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CHAPTER 2

Mathematical Models of Systems

Exercises
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Plot of open-loop versus closed-loop.

For example, if r =1, thene’ + e — 1= 0 implies that e = 0.618. Thus,

y = 0.382. A plot y versus r is shown in Figure E2.1.
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Exercises 23

E2.2 Define
f(T)=R = Re "7
and
AR =F(T)—F(To),AT=T— To.
Then,
of.
AR = f(T) - f(To) = oF AT+
T =Tg =20
where
of . _
= —0.1Re T = —135,

°

8T T=T =2

$
when Ro = 10, 000Q. Thus, @Q}ﬁ@agoapprommatlon is computed by
cons1der1ng only the first- or rstex,ﬁo@ Iy, the Taylor series expansion, and
is given by S 0\ S &
& @ \0
o_’,@"\@ \Q

<8 o@%@ @4@6 135AT .
E2.3 The spring constaﬁ‘tn\fqgs," oﬁqulhbrlum point is found graphically by
‘\
estimating t}p gli) Qfo a\‘zhne tangent to the force versus displacement
curve at thé?gb) t ys\‘aieﬁ 5cm, see Figure E2.3. The slope of the line is
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FIGURE E2.3

Spring force as a function of displacement.
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24 CHAPTER 2 Mathematical Models of Systems

E2.4 Since
R(s) =

we have

6(s + 50)
s(s + 30)(s + 10)

Y(s) =

The partial fraction expansion of Y (s) is given by

S S+30 s+10

where

Al=1, A =o0. R 1.2,
: : 56%%%;@@*’
gthat

. £
Using the Laplace transform t Q@;‘\g&‘@%
GOQORQ\ Q\_$0 &
& @@ 3@? 10¢

y(t &&J@a‘t‘)\ d?e — 1.2€
5
The final value is cgﬁ?gﬂ‘{gﬁ\ﬁﬁﬁg the final value theorem:

& &0 ®
B 5;_.\“\0

0
\‘Tg;ﬁ R)*‘\‘“hms 6(s + 50) =1.
,a ,5;\ &5 50 s(sZ + 40s + 300)
\
E2.5 The mmﬁlg‘ti;ﬁ%m is shown in Figure E2.5.
Qv&‘e':g’?}i@\\o
0“\\\\
R,
NN
v
o ! 3 § Ry
Vin Vo
o T -
FIGURE E2.5

Noninverting op-amp circuit.

With an ideal op-amp, we have

Vo = A(Vin — V),
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Exercises 25

where A is very large. We have the relationship

v= R
R:+ R
Therefore, ' ’
R:

Vo = A(Vin _ Vo)a
R: + R:
and solving for v, yields
A

Vo = 7A}31 Vin.

1+ Ri1+R>

Since A > 1, it follows that 1 +g#5%; ~ Rgﬁéz . Then the expression for

2
Vo, simplifiesto

57 & @ o & T
: o S
E2.6 Given D@ &P
P ST G
AR )
o o)
F P F Ty = f(x) = ex
© rb"”cg \\9\ 6\
'\"9?b€lb (\b {\0& '§\
and the @'ﬁa@}% ‘ﬁm%lt Xo = 1, we have the linear approximation
&‘4‘\16\‘: cP\)\é‘{b(\‘\‘&Q’ of
P X = F(X) = F(xo) +
RS o _ )+ L.
é§ X x=x0 (X Xo
where
df
fxo) =e . =g, and X—Xo=X— 1.
Xx=Xo=1

Therefore, we obtain the linear approximation y = ex.
E2.7 The block diagram is shown in Figure E2.7.

+ Ea(s)

O] ][0 1)

HE)|,

R(s)

FIGURE E2.7
Block diagram model.
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E2.8

R(s)

CHAPTER 2 Mathematical Models of Systems

Starting at the output we obtain
I1(s) = ttu(sS)ttz(s)E(S).
But E(s) = R(s) — H(s)I(s), so
1(s) = tu(s)tt(s) [R(s) — H(S)I(s)] .

Solving for I(s) yields the closed-loop transfer function

1(s) _ tt(s)tto(s)

1+ t()t(S)H(S)
R(s)

The block diagram is shown in Figure E2.8.

Z(s) S1 ) Y(s)

A

FF S Ha(s)

FIGURE E2.8
Block diagram model.

Starting at the output we obtain
1 1
Y (s) = Z(s) = 2(S)A(S).

tt

But A(s) = ttu(s) [—Ha(s)Z(s) — Hs(s)A(s) + W (s)] and Z(s) = sY (s),
SO

1
Y (s) = —ttu(s)tt2(s)H2AS)Y (s) — tt(s)Hs(s)Y (s) + stt-f(s)ttz(s)W ().

Substituting W (s) = KE(s) — Hi(s)Z(s) into the above equation yields
Y (s) = —ttu(s)ttz(s)H2(S)Y (5) — ttu(s)Hs(s)Y (s)
1
+ S4t1(s)ttz(s) [KE(s) — Hi(s)Z(s)]
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Exercises 27

and with E(s) = R(s) — Y (s) and Z(s) = sY (s) this reduces to
Y (s) = [—ttu(s)ttz(s) (Hz(s) + Hi(s)) — tti(s)Hs(s)
1 1
— —Sttl(S)ttz(S) K1Y (s) + Sm(s)ttz(s)KR(s).

Solving for Y (s) yields the transfer function
Y (s) = T (SR(s),

where
T(s) = Ktti(s)tt(s)/s
1+ th(s)tt(s) [(H:(s) + Hi(s)] + th(s)H:(s) + Ktt(s)tt(s)/s
E2.9 From Figure E2.9, we observe that
Ff (s)f s@(@w’fs)
i\\\&

and

PR & \Q

Then, solving for U (&9 ﬁk&o‘? @

60‘\ \\".‘e’ Qéii\_é\;*- 1
SRS s Fr(s
\@c;\é:‘:tvqpfg(\\cg\ﬁé%\z ( ) tb (S) f ( )
and it follmg@eﬂ?
«®%6® 00 ,\fb ttg(S)
&, ~\
%@\‘@‘1@;&" F()= — U(s).
o*\g.\\\\ .
ttz(S)

Again, considering the block diagram in Figure E2.9 we determine

Fr(s) = t(s)tt2(S)[R(S) — HAS)Ff (s) — HaAs)Fr(S)] .
But, from the previous result, we substitute for Fx(s) resulting in

Fr(s) = th(s)tt(s)R(s) —ttai(s)tt(S)H2(S)Fr (s)—ttu(S)H(S)ttz(S)Ff (S) .
Solving for F(s) yields

ttl(S)ttz(S) R(S) .
1+ ttu(s)tt2(s)H2(s) + tta(s)ttz(s)H2(s)

Ff(S) =
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28 CHAPTER 2 Mathematical Models of Systems

Ha(s)
u(s) G2(s) »F¢ (s)

R(S) —5)—{ G1(5)
u(s)—f G3(s) »FR(s)

Ho(s)

FIGURE E2.9
Block diagram model.

E2.10 Theshock absorber block diagram is shown in Figure E2.10. The closed-
loop transfer function model is

T(s) = ttc(g)tt@{sgt&(@)

SRS &
RN
Q Q\ &0
\
Controller ‘q;,o T [YGIar Plunger and
'22 Riston System
L 3 p=)
- S A
\}Q}’@,@?\)t’ T & Gpls) G(s) Y(s)
RSPCR St
TS " g PPiston
‘9@%%;6‘\% o\'& travel
e
& &
o QL
& {E
'bQ & Sensor
o)
& nﬁ‘\lon travel HES)

FIGURE E2.10
Shock absorber block diagram.

E2.11 Let f denote the spring force (n) and x denote the deflection (m). Then
Af
K= __.
AX
Computing the slope from the graph yields:
(a) Xo = —0.14m — K = Af/AX =10n/ 0.04 m = 250 n/m
(b) Xo =0m — K=Af/AXx =10n/0.05 m = 200 n/m
() Xo=0.35m — K= Af/AX =3n / 0.05 m = 60 n/m
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Exercises 29

E2.12 The signal flow graph is shown in Fig. E2 12. Find Y (s) when R(s) = o.

Y (s)

FIGURE E2.12
Signal flow graph.

The transfer function from T4(s) to Y (s) isvo

Y (9 = tt(s)Td(s) Klmt‘ & _ tt(s)(1 = KiKo)Ta(s) -
— (- @*@g%gk \b D 1+ Kett(s)
If we set & @\‘\ O é‘

&«@&@

0
\)i“\\ \)% be’ \\)6 (\Rle =1,
<® &0 \(\ &_

then ¥ (5) = o i a\y“%ﬂ@
E2.13 The tragsf@dQ mgsiérkff‘om Rfs), Ta(s), and { (s) to ¥ (s) is s

& *\‘ 1 K
Y (9) (\\9 @ 0@ ‘\ R(s)+ T (s)— N (s)
@0 Q,\ @ \\,0
L e’bbo
£ 10s + K 2 + 105+ K d s2+ 10s + K
Therefore, we find that
1 K
YT = gigerr and YONG) = ~gog5s7k

E2.14 Since we want to compute the transfer function from R(s) to Yi(s), we
can assume that R: = 0 (application of the principle of superposition).
Then, starting at the output Yi(s) we obtain

Yi(s) = tts(s) [—Hi(s)Y(s) + ttz(s)tts(s)W (S) + tte(S)W (5)] ,
or
[1 + tts(S)H(S)] Ya(s) = [tta(s)tt(S)tts(S)W (S) + tts(S)tts(s)] W (S).
Considering the signal W (s) (see Figure E2.14), we determine that

W (s) = tts(s) [tta(s)R2(S) — H(S)W (s)] ,
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30 CHAPTER 2 Mathematical Models of Systems

Hay(s) [
R1(5) G{s) Gals) Gs(s) Y1(s)

-
R G son| e v
—» ‘ > >
- W(s)
Ha(s) [
FIGURE E2.14
Block diagram model. o
'agr & ‘«\\o‘?@‘ N
\\"b ‘30 ,\<{b .\e’
S E S 5$
or 0‘5\10@\ S

&
[1+ tts(scp?zgs‘)gﬁz&gy‘ T OLIOLIO)
Substituting the expmgﬁ@afg? W’(s) into the above equation for Yi(s)

yields N \o‘ & «\
Yi(s) _ ggﬁ*@bm‘()ssﬁs?(s)tts(s)tts(s) + (S UU(S)
&
RAs) ©
R (\@i\g‘?&o i@:‘g’
E2.15  For loop "Lﬁv e
di. o
Ruii + Li—+ (ir—idt+R3G —i) =v() .
dt El 2 1 2
And for loop 2, we have
J J
1 izdt+L2%+R(i2_i)_+—L T
b dt c (i.— idt=o0

1
E2.16 The transfer function from R(S) to P (s) is

P(s) B 4.2
R(s) S$+2s2+45s+4.2°

The block diagram is shown in Figure E2.16a. The corresponding signal
flow graph is shown in Figure E2.16b for

4.2
3+ 252 + 45 + 4.2

P (s)/R(s) =
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E2.18
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Exercises
v1(9) V(S 1
R(s) - 2(9) 0.6 0(s) ——t— P(s)
- s S2+2s+4
@)
1
\ v, E RL+2s+4
1 7 s
R(s) P(s)
o]
6§:§§f§§§ 4§Z
SN CRTNARN
(‘Q’ '\(\& %Q&\gﬁjb_
& $° (O o8
a0 QTR W
FIGURE E2.16 @ PO
(a) Block diagram, (b) Sigg@?’os%\dg?g&h&,&
@ Lo & 89 &
\)‘\\ 6\)5’ ’@b‘i (}0\(&(\6
o {\0.! {& .
A linear appr@?(kmaﬁ &; is given by
. < 57
oo o7 S\ 8f
BN Q
St d # Y Ax = okxoAx = KA
&(\\%b\e @&&é\ \‘S\Q) X" X=X0
7 b o \‘6\
X é‘) o
where x, £ /2 AT = f(x) — f(X,), and AX = X — X,.

The linear approximation is given by

Ay = mAX

m= &

X=X0

(a) When X, = 1, we find that y, = 2.4, and y, = 13.2 when X, = 2.

where

(b) The slope m is computed as follows:

2

=1+ 4.2X% .

Therefore, m = 5.2 at X, = 1, and m = 18.8 at x, = 2.
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32 CHAPTER 2 Mathematical Models of Systems

E2.19 The output (with a step input) is

28(s + 1)
s(s + 7)(s +2)
The partial fraction expansion is

2 4.8 2.8

Y (s) =

_ =
S+7 S+2
Taking the inverse Laplace transform yields
y(t) =2 —4.8¢7t +2.8e 72t
E2.20 The input-output relationship is

Vo  AK — 1)
V 1+AK

where

where F e S

and Z. =

eoc}@‘\’ RE€s+1 R-Cos +1
Therefore,

Vo(s) ~  RoRiCis +1)  2(s +1)
V() © R(RCss+1) S+ 2

E2.21 The equation of motion of the mass m. is

MX, + (04 + )X, + KaXy = DaXin + KiXin
Taking the Laplace transform with zero initial conditions yields
[Ms” + (ba + bs)s + kalX(s) = [bas + KalXin(s) .

So, the transfer function is

Xp(s) bas + kg _ 0.655 + 1.8
M2+ (bg + be)s + kg S2+ 1.555 + 1.8

Xin(s)
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Exercises 33
E2.22 The rotational velocity is

2(s +4) 1

(s) = (s+5)(s+1)2 s’

Expanding in a partial fraction expansion yields
81 1 1 3 1 13 1

w(s)_5s 40s+5 2(5+1)2 8s+1’

Taking the inverse Laplace transform yields
1 . 3 - 13 _

o ="+ e"t—" " - Tet,
5 40 2 8
E2.23  The closed-loop transfer function is
Y KK
(s) = T(s) = 1Rz
~<'>\
R(s) s2 + (K{\@i &*4@ & KiKo)s + KiKaKs

E224 Letx=o0.6andy=0.8. T]gcé‘\ s ?:ﬁp & ax’, we have

& 5O ®

6@@ qﬁ & 3( 6)" .
Solving for a yleld§%\e= &%@iﬁ linear approximation is
) ‘:\'\0\ \QQ’ 0& \Y\‘o
o b"b K \\\x‘? Yo = 3aX°X — Xo)
ory= 4}@—@@‘9@@%% =0.8and x, = 0.6.

E2.25 The é‘lqp‘edﬂcl\gé)@"cransfer function is

o‘g\\\ée’ Y(s) ST = 10 .

R(s) S2F 2IS F 10

E2.26 The equations of motion are

m:X: + k(Xl — Xz) =F
m:% + k(x: — X)) = 0.

Taking the Laplace transform (with zero initial conditions) and solving
for X(s) yields

Xo(s) = F(s) .
(m 82+ k)(m 32+ k) — k2

Then, with m: = m: = k = 1, we have

X(S)/F(s) = TR
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34 CHAPTER 2 Mathematical Models of Systems

E2.27 The transfer function from T4(s) to Y (s) is

tto(s)

Y (s)IT d(s) =
1 + ttittH(s)

E2.28 The transfer function is

E229 (a) If

Vok) _ RoReC- |

= 46.085 + 344.91 .

V (s) Rs RR:

tt(s) = ¥ 155+ 50 and H(s) = 2s + 15,

then the closed-loop transfer function of Figure E2.28(a) and (b) (in
Dorf & Bishop) are equlvalent o O e

(b) The closed-loop transfer fu@'fwi'%\ .

5 e
(é) &

\Q ‘§%& 178 + 65

K
E2.30 (a) The closed- loop \t&%n‘s;ﬁér \ﬁflp%tlon is

tt ‘\T OGS 1 15
T(s where tt(s) = ——— .
(s) = 1§ tt{"g}}%{‘&s’i‘SZ + 55 + 30) () 2+ 55 + 15
@e'is\Q
Ry
9
St ,
0.6
05
g o4
0.3
0.2
0.1
0
0 05 1 15 2 25

FIGURE E2.30
Step response.

Time (seconds)
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Exercises 35

(b) The output Y (s) (when R(s) = 1/s) is

Y (s) = 0.5 —0.25 + 0.1282] N —0.25 — 0.1282j
S s+2.5—4.8734 S+ 2.5 + 4.8734j
or
171 S + z
() =2 t— %Fo
2 s s2+55+30
(c) The plot of y(t) is shown in Figure E2.30. The output is given by

y(t) = 0.5(1 — 1.1239¢725%5in(4.8734t + 1.0968));
E2.31 The partial fraction expansion is

a b
V (S) = +
- S+ P2
S + p1
\Q @ 4\*
where p: = 4 — 22j and p2 = zéjﬁé&qhél the residues are
"9 \ b
Q Q\ .
a@s&QQW QG\@b = 11.37j

The inverse Laplace gtﬁ’gﬁf@?@ §<\°
\‘)

v(t) = ﬁ?bgzéo( Kﬁﬁ 11.37je""%'t = 22.73e~"tsin 22t .
o

&
‘?f’ra@

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.



36 CHAPTER 2 Mathematical Models of Systems

Problems

P2.1 The integrodifferential equations, obtained by Kirchoff’s voltage law to
each loop, are as follows:

%i+ 1 idt+Ld(i1—iz)+R(i —i)=v() (loop 1)
g R T 11 2
and L d(ip — iy)
1 lgtiRG —i)+L ° “=0 (loop2).
Ri+ [ Lo 1 —

P2.2  The difgelznent@i equzations describing the system can be obtained by using
a free-body diagram analysis of each mass. For mass 1 and 2 we have

M1y1 + klz(yl - yz) + by1 + kQ(; = F(t)
. Sl Q_ Q. _

MZ@@@TE&@@) -0

Using a force-current analo ﬁila;?@gmus electric circuit is shown in

Figure P2.2, where C; — é@i@%@ Q;ﬁ(l, Ly — 1/k:, andR — 1/b.
B £ 3

X,

FIGURE P2.2
Analagous electric circuit.

P2.3  Thedifferential equations describing the system can be obtained by using
a free-body diagram analysis of each mass. For mass 1 and 2 we have

F ()
0.

M X: + kx: + K(x: — X2)
M X: + k(Xz — Xl) + bx

Using a force-current analogy, the analagous electric circuit is shown in
Figure P2.3, where

C-M L - 1/k R — 1/b.
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oD L3 L. =c §R

FIGURE P2.3
Analagous electric circuit.

P2.4  (a) The linear approximation around vi» = 0 is Vo = OVin, see Fig-

ure P2.4(a).
(b) The linear approximation around Vi, = 11iS Vo = 2Vin 1, See Fig-
)
ure P2.4(b). & O 2
NG a4
RSN
*5‘;‘\(2’@’6\- E S
@ S QT <i‘\& (b
0.4 \u"‘%\\‘ ,\&‘\J\ Z Qé\ 4 /
0.3 SR &\)&Q - 35
. Q\ ‘\\’J G}\) . QV \{_'0
Q,Soq\c k. (\Q ({-\ ‘t\oﬂ
@ NS 3
& \§\ &° -(g\$ 8
0.2 \0 Y ‘0'-‘;: &8
l &‘5’ \bebez»’“b (‘5\ <§x 25
S o F® /
& Q\ @@ \\;Q 2SS
AT e P o ®
& Q:\* ao‘éo‘\ 2 :
P o /
&
e 0 8 g 15
lirear approxmation /
1
0.1
05
0.2
0
03 05
: nmeard plUNIIIalIUII
-0.4 -1
-1 05 0 0.5 1 -1 0 1 2
vin vin
FIGURE P2.4

Nonlinear functions and approximations.
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38 CHAPTER 2 Mathematical Models of Systems

P25 Given
Q = K(P: — P2)'/2.
Let 0P = P. _ P:and 6P, = operating point. Using a Taylor series

expansion of Q, we have

00
= o “+
Q= T Py (P = 0P+ -
where
12 o0 —sp -1/2
QO = Képo and 85—P _6P oo = 2 o

Define AQ=Q _Q, and AP = 6P _ 6P,.Then,dropping higher-order

terms in the Taylor series expansion yields

where L0 L0

5% A& :
S & S 1/2
EALINC ‘?@W
S ngbé\c}\\p
P2.6 From P2.1 WehaV%‘o“\ B g o0 — |
3 _ .
o®x§@ LAl -0 g — )=
\an-bb% eb?’ @ o .
taQ—@(j?@ —dt— 11 2
. S
R S‘ °\\ 1
and "*@&. & &@gxl
(\

¢ 1 idt+RG —i)+L dl— i) _
+ I —
J- 1 2 1 dt

Taking the L%ﬁlac@transQform and using the fact that the initial voltage
across C: is 10v yields

1
[R2 TS + Lis + Ri]li(s) + [—R: — Ls]l(s) = o
and
1 10
[_Rl — L1$]|1(S) + [LlS +Rs+ — + R1]|2(S) = - —
Cys s’
Rewriting in matrix form we have
R, + 1 T~ + LS+ R: —R: — LiS o |1(S) 0 !
- + R - - - -
—R:1 — LiS Lis + Rs + s |2(S) —10/s
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Selving for I. yields

11(s) _ 1_|_ LS+ Rs +° + Ru R: + Lis 0- 0
I I .
J 5 1 J
R +L R+ _ +Ls+R
12(s) A 1S 2 C ' ' —10/s
or
_ —10(R: + 1/Cis + Lis + Ry)
1 (s = A
where

A=R + 1 4y Ls+R)Ls+R + ' +R)-(R +L59)

2 Cis 1 1 1 3 CZS 1 1 1

P2.7  Consider the differentiating op-@n@%ﬁgﬁﬁ in Figure P2.7. For an ideal
op-amp, the voltage gain (as Qémﬁ%aﬁfgm\bf frequency) is

Qq‘\c}dﬁ 0"’;\
S - Z&% V (s),

)
&
)
LSS 29
S
where 2 ©® e
) & o ®
Q‘()\GG’Q & (@\ *6\ R:
PO A N I+ RCS
LE QS 1
SN
and 28 :Rz,ﬁrgs?}le respective circuit impedances. Therefore, we obtain
B
S &
& 3 T
Ro(1 + R1Cs
\e(s) = — Ro1 + RiCs) Va(s).
R:
Z
1 Z
2
+ o +
R1
Vi(s) Vy(s)
(e, __L O
FIGURE P2.7

Differentiating op-amp circuit.
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P28 Let
tt. + Cs —Cs —tt
A= —Cs  tt2 + 2Cs —Cs
— th —Cs Cs + tt: .
Then,
V = AU| V_a Asl/A
At % v T A

1 11
Therefore, the transfer function is

- Cs 2Cs + tb
o)
V3 _ Az _ e ol @ Cs
o \0"0'6\\(\@\
x§ ; —
\0{0 '\$\) \(\Q@Qﬁeg\g + ttZ CS
FF S S
N Cs + tt -
IS
SN

‘o
(o)
@O"@
200 %
s,
- 8
%
Ox,
G
(_né@
N
@
o
3
8
o
x
o
=3
@D
w
Q
>
o
Q
N
@
o
«

%
0;0
Cb(/
e
E)
%

Imag Axis
o

-1

Real Axis

FIGUREP2.8
Pole-zero map.
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C’R:iR:8" + 2CRss + 1
12 2 1
Using R: = 1.0, R = 0.5, and C = 0.5, we have

S+45+8 (s+2+2))(s+2—2))

TE) = =(s+4+\/8)(s+4—\78)'
s2+8s+ 8

The pole-zero map is shown in Figure P2.8.

P2.9 From P2.3 we have

M X: + kx: + k(X1 — Xz) = F(t)
MXz+k(X2—X1)+bX2 0.

Taking the Laplace transform of both S(q%@ﬁons and writing the result in

matrix form, it follows that \\r‘:ﬁ;@% ‘i’\ ©

S N -

- Ms®+ 2k 00@}@2@‘1@3@ X@E) LU F(s)
2% & {'\\’\\ v&‘& L =L Ll ,

Lk A e 0

ST .
@ O o @
é} ?}s\ & &0"@ Pole zero map

Imag Axis
o

-0.2

-0.3

-0.03 -0.025 -0.02 -0.015 -0.01 -0.005 0
Real Axis

FIGUREP2.9
Pole-zero map.
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or
U -

. i
Xi(s) 1 Ms +bs+k k F ()
! Y i 00 i

=
X:(s) A k Ms + 2k 0

where A = (Ms® + bs + K)(Ms” + 2k) — k. So,
Xi(s) Ms® + bs + k
M =Fe~ —a
Whenb/k =1, M =1, b’/Mk = 0.04, we have

S+ 0.04S + 0.04

tt(s) = .
s+ 0.04S3 + 0.1252 + 0.0032S + 0.0016

The pole-zero map is shown in Figure P2.9.

X0

P2.10  From P2.2 we have &" 5 o \‘:\G
.Z,"t) Q&\b

M1y1 + klz(ﬁ—o{y ﬁVQ\& k1y1 = F(t)
6\@6\4@@%& @2 —y)=0.

Taking the Laplace t@hgﬁb@\\e@bﬁh equations and writing the result in
matrix form, it fol@g&‘ﬁ;‘aﬁ_\“ o
0

L { N 0o I F (s)
M:s’ {\t@@gg-@& (;1_’3' kz‘@o —2k12 Y1(s)

@Q}‘(oﬁa—é@g\ M:S + Kiz Yz(S) - -

Yi(s) 1 Mas? +kpp k12 - F®

Y2(s) A K12 M:S® + bs + ki + ki (0]

A= (MzS2 + klz)(MlSz + bs + ki + klz) — k21.2
So, when f (1) = a sin w.t, we have that Yi(s) is given by

al\/lza)o(S2 + klZ/MZ)
Y8 = T @+ w)AE

For motionless response (in the steady-state), set the zero of the transfer
function so that
k
(s* + i)zsz+a)2 or o= """,
M2 0 o M2
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P2.11  The transfer functions from V«s) to V4(s) and from V4(s) to 6(s) are:
V (SIV (s) = K1k

a (Les + RO(Les +RS)

a(s)IV (s) = m

, and

a (Is2 + FS)((Ls + LS + R+ Ro) + KiKps
The block diagram for 6(s)/V.(s) is shown in Figure P2.11, where
A(s)IV (s) = 0(8) Vu(s) _ KiKaK
¢ Va(s) V{(s) A(s)

where

A(S) = s(Les + R)(Lgs + R)((JIs + b)((La + La)s + Ra + Ra) + KnKas) .

ré‘{ﬂ \Q"boo @
o Ve —— o Vi ¢<a\<\‘1 'Q““b'd Tn o
— 1 A Ry
Ve — Lc5+Rc4> K1 4>LqS+Rq ™ Ko AO_Z&WWQ 5 2 e*—» Jsi.f - ls L O
. y A0
Vb ‘\?}Q{Q‘} '\Q{\ Q‘,K\’\\?
& OK\,\Q'%AQO ,\\O K3 | w
S L -
K \’Qe, G}\) ,\(\0 )
@0\0‘ £ 0{*'\-x‘°
FIGURE P2.11 & P T E
: ©.F L& &
Block diagram. DTS
P
\\\ \0 2?‘7 \\Q \(“\'
P2.12 The ”168 nsfer function is
dﬁqm \@p\itﬁ
< :@"’ Y(&) _ K
RS s+ 50
With R(s) = 1/s, we have
Y(s) =
s(s + 50)
The partial fraction expansion is
- >
1 1

K1
Y(5)250 S Ss+50 '

and the inverse Laplace transform is
K -50¢

y(t) = 50

As t — oo, it follows that y(t) — K/50. So we choose K = 50 so that y(t)

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.



44 CHAPTER 2 Mathematical Models of Systems
approaches 1. Alternatively we can use the final value theorem to obtain

y()ise = lim sY (s) = E .
s—0 50

It follows that choosing K = 50 leads to y(t) — 1ast — oco.
P2.13  The motor torque is given by

Tu(S) = (InS’ + bnS)On(S) + (I8 + bzS)n6L(S)
= NS + bms)/N° + J1S + brs)L(s)
where
n = 6.(s)/6m(s) = gear ratio .
N
But @.\0“:@@& \Qrs:\; \60
SN
3%6‘7 F @%QQ%S)
d ' o O
an ‘3@\.\(@ S c"Q
CHNNSS
e T 1 Vy(s)
LN Qf“cﬁ-L)S+R + R g '
& & é"% @ <Y f g
$ 6906%9 5 3
and RO S
Lo I
N &2 00@\ S @
L (S Vu(s) = Kly (s) = gy
(b%@&g’b\eé‘o\'}o 9() gf() R +Lfsf ()
S .gé’
Combining the above expressions yields
Ve(s)  nAu(S)AxS)
where
ImS’ + bmS
Au(s) = Jis°  + bis+ ’"_nz_’"
and

Az(S) = (LgS + Lf S + Rg + Rf )(Rf + Lf S) .
P2.14  Fora field-controlled dc electric motor we have

o(s)/V(8) = .
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With a step input of V4(s) = 80/s, the final value of w(t) is

o) e = lim sw(s) = 80Km =24 or ﬁ = 0.03 .
s—0 Rf b Rf b
Solving for w(t) yields
80Km - 1 z 80K a
o) = L™t = (1_e (b/dt) = 2_4(1—e‘(b/J)5 .
RrJ s(s + b/J) be

At t= 1/2, 0(t) = 1, so

w(1/2) = 2.4(1 — €W/ = 1 implies b/J = 1.08 sec.

Therefore,
0.0324
(D(S)/Vf(:) ;‘a m
P2.15  Summing the forces in the Vegﬁgﬂ? dfrﬁs&mn and using Newton’s Second
Law we obtain oq‘\‘ < @fa‘i\@,@°

5 «a“’i@.“%‘\*‘;‘( “ o
& )&:0?_(9_ o

@(’\\6\0‘

The system has g9 aa ?&‘ﬁ@ﬁnd no external inputs. Taking the Laplace
transform qujbif%\ ag"@ x*\

T 8%

2 t:» o -c\

OQl-\ 4&9@*‘ & @q“\ XaS
o & & (\\\Q & X(s) = )

«“\6\600"6\”’ @ s? +k/m

whereW@ Lf{ed’ the fact that x(0) = x and x(0) = 0. Then taking the
inverse Lapface transform yields

k
X(t) = Xocos —t.
m

P2.16  (a) Formass 1 and 2, we have

M:iX: + Ki(X: — %) + bi(%: — %) = 0
M:X. + Kz(Xz — X3) + bz(Xz — Xz) + KI(XZ - Xl) =0.

(b) Taking the Laplace transform yields
(Mss”® + bis i+ K)Xi(S)  _ KiXa(s) = bisXs(s)
—KiXi(S) + (Mz2s + b2s + Ki + K2)X2(s) = (b2s + Kz2)Xs(s) .
(c¢) Let
tt(s) = Kz + bas
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tt2(s) =1/p(s)

tt:(s) = 1/q(s)

tt(s) = sh:,
where

p(s) = s’M: + sf: + Ki + Ko
and

q(s) =M + sf + K. .

The signal flow graph is shown in Figure P2.16.

FIGURE P2.16
Signal flow graph.

()] Thé\*fgans‘fé&%@hctlon from Xs(s) to Xi(s)is
‘@\" X(s) _ Kittu(S)tt(s)tta(s) + th(s)tta(s)

Xs(s) 1 — Ktt(s)tts(s)

P2.17 Using Cramer’s rule, we have

_ - I 1 i
1 1.5 X1 6
uou =L L
U X7 11
2 4
or
1 0 0 oo
X1 1 4 -—15 6
i 1 = 0 I
X - 11
2 & 5

where A = 4(1) — 2(1.5) = 1. Therefore,

X,= 4(6) —11.5(11) =75 and x, = —2(6) 1+ 1(11) _
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The signal flow graph is shown in Figure P2.17.

FIGURE P2.17
Signal flow graph.

So,
6(1) — 1.5(*) 11(1) +7(6)
4 4 2
X1 = =75 and X = _
1 _ _’f 7:5 o -\(9@‘ ;\?‘,‘3\ 1— 2% =—-1.
N @fb&\\'\‘%@o

S
P2.18  The signal flow graph is s@@\@iﬁi&%ﬁe P2.18.

FIGURE P2.18 S
Signal flow graph. <P e 0\3\6\’2’ &

£
The transfef function is
Vz(S) _ Y1Z:Y3Za4
Vl(S) 1+ YiZo + YsZo + YaZa +Y1Z2Z4Ys

P2.19  (a) Assume Ry > Rs and Rs > Ri.. ThenRs = Ri + R: = R;, and
Vgs = Vin — Vo,
where we neglect i, since Ry > Rs. At node S, we have
Vo —gv =g(v -—v) or Yo _ GmRs

Rs m gs m in o Tm 1+ ngs

(b) With g,Rs = 20, we have
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(¢c) The block diagram is shown in Figure P2.19.

Vin(s) 9gmRs > Vo(S)

FIGURE P2.19
Block diagram model.

P2.20  From the geometry we find that

Az = kll_ I2(x— ) —I_zy.
Ik lh

The flow rate balance yields

D
dy qx" i’bﬁﬁ PAZ(S)
_ >
A Fri pAz w@bkqgaﬁl&%o Y(s) =

@ @ «©
By combining the above&ezml\l\té bf’?@"ﬂows that
\)c’ s
Y (s) @95:‘ ?“ *\“?2 (X(s) — Y () — 7Y (s)
6\3

SIS @‘o‘*ll I
\7) \

Therefore Jsﬁg:‘é}gng@ﬁéw graph is shown in Figure P2.20. Using Mason’s

«wo 2 \3(’6}&

FIGURE P2.20
Signal flow graph.

gain formula we find that the transfer function is given by

Y (s) K(li-b)p ~ Ky
= ~ LAs = ¥
XiSi L b k(l1—lz)p s+ K + Ku
lAs liAs

where

k(|1 — |2)pp and K |2p

K, = P
! LA 2 1A
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P2.21  (a) The equations of motion for the two masses are

-, 2
, - L L
ML¢ + MgLé + k 10— 0)= 1)
1 1 - 1 2 -
2, 2
e s
MLG, + MgL#: s (92—91)=O.
+ Kk
B e —
d
F(t) } ® 9,
- s UML|— 1s Us -
A N
o)
4
5SS
S FRE
(@) PRSI SN B
QY @ % (R
PP 9 &
W& P @ & o
SN Tis E
( ) RPN -
\}Q\%\‘?\)be’ o ,é(\k
3 FE
RS
&P P
Sl & Lo
SESPEICNY
%:QJ\ o° ofb% (S Y P
R4 O &
S S S Intag{s)

A *INL 2m

(b) ) +,-~/§7,g\

FIGURE P2.21
(a) Block diagram. (b) Pole-zero map.

With 1 = o and 6, = w2, we have

.+k 0 k f(t)
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k . k
w'zz_e +_ 0.
4M ' L 4M 2

(b) Define a = g/L + k/4M andb = k/4M. Then

6:(s) 1 s +a

F(s) 2ML (s2+ a)2— b2’

(c) The block diagram and pole-zero map are shown in Figure P2.21.

P2.22  Foranoninverting op-amp circuit, depicted in Figure P2.22a, the voltage
gain (as a function of frequency) is

Zl(S) + ZZ(S) v (S),
Zl(S)} g

& O F N
il of the respective circuits. In
N

. S &A@
where Zi(s) and Z(s) are the i :
() 20) \\‘lgrf)" gﬁi@i_

V(s) =

&
.2

=

(b)

FIGURE P2.22 PSS
(a) Noninverting op-amp circuit. (b) \%Olga'gngfollower circuit.
&

the case of the voltage follower circuit, shown in Figure P2.22b, we have
Z: = o (open circuit) and Z. = 0. Therefore, the transfer function is

Z:

Vin(S)

P2.23 The input-output ratio, V./Vis, is found to be

Vee = PR —1) +hieRy
Vin _ﬂhre + hie(_hoe + Rf)

P2.24  (a) The voltage gain is givenby

Vo RLﬂlﬁz(Rl + Rz)

(Rl + Rz)(Rg + hiel) + Rl(Rl + Rz)(l + ,31) + R1RLﬁ1ﬂ2

Vin
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(b) The current gain is found to be

I

=B p .
— 12
Ip1

(¢) The input impedance is

Vin _ (R1 + Rz)(Rg + hie1) + Rl(Rl + Rz)(l + ,31) + RlRLﬁlﬁz
ipm Ri+ R: ,

and when .5 is very large, we have the approximation
Vin R LR1ﬂ1,Bz
i_bl - Ri+ R: .

The transfer fur_lction from R(s) and Ta(s) to Y (i) is given by
Y(s) = tt(s) R(s) — ! (tt(S)R(S) + T (8)) + T (s) + tt(s)R(s)

N
tt(s é:, ‘(\\Q \OQ @0 d d
= t(S)R(S) . 8o e‘”@\\@
& G)\(‘ é,

OOQ &7 oF \T\

\6 \Q\’ \QQ‘ Q

5

N
Thus, ebo} c\@\e@“ &, S
N % (\ b\ \‘9

0&\\
X eu%‘ilR(s) = tt(s) .
& & \<‘
‘\. ‘\‘ t‘g
Also, we hav@‘%hﬁge < 8T
Ny '\be' fa“b ° C§&\
Ry ‘?’66\%‘(\@ Y (s) =

when F?fs\? @\fg@\‘ﬁlerefore the effect of the disturbance, T4(s), is elimi-

nated. °&

The equations of motion for the two mass model of the robot are

MX + b(x —y) + k(x —y) = F(t)
my + by —x)+k(y =x) =o0.
Taking the Laplace transform and writing the result in matrix form yields
Ms*+bs+k  —(bs+k) | X)L - F(s)

U 1
: ) Yo = o,
—(bs + k) ms %+ bs +k

Solving for Y (s) we find that

Y () _ Lbs + k)
F (s) mM >
LBy R
s2[s2+ 1 + -

© 2017 Pearson Education, Inc., Hoboken, NJ. All rights reserved. This material is protected under all copyright laws as they currently
exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.



52 CHAPTER 2 Mathematical Models of Systems

P2.27  The describing equation of motionis
N i2
mZ = mg — kz_2 :
Defining

L
(Z,l) - g - m22
leads to

Z’=F(z, i) .

The equilibrium condition for i, and z,, found by solving the equation of
motion when

is S

Welinearize the equa:il ﬁ’gﬁ@%};&n using a Taylor series approximation.
With the deflmtlo@‘g@ Y% S

@7’«,&?’1@"’61 Q\‘\\
€{§§é§2@ﬁ§€——zo and Ai=i-— i,
. Q{‘ 3, & @..\el
Sh o L .
we have, v@z@iogb‘?gi@ z = 7. Therefore,
e“ & e ° of 5)
I&D f(zo i)+ — Az + — AP+
o O
But f(z,, i,) = 0, and neglecting higher-order terms in the expansion
yields
. 2ki?
Az = 3°Az _ Moy
mz mz%

Using the equilibrium condition which relates z, to i,, we determine that

257 - i

Zo io

Az =

Taking the Laplace transform yields the transfer function (valid around
the equilibrium point)

AZ(s) _  —g/i,

Al(s) 2 —29/z, '
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P2.28  The signal flow graph is shown in Figure P2.28.

FIGURE P2.28 S e
Signal flow graph. W ~{\\°,§°° N

(a) The PGBDP loop g%zﬁ 4 -abed. This is a negative transmis-
sion since the po a‘ﬁ\Qﬁ ?gﬁuces garbage which increases bacteria
and leads to d@gseg lﬁ;lgbreducmg the population.

(b) The PMCPQboqp gag,& lsé? equal to +efg. This is a positive transmis-

N
sion singg ffion leads to modernization which encourages

1mm1g_ﬁ§gB (ﬂﬁl@"lncreasmg the population.

(c) Th@‘];ﬁ@ﬁl&io%p gain is equal to +ehkd. This is a positive trans-
mlﬁgﬁ\sﬁ%@% the population leads to modernization and an increase
in sa‘ngfgﬁ%)n facilities which reduces diseases, thus reducing the rate
of decrgasmg population.

(d) The PMSBDP loop gain is equal to +ehmcd. This is a positive trans-
mission by similar argument as in (3).

P2.29 Assume the motor torque is proportional to the input current
Tm =Kki.
Then, the equation of motion of the beam is
Jo =ki,

where J is the moment of inertia of the beam and shaft (neglecting the
inertia of the ball). We assume that forces acting on the ball are due to
gravity and friction. Hence, the motion of the ball is described by

mX = mge — bx
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where m is the mass of the ball, b is the coefficient of friction, and we

have assumed small angles, so that sin ¢ = ¢. Taking the Laplace transfor
of both equations of mation and solving for X(s) yields

gk/J

X(S)/I(S) = Sm .

P2.30 Given

H(s) =

S+ 1

where 7 = 5Us = 4 y 10~° seconds and 0.999 < k < 1.001. The step
response is

k

Y(s) =

Taking the inverse Laplace tg,ﬁ}{s %ggéqbd
y(0) 58Sk - ey
g <\
8 S b@'(\ &@
The final value is @%@m& itakes to reach 98% of the final value is
t = 19.57Hs md@%ﬁﬁg & of%.

P2.31 From the blpéakbﬁgé‘%&@we have
Y’@b ‘&&é)ﬂth(s)&(s) + th(S)Ex(S)]
T @fs)th(s)[Rl(s) — Hi(s)Ya(s)] + t(s)tt(S)Ex(S) .
Therefore,

tti(s)tta(s) R (s) + tt2(s)tts(s) E (s) .
1+ th(S)tt(s)Hu(s) 1+ ttu(s)tt(s)H«(s) °

Y =

And, computing E:(s) (with R:(s) = 0) we find

b3 2
2 2 2 2 6 tt (s) 1 5 2

E(s) = H(SY (s) = H (9t (s) tS) Y (s) + tt (SE (s)

or

tt4(S)tte(S)H2(S) Y (S) .
t(s)(1 — tts(s)tts(s)H2(s))
Substituting E:(s) into equation for Yi(s) yields

tti(s)ttz(s) R (s)
1 + tt(s)tt(s)Hu(s) *

Ez(s) =

Yl(S) =
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N tta(s)tt(s)tts(s)H2(s) Yi(s) |
(1 + ttu(s)tt2(s)H(s)) (1 — tts(s)tts(s)H2(S))

Finally, solving for Yi(s) yields

Yl(S) = TI(S)RI(S)
where
Tl(S) =

tt(s)tt(s)(1 — tts(S)tte(S)H2(S))
(1 + tu(s)tt2(s)H1(s)) (1 — tts(S)tts(s)H2(s)) — tta(s)tta(s)tts(s)Ha(S)

Similarly, for Y(s) we obtain

Yz(S) = Tz(S) Rl(Sg\

SR
S
where N -@’5'\@"‘
S e‘° S
To(s) = ‘\ @\ & b

g\fh&‘s @4 te(S)
M@M@&ﬁ@m@h@mm@mmm@
G 6\
P2.32  The signal flow @@:@@vgﬁlree loops:
@ L 0\
\0&\@ r’%

)
o ;@bé;b@%& K\\\é —ttattsttaH:
ST S = —thttsttsH
NG
TP ¥ 5P & Ls = — HuttsttottottsttaHott .
> & &

The tran fe‘f ffinction Y./R: is found to be

TN thtttte — tttsttoAs
S (R
where for path 1 R
A =1
and for path 2
A=1- Li.

Since we want Y: to be independent of R;, we need Y:/R: = 0. Therefore,
we require

ttittstte — thottstts(1 + thittsttaHz) = 0
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P2.33  The closed-loop transfer function is
Y(S) tts(S)tta(s) (tt2(s) + KsKs)
R(S) 1 — t(s)(Hi(s) + Ks) + tt(S)tt(8)(ta(s) + KsKe)(Hz(s) + Ko)
P2.34  The equations of motion are

mq’h + b(y1 - yz) + kl(yl - yz) =0
mzyz + b(yz — y1) + k1(y2 — y1) + kzyz = kX

Taking the Laplace transform yields
(m132 + bs + k1)Y1(S) — (bS + k1)Y2(S) =
(mZS2 + bs + ki + kz)Yz(S) — (bS + kl)Yl(S) = kzX(S)
Therefore, after solving for Y:(s)/X(s), we have

Yis) _ lo(foska?™

S S

X(S) (mlsz+ bS+k1)§m28¢¢\§§+ ki + k2) — (bs + ki)?
P2.35 (a) Wecan redraw the blockcﬁigggﬁgs‘a&%ellown in Figure P2.35. Then,
Kéﬁggé\ & : Q\Q ) Ky

.

T(S) = 2@ e o & =
Wm‘ﬁsfsﬁz 2 F (T F KeK)S F Kz
o) S

Ko\\(\\k.o

(b) The signal ﬂ.w‘i‘@go\‘gﬁgl’f 2&¥eals two loops (both touching):

~ 0 \A

o?*’%..‘\\&%’bi\ {\,@2 —Ki _ —KiK:

SO and L. = .
NS &@4,&@
O & O
@@a:%rgeof}« s(s +1) S+ 1
Therefore‘?\
K./s(s + 1) K1

T(s) =

1+ Ki/s(s+ 1) + KIK:/(s + 1) T2+ (1+ KK)s + Ka
(¢) Wewant to choose K: and Kz such that

S+(1+KK)s+K =5 +20s +100 = (s + 10)° .
2 1 1

Therefore, Ki = 100 and 1 + K:K: = 20 or K: = 0.19.
(d) The step response is shown in Figure P2.35.
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R(s) —= Y (s)

1+K2s

0.9

0.8

0.7
< -—-time to 90 | = 0.39 sec

0.6

0.5

y@®

0.4

0.3 ‘6\
0.2 WP \'QQ" 8
- g ,b(; ) '60
" SN
. LG S ‘\) S
& &
0 S T

& oo M 12 14 16 18 2

o TS
b@é\(\\e'& cbo<\ Q0\'time(sec)
&2l & e
& ¥ \}be’ (}\) roob
FIGURE P2.35 & x® &

. &
The equivalent bl N th t t .
q \g@% Qg,fé’f;@‘?gﬂ" e system step response
O f F S
'Q:Q Q,o S 6\ \'&
S 0_'\\6 o;z?Q,zS‘- )
P2.36 (a) G/iv \%Q@j\’,z@%@?sﬂ the partial fraction expansion is
(o) S
F b @ O
F L 30 01091 0.7576(s +3.4) 1 0.8667
Y (S) g§z 7 = - 7 + - — .
2(s+5)(sZ2+45+6) S+5 2+45+6 &2 S

Therefore, using the Laplace transform table, we determine that the
ramp response fort > 0 is
J
6 -5t 25 -- _ - p2
yt) = "e T+ e
2 1
cos ot+  Csid % +t- O,

55 33 10 * 15

(b) For the ramp input, y(t) ~ 0.25 at t = 1 second (see Figure P2.36a).
(c) Given R(s) = 1, the partial fraction expansion is
30 30 1 30 s-—1

Y (s) = (

S+5)(2+45+6)  115+5 1152+ 45+6

Therefore, using the Laplace transform table, we determine that the
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impulse response for t > 0 is

® =3 st 30 V_ 3% v
YW= —¢ __e " cos 2t— —sin 2%
11 11 2 2t

(d) For the impulse input, y(t) = 0.73 att = 1 seconds (see Figure P2.36b).

(a) Ramp input (b) Impulse input
35 1.2
3 1 —
25 &d
& '\Q}_ Q& @
G 'b“\o.b@
& ’@'ra(ce\@
RN
2 P @ Fad” 06
CQQQQJ@ {(‘\@ '
NN B\
= & O & o
= @ "50\0‘\ &Q =
53 oo S
15 @ & *\\ ';Q‘ & 0.4
ARSI :
D P F P
S Ca & %
DG P ¥
FT N E o
1 SIS 0.2
Q'\ auaa.c’ K’\\Q ) .
d b?"b el &
& W @ q,(\' o)
W O P (T
&2 .@QU& e 0
OO R
2 &b @ O
& @
L PP
L7
O‘S\\\\
0 -0.2
0 1 2 3 4 0 1 2 3 4
Time (s) Time (s)

FIGURE P2.36
(@) Ramp input response. (b) Impulse input response.

P2.37  The equations of motion are

d*x dy
m1W = —(ki + k)X + kay and sz =ko(x — y) +u.
When m: = m; =1 and k. = k: = 1, we have
d’x dy
qz T XY and qE= Xyt
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P2.38  The equation of motion for the system is

d’6 do
where k is the rotational spring constant and b is the viscous friction

coefficient. The initial conditions are (o) = 0, and 0 (0) = 0. Taking the
Laplace transform yields

J(S°0(s) — s0o) + b(sO(s) — ,) + kO(s) = O .
Therefore,

(s+16,) (s + 2lwn)b,

0(s) = (2 +vd+x) T S otas Tl
J J

n

Neglecting the mass of the rod, the momeng of inertia is detemined to be

Also, S

&661\0 c':\(\o';p A

. " &,

Solving foreﬁiﬁf&%mg&ﬁat
hS o

& & o Q'zr(_\ @t& 0o -

S ERRE —  —zon

e tsin(a)n 1—(2t+ ?) ,

where tan ¢ = 1 — (2/0). Therefow, the envelope decay is
o

0 = _gﬁlnt
e g e :
1- (2
4
So, with {wn= 2 3107, 6, = 40000 and 65 = 100, the elapsed time is
computed as

t 1 In 00
= T = 8.32 hours .
1-—- CZQf
P2.39 When t < 0, we have the steady-state conditions
6 12 36

in(0) = 7—A ,  Va(0) = 7V and vd{0) = 7—V :

where v{0) is associated with the 0.75F capacitor. After t > 0, we have
1.5
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and
I

0.75 .0t + 1002 + 5(I2 —i)—h=o0.

Taking the Laplace transform (using the initial conditions) yields

10

1.5(sh(s) = i:(0)) + 21(s) + 5h(s) — 5l(s) = ——

or s

-s+i‘ I(s)—i)l(s)=185+176
g3 1 g2 21(s + 2)
and
37329 — o) 108 POEF(CORINCIRIRO
or (be‘?:‘ $\$\b®

RS S 108

—24S|1(Sl<9'(ﬁg)&% =§3§°I (s) = —s

Solving for Ix(s) ylelds,@ Q,
°\\%§(~27s + 216S + 604)

& A e §<§>+ 2)(60s? + 203s + 14)

Then, VO(S)&-‘ﬁ)Iefs}
P2.40  The equa?g&@%of’ﬁ}@@hon are

& @\ \e 5©

J:61 #@%—ao—mm—eﬂ+T and J.02 = b(6 — 02) .
Taking the Laplace transform yields

(3:S° + bs + K)Oi(s) — bsh:(s) = KOa(s) + T (s)

?}?d (35" 4 bs)6:(s) — bsbi(s) = 0. Solving for 6:(s) and 6:(s), we find
at

(KO(s) + T (5))(Js + b) and () - b(K6:(s) + T (s))
A(S) A(S)
where A(S) = JiJos’ + b(Jl + \]2)52 + JKs + bK.

P2.41 Assume that the only external torques acting on the rocket are control
torques, T.and disturbance torques, T4, and assume small angles, 6(t).
Using the small angle approximation, we have

h=Vé

q (s) =
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JO =Te+ Ta,

where J is the moment of inertia of the rocket and V is the rocket velocity
(assumed constant). Now, suppose that the control torque is proportional
to the lateral displacement, as

Tc(s) = _KH(S) )

where the negative sign denotes a negative feedback system. The corre-
sponding block diagram is shown in Figure P2.41.

H gesirea=0 H( S)

N ©

L &7 &F
FIGURE P2.41 OSSN
Block diagram. o)@g\.\(\‘:

P2.42 (a) The equatlcéﬁ gﬁ m%t,ibn\oof the motor is

NG < &
@?b?rb br(}\,ok 4§\ J di) =T ba)
0& 0“\ 9@ "’} @ dt mo

(b) leerg‘&ifs) = 1/s, and a)(o) = 0.7, we take the Laplace transform
of the &quation of motion yielding

sw(s) — w(0) + 0.6w(s) = 10T,
or
0.75 + 10

o(s) = s(s+0.6) '

Then, computing the partial fraction expansion, we find that

A B 16.67  15.97
CO(S) = — 4+ = - .
S S+0.6 S S+0.6

The step response, determined by taking the inverse Laplace trans-
form, is
_O‘Gt

w(t) =16.67 — 15.97¢ t>o0.
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P2.43  The work done by each gear is equal to that of the other, therefore
Twlm=Ti10L.
Also, the travel distance is the same for each gear, so
rfm=r0g.

The number of teeth on each gear is proportional to the radius, or

riNz = r2N: .
So,
Om _ Ir2 _ N.
oL I T\E N
o & \&o
and RN
NGO
RS NC SIS
SISO @‘&
@\,\Lg@g ‘:ﬁqg\ o8
&P P
o e I ¢
h DU S S
where 2 &?@*‘ <
RGN
S O
& \e’c;b @g \'(Zuq
C LE QS n = N./N;
o3 (P P
Finally, <" 8¢ 9, o
D
é@
S Fr_ 0 = Ne_
TL Hm N
P2.44  The inertia of the load is
L 4
] zplr
L =
2

Also, from the dynamics we have
To= Joan + brwe
and
T =nT. = n(JL @ + brw2) .
So,

T, = nZ(Jchl + chm) )
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since
w2 = Nw: .
Therefore, the torque at the motor shaft is
T=T+Tm=nNJrax+ bro) + Jnar + bno: .

P2.45  Let U (s) denote the human input and F (s) the load input. The transfer
function is

P (s) = tt(s) + Ktti(s) U (s) + tt(s) + Kttu(s)

A —am

where
A =1 + ttH(s) + tt:KBH(s) + tt.E(s) + tt:KE(S) .

P2.46 Considerthe application of Newtpn@ lavg\g?\ F = mX). From the mass
m, we obtain & & S @ Q\\b@
K\Q' & cge‘

myX: = cﬁq@m—@&z) — (% — x).
& SO

Taking the Laplace trg‘ng&dﬁ@agﬁ” solvmg for Xu(s) yields
b k
@?‘&i@e{c\gb F(s) + "° My (),

A (s) A(s) ¢

Ai := mus” + bis + ki

From the Hf‘éss m: we obtain

mo’iz = —kx, — b + kl(Xl — Xz) + bl(Xl — Xz)
Taking the Laplace transform, and solving for X:(s) yields
x () =" ),
2 AZ(S) 1

where

Ao :=ms” + (b + b2)s + ki + ke

Substituting X:(s) above into the relationship fpr Xi(s) yields the trans-
fer function

Xi(s) _ Ao(s)
F(s) Ai(S)A(s) — (bss + ki)? '
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P2.47  Using the following relationshipsj_

h(t) = (1.60(t) —h(t))dt

o(t) = ()
Ji(t) = Knia(t)
Va(t) = 50V{(t) = 10i4(t) + vi(t)
9. = KVb

we find the differential equation is
Bh T Kn “dh Ky O _ 8K

1+ + :

ae Tt loJk G2 10JK dt J o

P2.48  (a) The transfer function is
Vi(s) _ (1 +&R{@@T;®? SRzCz)

Vi(s) &‘Q <% g&gzs
K
(b) When R: = 250 kQ, R = éf’qg"ksi o UF and C: = 0.1 uF , we

have 6- ‘\\(‘\ & o° &
b@\ Seo¥s ‘?@\\’ 48 45 + 20.8s + 40
YA s s
C:;Q‘ o (‘)&6‘6266\
(c) The 1\)@5}"@?@; ot Qfexpansion is
/\Q@i@‘é;eiz& vals) _ 208 + 4+ 0.4S .
A éz$°® Vi(s) S
P2.49  (a) The closed-loop transfer function is
T = tt(s) 5000

1+ tt(s) s3+ 20sZ+ 1000S + 5000

(b) The poles of T (s) are s: = —5.43 and $23 = —7.28 + j20.46.
(c) The partial fraction expansion (with a step input) is

Y (s) = _1_ 1.06 N 0.0285+ 0.0904] . 0.0285 — 0.0904j

S S+543 s+7.28—j29.46 S+ 7.28 +j29.46
and

y(t) =1 — 1.06e7°*t+ 0.06e™"*t (cos 29.46t — 3.17 sin 29.46t) ;
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(d) The step response is shown in Figure P2.49. The real and complex
roots are close together and by looking at the poles in the s-plane we
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FIGURE P2.49 e \)ee‘be(\ 06\06\
Step response. ‘o‘\ NI S &.'?f
P O g6 S
~\ "Gf\ @
have d],fﬁlo diding which is dominant. However, the residue at

the reﬁLﬁ(é}l’e i) g@%lch larger and thus dominates the response.

P2.50 (a) TKE cfgé’edﬂoq‘ﬁp transfer function is
Q)

b

14000
$& T(s) = 4

34552 F 31005 F 14500
(b) The poles of T (s) are

=—5 and $3=-—20* j50.

(c) The partial fraction expansion (with a step input) is

0.9655 _ 1.0275 _0.0310 — 0.0390] _ 0.0310 + 0.0390]
S S +5 S+ 20 +j50 S+ 20 —j50

(d) The step response is shown in Figure P2.50. The real root dominates
the response.

(e) The final value of y(t) is

Y (s) =

Yss = lim sY (s) = 0.9655 .
s—0
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0.9k ]
osl |
0.7} / ,
0.6]- ,

051 / 4

Amplitude

04l ]
03 / |
02| | |

01|/

0.2 0% 0.6 0.8 T T.2 T4 16 1.8
o
T.gne {,\@2)«;\ éﬂb
‘\\@ Q,.‘}O \&5;\56
FIGURE P2.50 \\\\ ‘9,;9?’
Step response. S & \\:\0

G (N 0
P2.51  Consider the free lgeb ﬁd‘égﬁgﬁ in Figure P2.51. Using Newton’s Law
and summing tl,; i@rgég@g’ﬁle two masses yields

\00\

& g@l w@ag‘@lx(t) + kix(t) = biy(t)
€8 Z@M&N by (D) + ky(®) = bX(®) + u(®

by(x -) T

kY

M,
- 1
bl(y* ) * blITI

u(t) u(t)

FIGURE P2.51
Free body diagram.
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Advanced Problems

AP2.1  The transfer function from V (s) to w(s) has the form

o) - Km
V() 1ms +1

In the steady-state, 5 5
w =1lims Km > = 5K
ss - m
s—0 TmS +1 S
So,

Km =70/5=14 .
Also, S
& (\ & x\“"'

w(t) :&\?@%cﬁ\\@_e‘f/ ™)
where V (s) = V/s. Solwgl:g i@‘@ Qg@ygﬁds

\Q\Q\
%‘“\0 Qo(\o" —t

.v@! é‘i\\_ _Sg—
& ¥
\,(\ @‘} (1 — w(t)/wss)
When t = 2, et %8%;“0 o
< cf’o LN &
& 6'2' (b(\b {\G 0:;\"‘\ -
St Ty = ——————— =3.57.
W e‘b 35S ™ In(1 — 30/70)

0
Therefol‘ééﬁ‘watransfer functionis
a)(s) 14
VG 3575 +1

AP2.2  The closed-loop transfer function form Ri(s) to Ya(s) is

Yz(S) tt1tt4tt5($) + tt1tt2tt3tt4tt6(5)
A

Rl(S)

where
A = [1 + ttsttaH2(s)][1 + thittHs(s)] .
If we select

tts(S) = —ttzttstte(S)

then the numerator is zero, and Y:(s)/R:(s) = 0. The system is now
decoupled.
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AP2.3  (a) Computing the closed-loop transfer function:

ts)tt(s) >

YO = T eneAs) O

Then, with E(s) = R(s) — Y (s) we obtain

1 + tt(s)tt(s)(H(s) — 1)

T REteHE) - O

E(s) =

If we require that E(s) = o for any input, we need 1 + tt.(s)tt(s)(H(s) —
1)=o0or

tt(s)tt(s) — 1 _ n(s)
tts)tt(s)  d(s)

Since we require H(s) to be a causal system, the order of the numerator
polynomial, n(s), must be less tha o\lsée@u@b“[o the order of the denom-
inator polynomial, d(s). This w@f‘%& ¥ in general, only if both tt{s)
and tt(s) are proper rational @@%@3@6@1& is, the numerator and de-

nominator polynomials &%g;\‘thé‘ogm order). Therefore, making E = o
for any input R(s) is pogﬁ xfcertain circumstances.

(b) The transfer funcﬁ“gif ﬁ%@? ®i(s) to Y (s) is

b

>
& & @Q’ S &
“”&éé\t L ttd(S)tt(S) Tds).

Q@G%b &1 + tt(S)tt(s)H(s)

With H (sl@s@k;p”e{gPZa‘? we have

,QQ \‘-9 K(b B

H(s) =

O

>t (s)
Y(s)= tt¥s) TF(s).

(¢) No. Since
2

>
Y=  MOUE) TS =T (T[S,

1 + tt(S)tt(s)H(s)

the only way to have Y (s) = o for any T4(s) is for the transfer function
T (s) = o which is not possible in general (since tt(s) f= 0).

AP2.4  (a) With g(s) = 1/s we obtain

-y

_ 1/C;
z(s)= OSFI/R
S+ ~~—c—

t

|

Define

az:w and ﬁ:
C:

1/C: .
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Then, it follows that
: —pl /
(s = 1_ —pla plo
ta -
S S+a S
Taking the inverse Laplace transform yields
c0= Poa s
a a (04

(b) Ast— o, 7(0) — £ = Geri/R-
(c) To increase the speed of response, you want to choose C;, Q, S and

R such that
e Qs + 1/R
: c.
is "large.”
S &

AP2.5  Considering the motion of eagh mﬁ{ss‘ have
M:Xs + ba),gp-i-GRséa Ax\&;ﬁ\\+ bsx: + ksx:

M:X%. + (bz + ba)Xz + @? e\kjb XD“;:\ Uz + baXs + ksXs + DXt + keXa
Mis + (b + b | (51%& %= U+ bk + kox:

b‘\‘\ AN
O P &
ea@\e}‘\& 2 N
In matrix fg@‘r@fg@ g]ﬁ-ee equations can be written as
L & e L - _
& Q‘O F s Qe&
M 00‘) SY X1 b:+ b —b: (0} X1
Ny TR
0 MRH - - - +- —b btbs b %
oN % ]
0 o M /- 0 —D e Jg-p L . L
X3 - X5 u
ki + ko —k2 0 1 1
0 oo ) .
+ —k ko + ks —ks X2 =L U,
] i B}
0 —ks ki - -
X3 Us

AP2.6  Considering the cart mass and using Newton’s Law we obtain

MX = u—bx—Fsing
where F is the reaction force between the cart and the pendulum. Con-
sidering the pendulum we obtain
d*(x + L sin ¢)

m—z = F sin ¢
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d*(L cos ¢)
m—qz— = F cos ¢ + mg
Eliminating the reaction force F yields the two equations

(m + M)X + bx + mL¢cos¢ — mLe¢ sin ¢
mL'$ + mgL sing + mLX cos ¢

Il
o C

If we assume that the angle ¢ ~ 0, then we have the linear model

(m + M)X + bx + mL¢

u

mL'¢ + mgLy = —mLX

AP2.7  The transfer function from the d1sturh§n<\c #put to the output is

Y (s) =¢ 5 WT a(s) .

O @ £
& &
When T4(s) = 1, we obt@}:ﬁk\o‘ «<\‘ & &Qe'

&

@X@i{_@: \e (40+K)t

0 <© S
Solving for twbérg%ﬁ %ﬁ*&‘ yields
g t > 2. 3
< 40 + K '
When t = “gs”gﬁd y(0.05) = 0.1, we find K = 6.05.
AP2.8  The closed- logp transfer function is

200K(0.255 + 1)
T(s) =

(0.255 + 1)(s + 1)(s + 8) + 200K

The final value due to a step input of R(s) = A/s is

200K

V(o - A200K + 8

We need to select K so that v(t)_50. However, to keep the percent
overshoot to less than 10%, we need to limit the magnitude of K. Fig-

ure AP2.8a shows the percent overshoot as a function of K. Let K = 0.06
and select the magnitude of the input to be A = 83.3. The inverse Laplace
transform of the closed-loop response with R(s) = 83.3/s is

—9_15t — e

v(t) = 50 + 9.85¢ %t (59.85 cos(2.24t) + 11.27 sin(2.24t))
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The result is P.O. = 9.74% and the steady-state value of the output is
approximately 50 m/s, as shown in Figure AP2.8b.

25

20

[
a1

=
o

Percent Overshoot (%)

O
j=]
=
j=]
(=]
[«
s
o
o
f=
&
0
o
j=]
8

0.07 0.08 0.09 0.1

>V
S P Lo
‘0\ Oe’,{b@e‘%\'\@ 6\,\' System: untitled1
,(QQ ﬁ%b” &S PEaK ampiuge: 54.9
e 29 o & (f Overshoot (%): 9.74
& & 2 o & Attime (sec): 1.15
& Q\O & 49 &
4\@%6@ & F®
& s%g 0 &
Ny
= @:é@
S §° 30
R
20
10
0
0 05 I 15 .5

Time (sec)

FIGURE AP2.8
(a) Percent overshoot versus the gain K. (b) Step response.

AP2.9  The transfer functionis

Vo(s) _ Z.(s)
Vi(s)  Zi(s)’
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where R.C
R 2Cos + 1
Z (s) = 1 and Z(s) = .
1 2
. R +1
Then we can write 'S Cas
K
+ T+ Ks
Vo(9) _K -
Vi(s) LA b
where
. >
R1C1 1
Kp =— RC 1, KI=—W, Kp=—-RLC1
2 2 1 2
)
R "\@Q@ &\e-
oY @’Q'(\(b S
S S
TS D
P O
W& o O &
ARSI
Gb @0‘\ ’\\Q"(‘ &
SISOy
Y .(\Ql \\}.(\0 ¥
RO
Gub o 0& &
F P e
WA 7 g O
Q0 P&
IRV E A
~ _be! N {\' O
PRI NS
{‘\0 Qﬂo @Q:G" ‘\\Q §'
,<<'\\c’ N 006 6\135\ ¥
T o @ &
& ‘s’bb@)‘b
d\.{s&
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Design Problems

CDP2.1 The model of the traction drive, capstan roller, and linear slide follows
closely the armature-controlled dc motor model depicted in Figure 2.18
in Dorf and Bishop. The transfer function is

rk
T(s) = - :
S[(Lws + R)Jr s+ bm) + KpKoi]
where
Jr=Jdm + (Ms + Mp) .
3
P
_ Ky 2 o'l o | 1 0
Va(s) LstRy (§\ @’%“fwbm < roL e X()
OQ\\(;éé%&id\ &
O ¢
@bciéi\i‘\éi&o &
S ELL R .
e o BRI
va O '\(@o& \\‘o
\QS“'\\@\\\ efpc:. c;l\ \(\6
Q*ot;bo @‘5’6\\‘9\ &
NG O <9 &
&o&,\d‘\c’ee:db . \\{@q
DP2.1  The clé\:%gﬁf \;gﬁ; @%nsfer function is
& % o8
‘o*:@"’ Y(s) _ tt(s)tta(s)
R(s) 1 + th(s)Hi(s) — tt(s)H2(s)
When ttiH: = tt:H. and tt:tt: = 1, then Y (s)/R(s) = 1. Therefore,
select
t(@©=_1 and H( = PO _oH (9.
! tt:(s) ' tti(s) 2
DP2.2  Atthe lower node we have s
1001 .
VoA tt 4+ 20, 5,5-0.
4 3
Also, we have v = 24 and i. = ttv . So
- >
11
-+ +1tt + 2ttv-20=0
v
4 3
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and L
20—V ~t 1
tt = 773 =385
3V 12

DP2.3  Taking the Laplace transform of

4+ 1 5, 3 1
. y(t) =e —Ze —2+£t
yields
1 1 3 1

Y(S)=s+1_4(s+2)_71s+25 '

Similarly, taking the Laplace transform of the ramp input yields

2 &
Therefore Sag® PO ®

PRSI IS 1
@) sS85 -
S \%5‘%} (s +1)(s + 2)

Ny

@ N,
PSS
@ O o o &
. SN P Lo
DP2.4  Foran ideal ogéﬁb@f)égﬁgﬁqfé a we have

NGRS
S O
S LEVT=Va Vo=V
oS + =o,
¥ & §° S R: R1
2 G @

from it follows that

1 1
— +Cs Vb=—Vm.
R2 RZ

Also, for an ideal op-amp, V» — V, = 0. Then solving for V, in the above
equation and substituting the result into the node a equation for V. yields
>
Vo 2 1+ z

Ry CS

vﬁl:fé——*—CSRz - 2

or

Vo(s) . RCs—1
Vi(s) ~RCs+1°
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For vin(t) = At, we have Vin(s) =SA/S’, therefores
V(t)=A -ﬁt+t_2

° p p
where f = 1/R.C.

DP2.5  The equation of motion describing the motion of the inverted pendulum
(assuming small angles) is —

0.

¢+E¢

Assuming a solution of the form ¢ = k cos ¢, taking the appropriate
derivatives and substituting the result into the equation of motion yields
the relationship

_ 7
¢_ Q_'é,é\
\'0@0\.\.@

IftheperiodisT = 2 second@ﬁ&é‘?‘mﬁgte ¢ = 2x/T . Then solving for L
yields L = 0.99 meters wh@?}ﬂg‘; Q@gs%(ﬁh/s So, to fit the pendulum into
the grandfather clock, ﬂi’egfmi‘e(n“s;&ns are generally about 1.5 meters or

E> & \‘
more. {,\\\q, .3\\\0&0 b\‘o
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Computer Problems

CP2.1  The m-file script is shown in Figure CP2.1.

pg =
p=[1 8 12]; q=[1 2J; 11028 24
% Part (a) //
pg=conv(p,q) p=
% Part (b) /' 5
P=roots(p), Z=roots(q) < 2
% Part (c) I 7=
value=polyval(p,-1) ~_| 2
\ value =
5
FIGURE CP2.1
Script for various polynomial evaluations. 3
\‘f) .6\4\\%&\0(‘ $6
\.\’b @foc’ 6’\6@ '\be'

CP2.2  The m-file script and step r&@gﬂ%e @%@Bwn in Figure CP2.2.

numc = [1]; denc =[1 ll,ﬁép"—ﬁrmm%enc)

numg = [1 2]; deng = EQPS bﬁ”\%
tf(numg,deng) S Ja(%‘s%

& @S 3
% part (a) N \o%x &
sys_s= senes@@y@ Transfer function:
sys_cl -feed&? GRSS?% ,l,@ s+2 -
0,
% part (Q)-

28

@

o

“%

3 %

..@0

/é

Y
%)
>
N
+
o
%)
+

o .
\‘&\ Step Response

From: U(L)

—

P

Amplitude
To:Y(1)

0 05 1 15 2 25 3 35 4

Time (sec.)

FIGURE CP2.2
Step response.
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CP2.3 Given
y+o6y+5y=u
with y(0) =y" = 0 and U (s) = 1/s, we obtain (via Laplace transform)

1 1

Y(S)=s(52+6s+5)=s(s+5)(s+1)'

Expanding in a partial fraction expansion yields

y _ 1 1 1
)= 55 2067 AGID

Taking the inverse Laplace transform we obtain the solution

y(t) = 0.2 + 0.05¢ >t ~0-25€ L
& oS .
The m-file script and step res ) .\k@i{h?own in Figure CP2.3.

) PR Y

KRN e O /
VIt P S S )

& o7 ’b‘@;

0.12 n=[1]; d=[1 6 5]; sys = tf(n,d); N

t=[0:0.1:5];

y = step(sys,t);

0.08 ya=0.2+0.05*exp(-5*t)-0.25*exp(-t);
/ plot(t,y,t,ya); grid;

Amplitude
o
=

0.06 title('Step Response’); 1
xlabel('Time (s));
0.04 / ylabel('Amplitude’); N
0.02
L/
0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
Time (s)

FIGURE CP2.3
Step response.
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CP2.4  The mass-spring-damper system is represented by
mX + bx + kx = f .

Taking the Laplace transform (with zero initial conditions) yields the
transfer function

1/m
X(S)/F (s) =

2 + bs/m + kim °

The m-file script and step response is shown in Figure CP2.4.

m=10; k=1; b=0.5;
num=[1/m]; den=[1 b/m
k/m]; sys = tf(num,den);
t=[0:0.1:150];

step(sys,t) S

[
o
—

Amplitude
%,
B
L
=7
N
.
e
%
%,
I
—_
—
"*—‘__\
/

|
|

FIGURE CP2.4
Step response.

50 100 150

o

Time (sec.)

CP2.5 The spacecraft simulations are shown in Figure CP2.5. We see that as J
is decreased, the time to settle down decreases. Also, the overhoot from
100 decreases as J decreases. Thus, the performance seems to get better
(in some sense) as J decreases.
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Nominal (solid); Ou-nominal 80% (dashed); Ou-nominal 50% (dotted)
18

16

14

12

104+

Spacecraft attitude (deg)

0 10 20 30 40 50 60 70 80 90 100

Time (sec)

%Part (a)
a=1; b=8; k=10.8e+08; J=10.8e+08;

o
num=k*[1 a]; o O @
& e
den=J*[1 b 0 0]; sys=tf(num,den); 2 ®
SN
sys_cl=feedback(sys,[1]); 009\\\\0‘9% & &f*@b‘
% P @ e o
% Part (b) and (c) ®@<\<\9®,§ ENFN
t=[0:0.1: 100]; OGO
0, QQ N \)bg (} Y
% 3 \'(_@ & § ‘l:b
f.O
% Nominal case & IS
f=10*pi/180; sysf=sys_ cl*&‘z’o@ & ‘;\\% 6‘@
y=step(sysf,t); '\=sz¢,¢> ob'z{\é &
‘:*‘ LY P
% \0 QIG“' _\Q 5\\

% Ou-nominal casa‘@% \'b ’09’
J=10.8e+08*0.8; den’ﬂ@[‘lg@og°
sys=tf(num,den); & \\
sys_cl=feedback(sys,[1]);

sysf=sys_cl*f;

yl=step(sysf,t);

%

% Ou-nominal case 50%

J=10.8e+08*0.5; den=J*[1b 0 O];
sys=tf(num,den); sys_cl=feedback(sys,[1]);
sysf=sys_cl*f;

y2=step(sysf,t);

%
plot(t,y*180/pi,t,y1*180/pi,'--',t,y2*180/pi,""),grid
xlabel('Time (sec)’)

ylabel('Spacecraft attitude (deg)")
title('Nominal (solid); Ou-nominal 80% (dashed); Ou-nominal 50% (dotted)")

FIGURE CP2.5
Step responses for the nominal and off-nominal spacecraft parameters.
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CP2.6  The closed-loop transfer function is
6 5 4 3 2
T(s) = 45" + 85’ + 48" + 565 + 1125 + 568
A(s) ’
p =
HUTEE 4] derd o HsysTHrumidendy 7.0709
-7.0713

num2=[1]; den2=[1 1]; sys2 = tf(hum2,den2);
num3=[1 0]; den3=[1 0 2]; sys3 =
tf(hum3,den3); num4=[1]; den4=[1 0 0]; sys4 =
tf(hum4,dend); num5=[4 2]; den5=[1 2 1]; sys5
= tf(num5,den5); num6=[50]; den6=[1]; sys6 =
tf(num6,den6); num7=[102]; den7=[1 00 14];
sys7 =tf(num7,den7); sysa
=feedback(sys4,sys6,+1);

sysb = series(sys2,sys3);

sysc =

1.2051 + 2.0863i
1.2051 - 2.0863i
0.1219 + 1.8374i
0.1219 - 1.8374i
-2.3933
-2.3333
-0.4635 + 0.1997i
50.4635 - 0.1997i

O @
feedback(sysb,sys5); sysd \,St‘? 5\\06‘\016$ ~
= series(sysc,sysa); syse & Gl 2=
=feedback(sysd,sys7): N N 0
=feedback(sysd,sys7); R 2GS @ )
Sys = series(sys1,syse) 090 @“‘\_og' e 0&‘ 1.2051 + 2.0872i
% o &l 1 1.2051 - 2.0872i
(%4}
pzmap(sys) Q\@b%@"é\\\ &(@6@0 -2.4101
% RS ~-1.0000 + 0.0000i
p=pole(sy RPN " -1.0000 - 0.0000i
s) ‘0‘\.@00\2@%&9@%&&@@
= <
z) zero(sy \%Q D 8? 6\\_{&\
L@ P Q& ’
I «@r’ S@Q N \'3’(\\\\‘5‘0 i® i
& é\io\@o '60‘\ Polezero m?;p
€ \éb & :
+ [ IS | |
25 Q& :
" | |
1.5 I i 1
Fo==X==mmmmmmmmmmm oo B S 1:- -------------------------------- x ===
1 5
0.5 X E
E: I ol 1
> 0 Il
£ i 5 |
-0.5 E
) 5 ]
-1.5
2 .
—2.5_B 6 4 2 0 2 4 6 8
Real Axis

FIGURE CP2.6
Pole-zero map.
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where

A(s) =s" + 35’ — 455’ — 1255 — 2005° — 11775°
— 2344§ — 34855’— 766852— 5598s — 1400.

CP2.7  Them-filescript and plot of the pendulum angle is shown in Figure CP2.7.
With the initial conditions, the Laplace transform of the linear system is

To use the step function with the m-file, we can multiply the transfer
function as follows:

s 6o
s2 + g/L s '

which is equivalent to the orlglgal &a@sﬁér function except that we can
use the step function input ude 6o. The nonlinear response
is shown as the solid line agﬁ t%gdg&g@response is shown as the dashed
line. The difference betwget sponses is not great since the initial
condition of 6 = 30° @?&@?\Qbﬁgf; rge.

& N

0(s) =

30
L=0.5; m=1; g=9.8;

theta0=30;

% Linear simulation

sys=tf([1 0 0],[1 O g/L]);

| L [y.t]=step(thetaO*sys,[0:0.01:10]);

% Nonlinear simulation
[t,ynl]=0de45(@pend,t,[theta0*pi/180 0]);

plot(t,ynl(:, 1)*180/pi,t,y,-);
xlabel('Time (s)")
ylabel(\theta (deg)’)

function [yd]—pcl |C|'\L,y)
L=0.5;9=9.8;
yd(1)=y(2);
yd(2)=-(g/L)*sin(y(1));
yd=yd";

201

10|

6 (deg)

-10

-20

-30

FIGURE CP2.7
Plot of 8 versus xt when 6p = 30°.
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CP2.8  The system step responses forz = 5,10, and 15 are shown in Fig-
ure CP2.8.

z=10 (solid), z=12 (dashed), z=22 dotted)
1.4 T T T T T

0.8+

0.4+

0.2 £

1
0 0.5 1 1.5 2 25 3
Time (sec)

¢
FIGURE CP2.8%
The system response.

CP29  (a,b) Computing the closed-loop transfer function yields

tt(s S +25+1
T(s) = ) =_

1+ tt(s)H(s) s2+4s + 3

The poles are s = —3, —1 and the zeros are s = —1, —1.
(c) Yes, there is one pole-zero cancellation. The transfer function (after
pole-zero cancellation) is

T S+1
© =53
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Pole?Zero Map

0.8

0.6

0.4

0.2

Imaginary Axis
o

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, Beneememmememememmemeememeememeemnmenn
?-0.2
?-0.4
?-0.6
O
&
208 ~ ’(‘\QQ,"\\O \‘\
O F
'\‘Q\(\!@ 0((\\6\6\
NP SRS
OOQ‘\E}C;\‘o o
i oo & O £ ]
73 5 93361@\ é 0\ +5 + 5
&7 O N\ 07 & RealAxis
& e & &(‘ @
\b(\ \)“’oé@' C}\) Qb >>
oﬁ\ \t(‘a%r}‘_&‘ 6\"'@ Transfer function:
ng_[ll]' AT M2 +25+1
g=[12];sysg =g ot o —
dh [11]; sys}g‘é,gsﬁ]a e -c\ » S2+4s+

sys feeg@t&@xj@aﬁ 3

fb
pZma?RbsgSl\cp f\{\o poles
0 \. fo Q; - p =
pole(sy ‘\;\
S) -3
zero(sys) -1
zZero

-1
-1

FIGURE CP2.9
Pole-zero map.

CP2.10 Figure CP2.10 shows the steady-state response to a unit step input and a
unit step disturbance. We see that K = 1 leads to the same steady-state
response.
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0.35
K=[0.1:0.1:10]; 03
sysg=tf{{1},{1 20 '
20]); for 0.25
i=1:length(K) ' Input Response Steady-State —_
nc=K(i);
dc=[1];sysc=tf(nc,dc); % 0.2
syscl=feedback(sysc*sysg,1 | g
); £ 015
systd=feedback(sysg,sysc); 'i
yl=step(syscl); 3 01
Tf1(i)=y1(end); 2 Disturbance Response Steady-State
y2=step(systd);
0.05| .~
Tf2(i)=y2(end); e T B
end 0
plot(K,Tf1,K,Tf2,"-- 0 1 2 3 4 5 6 7 8 9 10
') xlabel('K'") K
ylabel('Steady-state
response')
"\
0
&S
N 2,
FIGURE CP2.10 S F S’
Gain K versus steady-state valuengQ‘@;_,\O&c,\Y\ 0&;\ &L
& o &
RN
FE &S
SN WA
& Q"‘QJ&Q S
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& O ¢ -x\é
KN F e
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S ¥ @ AN
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