 
N                    N                N

 
 

 
wkO  =

 

 

 
 

s(k) 

1 + sT R-ls                    
s(k)

 

 

R-ls

1 + sT R-ls    
N

 

 

b) 
The output signal-to-noise  ratio is 

 
T     2

 

SNR = 
E[(w   s)  ]

 
E[(wT v)2] 

wT ssT w
= 

wT E[vvT ]w 

wT ssT w 
= 

wT RN w 

 
 
 

(3)

 

Since RN is positive definite, we may write, 

RN = R
l/2

 
l/2

N   RN 

 

Define the vector 
 

a = R
l/2 

 

or equivalently, 
 

w = R
-l/2 

 

Accordingly, we may rewrite Equation (3) as follows 
T     l/2      T

 
l/2

SNR = 
a   RN ss   RN a 

aT a 
 

where we have used the symmetric property of RN . Define the normalized vector 
 

a 

 

(5)

ā =  

||a||
 

where ||a|| is the norm of a. Equation (5) may be rewritten as: 
 

SNR = āT R
l/2

ssT R
l/2

ā 
N                 N
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, s 

N 

N 

N 

N 

N 

 

SNR = 

,

āT R , 
1/2   

,2 , ,

 

Thus the output signal-to-noise ratio SNR equals the squared magnitude of the inner prod- uct of the 

two vectors ā and R
1/2

s. This inner product is maximized when a equals R
-1/2

. N                                                                                                                                N 
That is, 

 

aSN = R
-1/2

 

N      s                                                                                                        (6) 
 

Let wSN  denote the value  of the tap-weight vector that corresponds to Equation (6). Hence, 

the use of Equation (4) in Equation (6) yields
 

wSN = R
-1/2

 
 

-1/2

N      (RN     s) 
 

wSN = R-1s 
 

 

c) 
Since the noise vector v(n)  is Gaussian, its joint probability density function equals

 

                1   1  T     -1    

\

fv(v) = 
(2π)M/2(det(R ))1/2  

exp
 

−
2 
v

 
RN  v

 

Under the hypothesis HO  we have 
 

u = v 

and  
 

               1   

 

1  T     -1    

\

fu(u|HO) = 
(2π)M/2(detR 

 

Under hypothesis H1  we have 
 

u = s + v 

)1/2  
exp

 
−

2 
u

 
RN u

and  
 

               1   

 

1            T     -1                  

\

fu(u|H1) = 
(2π)M/2(detR )1/2  

exp
 

−
2 

(u − s)
 
RN (u − s)

 

Hence, the likelihood ratio is defined by 
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N N 

fu(u|H1) 
Λ = 

fu(u|HO)
 

= exp 
1  T

 
−

2 
s
 

 

R-1s + sT
 

\ 

R-1u
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N N 

N  u 

N 

 

 
 

The natural logarithm of the likelihood ratio equals
 

1  T
 

ln Λ = −
2 

s
 

 

R-1s + sT
 

 

R-1u                                                                               (7)

 

The first term in (7) represents a constant. Hence, testing ln Λ against a threshold is equiv- alent to 

the test 
 

H1 

sT R-1        ≷  λ 
 

H0 

 

where λ is some threshold. Equivalently, we may write 
 

wML = R-1s 
 

where wML is the maximum likelihood weight vector. 

The results of parts a), b), and c) show that the three criteria discussed here yield the 
same optimum value for the weight vector, except for a scaling factor. 

 

 

Problem 2.19 
 

a) 
Assuming the use of a noncausal Wiener filter, we write 

∞ � 
 

i=-∞ 

 

wOir(i − k) = p(−k),   k = 0, ±1, ±2, . . . , ±∞                             (1)

 

where the sum now extends from i = −∞ to i = ∞. Define the z-transforms:
 

 

S(z) = 

 

∞ � 
 

 
k=-∞ 

 

 

r(k)z-k,         Hu(z)  = 

 

∞ � 
 

 
k=-∞ 

 

 

wO,kz-k

 

P (z) = 

∞ � 
 

 
k=-∞ 

 

p(−k)z-k  = P (z-1)

Hence, applying the z-transform to Equation (1): 
 

Hu(z)S(z) = P (z-1) 
 

P (1/z)
Hu(z)  = (2) 
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S(z)
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− 

− 

 

b) 
 

 

P (z) =    

 

 
 

0.36 

0.2 
\

1      
z     

(1 − 0.2z)
 

0.36
P (1/z) =  

(1 − 0.2z) 
0.2 

\
 

1 
z

 
S(z) = 1.37 

 

(1 − 0.146z-1)(1 − 0.146z) 

(1 − 0.2z-1)(1 − 0.2z)

Thus, applying Equation (2) yields 
 

0.36 
Hu(z)  = 

1.37(1 − 0.146z-1)(1 − 0.146z) 

0.36z-1 

= 
1.37(1 − 0.146z-1)(z-1  − 0.146)

0.2685 
= 

1 − 0.146z-1
 

0.0392 
+ 

z-1  − 0.146

 

Clearly, this system is noncausal.  Its impulse response is h(n)  = inverse z-transform of 
Hu(z) is given by

 

 

h(n)  = 0.2685(0.146)nustep(n) − 

 

0.0392 
      

1 
\n 

ustep(−n)

0.146 0.146

 

where ustep(n) is the unit-step function: 
    

1 for n = 0, 1, 2, . . .
ustep(n) = 0 for n = −1, −2, . . .

 

and ustep(−n) is its mirror image: 
    

1 for n = 0, −1, −2, . . .
ustep(−n) = 

0 for n = 1, 2, . . .

 

Simplifying, 
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hu(n)  = 0.2685 × (0.146)nustep(n) − 0.2685 × (6.849)-nustep(−n)
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Evaluating hu(n)  for varying n: 
 

hu(0) = 0 
 

hu(1) = 0.03,          hu(2) = 0.005,          hu(3) = 0.0008 
 

hu(−1) = −0.03,     hu(−2) = −0.005,     hu(−3) = −0.0008 
 

The preceding values for hu(n)  are plotted in the following figure: 

Simplifying, 
 

 

hun  = 0.2685  0.146
n

 
–n 

ustep+n – 0.26856.849

 

ustep–n

 

Evaluating hu(n) for varying n: 

 
hu(0) = 0, and 

hu1  = 0.03   hu2 =  0.005   hu3  = 0.0008

 

hu–1 =  –0.03   hu–2  = –0.005   hu–3  = –0.0008

 

These are plotted in the following figure: 
 
 

 
 
 
 
 

.  -2           -1

 

hu(n) 

0.03   . 
 

.0.01                  .   . .
 

 
 
 
 
 
 
 
 
Time.       0            1            2             3                             n 

. 
 

c(c)) A delay by 3 time units applied to the impulse response will make the system causal

and therefore realizable. A delay of 3 time units applied to the impulse response will make the system causal and

therefore realizable. 
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