Solution Manual for Numerical Analysis 10th Edition Burden Faires Burden 1305253663 9781305253667

Fulllink download

Test Bank :

https://testbankpack.com/p/test-bank-for-numerical-analysis-10th-editionburden-faires-burden-1305253663-9781305253667/

Solution Manual:

https://testbankpack.com/p/solution-manual-for-numerical-analysis-10thedition-burden-faires-burden-1305253663-9781305253667/

Solutions of Equations of One Variable

Exercise Set 2.1, page 54

- 1. $p_3 = 0.625$
- 2. (a) $p_3 = 0.6875$
 - (b) $p_3 = 1.09375$
- 3. The Bisection method gives:
 - (a) $p_7 = 0.5859$
 - (b) $p_8 = 3.002$
 - (c) $p_7 = 3.419$
- 4. The Bisection method gives:
 - (a) $p_7 = 1.414$
 - (b) $p_8 = 1.414$
 - (c) $p_7 = 2.727$
 - (d) $p_7 = 0.7265$
- 5. The Bisection method gives:
 - (a) $p_{17} = 0.641182$
 - (b) $p_{17} = 0.257530$
 - (c) For the interval [3, 2], we have $p_{17} = 2.191307$, and for the interval [1,0], we have $p_{17} = 0.798164$.

- (d) For the interval [0.2,0.3], we have $p_{14} = 0.297528$, and for the interval [1.2,1.3], we have $p_{14} = 1.256622$.
- 6. (a) $p_{17} = 1.51213837$
 - (b) $p_{18} = 1.239707947$
 - (c) For the interval [1,2], we have $p_{17} = 1.41239166$, and for the interval [2,4], we have $p_{18} = 3.05710602$.

15

Exercise Set 2.1

(d) For the interval [0,0.5], we have $p_{16} = 0.20603180$, and for the interval [0.5,1], we have $p_{16} = 0.68196869$.

7. (a)

(b) Using [1.5,2] from part (a) gives $p_{16} = 1.89550018$.

8. (a)

(b) Using [4.2,4.6] from part (a) gives $p_{16} = 4.4934143$.

9. (a)

(b) $p_{17} = 1.00762177$

10. (a)

- (b) p_{11} = 1.250976563
- 11. (a) 2
 - (b) 2
 - (c) 1
 - (d) 1
- 12. (a) 0 (b)
 - 0
 - (c) 2
 - (d) 2

20.

- 13. The cube root of 25 is approximately $p_{14} = 2.92401$, using [2,3].
- 14. We have $p3 \uparrow p_{14} = 1.7320$, using [1,2].
- 15. The depth of the water is 0.838 ft.
- 16. The angle \checkmark changes at the approximate rate w = 0.317059.
- 17. A bound is *n* 14, and $p_{14} = 1.32477$.
- 18. A bound for the number of iterations is n 12 and p_{12} = 1.3787.
- 19. Since $\lim_{n!1} (p_n p_{n,1}) = \lim_{n!1} 1/n = 0$, the diderence in the terms goes to zero. However, p_n is the *n*th term of the divergent harmonic series, so $\lim_{n!1} p_n = 1$.

For
$$n > 1$$
,
 $|f(p_n)| = \left(\frac{1}{n}\right)^{10} \le \left(\frac{1}{2}\right)^{10} = \frac{1}{1024} < 10^{-3}$
so
 $|p - p_n| = \frac{1}{n} < 10^{-3} \Leftrightarrow 1000 < n.$

21. Since 1 < a < 0 and 2 < b < 3, we have 1 < a+b < 3 or 1/2 < 1/2(a+b) < 3/2 in all cases. Further,

$$f(x) < 0$$
, for $1 < x < 0$ and $1 < x < 2$;
 $f(x) > 0$, for $0 < x < 1$ and $2 < x < 3$.

Thus, $a_1 = a$, $f(a_1) < 0$, $b_1 = b$, and $f(b_1) > 0$.

(a) Since a + b < 2, we have $p_1 = \frac{a+b}{2}$ and $1/2 < p_1 < 1$. Thus, $f(p_1) > 0$. Hence, $a_2 = a_1 = a$ and $b_2 = p_1$. The only zero of f in $[a_2, b_2]$ is p = 0, so the convergence will be to 0.

- (b) Since a + b > 2, we have $p_1 = \frac{a+b}{2}$ and $1 < p_1 < 3/2$. Thus, $f(p_1) < 0$. Hence, $a_2 = p_1$ and $b_2 = b_1 = b$. The only zero of f in $[a_2, b_2]$ is p = 2, so the convergence will be to 2.
- (c) Since a + b = 2, we have $p_1 = \frac{a+b}{2} = 1$ and $f(p_1) = 0$. Thus, a zero of f has been found on the first iteration. The convergence is to p = 1.

Exercise Set 2.2

Exercise Set 2.2, page 64

- 1. For the value of x under consideration we have (a) $x = (3 + x \quad 2x^2)^{1/4} \Leftrightarrow x^4 = 3 + x \quad 2x^2 \Leftrightarrow f(x) = 0$ (b) $x = \left(\frac{x+3}{2} x^4\right)^{1/2} \Leftrightarrow 2x^2 = x+3 \quad x^4 \Leftrightarrow f(x) = 0$ (c) $x = \left(\frac{x+3}{x^2+2}\right)^{1/2} \Leftrightarrow x^2(x^2+2) = x+3 \Leftrightarrow f(x) = 0$
 - (d) $x = \frac{3x^4 + 2x^2 + 3}{4x^3 + 4x 1} \Leftrightarrow 4x^4 + 4x^2 \quad x = 3x^4 + 2x^2 + 3 \Leftrightarrow f(x) = 0$
- 2. (a) $p_4 = 1.10782$; (b) $p_4 = 0.987506$; (c) $p_4 = 1.12364$; (d) $p_4 = 1.12412$; (b) Part (d) gives the best answer since $|p_4 \ p_3|$ is the smallest for (d).
- 3. (a) Solve for 2*x* then divide by 2. $p_1 = 0.5625$, $p_2 = 0.58898926$, $p_3 = 0.60216264$, $p_4 = 0.60917204$
 - (b) Solve for x^3 , divide by x^2 . $p_1 = 0$, p_2 undefined
 - (c) Solve for x^3 , divide by *x*, then take positive square root. $p_1 = 0, p_2$ undefined
 - (d) Solve for x^3 , then take negative of the cubed root. $p_1 = 0, p_2 = 1, p_3 = 1.4422496, p_4 = 1.57197274$. Parts (a) and (d) seem promising.

(a)
$$x^4 + 3x^2$$
 $2 = 0 \Leftrightarrow 3x^2 = 2$ $x^4 \Leftrightarrow x = \sqrt{\frac{2 x^4}{3}}; p_0 = 1, p_1 = 0.577350269, p_2 = 0.79349204, p_3 = 0.73111023, p_4 = 0.75592901.$

(b) $x^4 + 3x^2$ 2 = 0, $x^4 = 2$ $3x^2$, $x = p^4 2$ $3x^2$; $p_0 = 1$, p_1 undefined.

(c) $x^4 + 3x^2 = 0 \Leftrightarrow 3x^2 = 2$ $x^4 \Leftrightarrow x = \frac{2 x^4}{3x}$; $p_0 = 1$, $p_1 = \frac{1}{3}$, $p_2 = 1.9876543$, $p_3 = 2.2821844$, $p_4 = 3.6700326$. (d) $x^4 + 3x^2 = 2 = 0 \Leftrightarrow x^4 = 2$ $3x^2 \Leftrightarrow x^3 = \frac{2 \cdot 3x^2}{x} \Leftrightarrow x = \sqrt[3]{\frac{2 \cdot 3x^2}{x}}$; $p_0 = 1$, $p_1 = -1$, $p_2 = 1$,

Only the method of part (a) seems promising.

- 5. The order in descending speed of convergence is (b), (d), and (a). The sequence in (c) does not converge.
- 6. The sequence in (c) converges faster than in (d). The sequences in (a) and (b) diverge.
- 7. With $g(x) = (3x^2 + 3)^{1/4}$ and $p_0 = 1$, $p_6 = 1.94332$ is accurate to within 0.01.
- 8. With $g(x) = \sqrt{1 + \frac{1}{x}}$ and $p_0 = 1$, we have $p_4 = 1.324$.

9. Since $g'(x) = \frac{1}{4} \cos \frac{x}{2}$, g is continuous and g^0 exists on $[0,2^{\uparrow}]$. Further, $g^0(x) = 0$ only when x = 1, so that. $g(0) = g(2\pi) = \pi \le g(x) = \le g(\pi) = \pi + \frac{1}{2}$ and $|g'(x)| \le \frac{1}{4}$, for $0 \le x \le 2\pi$ Theorem 2.3

implies that a unique fixed point p exists in $[0, 2\pi]$. With $k = \frac{1}{4}$ and $p_0 = \pi_-$, we have $p_1 = \pi + \frac{1}{2}$. Corollary 2.5 implies that

$$p_n \quad p| \le \frac{k^n}{1-k} |p_1 \quad p_0| = \frac{2}{3} \left(\frac{1}{4}\right)^n$$

For the bound to be less than 0.1, we need n 4. However, $p_3 = 3.626996$ is accurate to within 0.01.

- 10. Using $p_0 = 1$ gives $p_{12} = 0.6412053$. Since $|g'(x)| = 2^{-x} \ln 2 \le 0.551$ on $\left[\frac{1}{3}, 1\right]$ with k = 0.551, Corollary 2.5 gives a bound of 16 iterations.
- 11. For $p_0 = 1.0$ and $g(x) = 0.5(x + \frac{3}{x})$, we have $p_3 \uparrow p_4 = 1.73205$.
- 12. For g(x) = 5/px and $p_0 = 2.5$, we have $p_{14} = 2.92399$.
- 13. (a) With [0,1] and $p_0 = 0$, we have $p_9 = 0.257531$.
 - (b) With [2.5,3.0] and $p_0 = 2.5$, we have $p_{17} = 2.690650$.
 - (c) With [0.25,1] and $p_0 = 0.25$, we have $p_{14} = 0.909999$.
 - (d) With [0.3,0.7] and $p_0 = 0.3$, we have $p_{39} = 0.469625$. (e) With [0.3,0.6] and $p_0 = 0.3$, we have $p_{48} = 0.448059$.
 - (f) With [0,1] and $p_0 = 0$, we have $p_6 = 0.704812$.
- 14. The inequalities in Corollary 2.4 give $|p_n \ p| < k^n \max(p_0 \ a, b \ p_0)$. We want

 $k^n \max(p_0 \quad a,b \quad p_0) < 10^5 \quad \text{so we need} \quad n > \frac{\ln(10^{-5}) \quad \ln(\max(p_0 \quad a,b \quad p_0))}{\ln k}.$

- (a) Using $g(x) = 2 + \sin x$ we have k = 0.9899924966 so that with $p_0 = 2$ we have $n > \ln(0.00001)/\ln k = 1144.663221$. However, our tolerance is met with $p_{63} = 2.5541998$.
- (b) Using $g(x) = p^3 2x + 5$ we have k = 0.1540802832 so that with $p_0 = 2$ we have $n > \ln(0.00001)/\ln k = 6.155718005$. However, our tolerance is met with $p_6 = 2.0945503$.
- (c) Using $g(x) = pe^{x}/3$ and the interval [0,1] we have k = 0.4759448347 so that with $p_0 = 1$ we have $n > \ln(0.00001)/\ln k = 15.50659829$. However, our tolerance is met with $p_{12} = 0.91001496$.
- (d) Using $g(x) = \cos x$ and the interval [0,1] we have k = 0.8414709848 so that with $p_0 = 0$ we have $n > \ln(0.00001)/\ln k > 66.70148074$. However, our tolerance is met with $p_{30} = 0.73908230$.
- 15. For $g(x) = (2x^2 \quad 10\cos x)/(3x)$, we have the following:

 $p_0 = 3$) $p_8 = 3.16193$; $p_0 = 3$) $p_8 = 3.16193$.

For $g(x) = \arccos(0.1x^2)$, we have the following:

$$p_0 = 1$$
) $p_{11} = 1.96882$; $p_0 = 1$) $p_{11} = 1.96882$.

16. For
$$g(x) = \frac{1}{\tan x} + x$$
 and $p_0 = 4$, we have $p_4 = 4.493409$.

17. With $g(x) = -\frac{1}{\pi} \arcsin(-\frac{1}{2}) + 2$, we have $p_5 = 1.683855$.

- 18. With $g(t) = 501.0625 \ 201.0625e^{0.4t}$ and $p_0 = 5.0$, $p_3 = 6.0028$ is within 0.01 s of the actual time. *Exercise Set 2.2*
- 19. Since0such that< $|xg^0$ is continuous at $p||g^{0}(x, we have) = g^0(p)$ $p < and g^0(|pg)^0|(p)|1>$ whenever1, by letting0 < $|x| = x |g^0p(|p|)|$. Hence, for any1 there exists a number satisfying> 0

$$|g^{0}(x)| |g^{0}(p)| |g^{0}(x) |g^{0}(p)| > |g^{0}(p)| (|g^{0}(p)| 1) = 1.$$

If p_0 is chosen so that $0 < |p_0| <$, we have by the Mean Value Theorem that

$$|p_1 \quad p| = |g(p_0) \quad g(p)| = |g^0(\hat{f})||p_0 \quad p|,$$

for some \hat{i} between p_0 and p. Thus, $0 < |p \quad \hat{i}| < |so |p_1 | p| = |g^0(\hat{i})||p_0 | p| > |p_0 | p|$.

20. (a) If fixed-point iteration converges to the limit *p*, then

$$p = \lim_{n \to \infty} p_n = \lim_{n \to \infty} 2p_{n-1} \quad Ap_{n-1}^2 = 2p \quad Ap^2$$

Solving for *p* gives $p = \frac{1}{A}$. (b) Any subinterval $\begin{bmatrix} c, d \end{bmatrix}$ of $\left(\frac{1}{2A}, \frac{3}{2A}\right)_{\text{containing}} \frac{1}{A}$ su ces. Since

$$g(x) = 2x$$
 Ax^2 , $g^0(x) = 2$ $2Ax$,

so g(x) is continuous, and $g^0(x)$ exists. Further, $g^0(x) = 0$ only if $x = \frac{1}{A}$. Since

$$g\left(\frac{1}{A}\right) = \frac{1}{A}, \quad g\left(\frac{1}{2A}\right) = g\left(\frac{3}{2A}\right) = \frac{3}{4A}, \quad \text{and we have} \quad \frac{3}{4A} \le g(x) \le \frac{1}{A}$$

For $x ext{ in } \left(rac{1}{2A}, rac{3}{2A}
ight)$, we have

$$\begin{vmatrix} x & \frac{1}{A} \end{vmatrix} < \frac{1}{2A} \quad |g'(x)| = 2A \begin{vmatrix} x & \frac{1}{A} \end{vmatrix} < 2A \left(\frac{1}{2A}\right) = 1$$

- 21. One of many examples is $g(x) = \sqrt{2x 1}$ on $\begin{bmatrix} \frac{1}{2}, 1 \end{bmatrix}$
- 22. (a) The proof of existence is unchanged. For uniqueness, suppose p and q are fixed points in [a,b] with $p \in q$. By the Mean Value Theorem, a number \uparrow in (a,b) exists with

$$p \quad q = g(p) \quad g(q) = g^0(\uparrow)(p \quad q) \boxtimes k(p \quad q)$$

giving the same contradiction as in Theorem 2.3.

(b) Consider g(x) = 1 x^2 on [0,1]. The function g has the unique fixed point

$$p = \frac{1}{2} \left(1 + \sqrt{5} \right).$$

With $p_0 = 0.7$, the sequence eventually alternates between 0 and 1.

23. (a) Suppose that $x_0 > p2$. Then

$$x_1 \mathbf{p} 2 = g(x_0) \qquad g \downarrow \mathbf{p} 2 \mathfrak{H} = g^0(\mathcal{I}) \downarrow x_0 \mathbf{p} 2 \mathfrak{H},$$

where
$$p_2 < \hat{\tau} < x$$
. Thus, $x_1 = p_2 > 0$ and $x_1 = p_2$. Further,
 $x_1 = \frac{x_0}{2} + \frac{1}{x_0} < \frac{x_0}{2} + \frac{1}{\sqrt{2}} = \frac{x_0 + \sqrt{2}}{2}$

and $p_2 < x_1 < x_0$. By an inductive argument,

$$p2 < x_{m+1} < x_m < \dots < x_0.$$

Thus, $\{x_m\}$ is a decreasing sequence which has a lower bound and must converge.

Suppose $p = \lim_{m \ge 1} x_m$. Then

$$p = \lim_{m \to \infty} \left(\frac{x_{m-1}}{2} + \frac{1}{x_{m-1}} \right) = \frac{p}{2} + \frac{1}{p}$$
 Thus $p = \frac{p}{2} + \frac{1}{p}$

which implies that $p = \pm p2$. Since $x_m > p2$ for all m, we have $\lim_{m \ge 1} x_m = p2$.

Case 2: $x_0 = pp22$, which implies that, which by part (a) implies that $\lim x_m = p2$ for $all_m m!$ and $\lim x_m = pm! 12$.

Case 3: *x*₀ >

24. (a) Let

$$g(x) = \frac{x}{2} + \frac{A}{2x}$$
Note that $g \downarrow A \mathfrak{H} = -$ A. Also, p p
 $g^0(x) = 1/2$ A/2x² if x 6= 0 and $g^0(x) > 0$ if $x > pA$.

If $x_0 = pA$, then $x_m = pA$ for all m and $\lim_{m \ge 1} x_m = pA$.

If $x_0 > A$, then

$$x_1 pA_{\underline{}} = g(x_0) \qquad g \downarrow pA_{\underline{}} # = g^0(\uparrow) \downarrow x_0 pA # > 0.$$

Further,

$$x_1 = \frac{x_0}{2} + \frac{A}{2x_0} < \frac{x_0}{2} + \frac{A}{2\sqrt{A}} = \frac{1}{2}\left(x_0 + \sqrt{A}\right)$$

Exercise Set 2.3

Thus, $pA < x_1 < x_0$. Inductively,

$$pA < x_{m+1} < x_m < ... < x_0$$

A by an argument similar to that in Exercise 23(a). If 0 and $\lim_{m \to \infty} px_m =$

 $< x_0 < A$, then

$$\begin{array}{ccc} 0 < \begin{pmatrix} x_0 & \sqrt{A} \end{pmatrix}^2 = x_0^2 & 2x_0\sqrt{A} + A & \begin{array}{ccc} \text{and} & 2 \\ & x_0\sqrt{A} < x_0^2 + A, \\ & \sqrt{A} < \frac{x_0}{2} + \frac{A}{2x_0} = x_1 \\ \end{array}$$
Thus p_{-}

Thus

$$0 < x_0 < \qquad A < x_{m+1} < x_m < \dots$$

$$x_1, p_{-}$$
and by the preceding argument, $\lim_{m \ge 1} x_m = A$.
(b) If $x_0 < 0$, then $\lim_{m \ge 1} x_m = A$.

25. Replace the second sentence in the proof with: "Since g satisfies a Lipschitz condition on [a,b]with a Lipschitz constant *L* < 1, we have, for each *n*,

$$|p_n \quad p| = |g(p_{n\,1}) \quad g(p)| \ \mathbb{Z} L|p_{n\,1} \quad p|."$$

<

The rest of the proof is the same, with *k* replaced by *L*.

26. Let " = $(1 |g^0(p)|)/2$. Since g^0 is continuous at p, there exists a number > 0 such that for $x \ge p, p+1$], we have $|g^0(x) g^0(p)| < "$. Thus, $|g^0(x)| < |g^0(p)| + " < 1$ for $x \ge [p, p+]$. By the Mean Value Theorem

$$|g(x) \quad g(p)| = |g^0(c)||x \quad p| < |x \quad p|$$

for *x* 2 [*p* ,*p* +]. Applying the Fixed-Point Theorem completes the problem.

Exercise Set 2.3, page 75

- 1. $p_2 = 2.60714$
- 2. 0.865684; If $p_0 = 0$, $f^0(p_0) = 0$ and p_1 cannot be computed. $p_2 =$
- 3. (a) 2.45454
 - (b) 2.44444
 - (c) Part (a) is better.
- 4. 1.25208 (a)
 - (b) 0.841355
- (a) For $p_0 = 2$, we have $p_5 = 2.69065$. 5.
 - (b) For $p_0 =$ 3, we have $p_3 = 2.87939$.
 - (c) For $p_0 = 0$, we have $p_4 = 0.73909$.
 - (d) For $p_0 = 0$, we have $p_3 = 0.96434$.
- 6. (a) For $p_0 = 1$, we have $p_8 = 1.829384$.

- (b) For $p_0 = 1.5$, we have $p_4 = 1.397748$.
- (c) For $p_0 = 2$, we have $p_4 = 2.370687$; and for $p_0 = 4$, we have $p_4 = 3.722113$.
- (d) For $p_0 = 1$, we have $p_4 = 1.412391$; and for $p_0 = 4$, we have $p_5 = 3.057104$. (e) For $p_0 = 1$, we have $p_4 = 0.910008$; and for $p_0 = 3$, we have $p_9 = 3.733079$.
- (f) For $p_0 = 0$, we have $p_4 = 0.588533$; for $p_0 = 3$, we have $p_3 = 3.096364$; and for $p_0 = 6$, we have $p_3 = 6.285049$.
- 7. Using the endpoints of the intervals as p_0 and p_1 , we have:
 - (a) $p_{11} = 2.69065$
 - (b) p₇ = 2.87939
 - (c) $p_6 = 0.73909$
 - (d) $p_5 = 0.96433$
- 8. Using the endpoints of the intervals as p_0 and p_1 , we have:
 - (a) $p_7 = 1.829384$
 - (b) $p_9 = 1.397749$
 - (c) $p_6 = 2.370687; p_7 = 3.722113$
 - (d) $p_8 = 1.412391; p_7 = 3.057104$
 - (e) $p_6 = 0.910008; p_{10} = 3.733079$
 - (f) $p_6 = 0.588533; p_5 = 3.096364; p_5 = 6.285049$
- 9. Using the endpoints of the intervals as p_0 and p_1 , we have:
 - (a) $p_{16} = 2.69060$
 - (b) $p_6 = 2.87938$
 - (c) $p_7 = 0.73908$
 - (d) $p_6 = 0.96433$
- 10. Using the endpoints of the intervals as p_0 and p_1 , we have:
 - (a) $p_8 = 1.829383$
 - (b) $p_9 = 1.397749$
 - (c) $p_6 = 2.370687; p_8 = 3.722112$
 - (d) $p_{10} = 1.412392; p_{12} = 3.057099$
 - (e) $p_7 = 0.910008; p_{29} = 3.733065$
 - (f) $p_9 = 0.588533; p_5 = 3.096364; p_5 = 6.285049$
- 11. (a) Newton's method with $p_0 = 1.5$ gives $p_3 = 1.51213455$.

The Secant method with $p_0 = 1$ and $p_1 = 2$ gives $p_{10} = 1.51213455$.

The Method of False Position with $p_0 = 1$ and $p_1 = 2$ gives $p_{17} = 1.51212954$.

(b) Newton's method with $p_0 = 0.5$ gives $p_5 = 0.976773017$.

The Secant method with $p_0 = 0$ and $p_1 = 1$ gives $p_5 = 10.976773017$.

The Method of False Position with $p_0 = 0$ and $p_1 = 1$ gives $p_5 = 0.976772976$.

12. (a) We have

	Initial Approximation	Result	Initial Approximation	Result
Newton's	$p_0 = 1.5$	<i>p</i> ₄ = 1.41239117	$p_0 = 3.0$	$p_4 = 3.05710355$
Secant	$p_0 = 1, p_1 = 2$	<i>p</i> ₈ = 1.41239117	$p_0 = 2, p_1 = 4$	$p_{10} = 3.05710355$
False Position	$p_0 = 1, p_1 = 2$	$p_{13} = 1.41239119$	$p_0 = 2, p_1 = 4$	$p_{19} = 3.05710353$
(b) We hav	ve			
	Initial Approximation	Result	Initial Approximation	Result

	Initial Approximation	Result	Initial Approximation	Result
Newton's	$p_0 = 0.25$	$p_4 = 0.206035120$	$p_0 = 0.75$	<i>p</i> ₄ = 0.681974809
Secant	$p_0 = 0, p_1 = 0.5$	$p_9 = 0.206035120$	$p_0 = 0.5, p_1 = 1$	$p_8 = 0.681974809$
False Position	$p_0 = 0, p_1 = 0.5$	$p_{12} = 0.206035125$	$p_0 = 0.5, p_1 = 1$	$p_{15} = 0.681974791$

13. (a) For $p_0 = 1$ and $p_1 = 0$, we have $p_{17} = 0.04065850$, and for $p_0 = 0$ and $p_1 = 1$, we have $p_9 = 0.9623984$.

(b) For $p_0 = 1$ and $p_1 = 0$, we have $p_5 = 0.04065929$, and for $p_0 = 0$ and $p_1 = 1$, we have $p_{12} = 0.04065929$.

(c) For $p_0 = 0.5$, we have $p_5 = 0.04065929$, and for $p_0 = 0.5$, we have $p_{21} = 0.9623989$.

- 14. (a) The Bisection method yields $p_{10} = 0.4476563$.
 - (b) The method of False Position yields $p_{10} = 0.442067$.
 - (c) The Secant method yields $p_{10} = 195.8950$.
- 15. Newton's method for the various values of p_0 gives the following results.
 - (a) $p_0 = 10, p_{11} = 4.30624527$
 - (b) $p_0 = 5, p_5 = 4.30624527$
 - (c) $p_0 = 3, p_5 = 0.824498585$
 - (d) $p_0 = 1, p_4 = 0.824498585$
 - (e) $p_0 = 0$, p_1 cannot be computed because $f^0(0) = 0$
 - (f) $p_0 = 1, p_4 = 0.824498585$
 - (g) $p_0 = 3, p_5 = 0.824498585$
 - (h) $p_0 = 5, p_5 = 4.30624527$
 - (i) $p_0 = 10, p_{11} = 4.30624527$
- 16. Newton's method for the various values of p_0 gives the following results.

- (a) $p_8 = 1.379365$
- (b) $p_7 = 1.379365$
- (c) $p_7 = 1.379365$
- (d) $p_7 = 1.379365$
- (e) $p_7 = 1.379365$
- (f) $p_8 = 1.379365$
- 17. For $f(x) = \ln(x^2 + 1)$ $e^{0.4x} \cos \hat{f} x$, we have the following roots.
 - (a) For $p_0 = 0.5$, we have $p_3 = 0.4341431$.
 - (b) For $p_0 = 0.5$, we have $p_3 = 0.4506567$. For $p_0 = 1.5$, we have $p_3 = 1.7447381$. For $p_0 = 2.5$, we have $p_5 = 2.2383198$. For $p_0 = 3.5$, we have $p_4 = 3.7090412$.
 - (c) The initial approximation *n* 0.5 is quite reasonable.
 - (d) For $p_0 = 24.5$, we have $p_2 = 24.4998870$.
- 18. Newton's method gives $p_{15} = 1.895488$, for $p_0 = \frac{\pi}{2}$; and $p_{19} = 1.895489$, for $p_0 = 5$?. The sequence does not converge in 200 iterations for $p_0 = 10$?. The results do not indicate the fast convergence usually associated with Newton's method.
- 19. For $p_0 = 1$, we have $p_5 = 0.589755$. The point has the coordinates (0.589755, 0.347811).
- 20. For $p_0 = 2$, we have $p_2 = 1.866760$. The point is (1.866760, 0.535687).
- 21. The two numbers are approximately 6.512849 and 13.487151.
- 22. We have \uparrow 0.100998 and *N*(2) \uparrow 2,187,950.
- 23. The borrower can a4ord to pay at most 8.10%.
- 24. The minimal annual interest rate is 6.67%.
- 25. We have P_L = 363432, c = 1.0266939, and k = 0.026504522. The 1990 population is P(30) = 248,319, and the 2020 population is P(60) = 300,528.
- 26. We have P_L = 446505, c = 0.91226292, and k = 0.014800625. The 1990 population is P(30) = 248,707, and the 2020 population is P(60) = 306,528.
- 27. Using $p_0 = 0.5$ and $p_1 = 0.9$, the Secant method gives $p_5 = 0.842$.
- 28. (a) $\frac{1}{3}\dot{e}, t_{=}$ 3 hours
 - (b) 11 hours and 5 minutes
 - (c) 21 hours and 14 minutes

29. (a) We have, approximately,

$$A = 17.74$$
, $B = 87.21$, $C = 9.66$, and $E = 47.47$

With these values we have

$$A\sin \hat{\tau} \cos \hat{\tau} + B\sin^2 \hat{\tau} + C\cos \hat{\tau} = 0.02$$

(b) Newton's method gives $\uparrow\uparrow$ 33.2.

30. This formula involves the subtraction of nearly equal numbers in both the numerator and denominator if p_{n1} and p_{n2} are nearly equal. 31. The equation of the tangent line is

$$y \qquad f(p_{n\,1}) = f^0(p_{n\,1})(x \qquad p_{n\,1}).$$

To complete this problem, set y = 0 and solve for $x = p_n$.

32. For some f_n between p_n and p_n

$$f(p) = f(p_n) + (p - p_n)f'(p_n) + \frac{(p - p_n)^2}{2}f''(\xi_n)$$

$$0 = f(p_n) + (p - p_n)f'(p_n) + \frac{(p - p_n)^2}{2}f''(\xi_n)$$

Since $f^0(p_n) = 06$,

$$0 = \frac{f(p_n)}{f'(p_n)} + p \quad p_n + \frac{(p - p_n)^2}{2f'(p_n)} f''(\xi_n)$$

we have

$$p \quad [p_n \quad \frac{f(p_n)}{f'(p_n)}] = \quad \frac{(p \quad p_n)^2}{2f'(p_n)} f''(\xi_n)$$

and

$$p \quad p_{n+1} = \frac{(p \quad p_n)^2}{2f'(p_n)} f''(p_n).$$

So

$$|p \quad p_{n+1}| \le \frac{M^2}{2|f'(p_n)|}(p \quad p_n)^2$$

Exercise Set 2.4, page 85

- 1. (a) For $p_0 = 0.5$, we have $p_{13} = 0.567135$.
 - (b) For $p_0 = 1.5$, we have $p_{23} = 1.414325$.
 - (c) For $p_0 = 0.5$, we have $p_{22} = 0.641166$.
 - (d) For $p_0 = 0.5$, we have $p_{23} = 0.183274$.
- 2. (a) For $p_0 = 0.5$, we have $p_{15} = 0.739076589$.
 - (b) For $p_0 = 2.5$, we have $p_9 = 1.33434594$.
 - (c) For $p_0 = 3.5$, we have $p_5 = 3.14156793$.

(d) For $p_0 = 4.0$, we have $p_{44} = 3.37354190$.

- 3. Modified Newton's method in Eq. (2.11) gives the following:
 - (a) For $p_0 = 0.5$, we have $p_3 = 0.567143$.
 - (b) For $p_0 = 1.5$, we have $p_2 = 1.414158$.
 - (c) For $p_0 = 0.5$, we have $p_3 = 0.641274$.
 - (d) For $p_0 = 0.5$, we have $p_5 = 0.183319$.
- 4. (a) For $p_0 = 0.5$, we have $p_4 = 0.739087439$.
 - (b) For $p_0 = 2.5$, we have $p_{53} = 1.33434594$.
 - (c) For $p_0 = 3.5$, we have $p_5 = 3.14156793$.
 - (d) For $p_0 = 4.0$, we have $p_3 = 3.72957639$.
- 5. Newton's method with $p_0 = 0.5$ gives $p_{13} = 0.169607$. Modified Newton's method in Eq. (2.11) with $p_0 = 0.5$ gives $p_{11} = 0.169607$.
- 6. (a) Since

$$\lim_{n \to \infty} \frac{|p_{n+1} \ p|}{|p_n \ p|} = \lim_{n \to \infty} \frac{\frac{1}{n+1}}{\frac{1}{n}} = \lim_{n \to \infty} \frac{n}{n+1} = 1$$

we have linear convergence. To have $|p_n p| < 5 \rightarrow 10^2$, we need *n* 20. (b) Since

$$\lim_{n \to \infty} \frac{|p_{n+1} \quad p|}{|p_n \quad p|} = \lim_{n \to \infty} \frac{\frac{1}{(n+1)^2}}{\frac{1}{n^2}} = \lim_{n \to \infty} \left(\frac{n}{n+1}\right)^2 = 1$$

we have linear convergence. To have $|p_n | < 5 \rightarrow 10^2$, we need n = 5.

7. (a) For k > 0,

$$\lim_{n \to \infty} \frac{|p_{n+1} \quad 0|}{|p_n \quad 0|} = \lim_{n \to \infty} \frac{\frac{1}{(n+1)^k}}{\frac{1}{n^k}} = \lim_{n \to \infty} \left(\frac{n}{n+1}\right)^k = 1$$

so the convergence is linear.

(b) We need to have $N > 10^{m/k}$.

8. (a) Since
$$\lim_{n \to \infty} \frac{|p_{n+1} \ 0|}{|p_n \ 0|^2} = \lim_{n \to \infty} \frac{10^{2^{n+1}}}{(10^{2^n})^2} = \lim_{n \to \infty} \frac{10^{2^{n+1}}}{10^{2^{n+1}}} = 1$$

the sequence is quadratically convergent.

Exercise Set 2.4

```
(b) We have
```

$$\lim_{n \to \infty} \frac{|p_{n+1} \quad 0|}{|p_n \quad 0|^2} = \lim_{n \to \infty} \frac{10^{(n+1)^k}}{(10^{n^k})^2} = \lim_{n \to \infty} \frac{10^{(n+1)^k}}{10^{2n^k}}$$
$$= \lim_{n \to \infty} 10^{2n^k \quad (n+1)^k} = \lim_{n \to \infty} 10^{n^k (2^{(n+1)^k})} = \infty,$$

so the sequence $p_n = 10^{n_k}$ does not converge quadratically.

9. Typical examples are

- (a) $p_n = 10^{3_n}$
- (b) $p_n = 10^{\uparrow_n}$
- 10. Suppose $f(x) = (x \ p)^m q(x)$. Since

$$g(x) = x \quad \frac{m(x \quad p)q(x)}{mq(x) + (x \quad p)q'(x)},$$

we have $g^0(p) = 0$.

11. This follows from the fact that

$$\lim_{n \to \infty} \frac{\left| \frac{b}{2^{n+1}} \right|}{\left| \frac{b}{2^n} \right|} = \frac{1}{2}.$$

12. If *f* has a zero of multiplicity *m* at *p*, then *f* can be written as

$$f(x) = (x \qquad p)^m q(x),$$

for x = 6 p, where

 $\lim_{\substack{x \mid p \\ x \mid p}} q(x) = 06.$ Thus, and $f^0(p) = 0.$ $f^0(x) = m(x \quad p)^m {}^1q(x) + (x \quad p)^m q^0(x)$ Also,

 $f^{00}(x) = m(m \ 1)(x \ p)^{m \ 2}q(x) + 2m(x \ p)^{m \ 1}q^0(x) + (x \ p)^m q^{00}(x)$ and $f^{00}(p) = 0$. In general, for $k \ \mathbb{D} m$,

$$f^{(k)}(x) = \sum_{j=0}^{k} \binom{k}{j} \frac{d^{j}(x-p)^{m}}{dx^{j}} q^{(k-j)}(x) = \sum_{j=0}^{k} \binom{k}{j} m(m-1) \cdots (m-j+1)(x-p)^{m-j} q^{(k-j)}(x).$$

Thus, for $0 \boxtimes k \boxtimes m$ 1, we have $f^{(k)}(p) = 0$, but $f^{(m)}(p) = m! \lim_{x!p} q(x) = 06$.

Conversely, suppose that

$$f(p) = f^{0}(p) = \dots = f^{(m \ 1)}(p) = 0 \quad \text{and} \quad f^{(m)}(p) \ 6 = 0.$$

Consider the $(m \ 1)$ th Taylor polynomial of f expanded about p :
$$f(x) = f(p) + f'(p)(x \ p) + \dots + \frac{f^{(m \ 1)}(p)(x \ p)^{m \ 1}}{(m \ 1)!} + \frac{f^{(m)}(\xi(x))(x \ p)^{m}}{m!}$$
$$= (x \ p)^{m} \frac{f^{(m)}(\xi(x))}{m!},$$

where f(x) is between *x* and *p*.

Since $f^{(m)}$ is continuous, let

$$q(x) = \frac{f^{(m)}(\xi(x))}{m!}.$$

Then $f(x) = (x \quad p)^m q(x)$ and

$$\lim_{x \to p} q(x) = \frac{f^{(m)}(p)}{m!} \neq 0$$

Hence *f* has a zero of multiplicity *m* at *p*.

13. If

$$\frac{|p_{n+1} \quad p|}{|p_n \quad p|^3} = 0.$$
75 and $|p_0 \quad p| = 0.5$, then $|p_n \quad p| = (0.75)^{(3_n 1)/2} |p_0 \quad p|^{3_n}$.

To have $|p_n \ p| \ge 10^8$ requires that $n \ 3$.

14. Let $e_n = p_n p$. If

$$\lim_{n \to \infty} \frac{|e_{n+1}|}{|e_n|^{\alpha}} = \lambda > 0$$

then for su ciently large values of n, $|e_{n+1}| \uparrow |e_n|^{\uparrow}$. Thus,

 $|e_n|$ $|e_n|$ $|e_n|$ |f| and $|e_n|$ $|e_n|$ |f| $|e_n|$ 1/f.

Using the hypothesis gives

 $|e_n| \uparrow \hat{|} |e_{n+1}| \uparrow C|e_n| = 1/\hat{|} |e_n| 1/\hat{|}, \text{ so } |e_n| \uparrow \hat{|} C = 1/\hat{|} 1|e_n| 1+1/\hat{|}.$

Since the powers of $|e_n|$ must agree,

$$f = 1 + 1/f$$
 and $\alpha = \frac{1 + \sqrt{5}}{2} \approx 1.62$.

The number *î* is the *golden ratio* that appeared in Exercise 11 of section 1.3.

Exercise Set 2.5, page 90

1. The results are listed in the following table.

Exercise Set 2.5

	(a)	(b)	(c)	(d)
\hat{p}_0	0.258684	0.907859	0.548101	0.731385
\hat{p}_1	0.257613	0.909568	0.547915	0.736087
\hat{p}_2	0.257536	0.909917	0.547847	0.737653
\hat{p}_3	0.257531	0.909989	0.547823	0.738469
\hat{p}_4	0.257530	0.910004	0.547814	0.738798
\hat{p}_5	0.257530	0.910007	0.547810	0.738958

2. Newton's Method gives $p_{16} = 0.1828876$ and $p_7 = 0.183387$.

- 3. Steelensen's method gives $p_0^{(1)} = 0.826427$.
- 4. Stee ensen's method gives $p_0^{(1)} = 2.152905$ and $p_0^{(2)} = 1.873464$.
- 5. Stee ensen's method gives $p_1^{(0)} = 1.5$.
- 6. Stee ensen's method gives $p_2^{(0)} = 1.73205$.

7. For
$$g(x) = q1 + {}_{x}1 and p_0^{(0)} = 1$$
, we have $p_0^{(3)} = 1.32472$.

8. For
$$g(x) = 2^{-x}$$
 and $p_0^{(0)} = 1$, we have $p_0^{(3)} = 0.64119$.
9. For $g(x) = 0.5(x + \frac{3}{x})$ and $p_0^{(0)} = 0.5$, we have $p_0^{(4)} = 1.73205$.
10. For $g(x) = \frac{5}{\sqrt{x}}$ and $p_0^{(0)} = 2.5$, we have $p_0^{(3)} = 2.92401774$.
11. (a) For $g(x) = 2 - e^x + x^2/3$ and $p_0^{(0)} = 0$, we have $p_0^{(3)} = 0.257530$.
(b) For $g(x) = 0.5(\sin x + \cos x)$ and $p_0^{(0)} = 0$, we have $p_0^{(4)} = 0.704812$.
(c) With $p_0^{(0)} = 0.25$, $p_0^{(4)} = 0.910007572$.
(d) With $p_0^{(0)} = 0.3$, $p_0^{(4)} = 0.469621923$.
12. (a) For $g(x) = 2 + \sin x$ and $p_0^{(0)} = 2$, we have $p_0^{(4)} = 2.55419595$. (b) $g(x) = \sqrt[3]{2x+5}$ and $p_0^{(0)} = 2$, we have $p_0^{(3)} = 0.910007574$.

- (d) With $g(x) = \cos x$, and $p_0^{(0)} = 0$, we have $p_0^{(4)} = 0.739085133$.
- 13. Aitken's ² method gives:
 - (a) $p_{10}^{10} = 0.045$
 - (b) $p_2^2 = 0.0363$
- 14. (a) A positive constant exists with

$$=\lim_{n\to\infty}\frac{|p_{n+1}\ p|}{|p_n\ p|^{\alpha}}$$

Hence

$$\lim_{n \to \infty} \left| \frac{p_{n+1} \quad p}{p_n \quad p} \right| = \lim_{n \to \infty} \frac{|p_{n+1} \quad p|}{|p_n \quad p|^{\alpha}} \cdot |p_n \quad p|^{\alpha - 1} = \lambda \cdot \underbrace{\mathbf{0} = \mathbf{0}}_{\mathbf{0} = \mathbf{0}} \quad \text{and} \quad \frac{p_{n+1} \quad p}{p_n \quad p} = \underbrace{\mathbf{0}}_{\text{lim}}$$

(b) One example is $p_n = n \frac{1}{n}$.

15. We have

$$\frac{|p_{n+1} \quad p_n|}{|p_n \quad p|} = \frac{|p_{n+1} \quad p + p \quad p_n|}{|p_n \quad p|} = \left| \frac{p_{n+1} \quad p}{p_n \quad p} - 1 \right|$$
so

$$\lim_{n \to \infty} \frac{|p_{n+1} \quad p_n|}{|p_n \quad p|} = \lim_{n \to \infty} \left| \frac{p_{n+1} \quad p}{p_n \quad p} - 1 \right| = 1.$$

For

,

16.

(b)

$$\frac{\hat{p}_n}{p_n} \frac{p}{p} = \frac{\lambda \left(\delta_n + \delta_{n+1}\right) \quad 2\delta_n + \delta_n \delta_{n+1} \quad 2\delta_n \left(\lambda \quad 1\right) \quad \delta_n^2}{\left(\lambda \quad 1\right)^2 + \lambda \left(\delta_n + \delta_{n+1}\right) \quad 2\delta_n + \delta_n \delta_{n+1}}$$

17. (a) Since
$$p_n = P_n(x) = \sum_{k=0}^n \frac{1}{k!} x^k$$
, we have

$$p_n \quad p = P_n(x) \quad e^x = \frac{e^{\xi}}{(n+1)!} x^{n+1}$$

where \hat{i} is between 0 and *x*. Thus, $p_n = 06$, for all n = 0. Further,

$$\frac{p_{n+1}}{p_n} \frac{p}{p} = \frac{\frac{e^{\xi_1}}{(n+2)!} x^{n+2}}{\frac{e^{\xi}}{(n+1)!} x^{n+1}} = \frac{e^{(\xi_1 - \xi)} x}{n+2}$$

where f_1 is between 0 and 1. Thus, $= \lim_{n \to \infty} \frac{e^{(\xi_1 - \xi)}x}{n+2} = 0 < 1.$

$\begin{array}{cccccccccccccccccccccccccccccccccccc$		\hat{p}_n	p_n	n
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		3	1	0
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		2.75	2	1
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$2.7\overline{2}$	2.5	2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	5	2.71875	$2.\overline{6}$	3
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$2.718\overline{3}$	$2.708\overline{3}$	4
7 2.7182539 2.7182	870	2.71828	$2.71\overline{6}$	5
	823	2.718282	$2.7180\overline{5}$	6
8 2 7182787 2 7182	818	2.718281	2.7182539	7
0 2.1102101 2.1102	818	2.718281	2.7182787	8
9 2.7182815			2.7182815	9
10 2.7182818			2.7182818	10

(c) Aitken's ² method gives quite an improvement for this problem. For example, p_6 is accurate to within 5 \rightarrow 10⁷. We need p_{10} to have this accuracy.

Exercise Set 2.6

Exercise Set 2.6, page 100

- 1. (a) For $p_0 = 1$, we have $p_{22} = 2.69065$.
 - (b) For $p_0 = 1$, we have $p_5 = 0.53209$; for $p_0 = 1$, we have $p_3 = 0.65270$; and for $p_0 = 3$, we have $p_3 = 2.87939$.
 - (c) For $p_0 = 1$, we have $p_5 = 1.32472$.

- (d) For $p_0 = 1$, we have $p_4 = 1.12412$; and for $p_0 = 0$, we have $p_8 = 0.87605$.
- (e) For $p_0 = 0$, we have $p_6 = 0.47006$; for $p_0 = 1$, we have $p_4 = 0.88533$; and for $p_0 = 3$, we have $p_4 = 2.64561$.
- (f) For $p_0 = 0$, we have $p_{10} = 1.49819$.
- 2. (a) For $p_0 = 0$, we have $p_9 = 4.123106$; and for $p_0 = 3$, we have $p_6 = 4.123106$. The complex roots are $2.5 \pm 1.322879i$.
 - (b) For $p_0 = 1$, we have $p_7 = 3.548233$; and for $p_0 = 4$, we have $p_5 = 4.38111$. The complex roots are 0.5835597 ± 1.494188*i*.
 - (c) The only roots are complex, and they are $\pm p2i$ and $0.5 \pm 0.5p3i$.
 - (d) For $p_0 = 1$, we have $p_5 = 0.250237$; for $p_0 = 2$, we have $p_5 = 2.260086$; and for $p_0 = 11$, we have $p_6 = 12.612430$. The complex roots are $0.1987094 \pm 0.8133125i$.
 - (e) For $p_0 = 0$, we have $p_8 = 0.846743$; and for $p_0 = 1$, we have $p_9 = 3.358044$. The complex roots are $1.494350 \pm 1.744219i$.
 - (f) For $p_0 = 0$, we have $p_8 = 2.069323$; and for $p_0 = 1$, we have $p_3 = 0.861174$. The complex roots are $1.465248 \pm 0.8116722i$.
 - (g) For $p_0 = 0$, we have $p_6 = 0.732051$; for $p_0 = 1$, we have $p_4 = 1.414214$; for $p_0 = 3$, we have $p_5 = 2.732051$; and for $p_0 = 2$, we have $p_6 = 1.414214$.
 - (h) For $p_0 = 0$, we have $p_5 = 0.585786$; for $p_0 = 2$, we have $p_2 = 3$; and for $p_0 = 4$, we have $p_6 = 3.414214$.
- 3. The following table lists the initial approximation and the roots.

	p_0	p_1	p_2	Approximate roots	Complex Conjugate roots
(a)	$\begin{array}{c} 1 \\ 0 \end{array}$	$\begin{array}{c} 0 \\ 1 \end{array}$	$\frac{1}{2}$	$p_7 = \begin{array}{cc} 0.34532 & 1.31873i \\ p_6 = 2.69065 \end{array}$	0.34532 + 1.31873i
(b)	0 1	1 2	2 3	$p_6 = 0.53209$ $p_9 = 0.65270$	
	2	3	2.5	<i>p</i> ₄ = 2.87939	

(c)	0	1	2	$p_5 = 1.32472$	
	2	1	0	$p_7 = 0.66236 0.56228i$	0.66236 + 0.56228 <i>i</i>
(d)	0	1	2	$p_5 = 1.12412$	
(u)	2	3	4	$p_{12} = 0.12403 + 1.74096i$	0.12403 1.74096 <i>i</i>
	2	0	1	$p_{5} = 0.87605$	
	-	0	•	p3 0107000	
(e)	0	1	2	$p_{10} = 0.88533$	
	1	0	0.5	$p_5 = 0.47006$	
	1	2	3	$p_5 = 2.64561$	
(f)	0	1	2	$p_6 = 1.49819$	
	1	2	3	$p_{10} = 0.51363 1.09156i$	0.51363 + 1.09156 <i>i</i>
	1	0	1	$p_8 = 0.26454$ 1.32837 <i>i</i>	0.26454 + 1.32837 <i>i</i>
Ex	ercise Se	et 2.6 4.		The following table lists the initiation of the	
				-	
	p_0	p_1	<i>p</i> ₂	Approximate roots	Complex Conjugate roots
(a)	0	1	2	p_{11} = 2.5 1.322876 <i>i</i>	2.5 + 1.322876 <i>i</i>
	1	2	3	$p_6 = 4.123106$	
	3	4	5	$p_5 = 4.123106$	
(b)	0	1	2	$p_7 = 0.583560$ 1.494188 <i>i</i>	0.583560 + 1.494188 <i>i</i>
	2	3	4	$p_6 = 4.381113$	
	2	3	4	$p_5 = 3.548233$	
(c)	0	1	2	$p_{11} = 1.414214i$	1.414214 <i>i</i>
(-)	1	2	3	$p_{10} = 0.5 + 0.866025i$	0.5 0.866025 <i>i</i>
(d)	0	1	2	$p_7 = 2.260086$	
ίαj	3	4	_	$p_{14} = 0.198710 + 0.813313i$	0 198710 + 0 813313 <i>i</i>
	11	12	13	$p_{14} = 0.190710 + 0.0133137$ $p_{22} = 0.250237$	0.170710 - 0.0100101
				-	
	9	10	11	$p_6 = 12.612430$	
(e)	0	1	2	$p_6 = 0.846743$	
	3	4	5	$p_{12} = 1.494349 + 1.744218i$	1.494349 1.744218 <i>i</i>
				-	1171017 117112101
	1	2	3	$p_7 = 3.358044$	
(f)	0	1	2	$p_6 = 2.069323$	
(f)	0			r	
(f)	0 1	0	1	$p_5 = 0.861174$	
(f)				$p_5 = 0.861174$ $p_8 = 1.465248 + 0.811672i$	1 4 (5) 4 0 - 0 0 4 4 (5) 1

(g) $\begin{array}{cccccccccccccccccccccccccccccccccccc$					
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(g)				-
(h) 0 1 2 $p_8 = 3$ 1 0 1 $p_5 = 0.585786$		0	2	1	$p_7 = 1.414214$
1 0 1 $p_5 = 0.585786$		2	3	4	$p_6 = 2.732051$
·	(h)	0	1	2	<i>p</i> ₈ = 3
2.5 3.5 4 $p_6 = 3.414214$		1	0	1	$p_5 = 0.585786$
		2.5	3.5	4	$p_6 = 3.414214$

- 5. (a) The roots are 1.244, 8.847, and 1.091, and the critical points are 0 and 6.
 (b) The roots are 0.5798, 1.521, 2.332, and 2.432, and the critical points are 1, 2.001, and 1.5.
- 6. We get convergence to the root 0.27 with $p_0 = 0.28$. We need p_0 closer to 0.29 since $f^0(0.283) = 0$.
- 7. The methods all find the solution 0.23235.
- 8. The width is approximately W = 16.2121 ft.
- 9. The minimal material is approximately 573.64895 cm².
- Fibonacci's answer was 1.3688081078532, and Newton's Method gives 1.36880810782137 with a tolerance of 10 ¹⁶, so Fibonacci's answer is within 4 → 10 ¹¹. This accuracy is amazing for the time.

Exercise Set 2.6