Solution Manual for Algebra and Trigonometry Graphs and Models 5th Edition Bittinger Beecher Ellenbogen Penna 9780321783974 0321783972
 Fullink donwload

Test Bank:

https://testbankpack.com/p/test-bank-for-algebra-and-trigonometry-graphs-and-models-5th-edition-bittinger-beecher-ellenbogen-penna-9780321783974-0321783972/

Solution Manual:
https://testbankpack.com/p/solution-manual-for-algebra-and-trigonometry-graphs-and-models-5th-edition-bittinger-beecher-ellenbogen-penna-9780321783974-0321783972/

Chapter 2

More on Functions

Exercise Set 2.1

1. a)For x-valuesfrom-5to 1 , the y-valuesincreasefrom -3 to 3 . Thus the function is increasing on the interval (-5 , 1).
b) For x-valuesfrom 3 to 5 , the y-values decrease from 3 to 1 . Thus thefunction is decreasing ontheinter- val $(3,5)$.
c) For x-valuesfrom 1 to $3, y$ is 3 . Thusthefunction is constant on (1,3).
2. a) For x-values from 1 to 3, they-valuesincreasefrom 1 to 2 . Thus, the functionisincreasingontheinterval $(1,3)$.
b) For x-values from 5 to-1,the y-values decrease from 4 to 1 . Thus the function isdecreasing on the interval $(-5,1)$.
c) For x-values from 3 to $5, y$ is 2 . Thusthefunction is constant on (3, 5).
3. a) For x-values from 3 to -1 , the y-valuesincrease from 4 to 4 . Also, f-or x-values from 3 to 5 , the y-values increase from 2 to 6 . Thus the function is increasing on $(-3,-1)$ and on (3, 5).
b) For x-valuesfrom 1 to 3 , the y-values decrease from 3 to 2 . Thus thefunction is decreasing ontheinter- val $(1,3)$.
c) For x-values from -5 to $-3, y$ is 1 . Thus the func- tion is constant on ($-5,-3$).
4. a) Forx-values from 1 to 2 , the y-values increase from 1 to 2 . Thus the functionisincreasingontheinterval $(1,2)$.
b) For x-values from 5 to-2, the y-valuesdecrease from 3 to 1 . For x-values from 2 to 1 , the y-values decrease from 3 to 1 . And for x-values from 3 to 5 , the y-values decrease from 2 to 1 . Thus the function is decreasing on $(-5,-2)$, on $(-2,1)$, and on $(3,5)$.
c) For x-valuesfrom 2 to $3, y$ is 2 . Thusthe function is constant on $(2,3)$.
5. a) For x-valuesfrom $-\infty$ to -8 , the y-values increase from $-\infty$ to 2 . Also, for x-valuesfrom -3 to -2 , the y-values increase from -2 to 3 . Thus thefunction is increasing on $(-\infty,-8)$ and on (-3 , -2).
b) For x-valuesfrom-8 to -6 , the y-values decrease from 2 to -2 . Thusthefunctionisdecreasingon the interval ($-8,-6$).
c) For x-values from -6 to $-3, y$ is -2 . Also, for x - values from -2 to ∞, y is 3 . Thus the function is constant on $(-6$, $-3)$ and on ($-2, \infty$).
6. a) For x-valuesfrom 1 to 4 , the y-valuesincreasefrom 2 to11.Thusthe functionisincreasingontheinterval (1, 4).
b) For x-values from -1 to 1 , the y-values decrease from 6 to 2 . Also, for x-values from 4 to ${ }^{\infty}$, the y values decrease from 11 to $-\infty$. Thus the function is decreasing on $(-1,1)$ and on $(4$,
$\infty)$.
c) For x-valuesfrom $-\infty$ to $-1, y$ is 3 . Thusthefunction is constant on $(-\infty,-1)$.
7. The x-values extend from -5 to 5 , sothedomainis $[-5,5]$. The y-values extend from -3 to 3 , so the range is $[-3,3]$.
8. Domain: $[-5,5]$; range: $[1,4]$
9. The x-values extend from -5 to -1 and from 1 to 5 , so the domain is $[-5,-1] \cup[1,5]$.
The y-valuesextendfrom -4 to 6 ,sotherangeis $[-4,6]$.
10. Domain: $[-5,5]$; range: $[1,3]$
11. The x-values extend from $-\infty$ to ∞, so the domain is
$(-\infty, \infty)$. They-
valuesextendfrom $-\infty$ to 3 , sotherangeis $(-\infty, 3]$.
12. Domain: $(-\infty, \infty)$; range: $(-\infty, 11]$
13. From the graph we see that a relative maximum value of the functionis
3.25. It occurs at $x=2.5$. There is no relative minimum value.

The graph starts rising, or increasing, from the left and stops increasing at the relative maximum. From this point, the graph decreases. Thus the function is increasing on $(-\infty, 2.5)$ and is decreasing on $(2.5, \infty)$.
14. Fromthe graph we see that a relative minimum value of 2 occurs at $x=1$. Thereis no relative maximum value.

The graph starts falling, or decreasing, from the left and stops decreasing at the relative minimum. From this point, the graph increases. Thus the function is increasing on $(1, \infty)$ and is decreasing on $(-\infty, 1)$.
15. From the graph we see that a relative maximum value of the functionis
2.370. It occurs at $x=0.667$. We also see that a relative minimum valueof 0 occursat $x=2$.
The graph starts rising, or increasing, from the left and stops increasing at the relative maximum. From this point it decreases to the relative minimum and then increases again. Thus the function is increasing on $(-\infty,-0.667)$ and on $(2, \infty)$. It is decreasing on $(-0.667,2)$.
16. From the graph we see that a relative maximum value of 2.921 occurs at $x=3.601$. A relative minimum value of 0.995 occurs at $x=0.103$.

The graph starts decreasing from the left and stops de- creasing at the relativeminimum. Fromthispointitin- creases to the relative maximum andthen decreases again. Thusthe functionisincreasingon $(0.103,3.601)$ andisde- creasing on $(-\infty, 0.103)$ and on $(3.601, \infty)$.
17.

The function is increasing on $(0$,$) andodecreasing on (, 0)$. We
18.

$\infty)$ Maximum: 4 at $x=0$ Minima:
none
19.

The function is increasing on (, 0)-apd decreasing on (0,). We estimgate that the maximum is 5 at $x=0$. There are no minima.
20.

Increasing: $(-3, \infty)$
Decreasing: $(-\infty,-3)$
Maxima: none Minimum:
$-5 \mathrm{at} x=-3$
21.

The function is decreasing on (, 3)-apd increasing on (3,). We estimgate that the minimum is 1 at $x=3$. There are no maxima.
22.

Increasing: $(-\infty,-4)$
Decreasing: $(-4, \infty)$
Maximum: 7at $x=-4$
Minima: none
23.

Beginning at the leftside of the window, the graph first dropsas we move to theright. Wesee that the function is
decreasing on (, HoWe then find that the function is increasing on $(1,3)$ and decreasing again on (3,). The MAXIMQUM and MINIMUM features also show that the relative maximumis -4 at $x=3$ andtherelativeminimum is -8 at $x=1$.
24.

Decreasing: $(-2.573,3.239)$
Relativemaximum: 4.134at $x=-2.573$
Relative minimum: -15.497 at $x=3.239$
25.

We find that the function is increasing on $(1.552,0)$ and on $(1.552$,) and decreasing on (, 1.552) and on $(-) \infty 1-552)$. The relative maximum is 4.07 at $x=0$ and the relative minima are 2.314 at $x=$ 1.552 and 2.314 at $x=1.55 z$.
26.

$(-\infty,-3)$ Relative maxima: none
Relative minimum: 9.78 at $x=-3$
27. a) $y=-x^{2}+300 x+6$

b) 22, 506 at $a=150$
c) The greatest number of baskets will be sold when $\$ 150$ thousand is spent on advertising. Forthat amount,
28. a) $y=-0.1 x^{2}+1.2 x+98.6$

b) Using the MAXIMUM feature we find that the rel-ative maximum is $102.2 \mathrm{at} t=6$. Thus, we know that the patient's temperature was the highestat $t=6$, or 6 days after the onset oftheillness and that the highest temperature was $102.2^{\circ} \mathrm{F}$.
29. Graph $y=\frac{8 x}{x^{2}+1}$.

Increasing: $(-1,1)$ Decreasing:
$(-\infty,-1),(1, \infty)$
30. Graph $y=$

$$
x^{2}+1
$$

Increasing: $(0, \infty)$ Decreasing: $(-\infty$,
$0)$
31. Graph $y=x 4-\overline{x^{2}, \text { for }}-2 \leq x \leq 2$.

Increasing: $(-1.414,1.414)$
Decreasing: $(-2,-1.414),(1.414,2)$
32. Graph $y=-0.8 x 9-\overline{x^{2}, \text { for }-3} \leq x \leq 3$.

Increasing: $(-3,-2.121),(2.121,3)$
Decreasing: $(-2.121,2.121)$
33. If $x=$ the length of the rectangle, in meters, then the $480-2 x$ width is 2 ,or 240- x. Weuse the formula Area $=$
length \times width:

$$
\begin{aligned}
& A(x)=x(240-x), \text { or } \\
& A(x)=240 x-x^{2}
\end{aligned}
$$

34. Let $h=$ theheightof thescarf, in inches. Thenthelength of the base $=$ $2 h$

$$
\begin{gathered}
-7 \\
1 \\
A(h)={ }_{2}(2 h-7)(h) \\
A(h)=h^{2}-{ }^{7} \begin{array}{c}
h \\
2
\end{array}
\end{gathered}
$$

35. Aftert minutes, theballoonhasrisen $120 t \mathrm{ft}$. Weusethe Pythagorean theorem.

$$
\begin{aligned}
{[d(t)]^{2} } & =(120 t)^{2}+400^{2} \\
d(t) & =\quad(120 t)^{2}+400^{2}
\end{aligned}
$$

We considered only the positive square root since distance must be nonnegative.
36. Use the Pythagorean theorem. $[h(d)]^{2}$
$+(3700)^{2}=d^{2}$

$$
\begin{aligned}
{[h(d)]^{2}=d^{2}-3700^{2} } \\
22,506 \text { baskets will be sold. }
\end{aligned}
$$

[^0]37. Let $w=$ the width of the rectangle. Then the
length $=\frac{40-2 w}{2}$, or $20-w$. Divide the rectangleinto quadrants as shown below.

w
In each quadrant there are two congruent triangles. One triangle is part of the rhombus and both are part of the rectangle. Thus, in each quadrant the area of the rhombus is one-half the area of the rectangle. Then, in total, the area of the rhombus is one-half the area of the rectangle.
\[

$$
\begin{aligned}
& A(w)={ }_{2}^{\left.\frac{1}{(20}-w\right)(w)} \\
& A(w)=10 w-{ }_{2}-\frac{w^{2}}{}
\end{aligned}
$$
\]

38. Let $w=$ the width, infeet. Then the length $=\frac{46-2 w}{}$, or $23-w$.

$$
\begin{aligned}
& A(w)=(23-w) w \\
& A(w)=23 w-w^{2}
\end{aligned}
$$

39. We will use similar triangles, expressing all distarees in feet. 6 in. $=1 \mathrm{ft}, s$ in. $=\underline{s} \mathrm{ft}$, and $d \mathrm{yd}=3 d \mathrm{ft} \mathrm{We}$

$$
\begin{array}{ll}
2 & 12
\end{array}
$$

have

$$
\begin{aligned}
& 1 \\
& \underline{3 d}=2^{-} \\
& \begin{array}{l}
7 \\
s_{1}
\end{array} \\
& \overline{12} \cdot 3 d=7 \cdot{ }_{2} \\
& s_{4}{ }_{4}=\frac{7}{2} \\
& d={ }_{-}^{4}{ }^{7} \text {, so } \\
& \begin{array}{l}
s 2 \\
14
\end{array} \\
& d(s)=\frac{14}{s} . \\
& 2
\end{aligned}
$$

2

4O. The volume of the tank is the sumof the volume of a sphere with radius r andarightcircularcylinderwithradius r and height 6 ft .

$$
V(r)={ }_{3}^{4} \pi r^{3}+6 \pi r^{2}
$$

41. a) Ifthelength $=x$ feet, thenthewidth $=30-x$ feet.

$$
\begin{aligned}
& A(x)=x(30-x) \\
& A(x)=30 x-x^{2}
\end{aligned}
$$

b)The length of the rectangle mustbe positive and less than 30
ft , so the domain of the function is

$$
\{x \mid 0<x<30\}, \text { or }(0,30)
$$

c) We see from the graph that the maximum value of the area function on the interval $(0,30)$ appears to be 225 when $x=15$. Then the dimensions thatyield the maximum area are length $=$ 15 ft and width $=30-15$, or 15 ft .
42. a) $A(x)=x(360-3 x)$, or $360 x-3 x^{2}$
b) The domain is $x 0<x<\quad \begin{aligned} & \frac{360}{3} \text {, or } \\ & \{x \mid 0<x<120\}, \operatorname{or}(0,120) .\end{aligned}$
c) The maximum value occurs when $x=60$ so the width of each corral should be 60 yd and the total lengt-h of the two corralsshouldbe 360360 , or 180 yd .
43. a) If the height of the file is x inches, then the width is $142 x$ inches - and the length is 8 in. Weuse the formula Volume $=$ length width height tofind the xolume ofxthe file.

$$
\begin{aligned}
& V(x)=8(14-2 x) x, \text { or } \\
& V(x)=112 x-16 x^{2}
\end{aligned}
$$

b) The height of the file must be positive and less than half of the measure of the long side of the piece of 14
Σ
plastic. Thus, the domain is $x \cdot 0<x<2$, or $\{x \mid 0<x<7\}$.
c) $y=112 x-16 x^{2}$

d) Using the MAXIMUM feature, we find that the maximum value of the volume function occurswhen $x=3.5$, so the file should be 3.5 in . tall.
44. a) When a square with sides of length x is cut from each corner, the length of each of the remaining sides of the piece of cardboard is $12-2 x$. Then the di-mensionsoftheboxare x by 12- $2 x$ by $12-2 x$. We use the formula Volume $=$ length \times width \times height
to find the volume of the box:

$$
\begin{aligned}
& V(x)=(12-2 x)(12-2 x)(x) V(x) \\
& =\left(144-48 x+4 x^{2}\right)(x) V(x)= \\
& 144 x-48 x^{2}+4 x^{3}
\end{aligned}
$$

This can also be expressed as $V(x)=4 x(x-6)^{2}$, or $V(x)=4 x(6-x)^{2}$.
b) The length of the sides of the square corners that are cut out must be positive and less than half the length of a side of the piece of cardboard. Thus, the domain of the function is $\{x \mid 0<$ $x<6\}$, or $(0,6)$.
c) $y=4 x(6-x)^{2}$

d) Using theMAXIMUM feature, we find that the maximum valueofthevolumeoccurswhen $x=2$.

When $x=2,12 \quad 2 x=12 \quad 22=8$, so the dimensionsthatyieldthemaximumvolumeare 8 cmby 8 cm by 2 cm .
45. a) The length of a diameter of the circle (and adi- agonal of the rectangle) is $2 \cdot 8$, or 16 ft . Let $l=$
the length of the rectangle. Use thePythagorean theorem to write l as a function of x.

$$
\begin{aligned}
& x^{2}+l^{2}=16^{2} \\
& x^{2}+l^{2}=256 \\
& l^{2}=256-x^{2} \\
& \quad l=\quad \overline{256-x^{2}}
\end{aligned}
$$

Since the length must be positive, we considered only the positive square root.

UsetheformulaArea=length \times widthtofindthe area of the reatangle:

$$
A(x)=x 256-x^{2}
$$

b) The width of the rectangle must be positive and less than the diameter of the circle. Thus, the domain of the function is $\{x \mid 0<x<16\}$, or $(0,16)$.
c) $y=x \sqrt{256-x^{2}}$

0
d) Using the MAXIMUM feature, we find that the max- imum area_ $\frac{\text { accurs }}{2} \underline{\text { when } x}$ is about 11.314. When $x \approx$

Thuls the dimensions, that maximize the ${ }^{\text {thare }}$ a are about 11.314 ft by 11.313 ft . (Answers may vary slightly due to rounding differences.)
46. a)Let $h(x)=$ theheightofthebox. $320=x$

$$
\begin{aligned}
& \cdot x \cdot h(x) \\
& \underline{320}=h(x) \\
& x^{2} \\
& \text { Area of the bottom: } x^{2} \Sigma
\end{aligned}
$$

Area of each side: $x^{\underline{320}}$, or $\underline{320}$

Area of the top: $x^{2} \quad-\quad \Sigma$
b)Thelengthofthebasemustbepositive, sothedo- main of the function is $\{x \mid x>0\}$, or $(0, \infty)$.
c) $y=2.5 x^{2}+.3200$

1000

d) Using the MIMIMUM feature, we find that the minimum cost occurs when x 8.618. Thus, \approx the dimensions that minimizethecostareabout
8.618ftby8.618ftby $\overline{(8.618)^{2}}$, or about 4.309 ft .
47. - $\quad x+4$, for $x \leq 1,8$ -
$g(x)=x$, for $x>1$
Since $-4 \leq 1, g(-4)=-4+4=0$.
Since $0 \leq 1, g(0)=0+4=4$.
Since $1 \leq 1, g(1)=1+4=5$.
Since $3>1, g(3)=8-3=5$.
48. $\begin{aligned} f(x)= & \square{ }^{3,} \text { for } x \leq-2, \\ & \square \frac{1}{2} x+6, \text { for } x>-2 \\ f(-5)= & 3\end{aligned}$
$f(-2)=3$
$f(0)={ }_{2} \cdot \begin{gathered}\frac{1}{0} \\ 1\end{gathered}+6=6$
$f(2)={ }_{2} \cdot 2+6=7$

$$
-\quad 3 x-18, \text { for } x<-5
$$

49. $h(x)=1, \quad$ for $-5 \leq x<1$, $x+2, \quad$ for $x \geq 1$

Since -5 isintheinterval $[-5,1), h(-5)=1$. Since 0 is in
the interval $[-5,1), h(0)=1$.
Since $1 \geq 1, h(1)=1+2=3$.
Since $4 \geq 1, h(4)=4+2=6$.

$$
-5 x-8, \text { for } x<-2
$$

50. $f(x)=\begin{aligned} & \text { - } \\ & -x+5, \\ & \text { for }-2 \leq x \leq 4, ~\end{aligned}$ $\square 2$ $10-2 x, \quad$ for $x>4$

Since $-4<-2, f(-4)=-5(-4)-8=12$.
Since-2isintheinterval $[-2,4], f(-\quad 2)=\frac{1^{-}}{2}(-2)+5=4$.

$$
\begin{aligned}
& C(x)=1.5 x^{2}++4(2.5) \frac{320}{x}+1 \cdot x^{2} \\
& C(x)=2.5 x^{2}+\frac{3200}{x}
\end{aligned}
$$

Since 4 is in the interval $[-2,4], f(4)={ }^{1} \cdot 4+5=7$.
Since $6>4, f(6)=10-2 \cdot 6=-2$.
51. $f(x)=\begin{aligned} & \square_{2}^{*}, \\ & \left\llcorner^{x} x+3,\right. \\ & \text { for } x \geq 0,\end{aligned}$

Wecreate thegraphintwoparts. Graph $f(x)=x$ for inputs x lessthan 0 . Thengraph $f(x)=x+3$ forinputs x greater than or equal to 0 .

52. $f(x)={ }^{1} x+2$, for $x \leq 0$, $x-5, \quad$ for $x>0$

53.

We create the graph in two parts. Graph $f(x)=-x+2$ for inputs x less than 4 . Then graph $f(x)=-1$ for inputs x greater than or equal to 4.

54. $h(x)=\begin{aligned} & 2 x-1, \text { for } x<22 \\ & -x, \quad \text { for } x \geq 2\end{aligned}$

$\square+1$, for $x \leq-3$,
55. $f(x)=-1, \quad$ for $-3<x<4$

$$
\left[\begin{array}{l}
{ }^{1} x, \\
2
\end{array} \quad \text { for } x \geq 4\right.
$$

We create the graph in three parts. Graph $f(x)=x+1$

$$
\text { forinputs } x \text { lessthanorequalto }
$$

-3. $\operatorname{Graph} f(x)=-1$
$f(x)=2^{1}$ for inputs greater than or equal to 4.

4. \quad for $x \leq-2$,
56. $f(x)=-x \quad$ for $x \not \mathscr{F}^{*} 1, \quad$ for

$$
\begin{aligned}
& \square \\
& \frac{1}{2} x-1, \text { for } x<0 \\
& \square \\
& \quad \text { for } 0 \leq x \leq 1
\end{aligned}
$$

57. $g(x)=3$
${ }^{\llcorner }-2 x, \quad$ for $x>1$
Wecreate the graph in three parts. Graph $g(x)=x-1$
for inputs less than 0 . Graph $g(x)=3$ for inputs greater than or equal to 0 and less than or equal to 1 . Then graph $g(x)=-2 x$ for inputs greater than 1.

```
    2 4 x
```


$$
\square^{2,}
$$

59. $f(x)=x^{2}-25$
$\square x_{x-5}, \quad$ for $x \circ=5$
When $x=5$, the denominator of $\left(x^{2}-25\right) /(x-5)$ is $\underset{x^{2}-25}{\text { nonzerosowecansimplify: }}(x+5)(x-5)$

$$
x-5
$$

$$
x-5
$$

Thus, $f(x)=x+5$, for $x \circ=5$.
The graph of this part of the function consists of a line with a"hole" at the point $(5,10)$, indicated by an open dot. At $x=5$, we have f $(5)=2$, so the point $(5,2)$ is plotted below the open dot.

$$
\frac{2^{2}+3+2}{x \quad x} \quad, \quad \text { for } x=-1
$$

60. $f(x)=\quad$ 7, \quad for $x=-1$

61. $f(x)=[[x]]$

See Example 9.

62. $f(x)=2[[x]]$

This function can be defined by a piecewise function with an infinite number of statements:

$$
\begin{aligned}
& f(x)=\square \quad \text { for } 0 \quad x<1 \text {, } \\
& 0,2, \quad \text { for } 1 \leq x<2, \\
& \stackrel{\rightharpoonup}{ }
\end{aligned}
$$

63. $f(x)=1+[[x]]$

This function can be defined by a piecewise function with an infinite number of statements:

64. $f(x)=\frac{1}{2}[[x]]-2$

Thisfunction can be defined by a piecewise function with an infinite number of statements:

65. Fromthe graph weseethat the domain is(the rangeis $\left.\left({ }_{-\infty}, 0\right) \cup^{[3}, \infty\right)$.
66. Domain: $(-\infty, \infty)$; range: $(-5, \infty)$
67. Fromthegraphweseethatthedomainis $(-\infty, \infty)$ and the range is $[-1, \infty)$.
68. Domain: (∞, ∞); range: $(-\infty, 3)$
69. Fromthe graph wesee that the domain is(
$-\infty, \infty$) and
therangeis $\{y \mid y \leq-2$ or $y=-1$ or $y \geq 2\}$.
70. Domain: $(-\infty, \infty)$;range: $(-\infty,-3] \cup(-1,4]$
71. From the graph we see that the domain is (therangeis $\quad 5 \quad 24$
$-\infty, \infty$) and
$\{-,-$,$\} . Anequationforthefunctionis:$
$-\quad-\quad \begin{array}{r}2, \\ f(x)= \\ \end{array} \begin{array}{r}5, \text { for } x<2, \\ 4, \\ \text { for } x>2\end{array}$
72. Domain: $(-\infty, \infty)$; range: $\{y \mid y=-3$ or $y \geq 0\}$

$$
\begin{array}{lr}
- & -3, \text { for } x<0, x, \\
g(x)= & \text { for } x \geq 0
\end{array}
$$

73. From the graph we see that the domain is (,) and the-renge is (, 1] [2,). Finding the olope of each segment and using the slope-intercept orpoint-slope for- mula, we find that an equation for the function is:
74. Domain: $(-\infty, \infty)$; range: $\quad\{y \mid y=-2$ or $y \geq\} 0$. An equation for the functionis:
-()$=\quad|x|, \quad$ for $x<3$,
h $x \quad-2$, for $x \geq 3$
This can also be expressed as follows:
$-{ }_{-x,} \quad$ for $x \leq 0$,

$$
h x_{x}^{()=} \quad x, \quad \text { for } 0<x<
$$

It can also be expressed as follows:

$$
h(x)=\begin{array}{cc}
-x, & \text { for } x<0, \\
x, & \text { for } 0 \leq x<3, \\
-2, & \text { for } x \geq 3
\end{array}
$$

75. Fromthe graphweseethatthedomain is [5,3] andthe range is $(3,5)$. Finding the slope of each segment and using the slope-intercept or point-slope formula, wefind that an equation for the function is:

76. Domain: $[-4, \infty)$; range: $[-2,4]$
$f(x)={ }^{-}-x-2 x,-4$, for for $-1 \leq x \leqslant-1$,
2 , for $x \geq 2$
This can also be expressed as:
$-f(x)=\begin{gathered}2 x-4, \text { for }-4 \leq x<-1, \\ 2,\end{gathered}$
77. $f(x)=5 x^{2}-7$
a) $f(-3)=5(-3)^{2}-7=5 \cdot 9-7=45-7=38$
b) $f(3)=5 \cdot 3^{2}-7=5 \cdot 9-7=45-7=38$
c) $f(a)=5 a^{2}-7$
d) $f(-a)=5(-a)^{2}-7=5 a^{2}-7$
78. $f(x)=4 x \quad-5 x$
a) $f(2)=4 \cdot 2^{3}-5 \cdot 2=4 \cdot 8-5 \cdot 2=32-10=22$
b) $f(-2)=4(-2)^{3}-5(-2)=4(-8)-5(-2)=-32+$ $10=-22$
c) $f(a)=4 a^{3}-5 a$
d) $f(-a)=4(-a)^{3}-5(-a)=4\left(-a^{3}\right)-5(-a)=$ $-4 a^{3}+5 a$
79. First find the slope of the given line. $8 x-y=$

10

$8 x=y+10$		
$\begin{aligned} & x \text {, for } x>22 \\ & \text { for }-1 \end{aligned}$	$8 x-10=y$	
	The slope of the given line is 8 . The slope of aline perpendicularto	
	a also be expressed as follows:	this line is the opposite of the reciprocal of 8 , or ${ }^{\frac{1}{4}}$.
	x, for $x \leq-1$,	- 8
$g(x)=$	x, for $x \geq 22$, for 1	

$$
\begin{aligned}
y-y_{1} & =m\left(x-x_{1}\right) \\
y-1 & =-_{-}^{1}[x-(-1)]
\end{aligned}
$$

$$
\begin{gathered}
8 \\
y-1=-\left(x_{8}^{1}+1\right)
\end{gathered}
$$

$$
1 \quad 1
$$

$$
y-1=-{ }_{8} x={ }_{8}-
$$

$$
y=-8_{8}^{1}+{ }_{8} \begin{aligned}
& 7 \\
& -
\end{aligned}
$$

8o. $2 x-9 y+1=0$

$$
2 x+1=9 y
$$

$$
\frac{2}{9} x+\frac{1}{9}=y
$$

Slope: $\underset{9}{\stackrel{2}{-;} y \text {-intercept: }}{ }^{-}{ }_{0} \overline{1}^{\Sigma}{ }^{\Sigma} 9$
81. Graph $y=x^{4}+4 x^{3}-36 x^{2}-160 x+400$ Increasing: $(-5$, $-2),(4, \infty)$

Decreasing: $(-\infty,-5),(-2,4)$ Relative
maximum: 560 at $x=-2$
Relativeminima: 425at $x=-5,-304 \mathrm{at} x=4$
82. Graph $y=3.22 x^{5}-5.208 x^{3}-11$

Increasing: $(-\infty,-0.985),(0.985, \infty)$
Decreasing: ($-0.985,0.985$)
Relativemaximum: $-9.008 \mathrm{at} x=-0.985$
Relative minimum: -12.992 at $x=0.985$
83. a)Thefunction $C(t)$ canbedefinedpiecewise.

2 , for $0<t<1$,
$\ulcorner 4$, for $1 \leq t<2$,
6 , for $2 \leq t<3$,
$C(t)=$

We graph this function

b) Fromthedefinition of the function in part (a), we see that it can be writtenas

$$
C(t)=2[[t]]+1, t>0 .
$$

84. $\operatorname{If}[[x+2]]=-3$, then $-3 \leq x+2<-2$, or $-5 \leq x<-4$. The possible inputs for x are $\{x \mid-5 \leq x<-4\}$.
85. If $[[x]]^{2}=25$, then $[[x]]=5$ or $[-[x]]=5$. For
86. a) The distance from A to S is $4-x$.

Using the Pythagorean theorem, we find that the
distance from S to C is $\quad \sqrt{ } 1+x^{2}$.
Then $C(x)=3000(4-x)+5000 \quad 1+x^{2}$, or 12, $000-$ $3000 x+5000 \quad 1+x^{2}$.
b) Use a graphind calculator to graph $y=12,000-$ $3000 x+5000 \quad 1+x^{2}$ in a window such as [0, 5, 10, 000, 20, 000], Xscl = 1, Yscl = 1000. Using the MINIMUM feature, we findthatcostismini- mized when $x=0.75$, so the line should come to shore 0.75 mi from B.
87. a) We add labels to the drawing in thetext.

Wewrite a proportion involving the lengths of the sides of the similartriangles $B C D$ and $A C E$. Then we solve it for h.

$$
\begin{aligned}
\frac{h}{6-r} & =\frac{10}{6} \\
& \frac{10}{-}(6-r)={ }_{3}(6-r) \\
h & =6^{(6-5 r} \\
h & =\frac{30-5 r}{3} \\
h(r) & =\frac{30-5 r}{3} .
\end{aligned}
$$

b) $\quad V=\pi r^{2} h \xrightarrow[-30-5 r]{ }$
$V(r)=\pi r^{2}$
3 Substituting for h
c) Wefirstexpress r intermsof $h . h=\underline{30}$

$$
\begin{gathered}
\frac{-5 r}{3} \\
3 h=30-5 r \\
5 r=30-3 h \\
r=\frac{30-}{\frac{3 h}{5}} \\
V=\pi r^{2} h \\
-(30)=\frac{-3 h}{V} 5 h \pi \\
h
\end{gathered}
$$

Substituting for r

$$
\underline{30}^{-}={ }^{3} h^{2}
$$

Wecan also write $V(h)=\pi h$
$-5 \leq x<-4,[[x]]=5$. - For $5 \leq x<6,[[x]]=5$.
Thus, the possible inputs for x are
$\{x \mid-5 \leq x<-4$ or $5 \leq x<6\}$.

Exereise Set 2.2

1. $(f+g)(5)=f(5)+g(5)$

$$
\begin{aligned}
& =\left(5^{2}-3\right)+(2 \cdot 5+1) \\
& =25-3+10+1 \\
& =33
\end{aligned}
$$

2. $(f g)(0)=f(0) \cdot g(0)$

$$
\begin{aligned}
& =\left(0^{2}-3\right)(2 \cdot 0+1) \\
& =-3(1)=-3
\end{aligned}
$$

3. $(f-g)(-1)=f(-1)-g(-1)$

$$
\begin{aligned}
& =\left((-1)^{2}-3\right)-(2(-1)+1) \\
& =-2-(-1)=-2+1 \\
& =-1
\end{aligned}
$$

4. $(f g)(2)=f(2) \cdot g(2)$

$$
\begin{aligned}
& =\left(2^{2}-3\right)(2 \cdot 2+1) \\
& =1 \cdot 5=5
\end{aligned}
$$

$2-2+1$
-1
-3
$=\frac{4-3}{-1+1}$

- 11
$=04$

Sincedivision by0 isnotdefined, $(f / g){ }_{-2}$ exist.
6. $(f-g)(0)=f(0)-g(0)$

$$
=\left(0^{2}-3\right)-(2 \cdot 0+1)
$$

$$
\Sigma=-3-1=-4 . \Sigma
$$

2

$$
\begin{aligned}
& 2 \\
& \Sigma .1^{\Sigma} \sum_{2}^{2} \Sigma \Sigma_{-32}-1_{-1}^{\Sigma} \Sigma \\
&+1
\end{aligned}
$$

9. $(g-f)(-1)=g(-1)-f(-1)$

$$
\begin{aligned}
& =[2(-1)+1]-\left[(-1)^{2}-3\right] \\
& =(-2+1)-(1-3) \\
& =-1-(-2) \\
& =-1+2 \\
& =1
\end{aligned}
$$

10.

$$
\begin{aligned}
& =-\frac{0_{2} 2}{11} \\
& -\frac{-3}{4} \\
& =0
\end{aligned}
$$

11. $(h-g)(-4)=h(-4)-g(-4) \sqrt{ }$

$$
\begin{aligned}
& =(-4+\sqrt{ } 4)--4-1 \\
& =0--5
\end{aligned}
$$

\checkmark
-5 isnotarealnumber, $(h-g)(-4)$ doesnotexist.
12. $(g h)(10)=g(10) \cdot h(10)$

$$
\begin{aligned}
& \quad \sqrt{ } \\
& =10-1(10+4) \\
& V \\
& =9(14) \\
& = \\
& =314=42
\end{aligned}
$$

13. $(g / h)(1)=g(1)$

$$
\begin{array}{r}
13 \cdot(g / h)(1)=2(1) \\
1-1
\end{array}
$$

$$
=1+4
$$

$$
\begin{aligned}
& \sqrt{ } \\
& 0
\end{aligned}
$$

doesnot

$$
=\overline{5}
$$

$$
=\frac{0}{5}=0
$$

14. $(h / g)(1)=h^{h(1)} \underset{g(1)}{ }$
$g(1)$

$$
=\frac{\downarrow+4}{1-1}
$$

Sincedivision b ${ }^{0}$ y 0 isnotdefined, $(h / g)(1)$ doesnotexist.
15. $(g+h)(1)=g(1)+h(1)$

$=110=0$

$$
\begin{gathered}
=\sqrt{1} \overline{\sqrt{2}^{-1+}(1+4)}=\quad \sqrt{ } \\
=\stackrel{2(\Theta)+1}{=}=0
\end{gathered}
$$

```
-23+1=0+5
    =0+
    5=5.}.(hg)(3)=h(3
        g(3)
    =
    (3+
    4) 3 1
    \ \
```

17. $f(x)=2 x+3, g(x)=3-5 x$
a) Thedomainof f andof g isthesetofallrealnumbers, or $(-\infty, \infty)$. Then the domain of $f+g, f-g, f f$,
and $\underline{3} \quad f g$ isalso $(-\infty, \infty)$. Forf $/ g$ wemustexclude 5 $-\Sigma$
since $g \underline{\mathcal{\beta}}=0$. Then the domain of \boldsymbol{f} / g is

$-_{2}$ since $f_{\Sigma}{ }^{-} \underline{2}_{2}=0 . \underline{S}_{\Sigma}$ The domain of g / f is
b) $-\infty,-_{2} \cup-{ }_{2}, \infty$.
$(f+g)\left(3_{x}\right) \mp \boldsymbol{f}(x)+g(x)=(2 x+3)+(3-$
$5 x)=$

$$
\begin{aligned}
& (f-g)(x)=f(x)-g(x)=(2 x+3)-(3-5 x)= \\
& 2 x+3-3+5 x=7 x \\
& (f g)(x)=f(x) \cdot g(x)=(2 x+3)(3-5 x)= \\
& 6 x-10 x^{2}+9-15 x=-10 x^{2}-9 x+9 \\
& (f f)(x)=f(x) f(x)=(2 x+3)(2 x+3)= \\
& 4 x^{2}+12 x+9 \\
& (f / g)(x)={ }^{f(x)}=2 x+3 \\
& (g / f)(x)= \\
& g(x) \quad 3-5 x \\
& g(x)=\underline{3-5 x} \\
& f(x) \quad 2 x+3
\end{aligned}
$$

18. $f(x)=-x+1, g(x)=4 x-2$
a) The domain of $f, g, f+g, f-g, f g$, and $f f$ is

- $\quad \Sigma-\Sigma$
b)

$$
\begin{aligned}
& (f+g)(x)=(-x+1)+(4 x-2)=3 x-1 \\
& (f-g)(x)=(-x+1)-(4 x-2)= \\
& -x+1-4 x+2=-5 x+3(f g)(x \\
&)=(-x+1)(4 x-2)=4 x^{2}+6 x-2 \\
& (f f)(x)=(-x+1)(-x+1)=x^{2}-2 x+1 \\
& (f / g)(x)=\frac{-x+1}{4 x-2} \\
& (g / f)(x)=\frac{4 x-2}{} \\
& \sqrt{x+1}
\end{aligned}
$$

19. $f(x)=x-3, g(x)=x+4$
a) Anynumbercanbeaninputin f, sothedomainof
f is the set of all real numbers, or $(-\infty, \infty)$.

The domain of f / g is the set of all numbers in the domainsof f and g, excludingthosefor which $g(x)=0$. Since $g(-4)=0$, the domain of f / g is $(-4, \infty)$.

The domain of g / f is the set of all numbers in the domainsof g and f, excludingthoseforwhich
$f(x)=0$. Since $f(3)=0$, the domain of g / f is $[-4,3) \cup(3, \infty)$.
b) $(f+g)(x)=f(x)+g(x)=x-3+x \sqrt{ }+4 \quad \sqrt{ }$ \qquad

$$
\begin{aligned}
& (f-g)(x)=f(x)-g(x)=x-\sqrt{3}-x+4 \\
& (f g)(x)=f(x) \cdot g(x)=(x-3) x+4 \\
& \left(f f x \quad \sum f(x){ }^{2}=\frac{(x-3)^{2}}{x-3}=x^{2}-6 x+9\right.
\end{aligned}
$$

$$
\Sigma
$$

$$
(f / g)(x)=\bar{v}_{g(x)}^{=V^{\prime}} x+4 \sqrt{ }
$$

$$
(g / f)(x)=\underset{f(x)}{g(x)} \quad \frac{\overline{x+4}}{x-3}
$$

$$
\sqrt{ }
$$

20. $f(x)=x+2, g(x)=x-1$
a) The domain of f is $(-\infty, \infty)$. The domain of g consists of all the values of x for which $x-1$ is nonnegative, or $[1$, ∞). Thenthedomainof
$f+g, f-g$, and $f g$ is $[1, \infty)$. The domain of $f f$
is $(-\infty, \infty)$. Since $g(1)=0$, the domain of f / g
is $(1, \infty)$. Since $f(-2)=0$ and -2 is not in the domain of
g, the domain of g / f is $[1, \infty)$.
b) $(f+g)(x)=x+2+\frac{\sqrt{x-1}}{(f-}$
$g)(x)=x+2-\sqrt{ }$

21. $f(x)=2 x-1, g(x) \underline{\underline{x}}{ }_{-} x^{2}$
a) The domain of f and of g is (,). Thenothe domain of f $+g, f g, f g$, and $f f$ is $($,$) . For f / g$, we must-exclerde 0 since $g(0)=0$. The domain of f / g is $(-\infty, 0) \cup(0, \infty)$.
For g / f, we

mustexclude 1	since f	1 1^{2} -	1
-	$-\Sigma$		

g / f is ${ }^{-}{ }^{\infty},{ }^{\Sigma} U^{-}, \infty^{\Sigma}$.

- 22

The domain of g consists of all values of x for which $x+4$ is nonnegative, sowehave $x+4 \geq 0$, or $x \geq-4$. Thus, the domain of g is $[-4, \infty)$.
The domain of $f+g, f g$, an- $\mathrm{d} f g$ is the set ofall numbersin thedomainsofboth f and g. Thisis $[-4, \infty)$.
Thedomain of $f f$ is thedomainof $f, \operatorname{or}(-\infty, \infty)$.
b) $(f+g)(x)=f(x)+g(x)=(2 x-1)+\left(-2 x^{2}\right)=$ $-2 x^{2}+2 x-1$
$(f-g)(x)=f(x)-g(x)=(2 x-1)-\left(-2 x^{2}\right)=2 x^{2}+2 x$ -1
$(f g)(x)=f(x) \cdot g(x)=(2 x-1)\left(-2 x^{2}\right)=$ $-4 x^{3}+2 x^{2}$
$(f f)(x)=f(x) \cdot f(x)=(2 x-1)(2 x-1)=4 x^{2}-$ $4 x+1$
$f(x)=$

$=\underline{f(x)}$
$g(x) \quad-2 x^{2}$
()()$=g(\underline{x})=-2 x^{2}$

$$
g / f x \quad f(x) \quad 2 x-1
$$

Copyright © 2013 Pearson Education, Inc.
22. $f(x)=x^{2}-1, g(x)=2 x+5$
a) Thedomainof f andof g is the setofallrealnum- bers,or $(-\infty, \infty)$. Then the domain of $f+g, f-g, \Sigma$
$f g$ and $f f$ is $(-\infty, \infty)$. Since $g-_{5}^{5}=0$, the 2 . Since domain of f / g is

$$
-\infty,--\sum_{\Sigma} U-\infty
$$

$2 \quad 2$

$$
f(1)=0 \text { and } f(-
$$

$$
\begin{aligned}
& \left(\begin{array}{ll}
1)(11) & 1)=0, \text { the domain of } g / f \text { is } \\
-\infty,-\quad \cup-, & \cup(1, \infty)
\end{array}\right.
\end{aligned}
$$

b) $(f+g)(x)=x^{2}-1+2 x+5=x^{2}+2 x+4(f-g)(x)=$

$$
x^{2}-1-(2 x+5)=x^{2}-2 x-6(f g)(x)=
$$

$$
\left(x^{2}-1\right)(2 x+5)=2 x^{3}+5 x^{2}-2 x-5(f f)(x)=\left(x^{2}-1\right)^{2}
$$

$$
=x^{4}-2 x^{2}+1
$$

$$
(\quad)(\quad)=x^{2}-1
$$

$$
f / g \quad x \quad 2 x+5
$$

$(g / f)(x)=\frac{2 x+5}{x^{2}-1}$
23. $f(x)=x-3, g(x)=\quad x+3$
a) Since $f(x)$ is nonnegative for values of x in $[3$,$) , this isothe$ domain of f. Since $g(x)$ is nonnegative forvalues of $x \operatorname{in}[-3$, $\infty)$, thisis thedomain of g. Thedomainof $f+g, f-g$, and $f g$ is the intersection of the domains of f and g, or $[3, \infty)$. The domain
offf isthesameasthedomainof f,or $[3, \infty)$. For
f / g, we must exclude -3 since $g(-3)=0$. This is
not in $[3, \infty)$, so the domain of f / g is $[3, \quad \infty)$. For g / f, wemustexclude 3 since $f(3)=0$. Thedomain
of g / f is $(3, \infty)$.
b) $(f+g)(x)=f(x)+g(x)=\underline{x-3+x+3}$
$(f-g)(x)=f(x)-g(x)=\underline{\sqrt{ }}-3-\sqrt{ }+3+$
$(f g)(x)=f(x) \cdot g(x)=\sqrt[{\sqrt{ }}]{\sqrt{x-3} \cdot \sqrt{ }} \sqrt{x+3}=\sqrt{\sqrt{2}} x^{2-9}$
$(f f)(x)=f(x) \stackrel{f(x)=x-3 \cdot x-3=|x-3|}{x}$
$(f / g)(x)=\sqrt{ } \frac{\frac{x-3}{x+3}}{x+3}$
$\left(g \not{ }^{\prime}\right)(x)=\sqrt{ } \downarrow$ \qquad
24. $f(x)=x, g(x)=x \geq 3 x$
a) The domainof $\quad f$ is [0,∞. Thedomain of g is $(-\infty, 2]$. Then the domain of $f+g, f \quad-g$, and $f g$ is $[0,2]$. The domain of $f f$ is thesame as the domainof $f,[0, \infty)$. Since $g(2)=0$, thedomainof Copyright © 2013 Pearson Education, Inc.
25. $f(x)=x+1, g(x)=|x|$
a) The domain of \boldsymbol{f} and of g is (,). Thenpthe domain of f $+g, f g, f g$, and $f f$ is $($,$) . For f / g$, we must-exclepde 0

$$
g / f \text { is }(-\infty,-1) \cup(-1, \infty)
$$

b) $(f+g)(x)=f(x)+g(x)=x+1+|x|$

$$
(f-g)(x)=f(x)-g(x)=x+1-|x|
$$

$$
(f g)(x)=f(x) \cdot g(x)=(x+1)|x|
$$

$$
(f f)(x)=f(x) \cdot f(x)=(x+1)(x+1)=x^{2}+2 x+1
$$

$$
\underline{x+1}
$$

$(f / g)(x)=$
$|x|$
$|x|$
$(g / f)(x)=$

$$
x+1
$$

26. $f(x)=4|x|, g(x)=1-x$
a) The domain of f and of g is (,). Tlqenpthe domain of f $+g, f g, f g$, and $f f^{-}$is $($,$) . Since g(1)=\infty$, the domain
of f / g is $(, 1)(1$,$) . \quad-\infty \quad \cup \quad \infty$
Since $f(0)=0$, thedomainof g / f is $(-\infty, 0)$ $\cup(0, \infty)$.
b) $(f+g)(x)=4|x|+1-x$
$(f-g)(x)=4|x|-(1-x)=4|x|-1+x$

$$
\left.\left.(f g)()_{x}\right)=4 \quad|x|{ }^{(1}-x\right)=4|x|-\stackrel{4}{x|x|}
$$

$(f f)(x)=4|x| \cdot 4|x|=16 x^{2}$ $4|x|$
$(f / g)(x)=\begin{aligned} & 1-x \\ & 1-x\end{aligned}$
$(g / f)(x)=4|x|$
27. $f(x)=x^{3}, g(x)=2 x^{2}+5 x-3$
a) Since any number can be aninput for either f or g, the domain of $f, g, f+g, f-g, f g$, and $f f$ is the set of all real numbers,
or $(-\infty, \infty)$.
Since $g(-3)=0$ and $g^{-\frac{1}{2}}=0$, the domain of f / g
is $(-\infty,-3) \cup \quad-3, \frac{1}{\Sigma} U^{1}, \infty$.
Since $f(0)=0$, the domain of g / f is \sum_{2}^{\sum}
$(-\infty, 0) \cup(0, \infty)$.
f / g is $[0,2)$. Since $f(0)=0$, thedomainof g / f is $(0,2]$.
b) $(f+g)(x)=f(x)+g(x)=x^{3}+2 x^{2}+5 x-3$
b) $\begin{gathered}\sqrt{ } \downarrow \\ (f+g)(x)=x+{ }_{-}^{2-} x(f-\end{gathered}$ $g)(x)=\sqrt{x-} \sqrt{2-x} \quad \sqrt{ }$
$(f g)(x)=x \cdot 2_{-}^{-} x \equiv 2 x-x^{2}$
$(f-g)(x)=f(x)-g(x)=x^{3}(2 x+5 x-3)=$ $x^{3}-2 x^{2}-5 x+3$
$(f g)(x)=f(x) \cdot g(x)=x\left(\frac{3}{3} x+{ }^{2} 5 x-3\right)=2 x+5 x^{4}$
$(f f)(x)=f(x) \cdot f(x)=x^{3} \cdot x^{3}=x^{6}$

$$
\begin{aligned}
(f f(x)= & V_{x} \cdot{ }_{x=}{ }^{\sqrt{ }} x^{2}=|x| \\
& -\underline{V}_{*} \\
(f / g)(x)= & \sqrt{ }- \\
& \frac{2-x}{\sqrt{ }} \\
(g / f)(x)= & \frac{\sqrt{ }-x}{x}
\end{aligned}
$$

28. $f(x)=x^{2}-4, g(x)=x^{3}$
a) The domain of and of is (). Then the domain of $+, \quad f \quad, \quad g \quad-\infty, \infty \quad$). Since $f g f-g f g$, and $f f$ is $(-\infty, \infty$ $g(0)=0$, the domain of f / g is $(-\infty, 0) \cup(0, \infty)$.

Since $f(-2)=0$ and $f(2)=0$, thedomainof g / f
is $(-\infty,-2) \cup(-2,2) \cup(2, \infty)$.
b) $(f+g)(x)=x^{2}-4+x^{3}$, or $x^{3}+x^{2}-4$
$(f-g)(x)=x^{2}-4-x^{3}$, or $-x^{3}+x^{2}-4$

$$
\begin{aligned}
& (f g)(x)=\left(x^{2}-4\right)\left(x^{3}\right)=x^{5}-4 x^{3} \\
& (f f)(x)=\left(x^{2}-4\right)\left(x^{2}-4\right)=x^{4}-8 x^{2}+16 \\
& x^{2}-4
\end{aligned}
$$

$(f / g)(x)=$

$$
(y)()=\frac{x^{3^{3}}}{g / f x} \frac{x^{2}-4}{}
$$

29. $f(x)={ }^{4}, g(x)=\quad 1$

$$
+1 \quad 6-x
$$

a) Since $x+1=0$ when $x=-1$, we must exclude
-1 fromthedomainof $f . \operatorname{Itis}(-\infty,-1) \cup(-1, \infty)$. Since6 $-x=$
0 when $x=6$, we must exclude 6 from the domain of g. It is $(-\infty, 6) \cup(6, \infty)$. Thedomain
of $f+g, f-g$, and $f g$ is the intersection of the domains of f and g, or $(-\infty,-1 \psi(-1,6)(6, \infty)$.

Thedomainof $f f$ isthesameasthedomainof f, or (, 1) (1 ,)- Sirce theve are no values of x for which $g(x)=0$ or f
$(x)=0$, the domain of f / g and g / f is $(-\infty,-1) \cup(-1,6)$
U $(6, \infty)$.
b) $(f+g)(x)=f(x)+g(x)=$

$$
4
$$

$$
\underline{x+1}^{4} \underline{4} \quad \underline{6-x} \quad \underline{4(6-x)}
$$

$$
(f / g)(x)=\quad=\quad=
$$

$$
\begin{array}{cccc}
= & = & & \\
\frac{1}{6-x} & x+1 & 1 & x+1
\end{array}
$$

$$
\begin{aligned}
& \begin{aligned}
&(f-g)(x)=f(x)-g(x)= \frac{4}{-} \\
& x+1 \quad 6-x \\
& \underline{4} \quad 1
\end{aligned} \\
& (f g)(x)=f(x) \cdot g(x)={ }_{x+1} 6-x(\overline{\bar{x}}+1)(6-x) \\
& (f f)(x)=f(x) \cdot f(x)=\frac{4}{x+1} \frac{4}{x}+1=\frac{16}{(x+1)^{2}} \text {, or } \\
& x^{2}+2 x+1
\end{aligned}
$$

$$
\text { b) } \begin{array}{rr}
(f+g)(x)=2 x^{2}+ & \underline{2} \\
(f-g)(x) & =2 x^{2}- \\
& \frac{2}{x-5}
\end{array}
$$

$$
\left(\quad 2 \underline{2} \quad \underline{4 x^{2}}\right.
$$

$$
f g)(x)=2 x \quad \cdot x-5=x-5
$$

$$
(f f)(x)=2 x^{2} \cdot 2 x^{2}=4 x^{4}
$$

$$
(f / g)(x)=\stackrel{x_{2}^{2}}{=}=2 x^{2} . \quad \underline{x-5}=x^{2}(x-5)=x^{3}-5 x^{2}
$$

$$
[
$$

$$
\begin{array}{ll}
2 & 2
\end{array}
$$

$$
(g / f)(x)=\underline{x} \stackrel{{\underset{5}{5}}^{2}}{=}=
$$

$$
\xlongequal[=]{1} \quad 1
$$

$$
2 x^{2} x-5
$$

$$
2 x^{2} \quad x^{2}(x-5) \quad x^{3}-5 x^{2}
$$

31. $f(x)=\stackrel{1}{,}, g(x)=x-3$

$$
x
$$

a) Since $f(0)$ is not defined, the domain of f is $(-\infty, 0) \cup$ $(0, \infty)$. The domain of g is $(-\infty, \infty)$.

Then the domain of $f+g, f-g, f g$, and $f f$ is $(-\infty)(0, \cup)$. Sippce $g(3)=0$, the domain of f / g is $(, 0)$ $(0,3)(3$, o. Thete are novalues of x for which $f(x)=0$, so the domain of g / f is $(-\infty, 0) \cup(0, \infty)$.
b) $(f+g)(x)=f(x)+g(x)={ }_{x}+x-\frac{1}{3}$

$$
(f-g)(x)=f(x)-g(x)={ }^{1}-(x-3)=^{1}-x+3
$$

$$
\begin{array}{lrr}
\text {) }= & -(x-3)= & -x+3 \\
\underline{1} & \underline{x-3} & x_{3}
\end{array}
$$

$(f g)(x)=f(x) \cdot g(x)=\quad \cdot(x-3)=\quad$, or $1-$
$(f f)(x)=f(x) \cdot f(x)=\begin{aligned} & \frac{\underline{x}}{1} \cdot \overline{1}=\overline{1} \\ & =\end{aligned}$

$$
\sqrt{ } \underline{x^{2}-3 x}
$$

32. $f(x)=\quad x+6, g(x)=$ x
a) Thedomain of $f(x)$ is $[-6, \infty)$. Thedomain of $g(x)$ is $(-\infty, 0) \cup(0, \infty)$. Then the domain of $f+g, f-g$, and $f g$ is $[-6,0) \cup(0, \infty)$. The domain of $f f$ is $[-6, \infty)$. Since

$$
\begin{aligned}
& (f / g)(x)=^{f(x)}=\text { _ } \quad x=1 . \quad 1=1
\end{aligned}
$$

$$
(g / f)(x)={ }_{4}^{4-\frac{6-x}{=}} \overbrace{6+1}^{6-x} \cdot \frac{x+1}{4}=\frac{x+1}{4(6-x)}
$$

30. $f(x)=2 x^{2}, g(x)=\quad \overline{x-5}$
a) Thedomainof f is $(-\infty, \infty)$. Since $x-5=0$ when $x=5$,thedomainof g is $(-\infty, 5) \cup(5, \infty)$. Thenthe domain of $f+g, f-g$, and $f g$ is $(-\infty, 5) \cup(5, \infty)$.
The domain of $f f$ is (,)- Sinee there are no values of x
therearenovaluesof x forwhich $g(x)=0$, thedomainof f / g is $[-6,0) \cup(0, \infty)$. Since
$f(-6)=0$, the domain of g / f is $(-6,0) \cup(0, \infty)$.
b) $(f+g)(x)=x+6+\quad 1$

for which $g(x)=0$, the domain of f / g is $(-\infty, 5) \cup(5, \infty)$. Since f

$$
\begin{aligned}
& (0)=0, \text { thedomainof } \\
& g / f \text { is }(-\infty, 0) \cup(0,5) \cup(5, \infty) .
\end{aligned}
$$

33. $f(x)=\underset{x-2}{, g(x)=} \quad x-1$
a) Since $f(2)$ is not defined, the domain of f is (, 2) (2,). Strife $g(x)$ is nennegative for val- ues of x in [1,), this is the domain of g. The domain of $f+g, f g$, and $f g$ is the intersection of the-domains of f and g, or $[1,2)(2$,). The domain of $f f$ is the same as the doumain ∞ of f, or (, 2) (2,). For f / g, we must exclude 1 since $g(1)=0$, so therdomain of $f d g$ is $(1,2)(2$,$) . There are no values of x$ for which $f(x)=0$, so the domain of g / f is $[1,2) \cup(2, \infty)$.
b) $(f+g)(x)=f(x)+g(x)=\frac{3}{-\sqrt{ }}+x-1$

$$
f(x) \quad \underline{x^{3}}-
$$

$$
g^{(x)} \sqrt{ } \quad x-1 \quad(x-2) x-1
$$

$g / f x$

$$
f(x) \quad \frac{3}{x-2}
$$

3
34. $f(x)=\frac{2}{4-x}, g(x)=\frac{5}{x-1}$
$(-\infty, 1) \cup(1, \infty)$. Thedomainof $f+g, f-g$, and $f g$ is $(-\infty$, $1) \cup(1,4) \cup(4, \infty)$. The domain of $f f$ is $(-\infty, 4) \cup(4, \infty)$. The domain of f / g and of g / f is $(-\infty, 1) \cup(1,4) \cup(4$,

$$
\begin{aligned}
& \underline{25}^{4-x} \quad x-1 \\
& (f g)(x)=\frac{2}{4-x \cdot \frac{4-x}{x-1}=\frac{x-1}{=} \frac{10}{(4-x)(x-1)}} \\
& (f f)(x)=\frac{2}{2} \cdot \frac{2}{} \\
& 4-x \quad 4-x \quad(4-x)^{2} \\
& (f / g)(x)=\underline{4-\underline{x}^{2}}=\underline{2(x-\underline{1)}}
\end{aligned}
$$

$$
\begin{aligned}
& (f-g)(x)=f(x)-g(x)=\underline{3} \sqrt{\frac{x-2}{3}} \sqrt{\frac{3}{x-2}}-x-13 \downarrow-\underline{1}
\end{aligned}
$$

$$
\begin{aligned}
& (f f)(x)=f(x) \cdot f(x)=\underline{3} \quad \underline{3} . \frac{9}{} \\
& x-2 \quad x-2 \quad(x-2)^{2}
\end{aligned}
$$

35. Fromthegraphweseethatthedomainof F is $[2,11]$ and the domainof G is $[1,9]$. The domain of $F+G$ is the set of numbers in the domains
ofboth F and G. Thisis[2,9].
36. The domain of $F G$-and $F G$ is the set of numbers in the domains of both F and G. (SeeExercise33.) This is [2,9].

Thedomain of F / G is the set of numbers in the domains of both F and G, excluding those for which $G=0$. Since $G>0$ forall valuesof x in itsdomain,thedomainof F / G is $[2,9]$.
37. The domain of G / F is the setofnumbers in the domains of both F and G (SeeExercise 33.), excluding those forwhich $F=0$. Since $F(3)=0$,the domainof G / F is $[2,3) \cup(3,9]$.
38.

39.

41. Fromthegraph,weseethatthedomainof F is $[0,9]$ and thedomainof
G is [3, 10]. Thedomainof $F+G$ is theset
ofnumbersinthedomainsofboth F and G. Thisis [3, 9].
42. Thedomainof $F-G$ and $F G$ isthesetofnumbersinthe domainsofboth F and G.(SeeExercise39.) Thisis[3,9].
$5 \quad 5(4-x)$
$x-1$
$\frac{5}{x-1} \underline{5(4-x)}$
$(g / f)(x)=\quad=$
$\frac{2}{4-x} \quad 2(x-1)$

Thedomain of F / G is the set of numbers in the domains of both F and G, excluding those for which $G=0$. Since $G>0$ forall valuesof x in
itsdomain,thedomainof F / G
is $[3,9]$.
43. Thedomain of G / F isthesetofnumbersinthedomains ofboth F and G (SeeExercise39.), excluding those for which $F=0$. Since $F(6)=$ 0 and $F(8)=0$, thedomain of G / F is $[3,6) \cup(6,8) \cup(8,9]$.
44. $(F+G)(x)=F(x)+G(x)$

45.

46.

47. a) $P(x)=R(x)-C(x)=60 x-0.4 x^{2}-(3 x+13)=$

$$
60 x-0.4 x^{2}-3 x-13=-0.4 x^{2}+57 x-13
$$

b) $R(100)=60 \cdot 100-0.4(100)^{2}=6000-0.4(10,000)=6000-4000$
$=2000$
$C(100)=3 \cdot 100+13=300+13=313$
$P(100)=R(100)-C(100)=2000-313=1687$
48. a) $P(x)=200 x-x^{2}-(5000+8 x)=$
$200 x-x^{2}-5000-8 x=-x^{2}+192 x-5000$
b) $R(175)=200(175)-175^{2}=4375$
$C(175)=5000+8 \cdot 175=6400$
$P(175)=R(175)-C(175)=4375-6400=-2025$
(Wecould also use the function found inpart(a)to find P
(175).)
49. $f(x)=3 x-5$
$f(x+h)=3(x+h)-5=3 x+3 h-5$
h
h
$=\frac{3 x+3 h-5-3 x+5}{h}$
$={ }_{h}=3$
$\frac{f(x+h)-f(x)}{h}=\frac{4(x+h)-1-(4 x-1)}{h}=$
$\underline{4 x+4 h-} \frac{1-}{h} \underline{4 x+1}=4 h=4$
51. $f(x)=6 x+2$
$f(x+h)=6(x+h)+2=6 x+6 h+2$
$\frac{f(x+h)-f(x)}{h}=\frac{6 x+6 h+2-(6 x+2)}{h}$

$$
\begin{aligned}
&= \frac{6 x+6 h+2-6 x-2}{h} \\
&=\frac{6 h}{h}=6
\end{aligned}
$$

52. $f(x)=5 x+3$

$$
\begin{aligned}
& \quad \frac{f(x+h)-f(x)}{h}=\frac{5(x+h)+3-(5 x+3)}{h}= \\
& \frac{5 x+5 h+3-\underline{5 x-3}}{h}={ }^{3}={ }^{5}=5 \\
& \text { 53. } f(x)={ }^{1} x+1
\end{aligned}
$$

$$
\begin{aligned}
& 1 \\
& =\frac{\overline{3}^{h}}{h}{ }^{h}{ }_{3}-
\end{aligned}
$$

54. $f(x)=-{ }_{2}^{1} x+7$

$$
\begin{aligned}
& \frac{f(x+h)-f(x)}{h}=-\frac{-}{-2} \frac{(x+h)+7--}{h} \underline{2} \frac{x+7}{=}
\end{aligned}
$$

55. $f(x)={ }^{\frac{1}{4}} 3$.
$f(x+h)=3(x+h)$
$1-1$
$. f(x+h)-f(x)=\quad \underline{3(x+h)-3 x-}$
h

$$
\begin{array}{ccccc}
1_{1}^{h} & x & 1 & x+h \\
& & - & - & \\
\hline
\end{array}
$$

$$
=\underline{3(x+h) x \quad \hat{\beta} x \quad x+h}
$$

$$
x=\underline{x+h}
$$

$$
=\frac{3 x(x+h) \quad 3 x(x+h)}{h}
$$

$$
=\frac{\frac{x-(x+h)}{x(x+h)}}{h}=\frac{3 x(x-x-h)}{h}
$$

$$
=\frac{3 x(x+h)}{h}=\frac{-h}{3 x(x+h)} \frac{1}{h}
$$

$$
=\frac{-h}{3 x(x+h) \cdot h}=\frac{-1 \cdot h}{3 x(x+h) \cdot h}
$$

$$
=\frac{-1}{3 x(x+h)} \text {, or }-\frac{1}{3 x(x+h)}
$$

56. $f(x)=\frac{1}{2 x}$

57. $f(x)=-\frac{1}{x}$
$f(x+h)-f(x) \quad-\overline{x+h}-{ }^{-} \bar{\Sigma}^{\Sigma}$

$\frac{x(x+h)}{h}=\overline{x(x+h)} h^{=} \quad \frac{h}{x(x+h)} \dot{h}^{1}=\frac{1}{\bar{x}(x+h)}$
58. $f(x)=x^{2}+1$

$$
\begin{aligned}
\frac{f(x+h)=(x+h)^{2}+1=x^{2}+2 x h+h^{2}+1}{f(x+h)-f(x)} & = \\
& x^{2}+\underline{2 x h+h^{2}} \frac{+1-\left(x^{2}+1\right)}{h} \\
& =\frac{x^{2}+2 x h+h^{2}+1-x^{2}-1}{h} \\
& =\frac{2 x h+h^{2}}{h} \\
& =\frac{h(2 x+h)}{h} \\
& =h 2 x+h \\
& =2 x+h
\end{aligned}
$$

60. $f(x)=x^{2}-3$
$f(x+h)-f(x) \quad(x+h)^{2}-3-\left(x^{2}-3\right)$

61. $f(x)=4-x^{2}$
$f(x+h)=4-(x+h)^{2}=4-\left(x^{2}+2 x h+h^{2}\right)=4-x^{2}-$ $2 x h-h^{2}$

$$
\underline{f(x+h)-f(x)}=4-x^{2}-2 x h-h^{2}-\left(4-x^{2}\right)
$$

h

$$
\begin{aligned}
& =\frac{4-x^{2}}{\underline{2}-2 x h-h^{2}} \underline{\underline{-4+x^{2}}} \\
& =\frac{-2 x h-h^{2}}{h}=\frac{-h)}{h} \underline{h(-2 x}
\end{aligned}
$$

Copyright © 2013 Pearson Education, Inc.

$$
\begin{aligned}
& { }^{-} 4(x+h)^{\cdot} x^{-}{ }^{-} 4 x \cdot x+h \\
= & \frac{-\frac{x}{4 x(x+h)}+\frac{x+h}{4 x(x+h)}}{=} \\
= & \frac{4 x(x+h)}{h}=\frac{4 x(x+h)}{h} \\
= & \frac{h}{h} \cdot \frac{1}{h \cdot 1}=\frac{1}{h \cdot x+h}=\frac{1}{2}
\end{aligned}
$$

$$
=-2 x-h
$$

62. $f(x)=2-x^{2}$ $f(x+h)-f(x)=2-(x+h)^{2}-\left(2-x^{2}\right)^{2}=$

$$
\underline{2-x^{2}-2 x h-h^{2}-2+x^{2}}=-2 x h-h^{2}=
$$

h
h
$\frac{h(-2 x-h)}{h}=-2 x-h$

$$
\begin{aligned}
& 4 x(x+h) h \quad 4 x(x+h) \cdot h \quad 4 x(x+h) \quad \text { 63. } f(x)=3 x^{2}-2 x+1 \\
& f(x+h)=3(x+h)^{2}-2(x+h)+1=3\left(x^{2}+2 x h\right. \\
& \left.+h^{2}\right)-2(x+h)+1=
\end{aligned}
$$

$$
\begin{aligned}
& 3 x^{2}+6 x h+3 h^{2}-2 x-2 h+1 \\
& f(x)=3 x^{2}-2 x+1 \\
& \frac{f(x+h)-f(x)}{h}= \\
& \left(3 x^{2}+6 x h+3 h^{2}-2 x-2 h+1\right)-\left(3 x^{2}-2 x+1\right)
\end{aligned}
$$

 h

$$
\begin{array}{cr}
\frac{10 x h+5 h^{2}+4 h}{}=10 & \\
h & x+5 h+4
\end{array}
$$

65. $f(x)=4+5|x|$

$$
\begin{aligned}
& f(x+h)=4+5|x+h| \\
& \frac{f(x+h)-f(x)}{h}=\frac{4+5|x+h|-(4+5|x|)}{h} \\
& \underline{4+5|x+h|-4-5|x|}
\end{aligned}
$$

$$
=
$$

$$
\underline{5|x+h|-5 \mid x^{h}}
$$

$$
=\quad h^{\mid}
$$

66. $f(x)=2|x|+3 x$

$$
\begin{aligned}
& \frac{f(x+h)-f(x)}{h}=\frac{(2|x+h|+3 x+3 h)-(2|x|+3 x)}{h}= \\
& \underline{2|x+h|-2|x|+3 h} h
\end{aligned}
$$

67. $f(x)=x^{3}$
$f(x+h)=(x+h)^{3}=x^{3}+3 x^{2} h+3 x h^{2}+h^{3}$
$f(x)=x^{3}$
$\underline{f(x+h)-f(x)}=x^{3}+\underline{3 x^{2} h+3 x h^{2}+h^{3}-x^{3}}=$ \qquad
h
h
h
$h \cdot 1$
\qquad

-

$h \quad 1$
$f(x)=x^{3}-2 x$
$f(x+h)-f(x) h=\frac{(x+h)^{3}-2(x+h)-\left(x^{3}-2 x\right)}{h}=$ $\frac{x^{3}+3 x^{2} h+3 x h^{2}+h^{3}-2 x-2 h-x^{3}+2 x}{h}=$

Cōpyright © 2013 Pearson Education, Inc.

$$
\begin{aligned}
& --2 \\
& -2 \quad x \\
& \frac{3 x^{2} h+3 x h^{2}+h^{3}-2 h=3 x-1}{h} \equiv \frac{h\left(3 x^{2}+3 x h+h^{2}-2\right)}{h}= \\
& 3 x^{2}+3 x h+h^{2}-2 \\
& \text { 69. } f(x)=\frac{x-4}{x+3} \\
& \underline{x+h-4} \quad \underline{x-4} \\
& y
\end{aligned}
$$

```
f(x+h)-f(x) }\quadx+h+3\mp@subsup{)}{}{-}x+
    h = h=
```

73. Graph $x-3 y=3$.

Firstwefindthe x-and y-intercepts. $x-3 \cdot 0$

$$
\begin{aligned}
& =3 \\
& \quad x=3
\end{aligned}
$$

The x-intercept is $(3,0)$.

$$
\begin{aligned}
0-3 y & =3 \\
-3 y & =3 \\
y & =-1
\end{aligned}
$$

They-interceptis $(0,-1)$.

Wefindathirdpointasacheck. Welet $x=3$ andsolve for y.

$$
-3-3 y=3
$$

$$
\begin{aligned}
-3 y & =6 \\
y & =-2
\end{aligned}
$$

anddrawthegraph.

74.

75. Answersmayvary; $f(x)=$
76. Thedomainof $h+f, h-f$, and $h f$ consistsofallnumbers thatareinthe domainofboth h and f,or $\{-4,0,3\}$.
Thedomainof h / f consistsofallnumbersthatareinthe domain of both h and f, excluding any forwhich the value of f is 0 , or $\{-4,0\}$. , 7
77. The domain of $h(x)$ is $x x \quad-$, and the domain of $g(x)$
is $\{x \mid x f=3\}$,so $\frac{7}{\text { and }} 3$ a renotinthedomainof $(h / g)(x)$.
We must also exclude the value of x for which $g(x)=0$.

$$
\begin{aligned}
\frac{x^{4}-1}{5 x-15} & =0 \\
x^{4}-1 & =0 \quad \text { Multiplyingby } 5 x-15 \\
x^{4} & =1 \\
x & = \pm 1
\end{aligned}
$$

Then the domain of $(h / g)(x)$ is

$$
(g \circ f)(x)=g^{4} x^{\Sigma}={ }^{5} \cdot{ }^{4} x=x
$$

7
$3 \quad 3$

The domain of $\quad 5 \quad \begin{array}{ll}4 & 5 \\ \text { and of } \quad \text { is (} \quad \text {, so the domain of }\end{array}$

- $\Sigma-\Sigma$

$f \circ \stackrel{f}{f} \stackrel{g}{g} \quad-\infty, \infty$
$(-\infty,-1) \cup(-1,1) \cup 1, \quad \cup \quad, 3 \cup(3, \infty)$.
19. $(f \circ g)(x)=f(g(x))=f\left(3 x^{2}-2 x-1\right)=3 x^{2}-2 x-1+1=$ $3 x^{2}-2 x$ $(g \circ f)(x)=g(f(x))=g(x+1)=3(x+1)^{2}-2(x+1)-1=$
$3\left(x^{2}+2 x+1\right) 2(x+1) 1=3 x^{2}+6 x+32 x 21=$
$3 x^{2}+4 x$
The domain of f and of g is ($\quad-\infty, \infty$), sothedomain of $f \circ g$ and of $g \circ f$ is $(-\infty, \infty)$.
20. $(f \circ g)(x)=f\left(x^{2}+5\right)=3\left(x^{2}+5\right)-2=3 x^{2}+15-2=$ $3 x^{2}+13$
$(g \circ f)(x)=g(3 x-2)=(3 x-2)^{2}+5=9 x^{2}-12 x+4+5=$ $9 x^{2}-12 x+9$

The domain of f and of g is $(-\infty, \infty)$, so the domain of
21. $(f \circ g g)(x)=f(g(x))=f(4 \dot{x}-3))=(4 x-3)^{2}-3=$

$$
16 x^{2}-24 x+9-3=16 x^{2}-24 x+6
$$

$(g \circ f)(x)=g(f(x))=g\left(x^{2}-3\right)=4\left(x^{2}-3\right)-3=$
The domain of $4 x^{2}-4 x^{2}-15$ and of g is $(-\infty, \infty)$, so the domain of
$f \circ g$ and of $g \circ f$ is $(-\infty, \infty)$.
22. $(f \circ g)(x)=f(2 x-7)=4(2 x-7)^{2}-(2 x-7)+10=$

$$
4\left(4 x^{2}-28 x+49\right)-(2 x-7)+10=
$$

$$
16 x^{2}-112 x+196-2 x+7+10=16 x^{2}-114 x+213(g \circ f)(x)=
$$

$$
g\left(4 x^{2}-x+10\right)=2\left(4 x^{2}-x+10\right)-7=8 x^{2}-2 x+20-7=8 x^{2}
$$

$$
-2 x+13
$$

The domain of f and of g is $(-\infty, \infty)$, so the domain of
$f \circ g$ and of $g \circ f$ is $(-\infty, \infty)$.

$$
\Sigma_{1}
$$

$$
4
$$

4
23. $(f \circ g)(x)=f(g(x))=f_{x}=-\quad 1-5 \cdot 1=\frac{5}{1-1}=$

$$
1
$$

\{| Considerthedomainof 1
thedomainof g, Oisnotinthedomainof $f \circ g$. Since is not in the domain of f, we know that $g(x$
$\underline{1}$) cannot be .

$$
\begin{aligned}
& \begin{array}{lllll}
4 & \underline{x} & \underline{x} & x & x
\end{array} \\
& \begin{array}{lll}
\frac{x-5}{x} \\
x & x-5 & x-5 \\
4 & 1
\end{array} \\
& (g \circ f)(x)=g(f(x))=g^{-\quad 1-5 x^{\Sigma}=4-1-5 x}= \\
& \text { 1. } \frac{1-5 x}{4}=\frac{1-5 x}{4}
\end{aligned}
$$

$12+x \quad 12+x$
The domain $\underline{\underline{1}}$ of f is $\{x \mid x f=0\}$ and the domain of g
is_x $x^{\cdot} f=-2$. Consider the domain of $f \circ g$. Since $1 \underline{1}$ $-_{2}$ isnot in thedomain of $g,{ }_{2}$ isnot in thedomain of $f \circ g$. Now

0 is not in the domain of f but $g(x)$
is never 0 , so the domain of $f \circ, \quad, f=-$, or $\underline{1}$
g is $x x$
$-{ }_{-\infty} \quad \frac{1}{\Sigma} \cdot \quad \underline{ }$

$$
-{ }_{2} \cup \quad-,^{\infty}
$$

Now considerthe dontain of $g f$. Since 0 is notin the domain of f, then 0 is not in the domain of $g f$. Also, 。 since ${ }^{-}$isnotinthedomainof g, wefindthevalue(s)of 2
x for which $f(x)=-\frac{1}{2}$

$$
\begin{aligned}
\frac{6}{-} & =-{ }_{2} \\
-12 & =x
\end{aligned}
$$

Then the domain of $g f$ is $x_{x} x=12$ and $x=0$, or $(-\infty,-12) \cup$

$$
(-12,0) \cup(0, \infty) . \quad-\quad f_{x+7}-
$$

25. $(f \circ g)(x)=f(g(x))=f_{\Sigma} \quad 3 \quad=$

$$
3 \quad x+7 \quad-7=x+7-7=x
$$

3

$$
(g \circ f)(x)=g(f(x))=g(3 x-7)=\quad \frac{(3 x-7)+7}{3}=
$$

$$
\frac{3 x}{3}=x
$$

Thedomain of f and of g is $(-\infty, \infty)$, so the domain of $f \circ g$ and of $g \circ f$ is $(-\infty, \infty)$.
26.

$$
\begin{aligned}
& (f \circ g)(x)=f(1.5 x+1.2)=3^{\left.-\frac{2}{(1.5 x}+1.2\right)-5^{-4}} \\
& -x+0.8-\frac{4}{5}=x \\
& (g \circ f)(x)=g \quad 2_{x_{-}-}{ }^{4} \quad \Sigma=1.5^{2} x_{-}-4 \pm 1.2=
\end{aligned}
$$

Wefindthevalue(s)of x forwhich $g(x$

$$
5
$$

$)=5$.
$\underline{1}=1$
$x \quad 5$
$5=x \quad$ Multiplying by $5 x$
Thus 5 isalsonotinthedomainof $f \circ g$.Thenthedomain of $f \circ g$ is $\{x \mid x$
$f=0$ and $x f=5\}$, or $(-\infty, 0) \cup(0,5) \cup(5, \infty)$.Now consider the 1
domainof $g \circ f$. Recallthat isnotin
thedomain of f, so it isnot in thedomain of $g f$. Now $^{\circ} 0$ is notinthe domain of g but $f(x)$ isnever0, sothedomạ in $\quad 1$

The domain of f and of g is $(-\infty, \infty)$, so the domain of $f \circ g$ and of $g \circ f$ is $(-\infty, \infty) . \sqrt{ }$
27. $(f \circ g)(x)=f(g(x))=f(x)=z x+1-$
$(g \circ f)(x)=g(f(x))=g(2 x+1)=\vee_{2 x+1}$

$$
\text { of } g \circ f \text { is } x^{\prime} \dot{x} f={ }_{5}, \text { or }{ }^{-\infty}{ }_{5} \sum_{5} \cup^{\infty} .
$$

Now consider the domain of $g \circ f$. There are no restrictions onthedomain of f, butthedomainof g is $\{x \mid x \geq 0\}$. Since

$$
\begin{aligned}
& f(x) \geq 0 \text { for } x \geq-{ }_{2} \text {, the } 1 \text { domain of } g \circ f \text { is } \quad x x \quad \geq-\stackrel{\rightharpoonup}{2^{\prime}} \text {, } \\
& \text { or } \quad-\frac{1}{2}, \infty
\end{aligned}
$$

28. $(f \circ g)(x)=f(2-3 \bar{x})=2-3 x^{-}$
$(g \circ f)(x)=g(x)=2-3 x$
The domain of f is $\{x \mid x \geq 0\}$ and the domain of g is $(-\infty, \infty)$.
Since $g(x) \geq 0$ when $x \leq \frac{2}{}$, thedomainof $f \circ g$
is ${ }^{-}-\infty, 2 \frac{\Sigma}{3}$.
Now considerthe domainof $g \circ f$. Since thedomain of f
is $\{x \mid x \geq 0\}$ andthedomainof g is $(-\infty, \infty)$, thedomain
of $g \circ f$ is $\{x \mid x \geq 0\}$, or $[0, \infty)$.
29. $(f \circ g)(x)=f(g(x))=f(0.05)=20$
$(g \circ f)(x)=g(f(x))=g(20)=0.05$
The domain of f and of g is $(-\infty, \infty)$, so the domain of
$f \circ g$ and of $g \circ f$ is $(-\infty, \infty)$.
30. $\left(f^{\circ} g\right)(x)=\binom{4^{-}}{x}^{-}=x$
$(g \circ f)(x)={ }^{4} x^{4}=|x|$

Thedomainof f is $(-\infty, \infty)$ andthedomainof g is $\{x \mid x \geq 0\}$, so thedomain of $f \circ g$ is $\{x \mid x \geq 0\}$, or $[0, \infty)$.
Now consider the domain of $g \circ f$. There are no restrictions onthedomain of f and $f(x) \geq 0$ forallvaluesof x, sothe
domain is $(-\infty, \infty)$.
31. $(f \circ g)(x)=f(g(x))=f\left(x^{2}-5\right)=$

$$
\begin{gathered}
\sqrt{ }-\sqrt{ }- \\
x^{2}-5+5=x^{2}=|x| \\
(g \circ f)(x)=g(f(x))=g(x+5)= \\
\sqrt{ } \overline{x+5)^{2}}-5=x+5-5=x
\end{gathered}
$$

The domain of f is $\{x \mid x \geq-5\}$ and the domain of g is
$(-\infty, \infty)$. Since $x^{2} \geq 0$ forallvaluesof x, then $x^{2}-5 \geq-5$ forallvalues of x and the domain of $g \circ f$ is $(-\infty, \infty)$.
Nowconsiderthe domainof $f \circ g$. Thereare norestrictions on the domain of g, so the domain of $f \circ g$ is the same as the domain of $f,\{x \mid x \geq$ $-5\}$, or $[-5, \infty)$.
32. $(f \circ g)(x)=\sqrt[{\left(\sqrt{5}^{5}\right.}]{ } x+2)^{5}-2=x+2-2=x$
$(g \circ f)(x)={ }^{5} x^{5}-2+2={ }^{5} x^{5}=x$

The domain of f and of g is $(-\infty, \infty)$, so the domain of
34. $(f \circ g)(x)=f\left(x^{2}-\overline{25)=1-\left(x^{2}-25\right)^{2}=}\right.$

The domain of f is $(-\infty, \infty)$ and the domain of g is $\{x \mid x \leq-5$ or $x \geq 5\}$, so the domain of $f \circ g$ is $\{x \mid x \leq-5$ or $x \geq 5\}$, or $(-\infty,-5] \cup[5, \infty)$.

Now consider the domainof $g \quad \circ f$. There are no restrictions on the domain of f and the domain of g is $\{x \mid x \leq-5$ or $x \geq 5\}$, so we find the values of x for which $f(x) \leq-5$ or $f(x) \geq 5$. We see that $1=x^{2} \leq-5$
when $x \leq-6$ or $x \geq 6$ and $1-x \geq 5$ has no solution, so the domain of $g \circ f$ is $\{x \mid x \leq-6$ or $x \geq 6\}$, or $(-\infty,-6] \cup[6, \infty)$.
35. $(f \circ g)(x)=f(g(x))=f \quad 1+x$

$$
\frac{x 1+}{1+x}-\underline{x} \quad=x
$$

$$
(g \circ f)(x)=g(f(x))=g^{-\quad \frac{1-x}{x}}=
$$

$\mathbf{1}_{\frac{1}{x}}=1 \cdot \overline{\bar{x}}^{\underline{+}} x^{x} \quad x$

The domain of f is $\{x \mid x=0\}$ and the domain of g is $\{x \mid x f=-1\}$, so we know that -1 is not in the dranf $f \circ g$. Since 0 is not in the domain of f, values of x for which $g(x)=0$ are not in the domain of $f \circ g$. But $g(x)$ is never 0 , so the domain of $f \circ g$ is $\{x \mid x f=-1\}$, or $(-\infty,-1) \cup(-1, \infty)$.

Nowconsiderthedomain of $g \circ f$. Recallthat 0 isnotin thedomainof f. Since -1 is not in the domain of g, we know that $g(x)$ cannot be
-1 . Wefindthevalue(s) of x for which $f(x)=-1$.

$$
\frac{1-x}{x}=1-
$$

$f \circ g$ and of $g \circ f$ is $(-\infty, \infty)$. Copyright © 2013 Pearson Educatilon,xac- x Multiplying by x
33. $(f \circ g)(x)=f(g(x))=f(3-x)=(3-x)^{2} \overline{+2=}$
$3-x+2=5-x$
$(g$ f $)(x)=g(f(x))=g\left(x^{2}+2\right)=3\left(x^{2}+2\right)=$

- $\quad \sqrt{ }-x^{2}-2=1-x^{2}$

Thedomainof f is $(-\infty, \infty)$ andthedomainof g is
$1=0 \quad$ False equation
Wesee that therearenovaluesof x forwhich $f(x)=-1$, so the domain of $g \circ f$ is $\{x \mid x f=0\}$, or $(-\infty, 0) \cup(0, \infty)$.
$x+2$
1
$\{x \mid x \leq 3\}$,sothedomainof $f \circ g$ is $\{x \mid x \leq 3\}$,or $(-\infty, 3]$. Now
consider the domain of $g \circ f$. There are no restrictions
onthedomainof f andthedomainof g is $\{x \mid x \leq 3\}$,so we findthevaluesof x forwhich $f(x) \leq 3$. Wesee that $x^{2}+2 \leq 3$ for $-1 \leq x \leq 1$, so the domain of $g \circ f$ is
$\{x \mid-1 \leq x \leq 1\}$,or $[-1,1]$.
36. $(f \circ g)(x)=f^{\boldsymbol{\Sigma}}=\underline{x+2} \quad-2$

$$
\begin{aligned}
& =\frac{1}{\frac{x+2-2 x}{x}}=\frac{\frac{x}{1}}{\frac{-x}{x+2}} \\
& =1 \cdot \frac{x}{-x+2}=\frac{x}{-x+2}, \text { or } \frac{x}{2-x}
\end{aligned}
$$

$$
\begin{array}{rl}
(g \circ f)(x)= & g^{\frac{1}{x-2}}=\frac{\frac{x-2}{\frac{1}{x-2}}}{x-2} \\
=\frac{\frac{1+2 x-4}{x-2}}{x-2}=\frac{\frac{2 x-3}{x-2}}{x-2} \\
=2 x-\underline{3} . x-2 & =2 x-3 \\
x-2 & 1
\end{array}
$$

The domain of f is $\{x \mid x=2\}$ and the domain of g is $\{x \mid x=0$, sfo0 0 is not in the domain of $f g$. We findthe value of x for which $g(x)=2$.

$$
\begin{aligned}
& \frac{x+2}{x}=2 \\
& x+2=2 x \\
& 2=x
\end{aligned}
$$

Then the domain of $f \circ g$ is $(-\infty, 0) \cup(0,2) \cup(2, \infty)$. Nowconsider the domain of $g f$. Since the domain of f
is $\{x k=f 2$, 中e know that 2 is not in the domain of $g f$. Since the domain of g is $x x=0$, we find the falug of x for which $f(x)=0$.

$$
\begin{aligned}
\frac{1}{x-2} & =0 \\
1 & =0
\end{aligned}
$$

Wegetafalse equation,sothere are nosuch values. Then the domain of $g \circ f$ is $(-\infty, 2) \cup(2, \infty)$.
37. $(f \circ g)(x)=f(g(x))=f(x+1)=(x+1)^{3}-$

$$
\begin{aligned}
& 5(x+1)^{2}+3(x+1)+7= \\
& x^{3}+3 x^{2}+3 x+1-5 x^{2}-10 x-5+3 x+3+7=
\end{aligned}
$$

$x^{3}-2 x^{2}-4 x+6$
$(g \circ f)(x)=g(f(x))=g\left(x^{3}-5 x^{2}+3 x+7\right)=$
$x^{3}-5 x^{2}+3 x+7+1=x^{3}-5 x^{2}+3 x+8$
The domain of f and of g is $(-\infty, \infty)$, so the domain of $f \circ g$ and of $g \circ f$ is $(-\infty, \infty)$.
38. $(g \circ f)(x)=x^{3}+2 x^{2}-3 x-9-1=$
$x^{3}+2 x^{2}-3 x-10$
$(g \circ f)(x)=(x-1)^{3}+2(x-1)^{2}-3(x-1)-9=$
$x^{3}-3 x^{2}+3 x-1+2 x^{2}-4 x+2-3 x+3-9=$
$x^{3}-x^{2}-4 x-5$
The domain of f and of g is $(-\infty, \infty)$, so the domain of $f \circ g$ and of $g \circ f$ is $(-\infty, \infty)$.
39. $h(x)=(4+3 x)^{5}$

This is $4+3 x$ to the 5 th power. The most obvious answer is $f(x)=x^{5}$ and $g(x)=\sqrt{4+3 x}$.
40. $f(x)={ }^{3} x, g(x)=x^{2}-8$
41. $h(x)=$

$$
(x-2)^{4}
$$

Thisis 1 dividedby $(x-2)$ tothe4thpower. Oneobvious
42. $f(x)=\begin{aligned} & 1 \\ & \underset{\substack{\sqrt{x}}}{ }, \quad g(x)=3 x+7]\end{aligned}$
43. $f(x)=\frac{x-1}{x+1}, g(x)=x^{3}$
44. $f(x)=|x|, g(x)=9 x^{2}-4$
45. ()$={ }^{6}, \quad()={ }^{2+x^{3}}$
$f x \quad x g x \quad \overline{2}=x^{3}$
46. $f(x)=x^{4}, g(x)=x-3$
47. $f(x)=\begin{array}{lr}\sqrt{ } \\ -\quad x, g(x)= & \begin{array}{r}x-5 \\ \\ \\ \\ \end{array} \quad \sqrt{2+2}\end{array}$
48. $f(x)=1+x, g(x)=1+x$
49. $f(x)=x^{3}-5 x^{2}+3 x-1, g(x)=x+2$
50. $f(x)=2 x^{5 / 3}+5 x^{2 / 3}, g(x)=x-1$, or $f(x)=2 x^{5}+5 x^{2}, g(x)=(x-1)^{1 / 3}$
51. a) Use the distance formula, distance $=$ rate time. Substitute3fortherateand t fortime.
$r(t)=3 t$
b) Use the formula for the area of a circle.
$A(r)=\pi r^{2}$
c) $(A \circ r)(t)=A(r(t))=A(3 t)=\pi(3 t)^{2}=9 \pi t^{2}$

Thisfunctiongivestheareaoftherippleinterms of time t.
52. a) $h=2 r$
$S(r)=2 \pi r(2 r)+2 \pi r^{2}$
$S(r)=4 \pi r^{2}+2 \pi r^{2} S(r)=$
$6 \pi r^{2}$
b) $r=\underline{h}$

$$
\begin{aligned}
& \quad \begin{array}{l}
2 \\
S(h)=2 \pi
\end{array} h_{h+2 \pi}^{h^{\Sigma}}{ }^{-{ }^{\bar{\Sigma}}}{ }_{2} \\
& S(h)=\pi h^{2}+\frac{\pi h^{2}}{2} \\
& S(h)=\frac{3}{2} \pi h^{2}
\end{aligned}
$$

53. The manufacturer charges $m+2$ per drill. The chain store sells each drill for $150 \%(m+2)$, or $1.5(m+2)$, or $1.5 m+3$. Thus, we have $P(m)=$ $1.5 m+3$.
54. $f(x)=(t \circ s)(x)=t(s(x))=t(x-3)=x-3+4=x+1$ We have f $(x)=x+1$.
55. Equations (a)(f) are in the form $y=m x+b$, so we can read the y intercepts directly from the equations. Equa- tions (g) and (h) can be
writteninthisformas $y=x-2$
and $y=-2 x \quad+3$, respectively. Wesee thatonlyequa- tion (c) has y-intercept $(0,1)$.
-answeris $f(x)=\quad$ and $g(x)=x-2$.
Anotherpossibility
1
x^{4}
is $f(x)=\frac{-}{x}$ and $g(x)=(x-2)^{4}$.
56. Ifalineslopesdownfromlefttoright,itsslopeisnegative. Theequations $y=m x+b$ forwhich m isnegativeare (b),
(d), (f), and (h). (See Exercise 55.)
57. The equation forwhich m is $g \mid r$ eatestis the equation with thesteepest slant. Thisisequation(b). (SeeExercise55.)
58. The only equation that has $(0,0)$ as a solution is (a).
59. Equations(c)and(g)have thesameslope. (SeeExer-cise 55.)
60. Onlyequations (c) and (g) havethe same slope and differ- ent y intercepts. They represent parallel lines.
61. Theonly equationsforwhich the productoftheslopesis -1 are (a) and (f).
62. Only the composition $(c p)(a) \circ$ makes sense. Itrepresents thecostof the
63. Answers may vary. One example is $f(x)=2 x+5$ and
$g(x)=\frac{x-5}{}$. OtherexamplesarefoundinExercises 17, 2
$18,25,26,32$ and 35.

Chapter 2 Mid-Chapter Mixed Review

1. The statement is true. See page 162 in the text.
2. The statement is false. See page 177 inthe text.
3. The statementistrue. See Example 2 on page 185 in the text, for instance.
4. a) For x-values from 2 to 4 , the y-valuesincrease from 2 to 4 . Thus the function isincreasingontheinterval $(2,4)$.
b) For x-valuesfrom -5 to -3 ,the y-valuesdecreasefrom 5 to 1 . Also, for x-values from 4 to 5 , the y -
valuesdecreasefrom4to-3. Thusthefunctionis decreasing on $(-5,-3)$ and on $(4,5)$.
c) For x-valuesfrom-3to-1, yis 3 . Thusthefunc-tionis constant on $(-3,-1)$.
5. From the graph we see that a relative maximum value of 6.30 occurs at $x=-1.29$. Wealso seethatarelative
minimum value of -2.30 occurs at $x=1.29$.
The graph starts rising, or increasing, from the left and stops increasing at the relative maximum. Fromthis point it decreases to the
relative minimum and then increases again. Thus the function is increasing on $(-\infty,-1.29)$ and on $(1.29, \infty)$. It is decreasing on ($-1.29,1.29$).
6. The x-valuesextendfrom -5 to -1 and from 2 to 5 , so the domain is $[-5,-1] \cup[2,5]$. The y-values extend from -3 to 5 , so the range is $[-3,5]$.
7. $A(h)=\frac{1}{(h-2) h}$
8. ($\begin{aligned} & \quad \sqsubset_{3,} \text { for }-3<x \leq 0, \\ &=\begin{array}{l}{ }^{1}{ }_{x,} \\ \overline{2}\end{array} \quad \text { for } x>0,\end{aligned}$

Since $-5 \leq-3, f(-5)=-5-5=-10$.
Since $-3 \leq-3, f(-3)=-3-5=-8$.
Since $-3<-1 \leq 0, f(-1)=2(-1)+3=-2+3=1$.
1
Since $6>0, f(6)=\quad \cdot 6=3$.
2
$-\quad x+2$, for $x<-4$,
$-x$

Wecreate the graph in two parts. Graph $g(x)=x+2$ for inputs less than -4 . Thengraph $g(x)=-x$ forinputs greater than or equal to -4 .

10. $(f+g)(-1)=f(-1)+g(-1)$

$$
\begin{aligned}
& =[3(-1)-1]+\left[(-1)^{2}+4\right] \\
& =-3-1+1+4 \\
& =1
\end{aligned}
$$

11. $(f g)(0)=f(0) \cdot g(0)$

$$
\begin{aligned}
& =(3 \cdot 0-1) \cdot\left(0^{2}+4\right) \\
& =-1 \cdot 4 \\
& =-4
\end{aligned}
$$

12. $(g-f)(3)=g(3)-f(3)$

$$
=\left(3^{2}+4\right)-(3 \cdot 3-1)
$$

$$
=9+4-(9-1)
$$

$$
=9+4-9+1
$$

$$
=5
$$

13. $(g / f)^{-3^{\Sigma}}=\frac{g^{-1^{\Sigma}}}{f .{ }_{3}^{-\frac{1}{2}}}$
$=\frac{-\sum^{\sum 2}+4}{3 \cdot \frac{1}{3}-1}$

$$
=\frac{\frac{1}{9}+4}{1-1}
$$

$\underline{1}_{h^{2}-h}$
$=\frac{9}{2} 0$

Sincedivisionby 0 isnotdefined, $(g / f)-{ }^{\Sigma}$ doesnotexist.
14. $f(x)=2 x+5, g(x)=-x-4$
a) The domain of f and of g is the set of all real num- bers, or $(-\infty, \infty)$. Thenthedomainof $f+g, f-g, f g$, and $f f$ is also $(-\infty, \infty)$.

Forf $/ g$ we mustexclude -4 since $g(-4)=0$. Then the domain of f / g is $(-\infty,-4) \cup(-4, \infty)$. For wemustexclude $\underline{5}_{\text {since }}$ - $\frac{5}{2}=0$. Therrt the domain of g / f is $-2 \quad f-2$
${ }_{-\infty,-5^{\Sigma}}{ }^{\Sigma}{ }^{-}{ }_{-,-\infty}{ }^{\Sigma}$
22
b) $(f+g)(x)=f(x)+g(x)=(2 x+5)+(-x-4)=x+1$
$(f-g)(x)=f(x) \quad-g(x)=(2 x+5) \quad-+\quad 4)=$ $2 x+5+x+4=3 x+9$
$(f g)(x)=f(x) \cdot g(x)=(2 x+5)(-x-4)=$ $-2 x^{2}-8 x-5 x-20=-2 x^{2}-13 x-20$ $(f f)(x)=f(x) \cdot f(x)=(2 x+5) \cdot(2 x+5)=$

$$
4 x^{2}+10 x+10 x+25=4 x^{2}+20 x+25
$$

$$
(f / g)(x)=f(x)=\underline{2 x+5}
$$

$$
g(x) \quad-x-4
$$

$(g / f)(x)=\frac{g(x)}{=}=\underline{-x}$

$$
f(x) \quad 2 x+5
$$

15. $f(x)=x-1, g(x)=\sqrt{ }+2$
a) Anynumbercan beaninputfor f, so the domain of f isthe set ofall realnumbers, $\operatorname{or}(-\infty, \infty)$.
The domain of g consists of all values forwhich $x+2$ is nonnegative, so wehave $x+2 \geq 0$, or $x \geq-2$, or $[-2, \infty)$. Then the domain of $f+g, f-g$, and $f g$
is $[-2, \infty)$.
The domain of $f f$ is $(-\infty, \infty)$.
Since $g(-2)=0$,thedomainof f / g is $(-2, \infty)$.

Since $f(1)=0$, thedomainof g / f is $[-2,1) \mathrm{U}(1, \infty)$. b) $(f+$
$g)(x)=f(x)+g(x)=x-1+x+2$
$(f-g)(x)=f(x)-g(x)=x-1-\sqrt{ } x+2(f g)(x)=f(x)$.
$g(x)=(x-1) x+2$
$(f f)(x)=f(x) \cdot f(x)=(x-1)(x-1)=$
$x^{2}-x-x+1=x^{2}-2 x+1$
$(f / g)(x)=\frac{f(x)}{g(x)} \sqrt{V}_{x+12} \frac{x-1}{}$
$(g / f)(x)=\frac{g(x)}{f(x)}=\frac{\overline{x+2}}{x-1}$
17. $f(x)=6-x^{2}$

$$
\begin{aligned}
& \frac{f(x+h)-f(x)}{h}=6-\frac{(x+h)^{2}-\left(6-x^{2}\right)}{h}= \\
& \frac{6-\left(x^{2}+2 x h+h^{2}\right)-6+x^{2}}{h}=\frac{6-x^{2}-2 x h-h^{2}-6+x^{2}}{h}= \\
& \frac{-2 x h-h^{2}}{=}=\frac{h(-2 x-h)}{h}=2 \begin{array}{c}
\frac{h \cdot 1}{h}-x-h
\end{array}
\end{aligned}
$$

18. $(f \circ g)(1)=f(g(1))=f\left(1^{3}+1\right)=f(1+1)=f(2)=$
19. $\left(g\right.$ oh) $(2)=g(h(2))=g\left(\begin{array}{ll}2^{2} & 2\end{array} 2+3\right)=g(4 \quad-4+3)=$
$g(3)=3^{3}+1=27+1=28$
20. $(f \circ f)(0)=f(f(0))=f(5 \cdot 0-4)=f(-4)=5(-4)-4=$ $-20-4=-24$
21. $(h \circ f)(-1)=h(f(-1))=h(5(-1)-4)=h(-5-4)=$
$h(-9)=(-9)^{2}-2(-9)+3=81+18+3=102$
22. $(f g)(x)=f(g(x))=f(6 x+4)=\quad \overline{2}^{(6 x+4)}=3 x+2$
$(g \circ f)(x)=g(f(x))=g^{-\overline{1}} \quad{ }^{\Sigma} \quad{ }^{\Sigma}=6 \cdot{ }^{1} x+42=3 x+4$
Thedomainof f and g is $(-\infty, \infty)$, so thedomainof $f \circ g$ and $g \circ f$ is $(-\infty, \infty)$.
23. $(\quad)()=(())=\quad()=3^{\sqrt{ }}+2$
$f \circ g x \quad f g x \quad f \quad x \quad V^{x}$
$(g \circ f)(x)=g(f(x))=g(3 x+2)=3 x+2$

Thedomainof f is $(-\infty, \infty)$ andthedomainof g is $[0, \infty)$.
Considerthe domain of $f \circ g$. Since any numbercan bean inputfor f, the domainof $f \circ g$ is thesameasthedomain of g, $[0$, $\infty)$. Nowconsiderthedomainof $g \circ f$. Sincetheinputsof g
mustbenonnegative, wemusthave $3 x+2 \geq 0$, or $x \quad \geq-$.
Thus the domain of $g \circ f$ is ${ }^{\Sigma}-\frac{2}{\infty}{ }_{3}^{\Sigma}$
24. The graph of $y=(h g)(x)$ will be the same as the graph of $y=h(x)$ moved down b units.
25. Under the given conditions, $(f+g)(x)$ and $(f / g)(x)$ have different domains if $g(x)=0$ for one or more real numbers x.
26. If f and g are linear functions, then any real number can be an input foreachfunction. Thus, thedomainof $f \circ g=$
the domain of $g \circ f=(-\infty, \infty)$.
27. This approach is not valid. Consider Exercise $23 \frac{n}{4 x}$ page 188 in the text, for example. Since $(f \circ g)(x)={ }^{4, x}$
$\begin{array}{rc}\frac{f(x+h)-f(x)}{h} & =\frac{4(x+h)-3-(4 x-3)}{h} \\ \frac{4 x+4 h-\underline{3-4 x+3}}{h} & \underline{\underline{4 h}}=4\end{array}$
anexaminationofonlythiscomposedfunctionwouldlead to the incorrectconclusionthatthedomainof $f \circ g$ is
$(-\infty, 5) \cup(5, \infty)$. However, we mustalsoexcludefromthe domainoffog thosevaluesofxthatarenotinthedomain
of g. Thus, thedomainof $f \circ g$ is $(-\infty, 0) \cup(0,5) \cup(5, \infty)$.

Exercise Set 2.4

1. If the graph were folded on the x-axis, the parts above and below the x axis would notcoincide, so the graphis not symmetric with respect to the x-axis.

Ifthegraph were foldedon the y-axis, thepartstotheleftandrightof the y-axis would coincide, so the graph is symmetric with respect to the y-axis.
If the graph were rotated 180°, the resulting graph would not coincide withtheoriginalgraph,soitisnotsymmetric with respect to the origin.
2. If the graph were folded on the x-axis, the parts above and below the x axis would notcoincide, so the graph is not symmetric with respect to the x-axis.

Ifthegraph were foldedon the y-axis, theparts totheleftandrightof the y-axis would coincide, so the graph is symmetric with respect to the y-axis.
If the graph were rotated 180°, the resulting graph would not coincide withtheoriginalgraph,soitisnotsymmetric with respect to the origin.
3. Ifthe graph were folded on the x-axis, the parts aboveand belowthe x-axis wouldcoincide,sothegraphissymmetric with respect to the x-axis.
Ifthe graph were folded on the y-axis, the parts to the left and right of the y-axis would not coincide, so the graph is not symmetric with respect to they-axis.
If the graph were rotated 180°, the resulting graph would not coincide withtheoriginalgraph,soitisnotsymmetric with respect to the origin.
4. If the graph were folded on the x-axis, the parts above and below the x axis would not coincide, so the graph is not symmetric with respect to the x-axis.
Ifthe graph were folded on the y-axis, theparts to the left and right of the y-axis would not coincide, so the graph is not symmetric with respect to they-axis.
If the graph were rotated 180°, the resulting graph would coincide with the original graph, so it is symmetric with respect to the origin.
5. If the graph were folded on the x-axis, the parts above and below the x axis would not coincide, so the graph is not symmetric with respect to the x-axis.
Ifthe graph were folded on the y-axis, theparts to the left and right of the y-axis would not coincide, so the graph is not symmetric with respect to they-axis.
If the graph were rotated 180°, the resulting graph would coincide with the original graph, so it is symmetric with respect to the origin.
6. Ifthe graph were folded on the x-axis, the parts aboveand belowthe x-axis wouldcoincide,sothegraphissymmetric with respect to the x-axis.
Ifthe graph were foldedon the y-axis, theparts totheleftandrightof the y-axis would coincide, so the graph is symmetric with respect to the y-axis.

If the graph were rotated 180°, the resulting graph would coincide with the original graph, so it is symmetric with respect to the origin.

Thegraph is symmetric with respect to the y-axis. It is notsymmetric withrespecttothe x-axisortheorigin.
Testalgebraicallyforsymmetrywithrespecttothe x-axis: $y=|x|-2$
Original equation

$$
\begin{aligned}
& -y=|x|-2 \quad \text { Replacing } y \text { by }-y \text { y }= \\
& -|x|+2 \text { Simplifying }
\end{aligned}
$$

The lastequationis notequivalenttothe original equation, sothe graphis not symmetric with respect to the x-axis.
Testalgebraicallyforsymmetrywithrespecttothey-axis: $y=|x|-2$
Original equation
$y=|-x|-2$ Replacing x by $-x y=$
$|x|-2 \quad$ Simplifying
The last equation isequivalent to the original equation, so
the graph is symmetric with respect to the y-axis.
Testalgebraically forsymmetry with respect tothe origin:

$$
\begin{array}{cc}
y=|x|-2 & \text { Original equation } \\
-y=|-x|-2 & \text { Replacing } x \text { by }-x \text { and } \\
y \text { by }-y \\
-y=|x|-2 & \text { Simplifying } \\
y=-|x|+2 &
\end{array}
$$

The lastequationis notequivalent to the originalequation, sothe graphis not symmetric with respect to the origin.
8.

Thegraphisnotsymmetricwithrespecttothe x-axis,the y-axis, or the origin.
Testalgebraicallyforsymmetrywithrespecttothex-axis: $y=|x+5|$
Original equation

$$
\begin{aligned}
& -y=|x+5| \quad \text { Replacing } y \text { by }-y y= \\
& -|x+5| \text { Simplifying }
\end{aligned}
$$

The lastequationis notequivalent to the originalequation, sothe graph is not symmetric with respect to the x-axis.

Testalgebraicallyforsymmetrywithrespecttothe y-axis: $y=|x+5|$
Original equation

$$
y=|-x+5| \text { Replacing } x \text { by }-x
$$

The lastequationis notequivalenttothe original equation, sothe graphis not symmetric with respect to the y-axis.
Testalgebraicallyforsymmetrywithrespecttotheorigin:

$$
y=|x+5| \quad \text { Original equation }
$$

$$
-y=|-x+5| \text { Replacing } x \text { by }-x \text { and } y \text { by }-y y=-\mid-x
$$

$+5 \mid$ Simplifying
The lastequation is notequivalent tothe originalequation, sothe graphis not symmetric with respect to the origin.
9.

The graph is not symmetric with respect to the x-axis, the y-axis, or the origin.
Testalgebraicallyforsymmetrywithrespecttothe x-axis: $5 y=4 x+5$
Original equation

$$
\begin{aligned}
5(-y) & =4 x+5 & & \text { Replacing } y \text { by }-y \\
-5 y & =4 x+5 & & \text { Simplifying } \\
5 y & =-4 x-5 & &
\end{aligned}
$$

The lastequationis notequivalent tothe original equation, sothe graphis not symmetric with respect to the x-axis.

Testalgebraicallyforsymmetrywithrespecttothe y-axis: $5 y=4 x+5$
Original equation

$$
\begin{aligned}
& 5 y=4(-x)+5 \text { Replacing } x \text { by }-x \\
& 5 y=-4 x+5 \quad \text { Simplifying }
\end{aligned}
$$

The lastequationis notequivalent tothe original equation, sothe graphis not symmetric with respect to the y-axis.

Testalgebraicallyforsymmetrywithrespecttotheorigin: $5 y=4 x+5$
Original equation

$5(-y)=4(x)+5$	Replacing x by
and	
y by $-y$	
$-5 y=-4 x+5$	Simplifying
$5 y=4 x-5$	

The lastequation is notequivalent tothe originalequation, sothe graphis not symmetric with respect to the origin.
10.

Thegraphisnotsymmetricwithrespecttothe x-axis, the y-axis, or the origin.
Testalgebraicallyforsymmetrywithrespecttothex-axis: $2 x-5=3 y$
Original equation

$$
\begin{array}{rc}
2 x-5=3(-y) & \text { Replacing } y \text { by }-y \\
-2 x+5=3 y & \text { Simplifying }
\end{array}
$$

The lastequationis notequivalenttothe originalequation, sothe graphis not symmetric with respect to the x-axis.
Testalgebraicallyforsymmetrywithrespecttothe y-axis: $2 x-5=3 y$
Originalequation

$$
2(-x)-5=3 y \text { Replacing } x \text { by }-x
$$

$$
-2 x-5=3 y \text { Simplifying }
$$

The lastequationis notequivalenttothe originalequation, sothe graphis not symmetric with respect to the y-axis.
Testalgebraicallyforsymmetrywithrespecttotheorigin: $2 x-5=3 y$
Original equation
$2(-x)-5=3(-y)$ Replacing x by $-x$ and
y by $-y$
$-2 x-5=-3 y \quad$ Simplifying
$2 x+5=3 y$
The lastequationis notequivalent tothe original equation, sothe graphis not symmetric with respect to the origin.
11.

The graph is symmetric with respect to the
y-axis. It is
notsymmetricwithrespect to the x-axisortheorigin. Test
algebraicallyforsymmetrywithrespecttothe x-axis:

$$
\begin{aligned}
5 y & =2 x^{2}-3 & & \text { Original equation } \\
5(-y) & =2 x^{2}-3 & & \text { Replacing } y \text { by }-y \\
-5 y & =2 x^{2}-3 & & \text { Simplifying } \\
5 y & =-2 x^{2}+3 & &
\end{aligned}
$$

The lastequationis notequivalenttothe originalequation, sothe graphis

Testalgebraicallyforsymmetrywithrespecttothe y-axis: $5 y=2 x^{2}-3$ Original equation

$$
\begin{aligned}
& 5 y=2(-x)^{2}-3 \text { Replacing } x \text { by }-x \\
& 5 y=2 x^{2}-3
\end{aligned}
$$

Thelastequationisequivalenttotheoriginalequation,so the graph is symmetric with respect to the y-axis.
Testalgebraicallyforsymmetrywithrespectotheorigin: $5 y=2 x^{2}-3$
Original equation

$$
\begin{gathered}
5(-y)=2(-x)^{2}-3 \text { Replacing } x \text { by }-x \text { and } \\
y \text { by }-y
\end{gathered}
$$

$$
\begin{array}{rlr}
-5 y & =2 x^{2}-3 & \text { Simplifying } \\
5 y & =-2 x^{2}+3 &
\end{array}
$$

The lastequation is notequivalenttothe original equation, sothe graph is not symmetric with respect to the origin.
12.

Thegraph is symmetric with respect to the y-axis. It is notsymmetric withrespectto the x-axisortheorigin.

Testalgebraicallyforsymmetrywithrespecttothe x-axis: $x^{2}+4=3 y$
Original equation

$$
x^{2}+4=3(-y) \text { Replacing } y \text { by }-y
$$

$$
-x^{2}-4=3 y \quad \text { Simplifying }
$$

The lastequationis notequivalenttothe original equation, sothe graph is not symmetric with respect to the x-axis.
Testalgebraically forsymmetrywithrespecttothey-axis:

$$
\begin{aligned}
& \quad x^{2}+4=3 y \text { Original equation }(-x)^{2} \\
& +4=3 y \text { Replacing } x \text { by }-x \\
& x^{2}+4=3 y
\end{aligned}
$$

Thelastequationisequivalenttotheoriginalequation,so the graph is symmetric with respect to the y-axis.
Testalgebraicallyforsymmetrywithrespecttotheorigin:

$$
\begin{array}{cc}
\begin{array}{cc}
x^{2}+4=3 y & \text { Original equation }(-x)^{2}+ \\
4=3(-y) & \text { Replacing } x \\
\text { by }-x \text { and } \\
2 & y \text { by }-y \\
x^{2}+4 & =-3 y
\end{array} \quad \text { Simplifying } \\
-x^{2}-4=3 y &
\end{array}
$$

The lastequation is notequivalent tothe original equation, sothe graphis not symmetric with respect to the origin.
13.

The graph is not symmetric with respectto the the $\quad x$-axis or y-axis.Itissymmetric withrespecttotheorigin.
Testalgebraicallyforsymmetrywithrespectothe $1 \quad x$-axis:

$$
\begin{array}{rlr}
y= & & \text { Orignal equation } \\
1 & \\
& - & \\
-y= & & \\
x & & \text { Replacing } y \text { by }-y \\
& 1 & \\
y=- & \text { Simplifying }
\end{array}
$$

The lastequationis notequivalentto the original equation, sothe graphis not symmetric with respect to the x-axis.
Testalgebraicallyforsymmetrywithrespecttothey-axis: 1

$$
\begin{array}{ll}
y= & \text { Original equation } \\
y=-\frac{1}{*} & \\
y=-1 & \text { Replacing } x \text { by } x-x \\
y=-{ }_{-} & \text {Simplifying }
\end{array}
$$

The lastequationis notequivalenttothe originalequation, sothe graphis not symmetric with respect to the y-axis.
Testalgebraically forsymmetry with respect tothe origin:

$$
\begin{array}{ll}
y=\begin{array}{c}
1 \\
x
\end{array} & \text { Original equation } \\
-y=\frac{1}{-x} & \text { Replacing } x \text { by }-x \text { and } y \text { by }-y
\end{array}
$$

$$
y=\bar{x} \quad \text { Simplifying }
$$

Thelastequationisequivalenttotheoriginalequation,so the graph is symmetric with respect to the origin.
14.

Thegraphisnotsymmetricwithrespecttothe x-axisor the y-axis.Itis symmetric withrespecttotheorigin.

Testalgebraicallyforsymmetrywithrespecttothe x-axis: 4

$$
y=-x_{x}-\quad \text { Original equation }
$$

4

$$
\begin{aligned}
-y & =-\bar{x} \\
4 & \text { Replacing } y \text { by }-y \\
y & = \\
\bar{x} & \text { Simplifying }
\end{aligned}
$$

The lastequationis notequivalenttothe originalequation, sothe graphis not symmetric with respect to the x-axis.
Testalgebraicallyforsymmetrywithrespecttothey-axis: 4

$$
\begin{array}{ll}
\begin{array}{ll}
y=-x^{-} & \text {Original equation } \\
& \underline{4} \\
y=--x & \text { Replacing } x \text { by }-x \\
4 & \\
y=-\bar{x} & \text { Simplifying }
\end{array}
\end{array}
$$

The last equation is not equivalent to the original equation, sothegraphisnotsymmetric withrespecttothe y-axis. Test algebraicallyforsymmetrywithrespecttotheorigin:

$$
\begin{array}{rll}
y=-\frac{4}{x} & \text { Original equation } \\
-y & =--\frac{4}{x} & \text { Replacing } x \text { by }-x \text { and } y \text { by }-y \\
y & =-x_{x} & \text { Simplifying }
\end{array}
$$

Thelastequationisequivalenttotheoriginalequation,so the graph is symmetric with respect to the origin.
15. Testforsymmetry with respect to the x-axis: $5 x-5 y=$

$$
\begin{gathered}
0 \text { Original equation } \\
5 x-5(-y)=0 \text { Replacing } y \text { by }-y \\
5 x+5 y=0 \text { Simplifying }
\end{gathered}
$$

The lastequationis notequivalenttothe originalequation, sothe graph is not symmetric with respect to the x-axis.
Test for symmetry with respect to the y-axis: $5 x-5 y=$
0 Original equation

$$
\begin{aligned}
& 5(-x)-5 y=0 \text { Replacing } x \text { by }-x \\
& -5 x-5 y=0 \text { Simplifying } 5 x+ \\
& 5 y=0
\end{aligned}
$$

The lastequation is notequivalenttothe originalequation, sothe graphis not symmetric with respect to the y-axis.
Testforsymmetry with respecto the origin: $5 x-5 y=0$
Original equation
$5(-x)-5(-y)=0$ Replacing x by $-x$ and y by $-y$
$-5 x+5 y=0$ Simplifying $5 x-$

$$
5 y=0
$$

Thel astequationisequivalenttotheoriginalequation,so the graph is symmetric with respect to the origin.
16. Testforsymmetry with respect to the x-axis: $6 x+7 y=$

0 Original equation

$$
\begin{gathered}
3 x^{2}-2 y^{2}=3 \\
\text { Simplifying }
\end{gathered}
$$

Thelastequationisequivalentotheoriginalequation,so the graph is symmetric with respect to the x-axis.
Test for symmetry with respect to the y-axis: $3 x^{2}-2 y^{2}$
$=3$ Original equation

$$
3(-x)^{2}-2 y^{2}=3 \text { Replacing } x \text { by }
$$

$$
-x
$$

$3 x^{2}-2 y^{2}=3$
Simplifying
Thelastequationisequivalenttotheoriginalequation,so the graph is symmetric with respect to the y-axis.
Testforsymmetry with respect to theorigin: $3 x^{2}-2 y^{2}=$

3 Originalequation

$3(-x)^{2}-2(-y)^{2}=3$ Replacing x by $-x$ and y by
$-y$
$3 x^{2}-2 y^{2}=3$
Simplifying
Thelastequationisequivalenttotheoriginalequation,so the graph is symmetric with respect to the origin.
18. Test for symmetry with respect to the x-axis: $5 y=$

$$
7 x^{2}
$$

$$
-2 x
$$

Originalequation
$5(-y)=7 x^{2}-2 x \quad$ Replacing y by $-y$
$5 y=-7 x^{2}+2 x$ Simplifying
The lastequationis notequivalenttothe originalequation, sothe graphis not symmetric with respect to the x-axis.
Test for symmetry with respect to the y-axis: $5 y=7 x^{2}-$
$2 x$
Originalequation
$5 y=7(-x)^{2}-2(-x)$ Replacing x by $-x$
$5 y=7 x^{2}+2 x \quad$ Simplifying
The lastequationis notequivalenttothe originalequation, sothe graphis not symmetric with respect to the y-axis.

Test for symmetry with respect to the origin: $5 y=7 x^{2}-$

$$
2 x \quad \text { Original equation }
$$

$$
\begin{array}{rlrl}
5(-y) & =7(-x)^{2}-2(-x) \text { Replacing } x \text { by }-x \\
& \text { and } y \text { by }-y \\
-5 y & =7 x^{2}+2 x & \text { Simplifying } \\
5 y & =-7 x^{2}-2 x &
\end{array}
$$

The lastequation is notequivalent tothe original equation, sothe graph is not symmetric with respect to the origin.
19. Test for symmetry with respect to the x-axis: $y=|2 x|$

Original equation
$-y=|2 x| \quad$ Replacing y by $-y y=$
$-|2 x|$ Simplifying
The lastequationis notequivalenttothe originalequation, sothe graphis not symmetric with respect to the x-axis.
Test for symmetry with respect to the y-axis: $y=|2 x|$
Original equation

$$
\begin{aligned}
& y=|2(-x)| \\
& \begin{array}{l}
\text { Replacing } x \text { by }-x y= \\
|-2 x| \\
y=|2 x|
\end{array} \quad \text { Simplifying }
\end{aligned}
$$

Thelastequationisequivalenttotheoriginalequation,so the graph is symmetric with respect to the y-axis.
Test for symmetry with respect to the origin:

$$
\begin{aligned}
y & =|2 x| \quad \text { Original equation } \\
-y & =|2(-x)| \\
-y & =|-2 x| \quad \text { Replacing } x \text { by }-x \text { and } y \text { by }-y \\
-y & =|2 x| \\
y & =-|2 x|
\end{aligned}
$$

The lastequation is notequivalent tothe original equation, sothe graphis not symmetric with respect to the origin.
20. Test for symmetry with respect to the x-axis: $y^{3}=2 x^{2}$

Originalequation
$\begin{aligned}(-y)^{3} & =2 x^{2} & & \text { Replacing } y \text { by }-y \\ -y^{3} & =2 x^{2} & & \text { Simplifying } \\ y^{3} & =-2 x^{2} & & \end{aligned}$
The lastequationis notequivalenttothe original equation, sothe graphis not symmetric with respect to the x-axis.
Test for symmetry with respect to the y-axis: $y^{3}=2 x^{2}$
Original equation
$y^{3}=2(-x)^{2}$ Replacing x by $-x y^{3}=$
$2 x^{2} \quad$ Simplifying
Thelastequationisequivalenttotheoriginalequation,so the graph is symmetric with respect to the y-axis.
Test for symmetry with respect to the origin:

$$
\begin{array}{cc}
y^{3}=2 x^{2} & \text { Original equation }(-y)^{3}= \\
2(-x)^{2} \text { Replacing } x \text { by }-x \text { and } \\
& y \text { by }-y \\
-y^{3}=2 x^{2} & \text { Simplifying } \\
y^{3}=-2 x^{2} &
\end{array}
$$

The lastequation is notequivalenttothe original equation, sothe graphis not symmetric with respect to the origin.
21. Testfor symmetry with respect to the x-axis: $2 x^{4}+3=$

$$
\begin{aligned}
& y^{2} \quad \text { Original equation } 2 x^{4} \\
& +3=(-y)^{2} \text { Replacing } y \text { by }-y 2 x^{4}+3=y^{2} \\
& \text { Simplifying }
\end{aligned}
$$

Thelastequationisequivalenttotheoriginalequation,so the graph is symmetric with respect to the x-axis.
Test for symmetry with respect to the y-axis: $2 x^{4}+3=$

$$
\begin{gathered}
y^{2} \text { Original equation } \\
2(-x)^{4}+3=y^{2} \text { Replacing } x \text { by }-x \\
2 x^{4}+3=y^{2} \text { Simplifying }
\end{gathered}
$$

Thelastequationisequivalenttotheoriginalequation,so the graph is symmetric with respect to the y-axis.
Test for symmetry with respect to the origin: $2 x^{4}+3=$

$$
\begin{array}{cc}
y^{2} & \text { Original equation } \\
2(-x)^{4}+3=(-y)^{2} & \text { Replacing } x \text { by }-x \\
& \text { and } y \text { by }-y \\
2 x^{4}+3=y^{2} & \text { Simplifying }
\end{array}
$$

Thelastequationisequivalenttotheoriginalequation,so the graph is symmetric with respect to the origin.
22. Test for symmetry with respect to the x-axis: $2 y^{2}=5 x^{2}$
+12 Original equation

$$
\begin{gathered}
2(-y)^{2}=5 x^{2}+12 \text { Replacing } y \text { by }-y \\
2 y^{2}=5 x^{2}+12 \text { Simplifying }
\end{gathered}
$$

Thelastequationisequivalenttotheoriginalequation,so the graph is symmetric with respect to the x-axis
Testforsymmetry with respect to the y-axis: $2 y^{2}=5 x^{2}$

$$
\begin{array}{cc}
+12 & \text { Original equation } 2 y^{2} \\
=5(-x)^{2}+12 \text { Replacing } x \text { by }-x 2 y^{2}=5 x^{2}+ \\
12 & \text { Simplifying }
\end{array}
$$

Thelastequationisequivalenttotheoriginalequation,so the graph is symmetric with respect to the y-axis.
Test for symmetry with respect to the origin: $2 y^{2}=5 x^{2}+$

$$
\begin{array}{cc}
12 & \text { Original equation } \\
2(-y)^{2}=5(-x)^{2}+12 & \text { Replacing } x \text { by }-x \\
2 y^{2}=5 x^{2}+12 & \text { and } y \text { by }-y \\
\text { Simplifying }
\end{array}
$$

Thelastequationisequivalenttotheoriginalequation,so the graph is symmetric with respect to the origin.
23. Testfor symmetry with respect to the x-axis: $3 y^{3}=4 x^{3}$

$$
\begin{aligned}
+2 & \text { Original equation } \\
3(-y)^{3}=4 x^{3}+2 & \text { Replacing } y \text { by }-y \\
-3 y^{3}=4 x^{3}+2 & \text { Simplifying } \\
3 y^{3}=-4 x^{3}-2 &
\end{aligned}
$$

The lastequationis notequivalenttothe original equation, sothe graphis not symmetric with respect to the x-axis.

Test for symmetry with respect to the y-axis: $3 y^{3}=4 x^{3}$

$$
\begin{aligned}
& +2 \quad \text { Original equation } 3 y^{3} \\
& =4(-x)^{3}+2 \text { Replacing } x \text { by }-x 3 y^{3}=-4 x^{3}+ \\
& 2
\end{aligned}
$$

The lastequation is notequivalenttothe originalequation, sothe graphis not symmetric with respect to the y-axis.
Test for symmetry with respect to the origin: $3 y^{3}=4 x^{3}+$

$$
2 \quad \text { Originalequation }
$$

$$
\begin{array}{r}
3(-y)^{3}=4(-x)^{3}+2 \text { Replacing } x \text { by }-x \\
\text { and } y \text { by }-y
\end{array}
$$

$$
-3 y^{3}=-4 x^{3}+2 \quad \text { Simplifying }
$$

$$
3 y^{3}=4 x^{3}-2
$$

The lastequation is notequivalenttothe original equation, sothe graph is not symmetric with respect to the origin.
24. Test for symmetry with respect to the x-axis: $3 x=|y|$ Original equation

$$
\begin{aligned}
& 3 x=|-y| \text { Replacing } y \text { by }-y \\
& 3 x=|y| \quad \text { Simplifying }
\end{aligned}
$$

Thelastequationisequivalenttotheoriginalequation,so the graph is symmetric with respect to the x-axis.

Test for symmetry with respect to the y-axis: $3 x=|y|$
Original equation

$$
\begin{aligned}
3(-x) & =|y| \text { Replacing } x \text { by }-x \\
-3 x & =|y| \text { Simplifying }
\end{aligned}
$$

The lastequationis notequivalenttothe originalequation, sothe graphis not symmetric with respect to the y-axis.

Testforsymmetry withrespectto theorigin: $3 x=|y|$
Original equation
$3(-x)=|-y|$ Replacing x by $-x$ and y by $-y$

$$
-3 x=|y| \quad \text { Simplifying }
$$

The lastequation is notequivalent tothe original equation, sothe graph is not symmetric with respect to the origin.
25. Test for symmetry with respect to the x-axis: $x y=12$

$$
\begin{aligned}
& \text { Original equation } \\
x(-y)=12 & \text { Replacing } y \text { by }-y \\
-x y=12 & \text { Simplifying }
\end{aligned}
$$

$x y=-12$
The lastequationis notequivalenttothe originalequation, sothe graphis not symmetric with respect to the x-axis.

Testfor symmetry with respect to the y-axis: $x y=12$
Original equation
$-x y=12 \quad$ Replacing x by $-x x y$
$=-12$ Simplifying
The lastequation is notequivalent tothe original equation, sothe graph is not symmetric with respect to the y-axis.
Test for symmetry with respect to the origieopyright © 2013 Pearson Education, Inc.

Thelastequationisequivalenttotheoriginalequation,so the graph is symmetric with respect to the origin.
26. Testforsymmetrywithrespecttothe x-axis: $x y-x^{2}=$

$$
\begin{array}{cc}
3 & \text { Originalequation } \\
x(-y)-x^{2}=3 & \text { Replacing } y \text { by }-y x y \\
+x^{2}=-3 & \text { Simplifying }
\end{array}
$$

The lastequationis notequivalenttothe original equation, sothe graphis not symmetric with respect to the x-axis.
Test for symmetry with respect to the y-axis: $x y-x^{2}=$

$$
\begin{array}{cc}
3 & \text { Originalequation } \\
-x y-(-x)=3 & \text { Replacing } x \text { by }-x \\
x y+x^{2}=-3 & \text { Simplifying }
\end{array}
$$

The lastequationis notequivalenttothe original equation, sothe graphis not symmetric with respect to the y-axis.

Test for symmetry with respect to the origin:

$$
\begin{array}{r}
x y-x^{2}=3 \text { Original equation } \\
-x(-y)-(-x)^{2}=3 \text { Replacing } x \text { by }-x \text { and } \\
y \text { by }-y \\
x y-x^{2}=3 \text { Simplifying }
\end{array}
$$

Thelastequationisequivalenttotheoriginalequation,so the graph is symmetric with respect to the origin.
27. x-axis: Replace y with $-y$; $(-5,-6)$
y-axis: Replace x with $-x ;(5,6)$
Origin: Replace x with $-x$ and y with $-y ;(5,-6)$
28. x-axis: Replace y with $-y ; \quad{ }^{-7}, 0^{\Sigma}$

29. x-axis: Replace y with $-y$; $(-10,7)$
y-axis: Replace x with $-x ;(10,-7)$

Origin: Replace x with $-x$ and y with $-y ;(10,7)$
30. x-axis: Replace y with $-y ; \quad 1,-\quad \overline{8}$
y-axis: Replace x with $-x ; \overline{-1}^{-\quad \underline{3}^{\Sigma}} 8$

Origin: Replace x with $-x$ and y with $-y ;-1,-$
31. x-axis: Replace y with $-y$; $(0,4)$
y-axis: Replace x with $-x ;(0,-4)$

$$
\begin{aligned}
& x y=12 \text { Original equation } \\
& -x(-y)=12 \text { Replacing } x \text { by }-x \text { and } y \text { by }-y x y=12 \\
& \text { Simplifying }
\end{aligned}
$$

Origin: Replace x with $-x$ and y with $-y ;(0,4)$
32. x-axis: Replace y with $-y$; $(8,3)$
y-axis: Replace x with $-x ;(-8,-3)$
Origin: Replace x with $-x$ and y with $-y ;(-8,3)$
33. The graph issymmetric withrespectto the y-axis, so the function is even.
34. The graph issymmetric withrespect to the y-axis, so the function is even.
35. The graphis symmetric withrespecttotheorigin, sothe function is odd.
36. Thegraphisnotsymmetric withrespecttoeitherthe y - axis or the origin, so the function is neithereven norodd.
37. Thegraphisnotsymmetric withrespecttoeitherthe y - axis or the origin, so the function is neithereven norodd.
38. Thegraphisnotsymmetric withrespecttoeitherthey- axis or the origin, so the function is neither even norodd.
39. $f(x)=-3 x^{3}+2 x$
$f(-x)=-3(-x)^{3}+2(-x)=3 x^{3}-2 x$
$-f(x)=-\left(-3 x^{3}+2 x\right)=3 x^{3}-2 x$
$f(-x)=-f(x)$, so f is odd.
40. $f(x)=7 x^{3}+4 x-2$
$f(-x)=7(-x)^{3}+4(-x)-2=-7 x^{3}-4 x-2$
$-f(x)=-\left(7 x^{3}+4 x-2\right)=-7 x^{3}-4 x+2$
$\boldsymbol{f}(x) \neq f(-x)$, so f is not even.
$f(-x) \quad-f(x)$, so f isnot odd.
Thus, $f(x)=7 x^{3}+4 x-2$ isneitherevennorodd.
41. $f(x)=5 x^{2}+2 x^{4}-1$
$f(-x)=5(-x)^{2}+2(-x)^{4}-1=5 x^{2}+2 x^{4}-1$
$f(x)=f(-x)$, so f is even.
42. $f(x)=x+1$

$\underline{1}$
$-f(x)=-x+-=-x-$
x
x
$f(-x)=-f(x)$, so f is odd.
43. $f(x)=x^{17}$

$$
\begin{aligned}
& f(-x)=(-x)^{17}=-x^{17} \\
& -f(x)=-x^{17}
\end{aligned}
$$

$f(-x)=-f(x)$, so f is odd.
44. $f(x)={ }^{3} x$

$$
\begin{aligned}
& f(-x)=\sqrt{\sqrt{3}} V^{x}=-{ }^{3} x \\
& -f(x)=-{ }^{3} x- \\
& f(-x)=-f(x), \text { so } f \text { is odd. }
\end{aligned}
$$

45. $f(x)=x-|x|$
46. $\quad f(x)=1$
$f(-x)=\stackrel{x^{2}}{ }{ }_{(-x)^{2}}={ }_{x^{2}}-$
$f(x)=f(-x)$, so f is even.
47. $f(x)=8$
$f(-x)=8$
$f(x)=f(-x)$, so f is even.
48. $f(x)=x^{2}+1$
$f(-x)=\quad(-x)^{2}+1=x^{2}+1$
$f(x)=f(-x)$, so f is even.
49.

50. Familiarize. Let $t=$ the price of a ticket to the closing ceremonies. Then $t+325=$ thepriceofatickettotheopening ceremonies. Together, thetwoticketscost $t+(t+325)=2 t+325$.
Translate. Thetotalcostofthetwoticketsis $\$ 1875$,so we have the following equation.

$$
2 t+325=1875
$$

Carry out. We solve the equation.

$$
\begin{aligned}
2 t+325 & =1875 \\
2 t & =1550 \\
t & =775
\end{aligned}
$$

Then $t+325=775+325=1100$.

Check. \$1100is\$325morethan\$775and\$775+\$1100= \$1875, so the answer checks.

State. Atickettotheopeningceremoniescost $\$ 1100$, and a ticket to the closing ceremonies cost $\$ 775$.
51. $f(x)=x 10-\frac{x^{2}}{}$

$$
\begin{aligned}
& f(\sqrt{ } x)=x \quad 10 \quad(x)^{2}= \\
&- x 10 \\
&--\quad x^{2} \\
&-f(x)=-x \\
& 10-x_{-}
\end{aligned}
$$

2
Since $f(-x)=-f(x), f$ is odd.
52.

$$
f(x)=\begin{aligned}
& \frac{x^{2}+1}{x^{3}+1} \\
& f
\end{aligned} \frac{\begin{array}{c}
(-x)^{2}+1
\end{array}}{} \quad \frac{x^{2}+1}{)=(-x)-|(-x)|=-x-|x|}
$$

$f(-x)=$
$-f(x)=-(x-|x|)=-x+|x| f(x)$
$f=f(-x)$, so f is not even. $f(-x) f=$ $-f(x)$, so f is not odd.
Thus,$f(x)=x-|x|$ isneitherevennorodd.

$$
\begin{aligned}
& (-x)^{3}+1^{=}-x^{3} \\
& x^{2}+1+1 \\
& -f(x)=-x^{3}+1 \\
& \text { Since } f(x) f=f(-x), f \text { is not even. Since } \\
& f(-x) f=-f(x), f \text { is not odd. } \\
& x^{2}+1
\end{aligned}
$$

53. Ifthe graph were folded on the x-axis, the parts aboveand belowthe x-axis wouldcoincide,sothegraphissymmetric with respect to the x-axis.
If the graph were folded on the y-axis, the parts to the left and right of the y-axis would not coincide, so the graph is not symmetric with respect
withtheoriginalgraph,soitisnotsymmetric with respect to the origin.
54. If the graph were folded on the x-axis, the parts above and below the x to the x-axis.

If thegraph were folded on the y-axis, the parts to the left and right of the y-axis would notcoincide, so the graph is not symmetric with respect to they-axis.

If the graph were rotated 180°, the resulting graph would coincide with the original graph, so it is symmetric with respect to the origin.
55. See the answer section in the text.
56. $O(-x)=\frac{f(-x)-f(-(-x))}{2}=\quad f(-x)-f(x), 2$
$-O(x)=-\frac{f(x)-f(-x)}{2}=\frac{f(-x)-f(x)}{2}$ Thus,
$O(-x)=-O(x)$ and O is odd.
57. a), b) See the answer section inthe text.
58. Let $f(x)=g(x)=x$. Now f and g areoddfunctions, but $(f g)(x)=x^{2}$ $=(f g)(x)$. Thus, the product is even, so the statement is false.
$(-x)$ and $g(x)=g(-x)$. Thus, $(f+g)(x)=f(x)+g(x)=f(-x)+$ $g(-x)=(f+g)(-x)$ and $f+g$ is
even. The statement is true.
definition $f(x)=f(x)$ and $g(x)=g(x)$, or $g(x)=-g($
$-\quad-\quad f(-x) \quad g(x)=\quad-f g(x)$, and $f g$ is odd. The statement is true.

Exercise Set 2.5

2. Shift the graph of $g(x)=x^{2}$ up ${ }^{1}$ unit.

3. Shift the graph of $g(x)={ }^{y} \uparrow$ down 3 units.

4. Reflect the graph of $g(x)=x$ across the x-axis and then shift it down 2 units.

5. Reflect the graph of $h(x)=x$ across the x-axis.

7. Shiftthegraphof $h(x$

$$
)=x_{x}^{\text {up4units. }}
$$

9. Firststretchthegraphof $h(x)=x$ verticallybymulti- plying each y coordinate by 3 . Then reflect it across the x-axis and shift it up 3 units.

10. Firststretchthegraphof $f(x)=x$ vertically by multiply- ing each y coordinate by 2 . Thenshiftitup1 unit.

$$
f(x)=2 x+1
$$

11. Firstshrink thegraphof $h(x)=|x|$ vertically by multiply-

1

12. Reflect the graph of $g(x)=x$ acros \mid |the x-axis and shift it up 2 units.

$$
g(x)=-\mid x_{1}^{\mid}+2
$$

13. Shiftthegraphof $g(x)=x^{3}$ right 2 unitsand reflect it across the x axis.

14. Shift the graph of $f(x)=x^{3}$ left 1 unit.

$$
f(x)=(x+1)^{3}
$$

15. Shiftthegraphof $g(x)=x^{2}$ left 1 unitanddown 1 unit.

16. Reflectthegraphof $h(x)=x^{2}$ acrossthe x-axisanddown 4 units.

17. Firstshrinkthegraphof $g(x)=x^{3}$ verticallybymultiply- 1 -coordinate by ${ }_{3}$. Then shift it up 2 units.
ing eachy

18. Reflect the graph of $h(x)=x^{3}$ across the y-axis.

19. Shiftthegraphof $f(x)=x$ left 2 units.

20. Firstshiftthegraphof $f(x)=x \underset{\underline{1}}{\stackrel{\downarrow}{\text { right }} 1 \text { unit. Shrinkit vertically by }}$ multiplyingeach y-coordinate by andthen reflectitacrossthe x-axis.

$\sqrt{ }$
21. Shift the graph of $f(x)={ }^{3} x$ down 2 units.

22. Shift the graph of $h(x)={ }^{3} x$ left 1 unit.

23. Think of the graph of $f(x)=|x|$. Since $g(x)=f(3 x)$, the graph of $g(x)=|3 x|$ is the graph of $f(x)=|x|$ shrunk horizontally by dividing each x -
$\Sigma \quad 1$
coordinate by 3 or multiplying each x-coordinate by 3 .

$f x)=x$. Since $h x \quad f x$

the graph of $h(x$	2	
	$) \equiv$	isthegraphof

x

$$
)=x_{x} \text { stretched }
$$

vertically by multiplying each y-coordinate by 2 .
26. Think of thegraph of $g(x)=|x|$. Since $f(x)=g(x-3)-4$, thegraphof
$f(x)=|x-3|-4$ isthegraphof $g(x)=|x|$
shifted right 3 units and dow 4 units.
27. Think of the graph of ()$=$. Sincxe ()$=3 f() x \quad g x-5$,
the graph of $f(x)=3 x^{V^{g} \underline{x}}-5$ is the graph of $g(x)=V_{x}$
stretched vertically by multiplying each y-coordinate by 3 and then shifted down 5 units.
28. Thinkofthegraphof $g(x)=\frac{1}{1}$. Since $f(x)=5-g(x)$,or
$\begin{array}{ll}x & 1\end{array}$
$f(x)=-g(x)+5$, thegraphof $f(x)=5-x$ is thegraph
of $g(x)={ }^{1}$ reflectedacrossthe $\quad x$-axis andthen shiftedup 5
units.
29. Think of the graph of $f(x)=|x|$. Since $g(x)=$ $f^{\underline{1}_{x}}{ }_{3}^{\Sigma}-4$, thegraph of $g(x)=\frac{1}{x}-4$ is thegraph of $f(x)=x$ stretchedhorizontallybymultiplyingeach x - coordinate by 3 and then shifted down 4 units.
30. Think of the graph of ()$=3$. Since
$f(x)=\stackrel{2}{2}_{g}(x)-4$, the graph of $f(x)=\underline{2}_{x^{3}}^{g}-4$ is the
3 3
graphof $g(x)=x^{3}$ shrunkvertically by multiplyingeach 2 y-coordinate by 3 and then shifted down 4 units.
31. Thinkofthegraphof $g(x)=x^{2}$. Since $f(x)=-1 g(x-5)$, thegraphof $f(x)=-4\left(x-\frac{1}{5}\right)^{2}$ is thegraph of $g(x)=x^{2}$ shiftedright5units,shrunkverticallybymultiplyingeach 1 y-coordinate by ${ }_{4}$, and reflected across the x-axis.
32. Think of the graph of $g(x)=x^{3}$. Since $f(x)=g(x) 5$, the graph of $f(x)=(x)^{3} 5$ is the graph of $g(x)=x^{3}$ reflected across the y axisandshifteddown 5 units.
33. Think of the graph of (

1

()=

$$
g x)=. \overline{\text { Since}}_{x} f x
$$

$g(x+3)+2$, the graph of $f(x)=\frac{1}{1}+2$ is the graph
of $g(x)=\quad$ shifted left 3 units and up 2 units.

$$
x+5 \text { is the graph of } f(x)=x
$$

reflected across the y-axis and shifted up 5 units.
35. Think of the graph of $f(x)=x^{2}$. Since $h(x)=f(x 3) \neq 5$, the graph of $h(x)=(x 3)^{2}+5$ is the-graph of $f(x)=x^{2}$ shifted right 3 units, reflected across the x-axis, and shifted up 5 units.
36. Thinkofthegraphof $g(x)=x^{2}$. Since $f(x)=3 g(x+4) 3$, thegraphof $f(x)=3(x+4)^{2}$ 3isthegraphof $g(x-)=x^{2}$ shifted left 4 units, stretched vertically by multiplying each y-coordinateby 3 , andthenshifted down 3units.
37. The graph of $y=g(x)$ is the graph of $y=f(x)$ shrunk
vertically by afactorof ${ }^{1}$. Multiplythe y-coordinateby $\underline{1}^{2}$ $2:(-12,2)$.
40. The graph of $y=g(x)$ is the graph of $y=f(x)$ shrunk
horizontally. The x-coordinates of $y=g(x)$ are ${ }^{1} \quad$ - the corresponding x-coordinates of $y=f\left(x \quad\right.$), so we div ${ }^{4}$ the $\Sigma \quad 1 \quad$ ide x-coordinate by 4 or multiply it by $4:(-3,4)$.
41. The graph of $y=g(x)$ is the graph of $y=f(x)$ shifted down 2 units. Subtract 2 from the y-coordinate: $(-12,2)$.
42. Thegraph of $y=g(x)$ is thegraphof $y=f(x)$ stretched horizontally.

The x-coordinates of $y=g(x)$ are twice the corresponding x coordinatesof $y=f(x)$, sowemultiply
the x-coordinate by 2^{-}ordivide it by ${ }^{1}:(-24,4)$.
43. Thegraph of $y=g(x)$ is thegraph of $y=f(x)$ stretched
verticallybyafactorof4.Multiplythey-coordinateby4: $(-12,16)$.
44. The graph of $y=g(x)$ is the graph $y=f(x)$ reflected across the x axis. Reflect the point across the x-axis: $(-12,-4)$.
45. $g(x)=x^{2}+4$ is the function $f(x)=x^{2}+3$ shifted up 1 unit, so $g(x)=f(x)+1$. Answer B is correct.
46. If we substitute $3 x$ for x in f, we get $9 x^{2}+3$, so $g(x)=f(3 x)$. Answer D is correct.
47. If we substitute $x-2$ for x in f, we get $(x-2)^{3}+3$, so $g(x)=f(x-2)$. Answer A is correct.
48. If we multiply $x^{2}+3$ by 2 , we get $2 x^{2}+6$, so $g(x)=2 f(x)$.

Answer C is correct.
49. Shape: $h(x)=x^{2}$

Turn $h(x)$ upside-down (that is, reflect it across the x - axis): $g(x)=$ $-h(x)=-x^{2}$
50. Shåfe $g(x)$ right $\sqrt{ } 8$ units: $f(x)=g(x-8)=-(x-8)^{2}$

$$
h x \quad x
$$

$h x \quad x$
Shift $h(x)$ left 6 units: $g(x)=h(x+6)=\sqrt{\sqrt{2}} x+6 \operatorname{Shiftg}(x)$ down 5 units: $f(x)=g(x)-5=x+6-5$
51. Shape: $h(x)=|x|$

Shift $h(x)$ left 7 units: $g(x)=h(x+7)=|x+7|$ Shift $g(x)$ up 2 units: $f(x)=g(x)+2=|x+7|+2$
52. Shape: $h(x)=x^{3}$

Turn $h(x)$ upside-down (that is, reflect it across the x - axis): $g(x)=$
$-h(x)=-x^{3}$
Shift $g(x)$ right 5 units: $f(x)=g(x-5)=-(x-5)^{3}$
53. Shape: $h(x)=\frac{1}{}$
x
38. The graph of $y=g(x)$ is the graph of $y=f(x)$ cophiftedright 2013 Pearson Educationn Inc Snrink 2. vertically by a factor of $_{2}$ that is,
units. Add 2 to the x-coordinate: $(-10,4)$.
39. Thegraphof $y=g(x)$ is thegraphof $y=f(x)$ reflected acrossthe y axis, so wereflect the point across the y-axis:
$(12,4)$.
multiply each function value by ${ }_{2}$:
$\begin{array}{ccc}\text { multiply each } & \text { function value by } \\ 2 & 1 & 1\end{array}$
$g(x)=h(x)=\quad 2 \cdot x^{\text {or }} 2 x$
Shift $g(x)$ down 3 units: $f(x)=g(x)-3=-\frac{1}{-}-2 x$
54. Shape: $h(x)=x^{2}$

Shift $h(x)$ right 6 units: $g(x)=h(x-6)=(x-6)^{2} \operatorname{Shift} g(x)$ up
2 units: $f(x)=g(x)+2=(x-6)^{2}+2$
55. Shape: $m(x)=x^{2}$

Turn $m(x)$ upside-down (that is, reflect it across the x - axis): $h(x)=$ $-m(x)=-x^{2}$
Shift $h(x)$ right 3 units: $g(x)=h(x-3)=-(x-3)^{2} \operatorname{Shift} g(x)$ up 4 units: $f(x)=g(x)+4=-(x-3)^{2}+4$
56. Shape: $h(x)=|x|$

Stretch $h(x)$ horizontally by a factor of 2 that is, multiply

Shift $g(x)$ down 5 units: $f(x)=g(x)-5={ }_{2} x^{\cdot-5}$.
57. Shape: $m(x)={ }^{\vee}{ }_{x}$

Reflect $m(x)$ across the y-axis: $h(x)=m(-x)=\stackrel{\downarrow}{ }-\frac{\sqrt{x}}{-(x+2)}$
Shift $h(x)$ left 2 units: $g(x)=h(x+2)=$
Shift $g(x)$ down 1 unit: $f(x)=g(x)-1=$
$\overline{-(x+2)}-1$
58. Shape: $h(x)=$
x
1
Reflect $h(x)$ across the x-axis: $g(x)=-h(x)=-$
$1 \quad x$
Shift $g(x)$ up 1 unit: $f(x)=g(x)+1=$
$-\bar{x}^{+1}$
59. Each y-coordinateismultiplied by-2. Weplot andconnect $(-4,0),(-3,4),(-1,4),(2,-6)$, and $(5,0)$.

6o. Each y-coordinate is multiplied by 2 . We plot and connect $(-4,0),(-3,-1),(-1,-1),(2,1.5), \operatorname{and}(5,0)$.

61. Thegraphisreflectedacrossthey-axisandstretchedhor- izontally by a factor of 2 . That is, each x-coordinate is multiplied by -2 or divided by -2 . We plot and connect $(8,0),(6,-2),(2,-2),(-4,3)$, and $(-10,0)$.

62. The graph is shrunk horizontally bya factor of 2 . That is, each x coordinate is dividedby $2{ }^{-}$or multiplied by $\begin{array}{cc}\Sigma & \frac{1}{2}\end{array}$
Weplot and connect (2,0$),(1.5,2),(0.5,2),(T, 3),-$
and $(2.5,0)$.

$g(x)=f(2 x)$
63. The graph isshifted right 1 unitsoeach x-coordinateis increased by 1 .

The graph is also reflected across the x - axis, shrunk vertically by a factorof 2, andshiftedup 3
units. Thus,eachy-coordinateismultipliedby- andthenincreased by3. Weplotandconnect($-3,3$), (2,4),
$(0,4),(3,1.5)$, and(6,3).

64. The graph is shifted left 1 unit soeach x-coordinate is decreased by

1. The graphis also reflected across the x-axis, stretched vertically by a factor of 3 , and shifted down 4 units. Thus, each y-coordinate is multiplied by -3 and then decreased by 4 . Weplotandconnect $(-5$, $-4),(-4,2),(-2,2),(1,-13)$, and (4, -4).

$$
-4 \quad g(x)=q f(x)
$$

65. The graph is reflected across the y-axis so each x-coordinate is replaced by its opposite.

66. The graph is reflected across the x-axis soeach y-coordinate is replaced by its opposite.

67. The graph is shifted left 2 units so each x-coordinate is decreasedby2.

Itisalsoreflectedacrossthe x-axissoeach $\quad y$-coordinateisreplacedwithits opposite. In addition, the graph is shifted up 1 unit, so each y coordinate is then increased by 1 .

68. The graphis reflected across the y-axis soeach
x-coordinateisreplacedwithitsopposite. Itisalsoshrunk verticallybya 1
factorof ,soeachy-coordinateismulti-

$$
1
$$

plied by ${ }_{2}$ (or divided by 2).
(-7.3) (-2,2)
69. The graph is shrunk horizontally. The x-coordinates of $y=h(x)$ are one-half the corresponding x-coordinates of $y=g(x)$.

70. Thegraphisshiftedright 1unit, soeach x-coordinateis increased by 1 . It is also stretched vertically by afactor
of 2 , so each y-coordinate is multiplied by 2 or divided
by ${ }_{2}$. In addition, thegraphisshifted down 3 units, so each y coordinate is decreased by 3 .

71. $g(x)=f(-x)+3$

Thegraphof $g(x)$ is thegraphof $f(x)$ reflectedacrossthe y-axis and shifted up 3 units. This is graph (f).
72. $g(x)=f(x)+3$

The graph of $g(x)$ is the graph of $f(x)$ shiftedup 3 units. This is graph (h).
73. $g(x)=-f(x)+3$

Thegraphof $g(x)$ is thegraphof $f(x)$ reflectedacrossthe x-axis and shifted up 3 units. This is graph (f).
74. $g(x)=-f(-x)$

Thegraphof $g(x)$ is thegraphof $f(x)$ reflectedacrossthe
x-axis and the y-axis. This is graph (a).
75. $g(x)={ }^{1} f_{3}(x-2)$

Thegraphof $g(x)$ isthegraphof $f(x)$ shrunkvertically by a factor of
3 that is, each y-coordinate is multiplied
1Σ
by - and then shifted right 2 units. This is graph (d). Copyright © 2013 Pearson Educ̉ation, Inc.
76. $g(x)=\frac{1}{{ }^{\prime}} f_{3}(x)-3$

Thegraphof $g(x)$ isthegraphof $f(x)$ shrunkvertically by a factor of 3^{-}that is, each y-coordinate is multiplied
by $3^{\text {andthenshifteddown } 3 \text { units. This is graph(e). }}$
77. $g(x)={ }^{1} f_{3}(x+2)$

Thegraphof $g(x)$ isthegraphof $f(x)$ shrunkvertically by a factor of
3 that is, each y-coordinate is multiplied 1Σ
by $_{3}{ }^{-}$and then shifted left 2 units. This is graph (c).
78.
$g(x)=-f(x+2)$
The graph of $g(x)$ is the graph $f(x)$ reflected across the x-axis and shifted left 2 units. This is graph (b).
79. $f(-x)=2(-x)^{4}-35(-x)^{3}+3(-x)-5=$ $2 x^{4}+35 x^{3}-3 x-5=g(x)$

8o. $\left.f(-x) \frac{1}{1}-x^{4} \quad \frac{1}{(}-x\right)-81(-x)-\underset{2}{17}=$
 45
81. The graph of $f(x)=x^{3} 3 x^{2}$-is shifted up 2 units. A formula for the transformed function is $g(x)=f(x)+2$, or $g(x)=x^{3}-3 x^{2}+2$.
82. Each y-coordinateofthegraphof $f(x)=x^{3} 3 x^{2}$ is $\overline{-}$ - tipliedby ${ }^{1}$. A formula for the transformed function is
$h(x)={ }^{\frac{1}{1}} f(x)$, or $h(x)=\stackrel{1}{1}_{\left(x^{3}-3 x^{2}\right) .}$
2
2
83. The graph of $f(x)=x^{3} 3 x^{2}$-isshifted left 1 unit. A formula for the transformed function is $k(x)=f(x+1)$, or $k(x)=(x+1)^{3}-3(x$ $+1)^{2}$.
84. The graph of $f(x)=x^{3} 3 x^{2}$ is shifted right 2 units and up 1 unit. A formulaforthetransformedfunctionis $t(x)=f(x-2)+1$, or $t(x)=(x-2)^{3}-3(x-2)^{2}+1$.
85. Test for symmetry with respectothe x-axis. $y=3 x^{4}-$

$$
\begin{array}{cl}
3 & \text { Original equation } \\
-y=3 x^{4}-3 & \text { Replacing } y \text { by }-y y= \\
-3 x^{4}+3 \text { Simplifying }
\end{array}
$$

Thelastequationisnotequivalenttotheoriginalequation, sothe graph isnotsymmetric with respectto the x-axis. Testfor symmetry with respect to the y-axis.

$$
\begin{aligned}
& y=3 x^{4}-3 \quad \text { Original equation } y= \\
& 3(-x)^{4}-3 \text { Replacing } x \text { by }-x y=3 x^{4}- \\
& 3
\end{aligned}
$$

Thelastequationisequivalenttotheoriginalequation,so the graph is symmetric with respect to the y-axis.
Test for symmetry with respect to the origin:

$$
\begin{aligned}
& \begin{array}{l}
y=3 x^{4}-3 \\
-y=3(-x)^{4}-3 \text { Replacing } x \text { by }-x \text { and } \\
y \text { by }-y
\end{array} \\
& -y=3 x^{4}-3
\end{aligned}
$$

The lastequation is notequivalenttothe originalequation, sothe graphis not symmetric with respect to the origin.
86. Testforsymmetrywithrespecttothe x-axis. $y^{2}=x$

Original equation

$$
(-y)^{2}=x \text { Replacing } y \text { by }-y y^{2}=x
$$

Simplifying

Thelastequationisequivalenttotheoriginalequation,so the graph is
symmetric with respect to the x-axis.
Test for symmetry with respect to the y-axis: $y^{2}=x$
Original equation
${ }^{2}$
$y=-x$ Replacing x by $-x$
The lastequationis notequivalenttothe original equation, sothe graphis not symmetric with respect to the y-axis.
Test for symmetry with respect to the origin:

$$
\begin{gathered}
\begin{array}{c}
y^{2}=x \quad \text { Original equation }(-y)^{2}= \\
-x \text { Replacing } x \text { by }-x \text { and } \\
y \text { by }-y \\
y^{2}=-x \text { Simplifying }
\end{array} .
\end{gathered}
$$

Thelastequationisnotequivalenttotheoriginalequation, sothegraphisnotsymmetricwithrespecttotheorigin.
87. Testforsymmetry withrespectothe x-axis: $2 x-5 y=0$

Original equation

$$
\begin{aligned}
2 x-5(-y) & =0 \text { Replacing } y \text { by }-y \\
2 x+5 y & =0 \text { Simplifying }
\end{aligned}
$$

The lastequation is notequivalentto theoriginalequation, sothegraph is not symmetric with respect to the x-axis.
Test for symmetry with respect to the y-axis:

$$
\begin{aligned}
& 2 x-5 y=0 \text { Originalequation } 2(-x)^{-} \\
& 5 y=0 \text { Replacing } x \text { by }-x \\
& -2 x-5 y=0 \text { Simplifying }
\end{aligned}
$$

The lastequationis notequivalenttothe originalequation, sothe graphis not symmetric with respect to the y-axis.
Testfor symmetry with respect tothe origin: $2 x-5 y=0$
Original equation

$$
\begin{gathered}
2(-x)-5(-y)=0 \text { Replacing } x \text { by }-x \text { and } \\
-2 x+5 y=0 \quad y \text { by }-y \\
2 x-5 y=0 \text { Simplifying }
\end{gathered}
$$

Thelastequationisequivalenttotheoriginalequation,so the graph is symmetric with respect to the origin.
88. Let $m=$ thenumberofMaddengamessold, inmillions. Then $3 m-1$ $=$ thenumberof Wii Fit gamessold.
Solve: $3 m-1=3.5$
$m=1.5$ million games
89. Familiarize. Let $g=$ thetotalamountspentongiftcards, in billions of dollars.
Translate.
$\$ 5$ billion is 6% of total amount spent \qquad
s., x

$y=-3 x^{4}+3 \quad$ Simplifying $\quad 5 \quad=0.06 \cdot g$

Carry out. We solve the equation.

$$
\begin{aligned}
& \frac{5}{5}=0.06 \cdot g \\
& 0.06 \\
& 83.3 \approx g
\end{aligned}
$$

Check. 6% of $\$ 83.3$ billion is 0.06 ($\$ 83.3$ billion) =
$\$ 4.998$ billion $\approx \$ 5$ billion. (Remember that werounded the value of g.) The answer checks.

State. About $\$ 83.3$ billion was spent on gift cards.
90. Let $n=$ thenumberoftaxreturnse-filedin 2005 , inmil- lions.

Solve: $n+0.439 n=98.3$
$n \approx 68.3$ mllion returns
91. Each point for which $f(x)<0$ is reflected across the x-axis.

92. Thegraphof $y=f(|x|)$ consistsofthepointsof $y=f(x)$ for which $x \geq$ 0 along with their reflections across the
y-axis.

93. The graph of $y=g(x)$ co|nsists of the points of $y=g(x)$ for which x 0 along with the \geq ir reflections across the y-axis.

94. Eachpointforwhich $g(x)<0$ isreflectedacrossthe x-axis.

95. Think of the graph of $g(x)=\operatorname{int}(x)$. Since
$f(x)=\overline{-} x-\frac{1}{2}$, the graph of $f(x)={\text { int } x-1^{\Sigma}}^{\Sigma}$ is the
graph of $g(x)=\operatorname{int}(x)_{2}$ shifted right unit. The domain is the set of all real numbers; the range is the set of all integers.

96. This function can be defined piecewise as follows:
$f(x)=\begin{aligned} & (x-1), \text { for } 0 \leq x<1, \\ & \square y_{-}-1, \quad \text { for } x \geq 1,\end{aligned}$
Think of the graph of $g(x)=x$. First shift it down 1 unit. Then reflect across the x-axis the portion of the graph for which $0<x<1$. The domain and range are both the set of nonnegativerealnumbers, or $[0, \infty)$.

97. On the graph of $y=2 \boldsymbol{f}(x)$ each y-coordinate of $y=\boldsymbol{f}(x)$ is multiplied by2,so(3,4 2),or(3,8)isonth etransformed graph.
On the graph of $y=2+\boldsymbol{f}(x)$, each y-coordinate of $y=\boldsymbol{f}(x)$ is increased by 2 (shifted up 2 units), so $(3,4+2)$, or $(3,6)$ is on the transformed graph.
On the graph of $y=f(2 x)$, each x-coordinate of(2y $=$
$f(x)$ ismultipliedby ${ }^{\underline{1}}$ (ordividedby2),so $\quad \stackrel{1}{\cdot} \cdot 3,4$,or
$\frac{3}{2}, 4^{\sum}$ is on the transformed graph.
2
98. Using a graphing calculator we find that the zeros are $-2.582,0$, and 2.582 .
The graph of $y=f(x)$ is the graph of $y=f(x)$ shifted right 3 units. Thusweshifteach ofthe zerosof $f(x) 3$ units
righttofindthezerosof $f(x-3)$. Theyare $-2.582+3$, or $0.418 ; 0+3$, or 3 ; and $2.582+3$, or 5.582 .
The graph of $y=f(x+8)$ is thegraph of $y=f(x)$ shifted 8 unitsleft. Thus weshifteachofthezerosof $f(x) 8$ units left tofind the zeros of $f(x$ $+8)$. They are $-2.582-8$, or
$-10.582 ; 0-8$, or -8 ; and $2.582-8$, or -5.418 .

Exercise Set 2.6

1. $y=k x$
$54=k \cdot 12$
$\underline{54}=k$, or $k={ }^{9}{ }_{12}^{2}$
Thevariationconstantis ${ }^{9}$,or4.5. Theequationofvari-
ation is $y={ }^{9} \underline{x}$, or $y=4.5 x$.
2
2. $y=k x$

Equationofvariation: $y={ }^{1} x$,or $y=0.5 x$.
3. $\begin{aligned} & y=\begin{array}{l}k \\ 3\end{array} k^{x} \\ & 12\end{aligned}$
$36=k$
The variation constantis 36 . The equation of variationis 36
$y=\frac{\bar{x}}{}$.
4. $y={ }^{k}$

$$
\begin{gathered}
k^{x} \\
12= \\
5 \\
60=k \text { Variation constant } \\
\text { Equation of variation: } y={ }^{60} \boldsymbol{x}
\end{gathered}
$$

5. $y=k x$

$$
\begin{aligned}
& 1=k \cdot{ }^{1} 4 \\
& 4 \\
& =k
\end{aligned}
$$

Thevariationconstantis4. Theequationofvariation is $y=4 x$.
6. $\begin{aligned} y & =\begin{array}{l}k \\ x \\ k\end{array} \\ 0.1 & =\frac{\overline{0.5}}{}\end{aligned}$

7. $y={ }_{k}^{k}$
$32=\frac{k}{\underline{1}}$

$$
\begin{aligned}
\underline{1}_{8} \cdot 32 & =k^{8} \\
4 & =k
\end{aligned}
$$

Thevariation constant is 4 . Theequation ofvariation is

$$
y=\frac{4}{\bar{x}}
$$

8. $y=k x$
$3=k \cdot 33$
${ }^{1-}=k$ Variation constant 11
Equation of variation: $y={ }_{11} x$
9. $y=k x$
$\underline{3}$

$$
4=k \cdot 2
$$

13
$-2 \overline{4}=k$
$\underline{3}=k$
8

Thevāriationconstantis. ${ }^{8}$ Theequationofvariationis 3
$y={ }_{8} x$.
10. $y=\frac{k}{x}$
$\overline{-}_{5}^{1}=\frac{k}{35}$
535
$7=k$ Variation constant
Equationofvariation: $y=x$
11. $\begin{aligned} y & =k_{-}^{k_{-}^{x}} \\ 1.8 & =L_{-}^{\prime} \\ 0.54 & =k^{0.3}\end{aligned}$
0.54

The variation constantis 0.54 . The equation of variation is $y=$.
12. $\begin{aligned} & \underline{x} \\ & y=k x \\ & 0.9=k(0.4)\end{aligned}$
$\underline{9}=k$ Variation constant 4
Equation of variation: $y={ }_{4}^{9} x$,or $y=2.25 x$
$0.05=k$ Variation constant
Equation of variation: $y=0.05$
13. Let $S=$ the sales tax and $p=$ the purchase price.

$$
S=k p \quad S \text { varies }
$$

$$
\text { directly as } p .
$$

$17.50=k \cdot 260$ Substituting
$0.067 \approx k \quad$ Variation
constant
$S=0.067$ (21) Substituting
$S \approx 1.41$
Thesalestaxis $\$ 1.41$.
14. Let $W=$ theweeklyallowanceand $a=$ thechild'sage.
$W=k a$
$4.50=k \cdot 6$
$0.75=k$
$W=0.75 a$
$W=0.75(11)$
$W=\$ 8.25$
15. \underline{k}

$$
\begin{array}{ll}
W= & W \text { varies inversely as } L . L \\
1200=\frac{k}{8} & \text { Substituting }
\end{array}
$$

$9600=k \quad$ Variationconstant
$W=\frac{9600}{L} \quad$ Equationofvariation
$W=9 \underline{9600}$ Substituting 14
$W \approx 686$
A14-mbeamcansupportabout 686 kg .
16. $t=\underline{k}$

$$
\begin{aligned}
5 & =\frac{r}{k} \\
400 & =r \\
t & =\frac{400}{r} \\
t & =\frac{400}{70}
\end{aligned}
$$

$$
t=\frac{40}{7}, \text { or } 5 \frac{5}{7} \mathrm{hr}
$$

17. Let $F=$ thenumberofgramsoffatand $w=$ theweight.

$$
\begin{array}{rlrl}
F & =k w & & F \text { varies directly as } w . \\
60 & =k \cdot 120 & \text { Substituting } \\
\frac{60}{120} & =k, \text { or } & & \text { Solvingfor } k \\
\underline{1} & =k & & \\
1
\end{array}
$$

$F=\underset{1}{2_{1}^{\#}} \quad$ Equation of variation
$F={ }_{2} \rightleftharpoons 180$ Substituting
$F=90$
The maximum daily fatintake foraperson weighing 180 lb is 90 g .
$18 . \quad N=k P$

$$
29=k \cdot 19,011,000 \quad \text { Substituting }
$$

Colorado has 7 representatives.
19. $\quad T={ }_{P}^{k} \quad T$ varies inversely as P.
$5=$
7 Substituting
$35=k \quad$ Variation constant
$T=\begin{gathered}3 \underline{5} \\ P \\ 35\end{gathered} \quad$ Equation of variation
$T=\overline{10} \quad$ Substituting
$T=3.5$
It will take 10 bricklayers 3.5 hr to complete the job.
20.

$$
\begin{aligned}
t & =\begin{array}{r}
k \\
45
\end{array}=\frac{k^{\prime}}{600} \\
27,000 & =k \\
t & =\frac{27,000}{r} \\
t & =\frac{27,000}{1000} \\
t & =27 \mathrm{~min}
\end{aligned}
$$

21. $d=k m d$ varies directly as $m .40=$ $k \cdot 3$ Substituting

$$
4 \theta=k \quad \text { Variation constant } 3
$$

$d={ }_{3}^{40}$ m Equation of variation
$d=\frac{40}{3} \cdot 5=\frac{200}{3} \quad$ Substituting
$d=66{ }_{3}{ }^{2}$
2

A 5-kg mass will stretch the spring $66 \mathrm{~cm} ._{3}$
22. $f=k F$
$6.3=k \cdot 150$
$0.042=k$
$f=0.042 F$
$f=0.042(80)$
$f=3.36$

Atone with apitch of 550 vibrationspersecond has a wavelength of 1.92 ft .
24. $M=k E$
M varies directlyas $E .38$
$=k \cdot 95$
Substituting
$\underline{2}=k$
Variationconstant 5
$M=5_{2}^{E} \quad$ Equation of variation
$M=5 \div 100$ Substituting
$M=40$
A 100-lb person would weigh 40 lb on Mars.
25. $y=\frac{k}{\overline{x^{2}}}$
$0.15=\underline{k}$
Substituting
$0.15=\frac{k{ }^{(0.1)^{2}}}{0.01}$

$$
\begin{array}{r}
0.15(0.01)=k \\
0.0015=k
\end{array}
$$

$0.0015=k$
Theequationofvariationis $y=$
$=0.0015$
26. $y={ }^{k}$
$6=-$

$$
54=k^{32}
$$

$54 y \equiv$
x^{2}
27. $y=k x^{2}$
$0.15=k(0.1)^{2}$ Substituting $0.15=$
$0.01 k$
0.15
$\xrightarrow{0.15}=k$
28. $y=k x^{2}$
$6=k \cdot 3^{2}$
$\underline{2}$
${ }_{3}=k$
3
$y={ }^{2}-x^{2} 3$
29. $y=k x z$
$56=k \cdot 7 \cdot 8$ Substituting $56=$
56k
$1=k$
The equation of variation is $y=x z$.
30. $y=k \underline{x}$
$4=\frac{k^{z} \cdot 12}{15}$
$5=k$
$y=\frac{5 x}{z}$
31. $y=k x z^{2}$
$105=k \cdot 14 \cdot 5^{2}$ Substituting $105=$
350k
$\frac{105}{350}=k$
$\frac{3}{10}=k$

$y=k$.
32.
3
2
$2=k \cdot$
$1=k$
$x z$$\quad \begin{array}{r}2 \cdot 3 \\ 4\end{array}$
$y=W$
33. $y=k w \bar{p}$ $\frac{3}{28}=k \frac{\underline{3 \cdot 10}}{7 \cdot 8} \quad$ Substituting $3^{3}=k \cdot{ }^{30}$
2856
$\frac{3}{28} \cdot \frac{56}{30}=k$
$\underline{1}=k$
5
$\begin{gathered}\text { The equation of variation is } \\ x z\end{gathered} \quad y=\frac{1 x z}{5 w p}$, or $\stackrel{x z}{ } .5 w p$
34. $y=k \cdot \overline{w^{2}}$

$$
\frac{12}{5}=k \frac{16 \cdot 3}{5^{2}}
$$

$15=k$
Theequationofvariation is $y=15 x^{2}$.

$$
\begin{gathered}
\underline{5}=k \\
4=\frac{5 x z}{4} \text { or } \quad \underline{5 x z} \\
4 w^{2} \quad 4 w^{2}
\end{gathered}
$$

35. $\begin{aligned} & I=\frac{k}{d^{2}} \\ & 90=\frac{k}{5_{2}} \\ & 90=k_{-}^{25} \\ & \text { Substituting }\end{aligned}$
$2250=k$
Theequationofvariationis $I=\quad \frac{2250}{d^{2}}$
Substitute 40 for I andfind d.

$$
\begin{aligned}
40 & =\frac{2250}{d^{2}} \\
40 d^{2} & =2250 \\
d^{2} & =56.25
\end{aligned}
$$

$$
d=7.5
$$

Thedistancefrom $5 \mathrm{mto} 7.5 \mathrm{mis} 7.5-5$,or 2.5 m ,soitis
2.5 mfurthertoapointwheretheintensityis $40 \mathrm{~W} / \mathrm{m}^{2}$.
36. $D=k A v$
$222=k \cdot 37.8 \cdot 40$
37
$252=k$

$$
D=\begin{gathered}
37 \\
252^{37}
\end{gathered}
$$

$$
\begin{gathered}
430= \\
v \approx 52 \cdot 51 v \\
v \approx 57.4 \mathrm{mph}
\end{gathered}
$$

37. $d=k r^{2}$
$200=k \cdot 60^{2}$ Substituting
$200=3600 k$
200
$\overline{3600}=k$
1
$\overline{18}=k$
18
The equation of variation is $d=-\frac{1}{r}$
r^{2}
18
Substitute 72 for d and find r.

$$
\begin{aligned}
& 72= \underline{r} \\
& 18 \\
& 1296=r^{2} \\
& 36=r
\end{aligned}
$$

Acarcantravel 36 mphandstillstopin 72 ft .
38.

$$
\begin{gathered}
W={ }^{\underline{k}} \\
{ }^{d^{2}}{ }_{k} \\
220=\frac{-}{(3978)^{2}}
\end{gathered}
$$

$3,481,386,480=k$
$W=\begin{gathered}3,481,386,480 \\ d_{3,}^{2} 481_{386} \\ , 480\end{gathered}$
)

0 $y=2 x$ Directly
d) $x=\frac{3}{\frac{y}{4}}$
y
$=$

3
x
D

i
r

e
$\rightarrow-\infty$

$$
\text { e) } \begin{aligned}
& \frac{x}{y}=2 \\
& y=2^{-x} \\
& \\
& \text { Directly }
\end{aligned}
$$

47. Let V represent the volume and p represent the price of a jar of peanut butter.

$$
\begin{aligned}
V & =k p & & V \text { variesdirectly as } p . \\
-3_{-\pi 2}^{\sum^{2}}{ }^{2}(5) & =(289) & & \text { Substituting } \\
3.89 \pi & =k . & & \text { Variation constant } \\
V & =3.89 \pi p & & \text { Equationofvariation } \\
\pi(1.625)^{2}(5.5) & =3.89 \pi p & & \text { Substituting } \\
3.73 & \approx p & &
\end{aligned}
$$

If cost is directly proportional to volume, the larger jar should cost \$3.73.
Now let W represent the weight and p represent the price of a jar of peanut butter.

$$
\begin{aligned}
W=k p & \\
18 & =k(2.89) \\
6.23 & \text { Substituting } \\
& \text { Variation constant } W= \\
6.23 p & \text { Equationofvariation } 28= \\
& \\
6.23 p & \text { Substituting } \\
4.49 \approx p &
\end{aligned}
$$

If cost is directly proportional to weight, the larger jar should cost $\$ 4.49$. (Answers may vary slightly dueto rounding differences.)
48. $Q=\frac{k p^{2}}{q^{3}}$
Q variesdirectlyasthesquareof p andinverselyasthe cube of q.
49. Weare told $A=k d^{2}$, and we know $A=\pi r^{2}$ so we have:

$$
k d^{2}=\pi r^{2}
$$

$$
\begin{array}{rl}
\quad{ }^{d_{\Sigma}{ }^{2}} & r=\underline{d} \\
k d^{2} & =\pi \\
k d^{2} & =\frac{\pi d^{2}}{4} \\
k & \\
k & \\
k & \\
4 & \text { Variation constant }
\end{array}
$$

Chapter 2 Review Exercises

1. This state ment is true by the definition of the greatest integer function.
2. Thes statementisfalse. See Example 2(b) in Section 2.3 in the text.
3. The graph of $y=f(x d)$ is the graph of $y=f(x)$ shifted right d units, so the statement is true.
4. The graph of $y=-f(x)$ is the reflection of the graph of $y=f(x)$ across the x-axis, so the statement is true.
5. a) For x-values from -4 to -2 , the y-values increase from 1 to 4 . Thus the function is increasing on the interval (-4, -2).
b) For x-valuesfrom 2 to 5 , the y-values decrease from 4 to 3. Thus thefunctionisdecreasingontheinter- $\operatorname{val}(2,5)$.
c) For x-valuesfrom-2to2,yis 4 . Thusthefunction is constant on the interval $(-2,2)$.
6. a) For x-valuesfrom-1 to 0 , the y-values increase from 3 to 4 . Also, for x-values from 2 to ${ }^{\infty}$, the y-values increase from 0 to ${ }^{\infty}$.

Thus the function is increas- ing on the intervals ($-1,0$), and $(2, \infty)$.
b) For x-valuesfrom 0 to 2 , the y-valuesdecreasefrom 4 to 0 . Thus, the function is decreasing on thein- terval $(0,2)$.
c) For x-values from $-\infty$ to $-1, y$ is 3 . Thus the func- tion is constant on the interval $(-\infty,-1)$.
7.

The function is increasing on (0 ,) and decreasing on (, 0). We estimate that the minimum value is 1 at $x=0$. There are no maxima.
8.

The ${ }^{\infty}$ function is increasing on $(, 0)$ and decreasing on $(0$,$) . We$ estimatethatthemaximumvalueis2 at $x=0$. There are no minima.
9.

We find that the function is increasing on (2,) and de- creasing on (, 2). Therelative minimum is $1 \mathrm{at} x=2$. There are no maxima.
10.

$(0.5, \infty)$ Relativemaximum:
$6.25 \mathrm{at} x=0.5$
Relative minima: none
11.

on $(-\infty,-1.155)$ and on (1.155,
$\infty)$ and decreasing on $(-1.155,1.155)$. The relative maximum is 3.079 at $x=-1.155$ and the relative minimum is -3.079 at $x=1.155$.
12.

We find that the function is increasing on ($1.1-55,1.155$) and decreasing on (, 1.155 9 and on (1.155,). The relativemaximum
is 1.540 at $x=1.155$ and the relative minimum is -1.540 at $x=$
-1.155 .
13. Lf $d=$ the length of the tablecloth, then the width is
, or 10- l. Weuse the formula Area $=$ length \times 2
width.

$$
\begin{aligned}
& A(l)=l(10-l), \text { or } \\
& A(l)=10 l-l^{2}
\end{aligned}
$$

14. Thelengthoftherectangleis2

Thewidthisthesecond

$$
x
$$

coordinateofthepoint (x, y) onthecircle. Thecirclehas center $(0, y)$ and radius 2 , so its equation is $x^{2}+y^{2}=4$ and $y=4-\chi^{2}$. Thus the area of the rectangle is given by $A(x)=2 x 4-x^{2}$.
15. a) If the length of the side parallel to the garage is x feet long, $6{ }^{\text {th }} 6^{\mathrm{e}} \mathrm{n}_{x}$ the lengt ${ }_{x} \mathrm{~h}$ of each of the other
twosidesis - , or 33- . Weuse the formula
Area $=$ length ${ }^{2}{ }^{w}$ xidth.
2

$$
A(x)=\bar{x}^{\mathbf{-}} 33-\underline{\underline{x}}^{\boldsymbol{\Sigma}} \text {, or }
$$

b) The length of the side parallel to the garage must be positive and less than 66 ft , so the domain of the function is $\{x \mid 0<x<66\}$, or $(0,66)$.
c)

d) By observing the graph or using the MAXIMUM feature, we see that the maximum value of the func- tion occurs when $x=$ 33. When $x=33$, then
$33-\frac{x}{2}=33-\frac{33}{2}=33-16.5=16.5$. Thusthedi-
mensions that yield the maximum area are 33 ft by 16.5 ft .
16. a) Let $h=$ theheightofthebox. Since the volume is $108 \mathrm{in}^{3}$, we have:

$$
\begin{aligned}
108 & =x \cdot x \cdot h \\
108 & =x^{2} h \\
\frac{108}{x^{2}} & =h
\end{aligned}
$$

Now find the surface area.

$$
\begin{aligned}
S & =x^{2}+4 \cdot x \cdot h \\
S(x) & =x^{2}+4 x \frac{108}{\cdots} \\
S(x) & =x^{2}+\frac{432}{x} \quad x^{2}
\end{aligned}
$$

b) x must be positive, so the domain is $(0, \infty)$.
c) Fromthe graph, we see that the minimum value of the function occurs when $x=6 \mathrm{in}$. Forthis value of x, 108

$$
h=\frac{108}{x^{2}}=\frac{108}{6^{2}}=\frac{-}{36}=3 \mathrm{in} .
$$

$$
\text { for } x \leq-4 \text {, }
$$

\square_{-x},
17. $f(x)=\begin{aligned} & \underline{1} 2 \\ & \ulcorner\quad x+1, \text { for } x>-4\end{aligned}$

We create the graph in two parts. Graph $f(x)=-x$ for inputslessthanorequalto-4.Thengraph $f(x)=x+1 \quad \overline{1}$ for inputs greater than -4 .


```
A(x)=33x--
```

18. $f(x)=$ \qquad for $-2 \leq x \leq 2$,

$$
x-1, \quad \text { for } x>2
$$

Wecreatethegraphinthreeparts. Graph $f(x)=x^{3}$ for inputs less than -2 . Then graph $f(x)=|x|$ for inputs
greater than or equal $\downarrow 0-2$ and less than or equal to 2 . Finallygraph $f(x)=x-1$ forinputsgreaterthan 2 .

19. $f(x)=\begin{array}{ll}\square \frac{x^{2}-1}{\square+1} & \\ \square 3, & \text { for } x \neq-1, \\ \text { for } x=-1\end{array}$

Wecreatethegraphintwoparts. $\operatorname{Graph} f(x)=$ forallinputsexcept -1 . Thengraph $\quad f(x)=3$ for x

$$
\begin{aligned}
& \overline{x^{2}-1} \\
& x+1 \\
& =-1
\end{aligned}
$$

21. $f(x)=[[x-3]]$

This function could be defined by a piecewise function with an infinite number of statements.

$$
x-1, \text { for } x>2
$$

Since -1 is in theinterval $[-2,2], f(-1)=|-1|=1$.
Since $5>2, f(5)=5-1=4=2$.
Since -2 is in theinterval $[-2,2], f(-2)=|-2|=2$.
Since $-3<-2, f(-3)=(-3)^{3}=-27$.
23. $f(x)=\square \frac{x^{2}-1}{x+1}$ for $x f=-1$,

$$
3, \quad \text { for } x=-1
$$

Since $\quad 2=1,-(\underline{2})=\stackrel{(-2)^{2}-1}{-}=\underline{4-1} \underline{3}=3$.

$$
\begin{array}{lll}
-2+1 & -1 & -1
\end{array}
$$

Since $x=-1$, we have $f(-1)=3$.
Since $0=1_{2}(0)_{f}=0-1=\frac{-1}{\frac{-1}{0+1}}=1$.
Since $4=1,(4)=^{4^{2}-1}=\frac{16-1}{=}=3$.

$$
-f \quad \overline{4+1}
$$

24. $(f-g)(6)=f(\underline{6)}-g(6)$

$$
\begin{aligned}
& =6-2-\left(6^{2} 1\right) \\
& =4-(36-1) \\
& =2-35 \\
& =-33
\end{aligned}
$$

25. $(f g)(2)=f(2) \cdot g(2)$

$$
\begin{aligned}
& =2-2 \cdot\left(2-^{2} 1\right) \\
& =0 \cdot(4-1)
\end{aligned}
$$

26. $(f+g)(-1)=f(-1)+g(-1)$

$$
\begin{aligned}
& =\sqrt{\frac{-1}{3}-2+\left((-1)^{2}-1\right)} \\
\sqrt{ }- & =-3+(1-1)
\end{aligned}
$$

Since -3 isnotarealnumber, $(f+g)(-1)$ doesnotexist.
27. $f(x)=\frac{4}{}, g(x)=3 \quad-2 x$
a) Divisionbyzeroisundefined, sothedomainof f is
$\{x \mid x f=0\}$, or $(-\infty, 0) \cup(0, \infty)$. Thedomain of g sitheset of all real numbers, or $(-\infty, \infty)$.
The domain of $f+g, f-g$ and $f g$ is $\{x \mid x f=0\}$,

of f / g is $\quad x * x=0$ and $x f=\begin{gathered}- \\ 2\end{gathered}$, or

- Σ
b) $(f+g)(x)={ }_{x^{2}} \quad+(3-2 x)={ }_{x^{2}}+3-2 x$
$(f-g)(x)={\underset{x^{2}}{\boldsymbol{\Sigma}}-(3-2 x)=\begin{array}{c}4 \\ x^{2}\end{array}=3+2 x}^{\boldsymbol{\Sigma}}$
- $\frac{4}{\Sigma}$
$\overline{12} \quad \overline{8}$
$(f g)(x)=x^{2}(3-2 x)=x^{2}-x$

28. a) The domain of $f, g, f+g, f-g$, and $f g$ is all real numbers, or $(-\infty, \infty)$. Since $g^{-\underline{1}_{1}^{\boldsymbol{\Sigma}}}=0$, the domain $2_{1} \quad 1$

of f / g is $\quad x \quad \underline{2}$, or $\quad-\infty, 2 \cup \quad 2{ }^{\infty} \xrightarrow{\infty}$.
b) $(f+g)(x)=\left(3 x^{2}+4 x\right)+(2 x-1)=3 x^{2}+6 x-1$

$$
(f-g)(x)=\left(3 x^{2}+4 x\right)-(2 x-1)=3 x^{2}+2 x+1 \quad(f g)(x)=
$$

$$
\left(3 x^{2}+4 x\right)(2 x-1)=6 x^{3}+5 x^{2}-4 x
$$

$$
(f / g)(x)=\frac{3 x^{2}+4 x}{2 x-1}
$$

29. $P(x)=R(x)-C(x)$

$$
\begin{aligned}
& =\left(120 x-0.5 x^{2}\right)-(15 x+6) \\
& =120 x-0.5 x^{2}-15 x-6 \\
& =-0.5 x^{2}+105 x-6
\end{aligned}
$$

30. $f(x)=2 x+7$
$\frac{f(x+h)-f(x)}{h}=\frac{2(x+h)+7-(2 x+7)}{h}=$
$\left.\frac{f(x+h)-f(x)}{h}=3-\underline{x}^{2}-2 x h-h^{2}-\frac{-\left(3-x^{2}\right.}{h}\right)$

$$
\begin{aligned}
& \frac{3-x^{2}-2 x h-h^{2}-3+x^{2}}{h} \\
= & \\
= & \frac{-2 x h-h^{2} \frac{h(-2 x-h)}{=}}{h} h \\
= & \frac{h-2 x-h}{h}=-2 x-h
\end{aligned}
$$

32. $f(x)={ }_{x}$

$$
f(x+h)-f(x)=\frac{x \overline{+h} x}{h}=\frac{\overline{x+h} \cdot \overline{-x} \cdot \bar{x} \overline{x+h}}{h}=
$$

$$
\underline{4 x-4(x+h)} \quad \underline{4 x-4 x-4 h} \quad \underline{-4 h}
$$

$$
\underline{x(x+h)}=\frac{x(x+h)}{x(x+h)}=
$$

$$
\frac{h^{h}}{x(x+h)^{\cdot} h^{h}} 1^{-} \frac{-4 \cdot h}{x(x+h) \cdot h}=\frac{-4}{x(x+h)}, \text { or }-\frac{4}{x(x+h)}
$$

33. $(f \circ g)(1)=f(g(1))=f\left(1^{2}+4\right)=f(1+4)=f(5)=$ $2 \cdot 5-1=10-1=9$
34. $(g \circ f)(1)=g(f(1))=g(2 \cdot 1-1)=g(2-1)=g(1)=$

$$
1^{2}+4=1+4=5
$$

35. $(h \circ f)(-2)=h(f(-2))=h(2(-2)-1)=$

$$
\begin{aligned}
& h(-4-1)=h(-5)=3-(-5)^{3}=3-(-125)= \\
& 3+125=128
\end{aligned}
$$

36. $(g \circ h)(3)=g(h(3))=g\left(3-3^{3}\right)=g(3-27)=$ $g(-24)=(-24)^{2}+4=576+4=580$
37. $(f \circ h)(-1)=f(h(-1))=f\left(3-(-1)^{3}\right)=$

$$
f(3-(-1))=f(3+1)=f(4)=2 \cdot 4-1=8-1=7
$$

38. $(h \circ g)(2)=h(g(2))=h(2+4)=h(4+4)$

$$
h(8)=3-8^{3}=3-512=-509
$$

39. $(f \circ f)(x)=f(f(x))=f(2 x-1)=2(2 x-1)-1=$
40. $(h \circ h)(x)=h(h(x))=h\left(3-x^{3}\right)=3-\left(3-x^{3}\right)^{3}=$ $3-\left(27-27 x^{3}+9 x^{6}-x^{9}\right)=3-27+27 x^{3}-9 x^{6}+x^{9}=$ $-24+27 x^{3}-9 x^{6}+x^{9}$
41. a) $f \circ g(x)=\left(\beta \quad-2_{x}\right)=\frac{4}{(3-2 x)^{2}}$

$$
g \circ f(x)=g \quad \underline{4} \quad=3-2 \quad \underline{4} \quad \begin{array}{ll}
x^{2}
\end{array} \quad=3-\frac{8}{x^{2}}
$$

$\frac{2 x+2 h+7-2 x-7}{h}={ }^{2 h}=2$
31. $f(x)=3-x^{2}$
$f(x+h)=3-(x+h)^{2}=3-\left(x^{2}+2 x h+h^{2}\right)=$
$3-x^{2}-2 x h-h^{2}$
b) The domain of f is $\{x \mid x f=0\}$ and the domain of g is the set of all real numbers. To find the domain of $f \circ g$, we find the values of x fobwhich $g(x)=0$. Since $3-2 x=0$ when $x=$ thedomain of $3 \quad \overline{\overline{3}} \dot{2}^{\text {thedoma }}$ -. $\Sigma=>-\Sigma$ is $x x \quad{ }^{2}$, or $-\infty, 2 \cup{ }^{2}{ }^{\infty}$. Since any real number ${ }^{2}$ can be an input for g, the domain of $g \circ f$ isthesame asthe domainof $f,\{x \mid x f=0\}, \operatorname{or}(-\infty, 0) \cup$
42. a) $f \circ g(x)=f(2 x-1)$

$$
\begin{aligned}
& =3(2 x-1)^{2}+4(2 x-1) \\
& =3\left(4 x^{2}-4 x+1\right)+4(2 x-1) \\
& =12 x^{2}-12 x+3+8 x-4 \\
& =12 x^{2}-4 x-1
\end{aligned}
$$

$$
(g \circ f)(x)=g\left(3 x^{2}+4 x\right)
$$

$$
=2\left(3 x^{2}+4 x\right)-1
$$

$$
=6 x^{2}+8 x-1
$$

b) Domainof $f=$ domainof $g=$ all realnumbers, so domain of f ${ }^{\circ} g=$ domain of $g \circ f=$ all real numbers, or $(-\infty, \infty)$.
43. $f(x)=x g(x)=5 x+2$. Answers may vary.
44. $f(x)=4 x^{2}+9, g(x)=5 x-1$. Answers may vary.
45. $x^{2}+y^{2}=4$

The graph is symmetric with respect to the x-axis, the y-axis, and the origin.
Replace y with y to-testalgebraically for symmetry with respect to the x-axis.

$$
\begin{array}{r}
x^{2}+(-y)^{2}=4 \\
x^{2}+y^{2}=4
\end{array}
$$

The resulting equation isequivalent tothe original equa- tion, so the

Replace x with $-x$ to test algebraically for symmetry with respect to the y-axis.

$$
+y^{2}=4
$$

The resulting equation is equivalent tothe original equa- tion, so the graphis symmetric with respect to the y-axis.
Replace x and $\quad-x$ and y with $\quad-y$ to test forsymmetry with respect to theorigin.

$$
\begin{array}{r}
(-x)^{2}+(-y)^{2}=4 \\
x^{2}+y^{2}=4
\end{array}
$$

The resulting equation is equivalent tothe original equa- tion, sothe graphissymmetric with respect to theorigin.
46. $y^{2}=x^{2}+3$

The graph is symmetric with respect to the x-axis, the
y-axis, and the origin.
Replace y with y to-testalgebraically for symmetry with respect to the x-axis.

$$
\begin{aligned}
(-y)^{2} & =x^{2}+3 \\
y^{2} & =x^{2}+3
\end{aligned}
$$

The resulting equation isequivalent to the original equa- tion, so the graph is symmetric with respect to the x-axis.
Replace x with x totestalgebraically forsymmetry with respect to the y-axis.

$$
\begin{aligned}
& y^{2}=(-x)^{2}+3 \\
& y^{2}=x^{2}+3
\end{aligned}
$$

The resulting equation is equivalent to the original equa- tion, sothe graph is symmetric with respect to the y-axis.
Replace x and $-x$ and y with $-y$ to test forsymmetry with respect to theorigin.

$$
\begin{gathered}
(-y)^{2}=(-x)^{2}+3 \\
y^{2}=x^{2}+3
\end{gathered}
$$

The resulting equation isequivalent tothe original equa- tion, sothe graph issymmetric withrespect to the origin.
47. $x+y=3$

Thegraphisnotsymmetricwithrespecttothe x-axis,the y-axis, or the origin.
Replace y with y totest algebraically for symmetry with respect to the x-axis.

$$
x-y=3
$$

The resulting equation is not equivalent to the original equation, so the graph is not symmetric with respectto the x-axis.

Replace x with x to test algebraically for symmetry with respect to the y-axis.

$$
-x+y=3
$$

The resulting equation is not equivalent to the original equation, so the graph is not symmetric with respectto the y-axis.

Replace x and x a-ndy with y to test-for symmetry with respect

$$
\begin{aligned}
-x-y & =3 \\
x+y & =-3
\end{aligned}
$$

The resulting equation is not equivalent to the original equation, so
48. $y=x^{2}$

The graph is symmetric with respect to the y-axis. Itis not symmetric withrespect tothe x-axisortheorigin.
Replace y with y totest algebraically for symmetry with respect to the x-axis.

$$
\begin{aligned}
-y & =x^{2} \\
y & =-x^{2}
\end{aligned}
$$

The resulting equation is not equivalent to the original equation, so the graph is not symmetric with respectto the x-axis.
Replace x with x te test algebraically for symmetry with respect to the y-axis.

$$
\begin{aligned}
& y=(-x)^{2} \\
& y=x^{2}
\end{aligned}
$$

The resulting equation is equivalent to the original equa- tion, so the graph is symmetric with respect to the y-axis.
Replace x and x a-ddy with y to test-for symmetry with respect to the origin.

$$
\begin{gathered}
-y=(-x)^{2} \\
-y=x^{2} \\
y=-x^{2}
\end{gathered}
$$

The resulting equation is not equivalent to the original equation, so the graph is not symmetric with respectto the origin.
49. $y=x^{3}$

The graph is symmetric with respect to the origin. It is notsymmetric withrespecttothe x-axis orthe y-axis.
Replace y with y totest algebraically for symmetry with respect to the x-axis.

$$
\begin{aligned}
-y & =x \\
y & =-x^{3}
\end{aligned}
$$

The resulting equation is not equivalent to the original equation, so the graph is not symmetric with respectto the x-axis.
Replace x with x to test algebraically for symmetry with respect to the y-axis.

$$
\begin{aligned}
& y=(-x)^{3} \\
& y=-x^{3}
\end{aligned}
$$

The resulting equation is not equivalent to the original equation, so the graph is not symmetric with respectto the y-axis.
Replace x and x and y with y to test-for symmetry with respect to the origin.

$$
\begin{aligned}
-y & =(-x)^{3} \\
-y & =-x^{3} \\
y & =x^{3}
\end{aligned}
$$

The resulting equation is equivalent to the original equa- tion, so the graph is symmetric with respect to the origin.
50. $y=x^{4}-x^{2}$

Thegraph is symmetric with respect to the y-axis. It is notsymmetric withrespecttothe x-axisortheorigin.
Replace y with y to-testalgebraically for symmetry with respect to the x-axis.

$$
\begin{aligned}
-y & =x^{4}-x^{2} \\
y & =-x^{4}+x^{2}
\end{aligned}
$$

The resulting equation is not equivalent to the original equation, so the graph is not symmetric with respect to the x-axis. Replace x with - to test algebraically for symmetry with
$\begin{array}{cc} & x \\ \text { respecttothe } & y \text {-axis. }\end{array}$

$$
\begin{aligned}
& y=(-x)^{4}-(-x)^{2} \\
& y=x^{4}-x^{2}
\end{aligned}
$$

The resulting equationis equivalent tothe original equa- tion, sothe graph is symmetric with respect to the y-axis.
Replace x and $-x$ and y with $-y$ to test for symmetry withrespecttotheorigin.

$$
\begin{aligned}
-y & =(-x)^{4}-(-x)^{2} \\
-y & =x^{4}-x^{2} \\
y & =-x^{4}+x^{2}
\end{aligned}
$$

The resulting equation is not equivalent to the original equation, so the graph is not symmetric with respectto the origin.
51. The graphis symmetric with respect to the y-axis, so the function is even.
52. The graphissymmetric with respect to the y-axis, so the function is even.
53. The graphis symmetric withrespectto the origin, so the function is odd.
54. The graph issymmetric with respect to the y-axis, so the function is even.
55. $f(x)=9-x^{2}$
$f(-x)=9-\left(-x^{2}\right)=9-x^{2}$
$f(x)=f(-x)$, so f is even.
56. $f(x)=x^{3}-2 x+4$
$f(-x)=(-x)^{3}-2(-x)+4=-x^{3}+2 x+4$
$f(x) \quad f(-x)$, so f is not even.
$-f(x)=-\left(x^{3}-2 x+4\right)=-x^{3}+2 x-4$
$f(-x) f=-f(x)$, so f is not odd.
Thus, $f(x)=x^{3}-2 x+4$ is neither even or odd.
57. $f(x)=x^{7}-x^{5}$
$f(-x)=(-x)^{7}-(-x)^{5}=-x^{7}+x^{5}$
$f(x) \quad f(-x)$, so f is noteven.
$-f(x)=-\left(x^{7}-x^{5}\right)=-x^{7}+x^{5}$
$f(-x)=-f(x)$, so f is odd.
58. $f(x)=|x|$
$f(-x)=|-x|=|x|$
$f(x)=f(-x)$, so f is even.
59. $f(x)=16-x^{2} \quad \sqrt{ }$
$f(-x)=\overline{16-\left(-x^{2}\right)}=16-x^{2}$
$f(x)=f(-x)$, so f is even.
60. $f(x)=\frac{10 x}{x^{2}+1}$
$f(-x)=\frac{10(-x)}{}=-\underline{10 x}$
$(-x)^{2}+1 \quad x^{2}+1$
$f(x) \quad f(-x)$, so $f(x)$ is not even.
$-f(x)=-\quad \overline{x^{2}+1}$
$f(-x)=-f(x)$, so f is odd.
61. Shape: $g(x)=x^{2}$

Shift $g(x)$ left 3 units: $f(x)=g(x+3)=(x+3)^{2}$
62. Shape: $t(x)=x$

Turnt(x)upsidedown(thatis,reflectitacrossthex-axis):
$h(x)=-t(x)=-\quad x$.
 \qquad
Shift $g(x)$ up 4 units: $f(x)=g(x)+4=-x-3+4$.
63. Shape: $h(x)=|x|$

Stretch $h(x)$ vertically by a factor of 2 (that is, multiply each function value by 2): $g(x)=2 h(x)=2|x|$.
Shift $g(x)$ right 3 units: $f(x)=g(x-3)=2|x-3|$.
64. Thegraph is shifted right 1 unit so each x-coordinate is increased by 1 .

Weplotand connect $(-4,3),(-2,0),(1,1)$ and $(5,-2)$.

65. The graph is shrunk borizontally by a factor of 2 . That is, each x coordinatess ivided by2. We plot and connect

$$
-\frac{5}{5}, 3,-\frac{3}{2}, 0,(0,1) \text { and }(2,-2)
$$

66. Each y-coordinate ismultiplied by -2 . Weplot andcon- nect $(+5,-6),(-3,0),(0,-2)$ and $(4,4)$.

67. Each y-coordinateisincreasedby 3 .Weplotandconnect $(-5,6),(-3$, $3),(0,4)$ and $(4,1)$.

68. $y=k x$
$100=25 x$

$$
4=x
$$

Equationofvariation: $y=4 x$
69. $y=k x$

$$
\begin{aligned}
6 & =9 x \\
\frac{2}{3} & =x
\end{aligned}
$$

Equation of variation: $\quad \begin{array}{r}y=\frac{2}{x} \\ 3\end{array}$
70. $y=\frac{k}{x}$
$100=\frac{x_{k}}{25}$
$2500=k$
Equation of variation: $y={ }^{2500}$
71. $y=\underline{k}$
$6=k^{x}$ 9
$54=k$ Variation constant
Equationofvariation: $y={ }^{54}$
72. $y=\frac{k}{x^{2}}$
$12={ }^{k}-$
$48=k^{2^{2}}$
48
$y=$
x^{2}
73. $y=\frac{k x z^{2}}{w}$

$$
\begin{aligned}
& 2=\frac{k(16)^{\frac{1}{2}} 2^{2}}{0.2} \\
& 2=\frac{k(16)^{\frac{1}{4}} 4}{0.2} \\
& 2=\frac{4 k}{0.2} \\
& 2=20 k \\
& \frac{1}{10}=k \\
& 10
\end{aligned}
$$

$$
\begin{gathered}
y=\frac{1}{10 w} \frac{x z^{2}}{10 \underline{k}} \\
t=\frac{r}{k} \\
35= \\
28,000=k
\end{gathered}
$$

74.

$$
t=\frac{28,000}{r}
$$

$$
28,000
$$

$$
t=\overline{1400}
$$

$$
t=20 \mathrm{~min}
$$

75. $N=k a$

$$
\begin{aligned}
& 87=k \cdot 29 \\
& 3=k N \\
& =3 a \\
& N=3 \cdot 25 \\
& N=75
\end{aligned}
$$

Ellen's score would have been 75 if she had answered 25 questions correctly.
76. $P=k C^{2}$
$180=k \cdot 6^{2}$
$5=k \quad$ Variation constant $P=$
$5 C^{2}$ Variation equation $P=5 \cdot 10^{2}$
$P=500$ watts
77. $f(x)=x+1, g(x)=x$

Thedomainof f is $(-\infty, \infty)$, andthedomainof g is $[0, \infty)$. Tofind the domainof $(g \circ f)(x)$, we findthevaluesof x for which $f(x) \geq 0$.

$$
\begin{aligned}
x+1 & \geq 0 \\
x & \geq-1
\end{aligned}
$$

Thus the domain of $(g \quad \circ f)(x)$ is $[4, \infty \quad)$. Answer A is correct.
78. Forb >0,thegraphof $y=f(x)+b$ isthegraphof $y=f(x)$ shifted up b units. Answer C is correct.
79. The graph of $g(x)=-\frac{1}{f}(x)+1$ is the graph of $y=f(x)$
shrunkverticallybyafactorof $\quad{ }^{4}$,then reflected across the 2 x-axis, and shifted up 1 unit. The correct graph is B.
80. Let $f(x)$ and $g(x)$ be odd functions. Then by definition,
$f(-x)=f-(x)$, or $f(x)=f(-x),-$ and $g(x)=-g(x),-$ or $g(x)=-g(x)$. Thus $(f+g)(x)=f(x)+g(x)=$ $-f(x)+[g(x)]=[f(-x)+g(x)]=+f+g)(-x)$ and $f+g$ is odd.
81. Reflect the graph of $y=f(x)$ across the x-axis andthen across the y-axis.
82. $f(x)=4 x^{3}-2 x+7$

$$
\begin{aligned}
& \text { a) } f(x)+2=4 x^{3}-2 x+7+2=4 x^{3}-2 x+9 \text { b) } f(x+ \\
& \begin{aligned}
\text { 2) }=4(x+2)^{3}- & 2(x+2)+7 \\
= & 4\left(x^{3}+6 x^{2}+12 x+8\right)-2(x+2)+7 \\
= & 4 x^{3}+24 x^{2}+48 x+32-2 x-4+7 \\
& 4 x^{3}+24 x^{2}+46 x+35
\end{aligned} \\
& \text { c) } f(x)+f(2)=4 x^{3}-2 x+7+4 \cdot 2^{3}-2 \cdot 2+7 \\
& =4 x^{3}-2 x+7+32-4+7 \\
& =4 x^{3}-2 x+42
\end{aligned}
$$

$f(x)+2$ adds 2 to each function value; $f(x+2)$ adds 2 to each input beforethefunctionvalueisfound; $f(x)+f(2)$ addstheoutputfor 2 to the output for x.
83. In the graph of $y=f(c x)$, the constant c stretches or shrinksthe graphof $y=f(x)$ horizontally. Theconstant c in $y=c f(x)$ stretchesor shrinks the graph of $y=f(x)$ vertically. For $y=f(c x)$, the x coordinates of $y=f(x)$ are divided by c; for $y=c f(x)$, the y coordinatesof $y=f(x)$ are multiplied by c.
84. The graph of $f(x)=0$ is symmetric with respect tothe x-axis, the y - axis, and the origin. This function is both even and odd.
85. If all of the exponentsare even numbers, then $f(x)$ is an even function. If $a_{0}=0$ and all of the exponents are odd numbers, then $f(x)$ is an so y varies inversely as $z .{ }^{1} \quad 1^{\cdot}{ }_{z}$, or $y=z^{\prime}$,

Chapter 2 Test

1. a) For x-values from -5 to -2 , the y-values increase from -4 to 3 . Thusthefunctionisincreasingon the interval $(-5,-2)$.
b) For x-values from 2 to5, the y-values decrease from 2 to -1 . Thus the function is decreasing on the interval (2,5).
c) For x-valuesfrom-2to2,y is 2 . Thusthefunction is constant on the interval ($-2,2$).
2.

Theofunction is increasing on $(, 0)$ and decreasing on $(0$,$) . The$ relativemaximum is 2 at $x=0$. There areno minima.
3.

We find that the function is increasing on (, 2.667) oanted on (0 ,) and decreasirg on ($2.667,0$). The refative maximum is 9.481 at 2.667 and the relative miniraum is 0 at $x=0$.
4. If $b=$ thelengthofthebase, ininches, thentheheight $=4 b \quad 6$. We use-the formula for the area of atriangle,
$A=2_{2} b h$.

$$
\begin{aligned}
& A(b)={ }_{2} \frac{1}{b}(4 b-6) \text {, or } \\
& A(b)=2 b^{2}-3 b \\
& \quad \square^{2}, \quad \text { for } x<-1,
\end{aligned}
$$

$\left.|x| \quad \square \begin{array}{l}-1 \leq x \leq 1,5 \cdot \\ x-1, \text { for } x>1\end{array}\right)=$

Since $-4<-1, f(-4)=(-4)^{2}=16$.
7. $(f+g)(-6)=f(-6)+g(-6)=$
(6) $4(6)+3+\sqrt{ } 3 \sqrt{ }(6)=$
$3 \overline{6}+2 \overline{4}+\overline{3}+3+6-63+9-\overline{6} 3+3=66$

$$
\begin{aligned}
& \text { 8. }(f-g)(-1)=f(-1)-g(-1)= \\
& (\sqrt{ })^{2}-4(1)+3 \\
& -+4+1=8-4^{3}=8 z^{(1)}=6 \\
& 1-+4+3- \\
& \text { 9. }(f g)(2)=f(2) \cdot g(2)=\left(2^{2}-4 \cdot 2+3\right)(3-2)= \\
& \sqrt{ }- \\
& (4-8+3)(1)=-1 \cdot 1=-1 \\
& f(1) \\
& -\quad \frac{2-4 \cdot 1+3}{} \quad 1
\end{aligned}
$$

22. $f(x)=2 x^{2}-x+3$
$f(x+h)=2(x+h)^{2}-(x+h)+3=2\left(x^{2}+2 x h+h^{2}\right)-x-h+3=2 x^{2}+4 x h+$ $2 h^{2}-x-h+3$
$f(x+h)-f(x)=\xlongequal{2 x^{2}+4 x h+2 h^{2}-x-h+3-\left(2 x^{2}-x+3\right)}$
h

$$
=\underline{2 x^{2}+4 x h+2 h^{2}-x-h+3-2 x^{2}+x-3}
$$

h

$$
\begin{gathered}
=\frac{4 x h+2 h^{2}-h}{h} \\
=\underline{h(4 x+2 h-1)}
\end{gathered}
$$

h

$$
=4 x+2 h-1
$$

23. $(g \circ h)(2)=g(h(2))=g\left(3 \cdot 2^{2}+2 \cdot 2+4\right)=$ $g(3 \cdot 4+4+4)=g(12+4+4)=g(20)=4 \cdot 20+3=$ $80+3=83$
24. $(f \circ g)(-1)=f(g(-1))=f(4(-1)+3)=f(-4+3)=$ $f(-1)=(-1)^{2}-1=1-1=0$
25. $(h \circ f)(1)=h(f(1))=h\left(1^{2}-1\right)=h(1-1)=h(0)=$ $3 \cdot 0^{2}+2 \cdot 0+4=0+0+4=4$
26. $(g \circ g)(x)=g(g(x))=g(4 x+3)=4(4 x+3)+3=$
27. $\binom{16 x+12+3=16 x+15}{f \circ g x}=(())=\left({ }^{2}+1\right)=\quad \sqrt{+1 \quad 5}=$
$\sqrt{ } \quad f g x \quad f x \quad x^{2}-$ $x^{2}-4$
$(g \circ f)(x)=g(f(x))=g(x-5)=(x-5)^{2}+1=$ $x-5+1=x-4$
28. Theinputsfor $f(x)$ mustbe suchthat $x-5 \geq 0$, or $x \geq 5$. Then for $(f$ $\circ g)(x)$ wemusthave $g(x) \geq 5$, or $x+1 \geq 5$, or $x \geq 4$. Thenthedomain of $(f \circ g)(x)$ is $(-\infty,-2] \cup[2, \infty)$.
Since we can substitute any real number for x in g, the domain of $(g \circ$ $f)(x)$ is the same as the domain of $f(x)$,
$[5, \infty)$.
29. Answers may vary. $f(x)=x^{4}, g(x)=2 x-7$
30. $y=x^{4}-2 x^{2}$

Replace y with $\quad y$ to test for symmetry with respect to the x -
axis.

$$
\begin{aligned}
& -y=x^{4}-2 x^{2} \\
& y=-x^{4}+2 x^{2}
\end{aligned}
$$

The resulting equation is not equivalent to the original equation, so
the graph is not
symmetric with
respect to the x-axis.
Replace x with x to-testforsymmetrywit
hrespectto the y-axis.
y
$=$
(
-
x
)
${ }_{-}^{-}$
2
(
-
x
)
y
$=$
x
4
2
x
The resulting equation is equivalent to the original equa- tion, so the graph issymmetric with respect to the y axis.

Replace x with $\quad-x$ and y with $\quad-y$ totestforsymmetry with respect to theorigin.

$$
\begin{aligned}
-y & =(-x)^{4}-2(-x)^{2} \\
-y & =x^{4}-2 x^{2} \\
y & =-x^{4}+2 x^{2}
\end{aligned}
$$

The resulting equation is notequivalent to the original
equation, so the graph is not symmetric with respect to the origin.
31. $f(x)=\frac{2 x}{x^{2}+1}$
$f(-x)=\frac{2(-x)}{(-x)^{2}+1}=-\frac{2 x}{x^{2}+1}$
$f(x) f=f(-x)$, so f is not even.
$-f(x)=-\frac{2 x}{x^{2}+1}$
$f(-x)=-f(x)$, so f is odd.
32. Shape: $h(x)=x^{2}$

Shift $h(x)$ right 2 units: $g(x)=h(x-2)=(x-2)^{2}$ Shift $g(x)$ down 1 unit: $f(x)=(x-2)^{2}-1$
33. Shape: $h(x)=x^{2}$

Shift $h(x)$ left 2 units: $g(x)=h(x+2)=(x+2)^{2}$ Shift $g(x)$
down 3 units: $f(x)=(x+2)^{2}-3$
34. Each y-coordinate ismultipliedby- . Weplot an $\frac{1}{2}$ dconnect $(-5,1),(-3,-2),(1,2)$ and $(4,-1)$.

35. $y={ }^{k}$
$5=k^{x} 6$
$30=k \quad$ Variation constant
Equationofvariation: $y={ }^{30}$
36. $y=k x$
$60=k \cdot 12$
$5=k \quad$ Variation constant
Equationofvariation: $y=5 x$
37. $y=\frac{k x z^{2}}{w}$
$100=\frac{k(0.1)(10)^{2}}{5}$
$100=2 k$
$50=k$ Variation constant $50 x z^{2}$
$y=$ Equation of variation
38. $d=k r^{2}$

$$
\begin{array}{rlrl}
200 & =k \cdot 60^{2} & & \\
\begin{array}{rlrl}
1 & =k & & \text { Variation constant } 18 \\
d & =\frac{1}{-r^{2}} & & \text { Equationofvariation } 18 \\
& \underline{1} & & \\
d & =18 \cdot 30^{2} & \\
d & =50 \mathrm{ft} & &
\end{array} .
\end{array}
$$

39. The graph of $g(x)=2 \boldsymbol{f}(x)-1$ is the graph of $y=\boldsymbol{f}(x)$
stretchedverticallybyafactorof2andshifteddown1unit. The correct graph is C.
40. Each x-coordinate on the graph of $y=f(x)$ is divided by 3onthe
${ }^{-1-3}{ }^{\Sigma}$
graphofy $=f(3 x)$. Thusthepoint, 1 ,or 3
$(-1,1)$ is on the graph of $f(3 x)$.

[^0]: $h(d)=\sqrt{ } d^{2} 3700$ Taking the positive square root

