Solution Manual for Applied Partial Differential Equations with Fourier Series and Boundary Value Problems 5th Edition Richard Haberman 0321797051 9780321797056

Full link download: [https://testbankpack.com/p/solution-manual-for-applied](https://testbankpack.com/p/solution-manual-for-applied-partial-differential-equations-with-fourier-series-and-boundary-value-problems-5th-edition-richard-haberman-0321797051-9780321797056/)[partial-differential-equations-with-fourier-series-and-boundary-value](https://testbankpack.com/p/solution-manual-for-applied-partial-differential-equations-with-fourier-series-and-boundary-value-problems-5th-edition-richard-haberman-0321797051-9780321797056/)[problems-5th-edition-richard-haberman-0321797051-9780321797056/](https://testbankpack.com/p/solution-manual-for-applied-partial-differential-equations-with-fourier-series-and-boundary-value-problems-5th-edition-richard-haberman-0321797051-9780321797056/)

Chapter 1. Heat Equation

- 1.2.9 (d) Circular cross section means that $P = 2\pi r$, $A = \pi r^2$, and thus $P/A = 2/r$, where *r* is the radius. Also *γ* = 0.
- 1.2.9 (e) $u(x, t) = u(t)$ implies that

$$
c\rho \frac{du}{dt} = \frac{-2h}{r} u
$$

The solution of this first-order linear differential equation with constant coefficients, which satisfies the initial condition $u(0) = u_0$, is · ¸

$$
u(t) = u_0 \exp \left(-\frac{2h}{c\rho r} \right)^2
$$

Section 1.3

1.3.2 $\partial u / \partial x$ is continuous if $K_0(x_0)$ = $K_0(x_0)$ + that is, if the conductivity is continuous.

Section 1.4

- 1.4.1 (a) Equilibrium satisfies (1.4.14), $d^2u/dx^2 = 0$, whose general solution is (1.4.17), $u = c_1 + c_2x$. The boundary condition $u(0) = 0$ implies $c_1 = 0$ and $u(L) = T$ implies $c_2 = T/L$ so that $u = Tx/L$.
- 1.4.1 (d) Equilibrium satisfies (1.4.14), $d^2u/dx^2 = 0$, whose general solution (1.4.17), $u = c_1 + c_2x$. From the boundary conditions, $u(0) = T$ yields $T = c_1$ and $du/dx(L) = \alpha$ yields $\alpha = c_2$. Thus $u = T + \alpha x$.
- 1.4.1 (f) In equilibrium, (1.2.9) becomes $d^2u/dx^2 = -Q/K_0 = -x^2$, whose general solution (by integrating (f) In equilibrium, (1.2.9) becomes $d^2u/dx^2 = -Q/K_0 = -x^2$, whose general solution (by integrating twice) is $u = -x^4/12 + c_1 + c_2x$. The boundary condition $u(0) = T$ yields $c_1 = T$, while $du/dx(L) =$ twice) is $u = -x^4/12 + c_1 + c_2x$. The boundary con
0 yields $c_2 = L^3/3$. Thus $u = -x^4/12 + L^3x/3 + T$.
- 1.4.1 (h) Equilibrium satisfies $d^2u/dx^2 = 0$. One integration yields $du/dx = c_2$, the second integration yields the general solution $u = c_1 + c_2x$.

$$
x = 0: \ c_2 \longrightarrow (c_1 \longrightarrow T)
$$

= 0

$$
x = L: \ c_2 = \alpha \text{ and thus } c_1 = T + \alpha.
$$

Therefore, $u = (T + \alpha) + \alpha x = T + \alpha(x + 1)$.

1.4.7 (a) For equilibrium:

$$
\frac{d^2u}{dx^2} = -1 \text{ implies } u \stackrel{x^2}{=} + c_1x + c_2 \text{ and } \frac{du}{dx} = -x + c_1.
$$

2 From the boundary conditions $\frac{du}{dx}(0) = 1$ and $\frac{du}{dx}(L) = \beta$, $c_1 = 1$ and $-L + c_1 = \beta$ which is consistent From the boundary conditions $\frac{d}{dx}(0) = 1$ and $\frac{d}{dx}(L) = p$, $c_1 = 1$ and $-L + c_1 = p$ which is consisted only if $\beta + L = 1$. If $\beta = 1 - L$, there is an equilibrium solution $(u = \frac{2}{2} + x + c_2)$. If $\beta = 1 - L$,

there isn't an equilibrium solution. The difficulty is caused by the heat flow being specified at both ends and a source specified inside. An equilibrium will exist only if these three are in balance. This balance can be mathematically verified from conservation of energy:
 $\frac{d}{dt} Z_L$ $\frac{d}{dt}$ $\frac{d}{dt}$ Z_L

$$
d \frac{Z}{\mu} L_{\text{cpu dx}} = \frac{du}{\mu} (0) + \frac{du}{\mu} (L) + \frac{Z}{\mu} L_{\text{0 dx}} = -1 + \beta + L.
$$
\n
$$
d t_0 \quad dx \quad dx \quad 0
$$

Chapter 1. Heat Equation **If** ∂ *I* **+** *L* \sum_{L} $\$

$$
\sum_{0}^{L} L
$$

$$
f(x) dx = \sum_{0}^{L} \frac{L}{2} \bigg|_{0}^{2} x^{2} + x + dx, \text{ which determines } c_{2}.
$$

If $\beta + L = 1$, then the total thermal energy is always changing in time and an equilibrium is never reached.

Section 1.5

- $\frac{1}{\ln(r_2/r_1)}$ **1.5.9** (a) In equilibrium, (1.5.14) using (1.5.19) becomes $\frac{d}{dr}$ $\frac{d}{dr}r\frac{du}{dr} = 0$. Integrating once yields $rdu/dr = c_1$ and integrating a second time (after dividing by *r*) yields $u = c_1 \ln r + c_2$. An alternate general solution is $u = c_1 \ln(r/r_1) + c_3$. The boundary condition $u(r_1) = T_1$ yields $c_3 = T_1$, while $u(r_2) = T_2$ yields $c_1 = (T_2 - T_1)/\ln(r_2/r_1)$. Thus, $u = \frac{1}{\ln(r_2/r_1)}[(T_2 - T_1)\ln(r/r_1 + T_1\ln(r_2/r_1)]$.
- 1.5.11 For equilibrium, the radial flow at $r = a$, $2\pi a\beta$, must equal the radial flow at $r = b$, $2\pi b$. Thus $\beta = b/a$.
- 1.5.13 From exercise 1.5.12, in equilibrium $\frac{d}{dr}$, $r^2 \frac{du}{dr} = 0$. Integrating once yields $r^2 du/dr = c_1$ and integrat-From exercise 1.5.12, in equilibrium $\frac{d}{dr}$, $r^2 \frac{du}{dr} = 0$. Integrating once yields $r^2 du/dr = c_1$ and integrating a second time (after dividing by r^2) yields $u = -c_1/r + c_2$. The boundary conditions $u(4) = 80$ and u

Chapter 2. Method of Separation of Variables

2.3.1 (a) $u(r, t) = \varphi(r)h(t)$ yields $\varphi \frac{dh}{dt} = \frac{kh}{r}\frac{d}{dr}$ $r \frac{d\phi}{dr}$ [,] . Dividing by $k \notin h$ yields $\frac{1}{k \cdot h} \frac{dh}{dt} = \frac{1}{r \notin dr}$ $r_{dr}^{\frac{d\phi}{}}$) yields $\phi \frac{dh}{dt} = \frac{k h}{r} \frac{d}{dr} \left(r \frac{d\phi}{dr} \right)^2$. Dividing by $k \phi h$ yields $\frac{1}{kh} \frac{dh}{dt} = \frac{1}{r \phi} \frac{d}{dr} \left(r \frac{d\phi}{dr} \right)^2 = -\sqrt{\frac{1}{r^2}} \frac{d\phi}{dr} \left(r \frac{d\phi}{dr} \right)^2 = -\sqrt{\frac{1}{r^2}} \frac{d\phi}{dr} \left(r \frac{d\phi}{dr} \right)^2$ $\frac{dh}{dt} = -\kappa h$ and $\int_{r}^{1} \frac{d}{dr} dr = -\kappa h$

2.3.1 (c) $u(z, y) = \frac{\phi(z)h(y)}{d\theta}$ yields $h \frac{d^2\phi}{dz^2}$ 4 $\phi \frac{d^2h}{dy^2} = 0$. Dividing by ϕh yields $\frac{1}{\phi} \frac{d^2\phi}{dz^2} = -\frac{1}{h} \frac{d^2h}{dy^2} = -\frac{1}{h} \frac{d^2h}{dy^2} = -\frac{1}{h} \frac{d^2h}{dy^2}$ $\frac{d^2\ell}{d e^2} = -\setminus \ell$ and $\frac{d^2h}{dy^2} = \setminus h$.

2.3.1 (e) $u(z, t) = \phi(z)h(t)$ yields $\phi(z)\frac{dh}{dt} = kh(t)\frac{d^4\phi}{de^4}$. Dividing by $k\phi h$, yields $\frac{1}{kh}\frac{dh}{dt} = \frac{1}{\phi}\frac{d^4\phi}{de^4} = \frac{1}{h}$.

2.3.1 (f) $u(z, t) = \varphi(z)h(t)$ yields $\varphi(z)\frac{d^2h}{dt^2} = c^2h(t)\frac{d^2\varphi}{de^2}$. Dividing by $c^2\varphi h$, yields $\frac{1}{c^2h}\frac{d^2h}{dt^2} = \frac{1}{\varphi}\frac{d^2\varphi}{de^2} = -\frac{1}{c}$.

2.3.2 (b)
$$
= (n\pi/D)^2
$$
 with $D = 1$ so that $= n^2\pi^2$, $n = 1, 2, ...$

- 2.3.2 (d)
	- (i) If $\sqrt[3]{}$ *b* $\sqrt[3]{}$ *d* $\sqrt[3]{}$ *d* $\sqrt[3]{}$ *d* $\sqrt[3]{}$ *z* $\sqrt[3]{}$ *d* $\sqrt{\frac{1}{\mathcal{Z}}}/4$ *c*₂ sin $\sqrt{\frac{1}{\mathcal{Z}}-\varphi(0)}$ = 0 implies *c*₁ = 0, while $\frac{d\varphi}{d\mathcal{Z}}(D)$ = 0 implies *c*2 *√ * cos *√* φ = $c_1 \cos \sqrt{z}/4$ $c_2 \sin \sqrt{z}$. $\varphi(0)$ = 0 implies
 \sqrt{D} = 0. Thus \sqrt{D} = $-\pi/2$ 4 $n\pi(n=1, 2, ...)$.
	- (ii) If \setminus = 0, $\phi = c_1$ 4 c_2 z. ϕ (0) = 0 implies c_1 = 0 and $d\phi/dz(D)$ = 0 implies c_2 = 0. Therefore \setminus = 0 is not an eigenvalue.
	- (iii) If \setminus < 0, let \downarrow = *-s* and $\phi = c_1 \cosh \frac{\sqrt{2}}{sZ}$ and $\phi = c_2 \sinh \frac{\sqrt{2}}{sZ}$. $\phi(0) = 0$ implies $c_1 = 0$ and $d\phi/dz(D) = 0$ $\int \frac{d\mathbf{r}}{d\mathbf{r}}$ is $\int \frac{d\mathbf{r}}{d\mathbf{r}}$ = 0. Thus c_2 = 0 and hence there are no eigenvalues with \int < 0.
 implies c_2 s cosh sD = 0. Thus c_2 = 0 and hence there are no eigenvalues with \int < 0.
- 2.3.2 (f) The simpliest method is to let $z^0 = z a$. Then $d^2 \phi / dz^{02} \cdot 4 \backslash \phi = 0$ with $\phi(0) = 0$ and $\phi(b a) = 0$. (f) The simpliest method is to let $z^{\circ} = z - a$. Then $d^2 \ell / dz^{\circ 2}$ 4 ℓ
Thus (from p. 46) $D = b - a$ and $\ell = [n\pi/(b - a)]^2$, $n = 1, 2, ...$

2.3.3 From (2.3.30), $u(z, t) = \frac{\mathbf{O}_{\mathcal{O}}}{n-1} B_n \sin \frac{m e}{L} e^{-k(n n / L)^2 t}$. The initial condition yields *L* 2 cos $\frac{3ne}{l} = \frac{O_O}{B_n}$ sin $\frac{ine}{l}$. From (2.3.35), $B_n = \frac{2}{l} \sum_{n=1}^{R}$ 2 cos $\frac{3ne}{l}$ sin $\frac{ine}{l}$ dz. *L n*=1 *L L* O *L L*

- 2.3.4 (a) Total heat energy $= \frac{R_L}{0}cpuA$ $dz = cpA \frac{O_{\substack{on \ n=1}} B_n k\frac{nx^2}{1 cos mn}}{n}$, using (2.3.30) where *B* satisfies (2.3.35). $n=1$ ^{*D*} n *L*) *nπ n L*
- 2.3.4 (b)

heat flow out at $z = 0 = \kappa_0 A \frac{1}{\kappa}$
heat flow out $(z = D) = -K_0 A$ heat flow out $(z = D) = -K_0 A_{e}^{\alpha} e^{-L}$ heat flux to right = $-K_O\partial u/\partial z$ heat flux to right = $-K$ _O∂*u*/∂*z*
total heat flow to right = $-K$ _OA∂*u*/∂*z* heat flow out at $z = 0 = K_0 A \frac{du}{d}$
heat flow out $(z = D) = -K_0 A \frac{du}{d}$

2.3.4 (c) From conservation of thermal energy, $\frac{d}{dx}R_L u dz = k \frac{1}{2\mu}$ $= k \frac{du}{dt}$ $k \frac{du}{dt}$ (0)*.* Integrating from (*D*) 1 *-*

$$
t = 0
$$
 yields Z_L Z_L Z_L Z_L Z_L $W(z, t) dz - W(z, t) dz - W(z, 0) = 0$

2.3.8 (a) The general solution of $k \frac{d^2 u}{de^2} = \alpha u (\alpha > 0)$ is $u(z) = a \cosh \frac{\mathbf{p}}{\frac{a}{k}z} A b \sinh \frac{\mathbf{p}}{\frac{a}{k}z}$. The boundary

condition $u(0) = 0$ yields $a = 0$, while $u(D) = 0$ yields $b = 0$. Thus $u = 0$.

2.3.8 (b) Separation of variables, $u = ((z)h(t))$ or $\frac{dh}{dt} + a(h = kh \frac{d^2\phi}{de^2})$ yields two ordinary differential (b) separation of variables, $u = (\sqrt{2}h(t))$ $a + \alpha h = \sqrt{h^2 + 2h^2}$ we distributed the equations (divide by $k(h)$: $\frac{1}{h} \frac{dh}{h} + \frac{a}{h} = \frac{1}{h} \frac{d^2\phi}{dx^2} = -A$. Applying the boundary conditions, yields the *kh dt k ¢ de*2

L n=1 *^bⁿ* sin *nTe - k*(*nT/L*) *t* , where 2 *L* eigenvalues $A = (nT/L)^2$ and corresponding eigenfunctions $($ = sin $\frac{nTe}{c^L}$. The simme dependent part are eigenvalues $A = (nT/L)^2$ and corresponding eigenfunctions $\overline{A} = \sin \frac{nTe}{C}$. The stime Idep
exponentials, $h = -\frac{\lambda kt}{r} - \alpha t$. Thus by superposition, $u(z, t) = -\frac{\alpha t}{r} - \frac{C}{r}$ exponentials, $h = -\frac{\lambda k t}{c} - \alpha t$. Thus by superposition, $u(z, t) = -\frac{\alpha t}{c} - \frac{1}{c}$
the initial conditions $u(z, 0) = f(z) = \frac{C}{c} - \frac{b_n \sin \frac{nTe}{c}}{b_n}$ yields $b_n = \frac{2}{c} \sum_{k=1}^{n} f(z) \sin \frac{nTe}{c} dz$. As $t \to \infty$, $u \rightarrow 0$, the only equilibrium solution. *n*=1 *L L* 0 *L*

2.3.9 (a) If $a < 0$, the general equilibrium solution is $u(z) = a \cos \theta$ **q**_{$\frac{-\alpha}{k}z + b$ sin} $\frac{1}{\frac{1}{k}z + b \sin \frac{1}{k}z}$. The boundary condition $u(0) = 0$ yields $a = 0$, while $u(L) = 0$ yields $b \sin$ $a \cos \left(\frac{-a}{k} z + b \sin \left(\frac{-a}{k} z \right) \right)$
 $\frac{-a}{k} L = 0$. Thus if $\oint_{-\infty}^{\infty} Z$. The boundar
 $\frac{Z}{-\infty}L = nT, u = 0$ is *k k* **q** $\frac{1}{\frac{1}{k}}$ = *nT*, then *u* = *A* sin $\frac{nTe}{L}$ is an equilibrium solution.

the only equilibrium solution. However, if

2.3.9 (b) Solution obtained in 2.3.8 is correct. If $-\frac{\alpha}{\cdot}$ $\int \mathcal{I}^{T_2}$, $u(z, t) \rightarrow b$ sin $\frac{T_e}{s}$, the equilibrium solution. If $-\alpha ^k$ $\sum_{i=1}^{k}$ $\sum_{j=1}^{k}$ in $\sum_{j=1}^{k}$ and equivalent determinations of $\sum_{i=1}^{k}$ $\sum_{j=1}^{k}$ $\sum_{j=1}^{k}$ $\sum_{j=1}^{k}$ $\sum_{j=1}^{k}$ $\sum_{j=1}^{k}$ $\sum_{j=1}^{k}$ $\sum_{j=1}^{k}$ $\sum_{j=1}^{k}$ $\sum_{j=1}^{k}$ $\$ $f(z)$ ^k \geq 0. Other more unusual events can occur if $b_1^k = 0$. [Essentially, the other possible equilibrium solutions are unstable.]

Section 2.4

(a) $A_0 = \frac{1}{L} R L$ $1 dz = \frac{1}{L} A_n = \frac{2}{L} R L$ $\cos \frac{nT e}{L} dz = \frac{2}{L} L \sin \frac{nT e}{L}$ 2.4.1 The solution is given by (2.4.19), where the coefficients satisfy (2.4.21) and hence (2.4.23-24). 4.21) and hence (2
 $\frac{1}{2}$,
 $\frac{1}{2}$ = $-\frac{2}{3}$ sin $\frac{nT}{2}$

$$
L L/2 \qquad 2 \qquad L L/2 \qquad L \qquad L nT \qquad L L/2 \qquad nT \qquad 2
$$

(b) by inspection $A_0 = 6, A_3 = 4$, others = 0.

(c)
$$
A_0 = \frac{-2}{L} \int_0^{R_L} \sin \frac{Te}{L} dz = \frac{2}{L} \cos \frac{Te}{L} \Big|_0^{2L} = \frac{2}{L} (1 - \cos T) = 4/T
$$
, $A_n = \frac{-4}{L} \int_0^{R_L} \sin \frac{Te}{L} \cos \frac{nTe}{L} dz$

(d) by inspection $A_8 = -3$, others = 0.

2.4.3 Let $z^t = z - T$. Then the boundary value problem becomes $d^2/dz^{t2} = -A$ subject to $((-T) = (T))$ Let $z^t = z - T$. Then the boundary value problem becomes $d^2/(dz^{t2} = -A$ (subject to $((-T) = ((T)$
and $d/(dz^t(-T)) = d/(dz^t(T))$. Thus, the eigenvalues are $A = (nT/L)^2 = n^2T^2$, since $L = T$, $n =$ and $d(\sqrt{dz'}(-T)) = d(\sqrt{dz'}(T)$. Thus, the eigenvalues are $A = (nT/L)^2 = n^2T^2$, since $L = T$, $n = 0, 1, 2, ...$ with the corresponding eigenfunctions being both sin $nTz^t/L = \sin n(z-T) = (-1)^n \sin nz = \sin nz$ and $\cos nTz^t/L = \cos n(z-T) = (-1)^n \cos nz = \cos nz$. $\sin nx$ and $\cos nTz^{t}/L = \cos n(z - T) = (-1)^{n} \cos nz = \cos nz$.

Section 2.5

 $\cos nT_z/L$. Furthermore, $\frac{d^2\psi}{dy^2} = A($ 2.5.1 (a) Separation of variables, $u(z, y) = h(z)$ (y), implies that $\frac{1}{h} \frac{d^2 h}{d e^2} = -\frac{1}{e} \frac{d^2 e}{dy^2} = -A$. Thus $d^2 h/dz^2 =$ $-Ah$ subject to $h'(0) = 0$ and $h'(L) = 0$. Thus as before, $A = (nT/L)^2$, $n = 0, l, 2, ...$ with $h(z) =$ and $h^t(L) = 0$. Thus as b
 $\frac{d^2\varphi}{dy^2} = A \left(\frac{1}{L} \right)^n \frac{d^2\varphi}{dx^2}$ (so that

 $n = 0$: $(= c_1 + c_2y$, where $(0) = 0$ yields $c_1 = 0$ $n = 0$: $(= c_1 \cosh \frac{nT_y}{L} + c_2 \sinh \frac{nT_y}{L}$, where $(0) = 0$ yields $c_1 = 0$. The result of superposition is

nTz nTy

o

$$
u(z, y) = A_0 y + \sum_{n=1}^{\infty} A_n \cos \frac{1}{L} \sinh \frac{1}{L}.
$$

The nonhomogeneous boundary condition yields
 $\epsilon I(z) = A_0 H +$

$$
f(z) = A_0 H + \sum_{n=1}^{\infty} A_n \sinh \frac{nTH}{L} \cos \frac{nTz}{L},
$$

so that

$$
\sum_{L} \frac{nTH}{L} = \frac{2}{L} \sum_{0} \frac{nTz}{f(z) dz}
$$
 and $A_n \sinh \frac{1}{L} = \sum_{L} \frac{1}{2} \int_{0}^{L} f(z) \cos \frac{1}{L} dz$.

 \mathbb{Z}

2.5.1 (c) Separation of variables, $u = h(z)$ ((9), yields $\frac{1}{h} \frac{d^2 h}{de^2} = -\frac{e^2}{1} \frac{d^2 z}{dx^2}$ $\oint_A dy^2 = A$. The boundary conditions

 $(0) = 0$ and $((H) = 0$ yield an eigenvalue problem in 9, whose solution is $A = (nT/H)^2$ with $d\hbar/dz(0) = 0$. By superposition:
 $d\hbar/dz(0) = 0$. By superposition:
 $d\hbar/dz(0) = 0$. By superposition: $dh/dz(0)$ = 0. By superposition: *o*

$$
u(z, 9) = \sum_{n=1}^{\infty} A_n \cosh \frac{nTz}{H} \sin \frac{nT9}{H}.
$$

A_n is determined by A_n cosh $\frac{n''L}{l} = \frac{2}{\pi} \int_{0}^{R} g(y) \sin \frac{n''y}{l}$ The nonhomogeneous boundary condition at $z = L$ yields $9(9) = \frac{c^{O(1)}}{2}$ A_n cosh $\frac{n \cdot \nu}{L}$ sin $\frac{n \cdot \nu}{L}$, so that *d9. n*=1 *H H H H* 0 *H*

2 eigenfunctions *(* = sin *nTz/L, n* = 1, 2, 3, ... The *9*-dependent differential equation, $\frac{d^2h}{dy^2} = \frac{h^2h^2}{L^2}h$, 2.5.1 (e) Separation of variables, $u = ((z)h(9))$, yields the eigenvalues $A = (nT/L)^2$ and corresponding

satisfies $h(0) - \frac{dh}{2}$ (0) = 0. The general solution $h = c_1 \cosh \frac{n''y}{2} + c_2 \sinh \frac{n''y}{2}$ obeys $h(0) = c_1$, while $\frac{dh}{dt} = \frac{n^{n}}{c_1} \sinh \frac{n^{n}}{c_2} + c_2 \cosh \frac{n^{n}}{c_2} \sinh \frac{dh}{dt}$ (0) = $c_2 \frac{n^{n}}{c_1}$. Thus, $c_1 = c_2 \frac{n^{n}}{c_2}$ and hence $h_n(9)$ = *dy L L L dy L L* $cosh \frac{n''y}{x} + L \sinh \frac{n''y}{x}$. Superposition yields *L n" L*

tion yields

$$
u(z, 9) = \sum_{n=1}^{\infty} A_n h_n(9) \sin nTz/L,
$$

where A_n is determined from the boundary condition, $f(z) = \frac{\mathbf{C}_{\overline{C}}}{n=1} A_n h_n(H)$ sin nTz/L , and hence

$$
A_n h_n(H) = \frac{2}{L} \int_0^L f(z) \sin nT z/L \, dz.
$$

- zero in equilibrium (without sources, i.e. Laplace's equation). Thus ${}_{0}^{R}L$ $f(z)$ $dz = 0$ for a solution. 2.5.2 (a) From physical reasoning (or exercise 1.5.8), the total heat flow across the boundary must equal
- 2.5.3 In order for *u* to be bounded as $r \to \infty$, $c_1 = 0$ in (2.5.43) and $\bar{c}_2 = 0$ in (2.5.44). Thus,
 $v(r, \theta) = \begin{cases} 0 & r^{-n} \cos \theta + e^{-(r- n) \cos \theta} \\ 0 & r^{-n} \sin \theta \end{cases}$

$$
u(r, \theta) = \sum_{n=0}^{\infty} A_n r^{-n} \cos n\theta + \sum_{n=1}^{\infty} B_n r^{-n} \sin n\theta.
$$

- (a) The boundary condition yields $A_0 = \ln 2$, $A_3 a^{-3} = 4$, other $A_n = 0$, $B_n = 0$.
- (a) The boundary conditions yields $n_0 = m \epsilon$, $n_3 a = -\epsilon$, other $n_n = 0$, $D_n = 0$.
(b) The boundary conditions yield (2.5.46) with a^{-n} replacing a^n . Thus, the coefficients are determined (b) The boundary conditions yield (2
by (2.5.47) with a^n replaced by a^{-n}
- 2.5.4 By substituting (2.5.47) into (2.5.45) and interchanging the orders of summation and integration
 $\frac{e}{\sqrt{2}}$
 $\frac{1}{2}$
 $\frac{e}{\sqrt{2}}$
 $\frac{1}{2}$
 $\frac{e}{\sqrt{2}}$
 $\frac{e}{\sqrt{2}}$
 $\frac{e}{\sqrt{2}}$

$$
u(r, \theta) = \frac{1}{T} \int_{-r}^{\theta} \frac{1}{r} \int_{r=1}^{\theta} \frac{e^{2r} \Sigma^{2n}}{r^2} \cos n\theta \cos n\bar{\theta} + \sin n\theta \sin n\bar{\theta} \quad d\bar{\theta}.
$$

Noting the trigonometric addition formula and $\cos z = R_e[-^{iz}]$, we obtain

$$
u(r, \theta) = \frac{1}{r} \int_{-r}^{\infty} \frac{1}{r} dt - \frac{1}{r} + R - \sum_{n=0}^{\infty} \frac{1}{r} \int_{0}^{r} \frac{1}{r} dr \frac{1}{r} dr
$$

Summing the geometric series enables the bracketed term to be replaced by
\n
$$
\frac{1}{2} \qquad \frac{1}{1} \qquad \frac{1}{1} \qquad \frac{1 - \frac{r}{2} \cos(\theta - \bar{\theta})}{2} \qquad \frac{1 - \frac{1}{2}r^2}{2}
$$
\n
$$
- \frac{1}{2} + R - \frac{1}{1} \qquad \frac{1}{1} \qquad \frac{1 - \frac{r}{2} \cos(\theta - \bar{\theta})}{2} \qquad \frac{1}{1} \qquad \frac{1 - \frac{r}{2} \cos(\theta - \bar{\theta})}{2}
$$
\n
$$
- \frac{1}{a} \frac{r}{2} \qquad \frac{1}{1} \qquad \frac{1}{1}
$$

 $a^2 - a \cos(\theta - \theta)$ 1 + $a^2 - a \cos(\theta - \theta)$

2.5.5 (a) The eigenvalue problem is d^2 / $\angle d\underline{\theta}^2 = -A$ subject to d / $\angle d0$ (0) = 0 and $f(T/2) = 0$. It can be shown that $A > 0$ so that $(= \cos A0$ where $((T/2) = 0$ implies that $\cos A T/2 = 0$ or $A T/2 =$ shown that $A > 0$ so that $A = \cos A \cdot B$ where $((1/2) = 0$ implies that $\cos A \cdot 1/2 = 0$ or $A \cdot 1/2 = -T/2 + nT$, $n = 1, 2, 3, ...$ The eigenvalues are $A = (2n - 1)^2$. The radially dependent term satisfies $-T/2 + nT$, $n = 1, 2, 3, ...$ The eigenvalues are $A = (2n - 1)^2$. The radially dependent term sation (2.5.40), and hence the boundedness condition at $r = 0$ yields $G(r) = r^{2n-1}$. Superposition yields

$$
u(r, 0) = \sum_{n=1}^{\infty} A_n r^{2n-1} \cos(2n - 1) 0.
$$

The nonhomogeneous boundary condition becomes
 $f(0) = \begin{pmatrix} 2 & 10 & 0 \\ 0 & 4 & 0 \\ 0 & 0 & 4 \end{pmatrix}$

eneous boundary condition becomes
\n
$$
f(0) = \sum_{n=1}^{\infty} A_n \cos(2n - 1)0 \text{ or } A_n = \frac{4}{T} \int_{0}^{\infty} f(0) \cos(2n - 1)0 \, d0.
$$

2.5.5 (c) The boundary conditions of (2.5.37) must be replaced by $(0) = 0$ and $((T/2) = 0$. Thus, $L = T/2$, so that $A = (nT/L)^2 = (2n)^2$ and $(1 - \sin \frac{n\pi}{\theta}) = \sin 2n\theta$. The radial part that remains bounded at $r = 0$ is $G = r^{\frac{\sqrt{2}}{A}} = r^{2n}$. By superposition,

$$
u(r, 0) = \sum_{n=1}^{\infty} A_n r^{2n} \sin 2n0.
$$

To apply the nonhomogeneous boundary condition, we differentiate with respect to *r*:
 $\frac{\partial u}{\partial t} = \frac{Q}{A} (2\pi)^{2n-1} \sin 2\pi\theta$

$$
\frac{\partial u}{\partial r} = \sum_{n=1}^{\infty} A_n (2n) r^{2n-1} \sin 2n\theta.
$$

The bc at $r = 1$, $f(0) = \frac{O_O}{2nA_n}$ sin 2*n0*, determines A_n , 2*n* $A_n = \frac{4}{3} R^{n/2} f(0)$ sin 2*n0 d0*. *n*=1 *"* 0

 $\sin n\theta$, $n = 1, 2, 3, ...$ The radial part which is bounded at $r = 0$ is $G = r^{\frac{1}{\lambda}} = r^n$. Thus by superposition 2.5.6 (a) The boundary conditions of (2.5.37) must be replaced by $(0) = 0$ and $(1) = 0$. Thus $L = T$, so that the eigenvalues are $A = (nT/L)^2 = n^2$ and corresponding eigenfunctions $\zeta = \sin nT0/L =$

$$
u(r, 0) = \sum_{n=1}^{\infty} A_n r^n \sin n\theta.
$$

The bc at $r = a$, $g(0) = \frac{\mathbf{O}_o}{A_n a^n \sin n\theta}$, determines A_n , $A_n a^n = \frac{2}{\pi} \int_{0}^{R} g(0) \sin n\theta \, d\theta$.

The radial part which is bounded at $r = 0$ is $G = r^{\frac{1}{\sqrt{\lambda}}} = r^{3n}$. Thus by superposition 2.5.7 (b) The boundary conditions of (2.5.37) must be replaced by $\binom{t}{0} = 0$ and $\binom{t}{T/3} = 0$. This will yield a cosine series with $L = T/3$, $A = (nT/L)^2 = (\frac{3}{T})^2$ and $(= \cos nT)/L = \cos 3n\theta$, $n = 0, 1, 2, ...$

$$
u(r, 0) = \sum_{n=0}^{\infty} A_n r^{3n} \cos 3n0.
$$

The boundary condition at $r = a$, $g(0) = \sum_{n=0}^{n=0} A_n a^{3n} \cos 3n0$, determines A_n : $A_0 = \frac{3}{2} \int_{0}^{R} \int_{0}^{\sqrt{3}} g(0) \, d0$
and $(n = 0)A_n a^{3n} = \frac{6}{2} \int_{0}^{R} \int_{0}^{\sqrt{3}} g(0) \cos 3n0 \, d0$.

2.5.8 (a) There is a full Fourier series in *0*. It is easier (but equivalent) to choose radial solutions that satisfy (a) There is a full Fourier series in *0*. It is easier (but equivalent) to choose radial solutions that satisfy
the corresponding homogeneous boundary condition. Instead of r^n and r^{-n} (1 and ln *r* for $n = 0$), we choose $\binom{1}{r}$ such that $\binom{1}{a} = 0$ and $\binom{2}{r}$ such that $\binom{2}{b} = 0$:

$$
\frac{1}{2} \ln(r/a) \qquad n = 0 \qquad \frac{1}{2} \ln(r/b) \qquad n = 0
$$

$$
(1(r) = \frac{1}{2} \sum_{n=0}^{\infty} \frac{T_n}{r} \qquad n = 0 \qquad \frac{1}{2} \q
$$

Then by superposition

$$
u(r, 6) = \begin{cases} \text{cos } n6 \left[A_n \phi_1(r) + B_n \phi_2(r) \right] + \text{sin } n6 \left[C_n \phi_1(r) + D_n \phi_2(r) \right].\\ n=1 \end{cases}
$$

The boundary conditions at $r = a$ and $r = b$,

$$
f(6) = \sum_{n=0}^{\infty} \cos n6 \left[A_n \phi_1(a) + B_n \phi_2(a) \right] + \sum_{n=1}^{\infty} \sin n6 \left[C_n \phi_1(a) + D_n \phi_2(a) \right]
$$

$$
g(6) = \sum_{n=0}^{\infty} \cos n6 \left[A_n \phi_1(b) + B_n \phi_2(b) \right] + \sum_{n=1}^{\infty} \sin n6 \left[C_n \phi_1(b) + D_n \phi_2(b) \right]
$$

easily determine A_n , B_n , C_n , D_n since $\varphi_1(a) = 0$ and $\varphi_2(b) = 0$: $D_n \varphi_2(a) = \frac{1}{2}$ $f(b)$ sin n6 d6, etc. *" -"*

2.5.9 (a) The boundary conditions of (2.5.37) must be replaced by $\ell(0) = 0$ and $\ell(n/2) = 0$. This is a sine series with $L = n/2$ so that $A = (nn/L)^2 = (2n)^2$ and the eigenfunctions are $\phi = \sin nn\delta/L =$ sin 2*n6*, *n* = 1, 2, 3, The radial part which is zero at *r* = *a* is $G = (r/a)^{2n} - (a/r)^{2n}$. Thus by superposition,
 \therefore \therefore superposition, · , , , , \overline{a}

$$
u(r, 6) = \sum_{n=1}^{\infty} A_n \left(\frac{r^{2n}}{2} - \frac{2a^{2n}}{r} \sin 2n6 \right)
$$

 $n=1$ ^{A_n} a $\frac{1}{2}$ $\lim_{n \to \infty} \frac{1}{2}$ The nonhomogeneous boundary condition, $f(6) = \frac{\mathbf{O}_{\mathcal{O}}}{n-1} A_n$ \cdot , \int_{b}^{a} \int_{a}^{b} \int_{a}^{b} \int_{a}^{b} \int_{a}^{b} \int_{b}^{a} sin 2*n6*, determines A_n :

$$
a_n \rightarrow b_n \qquad \qquad a_n \
$$

2 *i* 2.5.9 (b) The two homogeneous boundary conditions are in r , and hence $\varphi(r)$ must be an eigenvalue problem. By separation of variables, $u = \phi(r)G(6)$, $d^2G/d6^2 = AG$ and $r^2 \frac{d^2\phi}{dr^2} + r \frac{d\phi}{dr} + A\phi = 0$. The radial equation is equidimensional (s<u>ee</u> p.78) and solutions are in the form $\phi = \psi^2$. Thus $p^2 = \frac{A}{\sqrt{4}}$ (with $A >$ that $p = \pm$ *√* $\frac{p}{p}$ (see p.78) and solutions are in the form $\ell = A$. $r^{\pm i}$ $\lambda = -\frac{1}{r}i$ $\lambda \ln r$. Thus real solutions are cos(*√ A* ln *r*) and sin(*√ A* ln *r*). It is more *√ √*

convenient to use independent solutions which simplify at $r = a$, cos[*A* ln(*r/a*)] and sin[*A* ln(*r/a*)]. Thus the general solution is

$$
\begin{array}{c}\n\sqrt{}\\
\ell = c_1 \cos[\stackrel{\sqrt{1}}{A}\ln(r/a)] + c_2 \sin[\stackrel{\sqrt{1}}{A}\ln(r/a)].\n\end{array}
$$

√

The homogeneous condition $\phi(a) = 0$ yields $0 = c_1$, while $\phi(b) = 0$ implies sin[$\overline{A} \ln(r/a)$] = 0. Thus *√* $, \frac{(1/2)(1 - 0)}{2}$

 $nn \frac{\ln(r/a)}{\ln(b/a)}$. $A \ln(b/a) = nn, n = 1, 2, 3, ...$ and the corresponding eigenfunctions are $\ell = \sin \theta$ The

solution of the 6-equation satisfying $G(0) = 0$ is $G = \sinh \left(\frac{h'' \theta}{\ln(b/a)} \right)$ *√* $\alpha(G(0)) = 0$ is $G = \sinh \frac{\sqrt{46}}{4} = \sinh \frac{n''\theta}{\ln(b/a)}$. Thus by superposition *o* $u = A_n$ sinh *n*=1 *nn6* $\frac{nn6}{\ln(b/a)} \sin \left(\frac{\ln(r/a)}{\ln(b/a)} \right)$.

The nonhomogeneous boundary condition,

$$
f(r) = \sum_{n=1}^{\infty} A_n \sinh \frac{nn^2}{2 \ln(b/a)} \sin \frac{\ln(r/a)}{\ln(b/a)},
$$

will determine A_n . One method (for another, see exercise 5.3.9) is to let $z = \ln(r/a)/\ln(b/a)$. Then $a < r < b$, lets $0 < z < 1$. This is a sine series in *z* (with $L = 1$) and hence

$$
A_n \sinh \frac{nn^2}{2 \ln(b/a)} = 2 \int_0^1 f(r) \sin mn \frac{\ln(r/a)}{\ln(b/a)} dr.
$$

But $dz = dr/r \ln(b/a)$. Thus

$$
nn^{2} \qquad 2 \qquad 1 \qquad \qquad \frac{\ln(r/a)}{\ln(r/a)}.
$$

$$
A_{n} \sinh \frac{1}{2 \ln(b/a)} = \frac{1}{\ln(b/a)} \int_{0}^{1} f(r) \sin \frac{nn}{\ln(b/a)} dr/r.
$$