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Chapter 1.  Heat 
Equation 
 

Section 1.2 

1 1 

 

 
 
 

2 

 

1.2.9  (d)   Circular cross section means that  P = 2πr, A = πr2,  and thus P/A = 2/r,  where r is the radius. 
Also  γ = 0. 

 

1.2.9  (e)   u(x, t) = u(t) implies  that 
du         2h 

cρ  
dt  

= − 
r  

u 

.
 

The  solution of this first-order  linear differential equation with constant coefficients, which satisfies the 
initial condition  u(0)  = u0,  is

 

u(t) = u0 exp 

·  
2h  

¸
 

− 
cρr 

t   

.

 

Section 1.3 
 

1.3.2  ∂u/∂x is continuous  if K0(x0−) = K0(x0+), that  is, if the conductivity is continuous. 

 
Section 1.4 

 

1.4.1  (a)   Equilibrium satisfies (1.4.14),  d2u/dx2 = 0, whose general solution  is (1.4.17),  u = c1 + c2x.  The 
boundary  condition  u(0)  = 0 implies  c1  = 0 and u(L) = T implies  c2  = T /L so that  u = T x/L. 

 

1.4.1  (d)    Equilibrium satisfies (1.4.14),  d2u/dx2 = 0, whose general solution  (1.4.17),  u = c1 + c2x.  From 
the boundary  conditions,  u(0)  = T yields  T = c1  and du/dx(L) = α yields  α = c2.  Thus u = T + αx. 

 

1.4.1  (f)  In equilibrium, (1.2.9)  becomes d2u/dx2 = −Q/K0  = −x2  , whose general solution (by integrating 
twice) is u = −x4/12 + c1 + c2x.  The  boundary  condition  u(0)  = T yields c1  = T , while du/dx(L) = 
0 yields  c2  = L3/3.  Thus u = −x4/12 + L3x/3 + T . 

 

1.4.1  (h)    Equilibrium satisfies  d2u/dx2  = 0.   One  integration   yields  du/dx = c2,  the  second integration 
yields  the general solution  u = c1 + c2x. 

 

x = 0 :    c2 − (c1 − T ) 

= 0 
x = L :    c2  = α and thus c1  = T + α. 

 

Therefore,  u = (T + α) + αx = T + α(x + 1). 
 

1.4.7  (a)   For equilibrium:
 

d2u 

dx2 

 

x2 

= −1 implies  u = 

− 
2 

 
+ c1x + c2  and 

 

du 

dx  
= −x + c1.

From  the boundary  conditions   du (0) = 1 and   du (L) = β, c1  = 1 and −L + c1  = β which  is  consistent 
dx                        dx 

2 

only  if β + L = 1.  If  β = 1 − L,  there is an equilibrium solution  (u = − x  + x + c2).   If  β = 1 
− L, 
there isn’t  an equilibrium solution.   The  difficulty is caused by  the heat flow being specified at  both 
ends and a source specified inside.  An  equilibrium will  exist  only  if these three are in balance.  This 
balance can be mathematically verified from conservation  of energy:

d 
Z L  

du 
cρu dx = − 

 
(0) + 

 

du 
(L) + 

Z L 

Q0  dx = −1 + β + L.

dt   0 dx           dx              0
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If β + L = 1, then the total  thermal  energy is constant  and the initial energy = the final energy: 

Z L                    Z L µ  
x2                 

¶

f(x) dx = 
0                                  0 

− 
2  

+ x + 

c2
 

dx,     which determines    c2.

 

If  β + L  = 1, then  the total  thermal  energy  is always  changing  in  time  and  an equilibrium is never 
reached.
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ln(r2/r1) 

Section 1.5 

1.5.9  (a)   In  equilibrium, (1.5.14)  using  (1.5.19)  becomes   d   
¡

r du 
, 
= 0.  Integrating once yields  rdu/dr = cl

 
dr      dr 

and integrating a second time (after dividing by r) yields u = cl ln r + c2.  An  alternate general solution 
is u = cl ln(r/rl) + c3.  The  boundary  condition  u(rl) = Tl  yields  c3  = Tl,  while  u(r2) = T2  yields 
cl = (T2 - Tl)/ ln(r2/rl).  Thus, u =     l         [(T2  - Tl) ln r/rl + Tl ln(r2/rl)]. 

 

1.5.11  For equilibrium, the radial  flow at r = a, 2πaβ,  must equal the radial  flow at r = b, 2πb. Thus β = b/a. 

1.5.13  From exercise 1.5.12, in equilibrium   d   
¡

r2 du 
, 
= 0. Integrating once yields r2du/dr = cl  and integrat­

 
dr        dr 

 
ing  a second time (after  dividing by  r2  ) yields  u = -cl/r + c2.  The  boundary  conditions  u(4)  = 80 
and u(1)  = 0 yields  80 = -cl/4 + c2  and 0 = -cl  + c2.  Thus cl = c2  = 320/3 or u = 320  

¡
1 - l 

,
. 

3                 r
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de 

n=1 

2 

L 

heat flow out (  =   ) =         
~e 

1
e1=O

 

~e  e=L 

1 

L 

2.3.1  (a)   u(r, t) = ¢(r)h(t) yields  ¢ dh   = kh  d   
,

r 
d¢ 
,

.  Dividing by k¢h  yields    1   dh   =  1    d   
,

r 
d¢ 
, 

= -\ or

dh                                     1  d   
, 

dt 

d¢ 
,

 
r  dr      dr kh dt r¢ dr      dr

dt 
= -\kh and  

r dr r 
dr 

= -\¢.

 
2                    2                                                                                                     2                            2

2.3.1  (c)    u(z, y) = ¢(z)h(y)  yields  h d  ¢ 4 ¢ d  h = 0.   Dividing by  ¢h  yields   1  d  ¢ = - 1  d  h = -\  or
 

d2 ¢
 

 

d2 h
 

de2 dy2 ¢ de2 h dy2

de2  = -\¢ and  
dy2  = \h. 
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2.3.1  (e)   u(z, t) = ¢(z)h(t) yields  ¢(z) dh   = kh(t) d  ¢ .  Dividing by k¢h,  yields    1   dh   = 1  d  ¢ = \.dt                 de4 kh dt ¢ de4

 
2                                 2                                                                                              2                     2

 

2.3.1  (f)  u(z, t) = ¢(z)h(t) yields  ¢(z) d  h = c2h(t) d  ¢ .  Dividing by c2¢h,  yields     1    d  h = 1  d  ¢ = -\.dt2 de2 c2h dt2 ¢ de2

 

2.3.2  (b)   \ = (nπ/D)2 with  D = 1 so that  \ = n2π2,   n = 1, 2, . . . 
 

2.3.2  (d) 

(i)   If  \  >  0, ¢  = c1 cos 
√

\z 4 c2 sin 
√

\z. ¢(0)   = 0  implies  c1   = 0,  while   d¢ (D) =  0  implies 

c2

√
\ cos 

√
\D = 0.  Thus 

√
\D = -π/2 4 nπ(n = 1, 2, . . .). 

(ii)   If \ = 0, ¢ = c1 4 c2z.  ¢(0)  = 0 implies c1  = 0 and d¢/dz(D) = 0 implies c2  = 0. Therefore \ = 0 
is not an eigenvalue. 

(iii) If \ < 0, let \ = -s and ¢ = c1 cosh 
√

sz 4 c2 sinh 
√

sz. ¢(0)  = 0 implies c1  = 0 and d¢/dz(D) = 0 

implies  c2

√
s cosh 

√
sD = 0.  Thus c2  = 0 and hence there are no eigenvalues with  \ < 0. 

 

2.3.2  (f)  The  simpliest  method is to let z0 = z - a.  Then  d2¢/dz02 4 \¢ = 0 with ¢(0)  = 0 and ¢(b - a) = 0. 

Thus (from p.  46) D = b - a and \ = [nπ/(b - a)]
2 

,  n = 1, 2, . . ..

2.3.3  From (2.3.30),  u(z, t) = 
0o

 

 

Bn sin  nne --k(nn/L)  t. The  initial condition  yields

2 cos  3ne  = 
0o Bn sin  nne .  From (2.3.35),  Bn =  2  

R 2 cos  3ne  sin  nne dz.
L           n=1              L L   O                  L          L

2.3.4  (a)     Total  heat  energy  = 
R L 

cpuA  dz  = cpA 
0o

  

B  --k( nπ
  

2 

t 1-cos nn ,  using  (2.3.30)  where B
O 

satisfies (2.3.35). 
 

2.3.4  (b) 

n=1   n 

L )     
nπ                                                                 n 
L

heat flux  to right  = -KO∂u/∂z 

total  heat flow to right  = -KOA∂u/∂z 
heat flow out at z = 0 = KOA ~u 

1
 

z   D       -KOA ~u 1 

2.3.4  (c)    From  conservation  of thermal  energy,     d  
R L 

u dz = k ~u 

1L  

= k ~u 

(D)
 

 
 
 
 
 

 
k ~u (0).  Integrating  from

 
t = 0 yields 

Z L 

dt   O 
 

Z L 

~e 

1
 
O 

Z t · 

∂u
 

~e        
- 

~e 
 

∂u     
¸

u(z, t) dz - O                                      

O 
u(z, 0) 
dz = k 

O 
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- 

   2   

de2 k 
k 

(D) 
∂z 

(0)   dz   . 
∂z

|   {z        } 

heat energy 
at t 

|    {z         } 

initial  heat 
energy 

|   {z        } 

integral  of 
flow in at 
z = D 

|   {z      } 

integral  of 
flow out at 

z = D

2.3.8  (a)    The  general solution  of k d  u = αu (α > 0)  is u(z) = a cosh 
p 

α z 4 b sinh 
p 

α z.   The  boundary

condition  u(0)  = 0 yields  a = 0, while u(D) = 0 yields  b = 0.  Thus u = 0.
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2 

L 

n=1 

bn sin  nTe - k(nT/L) t, where 

, 

, 

cos nTz/L. Furthermore,  d  ¢ = A( = 

2 

L 

L L 

L L 

 

2.3.8  (b)    Separation  of variables,   u  = ((z)h(t) or ( dh   + a(h = kh  d  ¢ ,  yields  two  ordinary  differential dt                           de2 
2

equations  (divide  by  k(h):    1   dh   + α =  1  d  ¢ = -A.   Applying the boundary  conditions,  yields  the
kh dt      k ¢ de2

eigenvalues A = (nT/L)2 and corresponding  eigenfunctions  ( = sin  nTe .  The  time­dependent part  are 

exponentials,  h = --λkt--αt.  Thus by superposition,  u(z, t) = --αt 
co              -

 

L
the initial conditions  u(z, 0) = f(z) = 

co bn sin  nTe yields  bn  =  2  
R f(z) sin  nTe dz.   As  t → ∞,

u → 0, the only  equilibrium solution. 
n=1             L L   0                          L

2.3.9  (a)    If  a <  0, the general equilibrium solution  is  u(z) = a cos 
q 

 -α z + b sin 
q 

 -α z.   The  boundary
 

k                        k 

condition  u(0)  = 0 yields  a = 0, while u(L) = 0 yields  b sin 
q 

 - α L = 0.  Thus if 
q 

 -α L = nT, u = 0 
is 

k                                    k 

the only equilibrium solution.  However, if 
q 

 -α L = nT,  then u = A sin  nTe is an equilibrium solution.k 

2.3.9  (b)   Solution  obtained in 2.3.8 is correct.  If - α = 
, 

T 
T2 

, u(z, t) → b
 

L 

 

sin  Te , the equilibrium solution.
k        L                          1           L

If - α < 
, 

T 
T2

, then u → 0 as t → ∞.  However,  if - α > 
, 

T 
T2 

, u → ∞ (if  
b

 = 0).  Note that  b
 

> 0 if

k        L                                                                          k        L                            1                                             1 

f(z) ≥ 0.  Other  more unusual  events can occur if b1 = 0.  [Essentially, the other possible equilibrium 
solutions  are unstable.] 

 
Section 2.4 

 

2.4.1  The  solution  is given by (2.4.19),  where the coefficients satisfy  (2.4.21)  and hence (2.4.23­24).

(a)  A0  =  1  
R 

1dz = 1 , An =  2  
R 

 

cos  nTe dz =  2  ·  L sin  nTe 
,
L 

 

= -  2  sin  nT

L   L/2                   2 L   L/2             L L   nT L  ,L/2 nT         2

(b)  by inspection  A0  = 6, A3  = 4, others = 0.

(c)  A0  =  - 2 
R 

sin  Te dz = 2  cos  Te 
,L

 = 2 (1 - cos T) = 4/T, An =   -4  
R 

 

sin  Te cos  nTe  dz

L    0             L T        L ,
0         

T 

L    0             L          L

(d)  by inspection  A8  = -3, others = 0. 
 

2.4.3  Let  zt = z - T.  Then  the boundary  value problem becomes d2(/dzt2 = -A( subject  to ((-T) = ((T) 
and  d(/dzt(-T)  =  d(/dzt(T).  Thus, the  eigenvalues  are A =  (nT/L)2 =  n2T2, since  L  = T, n  = 
0, 1, 2, ... with the corresponding eigenfunctions being both sin nTzt/L = sin n(z-T) = (-1)n sin nz => 
sin nz and cos nTzt/L = cos n(z - T) = (-1)n cos nz => cos nz. 

 
Section 2.5 

2                          2 

2.5.1  (a)   Separation  of variables,  u(z, y) = h(z)((y),  implies  that   1  d  h = - 1  d  ¢ = -A.  Thus d2h/dz2  =h de2 ¢ dy2

-Ah  subject  to ht(0)  = 0 and  ht(L) = 0.  Thus as before, A = (nT/L)2, n = 0, l, 2, . . . with  h(z) =
   2   

dy2 

, 
nT 

T2 
L 

( so that

n = 0 : ( = c1 + c2y, where ((0)  = 0 yields  c1  = 0 

n = 0 : ( = c1 cosh  nTy + c2 sinh  nTy , where ((0)  = 0 yields  c1  = 0.
L                     L 

The  result of superposition  is 
 

 
 
o         

nTz
 

 
 
 
nTy
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u(z, y) = A0y + 
e 

An cos 
n=1 

 

The  nonhomogeneous boundary  condition  yields 
 

o 

f(z) = A0H  + 
e 

An sinh 
n=1 

 

L 
 
 

 
nTH 

L 

sinh 
 

 
 
 
 

cos 

 

. 
L 

 
 

 
nTz 

, 
L

 

so that 
 

1 
Z  

L 

 

 

nTH 

 

2 
Z  

L 

 

 

nTz

A0H  = 
L 

f(z) dz  and An sinh 
0 

= 
L         L   0 

f(z) cos dz. 
L
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2 

h de2 
= - 1  d  ¢

 

2 

dy2 L 

n=1 

L 

0 

H 

 

2.5.1  (c)    Separation  of variables,   u  = h(z)((9),  yields   1  d  h
 

2 

¢ dy2 

 

= A.   The  boundary  conditions

((0)   = 0  and  ((H) =  0  yield  an  eigenvalue  problem  in  9,  whose solution  is  A =  (nT/H)2 with 
( = sin nT9/H, n = 1, 2, 3, . . . The  solution  of the z­dependent  equation is h(z) = cosh  nTz/H  using 
dh/dz(0) = 0.  By  superposition: 

o 

u(z, 9) = 
e 

An cosh 
n=1 

nTz 

H 

 

sin 
nT9 

. 
H

The  nonhomogeneous boundary  condition  at z = L  yields  9(9) = 
co 

 

An cosh  n"L sin  n"y , so that

An is determined by An cosh  n"L =  2  
R 

 

9(9) sin  n"y 

d9. 

n=1                  H           H

H         H   0                          H 

2.5.1  (e)    Separation  of variables,   u  = ((z)h(9),  yields  the  eigenvalues  A = (nT/L)2 and  corresponding

eigenfunctions  (  = sin nTz/L, n  = 1, 2, 3, ...  The  9­dependent  differential  equation,   d  h
 = 

, 
n" 

T2 
h,

satisfies  h(0)  - dh (0)   = 0.    The   general  solution  h  = c1 cosh  n"y + c2 sinh  n"y obeys  h(0)   = c1,
dy                                                                                                                       L                      L

while   dh   =  n" 
,
c1 sinh  n"y + c2 cosh  n"y 

T  
obeys   dh (0)  = c2 

n" .  Thus, c1  = c2 
n" and  hence hn(9)  =

dy            L                  L L                 dy                        L                               L

cosh  n"y +  L sinh  n"y . Superposition yields
L       n"           L 

o 

u(z, 9) = 
e 

Anhn(9) sin nTz/L, 
n=1 

where An is determined from the boundary  condition,  f(z) = 
co

 

 
 
 
 
Anhn(H) sin nTz/L, and hence

2 
, L 

Anhn(H) = 
0 

 

f(z) sin nTz/L dz .

 
 

2.5.2  (a)    From  physical  reasoning  (or  exercise 1.5.8),  the total  heat flow across the boundary  must  equal 

zero in equilibrium (without  sources, i.e.  Laplace's equation).  Thus 
R L 

f(z) dz = 0 for a solution. 
 

2.5.3  In  order for u to be bounded as r → ∞, c1  = 0 in (2.5.43)  and c̄2  = 0 in (2.5.44).  Thus, 
 

o                   o 

u(r, θ) = 
e 

Anr-n cos nθ + 
e 

Bnr-n sin nθ.
n=0 n=1

 

(a)  The  boundary  condition  yields  A0  = ln 2, A3a-3  = 4, other An = 0, Bn = 0. 

(b) The boundary conditions yield (2.5.46) with a-n  replacing an. Thus, the coefficients are determined 
by (2.5.47)  with  an replaced by a-n

 

 

2.5.4   By  substituting (2.5.47)  into (2.5.45)  and interchanging the orders of summation  and integration 

7
1 
, " 

¢ 
1       

o , r ,n ,                         T

u(r, θ) = 
T 

f(θ̄) 
-" 

+ 
e

 
2                a 

n=1 

cos nθ cos nθ̄  + sin nθ sin nθ̄  dθ̄.

 

Noting  the trigonometric addition  formula  and cos z = Re[-iz ], we obtain
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¢ 

- 

 

 

u(r, θ) = 
1 
, "  

f(θ̄)       
1 

 
o 

+ R- 
e

 

 

, 
r 
,n 

7 

-in(θ-θ̄) 

 

 

dθ̄.

T   -" 2                      a 
n=0

 

Summing  the geometric series enables the bracketed  term to be replaced by 

1                      1   1           1 -  r  cos(θ -  θ̄)                    1       1 r 2 

-  

- 
2 

+ R- 
1     r

 
¯    = - 

2 
+ a 

   2                 =           2 

r       2r 

2 a2                        
.

- 
a 
-i(θ-θ) 

1 + r        2r                ¯             2                                        ¯

a2  - a   
cos(θ - θ)

 
1 + 

a2 - a   
cos(θ - θ)
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e 

0 

λ 

" 

λ 

 
2.5.5  (a)    The  eigenvalue  problem  is d2(/d02  = -A(  subject  to d(/d0(0) = 0 and  ((T/2)  = 0.  It  can be 

shown that  A > 0 so that  ( = cos 
√

A0  where ((T/2)  = 0 implies  that  cos 
√

AT/2  = 0 or 
√

AT/2  = 
-T/2 + nT, n = 1, 2, 3, . . . The  eigenvalues  are A = (2n - 1)2.   The  radially dependent term satisfies 
(2.5.40),  and hence the boundedness condition  at r = 0 yields  G(r) = r2n-1.  Superposition yields 

 
o 

u(r, 0) = 
e 

Anr
2n-1 cos(2n - 1)0. 

n=1 
 

The  nonhomogeneous boundary  condition  becomes 
o 

f(0) = 
e 

An cos(2n - 1)0    or    An = 4 
, "/2

 
 

f(0) cos(2n - 1)0 d0.

T 
n=1 

 

2.5.5  (c)   The  boundary  conditions of (2.5.37) must be replaced by ((0)  = 0 and ((T/2) = 0. Thus, L = T/2,
so that  A = (nT/L)2 = (2n)2 and  ( = sin  n"θ = sin 2n0.   The  radial  part  that  remains  bounded at

 

r = 0 is G = r 
√                                                   L 

λ = r2n. By  superposition,

 
o 

u(r, 0) = 
e 

Anr
2n sin 2n0 . 

n=1 
 

To apply  the nonhomogeneous boundary  condition,  we differentiate with  respect to r: 

∂u       
o

 

=     An 
∂r 

n=1 

 

(2n)r2n-1 sin 2n0 .

The  bc at r = 1, f(0) = 
0o 2nAn sin 2n0 , determines An, 2nAn  = 4  

R "/2 
f (0) sin 2n0 d0.

n=1                                                                         "   0 
 

2.5.6  (a)    The  boundary  conditions  of (2.5.37)  must  be replaced by  ((0)  = 0 and  ((T) = 0.  Thus L = T, 
so that  the  eigenvalues  are A = (nT/L)2 = n2   and  corresponding  eigenfunctions  (  = sin nT0/L  =

√ 

sin n0, n = 1, 2, 3, ... The  radial part which is bounded at r = 0 is G = r = rn
 . Thus by superposition

 
o 

u(r, 0) = 
e 

Anr
n sin n0 . 

n=1

The  bc at r = a, g(0) = 
0o 

Anan sin n0, determines An, Anan =  2  
R 

 

g(0) sin n0 d0.

n=1                                                                     "   0 
 

2.5.7  (b)    The  boundary  conditions  of (2.5.37)  must  be replaced  by  (t(0)  = 0 and  (t(T/3)  = 0.  This will 
yield  a cosine series with  L = T/3, A = (nT/L)2 = (3n)2 and ( = cos nT0/L = cos 3n0, n = 0, 1, 2, . . ..

√ 

The  radial  part  which is bounded at r = 0 is G = r = r3n . Thus by superposition

 
o 

u(r, 0) = 
e 

Anr
3n cos 3n0 . 

n=0 

The  boundary  condition  at r = a, g(0) = 
0o 

Ana3n cos 3n0, determines An: A0  = 3  
R "/3 

g(0) d0

and (n = 0)Ana3n =  6  
R 

 

"/3 
 

g(0) cos 3n0 d0. 
n=0                                                                      "   0

"   0 
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a   n                        2 

2.5.8  (a)   There  is a full Fourier series in 0. It is easier (but  equivalent)  to choose radial  solutions that satisfy 
the corresponding  homogeneous boundary  condition.  Instead  of rn and r-n  (1 and ln r for n = 0), we 
choose (1(r) such that  (1(a) = 0 and (2(r) such that  (2(b) = 0 :

½ 
ln(r/a)            n = 0 ½ 

ln(r/b)            n = 0

(1(r) = , 
r 

Tn
 

(  (r) = 
n = 0 

r  n       b   n 

- 
n = 0   

.

a        
- 

, 

r 

T

 
, T         , T 

b                r
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n=1 a 

- 

a 
- 

2 

i 

nn 

ln(b/a) 

. 

Then  by superposition 
 

o                                  o 

u(r, 6) = 
e 

cos n6 [An¢1(r) + Bn¢2(r)] + 
e 

sin n6 [Cn¢1(r) + Dn¢2(r)] .
n=0 

The  boundary  conditions  at r = a and r = b, 

n=1

o                                   o 

f(6) = 
e 

cos n6 [An¢1(a) + Bn¢2(a)] + 
e 

sin n6 [Cn¢1(a) + Dn¢2(a)]
n=0 n=1

o                                  o 

g(6) = 
e 

cos n6 [An¢1(b) + Bn¢2(b)] + 
e 

sin n6 [Cn¢1(b) + Dn¢2(b)]
n=0 n=1 

"

easily determine An, Bn, Cn, Dn  since ¢1(a) = 0 and ¢2(b) = 0 : Dn¢2(a) = 1  
R
 f(6) sin n6 d6,  etc.

"  -" 

2.5.9  (a)    The  boundary  conditions  of (2.5.37)  must  be replaced  by  ¢(0)  = 0 and  ¢(n/2)  = 0.   This is a 
sine series with  L = n/2  so that  A = (nn/L)2 = (2n)2 and  the eigenfunctions  are ¢ = sin nn6/L = 
sin 2n6, n  = 1, 2, 3, . . ..   The  radial  part  which  is  zero at  r  = a is  G = (r/a)2n - (a/r)2n.   Thus by 
superposition,

o 

u(r, 6) = 
e 

An 

n=1 

·, r ,2n 

a 

, a ,2n
¸

 
- 

r 

 

sin 2n6.

     2n              2n
,

The  nonhomogeneous boundary  condition,  f(6) = 
0o

 An 

,, 
b 

T
 

, 
a 

T
 

b 
sin 2n6, determines An  :

     2n              
2n
, 

= 4

 "/2

An 

,, 
b 

T
 

, 
a 

T
 

b " 

R

0       
f(6) sin 2n6 d6.

 

2.5.9  (b)  The two homogeneous boundary conditions are in r, and hence ¢(r) must be an eigenvalue problem. 

By  separation of variables,  u = ¢(r)G(6), d2G/d62 = AG and r2 d  ¢ +r d¢ +A¢ = 0 . The radial equation 
dr2            dr 

is equidimensional  (see p.78)  and  solutions  are in  the form ¢ = rp.   Thus p2  = -A   (with  A > 0)  so

that  p = ± 
√

 A.  r±i 
√ 

λ = -±i 
√

λ ln r . Thus real solutions  are cos(
√

A ln r) and sin(
√

A ln r).   It is more

convenient  to use independent  solutions  which  simplify  at r = a, cos[
√

A ln(r/a)] and sin[
√

A ln(r/a)]. 
Thus the general solution  is 

√  
¢ = c1 cos[

√
A ln(r/a)] + c2 sin[ A ln(r/a)]. 

√  

The  homogeneous condition  ¢(a) = 0 yields  0 = c1, while ¢(b) = 0 implies  sin[ A ln(r/a)] = 0 .  Thus

√
A ln(b/a) = nn,   n  = 1, 2, 3, ... and  the corresponding  eigenfunctions  are ¢  = sin 

,        , 
The

ln(r/a) 
ln(b/a) 

solution  of the 6 ­equation satisfying  G(0)  = 0 is G = sinh 
√

A6 = sinh    n"θ    . Thus by superposition 
o 

u = 
e 

An sinh 
n=1 

The  nonhomogeneous boundary  condition, 

nn6 

ln(b/a) 

 

sin 

·   
ln(r/a) 

¸
 

nn 
ln(b/a)   

.

 

o 

f(r) = 
e 

An sinh 
n=1 

 

nn2
 

2 ln(b/a) 

 
sin 

·   
ln(r/a) 

¸
 

nn 
ln(b/a)    

,
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0 

will  determine An.  One method (for  another,  see exercise 5.3.9)  is to let z = ln(r/a)/ ln(b/a).  Then 
a < r < b, lets 0 < z < 1.  This is a sine series in z (with  L = 1) and hence

nn2                   
, 1 

An sinh 
2 ln(b/a) 

= 2
 

 

But  dz = dr/r ln(b/a). Thus 

 
f(r) sin 

·   
ln(r/a) 

¸
 

nn 
ln(b/a) 

 
dz.

 

nn2 2      
, 1 ·   

ln(r/a) 
¸

An sinh 
2 ln(b/a) 

= 
ln(b/a) 

f(r) sin 
0 

nn 
ln(b/a) 

dr/r. 


