Solution Manual for Basic College Mathematics 3rd Edition Miller Neill Hyde 00733844109780073384412
 Full link download Solution Manual:
 https://testbankpack.com/p/solution-manual-for-basic-college-mathematics-3rd-edition-miller-neill-hyde-0073384410-9780073384412/ Test bank:
 https://testbankpack.com/p/test-bank-for-basic-college-mathematics-3rd-edition-miller-neill-hyde-0073384410-9780073384412/

Contents

Chapter 1 Whole Numbers

1.1 Introduction to Whole Numbers 1
1.2 Addition of Whole Numbers and Perimeter 3
1.3 Subtraction of Whole Numbers 9
1.4 Rounding and Estimating 14
1.5 Multiplication of Whole Numbers and Area 16
1.6 Division of Whole Numbers 22

Problem Recognition Exercises: Operations on Whole Numbers 29
1.7 Exponents, Square Roots, and the Order of Operations 31
1.8 Problem-Solving Strategies 34

Chapter 1 Review Exercises 41
Chapter 1 Test 47

Chapter 2 Fractions and Mixed Numbers: Multiplication and Division

2.1 \quad Introduction to Fractions and Mixed Numbers 49
2.2 Prime Numbers and Factorization 53
2.3 Simplifying Fractions to Lowest Terms 56
2.4 Multiplication of Fractions and Applications 60
2.5 Division of Fractions and Applications 65

Problem Recognition Exercises: Multiplication and Division of Fractions 70
2.6 Multiplication and Division of Mixed Numbers 72

Chapter 2 Review Exercises 77
Chapter 2 Test 81
Chapters 1-2 Cumulative Review Exercises 84

Chapter 3 Fractions and Mixed Numbers: Addition and Subtraction

3.1 Addition and Subtraction of Like Fractions 86
3.2 Least Common Multiple 90
3.3 Addition and Subtraction of Unlike Fractions 95
3.4 Addition and Subtraction of Mixed Numbers 101

Problem Recognition Exercises: Operations on Fractions and Mixed Numbers 107
3.5 Order of Operations and Applications of Fractions and Mixed Numbers 109

Chapter 3 Review Exercises 115
Chapter 3 Test 120
Chapter 4 Decimals
4.1 Decimal Notation and Rounding 124
4.2 Addition and Subtraction of Decimals 126
4.3 Multiplication of Decimals 131
4.4 Division of Decimals 135
Problem Recognition Exercises: Operations on Decimals 143
4.5 Fractions as Decimals 145
4.6 Order of Operations and Applications of Decimals 151
Chapter 4 Review Exercises 161
Chapter 4 Test 166
Chapters 1 - 4 Cumulative Review Exercises 169
Chapter 5 Ratio and Proportion
5.1 Ratios 172
5.2 Rates and Unit Cost 175
5.3 Proportions 178
Problem Recognition Exercises: Operations on Fractions versus Solving Proportions 185
5.4 Applications of Proportions and Similar Figures 186
Chapter 5 Review Exercises 194
Chapter 5 Test 199
Chapters 1 - 5 Cumulative Review Exercises 201
Chapter 6 Percents
6.1 Percents and Their Fraction and Decimal Forms 204
6.2 Fractions and Decimals and Their Percent Forms 207
6.3 Percent Proportions and Applications 212
6.4 Percent Equations and Applications 220
Problem Recognition Exercises: Percents 225
6.5 Applications Involving Sales Tax, Commission, Discount, and Markup 227
6.6 Percent Increase and Decrease 231
6.7 Simple and Compound Interest 235
Chapter 6 Review Exercises 237
Chapter 6 Test 243
Chapters 1 - 6 Cumulative Review Exercises 245
Chapter 7 Measurement
7.1 Converting U.S. Customary Units of Length 248
7.2 Converting U.S. Customary Units of Time, Weight, and Capacity 253
7.3 Metric Units of Length 257
7.4 Metric Units of Mass, Capacity, and Medical Applications 259
Problem Recognition Exercises: U.S. Customary and Metric Conversions 263
7.5 Converting Between U.S. Customary and Metric Units 263
Chapter 7 Review Exercises 267
Chapter 7 Test 270
Chapters 1 - 7 Cumulative Review Exercises 271
Chapter 8 Geometry
8.1 Lines and Angles 274
8.2 Triangles and the Pythagorean Theorem 277
8.3 Quadrilaterals, Perimeter, and Area 282
8.4 Circles, Circumference, and Area 285
Problem Recognition Exercises: Area, Perimeter, and Circumference 289
8.5 Volume 290
Chapter 8 Review Exercises 294
Chapter 8 Test 297
Chapters 1 - 8 Cumulative Review Exercises 299
Chapter 9 Introduction to Statistics
9.1 Tables, Bar Graphs, Pictographs, and Line Graphs 302
9.2 Frequency Distributions and Histograms 304
9.3 Circle Graphs 307
9.4 Mean, Median, and Mode 310
9.5 Introduction to Probability 315
Chapter 9 Review Exercises 318
Chapter 9 Test 321
Chapters 1 - 9 Cumulative Review Exercises 323
Chapter 10 Real Numbers
10.1 Real Numbers and the Real Number Line 326
10.2 Addition of Real Numbers 329
10.3 Subtraction of Real Numbers 332
Problem Recognition Exercises: Addition and Subtraction of Real Numbers 335
10.4 Multiplication and Division of Real Numbers 337
Problem Recognition Exercises: Operations on Real Numbers 340
10.5 Order of Operations 341
Chapter 10 Review Exercises 345
Chapter 10 Test 348
Chapters 1 - 10 Cumulative Review Exercises 349
Chapter 11 Solving Equations
11.1 Properties of Real Numbers 352
11.2 Simplifying Expressions 356
11.3 Addition and Subtraction of Properties of Equality 360
11.4 Multiplication and Division Properties of Equality 365
11.5 Solving Equations with Multiple Steps 371
Problem Recognition Exercises: Equations versus Expressions 377
11.6 Applications and Problem Solving 379
Chapter 11 Review Exercises 385
Chapter 11 Test 390
Chapters 1 - 11 Cumulative Review Exercises 392
Appendix
A. 1 Energy and Power 396
A. 2 Scientific Notation 398
A. 3 Rectangular Coordinate System 399

Chapter 1 Whole Numbers

Chapter Opener Puzzle

Section 1.1 Introduction to Whole Numbers

Section 1.1 Practice Exercises

(a) periods
hundreds
thousands
1: ones
9: tens
7: hundreds
6: thousands
3: ten-thousands
$8,213,457$
7: ones
5: tens
4: hundreds

3: thousands
1: ten-thousands
2: hundred-thousands
8: millions
103,596
6: ones
9: tens
5: hundreds
3: thousands
0: ten-thousands
1 : hundred-thousands

321 tens
$6 \underline{8} 9$ tens
214 ones
738 ones
8,710 hundreds
2,293 hundreds

1,430 thousands
3,101 thousands

452,723 hundred-thousands
655,878 hundred thousands
1,023,676,207 billions
$\underline{3}, 111,901,211$ billions
$\underline{22,422}$ ten-thousands
58,106 ten-thousands
51,033,201 millions
93,971,224 millions

Chapter 1 Whole Numbers

10,677,881 ten-millions 2
22. $31,820 \mathrm{~m}$ thousands

7,653,468,440 billions
31,000 ten-thousands
5 tens +8 ones
7 tens +1 one
5 hundreds +3 tens +9 ones
3 hundreds +8 tens +2 ones
5 hundreds +3 ones
8 hundreds +9 ones
1 ten-thousand +2 hundreds +4 tens + 1 one

2 ten-thousands +8 hundreds +7 tens +3 ones

524
318
150
620
1,906
4,201

85,007
26,002
ones, thousands, millions, billions
ones, tens, hundreds, thousands
Two hundred forty-one
Three hundred twenty-seven
Six hundred three
One hundred eight
Thirty-one thousand, five hundred thirty
Fifty-two thousand, one hundred sixty

One hundred thousand, two hundred thirty-four

Four hundred thousand, one hundred ninety-nine Nine thousand, five hundred thirty-five Five hundred ninety thousand, seven hundred twelve

Twenty thousand, three hundred twenty
One thousand, eight hundred
One thousand, three hundred
seventy-seven
Sixty million
6,005
4,004
672,000
248,000
$1,484,250$
2,647,520

64.

Counting on a number line, 10 is 4 units to the right of 6 .

Counting on a number line, 3 is 8 units to the left of 11.

Counting on a number line, 4 is 3 units to the left of 7 .

Counting on a number line, 5 is 5 units to the right of 0 .
$8>2$
8 is greater than 2 , or 2 is less than 8.
$6<11$
6 is less than 11 , or 11 is greater than 6 .

 \(3<7\)
 3 is less than 7 , or 7 is greater than 3 .
 \(14>12\)
 14 is greater than 12 , or 12 is less than 14 .
 \(6<11\)
 \(14>13\)
 \(21>18\)
 \(5<7\)
 \(3<7\)
 \(14<24\)
 95>89
 \(28<30\)
 \(0<3\)
 \(8>0\)
 90<91
 $90<91$
$48>47$
False; 12 is made up of the digits 1 and 2.
False; 26 is made up of the digits 2 and 6 .
99
999
There is no greatest whole number.
0 is the least whole number.
91. 10,000,000 7 zeros
92. 100,000,000,000 11 zeros

964
840

Section 1.2 Addition of Whole Numbers and Perimeter

Section 1.2 Practice Exercises

1. (a) addends
(b) sum
(c) commutative
(d) $4 ; 4$
(e) associative
(f) polygon
(g) perimeter
2. 5 thousands +2 tens +4 ones
3. 3 hundreds +5 tens +1 one
4. Three hundred fifty-one
5. 1 hundred +7 ones
6. 2004
7. 4012
8. 6206

Chapter 1 Whole Numbers

Fill in the table. Use the number line if necessary.

$\boldsymbol{+}$	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$
$\mathbf{0}$	0	1	2	3	4	5	6	7	8	9
$\mathbf{1}$	1	2	3	4	5	6	7	8	9	10
$\mathbf{2}$	2	3	4	5	6	7	8	9	10	11
$\mathbf{3}$	3	4	5	6	7	8	9	10	11	12
$\mathbf{4}$	4	5	6	7	8	9	10	11	12	13
$\mathbf{5}$	5	6	7	8	9	10	11	12	13	14
$\mathbf{6}$	6	7	8	9	10	11	12	13	14	15
$\mathbf{7}$	7	8	9	10	11	12	13	14	15	16
$\mathbf{8}$	8	9	10	11	12	13	14	15	16	17
$\mathbf{9}$	9	10	11	12	13	14	15	16	17	18

$5+9=14$
Addends: 5,
9 Sum: 14
$2+8=10$
Addends: 2,
8 Sum: 10
$12+5=17$
Addends: 12,
15 Sum: 17
$11+10=21$
Addends: 11,
10 Sum: 21
$1+13+4=18$
Addends: 1, 13, 4
Sum: 18
$5+8+2=15$
Addends: 5, 8,
2 Sum: 15

$$
\begin{aligned}
& 42=4 \text { tens }+2 \text { ones } \\
& \underline{33}=3 \text { tens }+3 \text { ones } \\
& \hline 75=7 \text { tens }+5 \text { ones }
\end{aligned}
$$

$$
21=2 \text { tens }+1 \text { one }
$$

$$
53=5 \text { tens }+3 \text { ones }
$$

$$
74=7 \text { tens }+4 \text { ones }
$$

$39=3$ tens +9 ones
$20=2$ tens +0 ones
$59=5$ tens +9 ones
19. $15=1$ ten +5 ones
$43=4$ tens +3 ones
$58=5$ tens +8 ones
$12=1$ ten +2 ones
$15=1$ ten +5 ones
$32=3$ tens +2 ones
$59=5$ tens +9 ones
21. $10=1$ ten +0 ones
$8=0$ tens +8 ones
$30=3$ tens +0 ones
$48=4$ tens +8 ones
$7=0$ tens +7 ones
$1=2$ tens +1 one
$+10=1$ ten +0 ones
$38=3$ tens +8 ones
$6=0$ tens +6 ones
$11=1$ ten +1 one
$\underline{2=0}$ tens +2 ones
$19=1$ ten +9 ones
341
$\underline{225}$
566

Section 1.2 Addition of Whole Numbers and Perimeter

407
181 $\stackrel{58}{58}$

890
107
997
444
$\frac{354}{798}$
798
4
13
$\underline{102}$
119
11 221
5
237
31
7
430
468
24
14
160
198
32. $\stackrel{1}{76}$
$+45$ 121
33. $\stackrel{1}{25}$
$+59$
84
34. $\begin{gathered}1 \\ 87\end{gathered}$

+24
111

35. $\quad \begin{gathered}1 \\ 38\end{gathered}$
$+77$
115

658
$\underline{231}$
889
1
37. 642
$+295$ 937
38. $\quad \begin{aligned} & 11 \\ & 152\end{aligned}$
$+549$
701
39. 11
39. 462
$+388$
850
1
15
5
$\underline{9}$
29
1
2
31
$\underline{8}$
41
2
14
9
$\underline{17}$
40
1
7
18
4
29
1
79
$\square \square \Re$
$\underline{2}$
203
1
62
907
34
1003

Chapter 1 Whole Numbers

331
422
42
829

1
87
119
630
836
$4980{ }^{11}$
$\frac{10223}{15,203}$

23112
892
$\overline{24,004}$

1
10223
782
4980
40,985
11

92377
5622
659
132,658

$12+6=6+12$
$30+21=21+30$
$101+44=44+101$
$8+13=13+8$
$(4+8)+13=4+(8+13)$
$(23+9)+10=23+(9+10)$
$7+(12+8)=(7+12)+8$
$41+(3+22)=(41+3)+22$

The sum of any number and 0 is that number.

$$
\begin{aligned}
& 423+0=423 \\
& 0+25=25 \\
& 67+0=67
\end{aligned}
$$

1
62. 13+7 13

$$
\frac{+7}{20}
$$

63. $100+42 \quad 100$
$\pm \underline{42}$
1
64. $7+45 \quad 7$

$$
\frac{+45}{52}
$$

65.23+81 23
$+81$
104
$66.18+5 \quad 1$
66. $18+5 \quad 18$
$\frac{+5}{23}$
67.76+2 76
$+2$
68. $1523+90 \quad \stackrel{1}{1523}$
+90
+1613
1,613
$\mathbf{6 9 . 1 3 2 0}+448 \quad 1320$
$+448$
1,768
70. $5+39+815$

39
$+81$ 125

The commutative property changes the order of the
addends, and the associative property changes the grouping.

For example: The sum of 54 and 24
For example: The sum of 33 and 15
For example: 88 added to 12

For example: 15 added to 70
For example: The total of 4,23 , and 77
For example: The total of 11,41 , and 53
For example: 10 increased by 8
For example: 25 increased by 14
103
112
61
276
276 people attended the play.
3
38
54
44
61
397
103
124
521
521 deliveries were made.
$\stackrel{2}{21,209000}$
20,836,000
16,448,000
58,493,000
The shows had a total of $58,493,000$ viewers.
195 mi
228 mi
423 mi
She will travel 423 mi .
\$43,000
2,500
\$45,500
Nora earns \$45,500.
1,205,655
$\frac{1,000}{1,206,655}$
$1,206,655$ athletes are participating.

1
60
52
75
58
245
The total for the checks written is $\$ 245$.
11
115
104
93
111
423
423 desks were delivered.
533
2787
956
991
817
567
715
3705
13,538
There are 13,538 participants.
11
1494
155
42
1691
There are 1691 thousand teachers.
11111
100,052
675,038
45,934
There are 821,024 nonteachers.
11
$\$ 7329$
560
248
$\underline{3500}$
\$21,637
The total cost is $\$ 21,637$.

Chapter 1 Whole Numbers

1	90 ft
35 cm	90 ft
35 cm	90 ft
34 cm	90 ft
104 cm	ft
7^{1}	9,084,037 + 452,903 = 9,536,940
27 in.	9,084,037 + 452,03 = 9,536,040
$13 \mathrm{in} .$	$899,382+9406=908,788$
60 in .	7,201,529 + 962,411 = 8,163,940
2	45,418
21 m	81,990
20 m	9,063
18 m	56,309
19 m	192,780
11 m	
$\underline{21 \mathrm{~m}}$	9,300,050
110 m	7,803,513
	3,480,009
15 m	907,822
15 m m	21,491,394
6 m	
7 m	3,421,019
35 m	822,761
	9,678
6 yd	5,257,179
10 yd	
11 yd	64,700,000
3 yd	36,500,000
5 yd	24,100,000
7 yd	$\underline{23,200,000}$
yd	\$148,500,000
200 yd	$\begin{gathered} 22111 \\ 65,899,660 \end{gathered}$
yd	60,932,152
	128,107,616 ${ }^{\frac{1,275,804}{}}$ votes
38 yd	
yd	
94 ft	
ft	
ft	
50 ft	
ft	

Section 1.3 Subtraction of Whole Numbers

Section 1.3 Practice Exercises
minuend; subtrahend; difference
134
330
821
1151
1
782
21
1046
1,849
1
46
804
49
899
$14<21$
$0<10$
Twenty-two is less than twenty-five.
$12-8=4$
minuend: 12
subtrahend: 8
difference: 4
$6-1=5$
minuend: 6
subtrahend: 1
difference: 5
$21-12=9$
minuend: 21
subtrahend: 12
difference: 9
$32-2=30$
minuend: 32
subtrahend: 2
difference: 30
9
6
3
minuend: 9
subtrahend: 6
difference: 3
17
근
14 minuend:
17
subtrahend: 3
difference: 14
$27-9=18$ because $18+9=27$.
$20-8=12$ because $12+8=20$.
$102-75=27$ because $27+75=102$.
$211-45=166$ because $166+45=211$.
$8-3=5$ Check: $5+3=8$
$7-2=5$ Check: $5+2=7$
4-1=3 Check: $\underline{3}+1=4$
9-1 $=8$ Check: $\underline{8}+1=9$
$6-0=6$ Check: $\underline{6}+0=6$
$3-0=3$ Check: $\underline{3}+0=3$
68 Check: 45
$\underline{-23}+23$ $68 \checkmark$

54 Check: 23
$\frac{-31}{23} \quad+31$

Chapter 1 Whole Numbers

88 Check: 61 | |
| :---: |
| -27 |
| |
| |
| |
| $28 \checkmark$ |

75 Check: 25

-50
75
50

1347 Check: 1126

-221
1126
1347
\checkmark

4865 Check: 4152

$$
\frac{-713}{4152} \quad \frac{+713}{4865}
$$

$$
\text { 31. } 1525 \text { Check: } \begin{array}{r}
1204 \\
-1204
\end{array} \quad \begin{aligned}
& +321 \\
& \hline
\end{aligned}
$$

8843 Check: 3231

$\frac{-5612}{3231}$	+5612
12806 Check:	10004
$\frac{-2802}{10,004}$	$\frac{+2802}{12,806} \checkmark$
12,771 Check: $-\frac{11}{5} 531$	
$\frac{-1240}{11,531}$	$\frac{+1240}{12,771}$

35. 14,356 _Check: 1103
$-13,253 \quad+13253$
$1,103 \quad 14,356 \quad \checkmark$

-1238	
4764	+1238
6002	

99

$42128000 \checkmark$
13
$1 / 313 \quad 11$
37,439 Check: 30941
$\frac{-1498}{30^{\circ}, 941} \quad+1498$
$111 \quad 1$
21 $335 \quad 17212$
58. -4123 Check : +4123

61. 78
-23
55
315
62. 45
$\frac{-17}{28}$
63. 78

- 6

72
1
0
5
//
0
$\underline{1}$
$\underline{2}$
8
4
2
2
1

Chapter 1 Whole Numbers

89	410
$\underline{42}$	\$50/
47	17
	\$3 3
${ }^{810}$	\$33 change was received.
109 \% /	
72	415
1018	$55 / 1$
	39
11	16
3114/	16 DVDs are left.
$\underline{60}$	
3051	11
	1/ $/ 8$
10	$\underline{-63}$
$50 / 1$	55
$\begin{array}{r} 13 \\ -7 \end{array}$	Lennon and McCartney had 55 more hits.
	10
405	$505 /$
103	$\underline{200}$
302	305
13	305 ft more
$\underline{10} 3$ /	16
35	$26 / 1$
8	$\underline{18}$
	8
211 ${ }^{11}$	Lily needs 8 more plants.
91	
14	\$50
7	37
	\$13
For example: 93 minus 27	\$13 more is needed.
For example: 80 decreased by 20	13
For example: Subtract 85 from 165.	4014
For example: 42 less than 171	$\begin{gathered} 5149 \\ 2670 \end{gathered}$
For example: 42 less than 17	2479

The expression 7-4 means 7 minus 4, yielding a difference of 3 . The expression 4-7 means 4 minus 7 which results in a difference of -3 .

Subtraction is not associative. For example, $10-(6-2)=10-4=6$, and $(10-6)-2=4-2=2$. Therefore $10-(6-2)$ does not equal $(10-6)-2$.
$\$ 50$
17
$\$ 33$
$\$ 33$ change was received.

5 5//

16
16 DVDs are left.

11

$1 /{ }^{18}$
-63

55

10
$505 /$
$\underline{200}$
305

305 ft more
$\begin{array}{r}16 \\ 26 / 18 \\ \hline 8\end{array}$
Lily needs 8 more plants.
\$50
$\underline{37}$
$\$ 13$
$\$ 13$ more is needed.

4014
5149

$$
2479
$$

The Lion King had been performed 2,479 more times.

13
1/ $\neq 14$
32344 /
$\frac{30646}{698}$
Brees needs 1698 more yd.
87. $14 \mathrm{~m} \quad 39 \mathrm{~m}$
$\frac{+12 \mathrm{~m}}{26 \mathrm{~m}} \frac{-26 \mathrm{~m}}{13 \mathrm{~m}}$
The missing length is 13 m .
88. $\quad \begin{gathered}11 \\ 139 \\ \mathrm{~cm}\end{gathered}$

$$
87 \mathrm{~cm} \quad 547 \mathrm{~cm}
$$

$\frac{+201 \mathrm{~cm}}{427 \mathrm{~cm}} \quad \frac{-427 \mathrm{~cm}}{120 \mathrm{~cm}}$
The missing length is 120 cm .
89. 456 yd
$\begin{array}{cc}14 & -46 \mathrm{yd} \\ 14 & 10 \mathrm{yd}\end{array}$
$+10$
46 yd
The missing side is 10 yd long.
6
$\frac{5}{11}$
15 ft
$-11 \mathrm{ft}$

4 ft

The missing side is 4 ft long.
2279000
$\underline{2249000}$

$$
30,000
$$

The difference is 30,000 marriages.

14

2, 24 9,000
2, 160,000
89,000
The decrease is 89,000 marriages.
2279000
$\underline{2160000}$
119,000
The difference is 119,000 marriages.

$$
\begin{gathered}
10 \\
2,205,000 \\
2,160,000 \\
\hline 45,000
\end{gathered}
$$

The greatest increase occurred between Year 5 and Year 6; the increase was 45,000.

$$
\begin{array}{r}
4,905,620 \\
-458,318 \\
\hline 4,447,302
\end{array}
$$

953,400,415
56,341,902
897,058,513
82,025,160
79,118,705 2,906,455
$103,718 \mathrm{mi}^{2}$
$\frac{54,310 \mathrm{mi}^{2}}{49,408 \mathrm{mi}^{2}}$
$41,217 \mathrm{mi}^{2}$
$\xrightarrow[24,078 \mathrm{mi}_{2}^{2}]{2}$
$17,139 \mathrm{mi}$
$103,718 \mathrm{mi}_{2}^{2}$
$\xrightarrow[(, 045 \mathrm{mi}]{2} 2$
$102,673 \mathrm{mi}^{2}$
The difference in land area between
Colorado and Rhode Island is
$102,673 \mathrm{mi}^{2}$.
$\underbrace{\frac{54,310 \mathrm{mi}^{2}}{13,093 \mathrm{mi}^{2}}}{ }^{41,217 \mathrm{mi}^{2}}$
Wisconsin has $13,093 \mathrm{mi}^{2}$ more than Tennessee.

Section 1.4 Rounding and Estimating

 Section 1.4 Practice Exercisesrounding
30 ft
59
$\underline{33}$
26
01210
$13 / 0 / /$
$\frac{98}{32}$
11
4009
$\underline{998}$
5,007
12,033
$\underline{23,441}$
35,474

Ten-thousands
Hundreds
If the digit in the tens place is $0,1,2,3$, or 4 , then change the tens and ones digits to 0 . If the digit in the tens place is $5,6,7,8$, or 9 , increase the digit in the hundreds place by 1 and change the tens and ones digits to 0 .

If the digit in the ones place is $0,1,2,3$, or
4 , then change the ones digits to 0 . If the digit in the ones place is $5,6,7,8$, or 9 , increase the digit in the tens place by 1 and change the ones digit to 0 .

$$
\begin{aligned}
& 83 \bar{\beta} \approx 8400 \\
& 85 \sqrt{99} \approx 8500 \\
& 98 \boxed{7} \approx 9800 \\
& 34,942 \approx 35,000 \\
& 76,8] 1 \approx 77,000 \\
& 2578 \approx 3000 \\
& 3511 \approx 4000 \\
& 9 9 \longdiv { 2 2 } \approx 1 0 0 0 0 \\
& 7974 \approx 8000 \\
& 109, \text {, } \beta^{7} 7 \approx 109,000 \\
& 437,208 \approx 437,000 \\
& 48 甲, 090 \approx 490,000 \\
& \text { 388,725 } \approx 390,000 \\
& \text { \$77,975,481 } \approx \$ 77,000,000 \\
& \$ 33,0 \$ 0 \approx \$ 33,000 \\
& 238,863 \mathrm{mi} \approx 239,000 \mathrm{mi} \\
& 4 \Phi 2,000 \mathrm{~m}^{2} \approx 500,000 \mathrm{~m}^{2}
\end{aligned}
$$

33. $57 \rightarrow 60$
$82 \rightarrow \quad 80$
$+21 \rightarrow \frac{+20}{160}$
34. $33 \rightarrow 30$ $78 \rightarrow 80$
$+41 \rightarrow \frac{+40}{150}$
35. $41 \rightarrow 40$
$12 \rightarrow \quad 10$
$+129 \rightarrow+130$
36. | 29 | \rightarrow | 130 |
| ---: | :--- | ---: |
| 73 | \rightarrow | 70 |
| +113 | \rightarrow | +110 |
37. | 898 | \rightarrow | 900 |
| ---: | :--- | ---: |
| -422 | \rightarrow | -400 |

39. $3412 \rightarrow 3400$
$-1252 \rightarrow \frac{-1300}{2100}$
40. $9771 \rightarrow 9800$
$\underline{-4544} \rightarrow \frac{-4500}{5300}$

41. | $97,404,576$ | \rightarrow | $97,000,000$ |
| ---: | :--- | ---: |
| $+53,695,428$ | \rightarrow | $+54,000,000$ |

$\$ 151,000,000$ was brought in by Mars.
42. 81,296,784 $\rightarrow \quad 81,000,000$
$54,391,268 \rightarrow 54,000,000$
$+38,168,580 \rightarrow+38,000,000$
$\$ 173,000,000$ was brought in by Hershey.
43. $71,339,710 \rightarrow \quad 71,000,000$
$\underline{59,684,076} \rightarrow=\underline{60,000,000}$
Neil Diamond earned $\$ 11,000,000$ more.

$$
\begin{aligned}
& \text { 44. } \begin{array}{ll}
63,640 & \rightarrow \\
\underline{43,130} & \rightarrow \\
& =\frac{64,000}{21,000} \\
21,000
\end{array}
\end{aligned}
$$

A California teacher makes about \$21,000 more.

Section 1.4 Rounding and Estimating

$$
\begin{array}{r}
\$ 3,470,295 \rightarrow \$ 3,500,000 \\
3,173,050 \rightarrow \\
1,970,380
\end{array} \rightarrow \quad \begin{array}{r}
\pm 2,200,000 \\
\\
\\
\$ 8,700,000
\end{array}
$$

(a) Year 4; \$3,470,295 $\rightarrow \$ 3,500,000$
(b) Year 6 ; $\$ 1,970,380 \rightarrow \$ 2,000,000$

$$
\begin{array}{r}
\$ 3,500,000 \\
2,000,000 \\
\$ 1,500,000
\end{array}
$$

Massachusetts; 78,815 $\rightarrow 79,000$ students
Vermont; $8059 \rightarrow 8000$ students
79,000
$\underline{8,000}$
71,000
The difference is 71,000 students.
52. $45,879 \quad \rightarrow \quad 46,000$
$9137 \rightarrow \quad 9,000$
$16,756 \quad \rightarrow \quad 17,000$
78,815 $\quad \rightarrow \quad 79,000$
$17,422 \quad \rightarrow \quad 17,000$
13,172 $\rightarrow \quad 13,000$
$+8059 \rightarrow \quad+8,000$
The total is 189,000 students.
Answers may vary.
Thousands place

$$
\begin{aligned}
4208-932+1294 & \approx 4000-1000+1000 \\
& \approx 3000+1000 \\
& \approx 4000
\end{aligned}
$$

55. $3045 \mathrm{~mm} \rightarrow \quad 3000 \mathrm{~mm}$
$1892 \mathrm{~mm} \quad \rightarrow \quad 2000 \mathrm{~mm}$
$3045 \mathrm{~mm} \quad \rightarrow \quad 3000 \mathrm{~mm}$
$\pm 1892 \mathrm{~mm} \rightarrow \frac{+2000 \mathrm{~mm}}{10,000 \mathrm{~mm}}$

1782 cm	\rightarrow	2000 cm
1851 cm	\rightarrow	2000 cm
+1782 cm	\rightarrow	+2000 cm

Chapter 1 Whole Numbers

57. $05 \mathrm{in} . \rightarrow \quad 110 \mathrm{in}$.
$57 \mathrm{in} . \rightarrow \quad 60$ in.
$57 \mathrm{in} . \quad \rightarrow \quad 60 \mathrm{in}$.
$105 \mathrm{in} . \rightarrow \quad 110 \mathrm{in}$.
$57 \mathrm{in} . \quad \rightarrow \quad 60 \mathrm{in}$.
$+57 \mathrm{in} . \rightarrow \frac{+60 \mathrm{in}}{460 \mathrm{in}}$.
58. $182 \mathrm{ft} \rightarrow 200 \mathrm{ft}$
$121 \mathrm{ft} \rightarrow \quad 100 \mathrm{ft}$
$182 \mathrm{ft} \rightarrow \quad 200 \mathrm{ft}$
$169 \mathrm{ft} \rightarrow 200 \mathrm{ft}$
$+\underline{+169 \mathrm{ft}} \rightarrow \frac{+200 \mathrm{ft}}{900 \mathrm{ft}}$

Section 1.5 Multiplication of Whole Numbers and Area

Section 1.5 Practice Exercises

1. (a) factors; product
(b) commutative
(c) associative
(d) $0 ; 0$
(e) $7 ; 7$
(f) distributive
(g) area
(h) $l \times w$
2. 13,000
3. $\begin{array}{r}869,240 \\ 34,921\end{array} \rightarrow \begin{array}{r}1 \\ \rightarrow 870,000 \\ 30,000 \\ +108,332\end{array}+\frac{110,000}{} \begin{array}{r}1,010,000\end{array}$
4. | 907,801 | \rightarrow |
| ---: | :--- |
| $-413,560,000$ | |
5. | 8821 | \rightarrow | 8800 |
| ---: | :--- | ---: |
| -3401 | \rightarrow | -3400 |
6.

\mathbf{x}	$\mathbf{0}$	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$	$\mathbf{6}$	$\mathbf{7}$	$\mathbf{8}$	$\mathbf{9}$
$\mathbf{0}$	0	0	0	0	0	0	0	0	0	0
$\mathbf{1}$	0	1	2	3	4	5	6	7	8	9
$\mathbf{2}$	0	2	4	6	8	10	12	14	16	18
$\mathbf{3}$	0	3	6	9	12	15	18	21	24	27
$\mathbf{4}$	0	4	8	12	16	20	24	28	32	36
$\mathbf{5}$	0	5	10	15	20	25	30	35	40	45
$\mathbf{6}$	0	6	12	18	24	30	36	42	48	54
$\mathbf{7}$	0	7	14	21	28	35	42	49	56	63
$\mathbf{8}$	0	8	16	24	32	40	48	56	64	72
$\mathbf{9}$	0	9	18	27	36	45	54	63	72	81

$5+5+5+5+5+5=6 \times 5=30$	18
	5
$2+2+2+2+2+2+2+2+2=9 \times 2$	Multiply 5×8
	50 Multiply 5×10.
	Add.
$9+9+9=3 \times 9=27$	
$7+7+7+7=4 \times 7=28$	26
	2
$\begin{aligned} & 13 \times 42=546 \\ & \text { factors: } 13,42 ; \text { product: } 546 \end{aligned}$	Multiply 2×6. $\underline{40}$ Multiply 2×20. Add.
$\begin{aligned} & 26 \times 9=234 \\ & \text { factors: } 26,9 ; \text { product: } 234 \end{aligned}$	71 3
$\begin{aligned} & \text { 3. } 5 \cdot 2=30 \\ & \text { factors: } 3,5,2 \text {; product: } 30 \end{aligned}$	3 Multiply 3×1. $\underline{210}$ Multiply 3×70.
4. 3. $8=96$ factors: $4,3,8$; product: 96	213 Add.
	131
For example: $5 \times 12 ; 5 \cdot 12 ; 5(12)$	5
For example: $23 \times 14 ; 23 \cdot 14$;	Multiply 5×1. Multiply 5×30.
23(14) d	$500 \text { Multiply } 5 \times 100 \text {. }$ Add.
Add.	
e	725
	3
b	Multiply 3×0. Multiply 3×20.
c	$\underline{2100}$ Multiply 3×700.
	2175 Add.
a	
	344
	4
$14 \times 8=8 \times 14$	- Multiply 4×4.
	Multiply 4×40.
$3 \times 9=9 \times 3$	$\frac{1200}{1376} \text { Multiply } 4 \times 300$
$6 \times(2 \times 10)=(6 \times 2) \times 10$	105
$(4 \times 15) \times 5=4 \times(15 \times 5)$	9
$5(7+4)=(5 \times 7)+(5 \times 4)$	Multiply 9×5.
	Multiply 9×0.
	900 Multiply 9×100. Add.
$3(2+6)=(3 \times 2)+(3 \times 6)$	
24	3
6	1410
Multiply 6×4.	8
120 Multiply 6×20.	$\overline{11,280}$

Chapter 1 Whole Numbers

${ }^{3}$	72
$2016 \quad 6$	12
	144
12,096	+ 720
21	864
3312	1
7	1
$\overline{23,184}$	13
	$\underline{46}$
4	78
4801	520
5	598
24,005	
	32
13	143
42,014	17
9	1001
378,126	+1430
4	2431
51,006	
	50. $\quad 722$
408,048	50. $\times \quad 28$
32	$\begin{gathered} 111 \\ 5776 \end{gathered}$
$\frac{14}{128}$	+ +14440
128	20,216
320	
448	48
	349
41	19
$\underline{21}$	3141
41	+3490
$\frac{820}{861}$	6631
861	
1	512
3	31
68	512
$\underline{24}$	+15360
1	15,872
272	
$\underline{1360}$	1
1632	3
	151
2	127
55	1057
41	3020
55	$\begin{array}{r}\text { a } \\ +15100 \\ \hline 19177\end{array}$
$\frac{2200}{2255}$	19,177
2255	

Section 1.5 Multiplication of Whole Numbers and Area

193500
195,822

21
3532
6014
14128
35320
000000
$\underline{21192000}$
21,241,448
2
7
1039
25290
84300
000000
2,919,590

$$
\begin{array}{r}
111 \\
1 \\
4122 \\
982 \\
\hline 244 \\
760 \\
3709800 \\
\hline 4,047,804 \\
\\
3 \\
1 \\
4 \\
7026 \\
528 \\
\hline 208 \\
520 \\
3513000 \\
3,709,728
\end{array}
$$

62. | $900 \rightarrow$ | | |
| ---: | :--- | :--- |
| $\underline{50 \rightarrow \times 50}$ | 9 | 00 |
| | | 000 |$=45,000$
63. $3000 \rightarrow 3 \mid 000$
$\underline{700} \rightarrow \times 700$
$\overline{21} 00000=2,100,000$
64. $4000 \rightarrow 4 \mid 000$
$\underline{400} \rightarrow \times 400$

$$
1600000=1,600,000
$$

65. $8000 \rightarrow$ 81000

66. $1000 \rightarrow 1 \mid 000$
$\stackrel{2000}{ } \rightarrow \frac{\times 2}{2} \frac{000}{000000}=2,000,000$
67. $90,000 \rightarrow \quad 9 \mid 0000$
$\underline{400} \rightarrow \times \frac{400}{36}$
$\overline{36} 000000=36,000,000$

68. $45,046 \rightarrow 45,000$
$\times 7812 \rightarrow \frac{x}{360,000,000}=\frac{8,000}{0}$
69. $82,941 \rightarrow \quad 80,000$
$\underline{x} \underline{29} \mathbf{7 4 0} \rightarrow \frac{\mathrm{x} \quad 30,000}{2,400,000,000}$
2
70. $630,229 \rightarrow \quad 630,000$
$\underline{x} \underline{71,9 \underline{0} 7} \rightarrow \frac{x}{44,100,000,000}$
71. $\$ 189 \rightarrow \$ 200$
$\times \quad \frac{\times}{\$ 1000}$
72. $\$ 129 \rightarrow \$ 130$
$\underline{\times} \cdot \underline{28} \rightarrow \underline{x} \cdot \frac{30}{\$ 3,900}$

\$2,720,000
73. $48 \rightarrow 5 \mid 0$

$\left.\left.\underline{12} \rightarrow \begin{array}{r\|r}5 & 0 \\ \times 1 & 0 \\ \hline 5 & 00\end{array}\right) . \begin{array}{l} \\ \hline\end{array}\right)$

500
7
$\overline{\$ 3500}$ per week
1000
4
$\overline{4000}$
4000 minutes can be stored.

700
15
3500
7000
10,500
15 CDs hold $10,500 \mathrm{MB}$ of data

$$
\begin{gathered}
1 \\
3 \\
\$ 45
\end{gathered}
$$

37

$$
315
$$

$$
1350
$$

$$
\$ 1,665
$$

12
$\underline{12}$
24
$\underline{120}$
144
A case contains 144 fl oz .
81. 115
$\times 5$
575

$$
\begin{array}{r|r}
32 & \\
5 & 0 \\
5 & 00 \\
287,5 & 00
\end{array}
$$

287,500 sheets of paper are delivered.
82. 14 28

$$
\frac{\times 2}{28} \quad \frac{\times 6}{168}
$$

She gets 168 g of protein.

$$
31
$$

$$
\underline{12}
$$

$$
\overline{62}
$$

$$
\underline{310}
$$

$$
\overline{372}
$$

He can travel 372 miles.

Sherica schedules 736 hr .

Section 1.5 Multiplication of Whole Numbers and Area

$$
\begin{aligned}
& A= l \times w \\
& A=(23 \mathrm{ft}) \times(12 \mathrm{ft}) \\
& 23 \\
& \underline{12} \\
& 46 \\
& \underline{230} \\
& 276
\end{aligned}
$$

The area is $276 \mathrm{ft}^{2}$.

$$
\begin{aligned}
& A=l \times w \\
& A=(31 \mathrm{~m}) \times(2 \mathrm{~m})=62 \mathrm{~m}^{2} \\
& A=l \times w \\
& A=(73 \mathrm{~cm}) \times(73 \mathrm{~cm}) \\
& 2 \\
& 73 \\
& 73 \\
& \hline 219 \\
& \frac{5110}{5329}
\end{aligned}
$$

The area is $5329 \mathrm{~cm}^{2}$.

$$
\begin{aligned}
& A=l \times w \\
& A=(41 \mathrm{yd}) \times(41
\end{aligned}
$$

yd) 41
41
41
1640
1681
The area is $1681 \mathrm{yd}^{2}$.

$$
\begin{aligned}
& A=l \times w \\
& A=(390 \mathrm{mi}) \times(270 \mathrm{mi}) \\
& 1 \\
& 6 \\
& 390 \\
& \underline{270} \\
& 000 \\
& 27300 \\
& \underline{78000} \\
& 105,300
\end{aligned}
$$

The area is $105,300 \mathrm{mi}^{2}$.

$$
\begin{aligned}
& A=l \times w \\
& A=(130 \mathrm{yd}) \times(150 \mathrm{yd}) \\
& 6 \\
& 130 \\
& \underline{150} \\
& 000 \\
& 6500 \\
& \underline{13000} \\
& 19,500
\end{aligned}
$$

The area is $19,500 \mathrm{yd}^{2}$.
91. (a) $A=l \times w$

$A=(40 \mathrm{in}) \times.(60 \mathrm{in})$.
2
3
40
60
000
2400
2400 in.
1
14
$\underline{3}$
42

There are 42 windows.
1
2400
42
800
$\underline{96000}$ 100,800
The total area is $100,800 \mathrm{in} .^{2}$

$$
\begin{aligned}
& A=l \times w \\
& A=(50 \mathrm{ft} .) \times(30 \mathrm{ft} .) \\
& 8 \\
& 50 \\
& \underline{30} \\
& 000 \\
& \underline{1500} \\
& 1500
\end{aligned}
$$

The area is $1500 \mathrm{ft}^{2}$.

Chapter 1 Whole Numbers

$$
\begin{aligned}
& A=l \times w \\
& A=(8 \mathrm{ft}) \times(16 \mathrm{ft}) \\
& 4 \\
& 16 \\
& \frac{8}{128}
\end{aligned}
$$

The area is $128 \mathrm{ft}^{2}$.

$$
A=l \times w
$$

$$
A=(10 \mathrm{yd}) \times(15 \mathrm{yd})=150 \mathrm{yd}^{2} .
$$

Section 1.6 Division of Whole Numbers

Section 1.6 Practice Exercises

(a) dividend; divisor; quotient

1
5
0
undefined
remainder
(a) $5+2$
$5 \cdot 2$
$(3+10)+2$
(3-10). 2
103
1
2
48
824
4120
4,944
17
$678 / / 83$
$\underline{83}$
595
5. $\quad 1$
5. 1008
$+245$
1253
220
$\underline{14}$
880
$\underline{200}$
3,080

[^0]Dividend: 35
divisor: 5
quotient: 7
Dividend: 45
divisor: 9
quotient: 5
Dividend: 20
divisor: 5
quotient: 4
You cannot divide a number by zero (the quotient is undefined). If you divide zero by a number (other than zero), the quotient is always zero.

A number divided or multiplied by 1 remains unchanged.
$15 \div 1=15$ because $15 \times 1=15$.
$21 \vdots 2 \vdots=1$ because $1 \times 21=21$.
$0 \div 10=0$ because $0 \times 10=0$.
$\underline{0}_{3}=0$ because $0 \times 3=0$.
0% 宝 undefined because division by zero is undefined.
$4 \div 0$ is undefined because division by zero is undefined.
20 $20=1$ because $1 \times 20=20$.
$19{ }_{j}^{5}=9$ because $9 \times 1=9$.
$\frac{16}{0}$ is undefined because division by zero is undefined.

```
\(\underline{5}\)
```

$1=5$ because $5 \times 1=5$.
$8!=0$ because $0 \times 8=0$.
$13 \div 13=1$ because $13 \times 1=13$.
$6 \div 3=2$ because $2 \times 3=6$.
$3 \div 6 \neq 2$ because $2 \times 6 \neq 3$.
$(36 \div 12) \div 3=3 \div 3=1$ but $36 \div(12 \div 3)=36 \div 4=9$.

To check a division problem without a remainder you should multiply the quotient and the divisor to get the dividend.

To check $0 \div 5=0$ we multiply $0 \times 5=0$ which is true. If we try to check $5 \div 0=$? we need to find a number to multiply by 0 to get 5 . Since no such number exists, the answer to $5 \div 0$ is undefined.
35. $\begin{array}{r}13 \\ \underline{-6}\end{array}$
$\begin{array}{r}1 \\ 13 \\ \times 6 \\ \hline 78\end{array}$
-18
0
36. $7 \begin{array}{rc}52 & 1 \\ 364 & 52 \\ \frac{-35}{14} & \frac{57}{364} \\ -14 & \end{array}$

37. 5) | 41 |
| ---: |
| -205 |
| 05 |
| -5 | \(\begin{array}{r}41

\hline 0\end{array}\)

38.	19
152	
-8	
72	\(\quad \begin{array}{r}19

\hline \frac{-72}{0}\end{array}\)

Chapter 1 Whole Numbers

39. 2$)$| 486 |
| :---: |
| 972 |
| -8 |
| 17 |

11
486
$\times \quad \underline{9} \quad \underline{2}$
$\frac{-16}{12}$
$\frac{-12}{0}$
40. 6) $\begin{array}{r}97 \\ 582 \\ -54 \\ 42 \\ \frac{-42}{0}\end{array}$

$$
\begin{array}{r}
\frac{-0}{27} \\
-27 \\
\hline 0
\end{array}
$$

42. $4 \begin{array}{r}59 \\ 236 \\ -20 \\ 36 \\ -36 \\ 0\end{array}$
43. 5) 1015
1. $5 \begin{gathered}407 \\ \frac{2035}{-20} \\ 03\end{gathered}$

203
-10
$\begin{array}{r}01 \\ -0 \\ \hline 15 \\ -15 \\ \hline 0\end{array}$
$\begin{array}{r}3 \\ 407 \\ \times \quad 5 \\ \hline 2035\end{array}$
203
$\times \quad 5$

1015
$\begin{array}{r}3 \\ 59 \\ \times \quad 4 \\ \hline 236\end{array}$

1
03
5
0

$\frac{-0}{35}$
$-\frac{35}{0}$

4
$\begin{array}{r}97 \\ \times \quad 6 \\ \hline\end{array}$
582

都

$$
\begin{array}{r}
\\
2 \\
409 \\
\times \quad 3 \\
\hline 1227
\end{array}
$$

822	11
$6 \lcm{4932}$	
$\frac{-48}{13}$	822
$\underline{-1}$	$\underline{6}$
$\underline{2}$	4932
12	
$\frac{-12}{0}$	
517	517
719	$\underline{7}$

$$
\begin{array}{r}
\frac{-35}{1} \\
1 \\
\frac{-7}{49} \\
\frac{-49}{0}
\end{array}
$$

49. 253
$\times 3$
$\times 759$
incorrect

$$
\begin{array}{r}
\text { R2 } \\
3 \longdiv { 7 6 1 } \\
\frac{-6}{16} \\
\frac{-15}{11} \\
\frac{-9}{2}
\end{array}
$$

50. 120
$\frac{80}{600}_{\text {incorrect }}$
11
822
$4932 \checkmark$

517 7
47. $\stackrel{2}{56}$

$$
\text { 47. } 56
$$

$$
\underline{x}
$$

$\frac{\times}{224}$ correct

$$
\overline{2} 2 \overline{4} \text { correct }
$$

82^{1}
7
574 correct

$$
\begin{array}{r}
\mathrm{R} 4 \\
5 \longdiv { 6 0 4 } \\
\frac{-5}{10} \\
\frac{-10}{04} \\
\frac{-0}{4}
\end{array}
$$

Section 1.6 Division of Whole Numbers

-9	
-02	$=92 \checkmark$
	84428 $\frac{-40}{28}$ $\frac{-24}{4}$$=428 \checkmark$

Chapter 1 Whole Numbers
65.2- $\underline{1557}_{3115}^{R 1}$
$\boxed{1} 1$
-10
-15
-14

111
1557

-2	$\times \quad 2$
11	+1

66. $6 \begin{array}{cc}-\frac{785}{4715} \text { R5 } & 53 \\ & \begin{array}{c}-42 \\ 51 \\ -4 \\ 8\end{array} \\ \frac{\times}{35} & 4710 \\ & +\ldots 5\end{array}$
$\frac{-30}{5}$

67. $7 \begin{array}{cc}-\frac{1287}{9013} \mathrm{R} 4 & 264 \\ -\frac{7}{20} & \times \quad 1287 \\ -14\end{array}$

-14
$-\quad+4$
9013

-49
4

69.6 | 835 | |
| :---: | :---: |
| 5012 | 23 |
| $\frac{-48}{21}$ | $\times \quad 6$ |
| -18 | 5010 |
| $-\quad+\quad 2$ | |

70. $2 \begin{array}{cc}550 \mathrm{R} 1 & 1 \\ \frac{-10}{1101} & 550 \\ \frac{-10}{0} & \times \quad 2 \\ 01 & +\quad 1 \\ \underline{00} & 1101 \checkmark \\ 1 & \end{array}$ $19 \widetilde{9110}^{\text {R9 }}$
$\frac{-76}{151}$
$\frac{-133}{180}$
$\frac{-171}{9}$

91 -72
19

R27
$4 1 \longdiv { 8 1 0 4 }$
$\frac{-41}{400}$ -369
314
$\begin{array}{r}-287 \\ \hline 27\end{array}$

26) 3088^{308}	
$26!8008$	R56
-78	$2 2 1 \longdiv { 5 1 1 0 7 }$
20	-442
-0	690
208	-663
-208	277
0	-221
	56
612	
15!9180	302
- -90	114\34428
18	-342
$\underline{-15}$	22
30	8
-30	-228
0	0
1259 R26	209
5468	$4 2 1 \longdiv { 8 7 9 8 9 }$
-54	- -842
140	3789
-108	-3789
321	0
-270	
512	$497 \div 71=7$
-486	7
26	715
	.--497
2628 R33	
$3 5 9 2 \longdiv { 0 1 3 }$	
$\underline{-70}$	$890 \div 45=42$
220	42
-210	$4 5 \longdiv { 1 8 9 0 }$
101	- - -180
-70	90
313	-90
-280	0
33	
	$877 \div 14=62 \mathrm{R} 9$
$30469{ }^{229}$ R96	R9
	$1 4 \longdiv { 8 7 7 }$
-608	-84
891	
-608	-28
2832	
-2736	
96	

Chapter 1 Whole Numbers

$722 \div 53=13 \mathrm{R} 33$	48
R33	$3 \longdiv { 1 4 4 }$
$5 \widehat{3722}$	-12
-53	24
	-24
$\underline{-159}$	0
	\$48 per room
$42 \div 6=7$	lb
$108 \div 9=12$	100) $\begin{gathered}\overline{2200} \\ -200\end{gathered}$
12	$-\frac{-200}{200}$
$9!-108$	-200
$-\frac{-9}{18}$	0
-18	acres
0	260) $\overline{7280}$
	. - 520
classrooms	2080
$28!392$	-2080
. -28	0
112	
-112	$1200 \div 20=60$
0	60
	20 1200
- tables	-120
8:120	00
$\cdots-8$	$\cdots \quad \underline{-0}$
40	0

$$
\frac{-40}{0}
$$

R8
$3 2 1 \longdiv { 5 8 }$
$\frac{-160}{8}$
5 cases; 8 cans left over
$5 2 4 \longdiv { 2 5 }$
-416
9
Yes; $\$ 9$ left over
$6!3 ; 12$
$-\frac{-30}{12}$
$\frac{-12}{0}$
$\$ 48$ per room

260) 7280
$\therefore \frac{-520}{2080}$
-2080
$1200 \div 20=60$
20) 1200
-120
00

- $\quad \frac{-0}{0}$

Approximately 60 words per minute

$$
2800 \div 400
$$

$$
7
$$

$400-2800$
'-2800
.- 0
Approximately 7 tanks of gas

$$
\begin{array}{r}
25 \\
18 \frac{450}{-36} \\
\hline 90 \\
-90 \\
0
\end{array}
$$

Yes they can all attend if they sit in the second balcony.

Teacher: \$3000
10,000
$\sqrt[12]{\frac{-12}{0}}$
CEO: $\$ 10,000$

5000

Professor: \$5,000

$12 \begin{array}{r}4000 \\ 48,000 \\ 0\end{array}$
$\frac{-48}{}$

Programmer: \$4,000
101. (a)

12 loads can be done.
2 ounces of detergent are left over.

$26 \div 2=13$

2
13
$\underline{9}$
117

117 cars are waiting in line.

$$
21,000,000
$$

/,005,UUu,UUu bbı
52
$\begin{array}{r}5 \\ \hline \text { ד } 70\end{array}$
50
$\overline{13,000} \min$
$3552 \div 4=888$
$\$ 888$ billion
34,080
$\underline{9600}$
24,480
$24,480 \div 96=255$
Each crate weighs 255 lb .

Problem Recognition Exercises: Operations on Whole Numbers

1. (a) 52
+13
+65
(b) 52
$\times 13$
156
$\frac{+520}{676}$
412
(c) $\quad 52$

- 13
(d) $13 \frac{4}{52}$

0
2. (a) $17 \frac{6}{102}$
$\frac{102}{0}$
912
(b) $1 \not 02$
$-{ }^{-17}=85$
(c) 102
$\begin{array}{r}1 \quad 17 \\ \hline 714\end{array}$
$+1020$
(d) 102
$+17$
119

Chapter 1 Whole Numbers

3. (a) 5064	(a) 156
58	41
40512	197
$\underline{253200}$	(b) 197
293,712	-41
5064	156
58	
5122	(a) 6004
87 R18	$\underline{221}$
$5 8 \longdiv { 5 0 6 4 }$	6225
-464	(b) 6004
424	-221
406	6004
18	4,180
14	41,800
$5064 / 58$	418,000
5006	
	4,180,000
(a) 1226	
$\underline{-114}$	35,000
111210 R86	3,500
$\begin{gathered} 1 1 4 \longdiv { 1 2 2 6 } \\ -114 \end{gathered}$	350
86	35
0	
$\overline{86}$	246,000
1 1226	2,820,000
$\underline{114}$	20,000
1340	20,00
12	540,000
1226	
$\underline{114}$	
4904	
12260	
122600	
139,764	

Section 1.7 Exponents, Square Roots, and the Order of Operations

Section 1.7 Practice Exercises

(a) base; 4
powers
square root; 81
order; operations
variable; constants mean

False
True: $5+3=8$ and $3+5=8$
False: $5-3=2$, but $3-5 \neq 2$
False: $6 \times 0=0$
True: $0 \div 8=0$
True: $0 \times 8=0$
True: $5 \div 0$ is undefined.
9^{4}
3^{8}
2^{7}
6^{5}
3. $3 \cdot 3 \cdot 3 \cdot 3^{6} \cdot{ }^{6}=3$

4
7. 7. $7 \cdot 7=7$
${ }_{=4}^{4 \cdot 4 \cdot 2} \cdot 2 \cdot 2 \cdot 2 \cdot 2^{3}$
$5 \cdot 5 \cdot 5 \cdot 10 \cdot 10 \cdot \frac{3}{1} \cdot 10^{3}$

4
$8=8 \cdot 8 \cdot 8 \cdot 8$
$2^{2} \cdot \overline{2} \cdot 2 \cdot 2 \cdot 2 \cdot 2$
$4_{4}^{8} \cdot \overline{4} \cdot 4 \cdot 4 \cdot 4 \cdot 4 \cdot 4$
${ }_{6}^{6} \cdot \frac{1}{6}$

$$
\begin{aligned}
& 2^{3}=2 \cdot 2 \cdot 2=4 \cdot 2=8 \\
& 4^{2}=4 \cdot 4=16 \\
& 3^{2}=3 \cdot 3=9
\end{aligned}
$$

$$
5^{2}=5 \cdot 5=25
$$

$$
3^{3}=3 \cdot 3 \cdot 3=9 \cdot 3=27
$$

$$
11^{2}=11 \cdot 11=121
$$

$$
5^{3}=5 \cdot 5 \cdot 5=25 \cdot 5=125
$$

$$
4^{3}=4 \cdot 4 \cdot 4=16 \cdot 4=64
$$

$$
2^{5}=2 \cdot 2 \cdot 2 \cdot 2 \cdot 2=4 \cdot 4 \cdot 2=16 \cdot 2=32
$$

$$
6^{3}=6 \cdot 6 \cdot 6=36 \cdot 6=216
$$

$$
3^{4}=3 \cdot 3 \cdot 3 \cdot 3=9 \cdot 9=81
$$

$$
5^{4}=5 \cdot 5 \cdot 5 \cdot 5=25 \cdot 25=625
$$

$$
1^{2}=1 \cdot 1=1
$$

$$
1^{3}=1 \cdot 1 \cdot 1=1
$$

4
$1=1 \cdot 1 \cdot 1 \cdot 1=1$
$1^{5}=1 \cdot 1 \cdot 1 \cdot 1 \cdot 1=1$

The number 1 raised to any power equals 1.
$10^{2}=10 \cdot 10=100$
$10^{3}=10 \cdot 10 \cdot 10=1000$
4
$10=10 \cdot 10 \cdot 10 \cdot 10=10,000$
$10^{5}=10 \cdot 10 \cdot 10 \cdot 10 \cdot 10=100,000$

Chapter 1 Whole Numbers

10^{9} simplifies to a 1 followed by 9 zeros: 1,000,000,000.
$4=\underset{z}{z}$ because $2 \cdot 2=4$.
$9=3$ because $3 \cdot 3=9$.
$36 \neq 6$ because $6 \cdot 6=36$.
$81 \neq 9$ because $9 \cdot 9=81$.
$100=10$ because $10 \cdot 10=$ 100.
$49 \sqrt{=7}$ because $7 \cdot 7=49$.
$0=\theta$ because $0 \cdot 0=0$.
$16 \xlongequal{ } 4$ because $4 \cdot 4=16$.
No, addition and subtraction should be performed in the order in which they appear from left to right.

No, multiplication and division should be performed in the order in which they appear from left to right.
$6+10 \cdot 2=6+20=26$
$4+3 \cdot 7=4+21=25$

2

$10-3=10-9=1$
$11-2^{2}=11-4=7$
$(10-3)^{2}=7^{2}=49$
$2 \quad 2$
$(11-2)=9=81$
$36 \div 2 \div 6=18 \div 6=3$
$48 \div 4 \div 2=12 \div 2=6$
$15-(5+8)=15-13=2$
$41-(13+8)=41-21=20$
(13-2). 5-2=11.5-2=55-
$2=53$
$(8+4) \cdot 6+8=12 \cdot 6+8=72+8=80$
$4+12 \div 3=4+4=8$
$9+15 \div 2 \sqrt{5}=9+15 \div 5=9+3=12$
$30 \div 2 \cdot \quad 9-=30 \div 2 \cdot 3=15 \cdot 3=45$
$55 \div 11 \cdot 5=5 \cdot 5=25$
$7^{2}-5^{2}=49-25=24$
$3^{3}-2^{3}=27-8=19$
$(7-5)^{2}=2^{2}=4$
$(3-2)^{3}=1^{3}=1$
$100 \div 5 \cdot 2=20 \cdot 2=40$
$60 \div 3 \cdot 2=20 \cdot 2=40$
$90 \div 3 \cdot 3=30 \cdot 3=90$
$80 \div 2 \cdot 2=40 \cdot 2=80$
77. $\sqrt{81+2(9-1)} \underset{2 \cdot 8}{81+} \mathrm{fl}$
$9+2$.
8
$9+16$
25
78. $\begin{aligned} & 121+3(8-3)=121+3 \cdot 5 \\ & 11+ \\ & 3 \cdot 5 \\ & 11+15 \\ & 26\end{aligned}$
$36 \div\left(2^{2}+5\right)=36 \div(4+5)=36 \div 9=4$
$42 \div\left(3^{2}-2\right)=42 \div(9-2)=42 \div 7=6$
$80-(20 \div 4)+6=80-5+6=75+6=81$
$\begin{aligned} & 120-(48 \div 8)-40= 120-6-40 \\ & 114-40 \\ & 74\end{aligned}$

Section 1.7 Exponents, Square Roots, and the Order of Operations

$$
\begin{aligned}
&(43-26) \cdot 2-4=17 \cdot 2-\frac{2}{4} \\
& 17 \cdot 2-1 \\
& 6 \\
& 34-16 \\
& 18
\end{aligned}
$$

$$
(51-48) \cdot 3+\stackrel{2}{7}=3 \cdot 3+\frac{2}{7}
$$

3. $3+49$

$$
9+49
$$

$$
58
$$

$$
(18-5)-(23-1 \cdot \sqrt{0})=13-(23-10)
$$

$$
13-13
$$

$$
0
$$

$$
\begin{array}{r}
(36 \sqrt{+11})-(31-16)=(6+11)-15 \\
17-15 \\
2
\end{array}
$$

89. $22-4(25 \sqrt{-3})^{2}=22-4(5-3)^{2}$

$$
=22-4(2)^{2}
$$

$$
=22-4
$$

$$
=22-16
$$

$=6$

$$
\begin{array}{r}
17+3(7-9) \sqrt[2]{=} \quad 2 \\
17+3(7-3) \\
17+3(4)^{2} \\
17+3 \cdot 16
\end{array}
$$

$$
\begin{aligned}
& 2 \quad 2 \\
& 80 \div(9-7=80 \div(81-7 \\
& \text { •11) } \cdot 11)_{2} \\
& \begin{array}{l}
80 \div(81-77) \\
80 \div 4
\end{array} \\
& 80 \div 16 \\
& 5 \\
& 108 \div\left(3^{3}-6 \cdot 4\right)^{2}=108 \div(27-6 \cdot 4)^{2} \\
& \begin{array}{l}
108 \div(27-24) \\
108 \div 3^{2}
\end{array} \\
& 108 \div 3 \\
& 108 \div 9 \\
& 12
\end{aligned}
$$

$$
\begin{aligned}
50-2(36 \div 12 \cdot 2-4)= & 50-2(3 \cdot 2-4) \\
& 50-2(6-4) \\
& 50-2(2) \\
& 50-4 \\
& 46
\end{aligned}
$$

$16+5(20 \div 4 \cdot 8-3)=16+5(5 \cdot 8-3)$
$16+5$ (40-3)
$16+5$ (37)
$16+185$
201
Mean $=\underline{19} \pm \underline{21} \pm \underline{18} \pm \underline{21} \pm \underline{16}=\underline{95}=19$ 55
95. Mean $=\underline{105} \pm \underline{114} \pm \underline{123}+\underline{101}+\underline{100} \pm \underline{111}$

$$
=\frac{654}{6} 6=109
$$

96. Mean $=\underline{1480} \pm \underline{1102} \pm \underline{1032} \pm \underline{1002}$

$$
\frac{4616}{4}=1154
$$

$$
\begin{gathered}
\text { Average }=\underline{19} \pm \underline{20} \pm \underline{18} \pm \underline{19} \pm \\
\underline{108} \underline{18} \pm \underline{14} 6
\end{gathered}
$$

$$
\begin{gathered}
6=18 \\
\text { Average }=\frac{83}{} \pm \underline{95} \pm \underline{87} \pm \underline{91}=\frac{356}{44}=89
\end{gathered}
$$

99. Average $=\underline{69} \pm \underline{74} \pm \underline{49}$
$\underline{192}$
$=3=64 \notin$ per pound
100. Average $=\underline{7} \pm \underline{10} \pm \underline{8} \pm \underline{7}=\underline{32}$
$17+48$
65

$$
\begin{array}{cc}
4 & \mathrm{p} \\
& 4
\end{array} \mathrm{e}
$$

Chapter 1 Whole Numbers

Average $=\underline{9} \pm \underline{20} \pm \underline{22} \pm \underline{16} \pm$
135

$$
\underline{80}_{5}=16 \text { in. per month }
$$

$3\left[4+(6-3)^{2}\right]-15=3\left[4+3^{2}\right]-15$

$$
3[4+9]-15
$$

$$
3[13]-15
$$

$$
39-15
$$

$$
24
$$

$2[5(4-1)+3] \div 6=2[5(3)+3] \div 6$
$2[15+3] \div 6$ $2[18] \div 6$ $36 \div 6$
6
$5\left\{21-\left[3^{2}-(4-2)\right]\right\}=5\left\{21-\left[3^{2}-2\right]\right\}$
5\{21-[9-2]\}
5\{21-7\}
5\{14\}
70

$$
\begin{aligned}
& 4\left\{18-\left[(10-8)+2^{3}\right]\right\}=4\left\{18-\left[2+2^{3}\right]\right\} \\
& 4\{18-[2+8]\} \\
& 4\{18-10\} \\
& 4\{8\} \\
& 32
\end{aligned}
$$

$$
156^{2}=24,336
$$

$$
418^{2}=174,724
$$

$$
12^{5}=248,832
$$

$$
35^{4}=1,500,625
$$

$$
43^{3}=79,507
$$

$$
71^{3}=357,911
$$

$$
8126-54,978 \div 561=8126-98=8028
$$

$$
92,168+6954 \times 29=92,168+201,666
$$

$$
293,834
$$

$$
2 \quad 2
$$

$$
(3548-3291)=257=66,049
$$

$$
3 \quad 3
$$

$$
(7500 \div 625)=12=1728
$$

117. $\frac{89,880}{384+2184}=\frac{89,880}{2568}=35$
118. $\frac{54,137}{3393-2134}=\frac{54,137}{1259}=43$

Section 1.8 Problem-Solving Strategies

Section 1.8 Practice Exercises
$60 \div 12=5$

$$
\begin{aligned}
& 4 \div 0 \\
& 89-66=23 \\
& 71+14=85 \\
& 42+16=58 \\
& 2 \cdot 14=28 \\
& 93-79=14 \\
& 102-32=70
\end{aligned}
$$

$10 \cdot 13=130$
$12+14+15=41$
$24 \div 6=4$
$78-41=37$
$5+13+25=43$
Answers may vary.
For example: sum, added to,
increased by, more than, total of, plus

For example: product, times, multiply

For example: difference, minus, decreased by, less, subtract

For example: quotient, divide, per, distributed equally, shared equally

Given: The height of each mountain
Find: The difference in height
Operation: Subtract
11021110
20,3/20/
14,246
6,074
Denali is $6,074 \mathrm{ft}$ higher than White Mountain Peak.

Given: The number of yearly subscriptions Find: The difference in subscriptions Operation: Subtract
01111101110
12, $271 / 2 / 090$
3,2 $5 \quad 2,900$
8, 95 9,100
Reader's Digest has $8,959,100$ more subscriptions than Sports Illustrated.

Given: Oil consumption by country.
Find: Total oil consumption for 4 countries.
Operation: Addition
8,220,000
4,360,000
4,210,000
2,170,000
18,960,000
The oil consumption of China, Japan,
Russia, and Canada is $18,960,000$
barrels per day.

Given: Population of each country.
Find: Total population of 4 countries.
Operation: Addition
11
1,339,000,000
127,000,000
140,000,000
33,000,000
1,639,000,000
The population of China, Japan, Russia, and Canada is $1,639,000,000$ people.

Given: The number of rows of pixels and the number of pixels in each row.
Find: The number of pixels on the whole screen.
Operation: Multiply

213 126
96
756
$\underline{340}$
12,096
There are 12,096 pixels on the whole screen.

Given: The number of rows of tiles and the number of tiles in each row.
Find: The number of tiles on the whole floor.
Operation: Multiply
1
62
$\underline{38}$
11
496
1860
2356
There are 2,356 tiles.

Chapter 1 Whole Numbers

Given: Number of students and the
average class size
Find: Number of classes offered
Operation: Division
120
$2 5 \longdiv { 3 0 0 0 }$

- -25

50
$\frac{-5}{\underline{0}}$
00
There will be 120 classes of Prealgebra.
Given: Inheritance amount and number of people to share equally
Find: Amount per person
Operation: Division
10560
$8 \longdiv { 8 4 , 4 8 0 }$
. -8
4
-40
48
-48
00
Each person will receive $\$ 10,560$.
Given: 45 miles per gallon and driving 405 miles
Find: How many gallons used Operation: Division

```
9
405
```

0

There will be 9 gal used.
Given: 52 mph; 1352 mi
Find: How many hours
Operation: Divide
26
$5 2 \longdiv { 1 3 5 2 }$
:-104
312
-312
0
They will travel for 26 hours.

Given: Yearly tuition for two schools
Find: Total tuition paid
Operation: Addition
1
39,212
3,024
42,236
Jeannette will pay $\$ 42,236$ for one year.
Given: Distances traveled in opposite directions
Find: Total distance traveled
Operation: Addition
11
138
96
234
They are 234 mi apart.
Given: Miles per gallon and number of gallons
Find: How many miles
Operation: Multiplication
1
55
$\underline{20}$
1,100
The Prius can go 1100 mi .
Given: Hours per week and number of weeks.
Find: Total number of hours
Operation: Multiplication
1
16
3
48
The class will meet for 48 hr during the semester.

Given: Number of rows and number of seats in each row.
Find: Total number of seats
Operation: Multiplication
3
45
$\underline{70}$
3150
The maximum capacity is 3150 seats.

Given: Number of rows and number of boxes in each row
Find: Total number of boxes
Operation: Multiplication 8
8
$\overline{64}$
There are 64 boxes in a checkerboard.
Given: total price: \$16,540
down payment: $\$ 2500$
payment plan: 36 months
Find: Amount of monthly payments
Operations
Subtract
16,540
$\underline{2500}$
14,040
(2) Divide

390
$3 6 \longdiv { 1 4 0 4 0 }$
!-108
324
-324
00
Jackson's monthly payments were $\$ 390$.
Given: total cost: 1170
down payment: 150
payment plan: 12 months
Find: Amount of monthly payments
Operations:
Subtract
1170
$\underline{150}$
1020
(2) Divide

85
$1 2 \longdiv { 1 0 2 0 }$

- $-\frac{-96}{60}$
-60
Lucio's monthly payment was $\$ 85$.

Given: Distance for each route and speed traveled
Find: Time required for each route
Operations
Watertown to Utica direct
Divide $80 \div 40=2 \mathrm{hr}$
Watertown to Syracuse to Utica
Add distances $70+50=120 \mathrm{mi}$
Divide $120 \div 60=2 \mathrm{hr}$
Each trip will take 2 hours.
Given: Distance for each route and speed traveled
Find: Time required for each route
Operations
Interstate:
Divide $220 \div 55=4 \mathrm{hr}$
Back roads:
Divide $200 \div 40=5 \mathrm{hr}$
The interstate will take 4 hours and the back roads will take 5 hours. The interstate will take less time.

The distance around a figure is the perimeter.

The amount of space covered is the area.
Given: The dimensions of a room and cost per foot of molding
Find: Total cost
Operations:
Add to find the perimeter, subtract doorway.

11	46
12	-3
11	43 ft
+12	

(2) Multiply to find the total cost. 43
$\times \underline{2}$
86
The cost will be $\$ 86$.

Chapter 1 Whole Numbers

Given: The dimensions of a yard and the cost per foot of fence
Find: Total cost
Operations
(1) Add to find perimeter

1
75
90
75
90
330 ft
Multiply the perimeter by cost per foot.
330
5
1650
It will cost $\$ 1650$.
Given: dimensions of room and cost per
square yard
Find: total cost
Operations
(1) Multiply to find area
$6 \times 5=30 \mathrm{yd}^{2}$
(2) Multiply to find total cost

1
34
$\underline{30}$
1020
The total cost is $\$ 1020$.
Given: Dimensions of room and cost per foot
Find: Total cost
Operations
Multiply to find area.
12
20
240
Multiply to find total cost.
240
3
720
The total cost is $\$ 720$.

Given: Starting balance in account and individual checks written
Find: Remaining balance in account Operations
(1) Add the individual checks

1
82
159
101
\$242
Subtract $\$ 242$ from the initial balance
278
242
36
There will be $\$ 36$ left in Gina's account.
Given: Initial balance in account and individual checks written
Find: The remaining balance
Operations
(1) Add the individual checks.

11
587
36
156
\$779
Subtract $\$ 779$ from the initial balance.
131415
$145 / 5$
779
676
There will be $\$ 2676$ left in Jose's account.
Given: Number of computers and printers purchased and the cost of each
Find: The total bill
Operations
Multiply to find the amount spent on computers, then printers.

115	33
2118	256
\times	72
4236	$\times 1536$
260	
$\$ 152,496$	
Add to find the total bill.	
111	
152,496	
$\underline{1536}$	
154,032	

The total bill was $\$ 154,032$.

Given: Price for children and adults, and the number of children and adults Find: Total
cost for the trip Operations
(1) Multiply to find the amount for children and for adults.
24

33
$\quad 37$
$\times \quad 231$
37
$\times 6$
\$222
660
\$891
Add to find the
total. \$ 891
$\underline{222}$
\$1113
The amount of money required is $\$ 1,113$.
Given: Amount to sell used CDs, amount to buy used CDs and number of CDs sold

Find: Money from selling 16 CDs
Operation: Multiply
16
$\underline{3}$
48
Latayne will receive $\$ 48$.
Find: Number of used CDs to buy for \$48.
Operation: Division
$48 \div 8=6$
She can buy 6 CDs.
Given: Wage per hour and number of hours worked

Find: Amount of weekly paycheck
Operation: Multiply
40
12
80
400
$\$ 480$
Shevona's paycheck is worth $\$ 480$. Given: Ticket price and number of tickets
Find: Amount left over from paycheck

Operations

She will have $\$ 302$ left.

Given: Number of field goals, three-point shots and free throws and point values
Find: Total points scored
Operations
(1) Multiply

field goals	three-point shots
1	2
12,192	581
$\times \quad 2$	$\times 3$
24,384	1,743
Add	
1111	
384	
743	
$\underline{7327}$	
33,454	

Michael Jordan scored 33,454 points with the Bulls.

Given: Width of each picture and width of the matte frame
Find: Space between each picture Operations
(1) Multiply $5 \times 5=25$
(2) Subtract $37-25=12$
(3) Divide
$12 \div 6=2$
There will be 2 in of matte between the pictures.

Given: Number of milliliters in the bottle and the dosage

Find: Days the bottle will last
Operation: Divide
$60 \div 2=30$
One bottle will last for 30 days.
Find: Date to reorder
Operation: Subtract
$30-2=28$
The owner should order a refill no later than September 28.

Chapter 1 Whole Numbers

Given: Number of male and female doctors

Find: Difference between male and female doctors
Operation: Subtract
9
21013
630,300
$\underline{205,900}$
42 4,400
The difference between male and female doctors is 424,400 .
Find: The total number of doctors
Operation: Add
1
630,300
205,900
836,200
The total number of doctors is 836,200.

Given: Scale on a map
Find: Actual distance between Las
Vegas and Salt Lake City
Operation: Multiply 60

6
360
The distance is 360 mi .
Find: Distance on map between
Madison and Dallas Operation:
Divide
14
$6 0 \longdiv { 8 4 0 }$

- $\frac{-60}{240}$
-24
14 in . represents 840 mi .

Given: Scale on a map
Find: Actual distance between
Wichita and Des Moines
Operation: Multiply 40

8
320
The distance is 320 mi .
Find: The distance between Seattle
and Sacramento on the map.
Operation: Divide
15
40: 600
$y-40$
200
-20
15 in . represents 600 mi .
Given: Number of books per box and number of books ordered
Find: Number of boxes completely filled and number of books left over Operation: Divide and find remainder

104 R2
12】 1250

- -12

050
$\frac{-4}{8}$
2
104 boxes will be filled completely with 2 books left over.

Given: Number of eggs in a container and total number of eggs
Find: Number of containers filled and number of eggs left over Operation:
Divide and find remainder

354 containers will be filled completely with 9 eggs left over.

Given: Total cost of dinner and type of bill used

Find: Number of $\$ 20$ bills needed
Operation: Division
4 R 4
20! 84

$\dot{\prime}$
$\overline{8}$
$\underline{0}$

4

Four $\$ 20$ bills are not enough so Marc needs five $\$ 20$ bills.
Find: How much change
Operations: Multiply and subtract

$$
20
$$

100
$\times 5$
100 $\frac{-84}{16}$
He will receive $\$ 16$ in change.
Given: total cost of CDs and type of bill used

Find: How many $\$ 10$ bills needed
Operation: Divide
5 R 4
10】 54
$\stackrel{\overline{\overline{5}}}{\underline{\underline{0}}}$

4
Five $\$ 10$ bills are not enough so
Shawn needs six $\$ 10$ bills.
Find: How much change
Operations: Multiply and subtract
$10 \quad 60$
$\frac{-6}{60} \quad \frac{-54}{6}$
He will receive $\$ 6$ in change.

Chapter 1 Review Exercises

Section 1.1

1. 10,024

Ten-thousands
2. 821,811

Hundred-thousands
3. 92,046
4. 503,160
5. 3 millions +4 hundred-thousands

Given: Hourly wage and number of hours worked
Find: Amount earned per week
Operations
Multiply to find amount per
job. $30 \times 4=12010 \times 16=160$
$8 \times 30=240$
(2) Add to find total.

1
120
160
240
520
He earned $\$ 520$.
Given: Hourly wage and number of hours worked
Find: Total paid to all four workers Operations
(1) Multiply to find amount per worker $36 \times 18=648 \quad 26 \times 24=624$ $28 \times 15=420 \quad 22 \times 48=1056$
(2) Add to find total paid.

111
648
420
624
1056
2748
The total amount paid was $\$ 2748$.
7. Two hundred forty-five
8. Thirty-thousand, eight hundred sixty-one
9. 3602
10. 800,039
11. 2;
12. 7;

$$
+8 \text { hundreds }+2 \text { tens }
$$

6. 3 ten-thousands +5 hundreds +5 tens +4 ones
7. $3<10$ True
8. 10>12 False

Chapter 1 Whole Numbers

Section 1.2

Addends: 105, 119; sum: 224
Addends: 53, 21; sum: 74
2
18
24
$\underline{29}$
71
2
27
9
$\underline{18}$

$$
54
$$

1
8403
$\underline{9007}$
17,410
68,421
2,221
70,642
(a) The order changed, so it is the commutative property.
The grouping changed, so it is the associative property. The order changed, so it is the commutative property.
$403+79 ; 482$
1
403
79
482
$44+92 ; 136$
92
44
136
$36+7=43$
$23+6=29$
(a) Add the numbers for AA Auto. 3125
$\underline{40}$
96 cars
Add the numbers of
Fords. 2125
$\underline{20}$
66 Fords
35,377
10,420
45,797 thousand seniors
28. $\quad \begin{aligned} & 1 \\ & \end{aligned}$

44
25
53
$+25$
177 m

Section 1.3

minuend: 14
subtrahend: 8
difference: 6
minuend: 102
subtrahend: 78
difference: 24
31. 37
$\underline{26}+11=37$
$\underline{11}$
26
32. 61
$\underline{20}+41=61$
41
20

9
11010
33. 20005/
-1884
121

218
1389
$\underline{299}$
1090
99
$86,00 / \underline{101010} / 1$
$\underline{54981} 31,019$
99
$67,000 \frac{101010}{/ / /}$
$\frac{32812}{34,188}$
$38-31 ; 7$
38
$\frac{31}{7}$

111-15; 96
10
$\nmid 11$
$/ \nmid 1$
15
96
251-42; 209
411
17
$\underline{42}$
9
90-52; 38
10
$\begin{array}{r}10 \\ 52 \\ \hline\end{array}$
38
1018
$40 / 811511$
95,1 9/1,7 $\& 7$ //
23, 29 9,323
71, 892,438 tons
115
2 5,800,000
18,600,000
\$7,200,000

Section 1.4

$$
330 \rightarrow 300
$$

$$
489 \rightarrow 500
$$

$$
123 \rightarrow 100
$$

$$
571 \rightarrow 600
$$

$$
1500
$$

$$
\begin{array}{ccc}
140,041,247 & \rightarrow & 140,000,000 \\
\underline{127,078,679} & \rightarrow & \frac{127,000,000}{13,000,000} \\
13,000,000 \text { people } &
\end{array}
$$

49. $96,050 \rightarrow \quad{ }^{1} 96,000$

$$
\underline{66,517} \rightarrow \pm \frac{67,000}{163,000 \mathrm{~m}^{3}}
$$

Section 1.5

Factors: 32, 12
Product: 384
Factors: 33, 40
Product: 1320
(a) Yes

Yes
No
c
e
d

$$
\begin{aligned}
& \text { 5,2]34,446 } \\
& \text { 5,000,000 } \\
& \text { 9,332,945 } \\
& \text { 9,330,000 }
\end{aligned}
$$

Chapter 1 Whole Numbers

a
b
1
1

142
43
11

426
$\underline{5680}$
6106
12
1024
51
51200
52,224

6004

5	00
	00000

3,000,000
61. 26

39

$\times 11$
+139
390
$\$ 429$

- 3

62. 551
$\times \quad 7$ 3857

Section 1.6

$42 \div 6=7$
divisor: 6, dividend: 42, quotient: 7
$4 \backslash 5 \overline{\boldsymbol{z}}=13$
divisor: 4, dividend: 52, quotient: 13
$3 \div 1=3$ because $1 \times 3=3$.
$3 \div 3=1$ because $1 \times 3=3$.
$3 \div 0$ is undefined.

To check a division problem with no remainder you multiply the quotient by the divisor to get the dividend.

To check a division problem with a remainder you multiply the whole number part of the quotient by the divisor and add the remainder to get the dividend.

41R7
72. $11 \underset{-44}{458} \quad 41$

18
41
$-11 \quad \underline{410}$
451
7

458
52 R3

73. 20) | 1043 | 52 |
| ---: | :---: |
| -100 | $\times 20$ |
| 43 | 1040 |
| -40 | $+\quad 3$ |
| 3 | 1043 |

$\underline{72}_{4}=18$
$0 \div 3=0$ because $0 \times 3=0$.

12
$9 \quad 108$ $\frac{-9}{18}$
-18
0
Divide 105 by 4.
R 1
4105
-8
-24
1
26 photos with 1 left over
(a) Divide 60 by $15.60 \div$
$15=4$ T-shirts
Divide 60 by 12 .
$60 \div 12=5$ hats

Section 1.7

$8 \cdot 8 \cdot 8 \cdot 8 \cdot 8=8 \begin{array}{r}8 \\ 4\end{array}$
2. $2 \cdot 2 \cdot 2 \cdot 5 \cdot 5 \cdot 5$
$=2 \cdot 5$
3
$5=5 \times 5 \times 5=25 \times 5=125$
$4^{4}=4 \times 4 \times 4 \times 4=16 \times 16=256$
$1^{7}=1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1 \cdot 1=1$
$10^{6}=10 \times 10 \times 10 \times 10 \times 10 \times 10=1,000,000$
$64 \sqrt{=8}$ because $8 \times 8=64$.
$14 \sqrt{=12}$ because $12 \times 12=144$.
$14 \div 7 \cdot 4-1=2 \cdot 4-1=8-1=7$
$10^{2}-5^{2}=100-25=75$
$90-4+6 \div 3 \cdot 2=90-4+2 \cdot 2$
90-4+4
$86+4$
90
$2+3 \cdot 12 \div 2-25=\sqrt[2+3 \cdot]{ } 12 \div 2-5$
$2+36 \div 2-5$
$2+18-5$
20-5
15
$6^{2}-4^{2}+(9-7)^{3}=6^{2}-4^{2}+2^{3}$
36-16+8
20+8
28

$$
\begin{aligned}
26-2(10-1)+ & (3+4 \cdot 11) \\
& 26-2(9)+(3+44) \\
& 26-2(9)+47 \\
& 26-18+47
\end{aligned}
$$

$$
\text { mean }=\underline{7} \pm \underline{6} \pm \underline{12} \pm \underline{5} \pm \underline{7} \pm \underline{6} \pm \underline{13}=\underline{56}=8
$$

77

per month 6

Section 1.8

Given: Number of animals and species at two zoos

Find: Which zoo has more animals
and how many more Operation:
Subtraction
17,000 4,000
13,000
The Cincinnati Zoo has 13,000 more animals than the San Diego Zoo.
Find: Which zoo has the most species, and how many more
Operation: Subtract
710
$\$ 00$
750

$$
50
$$

The San Diego Zoo has 50 more species than the Cincinnati Zoo.

Given: The distance traveled and the number of trips

Find: Number of miles traveled in one week
Operations: Multiplication and addition

5	15
$\times 3$	+6
	21 miles per week

Find: Number of miles traveled in 10 months with 4 weeks a month Operation: Multiplication
2184

$$
\frac{8}{+} \frac{\times 44}{84}
$$

miles/month	\times
10 miles/year	
84	
0	

Chapter 1 Whole Numbers

Given: Contract: 252,000,000
Time period: 9 years
taxes: 75,600,000
Find: Amount per year after taxes
Operations
(1) Subtract

11
141/10
2787, 900,000
75,600,000
176,400,000
Divide
19,600,000
$911176,400,000$
$\cdot \frac{-9}{86}$
-81
54
-54
0
He will receive $\$ 19,600,000$ per year.

Given: dimensions of a rectangular garden and size of division for plants

Find: Number of plants
Operations
(1) Multiply
$12 \times 8=96$
(2) Divide
$96 \div 2=48$
She should purchase 48 plants.
Find: Cost of plants for $\$ 3$ each
Operation: Multiply
2
48
$\underline{3}$
144
The plants will cost $\$ 144$.
Find: Perimeter of garden and cost of fence
Operations
(1) Add
$12+8+12+8=40$
(2) Multiply
$40 \times 2=\$ 80$ The
fence costs $\$ 80$.
Find: Total cost of garden
Operations: Add
144
$\underline{80}$
224
Aletha's total cost will be $\$ 224$.

Chapter 1 Test

(a) 492 hundreds

23,441 thousands
2,340,711 millions
340,592 ten-thousands
(a) $4,065,000$

Twenty-one million, three hundred twenty-five thousand
Twelve million, two hundred eightyseven thousand
729,000
Eleven million, four hundred ten thousand
(a) $14>6$
$72<81$
51
78
129
82
4
328
154
$\underline{41}$
113
227
$4 \longdiv { 9 0 8 }$
$\frac{-8}{10}$
$-\frac{8}{28}$
-28

3
7
58
$\underline{49}$
522
320
2,842
1
149
$\underline{298}$
$15 \underbrace{}_{\begin{array}{c}\frac{324}{24} \\ \frac{-15}{9}\end{array}} \begin{array}{r}\text { R9 } \\ \frac{-30}{2}\end{array}$
99
2101012
$30 \% / 1 /$ 2456
546
010
10,984
$\underline{2881}$
8103
$42 \begin{array}{r}20 \\ \frac{840}{-84} \\ 00\end{array}$
500000
$\frac{3000}{1,500,000,000}$
${ }^{1}$
34
89
191
$\underline{22}$
336
$403(0)=0$
$0 \sqrt{16}$ is undefined.
(a) $(11 \cdot 6) \cdot 3=11 \cdot(6 \cdot 3)$ The associative property of multiplication; the expression shows a change in grouping.
$(11 \cdot 6) \cdot 3=3 \cdot(11 \cdot 6)$
The commutative property of multiplication; the expression shows a change in the order of the factors.
(a) 4,850 円 4,900
$12,493 \rightarrow 12,000$
$7,9 \overline{6} 3,126 \rightarrow 8,000,000$
1
20. $690,951 \rightarrow 690,000$
$+739,117 \rightarrow \frac{740,000}{1,430,000}$
There were approximately $1,430,000$ people.
$8^{2}\left|2^{4}=64\right| 16=4$
22. $26 \cdot \sqrt{4}-4(8-1)=26 \cdot \sqrt{4}-4 \cdot 7$
26. 2-4. 7

52-28
24
$36 \div 3(14-10)=36 \div 3(4)=12(4)=48$
$\begin{aligned} 65-2(5 \cdot 3-11)^{2}= & 65-2(15-11)^{2} \\ & 65-2(4)^{2}\end{aligned}$ 65-2•16
65-32
33
Given: Quiz scores and number of quizzes
for Brittany and Jennifer
Find: Who has the higher average
Operations: Find the average of each group.
Brittany:
$\frac{29+28+24+27+30+30}{6}=\frac{168}{6}=28$
Jennifer:

$$
\frac{30+30+29+28+28}{5}=\underline{145}=29
$$

Jennifer has the higher average of 29.
Brittany has an average of 28.
(a) Subtract to find the change from year 2 to year 3 .

2911
213,0115
212,5 73

42 thousand subscribers

The largest increase was from year 3 to year 4 . The increase was 15,430 thousand.

Divide the number of calls by the number
of weeks.
North: $80 \div 16=5$
South: $72 \div 18=4$
East: $84 \div 28=3$
The North Side Fire Department is the busiest with an average of 5 calls per week.

Add the sides.
1
15
31
32
15
32
$+31$
156 mm
29. Add to find the perimeter.

13
47
128
47
128
ft
Multiply to find the area.
128
47
896
5120
$6016 \mathrm{ft}^{2}$

$$
3
$$

30. $2379 \rightarrow 2400$
$\times 1872 \rightarrow \frac{\times 1900}{2160000}$
$\underline{4,560,000} \mathrm{~m}^{2}$

Chapter 2 Fractions and Mixed Numbers: Multiplication and Division

Chapter Opener Puzzle

3	5	6	${ }^{\text {A }} 1$	2	4
B_{1}	2	3	${ }^{\text {C }} 4$	${ }^{\text {D }} 6$	${ }^{\text {E }} 5$
6	4	2	5	3	1
2	1	4	6	5	3
${ }^{\text {G }} 5$	3	1	${ }^{\mathrm{H}} 2$	4	${ }^{1} 6$
4	6	5	3	${ }^{\text {J }} 1$	2

Section 2.1 Introduction to Fractions and Mixed Numbers

Section 2.1 Practice Exercises
(a) fractions
numerator; denominator
proper
improper
mixed
$\underline{2}$
7
Numerator: 2; denominator: 3
Numerator: 8; denominator: 9
Numerator: 12; denominator: 11
Numerator 1; denominator: 2
$6 \mid 1 ; 6$
9|1;9
$2 \mid 2 ; 1$
$8 \mid 8 ; 1$
$0 \mid 3 ; 0$
$0 \mid 7 ; 0$
$2 \mid 0$; undefined
$11 \mid 0$; undefined
$\underline{3}_{4}$
$\underline{1}_{2}$
$9^{\underline{5}}$
5^{3}
$\underline{1}_{6}$ $7^{\underline{4}}$ $8^{\underline{3}}$ $\stackrel{2}{3}_{3}$

Chapter 2 Fractions and Mixed Numbers: Multiplication and Division

23. $\frac{3}{4}$

$$
8^{\underline{9}}
$$

24. $\frac{1}{4}$

$$
\frac{7}{4}_{4}
$$

25. $\frac{1}{8}$
$7_{4 ; 1} \frac{3}{4}$

$13 \quad 1$
4;34
26. 103^{41}

43
28. 103
29. $\frac{10}{21}$
30. $\stackrel{10}{ }_{63}$

$$
1 \underline{3}=\underline{4 \times 1+3}=\underline{7}
$$

$$
6 \underline{1}=\underline{6 \times 3+1}=\underline{19}
$$

$$
333
$$

31. Proper
32. Proper
33. Improper
34. Improper

$$
3 \underline{3}=\underline{3 \times 7+3}=\underline{24}
$$

35. Improper

$$
777
$$

36. Improper
37. Proper
38. Proper
39. $\frac{5}{2}$

$$
\begin{gathered}
4 \underset{999}{2}=\underline{4 \times 9+2}=\underline{38} \\
\hline
\end{gathered}
$$

$$
31=355 \times 5+1=16
$$

$8 \underline{2}=\underline{8 \times 3+2}=\underline{26}$ 333

$$
\underset{444}{7 \underline{1}=\underline{7 \times 4+1}=\underline{29}}
$$

$$
10 \underline{3}=\underline{10 \times 5+3}=\underline{53}
$$

40. $\frac{4}{3}$
41. $\frac{12}{4}$

$$
11 \frac{5}{121212}=\underline{11 \times 12+5}=137
$$

$121=\underline{12 \times 6+1}=\underline{73}$ 666
42. $\frac{27}{}$

Section 2.1 Introduction to Fractions and Mixed Numbers

$$
\begin{aligned}
& 21 \underline{3}=\underline{21 \times 8} \pm \underline{3}=\underline{171} \\
& 888 \\
& 151=\underline{15 \times 2+1}=\underline{31} \\
& 222 \\
& 2 \underline{3}=\frac{2 \times 8+3}{\begin{array}{c}
888 \\
\text { eighths }
\end{array}}=\underline{19} \\
& 2 \underline{3}=\frac{2 \times 5+3}{555}=\underline{13} \\
& \text { fifths } \\
& 1 \underline{3}=\underline{1 \times 4+3}=\underline{7} \\
& 444 \\
& \text { fourths } \\
& 5 \underline{2}=\underline{5 \times 3+2}=\underline{17} \\
& 17 \text { thirds }
\end{aligned}
$$

65. $8 \longdiv { 4 } \begin{array} { r } { 7 } \\ { \quad \mathrm { J } } \\ { \hline 5 } \end{array}$
66. 7) $\begin{array}{r}1 \\ 3 \\ -7 \\ 6\end{array}$
67.5) $\begin{array}{r}7 \\ 9 \\ -\quad 5 \\ 4\end{array}$
67. 4) $\begin{array}{r}4 \\ 9 \\ -\quad 6 \\ \hline 3\end{array}$
$4 \frac{3}{4}$
1. 10$) \begin{array}{rr}2 \\ 27 & 2 \frac{7}{10} \\ \frac{-20}{7} & \end{array}$

Chapter 2 Fractions and Mixed Numbers: Multiplication and Division

78. 4) | 930 |
| :---: |
| 921 |
| 1 |

$$
{\underset{12}{-8}}^{-1}
$$

$$
-12
$$

1 $\frac{-0}{1}$
79. 5) $\begin{array}{rr}1056 \\ 5281 & 1056 \frac{1}{5} \\ \frac{-5}{2} & \\ \frac{-0}{28} & \\ \frac{-25}{31} & \\ \frac{-30}{1} & \end{array}$

5

80.8) | $\frac{7213}{\underline{5}}$ | 901 |
| ---: | ---: |
| $\frac{-72}{1}$ | 8 |
| $\frac{-0}{13}$ | |
| $\frac{-8}{5}$ | |
| | |

810
81. 11) $8913 \quad 810 \underline{3}$

$$
\begin{array}{r}
\frac{-88}{11} \\
-11
\end{array}
$$

3
$\frac{-0}{3}$
185
82. $23 \begin{array}{rr}4257 & 185 \underline{2} \\ \frac{-23}{195} & 23 \\ \frac{-184}{117} & \\ \frac{-115}{2} & \end{array}$
$1 5 \longdiv { 1 2 } \quad 1 ^ { 7 }$
$-\frac{-15}{37}$
-30
7
$34 \begin{array}{r}\frac{20}{695} \\ \frac{-68}{15} \\ \frac{-0}{15}\end{array} \quad 2{ }^{2 \frac{15}{34}^{2}}$
85. $\underset{0}{+}, \stackrel{\frac{3}{4}}{\substack{1}}$
86.

87.

88.

89.

90.

91.

93.

94.

95. False
97. True
96. True
98. True

Section 2.2 Prime Numbers and Factorization

Section 2.2 Practice Exercises

(a) factor prime composite prime
c. Between 2 and 3
$12^{8} ; 12^{4}$
$\underline{5}_{2} ;{\underset{2}{2}}$
$\underline{5}_{4} ; \underline{3}_{4}$

$$
\underline{6}_{5} ; \text { improper }
$$

12^{7}; proper

$$
\underline{6}_{6 ; \text { improper }}
$$

3
$6 \underline{2}=\underline{6 \times 7+2}=\underline{44}$

$$
777
$$

For example: 2 - 4 and 1 - 8
For example: 2 - 10 and 4 - 5
For example: 4 - 6 and $2 \cdot 2 \cdot 2$

- 3

For example: 1-14 and 2-7

roduct36	42	30	5	81		
Factor	12	7	30	15	27	
Factor	3	6	1	1	3	
Sum	15	13	31	16	30	

roduct36 42	45	2	24		
Factor	9	7	15	18	8
Factor	4	6	3	4	3
Difference	5	13	12	14	5

A whole number is divisible by 2 if it is an even number.
A whole number is divisible by 10 if its ones-place digit is 0 .

A whole number is divisible by 3 if the sum of its digits is divisible by 3 .
A whole number is divisible by 5 if its ones-place digit is 5 or 0 .

45
No; 45 is not even.

Yes; $4+5=9$ is divisible by 3 .
Yes; the ones-place digit is 5 .
No; the ones-place digit is not 0 .
100
Yes; 100 is even.
No; $1+0+0=1$ is not divisible by 3 .
Yes; the ones-place digit is 0 .
Yes; the ones-place digit is 0 .

Chapter 2 Fractions and Mixed Numbers: Multiplication and Division

137
No; 137 is not even.
No; $1+3+7=11$ is not divisible by 3.

No; the ones-place digit is not 0 or 5 .
No; the ones-place digit is not 0 .

No; 241 is not even.
No; $2+4+1=7$ is not divisible by 3 .
No; the ones-place digit is not 0 or 5 .
No; the ones-place digit is not 0 .

Yes; 108 is even.
Yes; $1+0+8=9$ is divisible by 3 .
No; the ones-place digit is not 0 or 5 .
No; the ones-place digit is not 0 .
1040
Yes; 1040 is even.
No; $1+0+4+0=5$ is not divisible by 3 .
Yes; the ones-place digit is 0 .
Yes; the ones-place digit is 0 .
3140
Yes; 3140 is even.
No; $3+1+4+0=8$ is not divisible by 3 .
Yes; the ones-place digit is 0 .
Yes; the ones-place digit is 0 .
2115
No; 2115 is not even.
Yes; $2+1+1+5=9$ is divisible by 3.

Yes; the ones-place digit is 5 .
No; the ones-place digit is not 0 .
$28!84$

0
$22!110$ $\stackrel{-}{1}$ 1

0

Yes, 110 is divisible by 22 .
Prime
Prime
33. Composite $2 \cdot 5=10$
34. Composite $\quad 3 \cdot 7=21$
35. Composite $3 \cdot 17=51$
36. Composite 3. 19=57

Prime
Prime
Neither
Neither
41. Composite $11 \cdot 11=121$
42. Composite 3 23=69

Prime
Prime
45. Composite $3 \cdot 13=39$
46. Composite 7. 7=49

There are two whole numbers that are neither prime nor composite, 0 and 1 .

False; the square of any prime number is
divisible by that prime number.
False; 9 is not prime.
False; 2 is not composite.
$2,3,5,7,11,13,17,19,23,29,31,37$,
$2,3,5,7,11,13,17,19,23,29$,
31, 37,
41, 43, 47, 53, 59, 61, 67, 71,
73, 79

No, 9 is not a prime number.
No, 8 is not a prime number.

Yes
Yes
7
$5 7 . 5 \longdiv { 3 5 }$
2. $5 \cdot 7=70$
$2 \longdiv { 7 0 }$
11
$5 8 . 5 \longdiv { 5 5 }$
3) 165
3) $\overline{495}$

13

60.535
5. $5 \cdot 7=\cdot 7$
5
$5 \longdiv { 1 7 5 }$

2
61. 749
$3 \cdot 7 \cdot 7==147$
$3 \cdot 7$
$3 \longdiv { 1 4 7 }$
3) $\frac{\overline{17}}{512 \cdot 3 \cdot 17=512)}$ 102
64. $7 \longdiv { 1 1 }$
3. $7 \cdot 11=231$
$3 \longdiv { 2 3 1 }$
65. $7 \longdiv { 1 1 }$
$2 \cdot 2 \cdot \begin{aligned} & 2 \cdot 7 \cdot 11=2 \\ & \cdot 7 \cdot 11=616\end{aligned}$
$2 \longdiv { 1 5 4 }$
$2 \longdiv { 3 0 8 }$

2616
66. $7 \begin{array}{ll}\frac{13}{91} & 2 \cdot 2 \cdot 7 \cdot 13^{2} \cdot 7 \cdot 13=364 \\ 2 \longdiv { 1 8 2 } & =2\end{array}$
$2 \longdiv { 3 6 4 }$

47 is prime.
41 is prime.
1, 2, 3, 4, 6, 12
1, 2, 3, 6, 9, 18
$1,2,4,8,16,32$

1, 5, 11, 55
1, 3, 9, 27, 81
$1,2,3,4,5,6,10,12,15,20,30,60$

23
3) $692 \cdot 3 \cdot 23=1382)_{138}$
$1,2,3,4,6,8,12,16,24$,
48
$1,2,3,4,6,8,9,12,18$,
24, 36, 72
No; 30 is
not
divisible by
4. No; 46 is
not
divisible by
4. Yes; 16
is divisible
by 4. Yes;
64 is
divisible by
4. Yes; 32
is divisible
by 8 . Yes;
520 is
divisible by
8.

Chapter 2 Fractions and Mixed Numbers: Multiplication and Division

No; 126 is not divisible by 8 .
No; 58 is not divisible by 8 .
Yes; $3+9+6=18$ is divisible by 9 .
Yes; $4+1+4=9$ is divisible by 9 .

No; $8+4+5+3=20$ is not divisible by 9.

No; $1+5+8+7=21$ is not divisible by 9.

Yes; 522 is even and $5+2+2=9$ is divisible by 3 .

Yes; 546 is even and $5+4+6=15$ is divisible by 3 .

No; 5917 is not even.
No; $6+3+9+4=22$ is not divisible by 3.

Section 2.3 Simplifying Fractions to Lowest Terms

Section 2.3 Practice Exercises

lowest
(a) No
Yes Yes
No
3. $5 \frac{29}{145}$
5. $29=145$
8.315
$2 \longdiv { 3 0 }$
2) $\overline{60}$
$2 \longdiv { 1 2 0 }$

5
3) -19
$572 \cdot 3 \cdot 19=114$
9. $5 \longdiv { 1 3 }$
3• $5 \cdot 13=195$
$3 \longdiv { 1 9 5 }$
$2 \longdiv { 1 1 4 }$
5. $2 \lcm{23}$
$2 \cdot 2 \cdot 23 \stackrel{2}{2} \cdot 23=9$
2) $\overline{92}$
6. $3 \begin{array}{r}17 \\ 3 \longdiv { 1 5 3 }\end{array}$
7. $5 \longdiv { 8 5 }$
5. $17=85$

10. 3 | 5 |
| :---: |
| 15 |
| 5 |

$\begin{aligned} & 2 \cdot 2 \cdot 3 \cdot 3 \cdot \frac{2}{5} \cdot \frac{2}{3} \\ & =2\end{aligned} \cdot 5=$
$\sqrt[3]{45}$

290
$2 \longdiv { 1 8 0 }$
11.

$2 \cdot 2 \cdot 2 \cdot 3 \cdot \frac{3}{5} \cdot 3 \cdot 5=120$ $=2$
\square
12.

False; $5 \times 5 \neq 4 \times 4$
Two fractions are equivalent if they both
represent the same part of a whole.
17. $2 \times 5 \quad 3 \times 3 \quad \underline{2}-\underline{3}$
$10 \neq 9 \quad 3 \quad 5$
18. $1 \times 94 \times 2$
$9 \neq 8$
$\begin{array}{ll}\frac{1}{4} & -2 \\ 4 & 9\end{array}$
$1 \times 62 \times 3$
$6=6$
$\underline{1}_{2=6} \underline{3}$
$6 \times 8 \quad 16 \times 3$

$$
48=48
$$

$$
16^{6}=8^{\underline{3}}
$$

$12 \times 416 \times 3$
$\begin{aligned} & \frac{48}{12} \\ & 6\end{aligned}=\underline{3}_{4}$

$$
\begin{gathered}
5 \times 18 \quad 6 \times 12 \\
90 \neq 72 \\
\frac{5}{6} \quad \frac{-12}{18}
\end{gathered}
$$

26. $\frac{15}{18}=-\frac{\not x \cdot 5}{2 / 3 \cdot 3}-=-5$

$$
\frac{36}{2 \cdot 2 \cdot \frac{2}{2} 2 \cdot 3 \cdot 3}=\underline{9} / 50
$$

30. $\frac{49}{42}=\frac{7 \cdot 7}{2 \cdot 3 \cdot 77}=\frac{7}{6}$
31. $\frac{15}{12}=\frac{3 \cdot 5}{\frac{5}{2} \cdot 2 \cdot / 3}=$

$$
\begin{gathered}
\underline{30}=\frac{2 \cdot 3 \cdot 5}{=6} \\
25 \quad 5 \cdot / 5 \\
5
\end{gathered}
$$

$$
\begin{gathered}
20=\frac{2 \cdot 2 \cdot 5}{=4} \\
255 / 5
\end{gathered}
$$

$$
4 \times 155 \times 12
$$

$60=60$

$$
5^{\frac{4}{2}}=\frac{12}{15}_{15}
$$

$\stackrel{14}{7}{ }_{71}$

$$
\underline{8}_{8=1}
$$

$$
\underline{50}=\underset{25}{25}=2
$$

Chapter 2 Fractions and Mixed Numbers: Multiplication and Division

$$
\begin{aligned}
& \underline{24}=\underline{4} . \underline{6}=4 \\
& 66 \\
& \underline{9}_{9=1} \\
& \underline{2}_{2=1}
\end{aligned}
$$

$$
\underline{105} \quad 3 \cdot / 5 / 7
$$

41. $=\underline{3} 140 \quad 2 \cdot 2 \cdot \frac{1}{2}=$

4
${ }^{84}=2 \cdot \frac{2 \cdot 3 \cdot 7}{126} \overline{126}=\underline{2}$
2. $3 \cdot 3 \cdot 7 / 3$

$$
\underline{33}=\underline{3} \cdot \underline{11}=3
$$

$11 \quad 11$

$$
\underline{65}=5.13=13
$$

46. $\frac{85}{153}=\frac{5 \cdot \frac{1}{3} \frac{5}{3 .}}{}=$

$$
130=2 \cdot \frac{5 \cdot 13}{}
$$

$$
150=\frac{13}{2 / 3 \cdot / 5 \cdot 5 \cdot 15}
$$

$$
70 \quad 12 \cdot / 5 \cdot 7
$$

48. ${ }_{120}=\frac{7}{2 \cdot 2 \cdot 2 \cdot \not 2 \cdot}=5$
$\underline{385}=5 \cdot \underline{77} \underline{7 \cdot 11}=$
$1953 \cdot 5 \cdot 1339$

$$
\begin{aligned}
& 6-2=4=/^{2} \cdot 2=2 \\
& \overline{10+4} 14 \overline{2} \cdot 7 \overline{7} \\
& 9-1=8=2 \cdot 2 \cdot 2=415+ \\
& \overline{3182} \cdot \overline{3} \cdot 3 \overline{9} \\
& \underline{5}=\underline{5}=\underline{0}=0
\end{aligned}
$$

$$
7-25
$$

$$
\underline{11-11}_{=}^{0}=0
$$

$$
\begin{gathered}
\underline{7}_{-4+7}^{-2} \underline{2}_{=}^{11}=\underline{5} \\
5-50
\end{gathered}=\text { undefined }
$$

$$
\stackrel{4+7}{=}=\underline{11}=\text { undefined }
$$

$$
11-110
$$

59. $\underline{8}-2=\frac{6}{\underline{x L} \cdot 3}=\underline{3}$

$$
\begin{aligned}
& 150 \cdot \frac{39}{2 \cdot}=\frac{3 \cdot}{\overline{5}} \cdot 10=\underline{3} \\
& \underline{34}=\frac{2 \cdot 17}{}=\underline{2} \\
& 855 \cdot \underline{17} 5 \\
& \underline{69}=3 \cdot 23=\underline{3} \\
& 922 \cdot 2 \cdot 23
\end{aligned}
$$

$$
\begin{aligned}
& 8+2 \quad 10 \quad 2 \cdot 5 \quad 5 \\
& \underline{15+3}=\underline{18}=6 \cdot 3=3 \\
& \text { 15-3 } 12 \text { 6. } 22 \\
& \text { 2. 2. } 3 \\
& \text { 61. } 160=\frac{\underline{\underline{3}}}{16} \quad / 2 \cdot 2 \cdot 2 \cdot 2 \\
& 720=\underline{72}=8 \cdot \underline{9}=\underline{9}- \\
& 800 \quad 80 \quad 8 \cdot 10 \quad 10 \\
& 3000=\underline{30}=2 \cdot 3 \cdot 5=51800
\end{aligned}
$$

18及f3.33

$\frac{5100}{30,009 / 5003 \cdot 100100}=51=3 \cdot 17=17$
68. $-\frac{9800}{8,1 / / 1}=\frac{98 / 1-2 \cdot 7 \cdot 7}{280 / / 2}=\frac{7}{20}$
69. Heads: $\underline{20}=\frac{2 \cdot 2 \cdot 5}{1 /}=$

$$
48 \quad 2 \cdot 2 \cdot 2 \cdot 2 \cdot 3
$$

12
Tails: $48-20=28$

12
$70 \equiv \frac{2 \cdot 5 \cdot 7}{/}=2$
$1053 \cdot 5 / 7 /$
3
71. (a) $\underline{6}=\frac{2 / \cdot 3}{/}=$
$26 \quad 2 \cdot 13 \quad 13$
(b) $26-6=20$

$$
\frac{20}{26}=\frac{\not 2 \cdot 2 \cdot 5}{2 \cdot 13}=\frac{10}{13}
$$

72. (a) $\frac{12}{}=\frac{/ 2 \cdot / 2 \cdot}{/ 1}-3-$
$\underline{3}$

$$
88 \quad 2 \cdot 2 \cdot 2 \cdot 11
$$

22
(b) $\begin{aligned} & \frac{36}{} \frac{\not 2 \cdot 2 \cdot 3 \cdot 3}{9}= \\ & \\ & \\ & 28\end{aligned}=$
(a) Jonathan: $\underline{25}=\underline{5 \cdot / 5}=\underline{5}$ 35/5. 77
Jared: $\frac{24}{28}=\frac{12 \cdot / 2}{2} \frac{2}{2} \cdot \frac{2}{2} \cdot \quad=\frac{6}{7}$
Jared sold the greater fractional part because $7^{\underline{6}}>7^{\underline{5}}$.
74. (a) Lynette:

24 2•2•2• 3
8
Lisa: $\frac{14}{/} \underline{12 \cdot 7}=7$
76. (a) $\underline{15}=\frac{3 \cdot 5}{/}=\underline{5}$
$27 \quad 3 \cdot \beta \cdot 3 \quad 9$
(b) $\frac{16}{36}=\not \underline{2 \cdot 2 \cdot 2 \cdot 2}=\underline{2 \cdot \not 2 \cdot 3 \cdot 3}=4$
77. (a) $300,000,000$
(b) $36,000,000$

$=2 \cdot 2 \cdot / 3 \cdot / 5 \cdot / 5$
(a) $300,000,000$

75,000,000
$\frac{300,0060,606}{75,900,9007}=\frac{300}{}$
$=\frac{2 \cdot 2 \cdot 3 \cdot 5 / 5 / /}{1 / 1 /} \quad 4$

4 times greater

For example, $8^{\underline{6}}, 122^{9}, \underline{12} 16$

$$
\frac{2}{6}, \underline{3}^{-12}{ }^{4}
$$

For example, $9^{\underline{6}}, 6^{\underline{4}}, \underline{2}$
For example, $50^{\frac{40}{}} 10^{8}, 5^{\underline{4}}$

Lisa has completed more of her
course because $\underline{7}_{8>8^{\underline{5}} .}$.
(a) Raymond:

$$
\begin{aligned}
& =\frac{2 \cdot 2 / 2 / 2 \cdot 3 / 2 /}{} \\
& \frac{3 \cdot 5}{2}=\frac{10}{11} \cdot 2 \cdot \not 2 \cdot \not p \cdot \not p \cdot
\end{aligned}
$$

$$
540 / / / /
$$

Travis: ${ }_{660}=\frac{2 \cdot 2 \cdot 3 \cdot 3 \cdot 3 \cdot 5}{/ / 2 \cdot / 2 / 3 \cdot 5 \cdot}=\frac{9}{11}$ 11

Raymond read the greater fractional
part because $\frac{10}{1} 1 \Gamma^{>} 11^{9}$.
$\frac{792}{}_{891}=\underline{8}_{9}$
$784^{\underline{728}}=14^{\underline{13}}$
$779 \quad 41$
$969=51$
$\underline{21}$
$220^{\underline{462}}=10$
$\underline{493} \quad \underline{\underline{29}}$
$510=30$

Chapter 2 Fractions and Mixed Numbers: Multiplication and Division

88. $\frac{871}{469}=\frac{13}{7}$
89. $\frac{713}{437}=\frac{31}{19}$
$\stackrel{969}{646}=2^{3}$

Section 2.4 Multiplication of Fractions and Applications

Section 2.4 Practice Exercises

(a) one-tenth

$$
\underline{1}_{2} b h
$$

(a) $35^{\underline{2}}$ ${ }^{33} 8$

Numerator: 10; denominator: 14

$$
\underline{10}=\frac{2 \cdot 5}{/}=\underline{5} 142.77
$$

Numerator: 32; denominator: 36

$$
\begin{gathered}
=\frac{22 \cdot 22 \cdot 2 \cdot 2 \cdot 2}{}=\underline{8} \\
2 \cdot 2 \cdot 3 \cdot 3 \\
9
\end{gathered}
$$

Numerator: 25; denominator: 15

$$
15^{\frac{25}{=}}=5=\frac{5}{33} \cdot 5
$$

Numerator: 2100; denominator: 7000

$$
\frac{2100}{7000}=\frac{21}{70}=\frac{3 \cdot / 7}{2 \cdot 5 \cdot 7}=\frac{3}{10}
$$

7.

8.

9.

10.

1. $\underline{1}_{1.1}^{1}=$
2. 48
$\underline{2} . \frac{1}{=} 2.1=2$
3. 515
4. $\underline{3} \cdot 8=\underline{3} \cdot \underline{8}=\underline{24}=6$

$$
4 \quad 4.1-4 .
$$

14. $\frac{2}{5} \cdot 20=\frac{2}{5} \cdot \frac{20}{1}=\frac{40}{5}=8$
15. $\frac{1}{2} \times \frac{3}{8}=\frac{1 \times 3}{2 \times 8}=\frac{3}{16}$
16. $\frac{2}{3} \times \frac{1}{3}=\frac{2 \times 1}{3 \times 3}=\frac{2}{9}$
17. $14 \cdot \underline{1}=\frac{14}{14}=\underline{14}$

$$
\begin{aligned}
& \begin{array}{llll}
9 & 9 & 9 \cdot 9 & 81
\end{array} \\
& \underline{19} \underline{1} \underline{9} 9 \\
& \text { - }=
\end{aligned}
$$

888. 864

$$
\left(\frac{12)(2)}{\mid} \left\lvert\, \frac{12 \times 2}{\mid}=\underline{24}\right.\right.
$$

（9）（7） $9 \times 7 \quad 63$

20． \mid－$||-|=-=$
（10） 4 ） $10 \times 4 \quad 40$
（1）$\underline{8} 1 \quad \underline{8}$ 8

21． 8 ．
｜

$$
\text { (11) }{ }_{11}^{1} 11 \quad 4 \cdot 11
$$

$$
3 \cdot(\underline{2})=\underline{3} \cdot \underline{2}=\underline{3} \cdot \mid(7)
$$

$$
\underline{2}=\underline{6}
$$

$$
171 \cdot 7
$$

$$
\underline{4} \cdot 6 \underline{4} \underline{6} . \underline{4.6}=\underline{=} \underline{24}
$$

5515． 1
5
$\underline{5} \underline{5} \underline{5}_{\underline{2}}^{\underline{5}} \underline{5}$
－ $5=$ • $=$
8818． 1
8
$\underline{13} \times \underline{5}=\underline{13 \times 5}=$
$\underline{65}$

$$
\begin{gathered}
949 \times 436 \\
\underline{6} \times \underline{7}=\underline{6} \times \underline{7}=\underline{42} \\
555 \times 525
\end{gathered}
$$

27． $2 \underline{3}=-\underline{2}-\underline{\beta}=-\underline{2}$

$$
\begin{aligned}
& 9 \\
& 15
\end{aligned} \quad \not p \cdot 3 \quad 5
$$

28．$\frac{1}{x} \times-\frac{1}{1} \times A^{4}=\frac{1}{-}$

$$
\begin{aligned}
& \begin{array}{cccc}
(12)(5) & \begin{array}{cc}
12 . & 3 \cdot 4 \cdot 5 \\
5 & 1 / 1
\end{array}
\end{array} \\
& \text { 36. }|-|=-\frac{5}{=}= \\
& \text { (45)(4) } 45 \cdot 4 \quad 3 \cdot 3 \cdot 5 \cdot 4 \quad 3 \\
& (\underline{17})(\underline{72})=\underline{17 \cdot 72}=\underline{17} \underline{-8 \cdot \underline{9}}=8=8 \\
& 1 \mid 1 \\
& \text { (9)(17) 9. } 179 \cdot \underline{17} 1 \\
& (\underline{39})(\underline{11})=\underline{39 \cdot 11}=\underline{3 \cdot 13} \cdot \frac{11}{=}=3 \\
& 11 \text { リノ } \\
& 11)\left(13^{\prime}\right) 11 \cdot 13 \underline{11} \cdot \underline{13} 1 \\
& \text { 21. } 16=\frac{/}{3 / 7 / \%} \cdot \frac{/ / / 12}{4!/ 42}=12 \\
& 47471 \\
& \text { 40. } \underline{85} \cdot \underline{\underline{1}}=\underline{5} \cdot 17 \cdot 2 \cdot 2 \cdot 3=\underline{17}=17 \\
& 2 \\
& \begin{array}{llllll}
6 & 10 & 2 \cdot & 2 \cdot 5 & 1 \\
& & 3
\end{array}
\end{aligned}
$$

$41.12 \times \frac{15}{42}=\frac{2 \cdot 2}{1} \cdot \underline{3} \times \neq \frac{3 \cdot 5}{\not 2 \cdot / 3}-7{ }_{7}=30$

42． $4 \times-\frac{8}{92}=\frac{2 x \cdot / 2}{1} \times \frac{2 \cdot 2 \cdot 2}{2 \cdot 2 \cdot 23}=\frac{8}{23}=$

$$
\begin{array}{ll}
8 & \\
7 & 9 \\
- & 15^{9} \times \\
4 & \\
14 &
\end{array}
$$

$16 \quad \underline{25}$

29. $\frac{5}{6} \cdot \frac{3}{4}=\frac{5}{2 \cdot / 3} \times \frac{13}{4}=\frac{5}{8}$

30. $\underset{5=-1}{21} \cdot-25 \neq \frac{3 \cdot 7}{/}-\frac{5}{/}$
$\begin{array}{lllll}5 & 12 & 5 & 2 \cdot 2 \cdot & 3 \\ 4\end{array}$
$\underline{16} \cdot \underline{15}=\underline{16} \cdot 3 \cdot 5=3$
$\underline{25} \underline{32}$
31. $52 \cdot 1610$

$$
\begin{aligned}
& \text { 24. } \underline{5}=\underline{2 \cdot 2 \cdot 2 \cdot 3 /: ~} \\
& =8
\end{aligned}
$$

$$
\text { 1533. } 533 / /
$$

34. $\frac{49}{24} \underline{6}=\underset{-7 \cdot 7}{7} \cdot \underline{2} \cdot 3=7$ 247 - $7 \cdot 2 \cdot 2 \cdot 3 / 74$
35. $|-\|-|=-\quad=-$

-3. 5

Chapter 2 Fractions and Mixed Numbers: Multiplication and Division
48. $\frac{11}{11} \cdot \underline{2} \cdot 15=\underline{11} \cdot / 2 / 2 / \underline{3}$

1820

$$
/ 2 \cdot 3 \cdot 3 \quad 2 \cdot / 2 \cdot 5 \quad 1
$$ 12

$$
\frac{\underline{100} \times 21 \times \underline{14}=\frac{2 \cdot / 2 \cdot 5 / 5 / \times 3 \cdot 7 / \times 2 \cdot 7}{49257 \cdot 715 \cdot 5} / / /-/-}{24}
$$

$$
1=24
$$

38 5 2. $19 \underline{115} 5$
$\times 11 \times=\frac{T_{x}}{T_{9}} \times==5$
${ }_{1}^{2219}$ 2. 11 T9
51. $(1) \|^{3}=1.1 .1=-$

1

$$
\begin{array}{lllll}
(10) & 10 & 10 & 10 & 1000
\end{array}
$$

$(1)^{4} \quad 1 \quad 1 \quad 1 \quad 1 \quad 1$
52. $|-|=-$ - =
$\begin{array}{llllll}(10)_{6} & 10 & 10 & 10 & 10 & 10,000\end{array}$

$$
\begin{array}{lllllll}
(10) & 10 & 10 & 10 & 10 & 10 & 10
\end{array}
$$

$$
=1,000,000
$$

9

54. 55)

61. $\underline{1}^{3}{\underset{y}{2}}^{2}=1_{1}^{2} \quad \underline{1}-1$

$$
\left./ 5^{\mid} \quad \mid\right)={ }_{15} \cdot 15={ }_{225}
$$

3

(3) (30) $30 \quad 30 \quad 900$ 1
0
(9) (15)

$\begin{array}{ccc}\text { 63. } 3 \cdot & 4 & J=3 \cdot 1=2 \\ & 3^{7} & 6\end{array}$
$1 \quad 1\left(\begin{array}{cc}3 & \frac{6}{30}\end{array}\right) \frac{1}{1} \underset{1}{-18}$
64. $\frac{6}{8} \frac{\swarrow}{\rho} \cdot 川=\varnothing \cdot 1=3$
$\begin{array}{lll}1 & 1\end{array}$

$$
\begin{aligned}
& \text { 9 (2) } 989
\end{aligned}
$$

1

70.

$$
\begin{array}{ccccc}
\underline{1} & \underline{1} & 1 & \underline{11} & 8 \quad 4 \\
A= & 2 b h= & 2(11)(8)= & 2 \cdot & 1 \quad 1=44 \mathrm{~cm}
\end{array}
$$

$$
\begin{array}{lll}
1 & \\
1 & 1 \\
1 & 15 & \\
1 & 12 \\
1 & \\
1
\end{array}
$$

90 in. ${ }^{2}$
6
72. $A=\frac{1}{2} b h=\frac{1}{2} 2(15)(12)={\underset{2}{1}}_{2}^{1} \underset{1}{15} \underline{12}$

$$
A=b h=\begin{gathered}
\underline{1}(\underline{7}) \quad \underline{1} \underline{1} \quad \underline{7} 2 \\
(1)=\begin{array}{c}
\underline{7} \\
\cdot
\end{array} \\
\mathrm{ft}^{2}
\end{gathered}
$$

$22(4) 2418$

75. $A={ }^{-1} b h=-\quad\left(\quad{ }^{8}\right)=\stackrel{1}{1} . \frac{1}{7} \stackrel{4}{4}=4 \mathrm{yd}^{2}$ $2 \quad 2$| | (5) | | |
| :--- | :--- | :--- | :--- |
| $5)$ | $\underset{1}{7}$ | 1 | 5 |
76. $A=\underline{1} b h=\underline{1} \quad\left(\begin{array}{l}(3) \mid \\ 16\end{array}\right.$

$$
\begin{aligned}
& 2{ }_{1}^{2}(9) \\
& =\frac{1}{\mathrm{~mm}} \cdot / \underline{3}-=-8 \text { or } 22^{2}
\end{aligned}
$$

$$
\begin{array}{lllll}
\not 7 & 1 & 9 & 3 & 3 \\
1 & & 3 & &
\end{array}
$$

$\begin{array}{llll} & \left.\begin{array}{lll}1 & & \\ \underline{B} & \underline{23} & 2\end{array}\right)\end{array}$

80. $A=l \times w=24 \cdot \quad 4=32$

$$
\begin{gathered}
A=(8)(4)+\frac{1}{2} 2(8)(4)=32+4 \cdot 4=32+16 \\
48 \mathrm{yd}^{2}
\end{gathered}
$$

1

$$
\begin{aligned}
& A=(8)(3)+2(8)(3)=24+4 \cdot 3=24+12 \\
& 36 \mathrm{~m}^{2}
\end{aligned}
$$

$$
A=(6) \quad+(6)(\underline{7}) \underline{1}(\underline{\bar{T}\}}
$$

$$
2\left|\begin{array}{lllllll}
2 & \mid & \mid 3
\end{array}\right|
$$

$$
U
$$

$$
3732
$$

$$
\frac{4}{-1}, 3^{1}+\frac{1}{y} \cdot 3=7+2=9 \mathrm{~cm}^{2}
$$

84. $\left.A=\underline{1}(8)^{(\underline{9})^{\prime}}+\frac{1}{(8)}\right)^{(\underline{15})}=4 \cdot \underline{9}+4$. 15

$$
\begin{array}{llll}
2 & (4) & 2 & (4) \\
4 & 9 & 4 & \underline{15} \\
- \\
1 & 4 \\
1 & 4+/ & 4=9+15=24 \mathrm{~m}
\end{array}
$$

85. $\frac{5}{8}=16 \frac{5}{2} \cdot-1=10$

The amount left is 10 gal .

1

The cost is $\$ 8250$.
111
$77 \quad \stackrel{13}{\bar{l}} 1 \underset{4}{1} \quad 2$
77. $A=l \times w=4^{\circ} .34 \mathrm{~cm}$ $\neq 1$

$$
4 \quad 2=8
$$

Trey ate $\underline{1}_{8}$ of the pizza for breakfast.
78. $A=l \times w=\frac{8}{3} \cdot 3=\bar{\gamma} \cdot \quad 1=8 \mathrm{~m}$

$$
\begin{array}{llll}
13 & 15 & 195 & 2
\end{array}
$$

79. $A=l \times w=\overline{16} \cdot-=256 \mathrm{in}$.

16
88. $\underline{4} \cdot \underline{1}$ 른 $=1 \underline{1}$

2
$\frac{1}{10}$ of the sample has O-negative blood.

Chapter 2 Fractions and Mixed Numbers: Multiplication and Division

89.3. $51=\underline{3}$. $1 \underline{1}=\underline{33}=41$ Corrine will

$$
\begin{aligned}
& \begin{array}{llllll}
4 & 2 & 4 & 2 & 8 & 8
\end{array} \\
& \text { prepare } 4 \stackrel{1}{1} \mathrm{l} \text {. } \\
& 8 \\
& 8_{140}^{\underline{3}} \underline{2}_{3}=8 \underline{3}_{3}^{\underline{422}}=\underline{1}_{4} \underline{211}_{1}=\frac{211}{8}= \\
& 52 \underline{3}_{4} ; 52 \underline{3}_{4} \mathrm{lb} \text { must be destroyed. }
\end{aligned}
$$

$$
\begin{array}{ll}
\underline{2} .9,825,000 & 2 \cdot \underline{9,825,0000} \\
= & \\
331 &]_{1} \\
& 6,550,000
\end{array}
$$

There are $6,550,000$ viewers.

$$
\text { 3. } \frac{3}{4}=\frac{3}{1} \quad \underline{3}_{4} \underline{q}_{4} \text { or } 2 \underline{1}_{4}
$$

Nancy spends 4 or 24 hr a day.
93. First place: $\underline{2} \cdot 1200=\underline{2}-\frac{400}{2} \cdot-=$

$$
\begin{array}{ccc}
\$ 800 & \not 2 & 1 \\
& 1 &
\end{array}
$$

300

Second place: $=1200=1 .-$ $\$ 300 \quad$ A 1
(b) $\underline{1}=1, \underline{1}=\underline{1}$
$\sqrt{36} \sqrt{6} \quad 6 \quad 6$
96. (a) $(\underset{-2}{-2})^{2}=\frac{2}{-2}=-\frac{4}{-}$
(7) $7 \quad 7 \quad 49$
(b) $\sqrt{\frac{4}{49}}=\sqrt{2}-2=2$
97. $\frac{1}{\sqrt{25}}=\sqrt{\frac{1}{5} \cdot \frac{1}{5}}=\frac{1}{5}$
98. $\int_{100}^{\frac{1}{2}}=\sqrt{-\frac{1}{2}}=\frac{1}{10} 10 \quad 10$
99. $\sqrt{\frac{64}{81}}=\sqrt{\frac{8}{9} 9^{9}}=\underline{8}$

9 $\underline{3}$. $\underline{3}$
100. $\sqrt{4}=\sqrt{22}=2$
101. $\frac{1}{2}, \frac{1}{4}=\frac{\mathbf{l}^{-}}{2}, \frac{1}{2}=\frac{-1^{-}}{8}, \frac{1}{4}=\frac{1}{8 \cdot 2} .2$

The next number is $\quad \frac{1}{16 \cdot 2}=\frac{1}{32}$
102. $\frac{2}{2}, \underline{2}=\frac{2}{2}=\frac{2}{2}$

$$
\begin{array}{llllll}
\begin{array}{lllll}
3 & 9 & 3 \cdot & 37 & 9 \\
3 & & & \\
\text { The next number is }
\end{array} \\
\text { - }
\end{array}
$$

$\begin{aligned} & \text { Third place: }-1 \\ & \$ 100\end{aligned} 1200$
94. $2 \cdot(40)(36)=\underline{2} \cdot \underline{40} \cdot \underline{=}$

$40 \times 36=1440$
$1440-960=480$
2
Frankie mowed 960 yd . He has 480 yd left to mow.
95. (a) $\begin{array}{r}\left(\left.\begin{array}{l}1 \\ \frac{1}{1}\end{array}\right|^{2}=1 \cdot\right. \\ \text { (6) } \quad 6 \quad 6 \quad 36\end{array}$

$$
\underline{1}(\underline{1})=1
$$

$$
\left.\right|_{z} \mid(8) 16
$$

$$
1(\mathrm{~T}) \mathrm{T}
$$

$$
8(2)={ }_{16}
$$

They are the same.

$$
\underline{2}(\underline{1})=2=\underline{1}
$$

$$
{ }_{3}(4) 126
$$

$$
\begin{gathered}
\underline{1}(\underline{2}) \underline{2} \underline{1} \\
=
\end{gathered}
$$

$$
4(3) \quad 12 \quad 6
$$

They are the same.

Section 2.5 Division of Fractions and Applications

Section 2.5 Practice Exercises

1. reciprocals
2. $2^{2} \cdot 3^{3}$

1

3
(c) Yes, $\frac{1}{6}$
(d) No, $\frac{1}{0}$ is undefined.
8
13. 7
14. 6
-5
15. $\frac{9}{10}$.
16. $\underline{5}_{14}$
17. $\frac{1}{4}$
1
18. 9
19. No reciprocal exists.
20. No reciprocal exists.
8. $\binom{2}{7}\left(\begin{array}{l}7 \\ - \\ 2\end{array}\right)=\frac{14}{14}=1$
9. $\left({ }^{9} \cdot\right)\left(5^{5}\right)={ }^{45}=1$ (5八, 45
23. multiplying
24. multiplying

11. ${ }^{1} \times 3=\cdot .^{1} \cdot{ }^{3}={ }^{3}=1$

5
26. ${ }^{11} \div{ }^{6}=11 \cdot 5=55$ $\begin{array}{lllll}3 & 5 & 3 & 6 & 18\end{array}$
12.(a) Yes, $\stackrel{2}{1}=2$

3
(b) Yes, 5
27. $-7 \div \underline{2} \underline{\overline{5}}^{7} \quad=\underline{35}$
$\begin{array}{lllll}13 & 5 & 13 & 2 & 26\end{array}$

Chapter 2 Fractions and Mixed Numbers: Multiplication and Division
$\stackrel{8}{7}_{7} \left\lvert\, \begin{aligned} & 3 \\ & \equiv\end{aligned} \frac{8}{7} \cdot \frac{10}{3}=\frac{80}{21}\right.$

29. $\frac{14}{3} \left\lvert\, \underline{6}_{5}=\frac{14}{3} 3 \cdot \frac{5}{7} 6=\frac{35}{=}\right.$
3
$\begin{array}{llll}11 & \underline{3} & \underline{11}^{2}\end{array}{ }^{2} \quad \underline{22}$
41. $\left.\frac{10}{} \right\rvert\,-\underline{1}=\underline{10} \underline{18}$
$\begin{array}{llll}9 & 18 & 9\end{array} \quad=20$
30. $2 \mid 4=\underset{1}{2} \underset{3}{2}-3=$

$$
\begin{gathered}
\left.\underline{15}_{2}\right|_{2} ^{3}=\frac{15}{15} 2 \stackrel{5}{2}_{5}^{\frac{1}{2}} 3 \\
1 \\
10 \square^{9} \underline{9}_{2}=\frac{10^{9}}{5} \cdot R_{9} \frac{1}{5}=
\end{gathered}
$$

$\underline{3}_{4} \left\lvert\, \underline{3}_{4}=\frac{3}{4} \cdot \underline{4}_{3} \underline{12}_{12}=1\right.$
$\begin{array}{llll}\underline{6} & \underline{6} & \underline{5}^{\underline{30}}\end{array}$
$5^{\mid} 5=\begin{aligned} & 5 . \\ & 6=\end{aligned} \quad 30=1$
$\underline{2}_{\underline{7}}^{\underline{2}} \underline{21}$
$7 \mid 3=1 \cdot 2=$
$\underline{3} \quad \underline{5} \quad \underline{20}$
$\left.4\right|_{5}=1 \cdot 3=3$
37. $12 \mid 4=-\quad 1=-3$
$5 \quad-\frac{\square}{5} / 5$
42. $4 \left\lvert\, \underline{1}=\frac{4}{1} \cdot \underline{\underline{3}}=\right.$ $\begin{array}{llll}3 & 3 & 4 & \\ & & 1 \\ & & 1\end{array}$
43. $12-4=\stackrel{4}{1}_{=}^{-} \ldots{ }^{4}=$ $3^{16}{ }^{16} 3_{1}$
44. $24 \cdot 8^{\frac{5}{24}} \frac{24}{1}-\frac{5}{8}=15$
1
45. $\underline{9}$. $1 \underline{3}-=\frac{9}{10} \cdot \frac{10}{-}-\underline{90}$
$100 \quad 1000$
$13 \quad 13$
46. $\underline{1000} \mid \underline{10}=1000 . \underline{3}=\underline{300}$
$17 \quad 3 \quad 17$
17
1
47. $\frac{46}{/} \frac{5}{5}-\frac{55}{9}=20$

11
48. $\underline{13}_{5} . \quad \underline{10}^{2}=17^{\underline{26}}$ 17
49. $\frac{7}{8} \left\lvert\, \frac{1}{4}=\frac{7}{8} \cdot \frac{4}{1}=\frac{7}{2}\right.$
50. $1 z^{7} \left\lvert\, \underline{5}_{3}=\underline{12}^{7} \cdot \sqrt[3]{5}=\frac{7}{2} \underline{0}\right.$

4

$\underline{40} \cdot \underline{18}=5 \cdot 8 \cdot / 3 \cdot 6=\underline{48} 21$
$253 \cdot 75 \% 535 /$
63. $8 \stackrel{16}{3}_{3}=\frac{8}{1}_{1}=\underline{16}^{\underline{3}}=2$

2
64. $\left.5\right|^{\frac{15}{4}} 4=\stackrel{1}{1}=\frac{4}{15} \stackrel{4}{=} 3$
$\underline{2} \quad \underline{2} \quad \underline{6}$
65. ${ }_{3}$ multiplies 3^{6} by , and ${ }_{3} \begin{array}{r}6 \\ 2\end{array}$
multiplies $\underline{2}$ by $\underline{1} . \mathrm{So}^{\underline{2}} \cdot 6={ }^{2} \cdot \underline{6}=4$

$$
\begin{array}{lllll}
3 & 6 & 3 & 7 & 1 \\
1 & & &
\end{array}
$$

and $\frac{2}{3} \left\lvert\, 6=\frac{12}{3} \cdot \frac{1}{7}=\frac{1}{9}\right.$.

$\stackrel{2}{2}$	$\underline{2}$	$\underline{2}$
$\begin{array}{l}8 \cdot \\ \text { by }\end{array}$	3 multiplies 8	3 , and 8
3		

multiplies 8 by $\frac{\underline{3}}{2}$. So $8 \cdot \stackrel{2}{3}_{3}^{=} \underline{8}_{1} \stackrel{\underline{2}}{3} 3^{\frac{16}{=}}$ 3
and $8 \left\lvert\, \frac{2}{3}=\frac{4}{1} \cdot \frac{-8}{\overline{z p}_{1}}=12\right.$.
$27 \quad 1$
67. $\underline{54} \quad \underline{2} \quad \underline{54} \quad \underline{3} \quad \underline{27}$
$21|3| 9=. / 2\left|97^{-\pi}\right| 9$

$$
\begin{aligned}
& { }_{7}= \\
& \text { 3 } \\
& \text { 27. } \frac{1}{/} \cdot{ }^{59} \cdot \frac{3}{8} \cdot 16=\frac{1}{8}
\end{aligned}
$$

$$
-_{1}=2 \quad={ }_{7}
$$

1

$$
\begin{aligned}
& \text { 60. } \stackrel{2}{6} \cdot 9=2 \stackrel{2}{2} \underline{9}= \\
& \begin{array}{lll}
3 & -3 & 1 \\
& 1 &
\end{array}
\end{aligned}
$$

61. $\frac{22}{7} \cdot \frac{5}{16}=\frac{2 x \cdot 11}{7} ; \frac{5}{=}=$

$$
2 \cdot 8 \frac{\underline{55}}{56}
$$

$$
9=7
$$

$$
\text { Ź } \quad 1
$$

$$
\begin{array}{lllll}
56 & 8 & & 3 & 7 \\
& & 7 & 1 &
\end{array}
$$

Chapter 2 Fractions and Mixed Numbers: Multiplication and Division

$$
\begin{aligned}
& \left(\begin{array}{lllll}
12 & 3
\end{array}\right) \quad\left(\begin{array}{ll}
12 & 2
\end{array}\right) \quad(8) \quad 8 \quad 8 \\
& 4
\end{aligned}
$$

$$
\begin{aligned}
& \text { 75. }|-|\quad| \cdot 4=|\quad . \quad| \cdot 4=|\quad| \\
& \left.\begin{array}{lllll}
1 & 8 & 4
\end{array}\right) \quad\left(\begin{array}{ll}
8 & 9
\end{array} \quad\right. \text { (2) } \\
& =7 \cdot-7 \cdot 4=49 \cdot 4^{1}=49 \\
& 2 \quad 214 / 1
\end{aligned}
$$

18
$\left.81.36\right|^{2} 3=\frac{36}{=} 1 \frac{3}{1} 2=54$
1

Li wrapped 54 packages.
82. $\left.60\right|^{\frac{3}{3}} 4=\frac{60}{-\frac{60}{1}} \frac{4}{1} 3=80$

She can sell 80 parcels of land.

25

4
85. $16^{\cdot \frac{3}{4}} 4 \frac{16}{1 /}{ }^{3} 4=120$

The stack will be 12 in . high.
86. $\frac{5}{4}=\frac{64}{1} \cdot \frac{5}{4}=00$

Yes, the books will take up only 30 in .
87. (a) $18 \div \frac{2}{3}=\frac{9}{18} \varlimsup_{1}^{3} 2=27$

27 commercials in 1 hr
$27 \times 24=648$
648 commercials in 1 day
(a) $20 \left\lvert\, \underline{1}_{2}=\frac{20}{1}{ }_{1} \cdot \underline{2}=40\right.$

40 commercials in 1 hr
$40 \times 24=960$
960 commercials in 1 day
89. (a) $\frac{1}{10} \cdot 240,000=\frac{1}{10} \cdot \frac{240,000}{1}$

$$
\begin{aligned}
& =\frac{240,00 \varnothing}{1 \varnothing} \\
& =24,000
\end{aligned}
$$

The down payment is $\$ 24,000$.

$$
\$ 240,000-\$ 24,000=\$ 216,000
$$

He will have to finance $\$ 216,000$.
90. (a) $\frac{1}{12} \cdot 19,560=\frac{1}{12} \cdot \frac{19,560}{1}$

19,560
12
1630
The down payment is $\$ 1630$.

$$
815
$$

(b) $\frac{1}{2} \cdot 1630=\frac{1}{2}-\frac{16}{1}=815 \$ 1630-$

$$
\$ 815=\$ 815
$$

Althea will have to pay $\$ 815$.
$\$ 19,560-\$ 1630=\$ 17,930$
She will have to finance $\$ 17,930$.
3
91. (a) $\underline{1} \cdot 9 / 4 \underline{\underline{\underline{3}}} 4$

3
She plans to sell 4 acre.
$\underline{2}$
She keeps 3 of the land.

$$
\begin{array}{ll}
1 \\
1 / 2
\end{array}
$$

2. $9=\underline{3}$ or -1 acres $\begin{array}{lll}1 & 4 & 2\end{array}$
12
3. (a) $\frac{1}{6} \cdot(24+18)=\frac{1}{6} \cdot \underset{1}{(42+\overline{\bar{b}}} \cdot \frac{1}{1} \cdot \frac{42}{}=7$

Josh has read 7 pages.
$(24+18)-7=42-7=35 \quad \mathrm{He}$ still must read 35 pages.

2

$$
\begin{array}{ccc}
1 & 7 \\
- & 8
\end{array}
$$

1
Ricardo's mother will pay $\$ 16,000$.
$\$ 24,000-\$ 16,000=\$ 8000$
Ricardo will have to pay $\$ 8000$.
93. ${ }^{7} 4 \div 8=\frac{4}{1} \div-1=14$

She can prepare 14 samples.

Chapter 2 Fractions and Mixed Numbers: Multiplication and Division

94. $7^{1} \left\lvert\,-\frac{7}{-1}=\right.$

14

$$
\begin{array}{llll}
8 & 16 & \& & 1 \\
& & 1 &
\end{array}
$$

Tony must make 14 strikes.
The length is 12 ft , because

$$
\begin{aligned}
30 & \underline{50} \underline{20} \\
= & 5 / 62 \underline{12}=12
\end{aligned}
$$

$\begin{array}{lllllll}2 & 1 & 5 & 1 & \overline{/ 5} & 1\end{array}$
4
The width is 7 m , because

The product will be less than 47 because $\underline{3}$

5 is less than one.
The product will be less than 81 because $\underline{4}$ 7^{-}is less than one.

The quotient will be more than 25 because $\underline{2}_{3}$ is between zero and one.

The quotient will be more than 41 because $\overline{11}{ }^{2}$ is between zero and one.

Problem Recognition Exercises: Multiplication and Division

 of Fractions
53535

$$
\begin{aligned}
& (\mathrm{d}) \underline{6} \left\lvert\, \cdot \underline{8}=\underline{6} \cdot \underline{3}=\underline{2}-\frac{3}{7} \quad \underline{3}\right. \\
& =\underline{y}
\end{aligned}
$$

$$
\begin{array}{llllll}
5 & 3 & 5 & 8 & 5 & 2 \cdot 4
\end{array}
$$

$$
\begin{aligned}
& \text { (c) } \underline{8} \quad \left\lvert\, \underline{6}=\underline{8} . . \underline{5}=\underline{2}=\frac{4}{7} \quad \underline{5}\right. \\
& =\stackrel{20}{ } \begin{array}{rlllllll}
\\
3 & 5 & & 3 & 6 & 3 & 2 \cdot & 3
\end{array}
\end{aligned}
$$

(c) $12 \left\lvert\, \underline{9}=\underline{12} \cdot \underline{8}=\frac{3 \cdot 4}{7} \cdot \underline{8}\right.$
$=\underline{32}$

(d) $\begin{array}{llll}\mid 12= & & . \\ = & 8 & 12 & 8 / \overline{\overline{3}} \cdot 4 \\ 32\end{array}$
$\begin{aligned} & \text { (a) } \\ & 15 . \underline{3} \\ & \underline{15} \underline{3} \quad \begin{array}{l}3.5 \\ = \\ =\end{array} \\ & 3 .\end{aligned}$

| | 515151 | |
| :--- | :--- | :--- | :--- |
| $\underline{3}$ | $\underline{15}$ | $3 \underline{3} . \underline{5} \underline{9}$ |

- $15=$ = $=9$

551511
$\underline{3} \underline{15} \underline{5} 355 \underline{25}$
2. (a) $\quad \underline{10} \cdot \underline{12}=\frac{0}{/} / \underline{3} \cdot \underline{4}=$
$\begin{array}{lllll}3 & 7 & 3 & 7 & 7\end{array}$
12. $10 \neq 3 \cdot 4 \cdot \underline{10}$
$=40$

73737

$$
\begin{array}{lllllll}
3 & 7 & 3 & 12 & & 3 & 2 \cdot 6 \\
18 & & & & &
\end{array}
$$

(d) $\underline{12} \quad 10=\underline{10} \cdot \underline{3}=\underline{2} \cdot \frac{6}{7} \cdot 3$
$=\underline{18}$

$$
\begin{array}{lllllll}
7 & 3 & 7 & 10 & & 7 & 2 \cdot \\
& & & & & 35
\end{array}
$$

3. (a) $12 \cdot \underline{9}=12 \cdot \underline{-}=3 \cdot \frac{4}{-} \cdot \underline{9}$.
$=\underline{27}$

$$
\begin{array}{lllll}
8 & 1 & 8 & 1 & 2 \cdot 4 \\
2
\end{array}
$$

(b) $\frac{9}{8} \cdot 12=\frac{9}{2} \quad \underset{1}{ }-\underline{12}=\frac{9}{7 / 4} \cdot \frac{13}{1} \cdot \underset{2}{4}=2 \underline{2}$

$$
\begin{aligned}
& 15 \mid==\cdot \underline{T}=\overline{25} 513131 \\
&=
\end{aligned}
$$

(d) $\underline{3} \mid 15=\underline{3} \cdot \underline{1}=\underline{3} \cdot \underline{1}=\underline{1}$

$$
\begin{array}{llllll}
5 & 5 & 15 & 5 & 3 \cdot & 5
\end{array}
$$

5. (a) $\frac{5}{6} . \quad \underline{5}=\frac{25}{36}$

$$
{ }_{=}^{5} \cdot \frac{6}{/} 5^{\frac{1}{1}} 1=1
$$

$$
\begin{array}{lllll}
\underline{5} & \underline{5} & 5 & 6 & \underline{1}
\end{array}
$$

\[

\]

$$
6 \mid 5=6 \cdot 6=36
$$

6. (a) $\begin{gathered}\frac{9}{8} \cdot 0=0 \\ \underline{9}\end{gathered}$
7. 8
$=0$
$\underline{9}$
$8 \mid 0=$ Undefined
$0 \mid 8 \underline{9}_{=0} \underline{8}_{9=0}$
8. (a)
$=\frac{8}{8}$

$$
\frac{12}{189} 321 \quad 3 \cdot 4 \quad 3 \quad 21
$$

$$
\begin{array}{llllll}
1 & \underline{2} & \underline{16} & 1 & \underline{2} & \underline{21}
\end{array}
$$

$$
\begin{array}{lll}
12 \cdot 3 \quad 21=12 & 3 \\
16
\end{array}
$$

$$
\frac{1 \cdot 2 / 3}{7} \frac{n}{/}-
$$

$$
1232 \cdot 896
$$

(c) $\frac{1}{1 \frac{2}{2} \frac{16}{3} \frac{1}{2 \overline{\mathrm{~T}} / 21 \beta \cdot \beta} \frac{3}{4} \frac{\angle 4 \cdot 2 \cdot 2}{2}}$
-2
$\begin{array}{llllll}1 & \underline{2} & \underline{16} & 1 & \underline{3} \\ 12 & \mid & 3 & 21=12 & \underline{21} & \\ & & & \end{array}$
$=-\underline{1}-2 \cdot / \underline{3} \cdot \underline{21}=$ $\begin{array}{lll}3.4 & 4 & 2\end{array}$

(d) $\frac{9}{10}|6| \frac{1}{4}=\frac{9}{10} \cdot \frac{1}{6} \cdot \frac{4}{1}$
$=3-\frac{3}{/}-\underline{\underline{2}} \underset{\underline{2}}{\square}=\underline{3}$
$-\frac{2 /}{5}-\frac{2 \cdot 3}{/} \cdot-15$

$520 \quad 5 \quad 4 \cdot 510 \quad 250$
$41 \quad 4 \quad 20 \underset{5}{2}-160$
(c) $\left.\underset{\underline{5}}{ }\right|_{20} \cdot 10{ }_{5}{ }^{1} \cdot 1 \cdot 1=1$
$=160$
(d) $4\left|\underline{1}_{-}\right| 10=\underline{4} \cdot \underline{20} \cdot 1$
$\begin{array}{lllll}5 & 20 & 5 & 1 & 10\end{array}$ $=\frac{2 \cdot 2}{5} \cdot \frac{4 \cdot 5}{1} \cdot \frac{1}{4} \cdot{ }_{5}=\underline{8}_{5}$
$\underline{2}$
11. (a) $\quad \stackrel{\cdot 1}{=} 3$
$\frac{2}{1 \cdot} 3^{\frac{2}{=}}$
3
$\underline{2}_{3} \mid 1=\stackrel{2}{3}_{3}$
$\underline{2} \quad \underline{3}$

1| $3=1 \cdot \underline{2}=\not 2$
 $\begin{array}{llllllll}2 & 9 & 3 & 2 & 9 & 2 & 3 & 3\end{array}$ 12

$$
\begin{array}{lllllllll}
2 & 9 & 3 & 2 & 7 & 3 & 2 & 7 & 3
\end{array}
$$

$\underline{1} \underline{7} \underline{2} \underline{1} \underline{3} \quad \underline{27}$

9. (a) $\frac{9}{10} \cdot 6 \cdot \frac{1}{1} \overline{10} \frac{9}{1} \cdot \frac{6}{4} \cdot 1$

$$
10 \quad 4=10 \cdot 1
$$

$$
.61 \cdot 1
$$

$$
=\frac{\frac{9}{108}}{\frac{1}{5}} \cdot \frac{2 \cdot 3}{5} \quad 1 \cdot 1=
$$

$$
\begin{array}{ll}
\frac{9}{10} & \underline{1}_{4=10}{ }^{9} \cdot \underline{1} 6^{\frac{1}{\cdot}} \\
& =\frac{3 \cdot /}{20} \cdot \frac{1}{10} \cdot \frac{1}{4}=\frac{3}{80}
\end{array}
$$

$$
\begin{aligned}
& =\frac{9}{27} \cdot / 2 \cdot 3 ;-1 \\
& \begin{array}{llll}
10 & 1 & 2 \cdot 2 & 20
\end{array} \\
& 9 \underline{1} \quad 9 \quad \underline{6}
\end{aligned}
$$

12. (a) $6 \left\lvert\, 10=\frac{6}{110} \cdot 1=\frac{2 \cdot 3}{1 \quad \not 2} \cdot \frac{1}{5}=\underline{3}\right.$
(b) $10 \mid 6=\underline{10} \cdot \underline{1} \underline{2 \cdot 5} ; \underline{1}=\underline{5}$
13. $10=60$
14. $6=60$
(a) $8 \mid \stackrel{1}{4}_{4}=8 \cdot 4=32$

\[

\]

$$
8 \cdot 4=32
$$

14. (a) $\quad \frac{1}{7} \left\lvert\, 2=\begin{array}{ll}1 . & 1 \\ 7 & 2\end{array} \quad 14\right.$
(b) $\frac{1}{7} \cdot 2 \frac{1}{7} \frac{1}{1} \quad \underline{2}=\underline{2}$

Chapter 2 Fractions and Mixed Numbers: Multiplication and Division
(c) $7 \frac{1}{7} \cdot \frac{1}{=14}$

1. $1 \quad 1 \quad 2 \quad 2^{(}$
(d) $7 \div 2 \underset{7}{=7} \cdot 1=$

$$
\begin{aligned}
& 21 \quad 1 \quad 1 \quad \not 2 \cdot 8 \quad \stackrel{1}{-} \\
& \text { 15. (a) } 4 \cdot=4 \cdot 4 \cdot=16 \cdot=\text {. } \\
& \begin{array}{lllll}
6 & 6 & 6 & 1 & \neq 3
\end{array} \\
& =\underline{8} \\
& 3 \\
& 2 \underline{1} \quad \underline{6} /
\end{aligned}
$$

(b) ${ }_{2}^{4} \div 6=4 \cdot 4 \div 6=16 \cdot 1=16 \cdot 6=96$
(c) $\left.4 \cdot\right|^{(\underline{1})^{2}}=\underline{4} \underline{1} \frac{\underline{4}}{=} \frac{y}{=}=$

1
6) 16636 4. $9 \quad 9$

$$
\text { 6) } \begin{aligned}
& 1(66) \quad 1(36) \\
& =\underline{4} \cdot \underline{36}= \\
& 144
\end{aligned}
$$

16. (a) $|-|)_{2} \underset{\underline{2}}{\underline{1}}-1 \frac{2}{7} \cdot \underline{1}=$
2) $\begin{array}{lllll}3 & 2 & 2 & 3 & 6\end{array}$
$(1)_{2} \quad 2 \quad 1 / 3 \quad 3$
(b) $|-| \div=$
3) $3 \quad 2228$
(c)
$2(3) \not 2 \quad 3 \quad 3 \quad 9$
(d) $1 \div\left(\left.\underline{2}^{2}\right|^{2}=1 \div(\underline{2} \underline{2})=1 \div 4\right.$
(3) $2\left(\begin{array}{lll}3 & 3\end{array}\right) \quad 2 \quad 9$ $=\frac{1}{2} .{ }_{4} \quad \underline{8}=\underline{9}$

Section 2.6 Multiplication and Division of Mixed Numbers

Section 2.6 Practice Exercises

3
7. $18^{\underline{52}} \mid 13=18^{\underline{52}} \cdot \underline{13}=18^{4}=9^{\underline{2}}$

$$
\underline{13} \quad \frac{10}{5} \cdot \frac{26}{9}=9
$$

8. 1. Multiply the whole number by the denominator.
2. Add the result to the numerator.
3. Write the result from step 2 over the denominator.
9. $32=\frac{3 \times 5+2}{5}=\frac{17}{5}$

$$
2 \frac{7}{10 \overline{1} 0 \times 10}=\frac{2 \times 10+7}{}=\underline{27}
$$

$$
14=1 \times 7+4=\underline{11}
$$

$$
777
$$

$4 \underline{1}=\underline{4 \times 8+1}=\underline{33}$
888
13. $6 \underbrace{\frac{-6}{17}}_{\frac{12}{77}} \quad 12 \frac{5}{6}$
$-\frac{12}{5}$
5
19. $2 \frac{1}{3} \cdot \frac{5}{7}=\frac{1}{\not p} \cdot \frac{5}{7}=\frac{5}{3}$
14. $11\left[\begin{array}{rr}57 & 5-2 . \\ -\frac{55}{2} & 11 \\ 49 & \end{array}\right.$
20. $6 \frac{1}{8} \cdot \frac{4}{=}-\frac{1}{-1}-\frac{1}{7}=\frac{7}{2}$
$2)^{\frac{3}{7}}=31$
-6 $\quad 2$

1
21. 4 2. $9=\frac{38}{7} / .9=$

1
2
22.31. $6=10 \% 6=$ $3 \begin{array}{rrr}30 & 3 & 1\end{array}$
1

> | |
| :--- | :--- | :--- | :--- | 5 八 12) $5{ }_{1}$

$\begin{array}{r}5 \\ 57 \\ -3 \underline{5}\end{array}=7 \frac{2}{5}$

2
18. $\left.\mid 5-\| 3^{3}\right)=\frac{13}{-26}=\frac{39}{-}=\frac{3}{\square}$

$2)^{\frac{19}{39}}=19 \underline{1}$
$-2 \quad 2$
$\overline{-19}$.

3. $=18$			
3			13
5			
25.\| 71			$=\underline{145}$
(4)	4	1	2

Chapter 2 Fractions and Mixed Numbers: Multiplication and Division

$$
\begin{aligned}
& \frac{72}{\frac{145}{145}}=72^{\frac{1}{1}} 2 \\
& \frac{-14}{5} \\
& \frac{-4}{4}
\end{aligned}
$$

1
()
26. $|2 \underline{2}| \cdot 3=\underline{8} \cdot \underline{3}=8$
(3) $\begin{array}{ll}31 \\ 1 & 1\end{array}$
$\frac{5}{48}$

- $0=0$

1
0. $610=0$
29. $(31)(\mid 2 \underline{1})^{1}=-7 . \quad 15=-15=71$

$$
\left.\begin{array}{lllll}
(2) & 7
\end{array}\right) \quad \begin{array}{cc}
\bar{\nearrow} & 2
\end{array} \quad 2
$$

35. $5 \underline{8} \div 1 \underline{1}=\underline{53} \div 4=\underline{53} \cdot \underline{3}=-53=4 \underline{5}$
$\begin{array}{llllll}9 & 39 & 3 & 94 & 12 & 12\end{array}$
3
1
$\begin{array}{cccccccc}\text { 36. } 12 \underline{4}-|2 \underline{3}=\underline{64}| & \mid \underline{13}, & \underline{64}-5=\underline{64}=4 \underline{12} \\ 5 & 5 & 55 & 5 & 7 & 13 & 13 \\ 1 & /\end{array}$
36. $21-1 \underline{1}=-\underline{5} \div \underline{17}=\underline{5} \underline{5}^{8} \cdot 11=\underline{40}=\underline{2} \underline{6}$
$\begin{array}{llllllll}2 & 16 & 2 & 16 & 2 & 17 & 17 & 17\end{array}$
1
37. $7 \underline{3} \div 1 \underline{7}=-^{38 \div T 9}=-\frac{3}{38} \underline{12}=\underline{24}=4^{4}$
$\begin{array}{lllllll}5 & 12 & 5 & 12 & 5 & 195 & \end{array}$
1
38. $\left({ }_{1 .} \underline{3}\right)\left(\|^{1}\right)=13 / \quad \ldots \quad . \quad \underline{5}=13=1 \underline{5}$
$\begin{array}{llllll}(10) & 4) & \overline{\mathbf{1 0}} & 4 & 8 & 8\end{array}$
2

$1 / 1^{3} \quad \underline{3}$
39. $5 \underline{5} \div 2^{1}=35 \div-{ }^{7}=\frac{35}{5} \quad=\quad 2$

2
$(\underline{2})(\underline{2})(\underline{4}) \quad \underline{27} \underline{2} \underline{1} \underline{\underline{1}} \underline{54} \quad \underline{4}$
31. $\left|5_{5}\right|\left|{ }_{9}\right|\left|1_{5}\right|={ }_{5} \cdot / 9==2_{25}$
41. $0 \mid 6 \xrightarrow{7}=0$
32. $\left(6 \frac{1}{8}\right)(2)\left(2 \frac{3}{4}\right)\left(\frac{8}{7}\right)=\frac{49}{8}-\frac{11}{4} \frac{1}{7} \frac{8}{1}=\frac{77}{4}=4$
42. $0 \mid 1 \underline{9}=0$

$$
\begin{array}{lllllll}
7 & \underline{3} & \underline{17} & \underline{11} & \underline{17} & /^{2} & \underline{34}
\end{array}
$$

$$
\begin{gathered}
110 \div 4=10 \div \quad 4=\quad \underline{10}-\underline{1} 1= \\
55
\end{gathered}
$$

44. $6 \underline{1} \div \underline{1}=13 \div 1=13 \cdot \underline{2}=13$
$\begin{array}{llll}2 & 2 & 2\end{array} 1$
45. $11\left|\frac{2}{7}=\frac{4}{3}\right| \underline{-2}=\frac{4}{7} \cdot \frac{7}{23}=\frac{14}{23}=4 \underline{2}$

1

$$
\begin{aligned}
& \begin{array}{lllllll}
1 & \underline{7} & \underline{2} & \underline{7} & \underline{1} & \underline{7} & \underline{3}
\end{array} \\
& 32 \div 2=2 \div 1=2 \cdot 24=14 \\
& \underline{2} \quad \underline{14} \quad \underline{3} \quad \underline{14} \quad \underline{1} \quad \underline{14} \quad \underline{5} \\
& 43 \div 3=3 \div 1=3 \cdot 3 \quad 9=19 \\
& 2
\end{aligned}
$$

49. $4^{\frac{3}{2}} \cdot 8=\frac{19}{1} \cdot \underline{8}=$

Tabitha earned $\$ 38$.

The land will cost Kurt \$28,000.

\quad| 7 | $\underline{257}$ | $\underline{25}$ | $\underline{1285}$ | $\underline{1}$ |
| :--- | :--- | :--- | :--- | :--- |
| 2510 | $\cdot 25$ | $\underline{10}$ | + | $2=642$ |
| $=$ | 2 | | | |

2

$$
12 \div \frac{3}{\div} 4=\frac{12}{=} \cdot 43^{\frac{16}{1}} 1=16
$$

Kayla will have 16 doses.

3
(a) $1 \quad 4 \div \quad \underline{7} \quad 1$
$1^{3} 4 \div 3=\underline{7}_{4} \div 1^{\underline{3}}=\underline{7}_{4} \frac{\underline{1}}{-} 3=12$
-7
Each child will inherit $\$ 12$ million.
(a) Lucy: $35{\underset{\sim}{2}}_{2} \times 14=\frac{71}{/} 2 \underline{14}_{1=497}$

Ricky: $42{\underset{\sim}{1}}_{2} \times 10=\frac{85}{/ 2} \underline{10}_{1}^{1}=425$
1
$497-425=72$
Lucy earned $\$ 72$ more than Ricky.
(b) $497+425=922$

Together they earned $\$ 922$.

$$
\begin{aligned}
& \underline{24}_{41}=\frac{672}{4} 41=16 \underline{16}_{41} \\
& \underline{16}
\end{aligned}
$$

The roll is $16 \quad 41 \mathrm{ft}$ long.
57. $2 \frac{1}{5} \div 10^{\frac{1}{-}}=\frac{11}{5} 5 \div 10^{\frac{11}{1}}=\frac{11^{2}}{5} \cdot \frac{10}{1} 1=2$

$$
4=4 \div 4=\quad 2
$$

$$
\begin{aligned}
& 3^{\underline{3}} \quad \underline{5} \quad \underline{15} \quad \underline{11} \quad \underline{51}_{8} \quad \frac{7}{8} \\
& 4 \cdot 16=4==
\end{aligned}
$$

7
4
$4 \cdot 1=$
weeks old
1

3

$1 \quad 1 \quad 17 \quad 1$

(b) $28 \div 4=8 \div 4$

$$
\begin{aligned}
& 1 \\
& \frac{17}{17} \cdot / 4=17=8 \text { weeks old } \\
& \begin{array}{lrll}
8 & 1 & 2 & 2 \\
2 & 1 & &
\end{array}
\end{aligned}
$$

$$
\underline{1} \quad \underline{8} \quad \underline{7} \quad \underline{8} \quad \underline{3}
$$

60. $8 \div 2 \underline{3}=1 \div 3=1 \cdot 7 \quad 7=37$

61. -

Chapter 2 Fractions and Mixed Numbers：Multiplication and Division

$$
\begin{aligned}
\text { (6八 7八 33) } & 6 \begin{array}{l}
7 \\
1
\end{array} \\
= & 18^{\underline{62}}=\frac{31}{9} 9=39^{\underline{4}}
\end{aligned}
$$

$$
\begin{gathered}
\underline{1} \underline{1} \underline{1} \underline{57} \underline{4} \underline{9} \\
78 \div 13 \div 2 \quad 4=8 \div 3 \div 4
\end{gathered}
$$

$$
\begin{aligned}
& 1911 \\
& \underline{57} / 3 / 4 \quad \underline{19} \quad \underline{3}
\end{aligned}
$$

$$
8-4 / \overline{/} /=8=28
$$

131
$38^{\underline{1}} \div 57^{\overline{5}} \div 416=\underline{\underline{25}}_{8} \div \frac{40}{7} \div 16^{\underline{21}}$

83
The perimeter of the garden is $2(20)+2(15)=40+30=70 \mathrm{ft}$ ．
$70|14=1|_{4}^{\underline{5}}=\frac{70}{14} 1 \cdot{ }_{=56}^{4}$ 15

56 bricks will be needed．
$56 \times \$ 3=\$ 168$
The total cost is $\$ 168$ ．
 ${ }_{6} \underline{8}_{9} \mid 0$ is undefined.

$$
\quad 8=0
$$

78. $642 \div 212=2 \div 2=, 2 \frac{/}{4} 43=3$

It takes 3 gallons of gas for Sara to get to and from work.
$3 \times \$ 5=\$ 15$
It costs Sara $\$ 15$ each day.

$$
\begin{array}{ll}
\frac{2}{12} & \underline{1}_{25}=318 \\
{ }_{3}^{25} & 8
\end{array}
$$

81. $56 \frac{5}{6} \div 3 \frac{1}{6}=17 \underline{18}$
82. $251 \cdot 181=466 \underline{1}$
$5 \quad 2 \quad 5$

126146

Chapter 2 Review Exercises

Section 2.1

$\underline{1}_{2}$
7^{4}
(a) $\underline{5}_{3}$

Improper
(a) $\underline{1}_{6}$

Proper
7
15
$\underline{23}_{8}$ or $2{ }^{7} 8$
$\underline{7}_{6 \text { or } 1} \underline{1}_{6}$
$6 \underline{1}=\underline{6 \times 7+1}=\quad \frac{43}{7}$
$11 \underline{2}=\underline{11 \times 5+2} \quad \underline{57} 5$
$\begin{array}{llll}1 & 1 & 17 & 1\end{array}$
$4 \div 4=4 \div 4=\frac{17}{/} 4.4=17$

Multiplication and Division of Mixed Numbers
84. $106 \underline{1} \div 41 \underline{\underline{5}}=2 \underline{404}$
$9 \quad 6753$
85. 11 1. $41 \underline{3}=480 \underline{1}$ 248
86. $\underset{9}{9} \cdot \underset{3}{28} \underline{1}=28 \underline{0} \underline{5}$
11. $\begin{array}{r}5 \\ 47 \\ -\frac{-45}{2}\end{array} 5 \underline{2}$
$\underline{23}_{21}=T_{21}^{2}$

13-15.

16.7) 941 $134 \begin{array}{r}\frac{3}{7}\end{array}$
24
-21
-31
-28
3
17.26) $\begin{array}{r}60 \\ \frac{1582}{} \\ \frac{-156}{22}\end{array} \quad 26 \quad 13$ $\frac{-0}{22}$

Section 2.2

21, 51, 1200
55, 140, 260, 1200
$58,124,140,260,1200$

Chapter 2 Fractions and Mixed Numbers: Multiplication and Division

Composite $44=4 \times 11$
Neither
Neither
2) $\frac{2}{4}$
2) $\overline{8}$
2) $\frac{16}{16}$
2) $\overline{32}$
2) $\overline{64}$
$2 \cdot 2 \cdot 2 \cdot 2 \cdot 2^{6}=64$
$2=2$
5) $\begin{aligned} & \frac{11}{55} \\ & \text { 3 } \\ & 2 \longdiv { 1 6 5 } \\ & 230\end{aligned}$
$2 \cdot 3 \cdot 5 \cdot 11=330$

$1,2,3,4,6,8,12,16,24,48$
$1,2,4,5,8,10,16,20,40,80$

Section 2.3

$$
\begin{array}{lc}
3 \times 9 & 6 \times 5 \\
18 \neq 30 \\
6^{\frac{3}{\neq 9}} \underline{5}
\end{array}
$$

$$
\begin{aligned}
15 \times 14 \quad 21 & \times 10 \\
210 & =210 \\
\underline{15} 21 & =\frac{10}{14}
\end{aligned}
$$

$$
\begin{gathered}
5=\frac{5}{=1} \\
\underline{20} \frac{1}{4 \cdot 5 / 4} \\
\underline{14}=\frac{2 \cdot 7}{/}=\underline{2} \\
497 \cdot / 77 \\
\underline{24}=\frac{3 \cdot 8}{162 \cdot 8 /} \\
2
\end{gathered}
$$

$$
\underline{17}_{17=1}
$$

$$
\underline{42}=\underline{2.21}=2
$$

$$
2121
$$

$$
\underline{42}=3 \cdot \not 24=14
$$

$$
45 \quad 3 \% 1 \overline{5} 15
$$

$$
45-42=3
$$

$$
\underline{3}=-\frac{1}{\gamma}=\underline{1}
$$

$$
45 \begin{array}{llll}
45 & 3 & \cdot 15 & 15 \\
1
\end{array}
$$

41. (a) $\frac{6}{10}=\underline{\not x} \cdot \underline{x} \cdot 5^{\underline{3}} 5^{\underline{3}}$

$$
\begin{aligned}
& 6 \quad 2 . \mathcal{2} \underline{2} \\
& \overline{15}=3 . / 55
\end{aligned}
$$

Section 2.4

42. $5^{3} \times 7^{2}=35^{6}$

$$
4_{3 \times} \underline{8}_{3}=\frac{32}{9}
$$

$\underline{9}$	$\underline{14}$	9

$\begin{array}{ll}14 . & 1 \cdot 2 \\ 2= & F_{1} 3\end{array}$
45. $33 \cdot \frac{5^{3}-3!}{\square}=15$
$11 \quad 1$
1

1

$\begin{array}{rccccc}10 & 10 & 10 & 10 & 10 & 10,000 \\ 2 & 2 & & & \end{array}$
(2) (1) (2 2) (1_ 1)
49. \mid - \mid. $-|=|-$ - |-| -
(5) (10) ($5 \quad 5$) (10 10)

1

$$
=\frac{4}{25} \cdot \frac{1}{100}
$$

54. $A=\underline{1}(12)(\underline{17})=6 \cdot \underline{17} \quad \underline{\text { (2 }} \quad \underline{17}=51 \mathrm{f}^{2}$

$$
2 \quad(2) \quad 2 \quad 1 \underset{1}{\underset{~}{7}}
$$

$$
A \stackrel{\frac{20}{=}}{\substack{\cdot 3+}} \underline{1}_{2 \cdot \underline{20}} 3 \cdot 6
$$

$$
\frac{20}{/} \frac{/ 3}{3} 1 /+\frac{10}{10} / \frac{2}{3} \frac{6}{3 \cdot 1}
$$

2.

2
Maximus requires $\underline{7}_{2 \text { or } 3} \underline{1}_{2 \text { yd }}$ of lumber.
58. ${ }^{1} \cdot 3600=1:-\longrightarrow=900$

There are 900 African American students.

$$
=1
$$

$$
\begin{aligned}
& \begin{array}{ll}
20+20 \\
40 \mathrm{yd}^{2} & \\
& \\
& \\
\end{array} \\
& \underline{7}^{1} \quad \underline{4} 7 \quad \underline{7} \quad \underline{1} \\
& \text { 57. } 48=1 \cdot 8 \quad 2 \text { or } 32
\end{aligned}
$$

59. $\frac{1}{12} \cdot 3600=1$.

1
625

50. $\left|\frac{1}{20} \cdot \boldsymbol{t}_{3}\right|=|-|={ }_{10} \cdot 10 \quad 10=1000$
$0 \quad 1$
1
1.
51. $(1)^{3}(\underline{1000}) \mid=1 \underline{1000}=-1$
(10) (17) $1000 \quad 17 \quad 17$
1
$\underline{1}$
$A=2 b h$
$A=l w$

There are 300 Asian American students.
$\underline{1}_{\underline{2}} \cdot \underline{1}_{6} \cdot 3600 \underline{1}_{2} \cdot \underline{\underline{1} \stackrel{3600}{=} 1 \frac{3600}{=} 12=}$

300 There are 300 Hispanic female students.
61. $1 \cdot 5 \cdot 3600=\frac{5 \cdot \frac{300}{360}}{\square}=\frac{1500}{}=750$
212
$\begin{array}{llll}2 & & 1 & 2\end{array}$

There are 750 Caucasian male students.

Chapter 2 Fractions and Mixed Numbers: Multiplication and Division

Section 2.5

$$
3 \underline{\angle 4} \frac{1}{4 \%} \frac{1}{\beta}=1
$$

$12 \quad 12 \quad 1$
1

$$
\begin{aligned}
& 7^{\underline{2}} \\
& \underline{1}_{7}
\end{aligned}
$$

Reciprocal does not exist.

6
$\underline{1}_{5}$
multiplying
$\underline{28} \mid \underline{21}=\underline{28} \cdot \underline{20}=\underline{4 \cdot 7} \cdot 4 \neq 5 \not 7^{1615}$ 2015

$$
213 \cdot 53 \cdot 79
$$

$\underline{7} \mid \underline{35}=\underline{7} \cdot \underline{63}=\quad 7 /-\underline{7} \cdot 9-=7$ 96393597. 55

1
 21
73. $3 \mid \underline{9}=\stackrel{1}{/ 3} / \underline{5}=1$

$$
\underline{1}_{4} \cdot{ }^{1} \underline{1}_{4=64}^{4}
$$

$$
4
$$

77. $(\underline{12})_{2} \div \underline{36}=\underline{144} \div \underline{36}=\underline{144} \cdot \underline{5}$
$\begin{array}{llllll}(5) & -5 & 25 & 5 & 25 & 36\end{array}$
 $\begin{array}{lll}5 & 1 & 1\end{array}$
78. $4 .(1)^{3} \div 2=4.4 .4 \div 2=1 . \div 2$

13 (2) $\begin{array}{rlr}13 \underset{2}{8} & 26 \\ & & \end{array}$ ${ }_{26} \underline{1}_{z=52}{ }^{1}$
$\underline{4} \quad{ }^{4} 4$

$$
\begin{aligned}
& 5 \cdot 20=\swarrow^{20} \\
& 5 \\
& 1
\end{aligned}
$$

81. $18 \left\lvert\, \frac{2}{3}=\frac{18}{1} \cdot \frac{3}{\lambda}=27\right.$

1

12
$\begin{array}{lllll}10 & 5 & & 9 & 6\end{array}$

1
82. $24 \left\lvert\, \frac{2}{5}=\frac{34}{1}=36\right.$ 36 bags of candy
83. $\begin{aligned} & \frac{4}{5} .40=\frac{4}{65} \frac{80}{1}=32 \mathrm{hr} \\ & 32 \times \$ 18=\$ 576 \\ & \text { Amelia earned } \$ 576 .\end{aligned}$
84. $\frac{4}{3}: \frac{4}{z}=\frac{16}{9}$

$\underline{16}$	$\underline{16}$	$\underline{10} \quad \underline{12} \quad \underline{640}$	
$9 \cdot 10 \cdot 12=$	1	$1=$	
$9 \cdot$	3	$1=$	
	$\underline{640}$	$\underline{1}$	2

The area is $\quad 3$ or $213 \quad 3 \mathrm{ft}$.
85. $9 \left\lvert\, \frac{3}{8}=\frac{3 / 9}{1} \cdot \frac{8}{\beta}=24\right.$

Yes, he will have 24 pieces, which is more than enough for his class.

Section 2.6

$$
(3 \underline{2})(6 \underline{2})=\underline{11} \cdot \underline{32}=
$$

$\underline{352}$

$$
\left.{ }^{(}{ }_{3}\right)^{\|}(5) 3515
$$

$$
15)^{\frac{23}{352}}=23-7
$$

$$
\begin{array}{ll}
=30 & 15 \\
=-52
\end{array}
$$

$-4 \underline{5}$
-7

$$
4513^{5} \cdot 0=0
$$

93. $7|1 \underline{5}=\underline{7}| \underline{14}=\underline{1} \neq \underline{9} \cdot \underline{9}=\underline{9}=4 \underline{1}$

$$
\begin{array}{ccccccc}
9 & 1 & 9 & 1 & \frac{14}{2} & 2 & 2
\end{array}
$$

$6 \quad \underline{50} \quad \underline{2} \quad \underline{50} \quad 1 \quad \underline{25} \quad 3$
94. $411=|2 \quad 11|_{1}=4 \quad \frac{-}{11}{ }^{2}=\quad=241$

$$
\begin{gathered}
5 \\
0 \mid 312^{-=}=0
\end{gathered}
$$

$$
{ }_{2}^{\frac{1}{2}} 2 \cdot \frac{1}{1} 4 \underline{5}_{2} \cdot \underline{5} 4 \stackrel{25}{=} 8
$$

$$
=3 \underline{1}_{8} \text { It will take } 3 \underline{1}_{8} \text { gal. }
$$

$$
\begin{array}{llllll}
\underline{1} & \underline{1} & \underline{25} & \underline{5} & 28 & { }^{4}
\end{array}
$$

98. $122 \div 14=2 \div 4=-2 .=10$

99. 4 .
$5^{\prime}=-44$. There will be 10 pieces.
$\underline{45}=\underline{45}=$
221

Chapter 2 Test

(a) $8^{\underline{5}}$
Proper
(a) $\stackrel{7}{3}_{3}$

Improper

[^0]: 12 5230
 127
 11
 36610
 104600
 $+523000$
 664,210
 $\begin{array}{ll} & 11 \\ & 44 \\ & 789\end{array}$
 $\begin{array}{r}\times 25 \\ \hline 1\end{array}$
 11
 3945
 $+15780$
 19,725
 318810
 $\begin{array}{r}4890 / \\ 3988 \\ \hline 902\end{array}$
 1
 38002
 $\underline{3902}$
 41,904
 Dividend: 72
 divisor: 8
 quotient: 9
 Dividend: 32
 divisor: 4
 quotient: 8
 Dividend: 64
 divisor: 8
 quotient: 8

