Solution Manual for Basic College Mathematics 3rd Edition Miller Neill Hyde 0073384410 9780073384412 Full link download Solution Manual:

https://testbankpack.com/p/solution-manual-for-basic-college-mathematics-3rd-edition-miller-neill-hyde-0073384410-9780073384412/

Test bank:

https://testbankpack.com/p/test-bank-for-basic-college-mathematics-3rd-edition-miller-neill-hyde-0073384410-9780073384412/

Contents

Chapter 1 Whole Numbers

1.1	Introduction to Whole Numbers	1
1.2	Addition of Whole Numbers and Perimeter	3
1.3	Subtraction of Whole Numbers	9
1.4	Rounding and Estimating	14
1.5	Multiplication of Whole Numbers and Area	16
1.6	Division of Whole Numbers	22
	Problem Recognition Exercises: Operations on Whole Numbers	29
1.7	Exponents, Square Roots, and the Order of Operations	31
1.8	Problem-Solving Strategies	34
	Chapter 1 Review Exercises	41
	Chapter 1 Test	47

Chapter 2 Fractions and Mixed Numbers: Multiplication and Division

2.1	Introduction to Fractions and Mixed Numbers	49
2.2	Prime Numbers and Factorization	53
2.3	Simplifying Fractions to Lowest Terms	56
2.4	Multiplication of Fractions and Applications	60
2.5	Division of Fractions and Applications	65
	Problem Recognition Exercises: Multiplication and Division of Fractions	70
2.6	Multiplication and Division of Mixed Numbers	72
	Chapter 2 Review Exercises	77
	Chapter 2 Test	81
	Chapters 1 – 2 Cumulative Review Exercises	84

Chapter 3 Fractions and Mixed Numbers: Addition and Subtraction

3.1	Addition and Subtraction of Like Fractions	86
3.2	Least Common Multiple	90
3.3	Addition and Subtraction of Unlike Fractions	95
3.4	Addition and Subtraction of Mixed Numbers	101
	Problem Recognition Exercises: Operations on Fractions and Mixed Numbers	107
3.5	Order of Operations and Applications of Fractions and Mixed Numbers	109
	Chapter 3 Review Exercises	115
	Chapter 3 Test	120

i

121

Chapter 4 Decimals

Decimal Notation and Rounding	124
Addition and Subtraction of Decimals	126
Multiplication of Decimals	131
Division of Decimals	135
Problem Recognition Exercises: Operations on Decimals	143
Fractions as Decimals	145
Order of Operations and Applications of Decimals	151
Chapter 4 Review Exercises	161
Chapter 4 Test	166
Chapters 1 – 4 Cumulative Review Exercises	169
	Decimal Notation and Rounding Addition and Subtraction of Decimals Multiplication of Decimals Division of Decimals Problem Recognition Exercises: Operations on Decimals Fractions as Decimals Order of Operations and Applications of Decimals Chapter 4 Review Exercises Chapter 4 Test Chapters 1 – 4 Cumulative Review Exercises

Chapter 5 Ratio and Proportion

5.1	Ratios	172
5.2	Rates and Unit Cost	175
5.3	Proportions	178
	Problem Recognition Exercises: Operations on Fractions versus Solving Proportions	185
5.4	Applications of Proportions and Similar Figures	186
	Chapter 5 Review Exercises	194
	Chapter 5 Test	199
	Chapters 1 – 5 Cumulative Review Exercises	201

Chapter 6 Percents

6.1	Percents and Their Fraction and Decimal Forms	204
6.2	Fractions and Decimals and Their Percent Forms	207
6.3	Percent Proportions and Applications	212
6.4	Percent Equations and Applications	220
	Problem Recognition Exercises: Percents	225
6.5	Applications Involving Sales Tax, Commission, Discount, and Markup	227
6.6	Percent Increase and Decrease	231
6.7	Simple and Compound Interest	235
	Chapter 6 Review Exercises	237
	Chapter 6 Test	243
	Chapters 1 – 6 Cumulative Review Exercises	245

Chapter 7 Measurement

7.1	Converting U.S. Customary Units of Length	248
7.2	Converting U.S. Customary Units of Time, Weight, and Capacity	253
7.3	Metric Units of Length	257
7.4	Metric Units of Mass, Capacity, and Medical Applications	259
	Problem Recognition Exercises: U.S. Customary and Metric Conversions	263
7.5	Converting Between U.S. Customary and Metric Units	263
	Chapter 7 Review Exercises	267
	Chapter 7 Test	270
	Chapters 1 – 7 Cumulative Review Exercises	271

Chapter 8 Geometry

8.1	Lines and Angles	274
8.2	Triangles and the Pythagorean Theorem	277
8.3	Quadrilaterals, Perimeter, and Area	282
8.4	Circles, Circumference, and Area	285
	Problem Recognition Exercises: Area, Perimeter, and Circumference	289
8.5	Volume	290
	Chapter 8 Review Exercises	294
	Chapter 8 Test	297
	Chapters 1 – 8 Cumulative Review Exercises	299

Chapter 9 Introduction to Statistics

9.1	Tables, Bar Graphs, Pictographs, and Line Graphs	302
9.2	Frequency Distributions and Histograms	304
9.3	Circle Graphs	307
9.4	Mean, Median, and Mode	310
9.5	Introduction to Probability	315
	Chapter 9 Review Exercises	318
	Chapter 9 Test	321
	Chapters 1 – 9 Cumulative Review Exercises	323

Chapter 10 Real Numbers

10.1	Real Numbers and the Real Number Line	326
10.2	Addition of Real Numbers	329
10.3	Subtraction of Real Numbers	332

	Problem Recognition Exercises: Addition and Subtraction of Real Numbers	335
10.4	Multiplication and Division of Real Numbers	337
	Problem Recognition Exercises: Operations on Real Numbers	340
10.5	Order of Operations	341
	Chapter 10 Review Exercises	345
	Chapter 10 Test	348
	Chapters 1 – 10 Cumulative Review Exercises	349

Chapter 11 Solving Equations

11.1	Properties of Real Numbers	352
11.2	Simplifying Expressions	356
11.3	Addition and Subtraction of Properties of Equality	360
11.4	Multiplication and Division Properties of Equality	365
11.5	Solving Equations with Multiple Steps	371
	Problem Recognition Exercises: Equations versus Expressions	377
11.6	Applications and Problem Solving	379
	Chapter 11 Review Exercises	385
	Chapter 11 Test	390
	Chapters 1 – 11 Cumulative Review Exercises	392
Арре	endix	
A.1	Energy and Power	396

A.2	Scientific Notation	398
A.3	Rectangular Coordinate System	399

Chapter 1 Whole Numbers

Chapter Opener Puzzle

Section 1.1 Introduction to Whole Numbers

Section 1.1 Practice Exercises

(a) periods	3 <u>2</u> 1 tens
hundreds thousands	6 <u>8</u> 9 tens
1: ones	21 <u>4</u> ones
9: tens 7: hundreds	73 <u>8</u> ones
6: thousands 3: ten-thousands	8, <u>7</u> 10 hundreds
8,213,457	2, <u>2</u> 93 hundreds
7: ones	1,430 thousands
5: tens 4: hundreds	3,101 thousands
3: thousands	452,723 hundred-thousands
2: hundred-thousands 8: millions	<u>6</u> 55,878 hundred thousands
103.596	1,023,676,207 billions
6: ones 9: tens	<u>3,111,901,211</u> billions
5: hundreds	22,422 ten-thousands
0: ten-thousands	58,106 ten-thousands
1: hundred-thousands	5 <u>1</u> ,033,201 millions
	9 <u>3</u> ,971,224 millions

Chapter 1 Whole Numbers			
<u>1</u> 0,677,881 ten-millions	One hundred thousand, two		
22. $31,820 \text{ m}$ thousands	hundred thirty-four		
<u>7</u> ,653,468,440 billions	Four hundred thousand, one		
<u>31,000</u> ten-thousands	hundred ninety-nine		
5 tens + 8 ones	Five hundred ninety thousand seven		
7 tens + 1 one	hundred twelve		
5 hundreds + 3 tens + 9 ones	Twenty thousand, three hundred twenty		
3 hundreds + 8 tens + 2 ones	One thousand, eight hundred		
5 hundreds + 3 ones	One thousand, three hundred		
8 hundreds + 9 ones	seventy-seven		
1 ten-thousand + 2 hundreds + 4 tens +	5 005		
	6,005		
2 ten-thousands $+ 8$ hundreds $+ 7$ tens $+ 3$ ones	4,004		
524	672,000		
318	248,000		
150	1,484,250		
620	2,647,520		
1,906	63. d a c b b c b c b c c c c c c c c c c		
4,201	64. <u>b</u> a d c 0 1 2 3 4 5 6 7 8 9 10 11 12 13		
85,007	Counting on a number line, 10 is 4 units to the		
26,002	right of 6.		
ones, thousands, millions, billions	Counting on a number line, 3 is 8 units to the left of 11.		
ones, tens, hundreds, thousands	Counting on a number line, 4 is 3 units to the		
Two hundred forty-one	left of 7.		
Three hundred twenty-seven	right of 0.		
Six hundred three	8 > 2		
One hundred eight	8 is greater than 2, or 2 is less than 8.		
Thirty-one thousand, five hundred thirty	6<11 6 is less than 11, or 11 is greater than 6.		
Fifty-two thousand, one hundred sixty			

	Section 1.1	Introduction to Whole Numbers
3 < 7	90<91	
3 is less than 7, or 7 is greater than 3.	48>47	,
14>12 14 is greater than 12, or 12 is less than 14.	False;	12 is made up of the digits 1 and 2.
6<11	False;	26 is made up of the digits 2 and 6.
14>13	99	
21>18	999	
5 < 7	There	is no greatest whole number.
3 < 7	0 is th	e least whole number.
14<24	91. 10,000	0,000 7 zeros
95>89	92. 100,00	00,000,000 11 zeros
28<30	964	
0 < 3	840	
8 > 0		

Section 1.2 Addition of Whole Numbers and Perimeter

Section 1.2 Practice Exercises

1. (a) addends	3. 3 hundreds $+ 5$ tens $+ 1$ one
 (b) sum (c) commutative (d) 4; 4 	4. Three hundred fifty-one
(e) associative	5. 1 hundred + 7 ones
(I) porygon (g) perimeter	6. 2004
2 5 thousands + 2 tans + 4 ones	7. 4012
2.5 mousands + 2 tens + 4 ones	8. 6206

+	0	1	2	3	4	5	6	7	8	9
0	0	1	2	3	4	5	6	7	8	9
1	1	2	3	4	5	6	7	8	9	10
2	2	3	4	5	6	7	8	9	10	11
3	3	4	5	6	7	8	9	10	11	12
4	4	5	6	7	8	9	10	11	12	13
5	5	6	7	8	9	10	11	12	13	14
6	6	7	8	9	10	11	12	13	14	15
7	7	8	9	10	11	12	13	14	15	16
8	8	9	10	11	12	13	14	15	16	17
9	9	10	11	12	13	14	15	16	17	18

Fill in the table. Use the number line if necessary.

5+9=14Addends: 5, 9 Sum: 14 2+8=10Addends: 2, 8 Sum: 10 12+5=17Addends: 12, 15 Sum: 17 11+10=21 Addends: 11, 10 Sum: 21 1+13+4=18Addends: 1, 13, 4 5+8+2=15

Sum: 18

Addends: 5, 8, 2 Sum: 15

> 42 = 4 tens + 2 ones33 = 3 tens + 3 ones75 = 7 tens + 5 ones

21 = 2 tens + 1 one53 = 5 tens + 3 ones74 = 7 tens + 4 ones 39 = 3 tens + 9 ones

20 = 2 tens + 0 ones

59 = 5 tens + 9 ones

- 19. 15 = 1 ten + 5 ones43 = 4 tens + 3 ones58 = 5 tens + 8 ones
 - 12 = 1 ten + 2 ones15 = 1 ten + 5 ones32 = 3 tens + 2 ones59 = 5 tens + 9 ones
- **21.** 10 = 1 ten + 0 ones8 = 0 tens + 8 ones30=3 tens +0 ones 48 = 4 tens + 8 ones

7 = 0 tens + 7 ones 1=2 tens + 1 one +10=1 ten +0 ones38 = 3 tens + 8 ones

6 = 0 tens + 6 ones 11 = 1 ten + 1 one2 = 0 tens + 2 ones19 = 1 ten + 9 ones

341

225

	407	658	
	<u>181</u> 588		<u>231</u> 889
	890		1
	<u>107</u> 997	37.	642 <u>+295</u> 937
	444 354		11
	798	38.	152
	4		+549 701
	13 102		11
	119	39.	462
	11		<u>+388</u> 850
			1
	237		15 5
	31		<u>9</u> 29
	<u>430</u>		
	468		2
	24		<u>8</u>
	1 <u>60</u> 100		41
	198		2 14
32.	76		9
	+45 121		$\frac{17}{40}$
			1
33.	1 25		7
	<u>+59</u>		$\frac{18}{4}$
	84		29
34.	1 87		1 79
	+24		
	1		<u>2</u>
35.	38		203
	$\frac{+77}{115}$		1 62
			907
			<u>54</u> 1003

$ \begin{array}{r}1\\331\\422\\\frac{76}{829}\end{array} $	The sum of any number and 0 is that number. 423+0=423 0+25=25 67+0=67
1 87 <u>119</u> <u>630</u> 836	$ \begin{array}{c} 1 \\ 62.13+7 \\ \frac{+7}{20} \end{array} $
$4980 \\ \underline{10223} \\ \underline{15,203}$	63. $100 + 42$ 100 + 42 142 1
23112 892	64. 7+45 7 $\frac{+45}{52}$
$\overline{24,004}$ 10 223	65. 23+81 23 + <u>+81</u> 104
$ \begin{array}{r} 782 \\ \underline{4980} \\ 40,985 \\ 11 \end{array} $	66. 18+5 $18 + 5 + 5 = 23$
$92\ 377$ 5 622 659 $-132\ 658$	67. 76+2 76 +2 78
12+6=6+12 30+21=21+30	68. 1523 + 90 $1 523 + 90 + 90$
101+44=44+101 8+13=13+8 (4+8)+13=4+(8+13)	1,613 69. 1320 + 448 1 320 $+448$ 1,768
(23+9)+10=23+(9+10) 7+(12+8)=(7+12)+8	70. $5+39+81$ 5 39 +81 125
41 + (3 + 22) = (41 + 3) + 22	123

Chapter 1

Whole Numbers

The commutative property changes the order of the

addends, and the associative property changes the grouping.

For example: The sum of 54 and 24

For example: The sum of 33 and 15

For example: 88 added to 12

For example: 15 added to 70 1 60 For example: The total of 4, 23, and 77 52 75 For example: The total of 11, 41, and 53 58 245 For example: 10 increased by 8 The total for the checks written is \$245. For example: 25 increased by 14 11 115 103 104 112 93 61 111 276 423 276 people attended the play. 423 desks were delivered. 3 533 38 2787 54 956 44 991 61 817 397 567 103 715 124 3 705 521 13,538 521 deliveries were made. There are 13,538 participants. 2 11 21,209,000 1494 20,836,000 155 16,448,000 42 58,493,000 1691 The shows had a total of There are 1691 thousand teachers. 58,493,000 viewers. 111 11 1 100,052 195 mi 675.038 <u>228 mi</u> 45,934 423 mi 821,024 She will travel 423 mi. There are 821,024 nonteachers. \$43,000 11 2,500 \$7 329 \$45,500 560 Nora earns \$45,500. 248 3 500 1,205,655 \$21,637 1,000 The total cost is \$21,637. 1,206,655 1,206,655 athletes are participating.

$ \begin{array}{c} 1 \\ 35 \text{ cm} \\ 35 \text{ cm} \\ 34 \text{ cm} \\ 104 \text{ cm} \\ 127 \text{ in.} \\ 13 \text{ in.} \\ 20 \text{ in.} \\ 60 \text{ in.} \\ \end{array} $	90 ft 90 ft 90 ft <u>90 ft</u> ft 9,084,037 + 452,903 = 9,536,940 899,382 + 9406 = 908,788 7,201,529 + 962,411 = 8,163,940
2 21 m 20 m 18 m 19 m 11 m <u>21 m</u> 110 m	45,418 81,990 9,063 <u>56,309</u> 192,780 9,300,050 7,803,513
2 $15 m$ $7 m$ $6 m$ $-7 m$ $35 m$ 2 $6 yd$ $10 yd$ $11 yd$ $3 yd$ $5 yd$ $7 yd$ yd	$\begin{array}{r} 3,480,009\\ \underline{907,822}\\ 21,491,394\\ 3,421,019\\ 822,761\\ 1,003,721\\ \underline{9,678}\\ 5,257,179\\ 64,700,000\\ 36,500,000\\ 24,100,000\\ \underline{23,200,000}\\ \$148,500,000\\ \end{array}$
200 yd yd yd yd yd <u>38 yd</u> yd	²²¹¹¹ 65,899,660 60,932,152 128,107,616 ^{1,275,804} votes
94 ft ft 50 ft ft	

Section 1.3 Subtraction of Whole Numbers

Section 1.3 Practice Exercises	
minuend; subtrahend; difference	32-2=30 minuend: 32 subtrahend: 2
330	difference: 30
$ \frac{821}{1151} $ 782	9 $\frac{6}{3}$ minuend: 9
21 <u>1 046</u> 1,849	subtrahend: 6 difference: 3 17
$\begin{array}{r}1\\46\\804\\\underline{49}\\899\end{array}$	3 14 minuend: 17 subtrahend: 3 difference: 14
14<21	27 - 9 = 18 because $18 + 9 = 27$.
0<10	20 - 8 = 12 because $12 + 8 = 20$.
Twenty-two is less than twenty-five.	102 - 75 = 27 because $27 + 75 = 102$.
12-8=4 minuend: 12 subtrahend: 8 difference: 4	211 - 45 = 166 because $166 + 45 = 211$. 8 - 3 = 5 <u>Check</u> : $5 + 3 = 87 - 2 = 5$ Check: $5 + 2 = 7$
6-1=5 minuend: 6 subtrahend: 1 difference: 5	$4 - 1 = 3 \underline{Check: } \underline{3} + 1 = 4$ 9 - 1 = 8 $\underline{Check: } \underline{8} + 1 = 9$
21-12=9 minuend: 21 subtrahend: 12 difference: 9	$6 - 0 = 6 \underline{Check:} \underline{6} + 0 = 6$ $3 - 0 = 3 \underline{Check:} \underline{3} + 0 = 3$ $68 \underline{Check:} 45$ $-\underline{23} \qquad \underline{+23}$ $68 \checkmark$
	54 Che <u>ck: 23</u>

<u>- 31</u>	<u>+ 31</u>
23	54 ✓

$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c} 717 & 1 \\ \$7 & \underline{\text{Check:}} & 49 \\ \underline{-38} & \underline{+38} \\ 87 \checkmark \end{array}$
75 <u>Check</u> : 25 <u>-50</u> <u>+50</u> 75 \checkmark 1347 Chec <u>k: 112</u> 6	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
$\frac{-221}{1126}$ $\frac{+221}{1347}$	³¹⁰ 1 240 <u>Check</u> : 104
$\begin{array}{ccc} 4865 \text{Check}: \ 4152 \\ -713 & +713 \\ \hline 4152 & 4865 \\ \checkmark \end{array}$	-136 $+ 136240 \checkmark$
31. 1525 <u>Check</u> : 1204 <u>- 1204</u> <u>+ 321</u> $_{1525 \checkmark}$	510 1 1 360 Check: 135 225 + 225 360 4
8843 Check: 3231 -5612 + 5612 3231 $8843 \checkmark$ 12 806 Check: 10 004 -2802 +2802 10,004 12,806 \checkmark	$\begin{array}{c} 10 \\ 6010 \\ 7 \not 1 0 \end{array} \begin{array}{c} 1 1 \\ 7 \not 1 0 \end{array} \begin{array}{c} 1 1 \\ 521 \\ -189 \\ 5 2 1 \\ 4 10 \end{array}$
12,771 Check: <u>11</u> 531 <u>-1240</u> <u>+1240</u>	850 Check: 547 -303 + 303
11,531 12,771 ✓	547 850 \checkmark 410 1
35. 14,356 <u>Chec</u> k: 1103 <u>- 13,253</u> <u>+ 13 253</u>	45. 4350 <u>Check</u> : 23 <u>-4327</u> <u>+ 4327</u>
1,103 $14,356 \checkmark$ 36. 34,550 <u>Check</u> : 3 100 - 31,450 + 31 450	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
3,100 34,550 \checkmark 37. 76 <u>Check</u> : 17 - 59 + 59	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
17 76 ✓ 5 <u>14</u> 1	64 Check: 16

<u>-48</u>	<u>+48</u>	-1238	+ 1238
	64 🗸	47 64	6002 🗸

9 9 210 1010 1 1	99 7 <mark>10</mark> 10 111
30.00 Check: 1.644	$\overline{777}$
-2356 + 2356	-3788 + 3788
6 4 4 3000 ✓	4212 8000 ✓
10 1 403 10,425, <u>Check</u> :	13
^{//} 9 022+9022	1 / 3 13 1 1 32, 4 3 9 Check: 30 941
<u> </u>	$-\frac{1}{20}$ $+\frac{4}{98}$ $+\frac{1}{20}$ $+\frac{498}{20}$
9 1 11	50 ,7 41 52,439 •
50.23.901 <u>Check</u> : +8064 - 8.064 <u>- 23.901</u>	$\begin{array}{cccc} 21 & 335 & 17 & 212 \\ 58 & -4123 & \underline{Check} & +4123 \\ \end{array}$
	$30. \underline{+120}$ $\underline{-+120}$
15,8 3 7	17.212 21,335 🗸
11	9 7 1010 214 11 1
62.08% Check: <u>12.2</u> 17	%, %, %, %, %, %, %, %, %, %, %, %, %, %
-59871 + 59871	-2,345,115 + 2345115
2,217 62,088 🗸	5, 6 62,11 9 8,007,234 🗸
111010	
$2 \frac{1}{9} \frac{9}{912}$ 111	$2 \frac{10}{1014} 4 \frac{16}{16} \frac{1}{174} \frac{1}{172}$
-28 3 3 4 + 28 334	-1 871 4 95 + 1 871 495
22112	<u>1 1 7 4 0 72</u> <u>3 045 567</u>
3,778 32,112 v 16	61. 78
3610 1 1 47 Ø/Øheck: 378	<u>- 23</u>
$\frac{-92}{+92}$ + 92	3 15
378 470 •	62. <i>45</i>
16	$\frac{-17}{28}$
$67 \frac{4}{C}$ heck: 585	
<u>- 89</u> + 89	-2987 + 2987
<u>585</u> <u>674</u> ✓	7 13 3700 🗸
16	/ 15
2 \vec{6} 1010 1 1 37 0 \vec{0} / Check: 1713	

63. 78		
- 6	_	
72		
1		
0		
5	11	
0		
$\frac{1}{2}$		
2		
8		
4		
2		
2		
$\frac{1}{2}$		
0		
$\frac{\mathbf{v}}{3}$		
2		
2		

Chapter 1	Whole Numbers

89	4 10
<u>42</u>	\$5,0/
47	<u>1 /</u>
8 10	
109 0//	\$33 change was received.
<u>72</u>	4 15
101 8	5 5/ /
11	<u>59</u> 16
3111/	16 DVDs are left
<u>60</u>	10 D V Ds are left.
3051	11
10	1/18
10	<u>- 05</u>
50//	55
$\frac{13}{-7}$	Lennon and McCartney had 55 more hits.
1	10
405	5 0 5 /
<u>103</u>	200
302	305
13	305 ft more
$\frac{10}{3}$	16
<u>35</u>	26//
8	$\frac{10}{8}$
11	J ily poods & more plants
9 <u>1</u> /	Lify needs 8 more plants.
$\frac{14}{2}$	\$50
7	<u>37</u>
For example: 93 minus 27	\$13 \$12 manual is not ded
F	\$15 more is needed.
For example: 80 decreased by 20	13
For example: Subtract 85 from 165.	$40\underline{14}$
For example: 42 loss than 171	2670
For example, 42 less than 171	2479
The expression 7 – 4 means 7 minus 4,	The Lion King had been performed 2,479
yielding a difference of 3. The expression	more times.
4 – 7 means 4 minus 7 which results in a	12
difference of -3 .	2 3⁄14
Subtraction is not associative. For	32344 /
example $10 - (6 - 2) = 10 - 4 - 6$	30646
and $(10 - 6) - 2 = 4 - 2 = 2$. Therefore	698
10 - (6 - 2) does not equal $(10 - 6) - 2$.	Brees needs 1698 more yd.

39 m 10 **87.** 14 m 2,20/5,000 <u>– 26 m</u> + 12 m 2, 1 6 0,000 26 m 13 m 4 5,000 The missing length is 13 m. The greatest increase occurred 11 between Year 5 and Year 6; the 88. 139 cm increase was 45,000. 87 cm 547 cm <u>+ 201 cm</u> - 427 cm 4,905,620 427 cm 120 cm - 458,318 The missing length is 120 cm. 4,447,302 89. 4 56 yd 953,400,415 1 4 - 46 yd 56,341,902 10 yd 14 897,058,513 + 10 82,025,160 46 yd 79,118,705 The missing side is 10 yd long. 2,906,455 6 103,718 mi² 5 54,310 mi 11 49,408 mi² 15ft 41,217 mi² -11ft <u>24,078 mi</u>² 4ft 17,139 mi The missing side is 4 ft long. 103,718 mj² 2279000 <u>1,045 mi</u> 2249000 102,673 mi² 30,000 The difference in land area between The difference is 30,000 marriages. Colorado and Rhode Island is 102,673 mi² 14 2,249,000 54,310 mi² 2,160,000 41,217 mí 89,000 13,093 mi The decrease is 89,000 marriages. Wisconsin has 13,093 mi² more than 2279000 Tennessee. 2160000 119,000 The difference is 119,000 marriages.

Section 1.4 Rounding and Estimating Section 1.4 Practice Exercises

rounding	8363 ≈ 8400
30 ft	8539 ≈ 8500
59	9817 ≈ 9800
<u>55</u> 26	3 <u>4,</u> 992 ≈ 35,000
01210	7 <u>6</u> ,831 ≈ 77,000
<u>98</u>	2578≈3000
32	3511≈4000
¹ 1 4 009	
<u>998</u> 5,007	79 7 4 ≈ 8000
12,033	10 <u>9</u> ,≸37 ≈ 109,000
<u>23,441</u> 35,474	43 <u>7</u> ,⊉08 ≈ 437,000
Ten-thousands	489,090 ≈ 490,000
Hundreds	388,725 ≈ 390,000
If the digit in the tens place is 0, 1, 2, 3, or	\$7 <u>7</u> ,025,481 ≈ \$77,000,000
4, then change the tens and ones digits to 0. If the digit in the tens place is 5, 6, 7, 8,	\$3 <u>3,</u> 050 ≈ \$33,000
or 9, increase the digit in the hundreds place by 1 and change the tens and ones	23 <u>8</u> ,863 mi ≈ 239,000 mi
digits to 0.	$497000 \text{ m}^2 \approx 500000 \text{ m}^2$
If the digit in the ones place is 0, 1, 2, 3, or	<u>+</u> <u></u>
4, then change the ones digits to 0. If the digit in the ones place is $5, 6, 7, 8, \text{ or } 0$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
increase the digit in the tens place by 1	$+21 \rightarrow +20$
and change the ones digit to 0 .	$34. 33 \rightarrow 30$
342_≥ 340	$78 \rightarrow 80$
834_≥830	$\frac{+41}{150} \rightarrow \frac{+40}{150}$
725_₹730	35. $41 \rightarrow 40$
445 _≥ 450	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
9384 ≈ 9400	<u>180</u>

	Section 1.4 Rounding and Estimating
	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
	 (a) Year 4; \$3,470,295 → \$3,500,000 (b) Year 6; \$1,970,380 → \$2,000,000
	\$3,500,000 <u>2,000,000</u> \$1,500,000
	Massachusetts; $78,815 \rightarrow 79,000$ students
	Vermont; $8059 \rightarrow 8000$ students
	79,000 <u>8,000</u> 71,000 The difference is 71,000 students.
	$52. 45,879 \rightarrow 46,000$ $9137 \rightarrow 9,000$ $16,756 \rightarrow 17,000$ $78,815 \rightarrow 79,000$ $17,422 \rightarrow 17,000$ $13,172 \rightarrow 13,000$ $+ 8059 \rightarrow + 8,000$ $189,000$
	The total is 189,000 students.
у.	Answers may vary.
	Thousands place $4208 - 932 + 1294 \approx 4000 - 1000 + 1000$ $\approx 3000 + 1000$ ≈ 4000
	55. $3045 \text{ mm} \rightarrow 3000 \text{ mm}$ $1892 \text{ mm} \rightarrow 2000 \text{ mm}$ $3045 \text{ mm} \rightarrow 3000 \text{ mm}$ $\pm 1892 \text{ mm} \rightarrow \pm 2000 \text{ mm}$ 10,000 mm
	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$
	$\pm 1782 \text{ cm} \rightarrow \pm 2000 \text{ cm}$

36.	29	\rightarrow	1 30
	73	\rightarrow	70
	<u>+ 113</u>	\rightarrow	<u>+ 110</u>
			210
37.	898	\rightarrow	900
	<u>- 42</u> 2	\rightarrow	- 400
	-		500
38.	731	\rightarrow	700
	<u>- 58</u> 4	\rightarrow	- 600
			100
39.	3412	\rightarrow	3400
	<u>- 12</u> 52	\rightarrow	- 1300
			2100
40.	9771	\rightarrow	9800
	- 4544	\rightarrow	- 4500
			5300

<i>/</i> 1	97 404 576		97 000 000
41.	+ 52 605 428	~	51,000,000
	+ 33,093,428	\rightarrow	<u>+ 34,000,000</u>
	* . =		151,000,000
	\$151,000,000 w	as bro	ught in by Mars.
			1
42.	81,296,784	\rightarrow	81,000,000
	54,391,268	\rightarrow	54,000,000
	+ 38,168,580	\rightarrow	+38,000,000
	<u>.</u>		173.000.000
	\$173.000.000 w	vas bro	ught in by Hershev
	, , ,		
43.	71,339,710	\rightarrow	71,000,000
	<u>59,684,076</u>	\rightarrow	<u>- 60,000,000</u>
			11,000,000
	Neil Diamond e	earned	\$11,000,000 more.
	10 1 1 0		
44.	$63,640 \rightarrow$	6	54,000
	$\underline{43,130} \rightarrow$	<u>– 43</u>	<u>3,000</u>
			21,000
	A California tea	acher n	nakes about
	\$21,000 more.		
			1
2	15 \$3 316 807 -	→ \$*	3 300 000
	TJ • \$5,510,677 -	, ψ.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

5. \$3,316,897 →	\$3,300,000	1782 cm 1851 cm
$\begin{array}{r} 3,272,028 \rightarrow \\ \underline{3,360,289} \rightarrow \end{array}$	3,300,000 <u>+</u> <u>3,400,000</u>	<u>+ 1782 cm</u>

			2	58. 182 ft	\rightarrow	200 ft
57.	05 in.	\rightarrow	110 in.	121 ft	\rightarrow	100 ft
	57 in.	\rightarrow	60 in.	182 ft	\rightarrow	200 ft
	57 in.	\rightarrow	60 in.	169 ft	\rightarrow	200 ft
	105 in.	\rightarrow	110 in.	+ 169 ft	\rightarrow	+ 200 ft
	57 in.	\rightarrow	60 in.			900 ft
	<u>+ 57 in</u> .	\rightarrow	<u>+ 60 in</u> .			
			460 in.			

Section 1.5 Multiplication of Whole Numbers and Area

Section 1.5 Practice Exercises 1. (a) factors; product	2. 13,000
(b) commutative	3. $869,240 \rightarrow 870,000$
(c) associative	$\begin{array}{rcrcr} 34,921 & \rightarrow & 30,000 \\ \underline{+\ 108,332} & \rightarrow & \underline{+\ 110,000} \end{array}$
(d) 0; 0	1,010,000
(e) 7; 7	4. 907,801 → 900,000 - 413,560 → - 400,000
(f) distributive	<u>415.500</u> <u>400,000</u> 500,000
(g) area	5. $8821 \rightarrow 8800$
(h) $l \times w$	$-3401 \rightarrow -3400$

(**h**) $l \times w$

6.	×	0	1	2	3	4	5	6	7	8	9
	0	0	0	0	0	0	0	0	0	0	0
	1	0	1	2	3	4	5	6	7	8	9
	2	0	2	4	6	8	10	12	14	16	18
	3	0	3	6	9	12	15	18	21	24	27
	4	0	4	8	12	16	20	24	28	32	36
	5	0	5	10	15	20	25	30	35	40	45
	6	0	6	12	18	24	30	36	42	48	54
	7	0	7	14	21	28	35	42	49	56	63
	8	0	8	16	24	32	40	48	56	64	72
	9	0	9	18	27	36	45	54	63	72	81

18 5+5+5+5+5=6**x**5=30 5 2+2+2+2+2+2+2+2+2=9**x**2 Multiply 5×8 . 18 50 Multiply 5×10. Add. 9+9+9=3**×**9=27 26 7+7+7+7=4×7=28 2 Multiply 2×6 . 13**×**42=546 <u>40</u> Multiply 2×20 . factors: 13, 42; product: 546 Add. 26×9=234 71 factors: 26, 9; product: 234 3 3. 5. 2=30 3 Multiply 3×1 . <u>210</u> Multiply 3x 70. factors: 3, 5, 2; product: 30 213 Add. 4· 3· 8=96 factors: 4, 3, 8; product: 96 131 For example: 5×12 ; $5 \cdot 12$; 5(12)5 Multiply 5×1. For example: 23×14 ; $23 \cdot 14$; Multiply 5× 30. 23(14) d 500 Multiply 5×100. Add. a 725 e 3 Multiply 3×0 . b Multiply 3×20 . <u>2100</u> Multiply 3 × 700. с 2175 Add. а 344 4 Multiply 4×4 . 14×8=8×14 Multiply 4×40 . <u>1200</u> Multiply 4 × 300. 3**x**9=9**x**3 1376 Add. 6x(2x10)=(6x2)x10105 9 $(4 \times 15) \times 5 = 4 \times (15 \times 5)$ Multiply 9×5 . Multiply 9×0 . $5(7+4)=(5\times7)+(5\times4)$ <u>900</u> Multiply 9 ×100. Add. $3(2+6)=(3\times2)+(3\times6)$ 3 24 1410 6 8 Multiply 6×4 . 11,280 120 Multiply 6 × 20. Add.

2016 $\frac{6}{12,096}$ $2 1$		72 <u>12</u> 144 <u>+ 720</u> 864
$ \begin{array}{r} 3312 \\ \overline{7} \\ \overline{23,184} \\ 4801 \\ 5 \end{array} $		1 13 <u>46</u> 78 <u>520</u>
$ \begin{array}{r} \underline{3} \\ \underline{3} \\ \underline{42,014} \\ \underline{9} \\ \underline{378,126} \\ \end{array} $		598 32 143 17 -1001 + 1430
$51,006 = \frac{8}{408,048}$	50.	$ \frac{1}{2431} $ $ \frac{11}{722} $ $ \times 28 $ $ \frac{11}{111} $
$ \begin{array}{r} $		5776 + 14440 = 20,216 $48 = 349$
$ \begin{array}{c} 41 \\ \underline{21} \\ 41 \\ \underline{820} \\ 861 \end{array} $		19 3141 + 3490 6631
$ \begin{array}{c} 1\\ 3\\ 68\\ \underline{24}\\ 1\\ 272 \end{array} $		$512 \\ 31 \\ -512 \\ + 15 360 \\ 15,872$
$ \begin{array}{r} \underline{1360}\\ \underline{1632}\\ 55\\ \underline{41}\\ \end{array} $		$ \begin{array}{r}1\\3\\151\\127\\\hline 1057\\3020\end{array}$
55 <u>2200</u> 2255		<u>+ 15 100</u> 19,177

1	111
703	1 4122
146	982
4 218	244
28 120	760
<u>/0300</u> 102.629	<u>3 709 800</u>
102,638	4,047,804
11	2
222	3
<u>841</u>	4
1	7026
8 880	528
177 600	208
186 702	520
100,702	<u>3513 000</u> 2 700 700
4 3	3,709,728
207	61. $600 \rightarrow 6 + 00$
506	40→×40
	24 000 = 24,000
193 500	62. 900 \rightarrow 9 00
195,822	<u>50</u> →×50
,	45 000 - 45 000
	$63 3000 \implies 3 + 000$
3532	$700 \rightarrow \mathbf{x}7 \ 00$
6014	$\frac{100}{21} 00000 = 2,100,000$
14 128	
35 320	64. 4000 \rightarrow 4 000
000 000	$400 \rightarrow \times 4 00$
21192.000	16 00000 = 1600000
21 241 448	10 00000 1,000,000
21,211,110	65. 8000 → 8 000
2	$\underline{\times 9000} \rightarrow \times 9 000$
2810	$72\ 000000 = 72,000,000$
1039	
25 200	66. $1000 \rightarrow 1 000$
25 290 84 300	$\times 2000 \rightarrow \times 2 000$
000 000	$2^{\dagger}000000 = 2,000,000$
2,919,590	$67.90,000 \rightarrow 90000$
	$400 \rightarrow \times 400$
	36 000000 = 36,000,000

68. $50,000 \rightarrow 5 0000$	700
$\underline{\mathbf{x}} \underline{6.000} \rightarrow \mathbf{x} 6 000$	<u>15</u>
30 0000000 =	3500
300,000,000	7000
69 11 784 \rightarrow 12 000	10,500
$x5 201 \rightarrow x 5000$	15 CDs hold 10,500 MB of data
$\underline{\times 5 201}, \rightarrow \underline{\times 5.000}$	1
00,000,000	3 \$45
4	ψ τ <i>3</i>
70. $45.046 \rightarrow 45.000$	37
	215
$\underline{\times7812} \rightarrow \underline{\times} \underline{8.000}$	515 1 350
360,000,000	<u>1 550</u>
71 82 941 \rightarrow 80 000	\$1,665
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	12
2 400 000 000	<u>12</u>
2,100,000,000	24
2	<u>120</u>
72. $630,229 \rightarrow 630,000$	144
$\underline{\times 71.907} \rightarrow \underline{\times 70,000}$	A case contains 144 fl oz.
44,100,000,000	2
73 , \$189 \rightarrow \$200	81. 115
× 5 × 5	× 5
\$1000	575
74 \$120 \$ \$120	3.2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5
<u>× 20</u> / <u>× 30</u> \$3,900	5 00
ψ3,700	287,5 00
75. $10,256 \rightarrow 1 \mid 0000$	287,500 sheets of paper are delivered.
$\underline{\mathbf{x}} \underline{\underline{\$272}} \rightarrow \mathbf{x272}$	4
-272 0000 =	82 14 28
0000	02.17 20
\$2,720,000	<u>×2</u> <u>×6</u>
76. $48 \rightarrow 5 \downarrow 0$	28 168
$\begin{array}{c c} \mathbf{x} & 12 \\ \mathbf{x} & 12 \\ \mathbf{x} & \mathbf{x} \\ 1 \end{array} \right) \xrightarrow{0} \mathbf{x} 1 $	She gets 168 g of protein.
5 00	31
500	<u>12</u>
7	62
\$3500 per week	<u>310</u>
1000	$\frac{3}{2}$
4	ne can uavel 5/2 lilles.
4000	23
4000 minutes can be stored.	<u>32</u>
	46
	20 090

Sherica schedules 736 hr. $A = l \times w$ $A = (23 \text{ ft}) \times (12 \text{ ft})$ 23 12 46 230 276 The area is 276 ft 2 . $A = l \times w$ $A = (31 \text{ m}) \times (2 \text{ m}) = 62 \text{ m}^2$ $A = l \times w$ $A = (73 \text{ cm}) \times (73 \text{ cm})$ 2 73 73 219 <u>5110</u> 5329 2 The area is 5329 cm⁻. $A = l \times w$ $A = (41 \text{ yd}) \times (41 \text{ })$ yd) 41 41 41 1640 1681 The area is 1681 yd^2 . $A = l \times w$ $A = (390 \text{ mi}) \times (270 \text{ mi})$ 1 6 390 <u>270</u> 000 27300 78000 105,300 The area is $105,300 \text{ mi}^2$.

 $A = l \times w$ $A = (130 \text{ yd}) \times (150 \text{ yd})$ 6 130 150 000 6500 13000 19,500 The area is $19,500 \text{ yd}^2$. **91.** (a) $A = l \times w$ $A = (40 \text{ in.}) \times (60 \text{ in.})$ 3 40 60 00 2400 2400 in.² 1 14 <u>3</u> 42 There are 42 windows. 1 2400 42 800 96 000 100,800 The total area is 100,800 in.² $A = l \times w$ $A = (50 \text{ ft.}) \times (30 \text{ ft.})$ 8 50 <u>30</u> 000 1500 1500 The area is 1500 ft^2 .

Chapter 1 Whole Numbers

$$A = l \times w$$

$$A = (8 \text{ ft}) \times (16 \text{ ft})$$

$$4$$

$$16$$

$$8$$

$$\overline{128}$$
The area is 128 ft².

$$A = l \times w$$

 $A = (10 \text{ yd}) \times (15 \text{ yd}) = 150 \text{ yd}^2$.

Section 1.6 Division of Whole Numbers

Section 1.6 Practice Exercises

(a) dividend; divisor; quotient	1 2
1	5230
5	127
0	11
undefined	36 610
remainder	104 600
	+ 523 000
(a) $5+2$	664,210
$5 \cdot 2$	
(3+10)+2	1 1
(3.10).2	9 7 80
1	ð. 789
2	<u>× 25</u>
103	11
48	3 945
824	+ 15 780
4 120	19,725
4 944	
1,2 1 1	318 810
17	4890 /
678//	<u>398 8</u>
83	90.2
595	
	1
1	38 002
5. 1008	<u>3 902</u>
+ 245	41,904
1253	D: 11 1 70
220	Dividend: 72
220	divisor: 8
<u>14</u>	quotient: 9
880	Dividand: 32
<u>200</u>	divisor: 4
3,080	uivisoi. 4 quotienti 9
	quotient: 8
	Dividend: 64
	divisor: 8
	quotient: 8

Dividend: 35 divisor: 5 quotient: 7

Dividend: 45 divisor: 9 quotient: 5

Dividend: 20 divisor: 5 quotient: 4

- You cannot divide a number by zero (the quotient is undefined). If you divide zero by a number (other than zero), the quotient is always zero.
- A number divided or multiplied by 1 remains unchanged.

 $15 \div 1 = 15$ because $15 \times 1 = 15$.

$$21 \cdot 2$$
 = 1 because 1 × 21 = 21.

 $0 \div 10 = 0$ because $0 \times 10 = 0$.

$$\frac{0}{3} = 0 \text{ because } 0 \times 3 = 0.$$

- 0 9 is undefined because division by zero is undefined.
- $4 \div 0$ is undefined because division by zero is undefined.

 $\frac{20}{20} = 1$ because 1 × 20 = 20.

 $1 \frac{1}{9} = 9$ because $9 \times 1 = 9$.

 $\mathbf{0}$ is undefined because division by zero

is undefined.

5

1 = 5 because $5 \times 1 = 5$.

 $8 \ 0 = 0$ because $0 \times 8 = 0$.

 $13 \div 13 = 1$ because $13 \times 1 = 13$.

Section 1.6 Division of Whole Numbers

 $6 \div 3 = 2$ because $2 \times 3 = 6$. $3 \div 6 \neq 2$ because $2 \times 6 \neq 3$.

 $(36 \div 12) \div 3 = 3 \div 3 = 1$ but $36 \div (12 \div 3) = 36 \div 4 = 9.$

To check a division problem without a remainder you should multiply the quotient and the divisor to get the dividend.

To check $0 \div 5 = 0$ we multiply $0 \times 5 = 0$ which is true. If we try to check $5 \div 0 = ?$ we need to find a number to multiply by 0 to get 5. Since no such number exists, the answer to $5 \div 0$ is undefined.

35. $6 \overline{\smash{\big)}_{\underline{-6}}}^{13} \overline{_{\underline{-6}}}^{78} \overline{_{\underline{-6}}}^{18} \overline{_{\underline{-6}}}^{18} \overline{_{\underline{-18}}}^{18} \overline{_{\underline{-18}}}^{18} \overline{_{\underline{-18}}}^{18} \overline{_{\underline{-6}}}^{18} \overline{}^{18} \overline{}$	1 13 <u>× 6</u> 78
36. 7) $52 \\ 364 \\ -35 \\ -35 \\ 14 \\ -14 \\ 0$	1 52 <u>× 7</u> 364
37. $5 \frac{41}{-20} \frac{205}{-5} \frac{1}{0}$	$\frac{41}{\frac{\times 5}{205}}$
38. $\begin{array}{r} 19\\ \underline{5152}\\ \underline{-8}\\ 72\\ \underline{-72}\\ 0\end{array}$	19 <u>× 8</u> 152 ✓

Chapter 1 Whole	Numbers	
$\begin{array}{r} 486\\ 39. \ 2 \overline{\smash{\big)}} \begin{array}{r} 972\\ \underline{-8}\\ 17 \end{array}$	1 1 486 <u>×</u> 2 972	$6) \frac{822}{4932} \frac{4932}{7-48} \frac{-48}{13}$
$\frac{-16}{12}$ $\frac{-12}{0}$		$\begin{array}{r} -\frac{1}{2} \\ 12 \\ -\underline{12} \\ 0 \end{array}$
40. $6\overline{)}$ 582	4 97	517

<u>× 6</u>

582

2 409

 $\frac{\mathbf{x}}{1227}$ 3

 $\begin{array}{r}
 3 \\
 59 \\
 \underline{\times 4} \\
 236
\end{array}$

1

203 <u>× 5</u>

1015

0	
40. 6) $\frac{97}{582}$ $\frac{-54}{-54}$	
42	

$$\begin{array}{r} 27 \\ \underline{-27} \\ 0 \end{array}$$

42. 4)
$$236 \\ -20 \\ 36 \\ -36 \\ 0$$

$$203$$
43. 5 1015
-10

$$01$$

$$-0$$

$$15$$

$$-15$$

$$0$$

44. $5) \xrightarrow{407}_{2035} -20 \\ -20 \\ 03 \\ -0 \\ 35 \\ -35 \\ 0 \\ 0$ $\begin{array}{r}3\\407\\\underline{x}\\2035\end{array}$

$\frac{-12}{0}$ 517 7) 3619	14 517 <u>7</u>
$\frac{7-35}{1}$ 1 -7	³⁶¹⁹ 🗸
$\frac{49}{-49}$	
47. 56^{2} $\frac{\times}{224}$ correct	
82 $\frac{7}{574}$ correct	R2
49. 253 $\frac{\times 3}{750}$	$3)761$ $\underline{-6}$ 16 $\underline{-15}$
139	11

 $\begin{array}{c}
\overset{1}{11}\\
\overset{1}{822}\\
\overset{6}{}\\
\overset{4932}{\checkmark}\checkmark
\end{array}$

incorrect

<u>-9</u> 2

R4
5) 604
/-5
10
-10
04
<u>-0</u>
4

$ \begin{array}{r} 2 \\ 113 \\ $	mainder.	$5 \overline{)74} $ R4 $5 \overline{)74} $ $-5 \over 24} $ $-20 \over 4}$	14×5+4=70+4 =74✓
$\begin{array}{r} 4\\218\\ \underline{6}\\1308\\ \underline{3} \text{ Add the re}\\1311 \text{ Correct}\end{array}$	mainder.	$2 \overline{)55} R1$ $2 \overline{)-4} \\ 15 \\ -14 \\ 1$	27×2+1=54+1 =55√
53. 25^{4} × 8 $2\overline{00}^{4}$ + 6	$85\overline{)}^{203}$ -16 -40	$3 \overline{)49}^{R1}$ $\frac{-3}{19}$ -18	16×3+1= 48+1 =49✓
206 incorrect 54. $^{14}_{117}$ $\times 7_{879}$ $+ 5_{824}$ incorrect	$ \frac{-40}{3} $ 7) $\frac{117}{821}$ R2 7) $\frac{-7}{-7}$ 12 $\frac{-7}{51}$ $\frac{-49}{2}$	$ \begin{array}{r} \frac{13}{1} \\ \frac{13}{593} \\ \frac{-3}{29} \\ \frac{-27}{23} \\ \frac{-21}{2} \\ \frac{29}{23} \\ \frac{-21}{2} \\ \frac{29}{23} \\ \frac{-21}{2} \\ \frac{29}{23} \\ \frac{-21}{2} \\ \frac{29}{2} \\ $	197×3+2=591+2 = 593 ✓
	7 × 8+5=56+5 =61√	$R1$ $4 \overline{\smash{\big)}_{801}}$ $\frac{-8}{001}$ $200 \times 4 + 1 = 800 + 1$	+1
56. 3589 $\overline{89}$ $\underline{-6}$ $\underline{29}$ $\underline{-27}$ $\underline{2}$ $\underline{-10} R2$	29×3+2=87+2 =89√	$=801$ 9 $\overline{)382}$ R4 9 $\overline{)382}$ $\underline{-36}$ 22 $\underline{-18}$ 4	✓ 42×9+4=378+ 4 = 382 ✓
57. 9^{5} $\overline{92}$	10 x 9 + 2 = 90 + 2		53 × 8+4= 424+4

<u>-9</u> 02 =92√

=428

65. $2 \frac{1557}{3115}$ R1 $2 \frac{-2}{11}$	111 1557 × 2	70. $2 \frac{550}{1101} \text{R1}}{-10}$	1 550 \times 2
-10	+ 1	$\underline{-10}$	+ 1
$11 \\ -10 \\ 15 \\ -14$	3115 ✓	01 <u>00</u> 1	1101 🗸
1		19 <u>)9110</u> R9	
	$53 785 \times 6 4710$	$ \frac{-76}{151} \\ \underline{-133} \\ 180 \\ \underline{-171} \\ 9 $	
35	+ <u> </u>	,	
<u>-30</u> 5	4715 ✓	13) 3505 -26	
$ \begin{array}{r} $		$90 \\ -78 \\ 125 \\ -117 \\ -8 \\ 8$	
<u>-8</u> 6	6014 ✓	24)1051 <u>-96</u> R19	
68. 7) 9013 -7 20 -14	264 1287 \times 7 9009 + 4	91 <u>-72</u> 19	
61 -56 53 -49	9013 🗸	$\begin{array}{r} R27 \\ 41 \overline{\smash{\big)}\ 8104} \\ \underline{-41} \\ 400 \\ \underline{-369} \end{array}$	
$ \begin{array}{r} \frac{835}{5012} \text{R2} \\ \underline{69.6} \overline{\smash{\big)} 5012} \\ \underline{-48} \\ \underline{21} \\ \underline{-18} \\ \underline{32} \\ \underline{52} \\ $	23 835 × 6 5010 + 2	314 <u>-287</u> 27	
-30			

5012			
\checkmark			
2			

$ \begin{array}{r} 308 \\ 26 & 8008 \\ 20 \\ -0 \\ 208 \\ -208 \\ 0 \end{array} $	$ \begin{array}{r} R56 \\ 221 \overline{\smash{\big)}} 51107 \\ \underline{-442} \\ 690 \\ \underline{-663} \\ 277 \\ \underline{-221} \\ 56 \end{array} $
$ \begin{array}{r} 612\\ 15) 9180\\ \cancel{-90}\\18\\ \underline{-15}\\30\\\underline{-30}\\0\end{array} \end{array} $	$ \begin{array}{r} 302 \\ 114 \\ 34428 \\ \hline \underline{34428} \\ $
$ \begin{array}{r} 1259 \text{ R26} \\ 54 68012 \\ -54 \\ 140 \\ -108 \\ 321 \\ -270 \\ 512 \\ -486 \end{array} $	$ \begin{array}{r} 209\\ 421 \overline{)} \overline{87989}\\ \underline{-842}\\ 3789\\ \underline{-3789}\\ 0\\ 497 \div 71 = 7\\ 7 \end{array} $
	$71) \overline{497} \\ - \underline{-497} \\ 0 \\ 890 \div 45 = 42 \\ 45) \overline{1890} \\ - \underline{-180} \\ \end{array}$
$ \frac{-70}{313} \\ -280 \\ 33 229 R96 \\ 304 69712 \\ -608 \\ 891 $	$90 \\ -90 \\ 0 \\ 877 \div 14 = 62R9 \\ R9 \\ 14 \overline{877} \\ -84 \\ -84 \\ 877 \\ -84 \\ -84 \\ 877 \\ -84 \\ -8$
$ \frac{-608}{2832} \underline{-2736} 96 $	<u>-28</u>

$722 \div 53 = 13 \text{ R}33$	48
R33	3 - 12
-53	24
	-24
<u>-159</u>	0
	\$48 per room
42 : 6=7	lb
	100) 2200
108÷9=12	<u>200</u>
$9)^{\frac{12}{108}}$	200
9	0
18	-
$\frac{-18}{2}$	acres
0	260, 7280
classrooms	• <u></u>
28\ <u>392</u>	<u>-2080</u>
· <u>-28</u>	0
112 -112	$1200 \div 20 - 60$
0	$1200 \div 20 = 60$
0	20) 1200
tables	<u>-120</u>
81,120	00
$-\frac{-8}{40}$	$-\frac{-0}{0}$
-40	Approximately 60 words per minute
0	
R8	2800 ÷ 400 7
	<u> </u>
32 158	4002800
<u>-160</u> 8	* <u>-2800</u>
5 cases: 8 cans left over	U
	Approximately 7 tanks of gas
$52.4\overline{25}$ R9	25
-416	18\1450
9	<u>-36</u>
Yes; \$9 left over	90
	<u>-90</u>
6)312 mph	0
	Yes they can all attend if they sit in the
12	second balcony.
<u>-12</u>	
0	

Problem Recognition Exercises: Operations on Whole Numbers

1. (a) 52 + 13 $\overline{65}$ (b) 52	2. (a) 17 $\overline{)102}_{102}_{102}_{\overline{0}}$
×13 156	(b) 10^{912}
$\begin{array}{r} +520\\ 676\\ 412\\ (c) \qquad 52\\ -13\\ \hline 39\end{array}$	$\begin{array}{r}\frac{17}{85} \\ \text{(c)} & 102 \\ \frac{\times 17}{714} \end{array}$
(d) $13\overline{)52}_{52}$	$\begin{array}{r} + 1020 \\ 1734 \\ \textbf{(d)} 102 \\ + 17 \\ 119 \end{array}$

Chapter 1	Whole Numbers	
3. (a)	5064 <u>58</u> 40512 <u>253200</u> 293,712 064	(a) 156 <u>41</u> 197 (b) 197 <u>- 41</u> 156
5	$ \frac{58}{122} \frac{87 \text{ R18}}{-464} \frac{-464}{424} \frac{406}{18} $	(a) 6004 <u>221</u> 6225 (b) 6004 <u>-221</u> 6004 4,180
	14	41,800
5 (a) 1 1	$ \begin{array}{c} 064 \\ 58 \\ \overline{5006} \\ 226 \\ \underline{114} \\ 112 \\ 10 R86 \end{array} $	418,000 4,180,000 35,000 3,500
1	$ \begin{array}{r} 14\overline{)1226}\\ \underline{-114}\\ 86\\ 0\\ \overline{86}\\ 1 \end{array} $	350 35 246,000
1	$ 1226 \\ 114 \\ 1340 \\ 12 12 $	2,820,000 20,000 540,000
	1226 <u>114</u> 4904 12260 <u>122600</u> 139,764	

Section 1.7 Exponents, Square Roots, and the Order of Operations Section 1.7 Practice Exercises

(a) base; 4 powers square root; 81 order; operations variable: constants	$2^{3} = 2 \cdot 2 \cdot 2 = 4 \cdot 2 = 8$ $4^{2} = 4 \cdot 4 = 16$
mean	$3^2 = 3 \cdot 3 = 9$
False	$5^2 = 5 \cdot 5 = 25$
True: $5 + 3 = 8$ and $3 + 5 = 8$	$3^3 = 3 \cdot 3 \cdot 3 = 9 \cdot 3 = 27$
False: $5 - 3 = 2$, but $3 - 5 \neq 2$	$11^2 = 11 \cdot 11 = 121$
False: $6 \times 0 = 0$	5^{3} - 5, 5, 5 - 25, 5 - 125
True: $0 \div 8 = 0$	3
True: $0 \times 8 = 0$	$4^{\circ} = 4 \cdot 4 \cdot 4 = 16 \cdot 4 = 64$
True: $5 \div 0$ is undefined.	$2^{5} = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 = 4 \cdot 4 \cdot 2 = 16 \cdot 2 = 32$
9 ⁴	$6^3 = 6 \cdot 6 \cdot 6 = 36 \cdot 6 = 216$
3 ⁸	$3^4 = 3 \cdot 3 \cdot 3 \cdot 3 = 9 \cdot 9 = 81$
2 ⁷	$5^4 = 5 \cdot 5 \cdot 5 \cdot 5 = 25 \cdot 25 = 625$
5 6	$1^2 = 1 \cdot 1 = 1$
3. 3. 3. 3. $3. 3. 3. 3. 3 = 3$	$1^3 = 1 \cdot 1 \cdot 1 = 1$
4	4
$7 \cdot 7 \cdot 7 \cdot 7 = 7$	$1 = 1 \cdot 1 \cdot 1 \cdot 1 = 1$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$1^5 = 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 = 1$
	The number 1 raised to any power equals
$5 \cdot 5 \cdot 5 \cdot 10 \cdot 10 \cdot 1 \cdot 10$ 0 = 5	1.
$\begin{array}{c} 4\\ 8\\ \end{array} = 8 \cdot 8 \cdot 8 \cdot 8 \end{array}$	$10^2 = 10 \cdot 10 = 100$
$2^{6}_{2} = 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2$	$10^3 = 10 \cdot 10 \cdot 10 = 1000$
$\underbrace{\overset{8}{4}}_{\cdot 4}^{\cdot 4} \overline{\overline{4}}_{\cdot 4} \cdot 4 \cdot 4 \cdot 4 \cdot 4$	4
2	$10 = 10 \cdot 10 \cdot 10 \cdot 10 = 10,000$
$\begin{array}{l} 6^2 = \\ 6 \cdot 6 \end{array}$	$10^5 = 10 \cdot 10 \cdot 10 \cdot 10 \cdot 10 = 100,000$

 10^9 simplifies to a 1 followed by 9 zeros: 1,000,000,000. 4 = 2 because $2 \cdot 2 = 4$. 9 = 5 because $3 \cdot 3 = 9$. $36 \neq 6$ because $6 \cdot 6 = 36$. $81 \neq 9$ because $9 \cdot 9 = 81$. 100 = 10 because $10 \cdot 10 = 100$. $49\sqrt{=7}$ because $7 \cdot 7 = 49$. $0 = \sqrt{0}$ because $0 \cdot 0 = 0$. $16 \neq 4$ because $4 \cdot 4 = 16$. No, addition and subtraction should be performed in the order in which they appear from left to right. No, multiplication and division should be performed in the order in which they appear from left to right. 6+10. 2=6+20=26 4+3.7=4+21=25 2 10-3 =10-9 =1 $11-2^2 = 11-4 = 7$ $(10-3)^2 = 7^2 = 49$ 2 2 (11-2) = 9 = 8136÷2÷6=18÷6=3 $48 \div 4 \div 2 = 12 \div 2 = 6$ 15-(5+8)=15-13=2 41-(13+8)=41-21=20 (13-2) 5-2=11 5-2=55-2=53

$$(8+4) \cdot 6+8=12 \cdot 6+8=72+8=80$$

$$4+12 \div 3=4+4=8$$

$$9+15 \div \sqrt{25}=9+15 \div 5=9+3=12$$

$$30 \div 2 \cdot \sqrt{9}=30 \div 2 \cdot 3=15 \cdot 3=45$$

$$55 \div 11 \cdot 5=5 \cdot 5=25$$

$$7^{2} -5^{2} =49-25=24$$

$$3^{3} -2^{3} =27-8=19$$

$$(7-5)^{2} =2^{2} =4$$

$$(3-2)^{3} =1^{3} =1$$

$$100 \div 5 \cdot 2 = 20 \cdot 2 = 40$$

$$60 \div 3 \cdot 2 = 20 \cdot 2 = 40$$

$$90 \div 3 \cdot 3 = 30 \cdot 3 = 90$$

$$80 \div 2 \cdot 2 = 40 \cdot 2 = 80$$

$$77 \cdot \sqrt{-81} + 2(9-1) = -81 + 2 \cdot 8$$

$$9+2 \cdot$$

4	р	ash
4 \$ 8	e r w	Average = $\frac{118 \pm 123 \pm}{122}$
96−3 (42÷7· 6−5)=9	96-3 (6. 6-5) 96-3 (36-5) 96 - 3 (31) 96-93 3	$\frac{363}{3} = 121 \text{ mm per month}$

Average
$$= 9 \pm 20 \pm 22 \pm 16 \pm$$

 135
 $80 - 5 = 16$ in. per month
 $3[4 + (6 - 3)^2] - 15 = 3[4 + 3^2] - 15$
 $3[4 + 9] - 15 - 3[4 + 3^2] - 15$
 $3[4 + 9] - 15 - 3[4 + 3^2] - 15$
 $3[4 + 9] - 15 - 3[4 + 3^2] - 15$
 $35^4 = 1,500,625$
 $43^3 = 79,507$
 $2[5(4 - 1) + 3] \div 6 = 2[5(3) + 3] \div 6 - 2[15 + 3] \div 6 - 2[16 + 6] + 201,666 - 6 - 293,834$
 $5[21 - [3^2 - (4 - 2)]] = 5[21 - [3^2 - 2]]$
 $5[21 - [3^2 - (4 - 2)]] = 5[21 - [3^2 - 2]]$
 $5[21 - [3^2 - (4 - 2)]] = 5[21 - [3^2 - 2]]$
 $5[21 - [3^2 - (4 - 2)]] = 5[21 - [3^2 - 2]]$
 $5[21 - [3^2 - (4 - 2)]] = 5[21 - [3^2 - 2]]$
 $5[21 - [3^2 - (4 - 2)]] = 5[21 - [3^2 - 2]]$
 $5[21 - [3^2 - (4 - 2)]] = 5[21 - [3^2 - 2]]$
 $5[21 - [3^2 - (4 - 2)]] = 5[21 - [3^2 - 2]]$
 $5[21 - [3^2 - (4 - 2)]] = 5[21 - [3^2 - 2]]$
 $5[14]$
 $(7500 \div 625) = 12 = 1728$
 $4[18 - [(10 - 8) + 2^3]] = 4[18 - [2 + 2^3]]$
 $4[18 - 10]$
 $4[18 - 10]$
 $4[18 - 10]$
 $4[18 - 10]$
 $4[18 - 32]$
 32
 $117. \frac{89,880}{393 - 2134} = \frac{89,880}{2568} = 35$
 $118. \frac{54,137}{3393 - 2134} = \frac{54,137}{1259} = 43$

Section 1.8 Problem-Solving Strategies Section 1.8 Practice Exercises

42+16=58 2·14=28 93−79=14

 $4\div 0$

89-66=23

71+14=85

102-32=70

60÷12=5

10. 13=130

12+14+15=41

24÷6=4

78-41=37

5 + 13 + 25 = 43

Answers may vary.

For example: sum, added to, increased by, more than, total of, plus

For example: product, times, multiply

For example: difference, minus, decreased by, less, subtract

For example: quotient, divide, per, distributed equally, shared equally

Given: The height of each mountain Find: The difference in height Operation: Subtract 110 2 1110 20,3/2/0/14,246 6.074

Denali is 6,074 ft higher than White Mountain Peak.

Given: The number of yearly subscriptions Find: The difference in subscriptions Operation: Subtract 0 11 1110 11 10 \$77, \$7 1/2/090 3.2 5 2.900 8, 9 5 9,100 Reader's Digest has 8,959,100 more subscriptions than Sports Illustrated.

Given: Oil consumption by country.

Find: Total oil consumption for 4 countries. *Operation*: Addition

8,220,000 4,360,000 4,210,000 <u>2,170,000</u> 18,960,000 The oil consumption of China, Japan, Russia, and Canada is 18,960,000

barrels per day.

Given: Population of each country. Find: Total population of 4 countries. *Operation*: Addition 11 1,339,000,000 127,000,000 140,000,000 33.000.000 1,639,000,000 The population of China, Japan, Russia, and Canada is 1,639,000,000 people. Given: The number of rows of pixels and the number of pixels in each row. *Find*: The number of pixels on the whole screen. **Operation:** Multiply 5 213 126 96 756 340 12,096 There are 12,096 pixels on the whole screen. Given: The number of rows of tiles and the number of tiles in each row. *Find*: The number of tiles on the whole floor. **Operation:** Multiply 1 62 <u>38</u> 11 496 1860

2356 There are 2,356 tiles. Given: Number of students and the average class size. Find: Number of classes offered *Operation*: Division 120 25) 3000 / -25 50 -5 0 00 There will be 120 classes of Prealgebra. Given: Inheritance amount and number of people to share equally *Find*: Amount per person **Operation:** Division 10 560 8 84,480 -8 4 -40 48 -48 00 Each person will receive \$10,560. Given: 45 miles per gallon and driving 405 miles Find: How many gallons used **Operation:** Division 9 405 405 0 There will be 9 gal used. Given: 52 mph; 1352 mi Find: How many hours *Operation*: Divide 26 52 1352 -104 312 -3120 They will travel for 26 hours.

Given: Yearly tuition for two schools *Find*: Total tuition paid **Operation:** Addition 39,212 3,024 42,236 Jeannette will pay \$42,236 for one year. Given: Distances traveled in opposite directions Find: Total distance traveled *Operation*: Addition 11 138 96 234 They are 234 mi apart. Given: Miles per gallon and number of gallons *Find*: How many miles **Operation:** Multiplication 55 20 1.100 The Prius can go 1100 mi. Given: Hours per week and number of weeks. *Find*: Total number of hours **Operation:** Multiplication 1 16 3 48 The class will meet for 48 hr during the semester. Given: Number of rows and number of seats in each row. Find: Total number of seats **Operation:** Multiplication 3 45 70 3150 The maximum capacity is 3150 seats.

Section 1.8 Problem-Solving Strategies

Given: Number of rows and number of boxes in each row *Find*: Total number of boxes **Operation:** Multiplication 8 8 64 There are 64 boxes in a checkerboard. Given: total price: \$16,540 down payment: \$2500 payment plan: 36 months Find: Amount of monthly payments **Operations** Subtract 16,540 2 500 14,040 (2) Divide 390 36 14040 - 108 324 -324 $\overline{0}0$ Jackson's monthly payments were \$390. Given: total cost: 1170 down payment: 150 payment plan: 12 months Find: Amount of monthly payments *Operations*: Subtract 1170 150 1020 (2) Divide 85 12)1020 .__ -96 60 -60 0

Lucio's monthly payment was \$85.

Given: Distance for each route and speed traveled Find: Time required for each route **Operations** Watertown to Utica direct Divide $80 \div 40 = 2$ hr Watertown to Syracuse to Utica Add distances 70 + 50 = 120 mi *Divide* $120 \div 60 = 2$ hr Each trip will take 2 hours. Given: Distance for each route and speed traveled Find: Time required for each route **Operations** Interstate: *Divide* $220 \div 55 = 4$ hr Back roads: *Divide* $200 \div 40 = 5$ hr The interstate will take 4 hours and the back roads will take 5 hours. The interstate will take less time. The distance around a figure is the perimeter. The amount of space covered is the area. Given: The dimensions of a room and cost per foot of molding Find: Total cost **Operations**: Add to find the perimeter, subtract doorway. 11 46 12 - 3 11 43 ft + 12 46 (2) Multiply to find the total cost. 43

 $\frac{\times 2}{86}$ The cost will be \$86.

Given: The dimensions of a yard and the cost per foot of fence *Find*: Total cost **Operations** (1) Add to find perimeter 1 75 90 75 90 330 ft Multiply the perimeter by cost per foot. 330 <u>5</u> 1650 It will cost \$1650. Given: dimensions of room and cost per square yard *Find*: total cost **Operations** (1) Multiply to find area $6 \times 5 = 30 \text{ yd}^2$ (2) Multiply to find total cost 1 34 30 1020 The total cost is \$1020. Given: Dimensions of room and cost per foot Find: Total cost **Operations** Multiply to find area. 12 20 240 Multiply to find total cost. 240 <u>3</u> 720 The total cost is \$720.

Given: Starting balance in account and individual checks written Find: Remaining balance in account **Operations** (1) Add the individual checks 1 82 159 101 \$242 Subtract \$242 from the initial balance 278 242 36 There will be \$36 left in Gina's account. Given: Initial balance in account and individual checks written *Find*: The remaining balance **Operations** (1) Add the individual checks. 11 587 36 156 \$779 Subtract \$779 from the initial balance. 13 14 15 / # 5/5 _____7 9 676 There will be \$2676 left in Jose's account. Given: Number of computers and printers purchased and the cost of each *Find*: The total bill **Operations** Multiply to find the amount spent on computers, then printers. 115 33 2118 256 **x**6 4 2 3 6 \$1536 260 \$152,496 Add to find the total bill. 1 1 1 152,496 1 5 3 6 154.032 The total bill was \$154,032.

Given: Price for children and adults, and the number of children and adults *Find*: Total

cost for the trip Operations

2

(1) Multiply to find the amount for children and for adults.

4

 $\begin{array}{cccc}
33 & 37 \\
\times & \underline{27} & \times & 6 \\
\underline{231} & \underline{5222} \\
\underline{660} \\
\$891 \\
\text{Add to find the} \\
\text{total. $ 891} \\
\underline{222} \\
\$1113 \\
\text{The amount of money required is $1,113.}
\end{array}$

Given: Amount to sell used CDs, amount to buy used CDs and number of CDs sold

Find: Money from selling 16 CDs *Operation*: Multiply 16 <u>3</u> 48 Latayne will receive \$48. *Find*: Number of used CDs to buy for \$48. *Operation*: Division 48÷8=6 She can buy 6 CDs.

Given: Wage per hour and number of hours worked Find: Amount of weekly paycheck Operation: Multiply 40 <u>12</u> 80 <u>400</u> \$480

Shevona's paycheck is worth \$480. *Given*: Ticket price and number of tickets *Find*: Amount left over from paycheck

	-	-
Operations		710
(1) Multiply	89(2) Subtract × 2	4 8 0 -17 8
She will have	178 e \$302 left.	302
Given: Number of shots and free thre <i>Find</i> : Total point <i>Operations</i> (1) Multiply	f field goals, three ows and point valu s scored	-point ues
field goals	three-point	shots
12,192	581	
<u>× 2</u> 24,384	<u>×3</u> 1,743	
384 743 <u>7 327</u> 33,454 Michael Jordan s the Bulls.	scored 33,454 poi	ints with
<i>Given</i> : Width of e the matte frame <i>Find</i> : Space betw	each picture and w ween each picture	idth of
Operations (1) Multiply 5> (2) Subtract 37 (3) Divide There will be 2 in pictures.	x5= 25 -25 = 12 $12 \div 6=2$ n of matte between	en the
<i>Given</i> : Number of and the dosage <i>Find</i> : Days th <i>Operation</i> : I $60\div2=30$ One bottle w <i>Find</i> : Date to <i>Operation</i> : S 30-2-28	f milliliters in the ne bottle will last Divide yill last for 30 day preorder Subtract	bottle 75.

The owner should order a refill no

later than September 28.

Given: Number of male and female doctors Find: Difference between male and female doctors **Operation:** Subtract 9 210 13 6 3 0,300 205,900 42 4.400 The difference between male and female doctors is 424,400. *Find*: The total number of doctors *Operation*: Add 1 630,300 205,900 836,200 The total number of doctors is 836,200. Given: Scale on a map Find: Actual distance between Las Vegas and Salt Lake City **Operation:** Multiply 60 <u>6</u> 360 The distance is 360 mi. Find: Distance on map between Madison and Dallas Operation: Divide 14 60 840 **;** -60 240 -240.0

14 in. represents 840 mi.

Given: Scale on a map Find: Actual distance between Wichita and Des Moines **Operation:** Multiply 40 8 320 The distance is 320 mi. *Find*: The distance between Seattle and Sacramento on the map. **Operation:** Divide 15 40,_600 -40 200 -200.0 15 in. represents 600 mi. Given: Number of books per box and number of books ordered Find: Number of boxes completely filled and number of books left over Operation: Divide and find remainder 104 R2 12, 1250 -12 050 <u>-4</u> 8 2 104 boxes will be filled completely with 2 books left over. Given: Number of eggs in a container and total number of eggs Find: Number of containers filled and number of eggs left over Operation: Divide and find remainder

$$\begin{array}{r} R 9 \\
12 \overline{)4257} \\
\underline{-36} \\
\underline{-60} \\
57 \\
\underline{-48} \\
9 \\
\end{array}$$

354 containers will be filled completely with 9 eggs left over.

Given: Total cost of dinner and type of bill used Find: Number of \$20 bills needed *Operation*: Division 4 R 4 20 84 1 $\frac{-}{8}$ Ì 4 Four \$20 bills are not enough so Marc needs five \$20 bills. Find: How much change **Operations:** Multiply and subtract 20 100 - 84 <u>× 5</u> 100 16 He will receive \$16 in change. Given: total cost of CDs and type of bill used Find: How many \$10 bills needed **Operation:** Divide 5 R 4 10 \ 54 1 $\frac{-}{5}$ ١ 4 Five \$10 bills are not enough so Shawn needs six \$10 bills. *Find*: How much change **Operations:** Multiply and subtract 10 60 <u>× 6</u> - 54 60 6 He will receive \$6 in change.

Chapter 1 Review Exercises

Section 1.1

		8. Thirty-thousand, eight hundred sixty	-one
1. 1 0,024	Ten-thousands	9. 3602	
2. 8 21,811	Hundred-thousands	10 800 039	
3. 92,046		10.000,037	
4. 503,160		11. 2;	
5. 3 millions + 4	4 hundred-thousands	12. 7:	

7. Two hundred forty-five

Given: Hourly wage and number of hours worked *Find*: Amount earned per week **Operations** Multiply to find amount per job. 30×4=120 10×16=160 8×30=240 (2) Add to find total. 1 120 160 240 520 He earned \$520. Given: Hourly wage and number of hours worked *Find*: Total paid to all four workers **Operations** (1) Multiply to find amount per worker 36**×**18=648 $26 \times 24 = 624$ 28×15=420 22 × 48=1056 (2) Add to find total paid. 1 11 648 420 624 1056 2748 The total amount paid was \$2748.

	1.1.1.1.1.1.1.1.1.
+ 8 hundreds $+$ 2 tens	1 2 5 4 5 6 7 6 9 10 11 12 15
6. 3 ten-thousands $+$ 5 hundreds $+$ 5 tens	13. 3<10 True
+ 4 ones	14. 10>12 False

Section 1.2

31 25 Addends: 105, 119; sum: 224 40 Addends: 53, 21; sum: 74 96 cars Add the numbers of 2 Fords. 21 25 18 24 20 <u>29</u> 66 Fords 71 35,377 2 10,420 27 9 45,797 thousand seniors <u>18</u> 1 54 28. 30 44 1 8 4 0 3 25 53 <u>9 007</u> + 25 17,410 177 m 68,421 Section 1.3 2,221 70,642 minuend: 14 subtrahend: 8 (a) The order changed, so it is the difference: 6 commutative property. The grouping changed, so it is minuend: 102 the associative property. subtrahend: 78 The order changed, so it is the difference: 24 commutative property. 31. 37 403 + 79;482<u>11</u> 1 26 403 79 32. 61 482 41 20 44 + 92; 136 92 9 <u>44</u> 1<u>10</u>10 136 33. 20Ø5/ <u>-1884</u> 36+7=43 1 2 1 23+6=29 2 18 1389

<u>26</u>+11=37 <u>20</u>+41=61 <u>2 99</u> 10 90

(a) Add the numbers for AA Auto.

	Chapter 1	Review Exercises
9 9 <u>10 10</u> 10 86,0 0/0/// <u>54981</u> 31,0 1 9	9 7 <u>10</u> 13 480/3 / 246 7 	ud visitors
9 9 10 1010	Section 1.4	
67,0 9/0///	<u>5,</u> 234,446	
<u>32812</u> 34,1 8 8	5,000,000	
38-31;7 38	9,3 <u>3</u> 2,945 9,330,000	
$\frac{31}{7}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	0,000 <u>0,000</u>)0,000
$ \begin{array}{c} 111 - 15; 96 \\ 10 \\ \emptyset 11 \\ / 1 \\ 1 \\ 5 \\ 9 \\ 6 \end{array} $	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	
$251 - 42; 209$ $4 11$ $/ \frac{1}{2}$ $\frac{42}{9}$	140,041,247 → <u>127,078,679</u> – 13,000,000 people	^{3 10} 14Ø,000,000 → <u>127,000,000</u> 13,000,000
90 - 52; 38 10	49. 96,050 →	1 96,000
/0 52	$\underline{66,517} \rightarrow \underline{+6}$	<u>57,000</u> 163,000 m ³
38	Section 1.5	
10 18	Factors: 32, 12	
4 /0 /8 11 5 11 95,1 9/1 7 إ //	Product: 384	
<u>23, 29 9,323</u> 71, 8 9 2,4 3 8 tons	Factors: 33, 40 Product: 1320	
1 15 2 5,800,000 <u>1 8,600,000</u>	(a) Yes Yes No	
\$7,200,000	с	
	e	
	d	

a b		To check a division problem with no remainder you multiply the quotient by the divisor to get the dividend.
1 142 <u>43</u> 11		To check a division problem with a remainder you multiply the whole number part of the quotient by the divisor and add the remainder to get the dividend.
426 <u>5680</u> 6106 1 2		$71. \sqrt{\frac{58}{58}} \qquad \begin{array}{c} 3\\ 58\\ \underline{58}\\ 58$
1024 51		<u>-48</u> 0
<u>51 200</u> 52,224		$\begin{array}{cccccccccccccccccccccccccccccccccccc$
$ \begin{array}{r} 6 & 000 \\ $		$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
61. 26	39	⁴⁵⁸ ✓
<u>+ 13</u> 39	<u>× 11</u> 39 <u>390</u> \$429	73. 20 1043 52 <u>-100</u> \times 20 43 T040 <u>-40</u> \pm 3
62. 551 <u>× 7</u> 3857	111 3857 <u>×2</u> 7714 lb	$3 \qquad 1043 \checkmark$ $\frac{72}{4} = 18$
		$0 \div 3 = 0$ because $0 \times 3 = 0$.

Section 1.6

42÷6=7 divisor: 6, dividend: 42, quotient: 7

$4\frac{5}{2} = 13$

divisor: 4, dividend: 52, quotient: 13

 $3 \div 1 = 3$ because $1 \times 3 = 3$.

 $3 \div 3 = 1$ because $1 \times 3 = 3$.

 $3 \div 0$ is undefined.

12 9 108) <u> </u>
$\frac{-9}{18}$;
<u>-18</u>	
Divide 105 by 4.	
R 1	
4 105	<u>}</u>
<u>-8</u>	;
<u>-24</u>	
1	

26 photos with 1 left over

(a) Divide 60 by 15. 60 ÷
15 = 4 T-shirts
Divide 60 by 12.
60 ÷ 12 = 5 hats

Section 1.7

8. 8. 8. 8.
$$8 \cdot 8 \cdot 8 = 8$$

4 3
2. 2. 2. 2. 2. 5. 5. 5
= 2 . 5
3
5 = 5x5x5 = 25x5 = 125
4 = 4x 4x 4x 4 = 16x16 = 256
1⁷ = 1. 1. 1. 1. 1. 1. 1 = 1
10⁶ = 10x10x10x10x10x10 = 1,000,000
64 = 8 because 8 x 8 = 64.
144 = 12 because 12 x 12 = 144.
14÷7. 4-1=2. 4-1=8-1=7
10² -5² = 100-25 = 75
90-4+6÷3. 2=90-4+2. 2
90-4+4
86+4
90
2+3. 12÷2- 25 = 2∓3. 12÷2-5
2+36÷2-5
2+18-5
20-5
15
6² -4² + (9-7)³ = 6² -4² +2³
36-16+8
20+8
28
26 - 2(10 - 1) + (3+4. 11)
26 - 2(9) + (3+44)
26 - 2(9) + 47
26 - 18+47

Chapter 1 Review Exercises
mean =
$$7 \pm 6 \pm 12 \pm 5 \pm 7 \pm 6 \pm 13 = 56 = 8$$

77
Average = $80 \pm 78 \pm 101 \pm 92$
 ± 945
 445
 5
 889
 $6 \pm 9 \pm 11 \pm 13 \pm 5 \pm 8$
 $4 = 8$ houses

per month 6

Section 1.8

Given: Number of animals and species at two zoos Find: Which zoo has more animals and how many more *Operation*: Subtraction 17,000 4,000 13,000 The Cincinnati Zoo has 13,000 more animals than the San Diego Zoo. Find: Which zoo has the most species, and how many more **Operation:** Subtract 7 10 **%**00 750 50 The San Diego Zoo has 50 more species than the Cincinnati Zoo. Given: The distance traveled and the number of trips Find: Number of miles traveled in one week **Operations:** Multiplication and addition 5 15 <u>×</u>3 + 6 21 miles per week Find: Number of miles traveled in 10 months with 4 weeks a month **Operation:** Multiplication 21 84 $\frac{-8}{+} \frac{\mathbf{x}^{44}}{8^{4}}$

miles/month

× 10 miles/year 84 0 Given: Contract: 252,000,000 Time period: 9 years taxes: 75,600,000 Find: Amount per year after taxes **Operations** (1) Subtract 11 14/1/10 *25*, 000,000 75,600,000 176,400,000 Divide 19,600,000 9,176,400,000 -9 86 -81 54 <u>-54</u> 0

He will receive \$19,600,000 per year.

Given: dimensions of a rectangular garden and size of division for plants Find: Number of plants **Operations** (1) Multiply 12**×**8=96 (2) Divide 96÷2=48 She should purchase 48 plants. Find: Cost of plants for \$3 each **Operation:** Multiply 2 48 <u>3</u> 144 The plants will cost \$144. Find: Perimeter of garden and cost of fence **Operations** (1) Add 12+8+12+8=40 (2) Multiply $40 \times 2 = \$80$ The fence costs \$80. Find: Total cost of garden Operations: Add 144 <u>80</u> 224 Aletha's total cost will be \$224.

Chapter 1 Test

(a) <u>4</u> 92 hundreds	R9
23,441 thousands	15)324
$\frac{2}{340.592}$ ten-thousands	$\frac{-30}{24}$
	<u>-15</u>
(a) $4,065,000$	9
I wenty-one million, three nundred	
Twelve million, two hundred eighty-	9 9
seven thousand	30^{-7}
729,000	2456
Eleven million, four hundred ten	5 4 6
thousand	
(a) $14 > 6$	0 10 10/984
72<81	2 881
51	8 103
78	
129	$\frac{20}{2}$
22	42 \ 840
82	$\frac{-64}{00}$
4 328	
520	5 00000
154	3 000
<u>41</u> 112	1,500,000,000
113	1
227	34
4) 908	191
$\frac{7-8}{10}$	<u>22</u>
-8	336
28	403(0) = 0
-28	403(0) = 0
$\overline{}$	$0\overline{16}$ is undefined.
3	1
7	(a) $(11 \cdot 6) \cdot 3 = 11 \cdot (6 \cdot 3)$ The
58 49	associative property of multiplication; the expression shows a change in
522	grouping.
320	
2,842	

149 <u>298</u> $(11 \cdot 6) \cdot 3=3 \cdot (11 \cdot 6)$ The commutative property of multiplication; the expression shows a change in the order of the factors.

(a) $4,850 \rightarrow 4,900$ $12,493 \rightarrow 12,000$ $7,963,126 \rightarrow 8,000,000$

20. $690,951 \rightarrow 690,000$ <u>+ 739,117</u> $\rightarrow 740,000$ 1,430,000

There were approximately 1,430,000 people.

8² |2⁴ =64 |16=4

22.
$$26 \cdot \sqrt{4} - 4(8-1) = 26 \cdot \sqrt{4} - 4 \cdot 7$$

 $26 \cdot 2 - 4 \cdot 7$
 $52-28$
 24
 $36 \div 3(14 - 10) = 36 \div 3(4) = 12(4) = 48$
 $65 - 2(5 \cdot 3 - 11) = 65 - 2(15 - 11)^{2}$
 $65 - 2(4)^{2}$
 $65 - 2 \cdot 16$
 $65 - 32$

Given: Quiz scores and number of quizzes for Brittany and Jennifer *Find*: Who has the higher average *Operations*: Find the average of each group. Brittany: $\frac{29+28+24+27+30+30}{6} = \frac{168}{6} = 28$

33

Jennifer:

$$\frac{30+30+29+28+28}{5} = \frac{145}{5} = \frac{29}{5}$$

Jennifer has the higher average of 29.

Brittany has an average of 28.

(a) Subtract to find the change from year 2 to year 3. 2911 21<u>3,0/1</u>5 212,573 4 2 thousand subscribers The largest increase was from year 3 to year 4. The increase was 15,430 thousand. Divide the number of calls by the number of weeks. North: $80 \div 16 = 5$ South: $72 \div 18 = 4$ East: $84 \div 28 = 3$ The North Side Fire Department is the busiest with an average of 5 calls per week. Add the sides. 1 15 31 32 15 32 + 31 156 mm **29.** Add to find the perimeter. 13 47 128 47 128 ft Multiply to find the area. 128 <u>47</u> 896 <u>5120</u> $\frac{5120}{6016}$ the second se

 $\frac{\times 1872}{2 160 000} \rightarrow \frac{\times 1900}{2 160 000}$

30. 2379 →

4,560,000 m²

3

Chapter 2 Fractions and Mixed Numbers: Multiplication and Division

Chapter Opener Puzzle

3	5	6	A 1	2	4
в 1	2	3	с 4	D 6	Е 5
6	4	2	5	3	1
2	1	F 4	6	5	3
G 5	3	1	н 2	4	I 6
4	6	5	3	J 1	2

Section 2.1 Introduction to Fractions and Mixed Numbers

Section 2.1 Practice Exercises

(a) fractions	$2 \mid 0$; undefined
numerator; denominator	11 $ 0;$ undefined
proper	3
improper	<u>-</u> 4
mixed	1
<u>2</u>	<u> </u>
7	_
Numerator: 2; denominator: 3	$9^{\frac{5}{2}}$
Numerator: 8; denominator: 9	3
Numerator: 12; denominator: 11	5
Numerator 1; denominator: 2	$\frac{1}{6}$
6 1;6	4
9 1;9	$7^{\frac{4}{2}}$
2 2;1	<u>3</u>
8 8;1	8
0 3;0	$\frac{2}{3}$
0 7;0	2

23. ³ / ₄	8 ⁹
24. ¹ / ₄	<u>7</u> 4
25. ¹ / ₈	$\frac{7}{4};1\frac{3}{4}$
26. $\frac{2}{8 \text{ or } 4}$	<u>13</u> <u>1</u>
27. 1 03 41	4; 3 4 $\frac{13}{8; 18}5$
43	<u>5</u> <u>1</u>
28. 103	2;2 2
29. $\frac{10}{21}$	$1\frac{3}{444} = \frac{4 \times 1 + 3}{444} = \frac{7}{444}$
30. $\frac{10}{63}$	$6\frac{1}{333} = \frac{6\times3+1}{333} = \frac{19}{19}$
31. Proper	$42 = \frac{4 \times 9 + 2}{2} = \frac{38}{2}$
32. Proper	999
33. Improper	$31 = 3 \times 5 + 1 = 16$ 555
34. Improper	3 <u>3 =3×7+3</u> 24
35. Improper	777
36. Improper	$82 = 8 \times 3 + 2 = 26$
37. Proper	71 – 7×4+1– 29
38. Proper	444
39. ⁵ / ₂	$103 = 10 \times 5 + 3 = 53$ 555
40. ⁴ ₃	$11 \frac{5 = 11 \times 12 + 5}{121212} = 137$
41. $\frac{12}{4}$	$12\underline{1} = \underline{12 \times 6 + 1} = \underline{73}$
42. ²⁷	000

$213 = 21 \times 8 + 888$	3 = 171	70. 18 43	$2\frac{7}{18}$
$151 = 15 \times 2 + 1$ 222	<u>l = 31</u>	7	10
$\frac{23 = 2 \times 8 + 3}{888}$ eighths	<u>_19</u>	71. 9 52 -45 7	5 <u>7</u> 9
$2\frac{3}{555} = \frac{2\times5+3}{555} = \frac{2\times5+3}{555}$	<u>=13</u>	72. 12 $\begin{array}{c} 5\\ 67\\ -60\\ 7\end{array}$	5 <u>7</u> 12
$\frac{13}{444} = \frac{1 \times 4 + 3}{444} = \frac{13}{444}$: <u>7</u>	73. 11) 133	12 <u>1</u>
$52 = \frac{5 \times 3 + 2}{333}$ 17 thirds	<u>=17</u>	$-11 \\ 23 \\ -22 \\ 1$	11
65. 8) $\begin{array}{r} 4 \\ 7 \\ \underline{32} \\ 5 \end{array}$	4 <u>5</u> 8	74. 10) 5 1 10) -5 1 1 10	5 <u>1</u> 10
66. 7) $-\frac{1}{3}$ $-\frac{7}{6}$	1 <u>6</u> 7	75. $\epsilon \sum_{\frac{-18}{5}}^{3}$	3 <u>5</u> 6
67. 5) $\frac{7}{-35}$	$7\frac{4}{5}$	76. 7) $-\frac{16}{5}$ $-\frac{-i}{45}$ -42	16 <u>3</u> 7
68. 4) $-\frac{4}{9}$ $-\frac{-16}{3}$	$4\frac{3}{4}$	$\frac{-\frac{1}{2}}{3}$ 77. 7) $\frac{44}{-28}$	$44\frac{1}{7}$
69. 10) $\begin{array}{r} 2 \\ 27 \\ -20 \\ 7 \end{array}$	$2\frac{7}{10}$	$ \frac{28}{29} -28 1 $	1

Chapter 2 Fractions and Mixed Numbers: Multiplication and Division

78. 4 921	$230^{\frac{1}{2}}$	$15\overline{)87}$ $\frac{12}{15}$
$ \frac{-8}{12} \\ \frac{-12}{1} \\ \frac{-0}{1} $	4	$\frac{-15}{37}$ $\frac{-30}{7}$
$\begin{array}{r} 1 \\ 1056 \\ \textbf{79. 5} \\ 5 \\ \underline{-5} \\ 2 \\ \underline{-0} \end{array}$	1056 <u>1</u> 5	$ \begin{array}{r} 34 \overline{995} \\ \underline{-68} \\ \underline{-68} \\ 15 \\ \underline{-0} \\ 15 \end{array} $
28 -25 31 -30 1		85. $\xrightarrow[]{1}{0}$ $\xrightarrow[]{1}{4}$
		86. $\xrightarrow{2}{0}$ $\xrightarrow{1}{1}$
80. 8) 7213 -72 1	$901\frac{5}{8}$	$87. \begin{array}{c} 1 \\ 3 \\ \bullet \\ 0 \end{array} \begin{array}{c} 1 \\ 1 \end{array}$
$\frac{-0}{13}$ $\frac{-8}{5}$		$88. \xrightarrow{\begin{array}{c} 1\\5\\0\end{array}} 1$
810 81. 11) 8913	810 <u>3</u>	$89. \xrightarrow[]{3}{3} \xrightarrow[]{3}{1} \xrightarrow[]{3}{1}$
$\frac{-88}{11}$ $\frac{-11}{3}$	11	90. $\underbrace{\begin{array}{c} \frac{5}{6} \\ 0 \end{array}}_{0}$
$\frac{-0}{3}$		91. $\begin{array}{c} 1\frac{1}{6} \\ 0 \\ 1 \end{array}$
82. 23 4257	185 <u>2</u>	92. $\xrightarrow[]{12}{0}$ $\xrightarrow[]{12}{5}$ $\xrightarrow[]{12}{5}$
-23 195 -184	23	$1\frac{2}{3}$
$\frac{104}{117}$ -115		93. 0 1 2
2		94. $-\frac{1\frac{1}{2}}{0}$

95. False	97. True
96. True	98. True

Section 2.2 Prime Numbers and Factorization

Section 2.2 Practice Exercises

(a) factor prime composite primec. Between 2 and 3

$$\frac{8}{12}; \frac{4}{12}; \frac{4}{12}; \frac{5}{2}; \frac{1}{2}$$

$$\frac{5}{4}; \frac{3}{4}$$

 $\frac{6}{5}$; improper

$$12^{\overline{7}}$$
; proper

 $\frac{6}{6}$; improper

9.
$$5 \frac{4}{5} \frac{43}{5}$$
 43

$$62 = \frac{6 \times 7 + 2}{777} = \frac{44}{777}$$

For example: 2 · 4 and 1 · 8
For example: 2 · 10 and 4 · 5
For example: 4 · 6 and 2 · 2 · 2
· 3
For example: 1 · 14 and 2 · 7

2

roduct36 4	2 30	5 81			
Factor	12	7	30	15	27
Factor	3	6	1	1	3
Sum	15	13	31	16	30
roduct36 4	2 45	2 24			
Factor	9	7	15	18	8
Factor	4	6	3	4	3
Difference	5	13	12	14	5

A whole number is divisible by 2 if it is an even number.

A whole number is divisible by 10 if its ones-place digit is 0.

A whole number is divisible by 3 if the sum of its digits is divisible by 3.

A whole number is divisible by 5 if its ones-place digit is 5 or 0.

45

No; 45 is not even.

Yes; 4 + 5 = 9 is divisible by 3. Yes; the ones-place digit is 5. No; the ones-place digit is not 0.

100

Yes; 100 is even. No; 1 + 0 + 0 = 1 is not divisible by 3. Yes; the ones-place digit is 0. Yes; the ones-place digit is 0.

Fractions and Mixed Numbers: Multiplication and Division Chapter 2

127	2 Tractions and writed runnoers, writing				
137	No: 137 is not even.	22 110			
	No: $1 + 3 + 7 = 11$ is not divisible by	22.110			
	3.	<u>-</u> 1			
	No; the ones-place digit is not 0 or 5.	<u>1</u> 1			
	No; the ones-place digit is not 0.				
241	No; 241 is not even.	0			
	No; $2 + 4 + 1 = 7$ is not divisible by 3.	Yes, 110 is di	visible by 22.		
	No; the ones-place digit is not 0 or 5.	Prime			
100	No; the ones-place digit is not 0.	Prime			
108	Yes; 108 is even.	33. Composite	2· 5=10		
	Yes; $1 + 0 + 8 = 9$ is divisible by 3.	34 . Composite	3. 7=21		
	No; the ones-place digit is not 0 or 5. No; the ones-place digit is not 0.	35 Composite	3. 17=51		
1040		36 Composite	3. 10-57		
	Yes; 1040 is even.	50. Composite	5 17-57		
	No; $1 + 0 + 4 + 0 = 5$ is not divisible	Prime			
	by 3. Yes: the ones-place digit is 0	Prime			
	Yes; the ones-place digit is 0.	Neither			
3140		Neither			
	Yes; 3140 is even. No; $3 + 1 + 4 + 0 = 8$ is not divisible	41. Composite	11 · 11=121		
	by 3. Yes: the ones-place digit is 0.	42. Composite	3 23=69		
	Yes; the ones-place digit is 0.	Prime			
2115		Prime			
	No; 2115 is not even. Yes: $2 + 1 + 1 + 5 = 9$ is divisible by	45. Composite	3· 13=39		
	3.	46. Composite	7· 7=49		
	Yes; the ones-place digit is 5. No; the ones-place digit is not 0.	There are two neither prime	whole numbers that are nor composite, 0 and 1.		
3 F		False; the squa	are of any prime number is		
2818	34	divisible by th	pat prime number		
	/	False Q is not	nrime		
	<u> </u>		princ.		
	$\frac{1}{4}$	False; 2 is not composite.			

2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37,
2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79

No, 9 is not a p	prime number.	<u>11</u>	
No, 8 is not a p	prime number.	64. 7) 77	3. 7. 11=231
Yes		3 231	
Yes		11	
7		65. 7 ⁾ 77	$2 \cdot 2 \cdot 2 \cdot 3 \cdot 11 = 2$
57. 5)35 2· 5· 7=70		2)154	/ 11-010
2)70		2)308	
$\frac{11}{}$	$2 - 2 - 5 - 11^2 \cdot 5 \cdot 11 =$) 2 616	
58. 5 ⁷ 55 3) $\overline{165}$	3.3.5.11 495	66. $7^{\overline{91}}$	$2 \cdot 2 \cdot 7 \cdot 13^2 \cdot 7 \cdot 13 = 364$
3/495		2)182	
13	2	2)364	
59. 5 65	$2 \cdot 2 \cdot 5 \cdot 13 \cdot 5 \cdot 13 = 2 = 2 = 260$	47 is prime	e.
$2\overline{)}\overline{260}$		41 is prime	2.
27260		1, 2, 3, 4, 0	5, 12
)	2	1, 2, 3, 6, 9	9, 18
60. 5 35	$5 \cdot 5 \cdot 7 = \cdot 7$ 5 = 175	1, 2, 4, 8,	16, 32
5)175		1, 5, 11, 5	5
7	2	1, 3, 9, 27,	, 81
) 61.749	$3 \cdot 7 \cdot 7 = = 147$ $3 \cdot 7$	1, 2, 3, 4, 5	5, 6, 10, 12, 15, 20, 30, 60
3)147			22
$\begin{array}{c} \underline{17} \\ 3 \\ 512 \\ \underline{3} \\ 512 \\ \underline{3} \\ 102 \\ \underline{3} \\ 102 \\ \underline{3} \\ 17 \\ \underline{3} \\ 102 \\ \underline{3} \\ 102 \\ \underline{3} \\ 102 \\ \underline{3} \\ 17 \\ \underline{3} \\ 102 \\ \underline{3} \\ 17 \\ \underline{3} \\ 17 \\ \underline{3} \\ 17 \\ \underline{3} \\ 17 \\ \underline{3} \\ 102 \\ \underline{3} \\ 102 \\ \underline{3} \\ 102 \\ \underline{3} \\ 102 \\ \underline{3} \\ 17 \\ \underline{3} \\ 17 \\ \underline{3} \\ 17 \\ \underline{3} \\ 102 \\ 102 \\ \underline{3} \\ 102 \\ 1$	=51 2)	₃) ₆₉₂ .	$3 \cdot 23 = 1382$

1, 2, 3, 4, 6, 8, 12, 16, 24, 48 1, 2, 3, 4, 6, 8, 9, 12, 18, 24, 36, 72 No; 30 is not divisible by 4. No; 46 is not divisible by 4. Yes; 16 is divisible by 4. Yes; 64 is divisible by 4. Yes; 32 is divisible by 8. Yes; 520 is divisible by 8.

No; 126 is not divisible by 8.	No; $1 + 5 + 8 + 7 = 21$ is not divisible by
No; 58 is not divisible by 8.	9.
Yes; $3 + 9 + 6 = 18$ is divisible by 9.	Yes; 522 is even and $5 + 2 + 2 = 9$ is divisible by 3.
Yes; $4 + 1 + 4 = 9$ is divisible by 9.	Yes; 546 is even and $5 + 4 + 6 = 15$ is divisible by 3.
No; $8 + 4 + 5 + 3 = 20$ is not divisible by	No; 5917 is not even.
9.	No; $6 + 3 + 9 + 4 = 22$ is not divisible by 3.

Section 2.3 Simplifying Fractions to Lowest Terms

Section 2.3 Pr	actice Exercises		
lowest (a) No Yes Yes No 29 3. 5 145 5. 29=145		5 8.315 $2)\overline{30}$ $2)\overline{60}$ $2)\overline{120}$	$2 \cdot 2 \cdot 2 \cdot 3 \cdot 3 \cdot 5 = 120$
$3) \frac{19}{572 \cdot 3 \cdot 19} = 2)\overline{114}$	114	9. $5\overline{)65}$ 3)195	3. 5. 13=195
5. 2^{23}_{46}	$2 \cdot 2 \cdot 23 = \frac{2}{2} \cdot \frac{23}{2} = 9$	$10.3 \xrightarrow{5}{15}$ $3 \xrightarrow{45}{}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
6. $3^{\overline{)}51}$ $3^{\overline{)}153}$	$3 \cdot 3 \cdot 17 \stackrel{2}{=} \cdot 17$ 3 = -153	$2 90$ $2)_{180}$	
7. 5)85	5· 17=85		

False; $5 \times 5 \neq 4 \times 4$

Two fractions are equivalent if they both

represent the same part of a whole.

17. 2×5 3×3	2	- <u>3</u>	
10≠9	3	5	
18. $1 \times 9 \ 4 \times 2$ $9 \neq 8$ $\frac{1}{4} \ -\frac{2}{9}$			
1×6 2×3 6 = 6			
$\frac{1}{2=6}\frac{3}{2}$			
$6 \times 8 \ 16 \times 3 \ 48 = 48 \ 16 \ = \ 8 \ \frac{6}{16} = \ 8 \ \frac{3}{2}$			
$12 \times 4 \ 16 \times 3$ $\frac{48 = 48}{12} = \frac{3}{2}$	1		

$8 \times 27 \ 9 \times 20$ $216 \neq 180$ $\frac{8}{9} \ -27 \frac{20}{27}$
$5 \times 18 \ 6 \times 12$ $90 \neq 72$ <u>5 12</u> 6 18
$25. \frac{12}{24} = \frac{\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}}{\frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{1}{2}}$
$26. \frac{15}{18} = \frac{\cancel{2} \cdot \cancel{5}}{\cancel{2} / \cancel{3} \cdot \cancel{3}} = \frac{5}{\cancel{3}}$
$27. \frac{6}{18} = \frac{2/3}{2/3} = \frac{3}{3}$
$28. \frac{21}{24} = \frac{\cancel{3} \cdot \cancel{7}}{\cancel{2} \cdot \cancel{2} \cdot \cancel{3}} = \frac{\cancel{3}}{\cancel{2} \cdot \cancel{2} \cdot \cancel{3}} = \cancel{8}$
$\frac{36}{2 \cdot 2} = \frac{27 \cdot 27 \cdot 3 \cdot 3}{55 \cdot 55 \cdot 5} = 20$
30. $\frac{49}{42} = \frac{7' \cdot 7}{2 \cdot 3 \cdot 7} = \frac{7}{6}$
$31. \frac{15}{12} = \frac{3 \cdot 5}{\frac{5}{2} \cdot 2 \cdot / 3} =$
$\begin{array}{r} \underline{30} \underline{=2 \cdot 3 \cdot 5} \\ \underline{=6} \\ 25 5 \neq 5 \\ 5 \end{array}$
$\begin{array}{r} \underline{20} \underline{-2 \cdot 2 \cdot 5} \\ \underline{-4} \\ 25 5 \\ 5 \\ 5 \end{array}$
4×15 5×12 60=60

$$\frac{14}{14} \frac{7}{14} \frac{7}{14} \frac{7}{14} \frac{8}{14} \frac{8}{14} \frac{8}{14} \frac{1}{14} \frac{1}{14}$$

$$\frac{24}{66} \stackrel{4}{-6} \stackrel{6}{-7} \stackrel{2}{-7} \stackrel{2}{-7}$$

$$8+2 \quad 10 \quad 2 \cdot 5 \quad 5$$

$$15+3=18= \quad 6 \cdot 3= \quad 3$$

$$15-3 \quad 12 \quad 6 \cdot 2 \quad 2$$

$$61. = \frac{3}{4}$$

$$160=16 \quad /2 \cdot 2 \cdot 2 \cdot 2$$

$$720 = 72= \quad 8 \cdot 9=9$$

$$800 \quad 80 \quad 8 \cdot 10 \quad 10$$

$$3000 = 30=2 \cdot 3 \cdot 5=5 \quad 1800$$

$$\frac{18/24}{3} \cdot 33 = \frac{2000}{15} = \frac{20}{2} \cdot \frac{2}{2} \cdot \frac{5}{5} = \frac{4}{1500} = \frac{20}{15} \cdot \frac{2}{2} \cdot \frac{2}{2} \cdot \frac{5}{5} = \frac{4}{1500} = \frac{2}{15} \cdot \frac{5}{5} = \frac{21}{15} = \frac{21}{22} \cdot \frac{21}{22} = \frac{21}{22} = \frac{21}{22} \cdot \frac{21}{22} = \frac{21}{22} = \frac{21}{22} \cdot \frac{2}{2} \cdot \frac{2}{5} \cdot \frac{5}{5} = \frac{10}{10} \cdot \frac{65}{5} = \frac{24}{5} \cdot \frac{5}{5} = \frac{10}{10} \cdot \frac{65}{5} = \frac{51}{10} \cdot \frac{5}{15} = \frac{51}{10} \cdot \frac{5}{15} = \frac{51}{10} \cdot \frac{5}{100} = \frac{51}{5} = \frac{3}{15} \cdot \frac{17}{15} = \frac{17}{30,000} = \frac{51}{300} = \frac{3}{2} \cdot \frac{100}{100} = \frac{98}{280} = \frac{4}{2} \cdot \frac{2}{2} \cdot \frac{7}{7} \cdot \frac{7}{7} = \frac{7}{20}$$

/

Section 2.3 Simplifying Fractions to Lowest Terms

69. Heads:
$$\frac{20}{5} = \frac{2 \cdot 2 \cdot 5}{7 \cdot 7} = \frac{48}{12}$$
Tails:
$$48 - 20 = 28$$

$$\frac{28}{28} = \frac{2 \cdot 2 \cdot 7}{7} = \frac{2}{7}$$

$$\frac{7}{48} = \frac{2 \cdot 2 \cdot 2 \cdot 2 \cdot 3}{12}$$
70 = $\frac{2 \cdot 5 \cdot 7}{2} = \frac{2}{105}$
105 3 · 5/7/3
71. (a) $6 = \frac{2 \cdot 3}{7} = \frac{2}{7}$
105 3 · 5/7/3
71. (a) $6 = \frac{2 \cdot 3}{7} = \frac{2}{10}$
26 2 · 13 13
(b) 26 - 6 = 20
20 = $\frac{2}{7} \cdot 2 \cdot 5 = \frac{10}{26}$
26 $\frac{2}{7} \cdot 13 = \frac{10}{23}$
72. (a) $\frac{12}{2} = \frac{2 \cdot 2 \cdot 5}{7 \cdot 7} = \frac{10}{23}$
88 2 · 2 · 2 · 11
(b) $\frac{36}{26} = \frac{2 \cdot 2 \cdot 3 \cdot 3}{2 \cdot 7} = \frac{2}{88} = \frac{2}{7} \cdot \frac{2}{72 \cdot 2} \cdot \frac{2}{77}$
Iared: $\frac{24}{28} = \frac{2}{72 \cdot 7} = \frac{6}{7}$
Jared sold the greater fractional part because $7 = 7 = \frac{2}{7}$
Lisa: $\frac{14}{7} = \frac{\sqrt{2} \cdot 7}{7} = \frac{7}{7}$

76. (a)
$$\frac{15}{2} = \frac{3 \cdot 5}{7} = \frac{5}{7}$$

27 $3 \cdot 3 \cdot 3 = 9$
(b) $\frac{16}{36} = \frac{2 \cdot 2 \cdot 2 \cdot 2}{2 \cdot 2 \cdot 3 \cdot 3} = \frac{4}{9}$
77. (a) $300,000,000$
(b) $36,000,000$
(c) $\frac{36/400/400}{300,000,000} = \frac{36}{300}$
 $\frac{2 \cdot 73/2}{2} = \frac{25^3}{7}$
 $= 2 \cdot 2 \cdot 73/5 \cdot 75$
(a) $300,000,000$
 $75,000,000$
 $\frac{300,600,600}{75,000,000} = \frac{300}{75,000,000}$
 $\frac{300,600,600}{75,000,000} = \frac{300}{75,000,000}$
 $\frac{300}{75,000,000} = \frac{300}{75,000,000} = \frac{300}{75,000,000}$
 $\frac{300,600,600}{75,000,000} = \frac{300}{75,000,000} = \frac{300}{75,000,000}$
 $\frac{300,600,600}{75,000,000} = \frac{300}{75,000,000} = \frac{300}{75,000,000}$
 $\frac{300,600,600}{75,000,000} = \frac{300}{75,000,000}$
For example, $8^6, -12^9, \frac{12}{16}$

For example, $8^{\frac{1}{2}}$, $12^{\frac{9}{2}}$, $12^{\frac{12}{16}}$ For example, $6^{\frac{2}{3}}$, $9^{\frac{3}{5}}$, $12^{\frac{12}{16}}$ For example, $9^{\frac{6}{5}}$, $6^{\frac{4}{5}}$, $\frac{2}{3}^{\frac{2}{3}}$ For example, $50^{\frac{40}{5}}$, $10^{\frac{8}{5}}$, $5^{\frac{4}{5}}$

62

 $16 \quad 2 \cdot \underbrace{2}_{8} 2 \cdot 2 \cdot 2$

Lisa has completed more of her

course because
$$\frac{7}{8} > 8^{\frac{5}{2}}$$
.

(a) Raymond:

$$= \frac{2 \cdot 2}{2 \cdot 2} \cdot \frac{2}{2 \cdot 3} / \frac{3 \cdot 5}{2 \cdot 10} / \frac{3 \cdot 5}{2 \cdot 2} \cdot \frac{2}{2 \cdot 2} \cdot$$

$$\frac{792}{891} = \frac{8}{9}$$

$$784 \frac{728}{784} = 14 \frac{13}{41}$$

$$\frac{779}{969} = 51$$

$$\frac{21}{21}$$

$$220^{462} = 10$$

Raymond read the greater fractional

Travis: $\frac{2 \cdot 2 \cdot 3 \cdot 3 \cdot 3 \cdot 5}{11} = \frac{9}{11}$

<u>540</u> / / / /

part because $\frac{10}{11} = 11^9$.

$$\frac{493}{510} = \frac{29}{30}$$

$$88. \frac{871}{469} = \frac{13}{7}$$

$$90. \frac{713}{437} = \frac{31}{19}$$

$$\frac{969}{646} = 2^{3}$$

Section 2.4 Multiplication of Fractions and Applications

Section 2.4 Practice Exercises	
(a) one-tenth $\frac{1}{2}bh$	
(a) $35^{\frac{2}{5}}$	9.
$\frac{33}{8}$	10.
Numerator: 10; denominator: 14 <u>10</u> $\underline{2} \cdot 5 \underline{5}$ 14 2 $\cdot 77$	
Numerator: 32; denominator: 36 = $\underline{2} \cdot \underline{2} \cdot 2 \cdot 2 \cdot 2 = \underline{8}$	$24 2 \cdot \overline{48}$ $2 \cdot \underline{1} 2 \cdot \underline{1} 2 \cdot \underline{1} = 2$
$2 \cdot 2 \cdot 3 \cdot 3$	35 3· 5 15
Numerator: 25; denominator: 15	13. $5 \cdot 8 = 5 \cdot 6 = 24 = 6$
$15\frac{25'}{5}, 5\overline{33}, 5$	4 4.1 - 4.
Numerator: 2100; denominator: 7000	14. $\frac{2}{5} \cdot 20 = \frac{2}{5} \cdot \frac{20}{1} = \frac{40}{5} = 8$
$\frac{2100}{7000} = \frac{21}{70} = \frac{3 \cdot 7}{2 \cdot 5 \cdot 7} = \frac{3}{10}$	15. $\frac{1}{2} \times \frac{3}{8} = \frac{1 \times 3}{2 \times 8} = \frac{3}{16}$
7.	16. $\frac{2}{3} \times \frac{1}{3} = \frac{2 \times 1}{3 \times 3} = \frac{2}{9}$
	17. $\frac{14}{9}$ $\frac{1}{9} = \frac{14}{9} \cdot \frac{1}{9} = \frac{14}{9}$
8.	<u>191.9</u> 9 · = =
	88 8 864

60

$$\begin{pmatrix} \underline{12} \\ \underline{2} \\ \underline{-12} \\ \underline{$$

<u>16</u> <u>25</u> **29.** $\frac{5}{6} \cdot \frac{3}{4} = \frac{5}{2 \cdot \sqrt{3}} \times \frac{\sqrt{3}}{4} = \frac{5}{8}$ **30.** $\frac{7}{12} \times \frac{18}{5} = \frac{7}{\cancel{5}} \times \frac{\cancel{2} \cdot \cancel{3} \cdot \cancel{3}}{\cancel{5}} = \frac{21}{10}$ $2 \cdot 2 \cdot \cancel{3} \quad \cancel{3}$ **31.** $\underline{21} \cdot \underline{25} / \underline{3} \cdot \underline{7/} \cdot \underline{5} \cdot$. $5 \quad 12 \quad 5 \quad 2 \cdot 2 \cdot 3$ $\underline{16} \cdot \underline{15} = \underline{16} \cdot \underline{3} \cdot \underline{5} = \underline{3}$ 25 32 5·52·<u>16</u>10 $\underline{24} \cdot \underline{5} = \underline{2} \cdot \underline{2} \cdot \underline{2} \cdot \underline{3} / \cdot \underline{5}$ _8 ____ 1533. 533// **34.** $\frac{49}{24} \cdot \frac{6}{7} = \frac{7 \cdot 7}{2} \cdot \frac{7}{2} \cdot \frac{7}{3} = \frac{7}{7}$

 $\frac{3 \times 8}{2 \cdot 7} \times \frac{8 \cdot 2 \cdot 7}{2 \cdot 7 \cdot 7} \times \frac{5 \cdot 5}{7 \cdot 7 \cdot 7}$ $44.\frac{49}{8} \times \frac{4}{5} \times \frac{20}{7} = \frac{7 \cdot 7}{2 \cdot 2 \cdot 2} \times \frac{2}{7} \times \frac{2}{5} \times \frac{2}{5} \times \frac{2}{7}$ 141 = 14<u>/</u> / // $5 \times 10 \times 7 = 5 \times 2 \cdot 5 \times 7 = 5$ 221523.753 $\frac{55}{9} \times \frac{18}{32} \times \frac{24}{11}$ 111 11 $\frac{15}{2}$ **47.** $7 \cdot 3 \cdot 5 \neq 7 \cdot 3 \neq 5 = 3$ 10 28 2 $2 \cdot 5 2 \cdot 2 \cdot 7 = 1$ 8

=

$$\frac{23}{4} \stackrel{1}{\underline{2}} \frac{23}{2} 2$$
80. $A = l \times w = 24 + 4 = 32$
ft $= 24 + 4 = 32$
 $A = (8)(4) + \frac{1}{2}(8)(4) = 32 + 4 + 4 = 32 + 16$
 48 yd^2
 1
 $A = (8)(3) + 2(8)(3) = 24 + 4 + 3 = 24 + 12$
 36 m^2
 $A = (6) + (6) \stackrel{(7)}{\underline{14}} \frac{12}{\underline{45}} \frac{2}{12}$
 $2 + 3 + 2 + 3 + 3 = 3$
 $\stackrel{(1)}{\underline{37}} = 3 + 2 = 9 \text{ cm}^2$
84. $A = 1(8) \stackrel{(9)}{2} + 1(8) \stackrel{(15)}{\underline{15}} = 4 + 2 + 4$
 15
 $2 + \frac{(4)}{2} + \frac{(4)}{4} + \frac{4}{4} = 9 + 15 = 24 \text{ m}^2$
 $1 + \frac{4}{2} + \frac{9}{4} + \frac{15}{4} = 2 + 15 = 24 \text{ m}^2$
 $1 + \frac{2}{12} = 10$
The amount left is 10 gal.
 $3 = \frac{3}{4} + \frac{11,000}{4} = \frac{2750}{4} = 8250$
 $1 + \frac{1}{2} = 8250$

The cost is \$8250. 1 1 1

77.
$$A = l \times w = 4$$
 · 3 4 cm
 $\neq 1$
78. $A = l \times w = \frac{8}{3} \cdot 3 = 7$ · 1 = 8 m

79. $A = l \times w = \overline{16} \cdot \overline{} = 256$ in.

13 15 195 2

4. 2 = 8 Trey ate $\frac{1}{8}$ of the pizza for breakfast.

88.
$$\frac{1}{4} \cdot \frac{1}{2} = \frac{1}{10}$$

 $\frac{1}{10}$ of the sample has O-negative blood.

7 7 49

<u>3</u> <u>3</u>

95. (a)
$$\begin{vmatrix} 1 \\ 1 \end{vmatrix}^2 = 1 \cdot 1 = 1$$

(6) 6 6 36

$$27 \cdot 31$$

$$1(1) = 1$$

$$2 \cdot (8) \cdot 16$$

$$1(T) \cdot T$$

$$8 \cdot (2) = 16$$
They are the same.
$$2(1) = 2 = 1$$

$$3 \cdot (4) \cdot 12 \cdot 6$$

$$1(2) \cdot 2 \cdot 1$$

$$| \cdot | = =$$

$$4 \cdot (3) \cdot 12 \cdot 6$$

They are the same.

Section 2.5 **Division of Fractions and Applications**

Section 2.5 Practice Exercises

1. reciprocals (c) Yes, $\frac{1}{6}$ **2.** $2^2 \cdot 3^3$ (**d**) No, $\frac{1}{0}$ is undefined. $\begin{array}{c} 9 \\ 3. \end{array} \xrightarrow{2} 18 \\ \times 5 = 5 \end{array}$ 8 **13.** 7 **14.** ⁶ -₅ 3 **4.** $\frac{24}{7} \cdot \frac{7}{8} = 3$ 1 1 **15.** $\frac{9}{10}$ **5.** 5 = 2<u>5</u> 16. 14 1 1 **17.** ¹/₄ $(7) 3 \stackrel{1}{\not\sim} 7 7$ $(6. 3 \cdot \stackrel{1}{\mid_{6}} 1 \stackrel{=}{\xrightarrow{6}} \frac{7}{2}$ 1 **18.** 9 7. 8 + $|_{\bar{I}}$ $|_{\bar{I}}$ $\frac{5}{24} = \frac{5}{3}$ 19. No reciprocal exists. 20. No reciprocal exists. **21.** ¹₃ **8.** $\begin{pmatrix} 2 \\ 7 \end{pmatrix} \begin{pmatrix} 7 \\ 2 \end{pmatrix} = \frac{14}{14} = 1$ **22.** $\frac{1}{5}$ **9.** $\begin{pmatrix} 9 \\ \cdot \end{pmatrix} \begin{pmatrix} \cdot \\ \cdot \\ \cdot \end{pmatrix} = \frac{45}{2} = 1$ し5 パープ 45 23. multiplying **10.** $1 \times 10 = 1 \cdot 10 = 10 = 1$ 24. multiplying 10 10 1 10 **25.** $\frac{2}{2} \div \frac{5}{5} = \frac{2}{2} \cdot \frac{12}{2} = \frac{2}{2} \cdot \frac{2 \cdot 2 \cdot 3}{2 \cdot 2 \cdot 3}$ **11.** $\stackrel{1}{\cdot} \times 3 = \stackrel{1}{\cdot} \stackrel{3}{\cdot} = \stackrel{3}{\cdot} = 1$ 15 12 15 3·5 5 3 1 3 3

							2	26.	11	÷.6	=	.11	. 5	= -	5 <u>5</u>
12. (a) Yes,	$\frac{1}{1} = 2$								3	5		3	6	18	3
	3						2	27.	_7	÷2	5	7	•	<u>_3</u>	<u>5</u>
(b) Yes,	5								13	5		13	2	2	6

Chapter 2 Fractions and Mixed Numbers: Multiplication and Division

$\frac{8}{7} \mid \frac{3}{10} = \frac{8}{7} \cdot \frac{10}{3} = \frac{80}{21}$
29. $\frac{14}{3} \mid \frac{6}{5} = \frac{7}{14} \cdot \frac{5}{9} \cdot \frac{35}{7} = \frac{35}{3}$
<u>11 3 11/4 22</u>
30. $2 \mid 4 = 2 : 3 = 1$
$\frac{15}{2} \frac{3}{2} = \frac{15}{2} \frac{15}{2} \frac{12}{2} \frac{12}{2} \frac{3}{2}$
1 9,9 9/21
$10 \square 2 = \frac{10'}{5} / 9 \square = \frac{5}{5} / 1$
$\frac{3}{4} \frac{3}{4} = \frac{3}{4} \cdot \frac{4}{3} \cdot \frac{12}{12} = 1$
$\begin{array}{ccc} \underline{6} & \underline{6} & \underline{30} \\ \underline{6} & \underline{5} \end{array}$
$5 \mid 5 = 5 \cdot 30 = 1$ $6^{=}$
$\frac{2}{2}$ $\frac{7}{3}$ $\frac{21}{3}$
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
<u>3 45 20</u>
$4 5 =1 \cdot 3=3$
37. $\frac{12}{4} = -\frac{1}{4} = \frac{3}{4}$
5 5 4 5

Section 2.5 Division of Fractions and Applications	Section 2.5	Division of Fractions and Applications
--	-------------	---

$$\frac{40}{25 3 \cdot 75} \cdot \frac{18}{5} \cdot \frac{3}{55} \cdot \frac{3}{55} \cdot \frac{3}{55} \cdot \frac{3}{55} \cdot \frac{48}{55} \cdot \frac{21}{15} = \frac{48}{15} \cdot \frac{21}{16} = \frac{48}{15} \cdot \frac{2}{16} = \frac{4}{15} \cdot \frac{3}{16} = \frac{2}{2}$$

$$64.5 \left| \frac{15}{4} \right|_{-1}^{-1} = \frac{4}{15} \cdot \frac{4}{15} = \frac{3}{15} = \frac{2}{15} = \frac{2}{15}$$

$\begin{bmatrix} 1 \\ 69_{\underline{5}} \\ \underline{5} \end{bmatrix} = \begin{bmatrix} \underline{6} \\ \underline{5} \end{bmatrix} = \begin{bmatrix} \underline{3} \\ \underline{7} \end{bmatrix} \cdot \begin{bmatrix} 5 \\ \underline{5} \end{bmatrix} = \begin{bmatrix} 1 \\ 7 \end{bmatrix} = \begin{bmatrix} 1 \\ \underline{7} \end{bmatrix}$	$\begin{pmatrix} - \\ - \end{pmatrix}^2 \qquad = \begin{pmatrix} 1 \\ - \end{pmatrix}^2 \qquad = \begin{pmatrix} 1 \\ - \end{pmatrix}^2$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	76. $\begin{vmatrix} 3 & 9 \\ 3 & 9 \end{vmatrix} + 8 = \begin{vmatrix} 3 & 1 \\ 3 & 9 \\ 1 & 2 \end{vmatrix} + 8 = \begin{vmatrix} 2 & 1 \\ 3 & 1 \\ 2 & 1 \end{vmatrix}$
$1 \qquad 2 \qquad y \qquad 5 \qquad 35 \qquad 1 \qquad 5 \qquad 16 \qquad 1 \qquad 2 \qquad 1 \qquad 1$	$=\frac{3}{3}, \frac{3}{3}; \frac{8}{3}; \frac{9}{2}, \frac{8}{3} = 18$
70. $\overline{8} \mid \overline{16} \cdot \overline{4} = 4 = 7 \cdot 4 = 7 \cdot 14$ $8 \underline{35} 4 = 7 \cdot 14$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
1 7 $\overline{2}/$	$15(2)^2$ 20 15 (2.2) 20
71 $\begin{vmatrix} 3 \\ 2 \end{vmatrix} \begin{vmatrix} 9 \\ -3 \end{vmatrix} \begin{vmatrix} 3 \\ 3 \end{vmatrix} \begin{vmatrix} 9 \\ -9 \end{vmatrix} \begin{vmatrix} 9 \\ -9 \end{vmatrix} \begin{vmatrix} 9 \\ -9 \end{vmatrix}$	$77. \frac{13}{16} \begin{pmatrix} 20 \\ 3 \end{pmatrix} + \frac{20}{21} \begin{pmatrix} 15 \\ -2 \end{pmatrix} \begin{pmatrix} 2 $
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$= \frac{15}{16} \cdot \frac{4}{9} \frac{20}{21} = \frac{3 \cdot \frac{7}{5}}{4} \cdot \frac{74}{3} \frac{20}{3} \frac{20}{21} \frac{20}{4} \cdot \frac{1}{3} \frac{20}{3} \frac{20}{3} \frac{20}{3} \frac{20}{3} \frac{1}{3} \frac{20}{3} \frac{1}{3} \frac{1}{3} $
$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	$\frac{12^{5}}{21} = \frac{20}{21} = 12^{5} \cdot 20^{21}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$= \frac{7}{5} \cdot \frac{3}{7} = \frac{7}{3 \cdot 4} \cdot 5 \cdot 16$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$(2)^{2}$ 12 $(2, 3)$ 13
$=$ $\frac{1}{2}$ $A = \frac{7}{2}$	78. $ = \cdot $
2 8/1 2	27 (4) 18 27 (4 4) 18
$ \begin{pmatrix} 2 & 8 \end{pmatrix}^2 \begin{pmatrix} 1 & 2 \end{pmatrix}^2 \begin{pmatrix} 2 & 3 \end{pmatrix}^2 \\ 3 & 3 & 3 \end{pmatrix} $ $ 73. \begin{vmatrix} 5 & - & & & & & & & & &$	$= \frac{8}{27} \cdot \frac{9}{16} \cdot \frac{13}{18} = \frac{78}{3} \cdot \frac{9}{9} \cdot \frac{13}{2} \cdot \frac{13}{18}$ $= \frac{1}{13} \cdot \frac{13}{12} \cdot \frac{13}{12} \cdot \frac{18}{7} \cdot \frac{13}{7} \cdot 1$
$\frac{9}{100}$	$79.\frac{9}{2}$ $\frac{1}{1} = \frac{9}{2} \cdot \frac{2}{8} = 18$
400	4 8 <i>A</i> 1 10
74. - = - = - = -70	<u>k</u> .

(12 3) (12 2) (8) 8 8

$$=\frac{25}{64}$$

80.
$$\frac{4}{3} + \frac{1}{6} = \frac{4}{3} + \frac{6}{1} = 8$$

81. $36 + \frac{2}{3} = \frac{36}{1} + \frac{3}{7} + 2 = 54$

Li wrapped 54 packages.

82. 60
$$|\frac{3}{4} = \frac{\frac{20}{60}}{1} \frac{4}{\frac{1}{1}} = 3 = 80$$

She can sell 80 parcels of land.

83.
$$\frac{3}{2} \div \frac{1}{16} = \frac{3}{2} \div \frac{1}{16} = 24$$
 cups of juice

86.
$$\frac{5}{4} = \frac{24}{1} \cdot \frac{5}{4} = 30$$

Yes, the books will take up only 30 in.

87. (a)
$$18 \div \frac{2}{3} = \frac{918}{17} + \frac{3}{2} = 27$$

27 commercials in 1 hr

27**×**24=648

648 commercials in 1 day

(a) 20
$$|\frac{1}{2} = \frac{20}{1} \cdot \frac{2}{1} = 40$$

40 commercials in 1 hr

40×24=960 960 commercials in 1 day

89. (a)
$$\frac{1}{10} \cdot 240,000 = \frac{1}{10} \cdot \frac{240,000}{1}$$

= $\frac{240,000}{10}$
= $24,000$
The down payment is \$24,000.

\$240,000 - \$24,000 = \$216,000 He will have to finance \$216,000.

90. (a)
$$\frac{1}{12} \cdot 19,560 = \frac{1}{12} \cdot \frac{19,560}{1}$$

 $\frac{19,560}{12}$
 1630
The down payment is \$1630.

815

(b)
$$\frac{1}{2} \cdot 1630 = \underbrace{1}_{2} \cdot \underbrace{16}_{1} = 815\$1630 =$$

\$815 = \$815 Althea will have to pay \$815.

\$19,560 - \$1630 = \$17,930 She will have to finance \$17,930.

3

91. (a)
$$\frac{1}{3} \cdot \frac{9/4}{4} \stackrel{3}{=} 4$$

3

She plans to sell 4 acre.

2

She keeps 3 of the land.

92. (a)
$$\frac{1}{6}$$
 (24 +18) = $\frac{1}{6}$ · (42) = $\frac{1}{6}$ · (42) = 7

Josh has read 7 pages.

(24+18)-7=42-7=35 He still must read 35 pages.

$$\frac{2}{3} \cdot 24,000 = 2 \underbrace{24,0}_{1}^{8000} = 16,000$$

93.
$${}^{7}_{4\div} = \frac{4}{7} = \frac{1}{1} = 14$$

Ricardo's mother will pay \$16,000.

\$24,000 - \$16,000 = \$8000 Ricardo will have to pay \$8000. She can prepare 14 samples.

94.
$$\frac{7}{1} = \frac{1}{2} \cdot \frac{2}{1} = 1$$

14
8 16 8 1
Tony must make 14 strikes.
The length is 12 ft, because
 $30 = \frac{5}{2} \cdot \frac{302}{2} \cdot \frac{5}{6} \cdot \frac{62}{2} \cdot \frac{12}{12} = 12$
2 1 5 1 $\frac{7}{5}$ 1
4
The width is 7 m, because

The product will be less than 47 because $\underline{3}$

5 is less than one.

The product will be less than 81 because $\frac{4}{7}$ is less than one.

The quotient will be more than 25 because $\frac{2}{3}$ is between zero and one.

The quotient will be more than 41 because $\overline{11}^2$ is between zero and one.

.

Problem Recognition Exercises: Multiplication and Division of Fractions

1. (a) $\begin{array}{c} \frac{8}{6} & \frac{6}{16} & \frac{8}{16} \\ \frac{16}{2} & \cdot \end{array} =$	(c) $12 \mid \underline{9} = \underline{12} \cdot \underline{8} = \underline{3 \cdot 4} \cdot \underline{8}$ = $\underline{32}$
3 5 3 5 5	8 1 9 1 3 3 3
$\frac{\underline{0}}{\underline{-16}} \frac{\underline{0}}{\underline{-16}} \frac{\underline{-16}}{\underline{-16}} \underline{-16}} \underline{-16} \frac{\underline{-16}}{\underline{-16}} \frac{\underline{-16}}{\underline{-16}} \underline{-16}} \underline{-16} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$
53535	(d) $ 12 = \cdot \cdot \cdot $ 8 8 12 $8/\overline{3} \cdot 4$ 32
(c) $\overset{8}{=} \overset{6}{=} \overset{8}{=} \cdots \overset{5}{=} \frac{2 \cdot 4}{7} \cdot \frac{5}{7}$	(a) $3 = \frac{15}{} 3 = \frac{3.5}{} 3 = \frac{9}{}$
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	/
$ \underbrace{ \begin{pmatrix} \mathbf{d} \\ \underline{\mathbf{g}} \\ \underline$	$\underline{3} \underline{3} \underline{15} 3 \underline{3} \underline{5} \underline{9}$
$5 3 5 8 5 2 \cdot 4$ 20	$\cdot 15= \cdot = = = = 9$
1	551511 <u>3</u> <u>15 5</u> 3 5 5 <u>25</u>

2. (a)
$$10 \cdot 12 = 0 /3 \cdot 4 =$$

 $3 \cdot 7 \cdot 7 \cdot 7$
 $12 \cdot 10 = 43 \cdot 4 \cdot 10$
 $= 40 /7$
73737
(c) $10 \cdot 12 = 10 \cdot -\frac{2}{2} \cdot 7 = 35$
 $3 \cdot 7 \cdot 3 \cdot 12 \cdot 3 \cdot 2 \cdot 6$
(d) $12 \cdot 10 = 12 \cdot 3 = 22 \cdot 6 \cdot 3$
 $= 18$
7 $3 \cdot 7 \cdot 10 \cdot 7 \cdot 2 \cdot 5$
 $3 \cdot (a) = 12 \cdot 9 = 12 \cdot 9 = 3 \cdot 4 \cdot 9$
 $= 27$
(b) $9 \cdot 12 = 9 \cdot 12 = 9 \cdot 7 = 9 \cdot 7 + 12 = 9$
 $8 \cdot 1 \cdot 8 \cdot 1 = 2 \cdot 4$
(c) $9 \cdot 12 = 9 \cdot 12 = 9 \cdot 7 + 12 = 9$

$$15| = \cdot = \cdot \frac{7}{25} = 25 = 513131$$

$$= (d) \quad 3|15 = 3 \cdot 1 = 3 \cdot 1 = 1$$

$$5 \quad 5 \quad 15 \quad 5 \quad 3 \cdot 5 \quad 25$$

$$5. (a) \quad \frac{5}{6} \cdot \frac{5}{6} = \frac{25}{36} = \frac{7}{5}$$

$$5 \quad (a) \quad \frac{5}{6} \cdot \frac{5}{6} = \frac{25}{36} = \frac{7}{5}$$

$$5 \quad (b) \quad 5 = 6 \cdot 5 \quad 1 = 1$$

$$5 \quad 6 \quad 6 = 36$$

6. (a)
$$\frac{9}{8} \cdot 0 = 0$$

(b) $\frac{9}{10} \cdot |6| \frac{1}{4} = \frac{9}{10} \cdot \frac{1}{6} \cdot \frac{4}{4}$
 $= \frac{3}{2} \cdot \frac{3}{7} \cdot \frac{7}{2} \cdot \frac{2}{2} \cdot \frac{3}{7} \cdot \frac{1}{2} \cdot \frac{2}{2} \cdot \frac{3}{7} \cdot \frac{1}{2} \cdot \frac{2}{2} \cdot \frac{3}{7} \cdot \frac{1}{2} \cdot \frac{2}{2} \cdot \frac{3}{7} \cdot \frac{1}{7} \cdot \frac{2}{2} \cdot \frac{2}{7} \cdot \frac{3}{7} \cdot \frac{1}{7} \cdot \frac{2}{2} \cdot \frac{2}{7} \cdot \frac{3}{7} \cdot \frac{1}{7} \cdot \frac{2}{2} \cdot \frac{2}{7} \cdot \frac{3}{7} \cdot \frac{1}{7} \cdot \frac{2}{7} \cdot \frac{2}{7} \cdot \frac{3}{7} \cdot \frac{1}{7} \cdot \frac{2}{7} \cdot \frac{2}{7} \cdot \frac{3}{7} \cdot \frac{1}{7} \cdot \frac{1}{$

12 29329223.32 12 (c) $\underline{1} | \underline{7} \cdot \underline{2} = \underline{1} \cdot \underline{9} \cdot \underline{2} = \underline{4} \cdot \underline{3/3}$. 2 9 3 2 7 3 2 7 3 7 $\underline{1} \quad \underline{7} \quad \underline{2} \quad \underline{1} \quad \underline{9} \quad \underline{3} \quad \underline{27}$ $2 \mid 9 \mid 3 = 7 \cdot 2 = 28$ 9. (a) $\frac{9}{10} \cdot 6 \cdot \frac{1}{10} \cdot \frac{9}{10} \cdot \frac{6}{10} \cdot \frac{1}{4} \cdot \frac{1}{10} = \frac{9}{10} \cdot \frac{2 \cdot 3}{10} \cdot \frac{1}{10} = \frac{27}{10} \cdot \frac{1}{10} \cdot \frac{1}{10} = \frac{1}{10} \cdot \frac{1}{10} \cdot \frac{1}{10} \cdot \frac{1}{10} = \frac{1}{10} \cdot \frac{1}{10} \cdot \frac{1}{10} \cdot \frac{1}{10} \cdot \frac{1}{10} = \frac{1}{10} \cdot \frac{1}{$ **(a**) $10 \quad 1 \quad 2 \cdot 2 \quad 20$ 9 <u>1</u> 9 <u>6</u> <u>4</u> $\begin{array}{ccc} 10 & 4 = 10 \cdot 1 \\ \cdot 6 & \cdot 1 \end{array}$ $=\frac{\frac{9}{108}}{\frac{2' \cdot 3}{5} \cdot \frac{4}{1}} =$

12. (a)
$$6 |10 = \underline{6} \cdot 1 = \underline{2 \cdot 3} \cdot \underline{1} = \underline{3}$$

 $1 10 \quad 1 \quad \cancel{2} \cdot 5 \quad 5$
(b) $10 |6 = \underline{10} \cdot \underline{1} \quad \cancel{2} \cdot 5 \cdot \underline{1} = 5$

$$1 \ 6 \quad 1 \quad 2 \cdot 3 \quad 3$$

$$6 \cdot 10 = 60$$

$$10 \cdot 6 = 60$$

$$1 | \frac{1}{4} = 8 \cdot 4 = 32$$

$$\frac{1}{4} = \frac{8}{4} \cdot 4 = 32$$

6.

8.
$$4=2$$

 $4=$
 $8 | 4=2$

14. (a)
$$\frac{1}{7} \begin{vmatrix} 2 = 1 & 1 \\ 7 & 7 & 2 \\ 14 \end{vmatrix}$$

(b) $\frac{1}{7} \cdot 2 = \frac{1}{7} \cdot \frac{2}{7} = \frac{2}{7}$

(c)
$$\frac{1}{7} \cdot \frac{1}{2} = \frac{1}{14}$$

(d) $7 \div \frac{1}{2} = \frac{1}{7} \cdot \frac{1}{2} = \frac{1}{7} \cdot \frac{2}{7} \cdot \frac{1}{7} = \frac{1}{7} \cdot \frac{1}{7} \cdot \frac{1}{7} \cdot \frac{1}{7} = \frac{1}{7} \cdot \frac{1}{7} \cdot$

Section 2.6 Multiplication and Division of Mixed Numbers
4.
$$\frac{20}{9} | \frac{10}{2} = \frac{20}{27} \cdot \frac{7}{10} = \frac{2}{9} \cdot \frac{7}{3} = \frac{2}{9} \cdot \frac{7}{3} = \frac{3}{3} \cdot \frac{3}{3} = \frac{3}{3} \cdot \frac{3}{3} \cdot \frac{3}{1} \cdot \frac{3}{7} = \frac{42}{11} \cdot \frac{2}{7} = \frac{12}{11} \cdot \frac{3}{7} = \frac{3}{11} \cdot \frac{3}$$

- **8.** 1. Multiply the whole number by the denominator.
 - 2. Add the result to the numerator.
 - 3. Write the result from step 2 over the denominator.

9.
$$3\frac{2}{5} = \frac{3 \times 5 + 2}{5} = \frac{17}{5}$$

 $2\frac{7}{10\overline{1010}} = \frac{2 \times 10 + 7}{10\overline{1010}} = \frac{27}{10\overline{1010}}$

$$41 = \frac{4 \times 8 + 1}{888} = \frac{33}{3}$$

$$3 \cdot = 18$$

$$1 \cdot 1 \cdot 3$$

$$5$$

$$25 \cdot |(7 \cdot 1)| \cdot 10 = 29 \cdot = 145$$

$$(4) \cdot 4 \cdot 1 \cdot 2$$

 $2 \overline{)}^{145} = 72^{\frac{1}{2}} 2$ **35.** $5\underline{8} \div 1 \underline{1} = \underline{53} \div \underline{3} = \underline{53} - \underline{3} = \underline{53} = 4 \underline{5}$ 9 39 3 94 12 12 3 $\frac{-14}{5}$ <u>- 4</u> 1 1 **36.** $12\frac{4}{2} \mid 2\frac{3}{2} = \frac{64}{64} \mid \frac{13}{2} = \frac{64}{2} = \frac{5}{2} = \frac{64}{2} = 4\frac{12}{2}$ 5 5 55 5 7 13 13 (3) **3**/1 **37.** $2 \frac{1}{2} \div 1 \frac{1}{1} = \frac{5}{2} \div \frac{17}{2} = \frac{5}{2} \cdot \frac{16}{2} = \frac{40}{2} = 2 \frac{6}{2}$ 2 16 2 16 2 17 17 17 5/48 $\cdot 0=0$ 2 **38.** $7\frac{3}{2} \div 1\frac{7}{2} = \frac{38}{2} \div \frac{19}{2} = \frac{38}{38} \cdot \frac{12}{12} = \frac{24}{24} = 4\frac{4}{4}$ 1 5 12 5 12 5 195 5 1 0.610 = 0**29.** $(31)(21) = 7 \cdot 15 = 15 = 71$ 1 **39.** $4_2 \cdot \begin{vmatrix} 2 & 1 & 9 \\ 2 & 4 & -\frac{2}{2} \end{vmatrix} \begin{vmatrix} 9 & 4 \\ 4 & -\frac{2}{2} \end{vmatrix} \begin{vmatrix} 9 & 4 \\ 4 & -\frac{2}{2} \end{vmatrix} = 2$ $\frac{3 5 1}{7}$ $30. \left(\begin{array}{c} 1 \\ 1 \\ \underline{30} \end{array} \right) \left(\begin{array}{c} 1 \\ \underline{30} \end{array} \right) = 13 \begin{array}{c} 1 \\ \underline{1} \\ \underline{30} \end{array}$ **40.** $5 \cdot 5 \div 2^{1} = 35 \div 7 = 35$ = = 2 2 $(\underline{2})(\underline{2})(\underline{4}) \underline{27} \underline{2} \xrightarrow{1} \underline{4} \underline{54} \underline{4}$ **31.** $|5_5||_9||1_5| = 5 \cdot 9 = 225$ **41.** 0 $|6^{-7} = 0$ し 八 八 ノ 5 25 12 **42.** 0 | 1 $\frac{9}{1} = 0$ $32. \left(6\frac{1}{8} \right) \left(2\frac{3}{4} \right) \left(\frac{8}{7} \right) = \frac{49}{8} \cdot \frac{11}{4} \frac{7}{8} = \frac{77}{4} = 4$ **43.** $2\frac{5}{6} \mid \frac{1}{6} = \frac{17}{6} \mid \frac{1}{66} = \frac{17}{66} \cdot \frac{1}{7} = 17$ 7 <u>3</u> <u>17</u> <u>11</u> <u>17</u> <u>2</u> <u>4</u> <u>34</u>

$$110 \stackrel{.}{=} 2 4 = 10 \stackrel{.}{=} 4 = 10 \stackrel{.}{=} 11 = 55$$

$$5$$

$$17 2$$

$$13 51 3 51 4 34 4$$

$$34. 510 \stackrel{.}{=} 4 = 10 \stackrel{.}{=} 4 = 10 \stackrel{.}{=} 3 5 = 65$$

$$/_{5} 1$$

1 44. $6 \frac{1}{2} \div \frac{1}{2} \cdot \frac{13}{2} \div \frac{1}{2} = \frac{13}{2} \cdot \frac{2}{2} = 13$ 2 2 2 2 22 / 1 1 2

45.
$$1\frac{1}{7} | \frac{2}{7} = \frac{4}{3} | \frac{2}{7} = \frac{4}{3} \cdot \frac{7}{7} = \frac{14}{3} = 4\frac{2}{3}$$

Section 2.6 Multiplication and Division of Mixed Numbers

46.
$$2\frac{1}{7} \div 1\frac{5}{3} = \frac{15}{7} \div 13^5 = \frac{3}{15}^3 7 \div 13^5 7 \div 13^5 7 \div 13^5 7 = 57^4$$

49.
$$4^{3} \cdot 8 = \frac{19}{8} \cdot \frac{8}{4} = \frac{38}{4} \cdot \frac{19}{1}$$

Tabitha earned \$38.

$$2^{\frac{2}{2}} \cdot \underbrace{10,500}_{331} = \underbrace{\frac{10,500}{28,000}}_{1} = \underbrace{\frac{10,500}{28,000}}_{1} = \underbrace{10,500}_{1} = \underbrace{10,5$$

The land will cost Kurt \$28,000.

$$5 \\ 7 \underline{257} \underline{25} \underline{1285} \underline{1} \\ \underline{2510} \underline{\cdot} \underline{25} \underline{10} \cdot \underline{-1} 2 = 642 2 \\ \underline{-1} 2 = 642 \\ \underline{-1} 2$$

² Average Americans consume 642 $\frac{1}{2}$ lb.

$$12 \div \frac{3}{4} = \frac{12}{12} \div \frac{4}{3} \cdot \frac{16}{1} = 16$$

4

Kayla will have 16 doses.

$$\underline{3}$$
 (a) $1 \quad 4 \div \underline{1} \quad \underline{7} \quad \underline{1}$

1

1

$$1^{3}_{4 \div 3} = \frac{7}{4} \div 1^{3} = \frac{7}{4} \div \frac{1}{-3} = \frac{7}{12}$$

Each child will inherit \$12 million.

(a) Lucy:
$$35\frac{1}{2} \times 14 = \frac{71}{2} \frac{14}{1} = 497$$

7

Ricky:
$$42\frac{1}{2} \times 10 = \frac{85}{2}$$
 $\frac{10}{1} = 425$

- 1 497 - 425 = 72 Lucy earned \$72 more than Ricky.
- **(b)** 497 + 425 = 922

Together they earned \$922.

56.
$$28 \div 1\frac{17}{24} = \frac{28}{1} \div 24 = \frac{28}{1}$$

$$\frac{24}{41} = \frac{672}{41} = 16\frac{16}{41}$$

<u>16</u>

The roll is 16 41 ft long.

57.
$$2^{\frac{1}{5} \div 1} 10^{\frac{1}{2}} = \frac{11}{5} \div 10^{\frac{11}{2}} = \frac{11}{5} \div \frac{10}{1} = 2$$

 $3^{\frac{3}{5}} \frac{5}{15} \frac{515}{16} \frac{11}{6} \frac{55}{8} \frac{7}{8}$
 $4 \cdot 1 6 = 4 \cdot = 2$
 $4 = 4 \div 4 = 2$

$$\frac{17}{1} \cdot \frac{4}{4} = \frac{17}{1} = 8 \text{ weeks old}$$

 $\frac{1}{2} \quad \underbrace{8}_{2} \quad \underbrace{7}_{2} \quad \underbrace{8}_{3} \quad \underbrace{24}_{3} \quad \underbrace{3}_{24}_{3}$ **60.** $8 \div 23 = 1 \div 3 = 1 \cdot 7 \quad 7 = 37$ = $3 \cdot 2_{10} = \underbrace{\cancel{4}}_{3} \quad \underbrace{9}_{9} = \underbrace{5}_{5} = 15$ $2 \quad 7 \quad 2 \quad \underbrace{27}_{9} \quad \underbrace{9}_{4}$

$$\begin{array}{c} 4 & 1 & \frac{1}{4} & \frac{4}{4} & 41 & 41 & 5 \\ g2.3 + 5 & = 3 & \frac{1}{8} & = 6 & = 66 \\ & & 2 \\ & & & 2 \\ 412^{\frac{1}{-}, 0} & = \\ & & & 2 \\ 412^{\frac{1}{-}, 0} & = \\ & & & & 2 \\ \hline 1 & 16 \neq 6 \\ 64.5 & 3^{+}, 6^{-}_{1, 1} & = 32 \\ & & & & & & \\ \hline 1 & 16 \neq 6 \\ 64.5 & 3^{+}, 6^{-}_{1, 1} & = 32 \\ & & & & & & \\ \hline 7 & & & & & \\ \hline 1 & 16 \neq 6 \\ 64.5 & 3^{+}, 6^{-}_{1, 1} & = 32 \\ & & & & & \\ \hline 7 & & & & & \\ \hline 7 & & & & & \\ \hline 8 & \frac{1}{2} & \frac{2}{2} & \frac{2}{17} & \frac{34}{2} \\ 7 & & & & & \\ \hline 7 & & \\ 7 & & \\ \hline 7 & & \\ 7 & & \\ \hline 7 & & \\ 7 & & \\ \hline 7 & & \\$$

78. 64
$$2 \div 21$$
 $2 = 2 \div 2 = 2 \div 2 = 2 \div 43 = 3$

It takes 3 gallons of gas for Sara to get to and from work. 3×\$5=\$15 It costs Sara \$15 each day.

$$\frac{2}{12} \qquad \frac{1}{= 318} \frac{1}{= 318}$$

$$\frac{2}{3} \qquad \frac{1}{= 318} \frac{1}{= 318} \frac{1}{= 318}$$

$$38\frac{1}{3} | 12\frac{1}{2} = 315^{1}$$

81.
$$56 \stackrel{f}{2} \div 31 = 1718$$
84. $1061 \div 415 = 2404$

 6
 6
 19

 82. $251 \div 181 = 4661$
85. $111 \div 413 = 4801$

 5
 2
 5

 83. $327 \div 121 = 299$
86. $98 \cdot 281 = 2805$
 12
 6
 146

Chapter 2 Review Exercises

Section 2.1 **11.** 5_{-45}^{5} 52 $\frac{1}{2}$ $\frac{23}{21} = T_{21}^2$ $7^{\frac{4}{7}}$ (a) $\frac{5}{3}$ Improper **16.** $7 \overline{\smash{\big)}_{\underline{-7}}^{941}}$ $134 \frac{3}{7}$ (a) $\frac{1}{6}$ Proper $\frac{-21}{31}$ 7 15 <u>-2</u>8 3 $\frac{23}{8}$ or $2\frac{7}{8}$ **17.** 26) $\begin{array}{r} 60\\ 1582\\ \underline{-156}\\ 22 \end{array}$ 26 $\frac{7}{6^{\text{ or }1}}$ 13 $\frac{-0}{22}$ $6\frac{1}{77} = \frac{6 \times 7 + 1}{77} = \frac{43}{7}$ Section 2.2 $112 = \frac{11 \times 5 + 2}{55} \qquad \frac{57}{5}$ 21, 51, 1200 1 55, 140, 260, 1200 <u>1 1 17 1</u> $4 \ 4 \div 4 = 4 \div 4 = \frac{17}{4} \div 4 = \frac{17}{4} \div 4 = 17$ 58, 124, 140, 260, 1200

Prime

Composite $44 = 4 \times 11$	15×14 21×10
Neither	210 = 210 15 10
Neither	$\frac{1}{21} = \frac{1}{14}$
$2) \frac{2}{4}$	5 = 5 = 1 $20 = 4 \cdot 5/4$
$\frac{2}{4}$	<u>14_2·7_2</u>
$(2)^{-1}_{16}$	49 7·/7 7
$2)\overline{32}$ 2) $\overline{64}$	$\frac{24}{16} = \frac{3 \cdot 8}{2} = \frac{3}{8}$
$\begin{array}{c} 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2^{6} = 64 \\ \cdot 2 = 2 \end{array} = 64$	$\frac{63}{27} = 9 \cdot 7 = \frac{7}{7}$ 27 9 \scrimt{3} 3
$5)\frac{11}{55}$	$\frac{17}{17} = 1$
3/165 2)330	<u>42</u> _2.21 ₹
2· 3· 5· 11=330	21 21
$3)9^{\frac{3}{9}}$	$\frac{120}{150} = \frac{3}{15} \cdot \frac{4}{15} = \frac{4}{15}$
5)45	$\frac{1400}{200} = \frac{14}{20} = \frac{2}{7} = \frac{7}{200} = \frac{7}{20} = \frac{7}{200} = \frac{7}{20} = \frac{7}{10} = 7$
5)225	$\underline{42} = 3 \cdot \underline{14} = \underline{14}$
2/450	45 3/ 15 15 45-42=3
$2^{-}900$ $2 \cdot 2 \cdot 3 \cdot 3 \cdot 5 \cdot 5^{-} = \frac{2}{5} \cdot \frac{2}{5} = \frac{2}{900} = \frac{2}{5}$	$\frac{-3}{7} = \frac{1}{7} = \frac{1}{1}$
1, 2, 3, 4, 6, 8, 12, 16, 24, 48	45 3 · 15 15
1, 2, 4, 5, 8, 10, 16, 20, 40, 80	1
Section 2.3	41. (a) $\frac{6}{10} = \frac{\cancel{2} \cdot 3}{\cancel{2} \cdot 5} = \frac{3}{5}$

Chapter 2 Fractions and Mixed Numbers: Multiplication and Division

$3 \times 9 \quad 6 \times 5$ $18 \neq 30$ $6^{3} \neq 9^{5}$

41. (a) $\frac{6}{10} = \frac{\cancel{2} \cdot 3}{\cancel{2} \cdot 5} = \frac{3}{5}$ $6 = 2 - \cancel{2} = 2$ 15 = 3/5 = 5

Section 2.4

42.
$$5^3 \times 7^2 = 35^6$$

59.
$$\frac{1}{12}$$
 · 3600 = ¹ ·
¹
⁶²⁵
¹
¹
³
⁽³⁾
²)³
⁽¹⁾
¹
¹
¹
¹
¹
^{50.}
[|] $\frac{1}{20}$ · $\frac{1}{3}$ | = [|] $\frac{1}{-1}$ | = ¹ 10 · 10 · 10 = 1000
¹
⁽⁾ $\frac{1}{20}$ · $\frac{1}{3}$ | = [|] $\frac{1}{-10}$ | = ¹ 10 · 10 · 10 = 1000
¹
⁽⁾ $\frac{1}{20}$ · $\frac{1}{3}$ | = ¹ $\frac{1}{100}$ = ¹ 1
¹ $\frac{1}{20}$ · $\frac{1}{3}$ | $\frac{1000}{10}$ | = ¹ $\frac{1000}{10}$ = ¹ 1
⁽¹⁰⁾ (17) 1000 17 17
¹ $\frac{1}{10}$
 $A = 2 bh$

$$A = lw$$

There are 300 Asian American students.

$$\frac{1}{2} \cdot \frac{1}{6} \cdot \frac{3600}{6} \cdot \frac{1}{2} \cdot \frac{1}{2} \cdot \frac{3600}{2} \cdot \frac{1}{2} = 1 \frac{3600}{12} = 12$$

300 There are 300 Hispanic female students.

There are 750 Caucasian male students.

Chapter 2 Fractions and Mixed Numbers: Multiplication and Division

82.
$$24 \mid \frac{2}{3} = \frac{24}{1} \cdot \frac{3}{2} = 36$$

36 bags of candy

83.
$$\frac{4}{5} \cdot 40 = \frac{4}{5} \cdot \frac{40}{1} = 32 \text{ hr}$$

 $32 \times \$18 = \576
Amelia earned \$576.

84. $\frac{4}{3} \cdot \frac{4}{3} = \frac{16}{9}$

The area is $3 \text{ or } 213 \quad 3 \text{ ft}$.

85. 9
$$|\frac{3}{8} = \frac{9}{1} \cdot \frac{8}{3} = 24$$

Yes, he will have 24 pieces, which is more than enough for his class.

Section 2.6

Chapter 2 **Review Exercises** $5 \\ 4513 \cdot 0 = 0$ 5 <u>7</u> <u>69</u> <u>23</u> <u>69</u> ¹ <u>8</u> <u>3</u> <u>1</u> $41\underline{6} \div 2 = 8 = 16 \div 8 = \underline{16} \cdot = 2 = 12$ **92.** $3 \frac{5}{11} \div 3^{\frac{4}{5}} = \frac{38}{11} \div \frac{19}{5} = \frac{38}{11} = \frac{5}{11} = \frac{10}{11}$ **93.** 7 | 1 <u>5</u> = <u>7</u> | <u>14</u> = $\cancel{1}^{1} \cdot \cancel{9} = \cancel{9} = 4 \cancel{1}$ 9 1 9 1 14 2 2 4 **95.** $10^{\frac{1}{2}} \div 17 = \frac{51}{5} \div \frac{17}{5} = \frac{51}{5} \div \frac{1}{5} = \frac{3}{5}$ 5 0 312-=0 $\frac{1}{2}2:1 + \frac{5}{2}2:4 = 8$ $=3\frac{1}{8}$ It will take $3\frac{1}{8}$ gal. $\underline{1} \quad \underline{1} \quad \underline{25} \quad \underline{5} \quad \underline{5} \quad \underline{25} \quad \underline{74}$ **98.** 12 2 ÷1 4 = 2 ÷ 4 = 2 · =10 5 / / 1 1

5 There will be 10 pieces. 45 = 45 =221

$$(8)$$
 $1 \underset{2}{\cancel{8}} 2 2$

Chapter 2 Test

(a) $\frac{7}{3}$ Improper