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Chapter 2

Problem 2.1
a)

Let
W =X +jy
p(—kK)=a+jb
We may then write
f =wp”(—k)
=(x+]jy)@—jb)
=(ax+ by) + jlay —bx)
21


https://testbankpack.com/p/solution-manual-for-adaptive-filter-theory-5th-edition-haykin-013267145x-9780132671453/
https://testbankpack.com/p/solution-manual-for-adaptive-filter-theory-5th-edition-haykin-013267145x-9780132671453/

Letting

f=u+jv
where
u=ax + by
v = ay — bx
Hence,
ou ou
— =a =
OX oy
v, v
oy OX
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PROBLEM 2.1. CHAPTER 2.

From these results we can immediately see that

u_ov
ox oy
v__ou
OX oy

In other words, the product term wyp* (—k) satisfies the Cauchy-Riemann equations, and so this
term is analytic.

b)
Let
f =wyp™(—k)
=(x—]jy)(a +jb)
=(ax+ by) + j(bx — ay)
Let
f=u+jv
with
u=ax +hy
V = bx— ay
Hence,
o, v
ox oy
ov b o _
ox ay ~ @

From these results we immediately see that

ou _ov
ox oy
ov _ _ou
ox oy

In other words, the product term w*p(+K) does not satisfy the Cauchy-Riemann equations,
and so this term is not analytic.

23



PROBLEM 2.2.

CHAPTER 2.

Problem 2.2
a)

From the Wiener-Hopf equation, we have
Wy = R_lp

(1) Weare given that

71 05’
R = 05 1
705"
P= 025
Hence the inverse of R is
] » —1
—1_ 1 05
R= 05 1
__1 71 —05 7"
0.75 —0.5 1

Using Equation (1), we therefore get
1 71 —05705°

Wo=075 05 1 025
1 70315
075 O
_ 05’
0

b)

The minimum mean-square error is

Jmin :Oﬁ— pHWO
=0Z— 05 0.25 0(')5
=0Z—0.25
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PROBLEM 2.2. CHAPTER 2.

C)

The eigenvalues of the matrix R are roots of the characteristic equation:
(1—2)2%—(05?2=0

That is, the two roots are
M =05 andi, =15

The associated eigenvectors are defined by
Rg =Aq

For A; = 0.5, we have

’ 1 0.5’ ’qll’ _ ’qll’
=05
05 1 ap Ji12

Expanded this becomes
011 + 0.5012 = 0.5011

0.5011 + 012 = 0.5012
Therefore,

(11 = —O2

Normalizing the eigenvector g, to unit length, we therefore have

_J 17
%—ﬁé% 1

Similarly, for the eigenvalue A, = 1.5, we may show that

_ 1
02 —%% 1
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PROBLEM 2.3.

CHAPTER 2.

Accordingly, we may express the Wiener filter in terms of its eigenvalues and eigenvectors as

050

follows:
¢_1 .
Wo = gig
ro !
i=1
- 1 1
—1
_ k4 1 _1,
-1 1
(]
42
=02 4
03 3p
4 1
=P
- T+
3 3
_ 05’
0
Problem 2.3
a)
From the Wiener-Hopf equation we have
W0=R_1p
Weare given
U (]
1 05 025
R=U05 1
0.25 0.5

1
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PROBLEM 2.3. CHAPTER 2.
and

p='05 025 0.125"
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PROBLEM 2.3.

CHAPTER 2.

Hence, the use of these values in Equation (1) yields

=UJo5 1 o050 Uop2sl
025 05 1 0.125

O 00 O
1.33 —0.67 0 0.5

=1-067 167 —0.67000.250
0 —0.67 133 0.125

W,=05 0 0"
b)

The Minimum mean-square error is
—A2 H
Jmin =03— P Wp

o 0
0.5

=02—0.5 025 0.125° U o [
0

=0Z2—0.25

C)

The eigenvalues of the matrix R are

M A Az = 0.4069 0.75 1.8431°

The corresponding eigenvectors constitute the orthogonal matrix:

0 O
—0.4544 —0.7071 0.5418

Q = 1Y 0.7662 0 0.6426
—0.4544 0./0/1 0.5418
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PROBLEM 2.3. CHAPTER 2.
Accordingly, we may express the Wiener filter in terms of its eigenvalues and eigenvectors as
follows:

\
I
Wy = diq p
Ao !
i=1
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PROBLEM 2.4. CHAPTER 2.

0 0 0
L —0.4544
=0 1 0.7662 [ "—0.4544 0.7662 —0.4544

Wo
L 07071
+_- 0 o 0O’—07071 0 —0.7071°
0.75 07071
0 0 0O 0O 0
) 0.5418 0.5
AT 10.642611 ’0.:418 0.6426 0.5413 U x [0 0.25 [
: 0.5418 0.125
0 0 0
1 0.2065 —0.3482 0.2065
wo = U [1—0.3482 0.5871 —0.3482L
0.4069 0.2065 _ —0.3482 02065
1 05 0 —05
+ 0o o0 o0
0.75 45 0 05
0 00 O 0
1 0.2935 0.3482 0.2935 0.5
+ 3 10.3482 0.4129 0.348200 x [ 0.25 [
' 0.2935 0.3482 0.2935 0.125
0.5
0
Problem 2.4

By definition, the correlation matrix
R = E[u(n)u™(n)]

Where - -
- u(n)_ )0
uin) = \‘%
U 0
u(0)
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PROBLEM 2.4. CHAPTER 2.
Invoking the ergodicity theorem,

g UMt

n=0

R(N ) =

31



PROBLEM 2.5. CHAPTER 2.
Likewise, we may compute the cross-correlation vector
p = E[u(n)d"(n)]
as the time average
1 9
PN) = 1 n=cl>J(n)d (n)
The tap-weight vector of the wiener filter is thus defined by the matrix product
N\ \
@ :
Wo(N) = u(nu™(n) u(n)d*(n)
n=0 n=0
Problem 2.5
a)
R =E[u(n)u"(n)]
=E[(a(n)s(n) + v(m)(a"(n)s" (n) +v" (n))]
With a(n) uncorrelated with v(n), we have
R =E[|a(n)[*s(n)s" (n) + E[v(n)v" (n)]
=02s(n)s"(n) +R, 1)

where R, is the correlation matrix of v

b)

The cross-correlation vector between the input vector u(n) and the desired response d(n)

is
p = E[u(n)d*(n)]
If d(n) is uncorrelated with u(n), we have

p=0
Hence, the tap-weight of the wiener filter is
Wp =R_1p
=0

32
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PROBLEM 2.5. CHAPTER 2.

C)

With 02a= 0, Equation (1) reduces to
R =R,

with the desired response
d(n) =v(n —k)

Equation (2) yields

p =E[(a(n)s(n) + v(n)v'(n— k))]
:E[&vén)v*(n— k)] .

v(n) -
_EDD v(n —1) ] ]
—HH Qo —kyo -
aln _ 0 0
. v(n—(l\;|+1E
ry(N
—EE - 0<k=M—1 3)
e MY g osks
r(k —M + 1)

where r, (k) is the autocorrelation of v(n) for lag k. Accordingly, the tap-weight vector of the
(optimum) wiener filter is

w, =R !p
=R, p
1
where p is defined in Equation (3).

d)

For a desired response

d(n) = a(n) exp(-jort)
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PROBLEM 2.6. CHAPTER 2.

The cross-correlation vector p is

p =E[u(n)(d"n)]
=E[(a(n)s(n) + v(n)) o’(n) exp(—jot)]
=s(n) exp(j ot)E[|o(n)/’]
:oisén) exp(j ot)

. ]
1exp(—] .
'Y Hesgen
4
exp((—j o)(M — 1)) .
O exp(j ot)
exp(j o(t — 1)) E
1
=0
d

exp(j o)t —M + 1))
The corresponding value of the tap-weight ﬁector of the Wiener filter i%
exp(j ot)
exp(j ot —1))

wo =0%(0?s(n)s"'(n) +R,) "

o o E] . H
DEXIO((J' w)(T(j —|\;| + 1))D
exp(j ot
— N\l exp(j o(t —1)) U
= s(n)s"(n) + 012 R, & | @

o

exp((j o)t =M +1))

Problem 2.6
The optimum filtering solution is defined by the Wiener-Hopf equation

Rwo =p 1)
for which the minimum mean-square error is
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PROBLEM 2.6. CHAPTER 2.
Inin = Ozd_ pHWO (2)
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PROBLEM 2.6. CHAPTER 2.
Combine Equations (1) and Equation(2) into a single relation:
103 pH”l’:’Jmin’
p R wo 0
Define
102 H 7
_ 4 P
Since
0? *
¢ = Eld(n)d (n)]
p = E[u(n)d"(n)]
R = E[u(n)u™(n)]
we may rewrite Equation (3) as
A = E[d(md (m] E[d(nu™(n)]’
Elu(n)d*(n)] E[u(n)u™(n)]
e A7, Hemy'
=E u(n) d*(n) u™(n)
The minimum mean-square error equals
Jmin = 02d_ pHWO (4)
Eliminating o petween Equation (1) and Equation (4):
J(W) = Jnin + p7wo — p"Rw —w" Rw, + wH Rw (5)
Eliminating p between Equation (2) and Equation (5)
J(W) = Jnin + W Rwo — W Rw —wH Rwg + wH Rw (6)

where we have used the property R™ = R. We may rewrite Equation (6) as

J (W) = Jmin + (W o WO)HR(W _ WO)

which clearly shows that J(Wo) = Jmin
36



PROBLEM 2.7. CHAPTER 2.

Problem 2.7
The minimum mean-square error is
Jnin = Ozd_ pHR_lp (1)
Using the spectral theorem, we may express the correlation matrix R as
R = QAQ"
0 H
R = AOkq g (2)

k=1
Substituting Equation (2) into Equation (1)

¥_1

Jnin =03 — poqkaQK
k

k=1

91
=07 — _Klp“q &
k=1 "K

Problem 2.8

When the length of the Wiener filter is greater than the model order m, the tail end of the tap-
weight vector of the Wiener filter is zero; thus,
? am ?

Wp = 0

Therefore, the only possible solution for the case of an over-fitted model is

Wp = ac;n
Problem 2.9

a)

The Wiener solution is defined by

Rmau = pwm
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PROBLEM 2.10. CHAPTER 2.

RM 'M-m Am — pm
rﬂ_m Rm-mM-m Om-m PM_m
RM am = pm

H —
r|\/|_mam = Pm-m

PM-m = M _mam = r_mRuPm 1)

b)
Applying the conditions of Equation (1) to the example in Section 2.7 in the textbook

r_m= —0.05 0.1 0.15°

0 0
0.8719

0.2444

The last entry in the 4-by-1 vector p is therefore

I —m@m = — 0.0436 — 0.0912 + 0.1222
=—0.0126

Problem 2.10

—_ A2 H
Jmin =043— P Wp

=05 —p"R™p
whenm =0,
Jnin = 04
=1.0
Whenm =1,

1
Jmin =1—0.5 % l._lx 0.5
=0.9773

10



PROBLEM 2.11. CHAPTER 2.

whenm = 2
, 1 » i
Jwn=1—"05 —0.4’ (1”13 gi _0(.)54
= rX(O) rx(l
X
r,(1 r.(0)
_ 2
rx(o) - GX
2
1+a -
— 2 . 1 _ 1

1-a, (1+612)2—ai

vo(n)

>
u(n)

(b)
—a 34




PROBLEM 2.11. CHAPTER 2.

a)
u(n) =x(n) +v,(n) 1)
d(n) = —d(n— 1) % 0.8458 + v, (n) 2
x(n) =d(n) + 0.9458x(n — 1) (3)

Equation (3) rearranged to solve for d(n) is
d(n) = x(n) —0.9458x(n — 1)
Using Equation (2) and Equation (3):
x(n) —0.9458x(n — 1) = 0.8458[—x(n — 1) + 0.9458x(n — 2)] + v,(n)
Rearranging the terms this produces:

x(n) =(0.9458 — 8.8458)x(n — 1) + 0.8x(n —2) + v,(n)
=(0.1)x(n— 1) + 0.8x(n —2) +v,(n)

b)

u(n) =x(n) +v,(n)

where x(n) and v,(n) are uncorrelated, therefore
R=Ry+R,,

1(0) (1)’

R. =
* k(1) rx(0)

r(0) =0
1+ a 0F— _
1 _a 2 o2 =1

1—a, (L+ay)? —aj

_—a

r«(1)=0.5
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PROBLEM 2.11. CHAPTER 2.

_’1 05
Rx= 05 1
01 o7
Rv,= 0 01
_ _ 11 057
R=Rx*+Rv,= 5 11
p(0)’
P= o)

p(k) = E[u(n —k)d(n), k=01

P(0) =ry(0) + byry(—1)
=1 —0.9458 x 0.5
=0.5272

p(1) =ry (1) + byry(0
=0.5 —0.9458

= —0.4458
Therefore,

_ 052727
P~ _0.4458

c)

The optimal weight vector is given by the equation wo = R™'p; hence,

1705272

05 11 —0.4458

_’ 08363
—0.7853

7’11 0577
0=
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PROBLEM 2.12. CHAPTER 2.

Problem 2.12
a)

For M = 3 taps, the correlation matrix of the tap inputs is

L L
1.1 05 0.85

R=U05 11 05U
0.85 05 11

The cross-correlation vector between the tap inputs and the desired response is

0 O
0.527

p = U—0.4461
0.377

b)
The inverse of the correlation matrix is

0 0
2.234 —0.304 —1.666
R1=0-0304 1.186 —0.304C
—1.66 —0.304 2.234

Hence, the optimum weight vector is
t U
0.738
wo = R™!p = U—0.803"
0.138

The minimum mean-square error is

Jmin =0.15
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PROBLEM 2.18.

CHAPTER 2.

Problem 2.13
a)

The correlation matrix R is
R =E[u(n)u” (n)]
b e—jwln
| eient-D

i

p-io1(n-M+1)

=E[|A]"] ﬁ ‘griomn gtien(n=1)

=E[lAL*Is(01)s" (1) + IE[IV(N)[]
=02s(m1)s™ (w1) + 021

where | is the identity matrix.

b)

The tap-weights vector of the Wiener filter is
W, = R71p

From part a),
R = 0%s(01)sM (w1) + 021

We are given

p = 055(co)

e+jm1(n—M+1)’

To invert the matrix R, we use the matrix inversion lemma (see Chapter 10), as described here:

If:
A =B"'+CD™'C"
then:
Al'=B-BC(D+cCc"BC)!ctB
Inour case:

A =02l

38



PROBLEM 2.14.

CHAPTER 2.

B~ =0ll
D! =0?
C = s(wy1)
Hence,
1
-1+, O
R~ = o b ¥

The corresponding value of the Wiener tap-weight vector is

= R_lp

02

Wo = = 528(w0) —

0y

we note that

s (01)s(w1) = M

which is a scalar hence,

02
= %5(a0)
0}

Problem 2.14

The output of the array processor equals
e(n) =u(l,n) —
The mean-square error equals

J(w) =E[le(n)I’]
=E[(u(2,n)

L s0)sH(o)

2 S(031)5 (©1)

Qv + s Hoi)s(o1)

9@ S Ll)ﬂ@l).

—wu(2, n))(u*(1,n) —w*u*(2, n))]



PROBLEM 2.14. CHAPTER 2.
=E[lu(1, n)I] + WIE[|u(2, n)I’] — wE[u(2, nu*(1, n)] —wE[u(1,n)u(2, n)]

40



PROBLEM 2.15. CHAPTER 2.

Differentiating J (w) with respect to w:

&) = —2Efu(L, (2. m)] + 2wEflu(2,

Putting (ﬁv = 0 and solving for the optimum value of w:

_ E[u(,nyu(2, n)]
"o = TEu@, m]

Problem 2.15

Define the index of the performance (i.e., cost function)
J(wW) = E[le(n)|?] + c" sHw +w" sc —2¢" D21
Jw)=wHRw +cs?w +wsc —2ct D21

Differentiate J (w) with respect to w and set the result equal to zero:

QZZRW +2sc =0
oW

Hence,

w, = —R1sc
But, we must constrain wyq as
gH Wo = D21
therefore, the vector ¢ equals
c = _(SH R—ls)—lDllzl
Correspondingly, the optimum weight vector equals

w, = R71s(s"R1s)1DY%1

41



PROBLEM 2.16. CHAPTER 2.

Problem 2.16

The weight vector w of the beamformer that maximizes the output signal-to-noise ratio:

wHRsw

(SNR)o = LR w

is derived in part b) of the problem 2.18; there it is shown that the optimum weight vector
Wsy SO defined is given by

WgnN = R;ls (1)

where s is the signal component and R, is the correlation matrix of the noise v(n). On the
other hand, the optimum weight vector of the LCMV beamformer is defined by

. R™s(9)
F (Q)R-15(0) @)

Wpo =

where s(¢) is the steering vector. In general, the formulas (1) and (2) yield different values for the
weight vector of the beamformer.

Problem 2.17

Let t; be the propagation delay, measured from the zero-time reference to the ith element of a
nonuniformly spaced array, for a plane wave arriving from a direction defined by angle 6 with
respect to the perpendicular to the array. For a signal of angular frequency w, this delay amounts to
a phase shift equal to —wt;. Letthe phase shifts for all elements of the array be collected together
ina column vector denoted by d(w, 0). The response of a beamformer with weight vector w to a
signal (with angular frequency o) originates from angle & = w" d(w, 8). Hence, constraining the
response of the array at ® and 6 to some value g involves the linear constraint

wH d(o, 0) = g

Thus, the constraint vector d(w, 0) serves the purpose of generalizing the idea of an LCMV
beamformer beyond simply the case of a uniformly spaced array. Everything else is the same as
before, except for the fact that the correlation matrix of the received signal is no longer Toeplitz
for the case of a nonuniformly spaced array
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PROBLEM 2.18. CHAPTER 2.

Problem 2.18
a)

Under hypothesis H,, we have
u=s+v

The correlation matrix of u equals
R = E[uu']

R =ss' + Ry, Wwhere Ry = E[w']

The tap-weight vector wy is chosen so that w' u yields an optimum estimate of the kth element
of s. Thus, with s(k) treated as the desired response, the cross-correlation vector between u and
s(k) equals

P =E[us(k)]
=ss(k), k=1,2,....,m

Hence, the Wiener-Hopf equation yields the optimum value of wy as

Wio = R™'p

Wio = (58T + Ry)7'ss(k), k=1,2,...,M (1)
To apply the matrix inversion lemma (introduced in Problem 2.13), we let

A=R

B'=Ry

C=s

D=1
Hence,

R—l _ R—l B'\_llgTB'\_ll ,
N 1+5TRys @)
Substituting Equation (2) into Equatior\(l) yields:

Wio = R"—m_I ss(k)

N -1
1+sTRY's
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PROBLEM 2.18. CHAPTER 2.

R<ls(1 + sTR7s) —Rx!ssTR=!
WkO:_N( BN )_l N__N§S(k)
1+sTRy's
s(k
Wko = —( ) R_IS
1+sTRys M

b)
The output signal-to-noise ratio is
T )2
SNR = ELW s\ ]
E[(wT v)?]
_ wissTw
wT E[vvT]w

_whssTw
T WTRyW (3)

Since Ry is positive definite, we may write,

_ 172 172
RN = RN Ry

Define the vector

N V)
a=Ry"w

or equivalently,
w =Ry"%a (4)

Accordingly, we may rewrite Equation (3) as follows
T 172 1 172
a Ryss Rya (5)

NR =
S ala

where we have used the symmetric property of Ry . Define the normalized vector

_ a
a=_

where ||a]| is the norm of a. Equation (5) may be rewritten as:
SNR=12a'RY?ss"R"?a
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H 12
SNR= @'R}/’s;

Thus the output signal-to-noise ratio SNR equals the squared magnitude of the inner prod- uct of the

two vectors @ and R*/?s. This inger product is maximized when a equals R™*/2.
That is,

asN = Rﬁllzs (6)

Let wgy denote the value of the tap-weight vector that corresponds to Equation (6). Hence,
the use of Equation (4) in Equation (6) yields

N

_ -1/2 -1/2
WsN = RN (RN S)

WsgnN = R,le
C)
Since the noise vector v(n) is Gaussian, its joint probability density function equals
\
1 l T -1

fu(v) = v Ry V

@m)M/2(det(R )2 TP 2

Under the hypothesis Hq we have

u=v
and \
1 1. .
fu(ulHy) = (2m)M/2(GetR )2 exp u Ryu
Under hypothesis H; we have
u=s+v
and \
1 1 T -1
fu(ulHy) = (2m)M/2(GelR )2 exp —2(u —s) Ry (u—s)

Hence, the likelihood ratio is defined by
45



PROBLEM 2.18. CHAPTER 2.

A :fQ(HIﬂL)
fu(ulHo)

\
= exp —%STRK‘lS +s'Ry'u

46
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The natural logarithm of the likelihood ratio equals

1
InA = —ESTR,:]18+ST Ry'u )

The first term in (7) represents a constant. Hence, testing In A against a threshold is equiv- alent to
the test

Hi
sTRyU = A
Ho
where A is some threshold. Equivalently, we may write
WmL— R&ls

where Wy, is the maximum likelihood weight vector.
The results of parts a), b), and c) show that the three criteria discussed here yield the
same optimum value for the weight vector, except for a scaling factor.

Problem 2.19
a)

Assuming the use of a noncausal Wiener filter, we write
Woir (i —Kk) = p(—k), k=0,%1,%2,... 40 )
i=-oco

where the sum now extends from i = —oo to i = oo. Define the z-transforms:

2 B 14 _k
S(2) = r()z™,  Hy(2) = Wo,kZ

k=-c0o k=-co

P(z) = ¢ p(—K)z =P (™)

k=-co
Hence, applying the z-transform to Equation (1):
Hy(2)S(2)=P(z™)
P(1/z)

Hu(z) = ()
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>(2)

48



PROBLEM 2.19. CHAPTER 2.
b)

36
P@)= 0.2(\
1—— (1—0.22)
Z
P (1/2) = 036

0.2
(1-02z) 1——-

(1 —0.146z-1)(1 —0.1462)
(1—0.2z71)(1—0.22)
Thus, applying Equation (2) yields

0.36
1.37(1 — 0.146z-1)(1 — 0.1462)
_ 0.36z71
~ 1.37(1—0.146z-1)(z-1 — 0.146)
_ 02685 0.0392
1—0.146z-1 z-1—0.146

S(z) =1.37

Hu(z) =

Clearly, this system is noncausal. Its impulse response is h(n) = inverse z-transform of
Hu(z) isgiven by

\
0.0392 1"
h(n) = 0.2685(0.146)"uge,(N) — Usep(—N)

0.146  0.146

where Ugtp(n) is the unit-step function:

. 1forn=0,1,2,...
Usen() = forn = —1,-2,...

and Uge, (—n) is its mirror image:

_ 1forn=0,—-1,-2,...
Usiep(—N) = Oforn=1,2,...

Simplifying,

49



PROBLEM 2.19. CHAPTER 2.
hy(n) = 0.2685 x (0.146)"Ustep(N) — 0.2685 x (6.849) ™ "Ugep(—N)

48



Simplifying,
h,(n) = 0.2685 x (0.146)nu5tep(+n)—0.2685(6.849)7nu5tep(—n)

Evaluating h,(n) for varying n:

h,(0) =0, and
h,(1) = 0.03, h,(2) = 0.005, h,(3) = 0.0008

h,(-1) = -0.03, h,(-2) = —0.005, h (-3) = —0.0008

These are plotted in the following figure:
hy(n) &

1003 pm

T 0.01

—
o
[E=N
N

w

65) A delay by 3 time units applied to the impulse response will make the system causal
A #5108 TR "63t2aed to the impulse response will make the system causal and

therefore realizable.
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