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CHAPTER 2: 

Mathematics for Microeconomics 
 

 

The problems in this chapter are primarily mathematical. They are intended to give students 

some practice with the concepts introduced in Chapter 2, but the problems in themselves offer 

few economic insights. Consequently, no commentary is provided. Results from some of the 

analytical problems are used in later chapters, however, and in those cases the student will be 

directed back to this chapter. 
 
 
 
 

Solutions 

2.1 f (x, y)  4x2  3y2 .

 

a.          fx   8x, f y   6 y.

b.         Constraining f (x, y)  16 creates an implicit function between the variables. The

 

slope of this function is given by dy 
  

 f x   
8 x 

 

for combinations of x and y

 

 

that satisfy the constraint. 

dx        f y          6 y

 

c.         Since 
 

f (1, 2)  16 , we know that at this point 
dy 

  
 8 1 

  
2 

.
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dx       6  2       3 

d.         The f (x, y)  16 contour line is an ellipse centered at the origin. The slope of the

line at any point is given by dy  dx   8x 6 y . Notice that this slope 

becomes more negative as x increases and y decreases. 
 

 
 

2.2       a.         Profits are given by   R  C  2q
2 
 40q 100. The maximum value is found 

by setting the derivative equal to 0: 

d  
=  4q + 40  0 , 

dq 

implies q
*  
 10 and  

*  100. 

b.         Since d 
2 dq

2 
=  4  0, this is a global maximum.

 

c. 

MR  MC  50. 

MR = dR dq = 70  

2q. 

MC = dC dq = 2q  30. So, q
*  
 10 obeys
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2.3       First, use the substitution method. Substituting y  1 x yields

f% (x)  f (x,1 x)  x(1 x)  x  x
2 
. Taking the first-order condition, f%  (x) =1 2x  0,

 

and solving yields x
* 
= 0.5, y

* 
= 0.5 , and f% (x

* 
)  f (x

* 
, y

* 
)= 0.25. Since

f% (x
* 
)  2  0, this is a local and global maximum. 

Next, use the Lagrange method. The Lagrangian is L  xy  (1 x  y). The 

first-order conditions are 

Lx = y   = 0, 

Ly = x   = 0, 

L =1 x  y = 0.

Solving simultaneously, 

x* y*   0.25. 

x  y. Using the constraint gives x
*  
 y

*  
 0.5,  = 0.5, and

 

 
 

2.4     Setting up the Lagrangian, L  x  y  (0.25  xy). The first-order conditions are 

Lx   1  y, 

Ly   1  x, 

L   0.25  xy  0.

So x  y. Using the constraint (xy  x
2  
 0.25) gives x

*  
 y

*  
 0.5 and  = 2. Note that

the solution is the same here as in Problem 2.3, but here the value for the Lagrangian 

multiplier is the reciprocal of the value in Problem 2.3. 
 

 

2.5       a.         The height of the ball is given by f (t)  0.5gt
2 
 40t. The value of t for which

height is maximized is found by using the first-order condition: df  dt =  gt  40  
0, 

implying

t*   40 g . 
 

b.         Substituting for t
* 
, 

2 

f (t
* 
)  0.5g 

 40 

 

 

 40
 40  

 
 800 

.
 

g 
          

g  
      

g 
Hence, 

                   
 

 

df (t* )       800
        . 

dg           g 
2

 

 
c.         Differentiation of the original function at its optimal value yields 

df (t * ) 
 0.5(t

* 
)

2 
. 

dg 
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Because the optimal value of t depends on g,



4 Chapter 2: Mathematics for Microeconomics Chapter 2: Mathematics for Microeconomics 4  
 
 

x 

x 

1 

2 

2 

 

df (t 
* 
)                               40 

=  0.5(t* )2   0.5
 

 

 
800 

,

dg                                 
 

g 
        

g 
2
 

      
as was also shown in part (c). 

d.         If g  32, t
*  
 5 4. Maximum height is 800 32  25.  If g  32.1, maximum

height is 800 32.1  
24.92, 

a reduction of 0.08. This could have been predicted

from the envelope theorem, since 

df (t* )  
 800  

dg  
 25  

(0.01)  0.08.  
322

          
32 


                        

 

 
 

2.6       a.         This is the volume of a rectangular solid made from a piece of metal, which is x 

by 3x with the defined corner squares removed. 

 
b.         The first-order condition for maximum volume is given by 

V 
 3x

2 
16xt 12t

2  
 0. 

t 
Applying the quadratic formula to this expression yields

16x  256x2  144x2 16x 10.6x

t                                                           0.225x. 
24                           24 

The second value given by the quadratic (1.11x) is obviously extraneous. 
 

c.         If t  0.225x, V  0.67x
3 
 0.04x

3 
 0.05x

3  
 0.68x

3
.

So volume increases without limit. 

 
d. This would require a solution using the Lagrangian method. The optimal solution 

requires solving three nonlinear simultaneous equations, a task not undertaken 

here. But it seems clear that the solution would involve a different relationship 

between t and x than in parts (a–c). 

 
2.7       a.         Set up the Lagrangian: L  x1  5ln x2  (k  x1  x2 ). The first- 

order conditions are 

L  =1   = 0, 
1 

L    
 5  

   0, 
2            x

2
 

L   k  x1  x2   0. 
*           *Hence,   1  5 x2 . With k  10, the optimal solution is x1   x2   5.

b.         With k  4, solving the first-order conditions yields x
*  
 1 and x

*  
 5.
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c.         If all variables must be nonnegative, it is clear that any positive value 
*                 *                               *for x1  reduces y. Hence, the optimal solution is x1   0, x2   4,  and y   5ln 4.

d.         If k  20, optimal solution is x
*  
 15, x

*  
 5, and y

* 
 15  5ln 5. Because

1                     2 

x2  provides a diminishing marginal increment to y as its value increases,

whereas x
1  

does not, all optimal solutions require that once x
2  

reaches 5, any

extra amounts be devoted entirely to x
1
. In consumer theory, this function can be

used to illustrate how diminishing marginal usefulness can be modeled in a very 

simple setting. 
 

 

2.8       a.         Because MC  is the derivative of TC, 

MC. By the fundamental theorem of calculus, 
q 

 MC(x) dx  TC(q)  TC (0), 
0 

TC  is an antiderivative of

where TC(0) 

Rearranging, 

is the fixed cost, which we will denote TC(0)  K 
 

 
q 

for short.

TC(q)   MC(x) dx  K 
0 

q 

  (x 1)dx  K 
0

 

 x
2 

 

xq 


 x       K

 2       
 

x0

q2 

      q  K. 
2 

b. For profit maximization, 

implies q  14. Profit are 

p  MC(q)  q 1, implying q  p 1.  But p  15

TR  TC  pq  TC(q) 
 

 14
2 

 15 14  

 
 


14  K 

  2                

 98  K.
If the firm is just breaking even, profit equals 0, implying fixed cost is K  98.

c.         When p  20 and q  19, follow the same steps as in part (b), substituting fixed
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cost K  98. Profit are
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dp 

 

TR  TC  pq  TC(q) 
 

 19
2 

 20 19  

 
 


19  K 

  2                

 180.5  98 

 82.5. 
 

d.         Assuming profit maximization, we have 
 ( p)  pq  TC(q) 

 

 ( p 1)
2                                      

 p( p 1)  
     2 

 ( p 1)  98 


( p 1)2 

               98. 
2 

 

e. 

i.         Using the above equation,  ( p  20)  ( p  15)  82.5  0  82.5. 
 

ii.        The envelope theorem states that  d dp  q* ( p). That is, the derivative of

the profit function yields this firm’s supply function. Integrating over  p  shows 

the change in profits by the fundamental theorem of calculus: 
20  

d
 (20)   (15)      dp 

15 

20 

  ( p 1)dp 
15

 

 p
2 

 

p20 


 p 

 2        
 

p15

 180  97.5 

 82.5. 
 

 
 

Analytical Problems 

 
2.9       Concave and quasi-concave functions 

 
The proof is most easily accomplished through the use of the matrix algebra of quadratic forms. 

See, for example, Mas Colell et al.,1995, pp. 937–939. Intuitively, because concave functions lie 

below any tangent plane, their level curves must also be convex. But the converse is not true. 

Quasi-concave functions may exhibit “increasing returns to scale”;  even though their level 

curves are convex, they may rise above the tangent plane when all variables are increased 

together.
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2               1     2 

22                                 1     2 

1     2 

1 

 

 

A counter example would be the Cobb–Douglas function, which is always quasi- 

concave, but convex when     1. 
 

 
 

2.10     The Cobb–Douglas function 

a.            f   x 1 
x
  
 0,

1              1         2 

f    x 
x
 1 

 0, 

f     ( 1)x
 2 

x
  
 0, 11                                1         1 

f     ( 1)x
 

x
 2  

 0,
 

f    f   x 1
x
 1 

 0.
12           21                  1         2 

Clearly, all the terms in Equation 2.114 are negative. 

 
b.         A contour line is found by setting the function equal to a constant: y  c  x

 
x
 

,
 

implying x  c
1  

x
   

. Hence,

 
 
 

 
Further, 

2                   1 

dx
2   0. 

dx1 
 

 

d 
2 
x 

2   0, 
dx2

implying the countour line is convex. 

c.         Using Equation 2.98,  f   f  f 
2  
  (1   )x

2 2 
x

2 2 
, which is negative for

 

    1. 
11   22         12                                               1           2

 

 
 

2.11       The power function 

a.         Since y  0  and y   0, the function is concave.

 

b.       Because f11, f22   0 and f12   f21   0, Equation 2.98 is satisfied, and the function

is concave. Because 

quasi-concave. 

f1, f2   0, Equation 2.114 is also satisfied, so the function is

c.        y  is quasi-concave as is y
 
. However, y  is not concave for   1. This can be 



shown most easily by f (2x1, 2x2 )  2 f (x1, x2 ).

 

 
 

2.12       Proof of envelope theorem
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   1 

   

f 

 

 

a.         The Lagrangian for this problem is

L(x1, x2 , a)  f (x1, x2 , a)   g(x1, x2 , a).

The first-order conditions are

L1 

L2  

f1   g1  0, 

f2   g2   0,

L   g  0. 

 

b., c.  Multiplication of each first-order condition by the appropriate deriviative yields

dx1 

1
 

 

 f
2
 
dx2    

 
g dx1 

 

 g
2

 
dx

2  
  0.

da         da      da         da 

d.       The optimal value of  f  is given by f  x1 (a), x2 (a), a. Differentiation of this

with respect to a shows how this optimal value changes with a :

df * 
 dx1               dx2 

da  
 f1  

da 
 f2

 
 fa . 

da

e.         Differentiation of the constraint g  x1 (a), x2 (a), a  0 yields

dg 
 0  g

 dx
1   g

 dx
2   g .

da            
1  

da 
2   

da      
a

 

f.         Multiplying the results from part (e) by  and using parts (b) and (c) yields 

df 
* 

 fa   ga   La . 
da 

This proves the envelope theorem. 

 
g.       In Example 2.8, we showed that   P 8. This shows how much an extra unit of 

perimeter would raise the enclosed area. Direct differentiation of the original 

Lagrangian shows also that 

dA
* 

 LP   . 
dP 

This shows that the Lagrange multiplier does indeed show this incremental gain in 

this problem. 
 

 
 

2.13     Taylor approximations 

a.       A function in one variable is concave if f (x)  0. Using the quadratic Taylor



1
0 
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formula to approximate this function at point a :

f (x) 



f (a)  f (a)(x  a)  0.5 f (a)(x  a)
2
 

f (a)  f (a)(x  a).

The inequality holds because f (a)  0. But the right-hand side of this equation is



1
1 
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11                      12                        22 

x0 

                                 

 

 

the equation for the tangent to the function at point a. So we have shown that any 

concave function must lie on or below the tangent to the function at that point. 

b.         A function in two variables is concave if  f   f  f 
2  
 0.

11   22         12 

Hence, the quadratic form ( f  dx
2 
 2 f  dx dy  f  dy

2 
) will also be 

negative. But this says that the final portion of the Taylor expansion will be 

negative (by setting dx  x  a and dy  y  b ), and hence the function will be 

below its tangent plane. 
 

 
 

2.14     More on expected value 

a.         The tangent to g(x) at the point E(x) will have the form c  dx  g(x) for all

values of x and c  dE(x)  g(E(x)). But, because the line c  dx is above the

function g(x) , we know

E(g(x))  E(c  dx)  c  dE(x)  g(E(x)). 

This proves Jensen’s inequality. 

b.         Use the same procedure as in part (a), but reverse the inequalities. 

c.         Let u  1 F(x), du   f (x), x  v, and dx  dv. 
                                                                                         

1 F (x)dx  (1 F (x))x
x  

 f (x)xdx

0                                                                                          0 

 0  E(x) 

 E(x). 

 
d.         Use the hint to break up the integral defining expected value: 

t                            


E ( x) 
 t

1 

xf (x)dx  xf (x)dx


t             0                             t                       



 t
1 

xf (x)dx 
t 



 t
1 

tf (x)dx 
t 



  f (x)dx 
t 

 P(x  t). 
 

 

e.         1.         Show that this function integrates to 1:
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9 

2 

 

 
                           

                           x

 f (x)dx  2x 
3
dx  x 

2

 
 
x1 

 1.

                          1 

2.         Calculate the cumulative distribution function: 
x

F (x)  2t
3

dt  t
2

 

1 

t  x 
 

t 1 
 1 x

2 
.

3.         Using the result from part (c): 
                                         

                       

 
 
x

E(x)   1 F (x)dx  x 
2
dx  x 

1

 
1                                          1 

4.         To show Markov’s inequality use 

P(x  t)  1 F (t)  t
2  
 t

1  
 

E ( x) 
. 

t 

x1 
 1.

 

f.         1.         Show that the PDF integrates to 1:
2  

 x
2  

x2 

 x3  
 

8       1 

   dx                   

  1.

1  
3          9 

 

x1 
9      9 

 

2.         Calculate the expected value:
2  

x
3 

x2 

x4 
 

15    5

E(x)   dx                      .

1  
3         12 

x1 12    4

3.         Calculate P(1  x  0 ):

 

0  
x2 


x0 

x3                   1 
dx                .

1  
3          9 

 

x1

 

4.         All we must do is adjust the PDF so that it now sums to 1 over the new,

smaller interval. Since P( A)  8 9, 

f (x)    3x
2 

f (x | A)           
8 9       8 

 

 
 

defined on  0  x  2.

 

5.         The expected value is again found through integration:
2 

3x3 

E(x | A)  
x2 

3x4                 3 
dx                 .

0    
8           32  

x0
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6. Eliminating the lowest values of x increases the expected value of the 

remaining values. 
 

 
 

2.15     More on variances 

 
a.         This is just an application of the definition of variance:
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n 

1 2 

 

 

Var(x)  E x  E(x)
2
 

 

 E  x
2 
 2xE(x)  [E(x)]

2
 

 

 E(x
2 
)  2[E(x)]

2 
 [E(x)]

2
 

 E(x
2 
) [E(x)]

2 
. 

 

b.         Here, we let y  x  x and apply Markov’s inequality to  y  and remember that x

can only take on positive values. 
2                2

 

P( y  k)  P( y
2  
 k 

2 
)  

 E ( y ) 
 


x   . 

k 
2              

k 
2

 

c.         Let x
i 
, i  1,, n be n independent random variables each with expected value

 and variance  2 
. 

  n        


E  x
i    L   n. 

 i1      

  n        
Var  

 i1 

xi 

  2 L  2   n 2.

Now, let x   i1  xi    
n.

E(x )  
 n 

 . 
n 

n2        2 

Var(x )               . 
n

2             
n 

d.         Let X  kx1  (1 k)x2   and E(X )  k  (1 k)  .

Var( X )  k 
2 2 

 (1 k)
2 2  

 (2k 
2 
 2k 1) 2 

. 

dVar( X ) 
 (4k  2) 2   0. 

dk 

Hence, variance is minimized for k  0.5. In this case, Var( X )  0.5 2 
. If

k  0.7, Var( X )  0.58 2 (not much of an increase).

 

e.         Suppose that Var(x )   2 and Var(x )  r 2 
. Now

Var(X )  k 
2 2 

 (1 k)
2 
r 2  

 (1 r)k 
2 
 2kr  r 

dVar( X ) 
 2(1 r)k  2r 2  

 0. 
dk 

k  
  r    

. 
1 r 

 2 
.

For example, if r  2, then k  2 3 , and optimal diversification requires that the 

lower risk asset constitute two-thirds of the portfolio. Note, however, that it is still
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optimal to have some of the higher risk asset because asset returns are 

independent. 
 

 
 

2.16    More on covariances 

 
a.         This is a direct result of the definition of covariance: 

Cov(x, y)  E (x  E(x))( y  E( y))
 E[xy  xE( y)  yE(x)  E(x)E( y)] 

 E(xy)  E(x)E( y)  E( y)E(x)  E(x)E( y) 

 E(xy)  E(x)E( y). 
 

 

b.         Var(ax  by)  E[(ax  by)
2 
]  [E(ax  by)]

2
 

 a
2 
E(x

2 
)  2abE(xy)  b

2 
E( y

2 
)  a

2
[E(x)]

2
 

 2abE(x)E( y)  b
2
[E( y)]

2
 

 a
2
Var(x)  b

2
Var( y)  2abCov(x, y). 

The final line is a result of Problems 2.15a and 2.16a. 
 

c.         The presence of the covariance term in the result of Problem 2.16b suggests that 

the results would differ. In the two-variable case, however, this is not necessarily 

the situation. For example, suppose that x and y are identically distributed and that 

Cov(x, y)  r 2 
. Using the prior notation, 

Var( X )  k 
2 2 

 (1 k)
2 2 

 2k(1 k)r 2 
. 

The first-order condition for a minimum is 

(4k  2  2r  4rk) 2   0, 

implying 

k
*  
 

 2 2r 
 0.5. 

4  4r 
Regardless of the value of r. With more than two random variables, however, 

covariances may indeed affect optimal weightings. 

d.         If x1  kx2 , the correlation coefficient will be either 1 (if k  is positive) or 1 (if

k  is negative), since k  will factor out of the definition leaving only the ratio of 

the common variance of the two variables. With less than a perfect linear 

relationship | Cov(x, y) | Var(x)Var( y)
0.5 

. 

e.         If y     x, 

Cov(x, y)  E (x  E(x))( y  E( y))
 E[(x  E(x))(   x    E(x))] 

  Var(x).
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Hence, 
 

 

  
 Cov( x, y) 

. 
Var(x) 


