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E2.1     We have for the open-loop 

 
 

 
and for the closed-loop 

 

 
y = r

2

 

e = r − y and y = e
2  

. 
 

So, e = r − e
2  

and e
2  

+ e − r = 0 . 
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Plot of open-loop versus closed-loop. 
 

For example,  if  r = 1, then e
2  

+ e − 1 = 0 implies that e = 0.618. Thus,

y = 0.382. A plot y versus r is shown in Figure E2.1.
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E2.2     Define 
 
 

 
and 

 

 
 

f(T ) = R = R0 e 

 
 
−

0.1T

 

 
Then, 

∆R = f (T ) − f (T0) , ∆T = T − T0  . 
 

 
∂f .

 
 
 

where 

∆R = f (T ) − f(T0) =   ∂T  
.           

◦
 

T =T0 =20 

∆T + · · ·

∂f . 
 

 

∂T. 

 

 
 

◦ 

T =T   =20 

 

= −0.1R0e 

 

−
0.1T0 

 

= −135,

when R0   = 10, 000Ω. Thus, the linear approximation is computed by 
considering only the first-order terms in the Taylor series expansion, and 
is given by 

 

∆R = −135∆T . 
 

E2.3 The spring constant for the equilibrium  point  is  found graphically  by 
estimating the slope of a line tangent to the force versus displacement 
curve at the point y = 0.5cm,  see Figure E2.3. The slope of the line is 

K ≈ 1. 
2 

 
1.5 

 
1 

 
0.5 

 
0 

 
-0.5 

 
-1 

 
-1.5 

 
-2 

 
-2.5 

 
-3 

-2         -1.5         -1         -0.5          0          0.5          1          1.5          2          2.5          3 
 

y=Displacement (cm) 

 
FIGURE E2.3 
Spring force as a function of displacement.
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24                     CHAPTER 2 Mathematical Models of Systems 
 

E2.4     Since 
 
 
 
 

we have 

 
 

1 
R(s)  = 

s

 

 

Y (s) = 

 

6(s + 50) 
. 

s(s + 30)(s + 10)
 

The partial fraction expansion of Y (s) is given by
 

A1 
Y (s) = 

 

+    
A2 

 

+    
A3

 

 

where 

s       s + 30      s + 10 
 
 
 

A1  = 1  ,   A2  = 0.2  and   A3  = −1.2 .
 

Using the Laplace transform table, we find that
 

−
30t

 
 

−
10t

y(t) = 1 + 0.2e        − 1.2e        . 
 

The final value is computed using the final value theorem: 
Σ       

6(s + 50)       
Σ

lim  y(t) = lim s 
t→∞             s→0       s(s2 + 40s + 300) 

 

E2.5     The circuit diagram is shown in Figure  E2.5. 
 
 

R2 

= 1 .

 
 
 
 

+ 
vin 

- 

v- 
- 

+ 
A               

+             
R1

 

v0 

-

 

 
FIGURE E2.5 
Noninverting op-amp circuit. 

 

 
With an ideal op-amp, we have 

 

vo = A(vin − v−),
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where A is very large. We have the relationship 
 

 
 
 

Therefore, 

v−  = R1 

 

R1  + R2 

 

 
 

R1 

 

vo.

vo = A(vin  − 
 

and solving for vo yields 

 

R1  + R2 

vo),

A 
vo =           

AR1
 

 
vin.

1 +  
R1+R2 

 

AR1               
AR1Since A ≫ 1, it follows that 1 +R  +R1  2 

vo simplifiesto 
≈ R1+R2   

. Then the expression for

v  = 
R1 + R2 

v .
 
 

E2.6     Given 

o            
R1           

in
 

 
 
 

y = f(x) = ex

 

and the operating point xo = 1, we have the linear approximation
 

 
 
 
 

where 

 
y = f(x) = f (xo) + 
 
 
 
 

df 

 

∂f 

∂x .
x=x 

 

 

(x − xo) + · · ·

f(xo) = e, 
dx . 

 
x=xo=1 

= e,     and   x − xo = x − 1.

 

Therefore,  we obtain the linear approximation y = ex. 
 

E2.7     The block diagram  is shown in Figure E2.7. 
 
 

R(s) 
+         Ea(s) 

 
- 

 

G1(s) 
 

G2(s) 
 

I(s)

 

H(s) 
 

 

FIGURE E2.7 
Block diagram model.
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26                     CHAPTER 2 Mathematical Models of Systems 
 

 

Starting at the output we obtain 
 

I(s) = tt1(s)tt2(s)E(s). 
 

But E(s) = R(s) − H(s)I(s), so 

I(s) = tt1(s)tt2(s)  [R(s) − H(s)I(s)]  . 
 

Solving for I(s) yields the closed-loop transfer function
 

I(s) 

 

R(s) 

 

=          
tt1(s)tt2(s)          

. 
1 + tt1(s)tt2(s)H(s)

 

E2.8     The block diagram  is shown in Figure E2.8. 
 

 
H2(s) 

 

 

                    -                       A(s)                   Z(s)     1R(s) K 

-     E(s)                  -       W(s) - 

G1(s) G2(s) s              
Y(s)

 
H3(s) 

 

 
H1(s) 

 
 
 

FIGURE E2.8 
Block diagram model. 

 

Starting at the output we obtain 

1              1 
Y (s) = 

s 
Z(s)  = 

s
 

 
 
 

2(s)A(s).

tt 
 

But A(s) = tt1(s) [−H2(s)Z(s) − H3(s)A(s)  + W (s)] and Z(s) = sY (s), 
so 

1 
Y (s) = −tt1(s)tt2(s)H2(s)Y (s) − tt1(s)H3(s)Y  (s) + 

s
tt1(s)tt2(s)W (s).

 

Substituting  W (s) = KE(s) − H1(s)Z(s) into the above equation yields 
 

Y (s) = −tt1(s)tt2(s)H2(s)Y (s) − tt1(s)H3(s)Y  (s) 
1 

+ 
s
tt1(s)tt2(s)  [KE(s)  − H1(s)Z(s)]
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and with E(s) = R(s) − Y (s) and Z(s) = sY (s) this reduces  to 

Y (s) = [−tt1(s)tt2(s) (H2(s) + H1(s)) − tt1(s)H3(s) 
1                                       1 

− 
s
tt1(s)tt2(s)K]Y (s) + 

s
tt1(s)tt2(s)KR(s).

 

Solving for Y (s) yields the transfer function 
 

Y (s) = T (s)R(s), 
 

where 

T (s) =                                              
Ktt1(s)tt2 (s)/s                                             

. 
1 + tt1(s)tt2(s) [(H2 (s) + H1(s)] + tt1(s)H3 (s) + Ktt1 (s)tt2(s)/s 

 

E2.9     From Figure E2.9, we observe  that 
 

Ff  (s) = tt2(s)U (s) 

and  

 
FR(s) = tt3(s)U (s) .

 

Then, solving for U (s) yields 
 

1
 

 
 

and it follows that 

U (s)  = 
tt (s)  

Ff (s)
 

 
 

tt3(s)

F (s) = U (s) .

R            
tt (s) 

Again, considering the block diagram in Figure E2.9 we determine 
 

Ff  (s) = tt1(s)tt2(s)[R(s) − H2(s)Ff  (s) − H2(s)FR(s)] . 
 

But, from the previous result, we substitute for FR(s) resulting in 
 

Ff  (s) = tt1(s)tt2(s)R(s)−tt1(s)tt2(s)H2(s)Ff  (s)−tt1(s)H2(s)tt3(s)Ff  (s) . 
 

Solving for Ff (s) yields
 

F  (s) =                              
tt1(s)tt2(s) 

f               
1 + tt1(s)tt2(s)H2(s) + tt1(s)tt3(s)H2(s) 

Σ 

R(s) .
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- 

H2(s) 

 
 
 
G1(s) 
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FIGURE E2.9 
Block diagram model. 

 

 

E2.10     The shock absorber block diagram is shown in Figure E2.10. The closed- 
loop transfer function model  is 

 

T (s) =         
ttc(s)ttp(s)tt(s)          

. 
1 + H(s)ttc(s)ttp(s)tt(s) 

 
 
 
 

+ 
R(s) 

Plunger  and 

Piston System 

 
G(s) 

 

 
 
Y(s)

Desired piston        - 
travel 

Piston 

travel

 

 
Sensor 

 
Piston travel 

measurement 

 

FIGURE E2.10 
Shock absorber block diagram. 

H(s)

 

 
E2.11     Let f denote the spring force (n) and x denote the deflection (m). Then 

∆f 
K =          . 

∆x 

Computing the slope from the graph yields: 

(a) xo = −0.14m → K = ∆f/∆x = 10 n / 0.04 m = 250 n/m 
(b) xo = 0m → K = ∆f/∆x = 10 n / 0.05 m = 200 n/m 

(c)  xo = 0.35m → K = ∆f/∆x = 3n / 0.05 m = 60 n/m
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E2.12     The signal flow graph is shown in Fig. E2 12. Find Y (s) when R(s) = 0. 
 

 

-K                             
Td(s)

 
1 

1
G(s) 

2 
 
Y (s)

 

 
-1 

 

FIGURE E2.12 
Signal flow graph. 

 
 

The transfer function from Td(s) to Y (s) is 
 

Y (s) = 
tt(s)Td(s)  − K1K2tt(s)Td(s) 

= 
tt(s)(1 − K1K2)Td(s)  

. 
1 − (−K2tt(s))                         1 + K2tt(s) 

 

If we set 
 

K1K2   = 1 , 
 

then Y (s) = 0 for any Td(s). 
 

E2.13     The transfer function from R(s), Td(s), and N (s) to Y (s) is
 

Y (s) = 

Σ         
K          

Σ
  
R(s)+ 

Σ           
1           

Σ
 
 

T (s)− 

Σ         
K          

Σ
  
N (s)

s2 + 10s + K 
 

Therefore, we find that 
 

1 

s2  + 10s+ K      d             s2 + 10s + K 
 

 
 

K

Y (s)/Td(s) =  
s2 + 10s + K      

and   Y (s)/N (s) = − 
s2 + 10s + K 

 

E2.14  Since we  want  to compute the transfer function from R2(s) to Y1(s), we 
can assume that R1  = 0 (application of the principle of superposition). 
Then, starting at the output Y1(s) we obtain 

 

Y1(s) = tt3(s) [−H1(s)Y1(s) + tt2(s)tt8(s)W (s) + tt9(s)W (s)] , 
 

or 
 

[1 + tt3(s)H1(s)] Y1(s) = [tt3(s)tt2(s)tt8(s)W (s) + tt3(s)tt9(s)] W (s). 
 

Considering  the signal W (s) (see Figure E2.14), we determine that 
 

W (s) = tt5(s) [tt4(s)R2(s) − H2(s)W (s)] ,
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G5(s) 

- 
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+ 
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-                                     W(s) 

 
H2(s) 

 
FIGURE E2.14 
Block diagram model. 

 

 

or 
 

[1 + tt5(s)H2(s)] W (s) = tt5(s)tt4(s)R2(s). 
 

Substituting the expression for W (s) into the above equation for Y1(s) 
yields

 

Y1(s) 

R2(s) 

 

=   
tt2(s)tt3(s)tt4(s)tt5(s)tt8(s) + tt3(s)tt4(s)tt5(s)tt9(s) 

. 
1 + tt3(s)H1(s)  + tt5(s)H2(s)  +  tt3(s)tt5(s)H1(s)H2(s)

 

E2.15     For loop 1, wehave 

 
R1i1  + L1

 

 

 
 

di1  

+
 

 
 

1 
∫ 

(i  − i )dt + R (i
 

 
 

 

− i ) = v(t) .

dt      C1 
 

And for loop 2, we have 
∫ 

2     1            2 

 
 
 
∫

1       
i2dt  + L2  

di2 
+ R (i − i ) + 

2 

 

1    
(i2 − i1)dt = 0 . 

C1
 

E2.16     The transfer function from R(s) to P (s) is 
 

P (s)                    4.2 
=                                     .

R(s) s3 + 2s2 + 4s + 4.2

 

The block diagram is shown in Figure E2.16a. The corresponding signal 
flow graph is shown in Figure E2.16b for 

4.2 
P (s)/R(s) = 

s3 + 2s2  + 4s + 4.2  
.
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R(s) 

v1(s) 

-       
7
 

v2(s) 
 

0.6 

s 

 

s        1   

s2+2s+4 

 
P(s)

 
 
 
 
 
 

 
R(s) 

 
 
 

V1                       V2 

1                   7 

(a) 
 
0.6 

s 

 
 
        1   

s2 + 2 s + 4 

 
 
 

 
P (s)

 
 

-1 

 

 
(b) 

 

FIGURE E2.16 
(a)  Block diagram, (b) Signal flow graph. 

 
 
 

E2.17     A linear approximation for f is  given by 
 

∂f
∆f =      . 

x=xo 

∆x = 2kxo∆x = k∆x

 

where xo  = 1/2,  ∆f  = f(x) − f(xo), and ∆x  = x − xo . 

E2.18     The linear approximation is given by 
 

∆y = m∆x 

where  
 

∂y 
m =  ∂x 

 

 
 

. 
. 
x=xo

(a)  When xo = 1, we find that yo = 2.4, and yo = 13.2 when xo = 2. 
 

 

(b)  The slope m is computed as follows: 

∂y 
2

m =  
∂x .  

x=xo 

= 1 + 4.2xo .

 

Therefore,  m = 5.2 at xo = 1, and m = 18.8 at xo = 2.
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E2.19     The output (with a step input) is 

Y (s) =      
28(s + 1)      

. 
s(s + 7)(s + 2) 

 

The partial fraction expansion is 

2       4.8         2.8 
Y (s) =  

s 
− 

s + 7 
+ 

s + 2 
.
 

Taking the inverse Laplace transform yields 
 

y(t) = 2 − 4.8e−7t  + 2.8e −2t  . 

E2.20     The input-output  relationship  is 

Vo 
=  

A(K − 1) 
V        1 + AK

 

where 
 
 
 
 

Assume A ≫ 1. Then, 

 
 
 

K = 
1 

 

 
Z1         

. 
+ Z2

Vo 
= 

K − 1 
= − 

Z2

 

 

where 

V 
 

 

Z   =         
R1 

K             Z1 

 
 

R2 
and   Z2    =                      .

1        
R C s +1

 R2 C2 s + 1
1      1 

Therefore, 
 

Vo(s) 
= − 

R2(R1 C1s + 1) 
= −

2(s + 1) 
. 

V (s)          R1(R2C2s + 1)                s + 2 
 

E2.21     The equation of motion of the mass mc  is 
 

mc ẍp  + (bd + bs)ẋ p  + kd xp  = bd ẋ in + kd xin  . 
 

Taking the Laplace transform with zero initial conditions yields 
 

[mcs
2  

+ (bd + bs)s + kd]Xp(s) = [bds + kd]Xin(s)  . 
 

So, the transfer function is
 

Xp(s) 

 

Xin(s) 

 

=              
bds + kd 

mcs2 + (bd + bs)s + kd 

 

0.65s + 1.8 
= 

s2 + 1.55s  + 1.8 
.
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E2.22     The rotational velocity is 

 
ω(s) = 

 
 

2(s + 4)        1 

(s + 5)(s + 1)2    s 
.

 

Expanding in a partial fraction expansion yields 

8 1      1     1         3      1            13    1
ω(s) = 

5 s 
+ 

40 s + 5 
− 

2 (s + 1)2 
− 

8 s + 1 
.

 

Taking the inverse Laplace transform yields 

8     1            3       −t       13  −ω(t) =    + e−5t − te    −    e  t  .

5     40            2             8 

E2.23     The closed-loop  transfer function is

Y (s)  
= T (s) = 

K1K2                                            
.

R(s)                    s2 + (K1   + K2K3   + K1K2)s + K1K2K3 

 

E2.24     Let x = 0.6 and y = 0.8. Then, with  y = ax
3
, we have 

 

0.8 = a(0.6)
3  

. 
 

Solving for a yields a = 3.704. A linear approximation is 
 

y − yo = 3ax
2
(x − xo) 

 

or y = 4x − 1.6, where yo = 0.8 and xo = 0.6. 

E2.25     The closed-loop  transfer function is 

Y (s)                             10 
= T (s) =                          .

R(s) 
 

E2.26     The equations of motion are 

s2 + 21s + 10

 

m1 ẍ1  + k(x1  − x2 ) = F 

m2 ẍ2  + k(x2  − x1 ) = 0 . 
 

Taking the Laplace transform (with zero initial conditions) and solving 
for X2(s) yields

 
 

X2(s)  = 

 

k 
 

 

(m 2s2 + k)(m  s12 + k) − k2 

 
 

F (s) .

Then, with m1  = m2  = k = 1, we have 

1 
X2(s)/F (s) =  

s2(s2  + 2) 
.
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E2.27     The transfer function from Td(s) to Y (s) is 

Y (s)/T  (s) =         
tt2(s)           

. 
d

 

 

E2.28     The transfer function is 

1 + tt1tt2H(s)

 
 
 

 
E2.29     (a) If 

Vo(s) 
= 

R2R4C 
s + 

R2R4 
= 46.08s  + 344.91  . 

V (s)           R3                         R1R3 

 

 
1 

tt(s) =  
s2 + 15s + 50     

and   H(s) = 2s + 15 ,

 

then the closed-loop transfer function of Figure E2.28(a) and (b) (in 
Dorf & Bishop) are equivalent. 

(b)  The closed-loop transfer function is

 
T (s) = 

 

1 

s2 + 17s + 65 
.

 

E2.30     (a) The closed-loop  transfer function is 
 

tt(s)     1                  15                                                     15
T (s) = = 

1 + tt(s) s 
 

s(s2 + 5s + 30) 
where   tt(s) = 

s2 + 5s + 15 
.
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0.6 
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0 
0                          0.5                          1 
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1.5                          2                          2.5

 
 

FIGURE E2.30 
Step response.
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(b)  The output Y (s) (when  R(s) = 1/s)  is 

Y (s) = 
0.5 

+ 
−0.25 + 0.1282j 

+ 
−0.25 − 0.1282j

s       s+2.5− 4.8734 
or 

s + 2.5 + 4.8734j

 
Y (s) = 1 

.
1 s + 5       

Σ 
−

2    s      s2 + 5s +30 
 

(c)                                     The plot of y(t) is shown in Figure E2.30. The output is given by 
 

y(t) = 0.5(1 − 1.1239e−2.5t sin(4.8734t + 1.0968)); 

E2.31     The partial fraction expansion  is
 

V (s) = 
a 

 

s + p1 

 

+      
b 

s + p2

where p1  = 4 − 22j and p2  = 4 + 22j. Then, the residues are 
 

a = −11.37j     b = 11.37j  . 
 

The inverse Laplace transform is 
 

v(t) = −11.37je
(−4+22j )t  + 11.37je

(−4−22j )t  = 22.73e−4t sin 22t .
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Problems 
 

P2.1     The integrodifferential equations, obtained by Kirchoff’s voltage law to 
each loop, are as follows:

 

1 
R i + 

2 1 
∫ 

i dt + L  d(i1  − i2) 
+ R (i    − i  ) = v(t)    (loop  1) 

1         
dt              1    1        2

and               
C1 

1 

 

1 

i dt + R (i   − i ) + L 
d(i2 − i1) 

= 0    (loop 2) .

R i + 
∫ 

 

1    2        1            1         
dt

P2.2     The di 
3  2 

ntCia2l eq 
2  

tions describing the system can be obtained by usingffere             ua 
a free-body diagram analysis of each mass. For mass 1 and 2 we have 

 

M1 ÿ1  + k12 (y1  − y2) + bẏ1  + k1 y1   = F (t) 

M2 ÿ2  + k12 (y2  − y1) = 0 . 
 

Using a force-current analogy, the analagous electric circuit is shown in 

Figure P2.2, where Ci → Mi  ,  L1  → 1/k1  ,  L12  → 1/k12  ,  and R → 1/b . 
 
 
 
 
 
 
 
 
 
 
 

 
FIGURE P2.2 
Analagous electric circuit. 

 

 
 

P2.3     The differential equations describing the system can be obtained by using 
a free-body diagram analysis of each mass. For mass 1 and 2 we have 

 

M ẍ1  + kx1  + k(x1  − x2) = F (t) 

M ẍ2  + k(x2  − x1 ) + bẋ 2   = 0 . 
 

Using a force-current analogy, the analagous electric circuit is shown in 
Figure P2.3, where 

 

C → M        L → 1/k        R → 1/b .
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FIGURE P2.3 
Analagous electric circuit. 

 

 
P2.4      (a) The linear approximation around vin   =  0 is  vo   =  0vin,  see Fig- 

ure P2.4(a).

(b) The linear approximation around vin = 1 is vo  = 2vin 

ure P2.4(b). 
− 1, see Fig-

 
 

0.4 

 

 
0.3 

 

 
0.2 

 

 
0.1 

 

 
0 

 

 
-0.1 

 

 
-0.2 

 

 
-0.3 

(a)  
4 

 

 
3.5 

 

 
3 

 

 
2.5 

 

 
2 

 

 
1.5 

 

 
1 

 

 
0.5 

 

 
0 

 

 
-0.5 

(b)

-0.4 
-1            -0.5              0             0.5             1 

vin 

-1 
-1                     0                    1                    2 

vin

 

FIGURE P2.4 
Nonlinear functions and approximations.
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P2.5     Given 
 

Q = K(P  − P )
1/2  

.
 

Let  δP  =  P1 

 

− P2  and δPo = operating point. Using a Taylor series

expansion of Q, we have 
 

Q = Qo  + 
 
 

where 
 

1/2
 

 

 

∂Q 

∂δP . 

 
 
 
 
δP =δPo 

 
 

∂Q 

 

 
 

(δP − δPo) + · · · 
 

 
K 

−1/2

Qo = KδPo and 
∂δP 

=      δPo        . 
δP =δPo            

2

 

Define ∆Q = Q − Qo   and ∆P = δP 
 

− δPo. Then, dropping higher-order

terms in the Taylor series expansion yields 
 

∆Q = m∆P 

where 
 
 
 

 
P2.6     From P2.1 wehave 

1 

 

 

K 
m =                . 

2δP 
1/2

 
 

 

i dt + L  d(i1  − i2) 
+ R (i    − i ) = v(t)

R i + 
∫ 

 

and              
2  1       

C1          
1

 

 

1         
dt               1    1        2

1 
R i + 

i dt + R (i   − i ) + L  d(i2  − i1) 
= 0 . 

∫         1    2        1            1         
dt

Taking the L
3
ap

2 
laceCt2rans

2
form and using the fact that the initial voltage 

across C2  is 10v yields 

1 
[R2  + 

C s 
+ L1s + R1]I1(s) + [−R1  − L1s]I2(s) = 0

 

and 
 

 
1                               10 

[−R1  − L1s]I1(s) + [L1s + R3  +  
C  s  

+ R1]I2(s) = − 
s 

.

 

Rewriting in matrix form we have 

R2 + 
1               + L1s + R1                             −R1  − L1s 

C s1 
1 

 

 
+ R1

 

I1(s)                       0 
=

−R1  − L1s              L1s + R3  + C2s I2(s)                 −10/s
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Solving for I2  yields 

I1(s) 1        L1s + R3  + 
= 

1                 + R1                              R1  + L1s                          0 
.

 

I2(s)            ∆ 

or 

R  + L
C s2                                

R  + 
1

 + L1s + R1 
 

−10/s

 

I (s) =  
−10(R2  + 1/C1 s + L1 s + R1 ) 

s∆ 

where 
 

∆ = (R 

 

 

+    1    + L s + R )(L  s + R 

 
 

+    
1   

+ R ) − (R   + L s)
2   

.

2       
C1s        

1             1        1             3       
C2s        

1               1          1
 

 

P2.7      Consider the differentiating op-amp circuit in Figure P2.7. For an ideal 
op-amp, the voltage gain (as a function of frequency) is 

 

Z2(s)
V (s) = − V (s),

2                   
Z (s)  

1
 

where 
 

 
 

Z1  = 

 

 
R1 

1 + R Cs 
1

 

and Z2  = R2  are the respective circuit impedances. Therefore, we obtain 
 

Σ 
R (1 + R Cs) 

Σ

V2(s) = −     
2              1

 
R1 

V1(s).

 

 

Z 
1                  Z 

2 
C                         R2 

 
+ 

R1 

V1(s) 
 

- 

-                          
+ 

+ 
V2(s) 

 

-

 

 

FIGURE P2.7 
Differentiating op-amp circuit.
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P2.8     Let 

 

tt1  + Cs         −Cs           −tt1          . 

∆ =        −Cs       tt2  + 2Cs        −Cs     .  . 

.     − tt1                         −Cs        Cs + tt1   . 

Then,  
 

V  = 
∆ij 

I
 

 

 
 

V3               ∆13 I1/∆

j        
∆  

1           or =                 . 
V       ∆  I /∆

1                              11     1 

Therefore, the transfer function is  

 
.     Cs 2Cs + tt2          

. 
− 

tt1                         CsV3        ∆13 
T (s) =       =         = .  −          −        .

V1        ∆11             2Cs + tt2                −Cs     
.
 

−Cs        Cs + tt1   . 
 

 
 

Pole-zero map (x:poles and o:zeros) 
3 

 

 
2                                                                                                      o 

 

 
1 

 

 
0                    x                                                                                                                                         x 

 

 
-1 

 

 
-2                                                                                                      o 

 
 

-3 
-8             -7             -6             -5             -4             -3             -2             -1              0 

 

Real Axis 

 
FIGURE P2.8 
Pole-zero map.
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=           C
2
R1R2s

2 
+ 2CR2s + 1 

C R R  s  + (2R   + R  )Cs + 1 
1    2                    2           1 

 

Using R1  = 1.0, R2 = 0.5, and C = 0.5, we have 
 

s
2  

+ 4s + 8         (s + 2 + 2j)(s + 2 − 2j)
 

T (s) =  

s2 + 8s + 8 
=

 

 
(s + 4 + 

√                √    . 
8)(s + 4 −   8)

The pole-zero map is shown in Figure P2.8. 
 

P2.9     From P2.3 we have 
 

M ẍ1  + kx1  + k(x1  − x2) = F (t) 

M ẍ2  + k(x2  − x1 ) + bẋ 2   = 0 . 
 
 

Taking the Laplace transform of both equations and writing the result in 
matrix form, it follows that 

Ms
2 
+ 2k             −k 

 

−k         Ms 
2
+ bs + k 

X1(s) 

 
X2(s) 

      F (s) 

                    , 
0

 
 

0.4 

 
 

0.3 

 
 

0.2 

 
 

0.1 

 
 

0 

 
 

- 0.1 

 
 

-0.2 

 
 

-0.3 

Pole zero map

 
 

-0.4 
-0.03                 -0.025                 -0.02                 -0.015                 -0.01                 -0.005                      0 

Real Axis 

 

FIGURE P2.9 
Pole-zero map.



© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently 

exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher. 
 

= 

= 

1 

 

 

42                     CHAPTER 2 Mathematical Models of Systems 
 

or 
 

X1(s) 

 

 
1      Ms

2   
+ bs + k            k 

2
 

 
 

F (s)

X2(s)             ∆ k              Ms + 2k              0

 

where ∆ = (Ms
2  

+ bs + k)(Ms
2  

+ 2k) − k
2  

. So,

 
tt(s) = 

 

X1(s)  
= 

F (s) 

 

Ms
2
 

 

+ bs + k 
. 

∆
 

When b/k = 1, M = 1 , b
2
/M k = 0.04, we have 

 

s
2 
+ 0.04s + 0.04 

tt(s) =                                                                                . 
s4 + 0.04s3  + 0.12s2  + 0.0032s + 0.0016 

 

The pole-zero map is shown in Figure P2.9. 
 

P2.10      From P2.2 we have 
 

M1 ÿ1  + k12 (y1  − y2) + bẏ1  + k1 y1   = F (t) 

M2 ÿ2  + k12 (y2  − y1) = 0 . 
 

Taking the Laplace transform of both equations and writing the result in 
matrix form, it follows that 

M1s
2 

+ bs + k1  + k12                           −k12                                  Y (s) 
2                                               = 

F (s)

−k12                                     M2s + k12 

or 
Y2(s)                      

0

 

Y1(s)            1      M2s2  + k12                           k12                                   F (s) 

 

Y2(s)            ∆ 

where 

k12                        M1s
2  

+ bs + k1  + k12                                  0

 

∆ = (M2s
2   

+ k12)(M1s
2  

+ bs + k1  + k12) − k
2 

1.2 
 

So, when f (t) = a sin ωot, we have that Y1(s) is given by 
 

aM2 ωo (s
2  
+ k12 /M2 ) 

Y1(s) =        (s2 + ω2)∆(s)         
. 

o 
 

For motionless response (in the steady-state), set the zero of the transfer 
function so that 

(s
2  

+  
k12 

) = s
2 
+ ω

2              
or   ω

2  
=  

k12  
. 

M2                         
o                o      

M2
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P2.11      The transfer functions from Vc(s) to Vd(s) and from Vd(s) to θ(s) are: 
K1K2

V  (s)/V (s) = 
d          c            

(Lqs + Rq)(Lcs +Rc) 

θ(s)/V (s) = 

, and 
 

Km                                            
.

d               
(Js2  + fs)((Ld  + La)s + Rd + Ra ) + K3 Km s 

 

The block diagram for θ(s)/Vc (s) is shown in Figure P2.11, where
 

θ(s)/V (s) = 

 

θ(s) 
 

Vd(s) 
= 

K1K2Km 
,

 

 
where 

c            
Vd(s) Vc(s)           ∆(s)

 

∆(s) = s(Lcs + Rc)(Lqs + Rq)((Js  + b)((Ld  + La)s + Rd  + Ra) + KmK3) . 
 

 
 
 

     1 
 I c                 Vq                         I q V d +

 
1                 

I d
 T m                                     

Vc                                                   K 1 
L cs+R c 


 

 
 



1 
L qs+R q 

K 2                                          (L d+L a)s+Rd+Ra 

- 

Vb 

1 
K m                        Js+f 
 



K 3 



1           
s

FIGURE P2.11 
Block diagram. 

 

 

P2.12      The open-loop transfer function is 
 

Y (s) 
= 

R(s) 

 
 

K 
. 

s + 50

 

With  R(s) = 1/s, we have 
 

 
 
 

Y (s) = 

 

 
 

K 
. 

s(s + 50)
 

The partial fraction expansion is 

K 
. 

1           1     
Σ 

Y (s) = 
50   s 

− 
s + 50    

, 
 

and the inverse Laplace transform is 

K             −50t
 

 

y(t) =  
50 

.          Σ 
1 − e         ,

As t → ∞, it follows that y(t) → K/50. So we choose K  = 50 so that y(t)
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approaches 1. Alternatively we can use the final value theorem to obtain 
 

K 
y(t)t→∞  = lim sY (s) =         . 

s→0                     50 
 

It follows that choosing K = 50 leads to y(t) → 1 as t → ∞. 

P2.13      The motor torque is given by 
 

Tm(s) = (Jms
2  

+ bms)θm(s) + (JLs
2  

+ bLs)nθL(s) 

= n((Jm s
2  
+ bm s)/n

2  
+ JL s

2  
+ bL s)θL(s) 

 
where 

 
n = θL(s)/θm(s) =  gear ratio  . 

 
But 

 
Tm(s) = KmIg(s) 

and  
 

I (s) =                     
1 

g             
(L    + L  )s + R

 

 

 
 

+ R  
Vg(s) ,

 

 

and 

g        f               g           f 

 
 
 

KgVg(s) = KgIf   (s) = V (s) . 
Rf  + Lf  s f

 

Combining the above expressions yields 
 

θL(s)  
=        

KgKm            
. 

Vf (s)      n∆1(s)∆2(s) 
 

where
 

 

∆1(s) = JLs 

 

2         + bLs+   
Jms

 

 

+ bms 

n2

 

and 
 

∆2(s)  = (Lgs + Lf  s + Rg  + Rf  )(Rf  + Lf  s) . 
 

P2.14      For a field-controlled dc electric motor we have 

Km/Rf
ω(s)/Vf 

(s)  = . 
Js + b
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With a step input of Vf (s) = 80/s, the final value of ω(t) is
 

ω(t)t→∞  = lim sω(s) = 
s→0 

 

Solving for ω(t) yields 

80Km 
 

Rf  b 

 
= 2.4      or 

Km 
 

Rf  b 

 
= 0.03 .

 
ω(t) = 

80Km 
.   

1 
L−1

 

Σ 

= 
80Km

 

 

(1−e
−

(b/J)t ) = 2.4(1−e
−(b/J )t

) .

Rf J             s(s + b/J)            Rf  b 
 

At t = 1/2,  ω(t) = 1, so 
 

ω(1/2) = 2.4(1 − e−(b/J)t) = 1     implies   b/J  = 1.08 sec . 
 

Therefore, 

0.0324 
ω(s)/Vf (s) =  

s + 1.08  
.
 

P2.15      Summing the forces in the vertical direction and using Newton’s Second 
Law we obtain

 
ẍ + 

k 
x = 0 . 

m

The system has no damping and no external inputs. Taking the Laplace 
transform yields 

 

X(s) =       
x0s       

, 
s2 +k/m 

 

where we used the fact that x(0)  =  x0    and ẋ (0)  =  0.  Then taking the 
inverse Laplace transform yields 

 

 

 

k 
x(t) = x0  cos        t . 

m 
 

P2.16      (a) For mass 1 and 2, we have 
 

M1 ẍ1  + K1 (x1  − x2 ) + b1(ẋ 3   − ẋ 1) = 0 

M2 ẍ2  + K2(x2  − x3 ) + b2(ẋ 3   − ẋ 2 ) + K1 (x2  − x1) = 0 . 
 

(b)  Taking the Laplace transform yields 

(M1s + b1s + K1)X1(s) 
2 − K1X2(s) = b1sX3(s)

 
 

(c)  Let 

−K1X1(s) + (M2s + b2s + K1  + K2)X2(s) = (b2s + K2)X3(s) . 
 

 
 

tt1(s) = K2  + b2s
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tt2(s) =1/p(s) 

tt3(s) = 1/q(s) 

tt4(s) = sb1  , 

where  
 

p(s) = s
2 
M  + sf + K  + K2                         2                       1                       2 

and  
 

q(s) = s
2 
M1  + sf1  + K1   .

 

The signal flow graph is shown in Figure P2.16. 
 

 
 

G 4 

 
G 

3 

X 3                                                                                                                                                                                                                              X 
G

1                                                                     
G 2                                 K 1 

 

 
K 1 

 

 

FIGURE P2.16 
Signal flow graph. 

 

 
(d)  The transfer function from X3(s) to X1(s) is 

X1(s)  
= 

K1tt1(s)tt2(s)tt3(s) + tt4(s)tt3(s)  
. 

X3(s)                      1 − K2tt2(s)tt3(s) 

P2.17      Using  Cramer’s rule, we  have 

 
1   1.5         x1                            6 

      =            
x2                    11 

2    4 
or 

 

x1              1         4     −1.5        6 
 

x2              ∆     −2      1             
11

 
where  ∆ = 4(1) − 2(1.5)  = 1 . Therefore,

 
x 1= 4(6) − 1.5(11) 

1 

 
= 7.5    and   x2  = −2(6)  + 1(11) 

1 

 

= −1 .
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The signal flow graph is shown in Figure P2.17. 
 
 

11 
1/4 

 

 
1                         -1/2 

6                                                                          X2 

X1 

-1.5 
 

FIGURE P2.17 
Signal flow graph. 

 

So, 
 
 

6(1) − 1.5(
11 

)                                     11( 
1  

) + −
1 

(6)

x1  = 4 

1 − 3
 

= 7.5    and   x2   =         4           2 

1 − 3
 

= −1 .

 

P2.18      The signal flow graph is shown in Figure P2.18. 
 

 

I 1                       
Z            

Va                                                       I a              
Z 

2                                                   3                                           4 
V1                                                                                                                                                                                                                           V 

Y 1                                                                                                                                                                                          
2
 

 

-Y
1                                                  

-Z2                                           -Y 3 

 

FIGURE P2.18 
Signal flow graph. 

 
 

The transfer function is 

V2(s) 
=                           

Y1 Z2 Y3Z4                                                        

. 
V1(s)       1 + Y1Z2 + Y3Z2  + Y3Z4  + Y1 Z2Z4 Y3 

 

P2.19      (a) Assume Rg ≫ Rs and Rs ≫ R1. Then Rs = R1  + R2  ≈ R2, and 
 

vgs = vin − vo , 
 

where we neglect iin, since Rg ≫ Rs. At node S, we have

vo     = g v    = g (v 
 

− v )    or vo  

=     
gmRs        

.

Rs         
m gs        m    in        o               vin       1 + gmRs 

 

(b)  With gmRs = 20, we have 
 

20 
=       = 0.95  . 

vin         21
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(c)  The block diagram is shown in Figure P2.19. 
 

vin(s)          
- 

gmRs vo(s)

 
 
 

FIGURE P2.19 
Block diagram model. 

 

 
P2.20      From the geometry we find  that 

l1 − l2                           l2∆z = k 
 
 

The flow rate balance yields 
 

dy 

(x − y) − 
l1                                                     l1 

y . 
 

 
 
 

p∆Z(s)

A   = p∆z     which implies   Y (s) =                 . 
dt   As 

 

By combining the above results it follows that
 

 

Y (s) = 
p  Σ   . 

k     
1 

Σ 
− l2 

Σ 
l2 

(X(s) − Y (s)) −    Y (s)    .

As             l1                                                                            l1 

 

Therefore, the signal flow graph is shown in Figure P2.20. Using Mason’s 
 
 

-1 
 

(l  - l  )/l         Z 
1 2             1                                  p/As 

X                                                                                                                                                                                          Y 
1 

 
-l / l 

2 1 

 

FIGURE P2.20 
Signal flow graph. 

 
 

gain formula we find that the transfer function is given by
 
 
 
 
 

where 

 

Y (s)  
= 

X(s) 

 

k(l1−l2)p 

l1As 

1 + l2p + k(l1−l2)p 

l1As          l1As 

K1 
=                          , 

s + K2  + K1

K  = 
k(l1    − l2)p

p      and   K   =  
l2p 

. 1                
l A                           

2            
l A

 
1                                                                            1
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P2.21      (a) The equations of motion for the two masses are 
. 

L 
Σ

ML
2
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FIGURE P2.21 
(a)  Block diagram. (b) Pole-zero map. 

 

With θ̇1  = ω1   and θ̇2  = ω2, we have 
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ω˙2 

k 
= 

4M 

 

θ1   − 
. 

g +    
k      

θ  . 
L  4M      

2

 

(b)  Define a = g/L + k/4M  and b = k/4M . Then 
 

θ1(s)          1           s
2  

+ a 
=                                     .

F (s) 2ML (s2 + a)2 − b2

 

(c)  The block diagram and pole-zero map are shown in Figure P2.21. 
 

P2.22      For a noninverting op-amp circuit, depicted in Figure P2.22a, the voltage 
gain (as a function of frequency)  is 

 

V (s) = 
Z1(s) + Z2(s) 

V      
(s), 

o                    
Z (s)           in 

 

where Z1(s) and Z2(s) are the impedances of the respective circuits. In 
 

 
Z2 

 
Z1                    - 

           vin                                 + 

 

 
- 

v                                                                     v 
0                        vin                              +                             0

 

 
(a)                                                                                (b) 

 

FIGURE P2.22 
(a)  Noninverting op-amp circuit. (b) Voltage follower circuit. 

 

 
 

the case of the voltage follower circuit, shown in Figure P2.22b, we have 

Z1  = ∞ (open circuit) and Z2  = 0. Therefore, the transfer function is
 

Vo(s) 

 

Vin(s) 

 

Z1 
=      = 1. 

Z1

 

P2.23   The input-output ratio, Vce /Vin, is found to be 
 

Vce  
=        

β(R − 1) + hieRf             
. 

Vin       −βhre  + hie(−hoe + Rf  ) 
 

P2.24      (a) The voltage gain is givenby 

vo 

 

vin 

=                                      
RLβ1β2(R1  + R2)                                          

. 
(R1  + R2)(Rg + hie1) + R1(R1  + R2)(1 + β1) + R1RLβ1β2
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(b)  The current gain is found to be 

ic2  
= β  β  . 

ib1          
1   2

 

(c)  The input impedance is 
 

vin 
= 

(R1  + R2)(Rg + hie1) + R1(R1  + R2)(1 + β1) + R1RLβ1β2 

, 
ib1                                                                     R1  + R2 

and when β1β2 is very large, we have the approximation 

vin       RLR1β1β2

ib1 

≈
 

. 
R1  + R2

 

P2.25      The transfer function from R(s) and Td(s) to Y (s) is given by
 

Y (s) = tt(s) 

. 

R(s) − 
1                                      

Σ 
(tt(s)R(s) + T (s)) 

 
+ T (s) + tt(s)R(s)

 
= tt(s)R(s) . 

tt(s)                           d                     d

 

Thus, 
 

Y (s)/R(s) = tt(s)  . 
 

Also, we have that 
 

Y (s) = 0 . 
 

when R(s) = 0. Therefore, the effect of the disturbance, Td(s), is elimi- 
nated. 

 

P2.26      The equations of motion for the two mass model of the robot are 
 

M ẍ + b(ẋ − ẏ) + k(x − y) = F (t) 

mÿ  + b(ẏ − ẋ ) + k(y − x) = 0 . 
 

Taking the Laplace transform and writing the result in matrix form yields 

Ms
2  

+ bs + k        −(bs + k) 
 

−(bs + k)       ms 
2
+ bs + k 

Solving for Y (s) we find that 

X(s) 
 

Y (s) 

      F (s) 

                   . 
0

 

Y (s) 
=

 
 

1 (bs + k) 
.

F (s) mM 

.          Σ . 
s2[s2 +  1 + mM

 

Σ 
mb s + km ]
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P2.27      The describing equation of motion is 
 

i2

 

 
Defining 

 
 
 

 
leads to 

mz̈  = mg − k 
z2   

.
 

 

 
ki

2
 

f(z, i) = g − 
mz2 

 

 
z̈ = f (z,  i) .

 

The equilibrium condition for io and zo, found by solving the equation of 
motion when 

 

ż = z̈  = 0 , 
 

is 
 

ki
2 

mg 
= z 

o 
.
 

 

We linearize the equation of motion using a Taylor series approximation. 
With the definitions 

 

∆z = z − zo      and   ∆i = i − io , 

we have ∆̇ z = ż  and ∆̈ z = z̈ . Therefore,
 

∆̈ z = f(z, i) = f(zo, io ) + 

 

∂f 

.     z=z  ∆z + 

 

∂f 

z.=z ∆i + · · ·

.    o∂
i=
z
io

 

∂i  .i=ioo

But f(zo, io) = 0, and neglecting higher-order  terms in the expansion 
yields

 

∆̈ z = 

 

2ki
2

 

o 

mz3          − 

 
2kio 

∆i  . 
mz2

 

Using the equilibrium condition which relates zo to io, we determine that 

∆̈ z =  
2g 

∆z − 
g 

∆i  . 
zo               io 

 

Taking the Laplace transform yields the transfer function (valid around 
the equilibrium point) 

 

∆Z(s) 
=      

−g/io        
. 

∆I(s)      s2 − 2g/zo
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P2.28      The signal flow graph is shown in Figure P2.28. 
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FIGURE P2.28 
Signal flow graph. 

 

 
 

(a)  The PGBDP loop gain is equal to -abcd. This is a negative  transmis- 
sion since the population produces garbage which increases bacteria 
and leads to diseases, thus reducing the population. 

(b)  The PMCP loop gain is equal to +efg. This is a positive transmis- 
sion since the population leads to modernization which encourages 
immigration, thus increasing the population. 

(c)  The PMSDP loop gain is equal to +ehkd. This is a positive trans- 
mission since the population leads to modernization and an increase 
in sanitation facilities which reduces diseases, thus reducing the rate 
of decreasing population. 

(d)  The PMSBDP loop gain is equal to +ehmcd. This is a positive trans- 
mission by similar argument as in (3). 

 

P2.29 Assume the motor torque is proportional  to the input  current 
 

Tm  = ki . 
 

Then, the equation of motion of the beam is 
 

Jφ̈ = ki , 
 

where J is the moment of inertia of the beam and shaft (neglecting the 

inertia of the ball). We assume that forces acting on the ball are due to 
gravity and friction. Hence, the motion of the ball is described  by 

 

mẍ = mgφ − bẋ
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where m is the mass of the ball, b is the coefficient of friction, and we 

have assumed small angles, so that sin φ ≈ φ. Taking the Laplace transfor 
of both equations of motion and solving for X(s) yields 

 

gk/J 
X(s)/I(s) = 

s2(s2 + b/m) 
.

 

P2.30      Given 
 
 

 
H(s)  = 

 

 
k 

 

τs + 1
 

where τ   =  5µs =  4 × 10−6 
seconds and 0.999 

response is 

 

≤ k < 1.001. The step

 

k        1      k           k
Y (s) =  

τs + 1 
· 

s 
= 

s 
−

 
. 

s + 1/τ

 

Taking the inverse Laplace transform yields 

y(t) = k − ke−t/τ
 = k(1 − e−t/τ ) .

 

The final value is k. The time it takes to reach 98% of the final value is 
t = 19.57µs independent  of k. 

 

P2.31      From the block diagram we have 
 

Y1(s) = tt2(s)[tt1(s)E1(s) + tt3(s)E2(s)] 

= tt2(s)tt1(s)[R1(s) − H1(s)Y1(s)] + tt2(s)tt3(s)E2(s) . 
 

Therefore, 
 

Y (s) =          
tt1(s)tt2(s)          

R (s) +          
tt2(s)tt3(s)          E (s) . 

1               
1 + tt (s)tt (s)H (s)    

1                             
1 + tt (s)tt (s)H (s)   

2
1              2               1 1              2               1

 

And, computing E2(s) (with R2(s) = 0) we find 
 

2                  2          2
 

2           6      
Σ 

tt (s)
 Σ 

1                  5           2

E (s) = H (s)Y (s) = H (s)tt (s) 

or 

tt4(s)  Y (s) + tt (s)E (s)

 
E2(s)  = 

 

tt4(s)tt6(s)H2(s)           
Y (s) . 

1 
tt2(s)(1 − tt5(s)tt6(s)H2(s))

 

Substituting E2(s) into equation for Y1(s) yields 
 

Y (s) =          
tt1(s)tt2(s)          R (s) 

1               
1 + tt (s)tt (s)H (s) 

1 
1              2               1
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+                      
tt3(s)tt4(s)tt6(s)H2(s) 

(1 + tt1(s)tt2(s)H1(s))(1 − tt5(s)tt6(s)H2(s)) 

Finally, solving for Y1(s) yields 
 

Y1(s) = T1(s)R1(s) 
 

where 

 

Y1(s) .

T1(s) =  
tt1(s)tt2(s)(1 − tt5(s)tt6(s)H2(s))                                        

.
(1 + tt1(s)tt2(s)H1(s))(1 − tt5(s)tt6(s)H2(s)) − tt3(s)tt4(s)tt6(s)H2(s) 

Similarly, for Y2(s) we obtain 
 

Y2(s) = T2(s)R1(s) . 
 

where 

T2(s) =  
tt1(s)tt4(s)tt6(s)                                                      

.
(1 + tt1(s)tt2(s)H1(s))(1 − tt5(s)tt6(s)H2(s)) − tt3(s)tt4(s)tt6(s)H2(s) 

P2.32      The signal flow graph shows three loops: 
 

L1   = −tt1tt3tt4H2 

L2   = −tt2tt5tt6H1 

L3   = −H1tt8tt6tt2tt7tt4H2tt1 . 
 

The transfer function Y2 /R1   is found to be 
 
 
 
 

where for path 1 

Y2(s) 

 

R1(s) 

=     
tt1tt8tt6∆1  − tt2tt5tt6∆2                     

, 
1 − (L1  + L2  + L3) + (L1L2) 

 
 
 

∆1  = 1
 

and for path 2 
 

∆2  = 1 − L1  . 
 

Since we want Y2  to be independent of R1, we need Y2/R1  = 0. Therefore, 
we require 

 

tt1tt8tt6 − tt2tt5tt6(1 + tt1tt3tt4H2) = 0 .
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P2.33      The closed-loop  transfer function is 
 

Y (s)  
=                                    

tt3(s)tt1(s)(tt2(s) + K5 K6)                                          
. 

R(s)       1 − tt3(s)(H1(s) + K6) + tt3(s)tt1(s)(tt2(s) + K5 K6)(H2 (s) + K4) 

P2.34      The equations of motion are 
 

m1ÿ1  + b(ẏ1  − ẏ2 ) + k1(y1  − y2) = 0 

m2ÿ2  + b(ẏ2  − ẏ1 ) + k1 (y2  − y1) + k2 y2   = k2 x 
 

Taking the Laplace transform yields 
 

(m1s
2  

+ bs +  k1)Y1(s)  − (bs  +  k1)Y2(s)  =  0 

(m2s
2  

+ bs + k1  + k2)Y2(s) − (bs + k1)Y1(s) = k2X(s) 
 

Therefore, after solving for Y1(s)/X(s), we have 
 

Y2(s) 
=                                      

k2(bs + k1)                                       
. 

X(s)       (m1s2 + bs + k1)(m2s2 + bs + k1  + k2) − (bs + k1)2
 

P2.35      (a) We can redraw the block diagram as shown in Figure P2.35. Then,
 

T (s) =              
K1/s(s + 1) 

1 + K1(1 + K2 s)/s(s + 1) 

 

K1 
=  

s2 + (1 + K K )s + K      
.

 

(b)  The signal flow graph reveals two loops (both touching):
 

K1 

L1 = 
 
and   L2       = 

 

−K1K2    

.

 
 

Therefore, 

s(s + 1) s + 1

 

T (s) =                    
K1/s(s + 1) 

1 + K1/s(s + 1) + K1 K2 /(s + 1) 
 

(c)  We want to choose K1 and K2 such that 

 

K1 
=  

s2 + (1 + K K )s + K      
.

 

s
2  

+ (1 + K K )s + K
 

 

= s
2  

+ 20s + 100 = (s + 10)
2   

.
2     1                      1 

 

Therefore, K1  = 100 and 1 + K2K1 = 20 or K2  = 0.19. 

(d)  The step response is shown in Figure P2.35.
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FIGURE P2.35 
The equivalent block diagram and the system step response. 

 

 
 

P2.36   (a)  Given R(s)  = 1/s
2 
, the partial fraction expansion is 

 

30                       0.1091   0.7576(s + 3.4)    1     0.8667
Y (s) =  

s2(s + 5)(s2 + 4s + 6) 
=           − 

s + 5 
 

s2 + 4s + 6 
+ 

s2 
−    

s      
.

 
Therefore, using the Laplace transform table, we determine that the 

ramp response for t ≥ 0 is 
√ 

6                       .             Σ
y(t) = e

−5t  
+ 

25 
e

−
 

7 
cos   2t + 

2 
si√n 

13 √2t   + t −    .

55             33                               10    
2t                         

15 
 

 

(b)  For the ramp input, y(t) ≈ 0.25 at t = 1 second (see Figure P2.36a). 

(c)  Given R(s) = 1, the partial fraction expansion is 

30                     30   1         30 s − 1       
.

Y (s) =  
(s + 5)(s2  + 4s + 6) 

=  
11 s + 5 

− 
11 s2 + 4s + 6

 

Therefore, using the Laplace transform table, we determine that the
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impulse response for t ≥ 0 is 
√

30 
y(t) =

 −5t       30 
− .

 √      3   2      √ 
2t) .

11 
e      − 

11 
e        cos   2t −   

2   
sin     

2t 

 

(d)  For the impulse input, y(t) ≈ 0.73 at t = 1 seconds (see Figure P2.36b). 
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FIGURE P2.36 
(a)  Ramp input response. (b) Impulse input  response. 

 
 
 

P2.37      The equations of motion are 
 

d
2
x                                                          d

2
y 

m1  

dt2  
= −(k1   + k2)x + k2y       and   m2  

dt2  
= k2(x − y) +u .

 

When m1  = m2  = 1 and k1  = k2  = 1, we have
 

d
2
x 

dt2   
= −2x + y    and

 

 

d
2
y 

dt2 
= x − y + u .
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P2.38      The equation of motion for the system is 

d
2
θ        dθ 

J 
dt2  

+ b 
dt  

+ kθ = 0 ,
 

where k is the rotational spring constant and b is the viscous friction 

coefficient. The initial conditions are θ(0) = θo and θ˙(0) = 0. Taking the 
Laplace transform yields 

 

J(s
2
θ(s) − sθo) + b(sθ(s) − θo) + kθ(s) = 0 .

 

Therefore, 
 

 
 

(s + b θo)
 

 
 
 

(s + 2ζωn)θo

θ(s) = (s2 + b s
J 

+ K  ) 
=  

s2 + 2ζω s + ω2    . 
J         J                                        n 

 

Neglecting the mass of the rod, the moment of inertia is detemined to be 
 

J  = 2Mr
2  

= 0.5 kg · m
2  

.
 

Also, 
 

 
 

k 
ω   =         = 0.02 rad/s    and   ζ =

 

 
 
 

b 
= 0.01 .

n          
J 

 

Solving for θ(t), we find that 

θo
 

2Jωn 
 

 
 
.

θ(t) = 
 

 
√ 

 
√ 

1 − ζ2
 

e
−ζωnt 

sin(ω 1 − ζ2  t + φ) ,

where tan φ = 1 − ζ2/ζ). Therefore,  the envelope decay is 
θo

θ  = 
e     

√ 
1 − ζ2

 
4 

e
−ζωnt  .

So, with  ζωn = 2 × 10− , θo = 4000o and θf = 10o, the elapsed time is 
computed as

1              θo 

t = 
ζωn      √ 

 
= 8.32 hours .

1 − ζ2θf 

P2.39      When t < 0, we have the steady-state  conditions

6 
i1(0) = 

7 
A  ,     va(0) =

 

12                                 36 

7 
V    and   vc(0) = 

7 
V ,

where vc(0) is associated with the 0.75F capacitor. After t ≥ 0, we have
 1.5 
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+ 2i 
di1 

dt         
1 + 5(i1− 

 
i2) = 10e 

 
−2t
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and  
∫ 

0.75 

 

 
i2dt + 10i2 + 5(i2 − i1) − i1 = 0 .

 

Taking the Laplace transform (using the initial conditions) yields 

10 
1.5(sI1(s) − i1(0)) + 2I1(s) + 5I1(s) − 5I2(s) = 

s + 2
or                          . 

s + 
14 

Σ
 

 

 

I (s) − 

 
10 

I (s) = 

 
18s + 176

 
 

and 

3      
1               

3  
2                21(s + 2)

 

3 
. 

1  2                c      
Σ 

4    s I (s) − v (0) 
or 

 

 
2                     2                1                  1 

+ 10I  (s) + 5(I  (s) − I (s)) = I (s) 
 

108
−24sI1(s) + (60s + 3)I2(s) =    

7  
s .

 

Solving for I2(s) yields 
 

4s(27s
2  

+ 216s + 604) 
I2(s) = 

7(s + 2)(60s2 + 203s + 14) 
.
 

 

Then, Vo(s) = 10I2(s). 
 

P2.40      The equations of motion are 
 

J1 θ̈1 = K(θ2  − θ1) − b(θ̇1  − θ̇2) + T       and   J2 θ̈2 = b(θ̇1  − θ̇2) . 
 

Taking the Laplace transform yields 
 

(J1s
2  

+ bs + K)θ1(s) − bsθ2(s) = Kθ2(s) + T (s)
 

and (J2s 
that 

 

+ bs)θ2(s) − bsθ1(s) = 0. Solving for θ1(s) and θ2(s), we find

 

θ  (s) = 
(Kθ2(s) + T (s))(J2s + b)       

and   θ (s) = 
b(Kθ2(s) + T (s)) 

, 1                                       
∆(s)                                    

2                                            
∆(s) 

where  ∆(s) = J1J2s
3   

+ b(J1   + J2)s
2   

+ J2Ks + bK. 
 

P2.41 Assume  that the only external  torques acting on the rocket are control 
torques, Tc and disturbance torques, Td, and assume small angles, θ(t). 
Using the small angle approximation, we  have 

 

ḣ  = V θ
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Jθ̈  = Tc + Td  , 
 

where J is the moment of inertia of the rocket and V is the rocket velocity 
(assumed constant). Now, suppose that the control torque is proportional 
to the lateral displacement, as 

 

Tc(s) = −KH(s)  , 
 

where the negative sign denotes a negative feedback system. The corre- 
sponding block diagram is shown in Figure P2.41. 

 
 

Td 

 
H desired=0 

+ 
- 

K      
Tc           + 

 

+ 

  1                   V 
Js2                           s 

 
H( s)

 
 

 
FIGURE P2.41 
Block diagram. 

 

 
 

P2.42      (a) The equation of motion of the motor is 
 

dω 
J 

dt  
= Tm − bω ,

 
 

where J = 0.1, b = 0.06, and Tm is the motor input torque. 

(b)  Given Tm(s) = 1/s, and ω(0) = 0.7, we take the Laplace transform 
of the equation of motion yielding 

 

sω(s) − ω(0) + 0.6ω(s) = 10Tm 
 

or 

0.7s + 10
ω(s) = . 

s(s+0.6)
 

Then, computing the partial fraction expansion, we find that 
 

A          B           16.67       15.97 
ω(s) =      +               =            −           . 

s  s + 0.6          s         s + 0.6 
 

The step response, determined by taking the inverse Laplace trans- 
form, is 

 

ω(t) = 16.67 − 15.97e−0.6t ,      t ≥ 0 .
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P2.43      The work done by each gear is equal to that of the other, therefore 
 

Tmθm = TLθL . 
 

Also, the travel distance is the same for each gear, so 
 

r1θm = r2θL . 
 

The number of teeth on each gear is proportional to the radius, or 
 

r1N2  = r2N1 . 

So, 
 
 
 

 
and 

 

 
θm 

= 
r2  

= 
N2  

, 
θL         r1              N1

 

N1θm = N2θL 

N1
θ =      θ 

L       
N2  

m
 

 

where 

= nθm  ,

 

n = N1 /N2   . 

Finally,  
 

Tm 
= 

θL     = 
N1 

= n .
 
 

P2.44      The inertia of the load is 

TL        θm 
 

 
 
 

JL  = 

N2 

 

 
πρLr

4
 

. 
2

 

Also, from the dynamics we have 
 

T2   = JL ω̇ 2   + bL ω2 

 

and 
 

T1   = nT2   = n(JL ω̇ 2  + bL ω2 ) . 
 

So, 
 

T1   = n (JL ω̇ 1   + bL ω1) ,
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since  

 
ω2  = nω1  .

 

Therefore, the torque at the motor shaft is 
 

T = T + Tm = n
2
(JL ω̇   + bL ω ) + Jm ω̇   + bm ω  . 

 

P2.45      Let U (s) denote the human input and F (s) the load input. The transfer 
function is 

P (s) = 
tt(s) + Ktt1(s) 

U (s) + 
ttc(s) + Ktt1(s) 

F (s) , 
∆(s)                                  ∆(s)

 

where 
 
 
 

∆ = 1 + ttH(s) + tt1KBH(s) + ttcE(s) + tt1KE(s) .
 

P2.46   Consider the application of Newton’s law (     F  =  mẍ).  From the mass 
mv   we obtain 

 

mv ẍ1   = F − k1 (x1  − x2) − b1(ẋ 1  − ẋ 2 ). 
 

Taking the Laplace transform, and solving for X1(s) yields
 

X (s)  = 
b1s + k1 

F(s)  +                 X (s),

 
 

where 

1               
∆ (s)                 ∆1(s)       

2
 

 

 
 

∆1  := mvs
2 

+ b1s + k1.
 

From the mass mt we obtain 
 

mt ẍ2   = −k2 x2  − b2 ẋ 2   + k1(x1  − x2 ) + b1(ẋ 1   − ẋ 2). 
 

Taking the Laplace transform, and solving for X2(s) yields 
b1s + k1

X (s)  = X (s),

 
 

where 

2                 
∆ (s)       

1

 

∆2  := mts 
 

+ (b1  + b2)s + k1  + k2.

 

Substituting X2(s) above into the relationship fpr X1(s) yields the trans- 
fer function 

X1(s) 
=                     

∆2(s)                   
. 

F (s)       ∆1(s)∆2(s) − (b1s + k1)2
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P2.47      Using the following  relationships 
∫ 

h(t)  = 

 

 
(1.6θ(t) −h(t))dt

 

ω(t) = θ̇(t) 

Jω̇ (t) = Kmia(t) 

va(t) = 50vi(t) = 10ia(t) + vb(t) 

θ˙  = Kvb 

 

we find the differential equation is
 

d3h     
. 

 

Σ   2 
Km              h 

 

K         dh 
= 

8Km  
v .

+ 
dt3 10JK      dt2

 10JK  dt          J     
i

P2.48      (a) The transfer function is 

V2(s) 
= 

(1 + sR1C1)(1 + sR2C2)  
. 

V1(s)                       R1C2s 
 

(b) When R1  = 250 kΩ, R2 = 200 kΩ, C1  = 2 µF and C2  = 0.1 µF , we 
have

 

V2(s) 
= 

V1(s) 

0.4s
2

 

 

+ 20.8s + 40 
. 

s

 

(c)  The partial fraction expansion is 

V2(s)  
= 20.8 + 

40 
+ 0.4s . 

V1(s)                    s 
 

P2.49      (a) The closed-loop transfer function is 
 

tt(s)                        5000
T (s) = = 

1 + tt(s) s3 + 20s2 + 1000s + 5000 
.

 
 

(b) The poles of T (s) are s1 = −5.43 and s2,3 = −7.28 ± j29.46. 

(c)  The partial fraction expansion (with a step input) is

1         1.06 
Y (s) =     − +                                 + 

0.0285 − 0.0904j 
,

 

 

and 

s      s + 5.43      s + 7.28 − j29.46      s + 7.28 + j29.46

 

y(t) = 1 − 1.06e−5.43t + 0.06e−7.28t (cos 29.46t − 3.17 sin 29.46t) ; 
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(d)  The step response is shown in Figure P2.49. The real and complex 

roots are close together and by looking at the poles in the s-plane we
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FIGURE P2.49 
Step response. 

 

 

have difficulty deciding which is dominant. However, the residue at 
the real pole is much larger and thus dominates the response. 

 

P2.50      (a) The closed-loop  transfer function  is 
 

14000 
T (s) =                                                  . 

s3 + 45s2 + 3100s + 14500 
 

 

(b)  The poles of T (s) are 
 

s1  = −5     and   s2,3 = −20 ± j50. 
 

(c)  The partial fraction expansion (with a step input) is 
 

Y (s) = 
0.9655 

− 
1.0275 

+ 
0.0310 − 0.0390j 

+ 
0.0310 + 0.0390j 

. 
s  s +5           s + 20 + j50              s + 20 − j50 

 

(d)  The step response is shown in Figure P2.50. The real root dominates 
the response. 

(e) The final value of y(t) is 
 

yss = lim sY (s) = 0.9655 . 
s→0
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FIGURE P2.50 
Step response. 

 

 

P2.51      Consider the free body diagram in Figure P2.51. Using Newton’s Law 
and summing the forces on the two masses yields 

 

M1 ẍ(t) + b1 ẋ (t) + k1 x(t) = b1 ẏ(t) 

M2 ÿ(t) + b1 ẏ(t) + k2 y(t) = b1 ẋ (t) + u(t) 
 

 
 
 

k1x 
 
 

M1
 

k1 

x

. . 
b1(x - y) 

. . 
b1(y - x) 

 

 
k2 y 

M1                         
k

2 

x 

b1

M2 

y 

u(t) 

M2 

y 

u(t)

 

FIGURE P2.51 
Free body diagram.
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Advanced Problems 
 

AP2.1      The transfer function from V (s) to ω(s) has the form 

ω(s) =     
Km       

.
 
 

In the steady-state, 

V (s) 

 
Σ 

τms + 1 
 

Σ

Km 
ω   = lim s 

ss
 

5 
= 5K    . 

m

 
So, 

s→0       τms + 1    s

 

Km  = 70/5 = 14 . 

Also,  

 
ω(t) = VmKm(1 −e−t/τm  )

 

where V (s) = Vm/s. Solving for τm   yields 

τ    =              
−t             

. 
m

 

 

When t = 2, we have 

 
 
 

 
τm = 

ln(1 − ω(t)/ωss) 
 
 

−2          
= 3.57 . 

ln(1 − 30/70)
 

Therefore, the transfer functionis 
 

ω(s) 
= 

V (s) 

 

 
14 

. 
3.57s + 1

 

AP2.2      The closed-loop transfer function form R1(s) to Y2(s) is
 
 
 

 
where 

 

Y2(s) 

 

R1(s) 

 

= 
tt1tt4tt5(s) + tt1tt2tt3tt4tt6(s) 

∆

 

∆ = [1 + tt3tt4H2(s)][1 + tt1tt2H3(s)]  . 

If we select  

 

tt5(s)  = −tt2tt3tt6(s)
 

then the numerator  is zero, and Y2(s)/R1(s)  =  0.  The system is now 
decoupled.
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AP2.3      (a) Computing the closed-loop transfer function: 
Σ

Y (s) =           
tt(s)ttc(s) 

1 + ttc(s)tt(s)H(s) 
 

Then, with E(s) = R(s) − Y (s) we obtain 

 

R(s) .

E(s)  = 
1 + ttc(s)tt(s)(H(s) − 1) 

R(s)  . 
1 + ttc(s)tt(s)H(s) 

 

If we require that E(s) ≡ 0 for any input, we need 1 + ttc(s)tt(s)(H(s) − 
1) = 0 or 

 

H(s)  = 
ttc(s)tt(s) − 1 

= 
n(s)  

. 
ttc(s)tt(s)         d(s) 

 

Since we require H(s) to be a causal system, the order of the numerator 
polynomial, n(s), must be less than or equal to the order of the denom- 
inator polynomial, d(s). This will be true, in general, only if both ttc(s) 
and tt(s) are proper rational functions (that is, the numerator and de- 

nominator polynomials have the same order). Therefore, making E ≡ 0 
for any input R(s) is possible only in certain circumstances. 
(b) The transfer function from Td(s) to Y (s) is 

Σ

Y (s) =           
ttd(s)tt(s) 

1 + ttc(s)tt(s)H(s) 
 

With H(s) as in part (a) we have 

Td(s) .

Σ 
tt

 
(s) 

Σ

 
 

(c) No. Since 

Y (s) = tt 
d(s) Td (s) . 

 
 
Σ

 
Y (s) = 

Σ        
tt (s)tt(s) 

 

1 + ttc(s)tt(s)H(s) 

 

T
d
(s) = T (s)T 

d
(s) ,

the only way to have Y (s) ≡ 0 for any Td(s) is for the transfer function 
T (s) ≡ 0 which is not possible in general (since tt(s) ƒ= 0). 

AP2.4      (a) With  q(s) = 1/s we  obtain 
 

1/Ct           
1

 
 
 

Define 

τ (s)= 
s + 

QS+1/R

 
α := 

 

QS  +1/R 

Ct 

 
and   β := 1/Ct    .
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Then, it follows that  
 

β     ·  1 
= 

−β/α 
+  

β/α   
.τ (s) =  

s + α  

s      s + α         s

Taking the inverse Laplace transform yields 

τ (t) = 
−β

e−αt  + 
β 

= 
β 

[1 − 
α               α      α 

 

 
 

e
−αt ] .

 

(b) As t → ∞, τ (t) → 

 

β             1 

α       Qs+1/R

(c) To increase the speed of response, you want to choose Ct, Q, S and 
R such that

 
 
 
 

is ”large.” 

 
α := 

 

Qs + 1/R 

Ct

 

AP2.5      Considering the motion of each mass, we have 
 

M3 ẍ3  + b3 ẋ 3   + k3 x3   = u3  + b3 ẋ 2   + k3 x2 

M2 ẍ2  + (b2  + b3)ẋ 2   + (k2  + k3)x2   = u2  + b3 ẋ 3   + k3 x3  + b2 ẋ 1   + k2 x1 

M1 ẍ1  + (b1  + b2)ẋ 1   + (k1  + k2)x1   = u1  + b2 ẋ 2   + k2 x2 

 

 
In matrix form the three equations can be written as 

 

M1            0      0           ẍ1                    b1 + b2               −b2                 0            ẋ 1 

0     M2             0                  2                       −b2            b2 + b3          −b3                        2 

ẍ
 

0         0      M3 

 

 

ẍ3 

0              −b3                 b3 

 

k1 + k2                −k2                   0 

 

 

ẋ 3x1                    u1

+        −k2              k2  + k3           −k3 x2              
=   u2          .

 
0               −k3                  k3 

3                     u3 

AP2.6      Considering the cart mass and using Newton’s Law we obtain 
 

M ẍ = u − bẋ − F sin ϕ 

where F is the reaction force between the cart and the pendulum. Con- 

sidering the pendulum we obtain 

d
2
(x + L sin ϕ) 

m           
dt2                

= F sin ϕ
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d
2
(L cos ϕ) 

m       
dt2            

= F cos ϕ + mg
 

 

 

Eliminating the reaction force F yields the two equations 
 

(m + M)ẍ + bẋ + mLϕ̈ cos ϕ − mLϕ̇ 
2 

sin ϕ = u 

mL
2 
ϕ̈ + mgL sin ϕ + mLẍ cos ϕ = 0 

 

If we assume that the angle ϕ ≈ 0, then we have the linear model 
 

(m + M)ẍ + bẋ + mLϕ̈ = u 

mL
2 
ϕ̈ + mgLϕ  = −mLẍ 

 

 
AP2.7      The transfer function from the disturbance input to the output is 

1 
Y (s) = 

s + 40 + K 
Td(s) .

 
 

When Td(s) = 1, we obtain 
 

y(t) = e  (40+K)t . 

 

Solving for t when y(t) < 0.1 yields 
 

t >     
2.3     

. 
40 + K 

 

When t = 0.05 and y(0.05) = 0.1, we find K = 6.05. 
 

AP2.8      The closed-loop transfer function is 
 

200K(0.25s + 1)
T (s) =  

 

(0.25s  + 1)(s + 1)(s + 8) + 200K
 

The final value due to a step input of R(s) = A/s  is 
 

200K 
v(t) → A

200K + 8
.
 

 

We need  to  select  K  so  that  v(t)→50.  However,  to  keep the  percent 
overshoot to less than 10%, we need to limit the magnitude of K. Fig- 
ure AP2.8a shows the percent overshoot as a function of K. Let K = 0.06 
and select the magnitude of the input to be A = 83.3. The inverse Laplace 
transform of the closed-loop  response with R(s)  = 83.3/s is 

 

v(t) = 50 + 9.85e−9.15t − e−1.93t (59.85 cos(2.24t) + 11.27 sin(2.24t))
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The result is P.O. = 9.74% and the steady-state value of the output is 

approximately 50 m/s, as shown in Figure AP2.8b. 
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FIGURE AP2.8 
(a)  Percent overshoot versus the gain K. (b) Step response. 

 
 

AP2.9      The transfer function is  

 
 

Vo(s) 
= − 

Z2(s) 
, 

Vi(s)          Z1(s)
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where  
 

Z (s) = 

 

R1                and   Z (s) = 
R2C2s + 1 

.

1 

 

Then we can write 

 

R1C1s + 1 
 

 
Vo(s)  

= K
 

 
 
 

+ 
KI 

2 
 

 
 

+ K s 

 

C2s

 
 

where 

Vi(s)         p       
s          

D

 

KP  = − 

. 
R  C 

R C 

Σ                        1 
+ 1   ,    K I = −

R C
 

 
,    K D  = −R2C 1.

2     2                                                                     1     2 
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Design Problems 
 

CDP2.1  The model of the traction drive, capstan roller, and linear slide follows 
closely the armature-controlled dc motor model depicted in Figure 2.18 
in Dorf and Bishop. The transfer function is 

 

rKm
T (s) = , 

s [(Lms + Rm)(JT s + bm) + KbKm]
 

where 
 

JT  = Jm  + r
2
(Ms  + Mb) . 

 

 
 
 
 


Va(s)                                                                                                                                                                          X(s) 

-                         
m        m                                                T       m

 

 
 
 

 
Kb 

Back EMF 

 
 
 
 

DP2.1      The closed-loop transfer function is 
 

Y (s)  
=                  

tt1(s)tt2(s)                  
. 

R(s)       1 + tt1(s)H1(s)  − tt2(s)H2(s) 
 

When  tt1H1  = tt2H2  and tt1tt2  = 1, then  Y (s)/R(s)  = 1. Therefore, 
select

 

tt  (s) =       1 
 
and   H (s) = 

 

tt2(s)H2(s) 
 

= tt
2
(s)H (s) . 

2

1               
tt (s)                    

1                                
tt (s)                

2 
2                                                                                        1 

 

DP2.2      At the lower node we have 
.

1      1         
Σ

v       +     +  tt 
2 − 20 = 0 .

4     3 
 

Also, we have  v = 24 and i2  = ttv . So
 

. 
1      1 

+ 

 

Σ 

+ tt
 

 

 

+ 2ttv − 20 = 0
v      

4     3
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and 
 

 

20 − v 

 

.    Σ 
1 + 

1                    

1

 

tt =            4 
3v 

DP2.3      Taking the Laplace transform of 

 

3     =        S . 
12

 

 
 
 

yields 

−t       1  −2t       3     1 
y(t) = e     − 

4
e     − 

4 
+ 

2 
t
 

 
 

1               1             3        1
Y (s) = 

s + 1 
−

 
 

4(s + 2) 
− 

4s 
+ 

2s2 
.

 

Similarly, taking the Laplace transform of the ramp input yields 
 

1 
R(s)  =  

s2 
.

 

Therefore 
 
 

 
tt(s) = 

 

 
Y (s) 

R(s) 

 

 
1 

=                            . 
(s + 1)(s + 2)

 

DP2.4      For an ideal op-amp, at node a we have 
 

vin − va 
+ 

vo − va 
= 0 , 

R1                              R1

 

and at node b 
 
 
 
 

from it follows that 

 

 
 
vin − vb  

= Cv̇   , 

R2                     
b

1                     1 
+ Cs V =       Vin . 

R2                     
b        R2 

 

Also, for an ideal op-amp, Vb − Va = 0. Then solving for Vb in the above 
equation and substituting the result into the node a equation for Va yields 

Σ
Vo                 2

 
1        1              Σ

 

Vin 
 

or 

=                           − 
R2 

+ Cs
 

R2

 

Vo(s) 

Vin(s) 

 

=     
R2 Cs − 1 

. − R2 Cs + 1
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For vin (t) = At, we have Vin(s) =ΣA/s

2 
, therefore 

2                       Σ
v (t) = A −βt + t − 

2

 
 

where β = 1/R2 C. 

o                  
β 

e                 
β

 

DP2.5      The equation of motion describing the motion of the inverted pendulum 
(assuming small angles) is

 
ϕ̈ + 

g 
ϕ = 0 . 

L

Assuming a solution of the form ϕ = k cos ϕ, taking the appropriate 

derivatives and substituting the result into the equation of motion yields 
the relationship 

 

g 
ϕ̇  =          . 

L 
 

If the period is T  = 2 seconds, we compute ϕ̇  = 2π/T . Then solving for L 

yields L = 0.99 meters when g = 9.81 m/s
2
. So, to fit the pendulum into 

the grandfather clock, the dimensions are generally about 1.5 meters or 
more.
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Computer Problems 
 

CP2.1      The m-file script is shown in Figure CP2.1. 
 

 
p=[1 8 12]; q=[1 2]; 

% Part (a) 

pq=conv(p,q) 

% Part (b) 

P=roots(p), Z=roots(q) 

% Part (c) 

value=polyval(p,-1) 

pq = 

1 10 28 24 

 
P = 

-6 

-2 

Z = 

-2 

 
value = 

5
 

FIGURE CP2.1 
Script for various polynomial evaluations. 

 

 
 

CP2.2      The m-file script and step response is shown in Figure CP2.2. 
 

numc = [1]; denc = [1 1]; sysc = tf(numc,denc) 

numg = [1 2]; deng = [1 3]; sysg = 
tf(numg,deng) 

% part (a) 

sys_s = series(sysc,sysg); 

sys_cl = feedback(sys_s,[1]) 

% part (b) 

step(sys_cl); grid 
on 

 
 
 
 
 
Transfer function: 

s + 2 

------------- 

s^2 + 5 s + 

5

 
 

0.4 

 
0.35 

 
0.3 

 
0.25 

 
0.2 

 
0.15 

 
0.1 

 
0.05 

 
0 

 
Step Response 

From: U(1 ) 
 

        

        

        

        

        

        

        

        

0                    0.5                     1                    1.5                     2                    2.5                     3                    3.5                     4 

Time (sec.)

 

FIGURE CP2.2 
Step response.
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CP2.3      Given  

 
ÿ  + 6ẏ + 5y = u

 

with y(0) = y˙ = 0 and U (s) = 1/s, we obtain (via Laplace transform) 
 

1                              1
Y (s) =  

s(s2 + 6s + 5) 
=   . 

s(s + 5)(s + 1)

 

Expanding in a partial fraction expansion yields 

1              1                   1
Y (s) = 

5s 
−

 
 

20(s + 5) 
− 

4(s + 1) 
.

 

Taking the inverse Laplace transform we obtain the solution 

−
5t             

−
t
 

y(t) = 0.2 + 0.05e      − 0.25e    . 

The m-file script and step response is shown in Figure CP2.3. 
 
 
 
 
 
 

0.2 

 
0.18 

 
0.16 

 
0.14 

 
0.12 

 
0.1 

 
0.08 

 
0.06 

 
0.04 

 
0.02 

 
0 

Step Response 
 

          

          

          

          
 

n=[1]; d=[1 6 5]; sys = tf(n,d); 

t=[0:0.1:5]; 

y = step(sys,t); 

ya=0.2+0.05*exp(-5*t)-0.25*exp(-t); 

plot(t,y,t,ya); grid; 

title('Step Response'); 

xlabel('Time (s)'); 

ylabel('Amplitude'); 

 
    

    

    

    

    

       
          

0            0.5            1            1.5           2            2.5            3            3.5           4            4.5            5 
Time (s)

 
 

FIGURE CP2.3 
Step response.
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CP2.4      The mass-spring-damper system is represented by 
 

mẍ + bẋ + kx = f . 
 

Taking the Laplace transform (with zero initial conditions) yields the 
transfer function 

1/m 
X(s)/F (s)  = 

s2 + bs/m + k/m  
.
 

 

The m-file script and step response is shown in Figure CP2.4. 
 

 
m=10; k=1; b=0.5; 

num=[1/m]; den=[1 b/m 

k/m]; sys = tf(num,den); 

t=[0:0.1:150]; 

step(sys,t)
 

 
1.8 

 

 
1.6 

 

 
1.4 

 

 
1.2 

 

 
1 

 

 
0.8 

 

 
0.6 

 

 
0.4 

 

 
0.2 

 

 
0 

 
Step R esponse 

From: U(1) 
 

    

    

    

    

    

    

    

    

    

0                                                                50                                                              100                                                             150 

Time (sec.)

 

FIGURE CP2.4 
Step response. 

 

 
CP2.5    The spacecraft simulations are shown in Figure CP2.5. We see that as J 

is decreased, the time to settle down decreases. Also, the overhoot from 
10o decreases as J decreases. Thus, the performance seems to get better 
(in some sense) as J decreases.
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Nominal (solid); Ou-nominal 80% (dashed); Ou-nominal 50% (dotted) 

18 

 
16 

 
14 

 
12 

 
10 

 
8 

 
6 

 
4 

 
2 

 
0 

0          10          20          30         40          50          60          70         80          90         100 

Time (sec) 

 

%Part (a) 

a=1; b=8; k=10.8e+08; J=10.8e+08; 

num=k*[1 a]; 

den=J*[1 b 0 0]; sys=tf(num,den); 

sys_cl=feedback(sys,[1]); 

% 

% Part (b) and (c) 

t=[0:0.1: 10 0]; 

% 

% Nominal case 

f=10*pi/180; sysf= sys_ cl*f; 

y=step(sysf,t); 

% 

% Ou-nominal case 80% 

J=10.8e+08*0.8; den=J*[1 b 0 0]; 

sys=tf(num,den); 

sys_cl=feedback(sys,[1]); 

sysf=sys_cl*f; 

y1=step(sysf,t); 

% 

% Ou-nominal case 50% 

J=10.8e+08*0.5; den=J*[1 b 0 0]; 

sys=tf(num,den); sys_cl=feedback(sys,[1]); 

sysf=sys_cl*f; 

y2=step(sysf,t); 

% 

plot(t,y*180/pi,t,y1*180/pi,'--',t,y2*180/pi,':'),grid 

xlabel('Time (sec)') 

ylabel('Spacecraft attitude (deg)') 

title('Nominal (solid); Ou-nominal 80% (dashed); Ou-nominal 50% (dotted)') 

 

FIGURE CP2.5 
Step responses for the nominal and off-nominal spacecraft parameters.
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CP2.6      The closed-loop transfer function is 
 

4s
6  

+ 8s
5  

+ 4s
4    

+ 56s
3    

+ 112s
2    

+ 56s 
T (s) =                                                                      , 

∆(s) 
 

 
p = 

 

num1=[4]; den1=[1]; sys1 = tf(num1,den1); 

num2=[1]; den2=[1 1]; sys2 = tf(num2,den2); 

num3=[1 0]; den3=[1 0 2]; sys3 = 

tf(num3,den3);  num4=[1]; den4=[1 0 0]; sys4 = 

tf(num4,den4);  num5=[4 2]; den5=[1 2 1]; sys5 

= tf(num5,den5);  num6=[50]; den6=[1]; sys6 = 

tf(num6,den6); num7=[1 0 2]; den7=[1 0 0 14]; 

sys7 = tf(num7,den7); sysa 

=feedback(sys4,sys6,+1); 

sysb = series(sys2,sys3); 

sysc = 

feedback(sysb,sys5); sysd 

= series(sysc,sysa); syse 

= feedback(sysd,sys7); 

sys = series(sys1,syse) 

%                                                                poles 

pzmap(sys) 

% 

p=pole(sy

s) 

z=zero(sy

s) 
 

 
Polezero map 

7. 0709 

-7.0713 

1.2051 + 2.0863i 

1.2051 - 2.0863i 

0.1219 + 1.8374i 

0.1219 - 1.8374i 

-2.3933 

-2.3333 

-0.4635 + 0.1997i 

-0.4635 - 0.1997i 

 
z = 

0 

1.2051 + 2.0872i 

1.2051 - 2.0872i 

-2.4101 

-1.0000 + 0.0000i 

-1.0000 - 0.0000i

 
2.5 

 

 
2 

 
1.5 

 
1 

 
0.5 

 
0 

 
-0.5 

 
-1 

 
-1.5 

 
-2 

 
-2.5 

-8                      -6                      -4                      -2                        0                       2                       4                       6                       8 

Real Axis 

 

FIGURE CP2.6 
Pole-zero map.
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where  
 

∆(s) = s
10 

+ 3s
9 
− 45s

8 
− 125s

7 
− 200s

6 
− 1177s

5

− 2344s
4 
− 3485s

3 
− 7668s

2
 5598s − 1400 .

 

CP2.7      The m-file script and plot of the pendulum angle is shown in Figure CP2.7. 
With the initial conditions, the Laplace transform of the linear system is 

 

θ0s 
θ(s) = 

s2 + g/L  
.
 

 

To use the step function with the m-file, we can multiply the transfer 
function as follows: 

s
2               

θ 
θ(s)  = 

s2 + g/L  s 
,
 

 

which is equivalent to the original transfer function except that we can 
use the step function input with magnitude θ0. The nonlinear response 
is shown as the solid line and the linear response is shown as the dashed 
line. The difference between the two responses is not great since the initial 
condition of θ0  = 30◦  is not that large. 

 

 
 

30 

L=0.5; m=1; g=9.8; 

theta0=30; 
20 % Linear simulation 

sys=tf([1 0 0],[1 0 g/L]); 
[y,t]=step(theta0*sys,[0:0.01:10]); 

10 % Nonlinear simulation 
[t,ynl]=ode45(@pend,t,[theta0*pi/180 0]); 
plot(t,ynl(:,1)*180/pi,t,y,'--'); 

0                                                                                                                              xlabel('Time (s)') 

ylabel('\theta (deg)')
 

-10 

 

 
-20 

 

 
-30 

 
 
 
 
 

 
0                     2                     4                     6                     8                    10 

Time (s) 

 
function [yd]=pend(t,y) 

L=0.5; g=9.8; 

yd(1)=y(2); 

yd(2)=-(g/L)*sin(y(1)); 

yd=yd';

 
FIGURE CP2.7 

Plot of θ versus xt when θ0 = 30◦.

mailto:@pend
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CP2.8      The system step responses for z  =  5, 10, and 15 are shown in Fig- 
ure CP2.8. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

FIGURE CP2.8 
The system response. 

 
 
 
 

CP2.9      (a,b) Computing  the closed-loop  transfer function  yields 
 

T (s) = tt(s)            s
2  

+ 2s + 1 
=                       .

1 + tt(s)H(s) s2 + 4s + 3

 

 

The poles are s = −3, −1 and the zeros are s = −1, −1. 
(c) Yes, there is one pole-zero cancellation. The transfer function (after 

pole-zero cancellation) is 
 

T (s) = 
s + 1 

. 
s + 3
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1 

 

 
0.8 

 

 
0.6 

 

 
0.4 

 

 
0.2 

 

 
0 

 

 
?-0.2 

 

 
?-0.4 

 

 
?-0.6 

 

 
?-0.8 

Pole?Zero Map

 
?-1 

?-3                          ?-2.5                          ?-2                          ?-1.5                          ?-1                          ?-0.5                            0 

Real Axi s

 
 

ng=[11]; 

dg=[12];sysg=tf(ng,dg); nh=[1]; 

dh=[1 1]; sysh = tf(nh,dh); 

sys=feedback(sysg,sysh) 
% 

pzmap(sys) 

% 

pole(sy

s) 

zero(sys) 

 
 
 
 
 
 

 
poles 

 
 
 

 
zeros 

>> 

Transfer function: 

s^2 + 2 s + 1 

------------- 

s^2 + 4 s + 

3 

 
 
p = 

 
-3 

-1 

 
 
z = 

 
-1 
-1

 
 

 
FIGURE CP2.9 
Pole-zero map. 

 

 

CP2.10 Figure CP2.10 shows the steady-state response to a unit step input and a 
unit step disturbance. We see that K = 1 leads to the same steady-state 
response.
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0.35 

K=[0.1:0.1:10]; 
sysg=tf([1],[1  20 

20]); for 

i=1:length(K) 
nc=K(i); 
dc=[1];sysc=tf(nc,dc); 
syscl=feedback(sysc*sysg,1
); 

systd=feedback(sysg,sysc); 
y1=step(syscl); 

Tf1(i)=y1(end); 

y2=step(systd); 
Tf2(i)=y2(end); 

end 
plot(K,Tf1,K,Tf2,'--
') xlabel('K') 

ylabel('Steady-state 
response') 

 
0.3 

 

 
0.25 
 

 
0.2 

 

 
0.15 
 

 
0.1 

 

 
0.05 
 

 
0 

 

 
 
 

Input Response Steady-State 

 
 
 
 
 

 
Disturbance Response Steady-State 

 
 

K=1 
 
0          1          2          3          4          5          6          7          8          9         10 

K

 
FIGURE CP2.10 
Gain K versus steady-state value. 


