Solution Manual for Aerodynamics for Engineers 6th Edition Bertin Cummings 01328328879780132832885

Full link download:
https://testbankpack.com/p/solution-manual-for-aerodynamics-for-engineers-6th-edition-bertin-cummings-0132832887-9780132832885/

Solution Manual Aerodynamics for Engineers 6th Edition John J. Bertin, Russell M. Cummings

Instant download and all chapters Solution Manual Aerodynamics for Engineers 6th Edition John J. Bertin, Russell M. Cummings

1.1)

Given:
T-38A weighing $10,000 \mathrm{lbf}$ and flying at $20,000 \mathrm{ft}$
From Fig. P1.1, the maximum Mach number with afterburner ("Max" thrust curve) is $M \approx 1.075$. From Table 1.2b, the standard day speed of sound at $20,000 \mathrm{ft}$ is $1036.94 \mathrm{ft} / \mathrm{s}$. Using the definition of the Mach number as $M \equiv V / a$ (the instructor may have to give this definition to the students since it is not found in Chapter 1), the velocity is:

$$
V=M a=(1.075)(1036.94 \mathrm{ft} / \mathrm{s})=1114.7 \mathrm{ft} / \mathrm{s}
$$

The maximum lift-to-drag ratio, $(L / D)_{\max }$, occurs at the point of minimum drag, $D_{\min }=850 \mathrm{lbf}$. Assuming that the airplane is in steady, level, unaccelerated flight, $L=W=10,000 \mathrm{lbf}$, and:

$$
(L / D)_{\max }=10,000 \mathrm{lbf} / 850 \mathrm{lbf} f=11.76
$$

The Mach number where this occurs is $M \approx 0.53$. The minimum velocity of the aircraft under the given conditions is $M \approx 0.34$ and is due to the buffet (or stall) limit.

1.2)

Given:
T-38A weighing $10,000 \mathrm{lbf}$ and flying at $20,000 \mathrm{ft}$ with "Mil" thrust at $M=0.65$
From Eqn. 1.1, the total energy of the aircraft is:

$$
E=0.5 m V^{2}+m g h
$$

The mass of the airplane is given by Eqn. 1.2:

$$
m=W / g=10,000 \mathrm{lbf} / 32.174 \mathrm{ft} / \mathrm{s}^{2}=310.81 \mathrm{~s} / \mathrm{ugs}
$$

As in Problem 1.1, the velocity of the airplane can be found as:

$$
V=M a=(0.65)(1036.94 \mathrm{ft} / \mathrm{s})=674.01 \mathrm{ft} / \mathrm{s}
$$

which vields a total eneroy of:

1.2) contd.

The energy height is given by Eqn. 1.3:

$$
H_{e}=E / W=270.60 \times 10^{6} \mathrm{ft}-\mathrm{lbf} / 10,000 \mathrm{lbf}=27,060 \mathrm{ft}
$$

The specific excess power is given by Eqn. 1.7:

$$
P_{s}=\frac{(T-D) V}{W}
$$

At the given conditions, $T=2,500 \mathrm{lbf}$ and $\mathrm{D}=1,000 \mathrm{lbf}$ from Fig. P1.1, and the specific excess power is:

$$
P_{s}=\frac{(T-D) V}{W}=\frac{(2,500 \mathrm{lbf}-1,000 \mathrm{lbf})(674.01 \mathrm{ft} / \mathrm{s})}{10,000 \mathrm{lbf}}=101.1 \mathrm{ft} \mathrm{~s}
$$

1.3)

Given:
T-38A weighing $10,000 \mathrm{lbf}$ and flying at $20,000 \mathrm{ft}$ with "Mil" thrust at $M=0.65$
The acceleration possible is given by Eqn. 1.5 as:

$$
\frac{(T-D) V}{W}=\frac{V}{g} \frac{d V}{d t}
$$

For the conditions of Problem 1.2, the acceleration would be:

$$
\frac{d V}{d t}=\frac{(T-D) V}{W} \frac{g}{V}=P_{s} \frac{g}{V}=(101.1 \mathrm{ft} / \mathrm{s}) \frac{32.174 \mathrm{ft} / \mathrm{s}^{2}}{674.01 \mathrm{ft} / \mathrm{s}}=4.826 \mathrm{ft} / \mathrm{s}^{2}
$$

The rate of climb is given by Eqn. 1.7 as:

$$
\frac{d h}{d t}=P_{x}=101.1 \mathrm{ft} / \mathrm{s}=6,066 \mathrm{ft} / \mathrm{m}
$$

1.4)

Given:
T-38A flying at $20,000 \mathrm{ft}$ with weight of $8,000,10,000$, and $12,000 \mathrm{lbf}$
As in Problem 1.1, the maximum lift-to-drag ratio, $(L / D)_{\text {max }}$, occurs at the minimum drag, $D_{\text {min }}$. Also, assuming that the airplane is in steady, level, unaccelerated flight, $L=W$. For the three weights you can generate a table for finding $(L / D)_{\text {max }}$ using values from Fig. P1.I and Tab. 1.2b:

$W=L($ lbf $)$	$D_{\min }($ Ibf $)$	$(L / D)_{\max }$	$M_{(L / D)_{\text {max }}}$	$V_{(L / D)_{\text {max }}}(f / s)$
8,000	650	12.31	0.47	487.3
10,000	850	11.76	0.53	549.6
12,000	1050	11.43	0.60	622.2

As can be seen, higher weight requires higher velocities to maintain aerodynamic efficiency, but also results in a reduction of that efficiency.

1.5)

Given:

$$
10,000 \mathrm{lbf} \text { T-38A flying at } 20,000 \mathrm{ft} \text { at } M=0.35, M_{(L / D)_{\max }} \text {, and } 0.70
$$

As in Problem 1.2, the specific excess power is given by Eqn. 1.7:

$$
P_{s}=\frac{(T-D) V}{W}
$$

For the three velocities you can generate a table for specific excess power using values from Fig. P1.1:

M	$T(l b f)$	$D(l b f)$	$V(f t s)$	$P_{s}(f t / s)$
0.35	2250	1600	362.93	23.6
0.53	2400	850	549.58	85.2
0.70	2600	1100	725.86	108.9

Notice the large increase in specific excess power from $M=0.35$ to 0.53 as the airplane becomes more aerodynamically efficient. While the specific excess power continues to increase as the speed increases to $M=0.70$, the increase in P_{s} is not as dramatic due to the increase in drag.

1.6)

Given:
Air and nitrogen with associated gas and Sutherland's law constants at $p=150$ psia and $T=350^{\circ} \mathrm{F}$.

For a thermally perfect gas, the equation of state is given by Eqn. 1.10:

$$
p=\rho R T
$$

The fluid density can be found as:

$$
\rho=\frac{p}{R T}
$$

where R, the gas constant, is given in the problem statement, and $T=350+459.67=809.67^{\circ} R$. The resulting densities are:

$$
\begin{aligned}
& \rho_{\text {Air }}=\frac{p_{\text {Air }}}{R_{\text {Air }} T_{\text {Air }}}=\frac{\left(150 \mathrm{lbf} / \mathrm{in}^{2}\right)\left(144 \mathrm{in}^{2} / \mathrm{ft}^{2}\right)}{\left(53.34 \frac{\mathrm{ft}-\mathrm{lbf}}{\mathrm{lbm}-R}\right)\left(809.67^{\circ} R\right)}=0.50014 \mathrm{lbm} / \mathrm{ft}^{3}=0.01554 \mathrm{~s} / \mathrm{lug} \mathrm{ft} \\
& \mathrm{~s}^{3} \\
& \rho_{N}=\frac{p_{N_{2}}}{R_{N_{2}} T_{N_{2}}}=\frac{\left(150 \mathrm{lbf} / \mathrm{in}^{2}\right)\left(144 \mathrm{in}^{2} / \mathrm{ft}^{2}\right)}{\left(55.15 \frac{f t-\mathrm{lbf}}{\mathrm{lbm}-R}\right)\left(809.67^{\circ} R\right)}=0.48373 \mathrm{lbm} \mathrm{ft}^{3}=0.01503 \mathrm{slug} \mathrm{ft}
\end{aligned}
$$

These values are very close to each other due to the very similar gas constants. The viscosity is given by Sutherland's law in English units, Eqn. 1.12b:

$$
\mu=C_{1} \frac{T^{1.5}}{\left(T+C_{2}\right)}
$$

where the constants are also given in the problem statement. The resulting viscosities are:

$$
\begin{aligned}
& \mu_{\text {dir }}=2.27 \times 10^{-8} \frac{\mathrm{lbf}-s}{f^{2}-R^{0.5}} \frac{\left(809.67^{\circ} R\right)^{1.5}}{\left(809.67^{\circ} R+198.6^{\circ} R\right)}=5.18694 \times 10^{-7} \frac{\mathrm{lbf}-s}{f^{2}} \\
& \mu_{N_{2}}=2.16 \times 10^{-8} \frac{\mathrm{lbf}-s}{f^{2}-t^{-1} R^{05}} \frac{\left(809.67^{\circ} R\right)^{1.5}}{\left(809.67^{\prime} R+183.6^{\circ} R\right)}=5.01012 \times 10^{-7} \frac{\mathrm{lbf}-s}{f^{2}}
\end{aligned}
$$

1.6) contd.

Finally, the kinematic viscosity is given by Eqn. 1.6 as:

$$
v=\frac{\mu}{\rho}
$$

and the resulting kinematic viscosities are:

$$
\begin{aligned}
& v_{\text {dir }}=\frac{\mu_{\text {dir }}}{\rho_{\text {Air }}}=\frac{5.18694 \times 10^{-7} \frac{\mathrm{lbf}-s}{f t^{2}}}{0.01553 \frac{\mathrm{slug}}{f t^{3}}}=3.33995 \times 10^{-5} \mathrm{ft}^{2} / \mathrm{s} \\
& v_{N_{2}}=\frac{\mu_{N_{2}}}{\rho_{N_{2}}}=\frac{5.01012 \times 10^{-7} \frac{\mathrm{lbf}-s}{f^{2}}}{0.01502 \frac{\mathrm{slug}}{\mathrm{ft}^{3}}}=3.33563 \times 10^{-5} \mathrm{ft}^{2} \mathrm{~s}
\end{aligned}
$$

1.7)

Given:
Air and nitrogen with associated gas and Sutherland's law constants at $p=586 \mathrm{Nm}^{2}$ and $T=54.3 \mathrm{~K}$.

For a thermally perfect gas, the equation of state is given by Eqn. 1.10:

$$
p=\rho R T
$$

The fluid density can be found as:

$$
\rho=\frac{p}{R T}
$$

where R, the gas constant, is given in the problem statement. The resulting densities are:

$$
\rho_{\text {Air }}=\frac{p_{\text {dir }}}{R_{\text {Air }} T_{\text {Air }}}=\frac{58.6 \mathrm{~N} / \mathrm{m}^{2}}{\left(287.05 \frac{\mathrm{~N}-\mathrm{m}}{\mathrm{~kg}-K}\right)(54.3 \mathrm{~K})}=0.03760 \mathrm{~kg} \mathrm{~m}^{3}
$$

1.7) contd.

$\rho_{N}=\frac{p_{N_{2}}}{R_{N_{2}} T_{N_{2}}}=\frac{\left(58.6 \mathrm{~N} / \mathrm{m}^{2}\right)}{\left(297 \frac{N-m}{k g-K}\right)(54.3 \mathrm{~K})}=0.03634 \mathrm{~kg} \mathrm{~m}^{3}$

These values are very close to each other due to the very similar gas constants. The viscosity is given by Sutherland's law in English units, Eqn. 1.12a:

$$
\mu=C_{1} \frac{T^{1.5}}{\left(T+C_{2}\right)}
$$

where the constants are also given in the problem statement. The resulting viscosities are:

$$
\begin{aligned}
& \mu_{\text {dir }}=1.458 \times 10^{-6} \frac{\mathrm{~kg}}{\mathrm{~s}-\mathrm{m}-K^{0.5}} \frac{(54.3 K)^{1.5}}{(54.3 K+110.4 K)}=5.18694 \times 10^{-7} \frac{\mathrm{lbf}-\mathrm{s}}{\mathrm{ft}^{2}} \\
& \mu_{N_{2}}=1.458 \times 10^{-6} \frac{\mathrm{~kg}}{\mathrm{~s}-\mathrm{m}-K^{0.5}} \frac{(54.3 K)^{1.5}}{(54.3 K+102 K)}=5.01012 \times 10^{-7} \frac{\mathrm{lbf}-\mathrm{s}}{\mathrm{ff}^{2}}
\end{aligned}
$$

Finally, the kinematic viscosity is given by Eqn. 1.6 as:

$$
v=\frac{\mu}{\rho}
$$

and the resulting kinematic viscosities are:

$$
\begin{aligned}
& v_{\text {Air }}=\frac{\mu_{\text {Air }}}{\rho_{\text {Air }}}=\frac{5.18694 \times 10^{-7} \frac{\mathrm{lbf}-s}{f t^{2}}}{0.01553 \frac{\text { slug }}{f t^{3}}}=3.33995 \times 10^{-5} \mathrm{ft}^{2} / \mathrm{s} \\
& v_{N_{2}}=\frac{\mu_{N_{2}}}{\rho_{N_{2}}}=\frac{5.01012 \times 10^{-7} \frac{\mathrm{lbf}-s}{f t^{2}}}{0.01502 \frac{\mathrm{slug}}{f t^{3}}}=3.33563 \times 10^{-5} \mathrm{ft}^{2} / \mathrm{s}
\end{aligned}
$$

1.8)

Given:
A perfect gas process which doubles the pressure and the density is decreased by threequarters. Initial temperature $T_{1}=200^{\circ} \mathrm{F}$.

The pressure and density changes during the process may be represented as:

$$
\frac{p_{2}}{p_{1}}=2 \text { and } \frac{\rho_{2}}{\rho_{1}}=\frac{3}{4}
$$

The perfect gas law is given by Eqn. 1.10:

$$
p=\rho R T
$$

So each state may be represented by:

$$
R_{1}=\frac{p_{1}}{\rho_{1} T_{1}} \text { and } R_{2}=\frac{p_{2}}{\rho_{2} T_{2}}
$$

Assuming that the gas constant does not change significantly due to changes in temperature (i.e. $R_{1}=R_{2}$), the equations can be combined to yield:

$$
\frac{T_{2}}{T_{1}}=\frac{p_{2} / p_{1}}{\rho_{2} / \rho_{1}}=\frac{2}{3 / 4}=\frac{8}{3}
$$

Remembering that temperatures in the perfect gas law must be in absolute values, the final temperature can then be found as:

$$
T_{2}=\frac{8}{3} T_{1}=\frac{8}{3}(200+459.67)^{\circ} R=1759^{\circ} R=1299^{\circ} \mathrm{F}=703.9^{\circ} \mathrm{C}
$$

1.9)

Given:
Isentropic expansion of perfect air $\frac{p}{\rho^{1 / 4}}=$ constant and $\frac{p_{2}}{p_{1}}=0.5$
Initial temperature $T_{1}=20^{\circ} \mathrm{C}$
For a perfect gas $\rho=\frac{p}{R T}$.

1.9) contd.

$$
\frac{p_{1}}{\rho_{1}^{1.4}}=\frac{p_{2}}{\rho_{2}^{1.4}} \text { so } p_{1}\left(\frac{R T_{1}}{p_{1}}\right)^{1.4}=p_{2}\left(\frac{R T_{2}}{p_{2}}\right)^{1.4}
$$

Simplifying yields:

$$
p_{1}^{-0.4} T_{1}^{1.4}=p_{2}^{-0.4} T_{2}^{1.4} \text { or }\left(\frac{T_{2}}{T_{1}}\right)^{1,4}=\left(\frac{p_{2}}{p_{1}}\right)^{0.4}
$$

Find the temperature ratio as:

$$
\frac{T_{2}}{T_{1}}=\left(\frac{p_{2}}{p_{1}}\right)^{0.414}=0.820, \text { so the temperature decreases by about } 18.0 \% \text {. }
$$

Remember that temperature ratios must always be calculated using absolute temperatures. So use $T_{1}=293.15 \mathrm{~K}$.

$$
T_{2}=0.820 T_{1}=240.481 \mathrm{~K}=-32.67^{\circ} \mathrm{C} .
$$

1.10)

Given:
Pressure and temperature for the standard atmosphere at 20 km altitude.
From Table 1.2a:

$$
\begin{aligned}
& p=\frac{p}{p_{\text {s. }}} p_{\text {sL }}=\left(5.4570 \times 10^{-2}\right)\left(1.01325 \times 10^{5} \mathrm{~N} / \mathrm{m}^{2}\right)=5.5293 \times 10^{3} \mathrm{Nm}^{2} \\
& T=216.65 \mathrm{~K}
\end{aligned}
$$

The density can be found using the perfect gas law, Eqn. 1.10;

$$
\rho=\frac{p}{R T}=\frac{5.5293 \times 10^{3} \mathrm{~N} / \mathrm{m}^{2}}{\left(287.05 \frac{\mathrm{~N}-\mathrm{m}}{\mathrm{~kg}-K}\right)(216.65 \mathrm{~K})}=0.08891 \mathrm{~kg} \mathrm{~m}^{3}
$$

1.10) contd.

The value for density from Table 1.2a is:

$$
\rho=\frac{\rho}{\rho_{\text {st }}} \rho_{\text {st }}=\left(7.2580 \times 10^{-2}\right)\left(1.2250 \mathrm{~kg} / \mathrm{m}^{3}\right)=0.08891 \mathrm{~kg} \mathrm{~m}^{3}
$$

which is the same as the calculated value from above. The viscosity is given by Eqn. 1.12a:

$$
\begin{aligned}
\mu & =1.458 \times 10^{-6} \frac{T^{15}}{(T+110.4 \mathrm{~K})} \\
& =1.458 \times 10^{-6} \frac{\left(216.65^{\prime} \mathrm{R}\right)^{1.5}}{(216.65 \mathrm{~K}+110.4 \mathrm{~K})}=1.422 \times 10^{-5} \mathrm{~kg} / \mathrm{s}-\mathrm{m}
\end{aligned}
$$

The value for viscosity from Table 1.2 b is:

$$
\mu=\frac{\mu}{\mu_{s L}} \mu_{\text {sL. }}=(0.79447)\left(1.7894 \times 10^{-5} \mathrm{~kg} / \mathrm{s}-\mathrm{m}\right)=1.422 \times 10^{-5} \mathrm{~kg} / \mathrm{s}-\mathrm{m}
$$

which is the same as the calculated value from above.

1.11)

Given:
Pressure and temperature for the standard atmosphere at $35,000 \mathrm{ft}$ altitude.
From Table 1.2b:

$$
\begin{aligned}
& p=\frac{p}{p_{\text {st }}} p_{\mathrm{st}}=(0.23617)\left(2116.22 \mathrm{lbf} / \mathrm{ff}^{2}\right)=499.79 \mathrm{lbfff}^{2} \\
& T=394.07^{\circ} \mathrm{R}
\end{aligned}
$$

The density can be found using the perfect gas law, Eqn. 1.10:

$$
\rho=\frac{p}{R T}=\frac{499.79 \mathrm{lbf} / \mathrm{ft}^{2}}{\left(53.34 \frac{\mathrm{ft}-\mathrm{lbf}}{\mathrm{lbm}-R}\right)\left(394.07^{*} R\right)}=0.02378 \mathrm{lbm} / \mathrm{ft}^{3}=0.000739 \mathrm{slug} f \mathrm{f}^{3}
$$

1.11) contd.

The value for density from Table $1.2 b$ is:

$$
\rho=\frac{\rho}{\rho_{S L}} \rho_{S L}=(0.31075)\left(0.002377 \text { slug } / f t^{3}\right)=0.000739 \text { slug ft }
$$

which is the same as the calculated value from above. The viscosity is given by Eqn. 1.12b:

$$
\begin{aligned}
\mu & =2.27 \times 10^{-8} \frac{T^{1.5}}{\left(T+198.6^{*} R\right)} \\
& =2.27 \times 10^{-8} \frac{\left(394.07^{\circ} R\right)^{15}}{\left(394.07^{*} R+198.6^{11} R\right)}=2.996 \times 10^{-7} \mathrm{lbf}-\mathrm{s} / \mathrm{ft}^{2}
\end{aligned}
$$

The value for viscosity from Table 1.2 b is:

$$
\mu=\frac{\mu}{\mu_{S L}} \mu_{S L}=(0.801425)\left(3.740 \times 10^{-7} \mathrm{lbf}-s / \mathrm{ft}^{2}\right)=2.997 \times 10^{-7} \mathrm{lbf}-s f \mathrm{ft}^{2}
$$

which is the same as the calculated value from above.
1.12)

$$
\begin{aligned}
& p_{t 1}=5.723 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}(=56.48 \text { atmospheres }) \\
& T_{t}=750 \mathrm{~K}
\end{aligned}
$$

$$
\begin{aligned}
& \rho_{t 1}=\frac{\rho_{t 1}}{R T_{t}}=\frac{5.723 \times 10^{6} \frac{\mathrm{~N}}{\mathrm{~m}^{2}}}{\left(287.05 \frac{\mathrm{~N} \cdot \mathrm{~m}}{\mathrm{~kg} \cdot \mathrm{~K}}\right)(750 \mathrm{~K})}=26.583 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}} \\
& \mu_{t}=1.458 \times 10^{-6} \frac{T_{t}^{1.5}}{T_{t}+110.4}=3.481 \times 10^{-5} \frac{\mathrm{~kg}}{\mathrm{~s} \cdot \mathrm{~m}}
\end{aligned}
$$

