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1       Solutions to Chapter 2 problems 
 

 

Problem 2.1: In this problem we are interested in the continuity equation for axisymmetric flow 

in terms of the cylindrical coordinate system (r,φ,z), where all flow variables are independent of 

angular coordinate, φ. Let the velocity components (u,v,w) = (u,0,w) in the (r,φ,z) coordinate 

directions. (a) Show that the continuity equation is given by 

 
 

Solution: Let us consider an annular control volume with square cross-sectional area equal to drdz 

centered at (r,z). Let us label the sides of the control volume R,L,T,B the centers of which are located 

at (r,z +dz/2), (r,z −dz/2), (r+dr/2,z), (r−dr/2,z), respectively. In this analysis the horizontal 

coordinate is z and the vertical (or radial) coordinate is r. The flow through each of the surfaces is 
 
 

 

 
 

The conservation of mass principle means that the net flow of mass out of the control volume is 

zero, i.e., 

m˙ R − m˙ L + m˙ T − m˙ B = 0 
 

This holds for both steady and unsteady conditions because ρ is assumed to be constant. An 

incompressible flow is volume preserving and, hence, this result is independent of whether or not 

the flow is steady. This is not the case for Euler’s equation of motion; see Exercise 2.4. Substituting 
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the expressions for the mass flow across each  part of the control surface and rearranging 

terms, we get the equation given above. 

(b) Show that the Stokes’s stream function ψ defined by the following expressions for the 

velocity components 
 
 
 

By direct substitution of these expressions into the continuity equation, we see that the continuity 

equation is automatically satisfied. Note that the function ψ is assumed to be a function for which 

the order of differentiation is immaterial. 

 
Problem 2.2: In this problem we want to transform the continuity equation given in (x,y) to polar 

coordinates (r,φ). The two coordinate systems are related by the following formulas: x = rcosφ. y 
= rsinφ. Let the components of the velocity in (x,y) be given by u = (ux,uy) and the components in 

(r,φ) by u = (u,v). Note that



ux = ucosφ − v sinφ,         uy = usinφ + v cosφ 
 

We want to transform 

to the following form: 

 

What we need to recall is that the derivative of any property f transforms as follows: 

 
 

From x = rcosφ and y = rsinφ we get 

 
 

Since r2 = x2 + y2 

 
 

Hence, 

Thus, 

Applying these formulas, we get 

 
 

Adding these equations and equating them to zero, we get the result sought. 

Extension 1 of Problem 2.2 (see also Problem 2.7): The condition for irrotationality for two- 

dimensional planar flows in an (x,y) Cartesian coordinate system is: 

. 
 

Transform this relationships to cylindrical polar coordinates, (r,θ), by checking and applying the 

following transformation relationships: 
 

x = rcosθ,        y = rsinθ. 

Note that: u = ur cosθ − uθ sinθ, 
 

and 

 

 
 
 

v = ur sinθ + uθ cosθ.



Also note that 

. 
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. 

The solution is 

 
 

Extension  2  of  Problem  2.2  (see  also  Section  3.2.2):  The  second-derivative  transformation 

equations are as follows: 
 
 
 
 
 

 
. 

The second derivative relationships are useful for transforming 

 
 

to polar coordinates. By substituting f = φ in the second-derivative relations and adding the two 

resulting equations, we get 
 

 
 
 
 
 

Problem 2.3: Sections 2.4 and 2.6 on continuity and momentum equations, respectively, are 

useful. The procedure based on control-volume analysis is applied to derive the continuity and 

momentum equations. The same procedure can be applied to derive the convection-diffusion 

equation for C in this problem. 
Assume that none of  the contaminant is created within the  flow field.  Assume that the 

transport of the contaminant matter is by convection and diffusion. In part (a) we assume that the 

velocity field is unchanged and, hence, the contaminant must be sufficiently dilute. If this is not 

the case, then the density of the fluid containing the contaminant could be changed in such a way 

as to alter the motion of the fluid in an analogous way as when temperature changes in a fluid are 

sufficient to cause hot air or hot water to naturally rise above cold air or cold water. This is the key 

concept that leads to pointing out in the problem statement that the contaminant is dilute. 
The rate of increase in C in an infinitesimal control volume like the one drawn in Fig. 2.20 in 

the text is 

 
 

The net convective transport of C across the boundary of the control volume in Fig. 2.20 is, 

substituting C for ρu, the horizontal component of the momentum, in Eq. (2.62a) and assuming u 

= (u,v) is divergence free, we get 



The diffusion of C across the surface of the control volume is (by analogy with the development 

of surface forces that led to Eq. (2.65a)) 
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Summing the three contributions leads to the result given in part (a). The equation is 

! 
 

Part (b) asks about the necessity of assuming a dilute suspension of contaminant. First of all 

we assumed the flow field was unchanged. This is the key for the necessity of the assumption that 

the contaminant is dilute. In addition, the diffusion coefficient may be a function of the 

thermodynamic state. A first cut at dealing with this is to keep the derivatives of D in the formula. 

A second step would be to take into account the changes in density of the fluid particle to 

determine whether or no the changes in density are sufficient to induce natural convection. More 

extensive treatments of mass transport can be found in the literature; a good source is the book 

by Bird, Stewart and Lightfoot [4]. To take into account contaminant generation it is handled like 

a body force term in the momentum equation. Hence, the equation in (a) is altered as follows: 
 

 
 
 
 
 

Problem 2.4: In this problem we are interested in the components of the momentum equation 

for an inviscid pressure-driven flow subjected to a conservative body force. Le us assume that the 

control volume in this problem is the same as given in the solution of Problem 2.1. Also in the 

solution of Problem 2.1 the mass rate of flow through each face of the control surface that 

completely surrounds the control volume is given. Let us assume that there are two components 

of an external body force applied to the element of fluid and they are the compnenets of the vector 

g = (gr,gz). Let us also assume that the only surface force acting on the surface of the control 

volume is pressure. Thus, we have neglected viscous normal and shear stresses (i.e., we assume 

the flow is inviscid). There are two components of the momentum equation that are not zero 

because we assumed axisymmetric flow with zero swirl; as we have done in Problem 
2.1. The radial and axial components of the momentum principle, respectively, are: 

 
 

 
 

The velocity components in these formulas are 



Substituting for the mass rate of flow and for the velocity components associated with each 

surface of the control volume into the momentum equations above, after rearranging terms and 

applying the continuity equation given in the problem statement of Problem 2.1, we get 
 
 
 
 
 
 
 

 
which are the equations of motion sought. These are the components of Euler’s equation for 

axisymmetric flow. 
 

Problem 2.5: Section 2.7 gives the solution procedure. The first set is to interpret u as the radial 

component of  the velocity, and, hence,  x as the radial coordinate, and interpret  v as  the  z 

component of the velocity (w) and, hence, y as the axial coordinate. The main additions that need 

to be included are that area through the control surface perpendicular to the r direction increases 

with r and is equal to 2πrdφ, where φ is the coordinate in the angular direction. Axisymmetry 

implies that there are no changes in properties of the flow in the φ direction. Also assumed is that 

there is no angular velocity component. This does not mean that there is no rate of strain in the 

φ direction. In fact, for a fix δr and δz for r1 < r2 the control volume is larger for r2 as compared 

with the control volume around r1. Thus, transporting the flow radially leads to ˙  . 

Otherwise, the derivation of the rates of strain follow the development given in Section 2.7. 

In Part (b) of this problem is to transform the (x,y,z) form of the Navier-Stokes equations to 

cylindrical polar coordinates (r,φ,z) such that the changes in any property in φ are zero. Also, 

assume the velocity vector is u = (u,0,w) in the polar coordinates. Since differentiation of the unit 

vector k, which is in the z direction, is zero, the formula for the ∇·∇f = ∇2f term given in the solution 

of Problem 2.2 can be applied directly to get ∇2w, the last term in the last equation given in the 

problem statement. If you take the second derivative of the first two terms in the first equation in 

the problem statement of Problem 2.2, you get the correct form for the third, fourth and fifth terms 

on the right hand side of the next to last equation in the problem statement for this problem. 

 
Problem 2.6: Euler’s equations for two-dimensional flows can be transformed from (x,y) to (r,φ) 

by applying the formulas given in the solution for Problem 2.2. Of course, the body force 

components must be converted from (gx,gy) to (gr,gφ) by similar formulas for ur and uφ given in 

the solution of Problem 2.2. 
 

Problem 2.7: Care is required to draw the fluid particle and how it moves (as suggested in the 

hint). The vorticity can be found as given in one of the extensions to the solution of Problem 2.2. 

To examine the other rates of strain it may be convenient for the student to start with the particle 

in Fig. 2.13. An alternative approach is to apply the transformation equations in the solution of 

Problem 2.2 to the rates of strain in (x,y). The best treatment of the transformation relations as 

they apply to vectors and tensors is given in an appendix in Bird, Stewart and Lightfoot [4]. 

 
Problem 2.8: In this problem the shear stress is tangent to circles of radius r. The shear stress is 

equal to τ = µRω/h. The area on which it acts is 2πrdr × L. Thus, the torque associated with this 

stress (force per unit area) is dT = tan2πr2 dr ×L. This needs to be integrated from r = 0 to r = R to 

obtain the formula given. The power is equal to 2πnT = Tω. This is also what is given.



Problem 2.9: The key to this solution is to start, as indicated in the problem statement, with the 

formulas for the two compnenets of the Navier-Stokes equations in cylindrical coordinates given 

in Problem 2.5. You need to replace the formula for v to v = −az/ζ2. This is to take into account the 

fact that areas perpendicular to r are equal to 2πr. Otherwise, the method is exactly what is 

presented in Section 2.10.3. 
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1       Solutions to Chapter 2 problems 
 
 

This section provides solutions for typical homework problems at the end of Chapter 2. 

 
Problem 2.1: In this problem we are interested in the continuity equation for axisymmetric flow 

in terms of the cylindrical coordinate system (r,φ,z), where all flow variables are independent of 

angular coordinate, φ. Let the velocity components (u,v,w) = (u,0,w) in the (r,φ,z) coordinate 

directions. (a) Show that the continuity equation is given by 
 
 

 
Solution: Let us consider an annular control volume with square cross-sectional area equal to drdz 

centered at (r,z). Let us label the sides of the control volume R,L,T,B the centers of which are located  

at  (r,z  +dz/2),  (r,z  −dz/2),  (r+dr/2,z),  (r−dr/2,z),  respectively.  In  this  analysis  the



horizontal coordinate is z and the vertical (or radial) coordinate is r. The flow through each of the 

surfaces is 
 

 
 
 

 
 

 
 

The conservation of mass principle means that the net flow of mass out of the control volume is 

zero, i.e., 

m˙ R − m˙ L + m˙ T − m˙ B = 0 
 

This holds for both steady and unsteady conditions because ρ is assumed to be constant. An 

incompressible flow is volume preserving and, hence, this result is independent of whether or not 

the flow is steady. This is not the case for Euler’s equation of motion; see Exercise 2.4. Substituting 

the expressions for the mass flow across each  part of the control surface and rearranging 

terms, we get the equation given above. 

(b) Show that the Stokes’s stream function ψ defined by the following expressions for the 

velocity components 
 
 
 

By direct substitution of these expressions into the continuity equation, we see that the continuity 

equation is automatically satisfied. Note that the function ψ is assumed to be a function for which 

the order of differentiation is immaterial. 

 
Problem 2.2: In this problem we want to transform the continuity equation given in (x,y) to polar 

coordinates (r,φ). The two coordinate systems are related by the following formulas: x = rcosφ. y 
= rsinφ. Let the components of the velocity in (x,y) be given by u = (ux,uy) and the components in 
(r,φ) by u = (u,v). Note that 

 

 

We want to transform 
 
 

 
to the following form: 

ux = ucosφ − v sinφ,         uy = usinφ + v cosφ

 
 

What we need to recall is that the derivative of any property f transfprms as follows: 

 
 

From x = rcosφ and y = rsinφ we get



 
 

Since r2 = x2 + y2 

 
 

Hence, 

Thus, 

Applying these formulas, we get 

 
 

Adding these equations and equating them to zero, we get the result sought. 

 
Problem 2.4: In this problem we are interested in the components of the momentum equation 

for an inviscid pressure-driven flow subjected to a conservative body force. Le us assume that the 

control volume in this problem is the same as given in the solution of Problem 2.1. Also in the 

solution of Problem 2.1 the mass rate of flow through each face of the control surface that 

completely surrounds the control volume is given. Let us assume that there are two components 

of an external body force applied to the element of fluid and they are the compnenets of the vector 

g = (gr,gz). Let us also assume that the only surface force acting on the surface of the control 

volume is pressure. Thus, we have neglected viscous normal and shear stresses (i.e., we assume 

the flow is inviscid). There are two components of the momentum equation that are not zero 

because we assumed axisymmetric flow with zero swirl; as we have done in Problem 2.1. The 

radial and axial components of the momentum principle, respectively, are: 
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The velocity components in these formulas are 



Substituting for the mass rate of flow and for the velocity components associated with each 

surface of the control volume into the momentum equations above, after rearranging terms and 

applying the continuity equation given in the problem statement of Problem 2.1, we get 
 

 
 
 
 
 
 

which are the equations of motion sought. These are the components of Euler’s equation for 

axisymmetric flow. 
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