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Chapter 1. Heat

Equation
1.2.9 (d) Circular cross section means that P = 2zr, A = ar?, and thus P/A = 2/r, where r is the radius.
Also y = 0.
1.2.9 (e) u(x,t) = u(t) implies that
du  2h U
Pt T r

The solution of this first-order linear differential equation with constant coefficients, which satisfies the
initial condition u(0) = up, is

s

2h
— — t
u(t) = ug exp cor

Section 1.3

1.3.2 O0u/ox is continuous if Kg(Xg—) = Kg(Xo+), that is, if the conductivity is continuous.

Section 1.4

1.4.1 (a) Equilibrium satisfies (1.4.14), d2u/dx? = 0, whose general solution is (1.4.17), u = ¢; + C;X. The
boundary condition u(0) = 0 implies ¢; =0 and u(L)= T implies ¢, = T/L so that u = Tx/L.

1.4.1 (d) Equilibrium satisfies (1.4.14), d2u/dx2 = 0, whose general solution (1.4.17), U = C; + C;X. From
the boundary conditions, u(0) =T yields T =c¢; and du/dx(L)= « yields ex=Cy. Thusu =T + ax.

1.4.1 (f) In equilibrium, (1.2.9) becomes d?u/dx? = — Q/Kg = — x?, whose general solution (by integrating
twice) is U = —X*/12 +¢; + CoX. The boundary condition u(0) =T vyields ¢; = T, while du/dx(L) =
Ovyields ¢, = L3/3. Thus u = —x*/12 + L3x/3 + T.

1.4.1 (h) Equilibrium satisfies d2u/dx? = 0. One integration yields du/dx= c,, the second integration
yields the general solution U = c; + CoX.

X=0: C—(cp —T)
=0
X=L: coc=aandthusc; =T + «.

Therefore, u= (T+ o)+ ax =T + a(X + 1).

1.4.7 (a) For equilibrium:

d’u = —1 implies u)12 dd—u——x+c
2 = p = +C1X+C an x 1.
2
From the boundary conditions %—‘)‘((O) =1 and %((L) = f,¢; =1and —L +c; = which is consistent
only if f+L =1. If f =1 — L, there is an equilibrium solution (u= ZLX— +X+C) fp=1

— L,
there isn’t an equilibrium solution. The difficulty is caused by the heat flow being specified at both
ends and a source specified inside. An equilibrium will exist only if these three are in balance. This
balance can be mathematically verified from conservation of energy:
= Z
L du du L
— cpu dX = ——(0) + — (L) + Qo dx = —1+p8+L.

dt o dx dx 0



Chapter 1. Heat

Equfailio.n: 1, then the total thermal energy is constant and the initial energy = the final energy:

=z . Z . KU 2 il
f(X) dx = —, + X+ dX, which determines c,.

0 0
C2

If f +L =1, then the total thermal energy is always changing in time and an equilibrium is never

reached.



Section 1.5

1.5.9 (a) In equilibrium, (1.5.14) using (1.5.19) becomes dﬂr lrg—r”’ = 0. Integrating once yields rdu/dr = ¢,

1511

1.5.13

and integrating a second time (after dividing by r) yields u = c¢|Inr+c,. An alternate general solution
is U = ¢/ In(r/rj)+ c3. The boundary condition u(r;)= T, yields c3 = T,, while u(rz)= T, yields
c=(Te- T|)/In(r2/r|). Thus, U = WJ(TZ —TIn r/ri+ T In(r2/r|)].

For equilibrium, the radial flow at r = a, 2zaf, must equal the radial flow at r = b, 2zb. Thus # = b/a.

i ) . . .
From exercise 1.5.12, in equilibrium dgr rng“ = 0. Integrating once yields r2du/dr = ¢; and integrat-

ing a second time (after dividing by r2 ) yields u = —¢;/r + c,. The boundary conditio?s u4) =80
and u(1) = 0 yields 80 = —¢;/4 +¢C, and 0 = —C; + Cp. Thus ¢; =¢C, =320/3 oru = ms 1- ";



Chapter 2. Method of Separation of

Variables

2.3.1 (a) u(r,t) = ¢(r)h(t)yields ¢ % = r—hd—‘: ,r(;j%D Dividing by kth yields Fl dT =r¢—ld§ ’r;j%’ =-\or
dh 1q 7 de’
gt = —Khand = r, =-\C

23.1 (c) u(z,y) = ¢(z)h(y) yields h £ 4 ¢ €0 = 0. Dividing by ¢h yields €€ = - 1&h— _\ o
de? dy? ¢ de? h dy2
d*¢ d*h
dez = —\¢ and ay? = \h.

23.1 (e) u(z,t) = ¢(2)h(t) yields ¢(z)% = kh(t) 5 de4 Dividing by k¢h, yields & & =1 &5 =\,
23.1 (f) u(z,t) = ¢(2)h(t) yields ¢(z)4h = th(t)i,—;ﬁ. Dividing by c2¢h, yields & = 188 =\

2.3.2 (b) \= (nz/D)2with D =1sothat \=n%z2, n=1,2,...
2.3.2 (d)
N N de
(i) If\\/> 0y¢ = ¢y cos \2\/4 Cysin \z. ¢(0) = O implies ¢; = 0, while (D) = 0 implies
¢, \cos \D=0. Thus \D =-z/24 nz(n=1,2,...).
(i) f\=0,¢ =c;4cz. ¢(0) =0 implies ¢; =0 and d¢/dz(D)= 0 implies ¢, = 0. Therefore \ =0
is not an eigenvalue. N N
(iii) If\< 0, let\ = —s gnd ¢ = ¢4 cosh s£4C2 sinh 'sz. ¢(0) = 0 implies ¢c; = 0and d¢/dz(D)= 0
implies ¢, Scosh sD= 0. Thus ¢, = 0 and hence there are no eigenvalues with \ < 0.

2.3.2 (f) The simpliest method is to let zZ0 = z—a. Then d2¢/dz%24\¢ = 0 with ¢(0) =0 and ¢(b—a)= 0.
Thus (from p. 46) D =b—a and \ = [nz/(b — a)]2 ,h=12...

o
2.3.3 From (2.3.30), U(Z,t) = g Bpsin M€-—K(WN/LY*t The initial condition yields
L

O
2cos®Pe = T B_sin ™€ From (2.3.35), Bh= 2 2cos3P€ gin DNe gz,
L n=1 L L O L L
RL Oo —k(z= 2
2.3.4 (a) Total heat energy = o CpuA dz = cpA 1Bn— tl-cosnn g (2.3.30) where B
e , 3.
satisfies (2.3.35). ). n
L
2.3.4 (b)

heat flux to right = —Kgou/oz
total heat flow to right = —KoAgu/oz
heat flow out at z=0 = KoAZ/ =d

heat flow out (Z = D) = —KoA eug' L
R 1
2.3.4 (c) From conservation of thermal energy, 4 ~udz =k=4 =k=u k =Y(0). Integrating from
(D) 1
dt O ~e o ~e T -e
t=0y|e|dS Z|_ Z|_ Zt.- a .
_ a
ou
u(z,t) dz — u(z,0) ©
dz =k ©



apter 2. Method of Separatjon of
N aHon

1ables 0z
l—{z__} |—{z_} |_{z } |__{z—}
heat energy initial heat integral of integral of
at t energy flow in at flow out at
z=D z=D

2.3.8 (a) The general solution of k%_zei' = aU(a > 0) is u(z) = acosh p%z 4 bsinh p“12. The boundary

condition u(0) = 0 yields a = 0, while u(D) = 0 yields b= 0. Thus u = 0.



2.3.8

2.3.9

239

(b) Separation of variables, u = ((z)h(t)or (d +a(h= kh ¢ dez, yields two ordinary differential

equations (divide by k(h): -1 dh e - 1d%¢ _ Applying the boundary conditions, yields the
khdt k ¢ de?

eigenvalues A = (NT/L)?and corresponding eigenfunctions ( = sin % The, SqW!e_&epeﬂdEM)pBrg\,ﬁéee

exponentials, h = -~*Kt-=t_ Thys by s%)erposmon u(z, t) = 1 L
the initial conditions U(z,0) = f(z) = © by sin "I yields by, = 2 “f(z)sin 2T dz. As t — oo,
n=1 L L o L

u — 0, the only equilibrium solution.

q— q—
(@) If a < 0, the general equilibrium solution is u(z) = acclos 2z +Dbsin  =%z. The boundary

condition u(0) = 0 yields a = 0, while u(L)= 0 yields bsin —%L =0. Thusif ~2L =nT,u=0

is q K K
the only equilibrium solution. However, if ZZL =nT, then u = Asin ”Te is an equilibrium solution.
, =12
(b) Solution obtained in 2.3.8 is correct. If =% ="T “ u(z,t) - b sin T2, the equilibrium solution.
s T2 k L , T2 L )
B‘—2< T % then U — 0 as t — oo. However, if —2¢ > T ,u—>oo(|f = 0). Note that b > 0 if

k L k L 1 1
f(z) = 0. Other more unusual events can occur if by = 0. [Essentially, the other possible equilibrium

solutions are unstable.]

Section 2.4
2.4.1 The solution is given by (2.4.19), where the coefficients satisfy (2.4.21) and hence (2.4.23-24).
(a) Ao=—RL dz =1 A,=2 " cosmdz=g-—'-sini:'- = — Z sjp 0T
L L/2 2 L L/2 L L nT L 1L/2 nT 2

243

(b) by inspection Ag = 6,A; =4, others = 0.
R
-4

L
(c) Ag = _—2Fi‘sm— dz = 2cos™® =2(1—-cosT)=4/T,An= =2 ~sin L€ cos"Te dz
L o L T L L o L L
T
(d) by inspection Ag = —3, others = 0.
Let zt = z —T. Then the boundary value problem becomes d?(/dzt? = —A( subject to ((=T) = ((T)
and d(/dz!(-T) = d(/dz!(T). Thus, the eigenvalues are A = (nNT/L)2 = n?T2,since L = T,n

0,1,2, ... with the corresponding eigenfunctions being both sin N"Tz!/L = sinn(z-T) = (—=1)"sin nz =>
sinnz and cosnTz!/L = cosn(z — T)= (=1)"cosnNz == cos Nz.

Section 2.5

25.1

(a) Separation of variables, u(z, y) = h(z)((y), implies that 1h%2= -1 d—2¢ = —A. Thus d2h/dz? =

—Ah subject to h'(0) = 0 and h'(L)= 0..Thus as before, A = (nT/L)?>,n = 0,1,2,... with h(z) =

d2¢ 2
cosnTz/L. Furthermore, dyz =A(= % ( so that

n=0:(=cy+Cyy, where ((0) =0 yields ¢; =0
n=0: (—clcosh—¥+c sinh & I_,where ((0) =0 yields ¢; = 0.

The result of superposition is

nTz nTy



= + i _
u(z =A A, co ____sinh .
( !y) Oy n S I I

The nonhomogeneous boundary condition vyields

[ =
f(z) =AH + A, sinhnTH cos ?,

n=1

so that
1 = nTH 2 = nTz
T

AgH =T . f(z) dz and A, sinh L =L . f(z) cos L dz.



25.1

251

2.5.2

253

254

2
(c) Separation of variables, u = h(z)((9), yields lh%—zeg ¢ dy? = = A. The boundary conditions

((0) = 0 and ((H)= 0 vyield an eigenvalue problem in 9, whose solution is A = (nT/H)? with
(=sinnT9/H,n =1,2,3,... The solution of the z-dependent equation is h(z) = cosh nTz/H using
dh/dz(0)= 0. By superposition:

& nTz
u(z, 9) = A, cosh —— sin LTQ
_ H H
n=1
The nonhomogeneous boundary condition at z = L yields 9(9) = A, cosh "L sin ™Y 5o that
n=1 H H

" R "
A is determined by A,cosh ™t = 2 H g(é))sin oy

H H o H
(e) Separation of variables, u = ((z)h(9), yields the eigenvalues A = (nT/L)?and corresponcl.mg
eigenfunctions ( = sinnTz/L,n = 1,2,3,... The 9-dependent differential equation, di',“z = 0 h,
satisfies h(0) — 9 (0) = 0. The general solution h = ¢; cosh ™ + ¢, sinh ™ obeys h(0) = ¢,
v . W T . L L
while 9 = D" "¢, sinh ™Y 4 ¢, cosh ™Y obeys 9 (0) = ¢, ™. Thus, ¢; = ¢, and hence hp(9) =
dy L L L dy L L
cosh ™Y 4 L gjph 0¥ Superposition yields
L n" L
e
u(z, 9) = Anhn(9)sinnTz/L,
n=1

C
where A, is determined from the boundary condition, f(z) = ?:1 Anhh(H)sin nTz/L, and hence

Anhn(H)=% f@sinnTz/L dz

(a) From physical reasoning (or exercise 1.5.8), the total heat flow_across the boundary must equal
zero in equilibrium (without sources, i.e. Laplace's equation). Thus (IJ‘f(Z) dz = 0 for a solution.

In order for u to be bounded as r — oo, ¢; = 0 in (2.5.43) and C, = 0 in (2.5.44). Thus,

(= (=
u(r, 9) = Anr " cosnd + Bnr—"sin nd.
n=0 n=1

(a) The boundary condition yields Ay = In2,Aza—3 = 4, other A,=0,B,= 0.

(b) The boundary conditions yield (2.5.46) with a=" replacing a". Thus, the coefficients are determined
by (2.5.47) with a" replaced by a—"

By substituting (2.5.47) into (2.5.45) and interchanging the orders of summation and integration

. ¢ o 7
1’ 1 &7°1r°'n T
u(r, 0) = T £(0) ,* a cosnf cosnf +sinnfsinnd  da.
=" n=1

Noting the trigonometric addition formula and cosz = Rg[-1?], we obtain



Summing the geometric series enables the bracketed term to be replaced by
1 1— Tcos(f—8)

1
+R-
2

u(r, ) =

s " -

1

T .

2

£(7) -1+R-

n=0

1 ir

M



2.5.5 (a) The eigenvalue problem is d?(/gl0? = —A( subject to d(/d0(0) = 0 and((T/2) = 0. It[an be
shown that A > 0 so that ( = cos A0 where ((T/2) = 0 implies that cos AT/2 =0or AT/2 =
—T/2+nT,n =1,2,3,... The eigenvalues are A = (2n — 1)2. The radially dependent term satisfies
(2.5.40), and hence the boundedness condition at r = 0 yields G(r)= r2"~1. Superposition yields

e 2n—1
u(r,0) = Anr" " cos(2n — 1)0.

n=1

The nonhomogeneous boundary condition becomes
e 4 "2
f(0) = Apcos(2n —1)0 or A, = T(0) cos(2n —1)0 dO.

n=1 T o

2.5.5 (c) The boundary conditions of (2.5.37) must be replaced by ((0) = 0and ((T/2) =0. Thus, L =T/2,

so that A = (nT/L)? = (2n)?and (=sin 10 = sin2n0. The radial part that remains bounded at
N/ L
r=0is G=r #* = r2". By superposition,

e 2
u(r, 0) = Anr“"sin2n0 .
n=1
To apply the nonhomogeneous boundary condition, we differentiate with respect to r:
ou =
.= An2n)r*lsin2no .

or he1

(@) R.
The bcatr=1, f(0)= < 2nAnsin2n0 , determines An, 2NAn = 4 /Zf(O)sin 2n0 do.
n=1 "0
2.5.6 (a) The boundary conditions of (2.5.37) must be replaced by ((0) =0and ((T)=0. ThusL =T,

so that the eigenvalues are A = (NT/L)2= n? and corresponding eiggnfunctions ( = sinnTO/L =
sinn0,n = 1,2,3,... The radial part which is bounded atr =0isG=r 4 =", Thus by superposition

&
u(r,0) = Anr"sinn0 .
n=1

o

R..
The bc atr =a, g(0) = Ana"sin n0, determines A, Apa” = 2 g(0)sinn0 dO.

n=1 "0

2.5.7 (b) The boundary conditions of (2.5.37) must be replaced by ({(0) = 0 and (Y(T/3) = 0. This will
yield a cosine series with L = T/3,A = (nT/L)2= (\$7n)2and (= cosnTO/L = cos3n0,n =0,1,2,....

The radial part which is bounded at r =0is G = r #* = r3", Thus by superposition

e
ur,0)=  A,r>cos3no .
n=0
. _ _Ogo 3n . . 3Ry
The boundary condition at r = a, g(0) = Ana°" cos3n0, determines Ap: Ag = * g(0) dO
n=0 "0

R..
and (n= 0)A,a3"= & “3g(0)cos3n0 do.
"o



2.5.8 (a) There is a full Fourier series in 0. It is easier (but equivalent) to choose radial solutions that satisfy
the corresponding homogeneous boundary condition. Instead of r" and r~" (1 and In r for n = 0), we
choose (1(r) such that (1(a) = 0 and (2(r) such that (2(b) =0:

Y Ya
In(r/a) n=20 In(r/b) n=20
= > T =
(a(r) r'n T =0 (2(") rnob " oy
a r
, T , T
b r



Then by superposition

(= (=
u(r, 6) = cosnb [AnC.(r) +BnhCy(r)] + sinn6 [ChCq(r) + DnCo(r)] .
n=0 n=1

The boundary conditions at r =aand r = b,

e e
f(6) =  cosnB[An¢i(a) + Bnta(a)] +  sinn6 [Cnti(a) + Dnty(a)]

n=0 n=1

(= (=
g(6) = cosn6 [AnCy(b) + BrCa(b)] +  sinn6 [Cr¢y(b) + DnC(b)]
n=0 n=1

R
easily determine A, Bn, Cpn, Dy, since ¢1(a) =0 and ¢,(b) =0: Dp¢y(a) = 1 f(6)sinn6 d6, etc.
2.5.9 (a) The boundary conditions of (2.5.37) must be replaced by ¢(0) = 0 and ¢(n/2) = 0. This is a
sine series with L = n/2 so that A = (nn/L)2 = (2n)2and the eigenfunctions are ¢ = sin NN6/L =
sin2n6,n = 1,2,3,.... The radial part which is zero at r = a is G = (r/a)2"— (a/r)2". Thus by
superposition,

[ S ) s 22n »gq72n”
u(r, 6) = An ~ - - sin 2n6.
a r
n=1
o T _ 2pT2n” :
The nonhomogeneous boundary condition, f(6) = -1 An f) sin 2n6, determines A, :
_2n , /2
2n _ 4
1’bT ,aT R .

An 2 -39 w o F(6)sin2n6 d6.

2.5.9 (b) The two homogeneous boundary conditions are in r, and hence ¢(r) must be an eigenvalue problem.

By separation of variables, u = ¢(r)G(6), d?G/d62 = AG and r?¢ dr2+r dr ¢+ AC¢ = 0. The radial equation
is equldlmenQLnaI (sge p.78) gnd solutions are in the form ¢ —\VQ Thus p? \f\ (with A > 0) so

that p= i A, r* 4 = -* A1 Thys real solutions are cos( A Inr) and sm( Alnr). It is more

convenient to use independent solutions which simplify at r = a,cos[ Aln(r/a)] and sin[ Aln(r/a)l.
Thus the general solution is

¢ =cycos[ Aln(r/a)] +c,sin[ Aln(r/a)].

~_
The homogeneous condition ¢(a)= 0 yields 0 = ¢;, while ¢(b) = 0 implies sin[ Aln(r/a)] = 0. Thus
Aln(b/a)= nn, n = 1,2,3,.. and the corresponding eigenfunctions are ¢ = sin The
In(r/a)
NN nbray
solution of the 6 -equation satisfying G(0) =0is G = smh A6 = sinh —-2 In(b/a) Thus by superposition
e
u= Apsinh ———— nné sin n In(r/a)”
h=1 In (b/ a) In(b/a)
The nonhomogeneous boundary condition,
e n2 " In(r/a)®
f(r)= Apsinh ——sj n(r/a)

nn
h=1 2In (b/a) In(b/a)



will determine An. One method (for another, see exercise 5.3.9) is to let z = In(r/a)/ In(b/a). Then
a<r<b,lets0<z <1 Thisis a sine series in z (with L = 1) and hence

nn2 1 " In(r/a)’

. n2 ,
Ansinh S (bl ~ 2, T(O)sin M e ra)
But dz = dr/rIn(b/a). Thus
nn? 2 vt " In(r7a)”
Aq sinh 2In(b/a)= In(0/a) o f(r)sin nn In(b/a) dr/r.



